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Abstract. The dynamical Curie–Weiss model of self-organized criticality (SOC) was introduced in (Ann. Inst. Henri Poincaré Probab.
Stat. 53 (2017) 658–678) and it is derived from the classical generalized Curie–Weiss by imposing a microscopic Markovian evolution
having the distribution of the Curie–Weiss model of SOC (Ann. Probab. 44 (2016) 444–478) as unique invariant measure. In the case
of Gaussian single-spin distribution, we analyze the dynamics of moderate fluctuations for the magnetization. We obtain a path-space
moderate deviation principle via a general analytic approach based on convergence of non-linear generators and uniqueness of viscosity
solutions for associated Hamilton–Jacobi equations. Our result shows that, under a peculiar moderate space-time scaling and without
tuning external parameters, the typical behavior of the magnetization is critical.

Résumé. Le modèle de Curie–Weiss de criticalité auto-organisée dynamique a été construit dans (Ann. Inst. Henri Poincaré Probab.
Stat. 53 (2017) 658–678) à partir du modèle de Curie–Weiss généralisé. Il s’agit d’un processus de Markov continu dont l’unique
mesure invariante est la loi du modèle de Curie–Weiss de criticalité auto-organisée (Ann. Probab. 44 (2016) 444–478). Dans le cas
Gaussien, nous étudions les fluctuations modérées de la magnétisation. Nous obtenons un principe de déviations modérées dans l’espace
des chemins en utilisant une approche analytique basée sur la convergence de générateurs non-linéaires et sur l’unicité des solutions de
viscosité pour des équations de Hamilton–Jacobi associées. Notre résultat montre que, dans une certaine échelle de temps modérée et
sans intervention de paramètres extérieurs, le comportement critique de la magnétisation est critique.
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1. Introduction

In their very well-known article [4], Bak, Tang and Wiesenfeld showed that certain large dynamical systems have the
tendency to organize themselves into a critical state, without any external intervention. The amplification of small internal
fluctuations can lead to a critical state and cause a chain reaction leading to a radical change of the system behavior. These
systems exhibit the phenomenon of self-organized criticality (SOC) that since its introduction has been successfully
applied to describe quite a number of natural phenomena (e.g., forest fires, earthquakes, species evolution). Indeed, it
has been conjectured that living systems self-organize by putting themselves in a state which is close to criticality. In
general, features of SOC have been observed empirically or simulated on a computer in various models; however, the
mathematical analysis turns out to be extremely difficult, even for models whose definition is very simple [3,19,22].
Self-organized criticality has been reviewed in recent works [1,2,9,21,24].

The simplest models exhibiting SOC are obtained by forcing standard critical transitions into a self-organized state
[23, Section 15.4]. The idea is to start with a model presenting a phase transition and to create a feedback from the con-
figuration to the control parameters in order to converge towards a critical state. Following this guideline, Cerf and Gorny
designed an interacting particle system exhibiting self-organized criticality that is as simple as possible and is amenable
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to a rigorous mathematical analysis: a Curie–Weiss model of SOC [5,14]. They modified the equilibrium distribution as-
sociated to the generalized Curie–Weiss model (i.e., with real-valued spins [10]) by implementing an automatic control
of the inverse temperature that, in the limit as the size n goes to infinity, drives the system into criticality without tuning
any external parameter. Under an exponential moment condition and a symmetry assumption on the spin distribution,
they proved that the magnetization behaves as in the generalized Curie–Weiss model when posed at the critical point: the

fluctuations are of order n
3
4 and have limiting law ν(x) ∝ exp(− x4

12 )dx.
More recently, Gorny approached the problem from a non-equilibrium viewpoint and constructed a dynamical Curie–

Weiss model of SOC [15]. He considered a Markov process whose unique invariant distribution is the Curie–Weiss model

of SOC and proved, in the case of Gaussian spins, that the fluctuations evolve on a peculiar space-time scale (orders n
3
4 ,√

nt) and their limit is the solution of a “critical” SDE having ν as invariant measure.
The advantage of dealing with Gaussian spins is that it is possible to find a finite-dimensional order parameter to

describe the system. In particular, the problem can be reduced to a bi-dimensional problem: the Langevin spin dynamics
induce a Markovian evolution on the pair ((n−1Sn(t), n

−1Tn(t)), t ≥ 0), with Sn := ∑n
i=1 Xi and Tn := ∑n

i=1 X2
i , Xi ’s

being the spin values. Therefore it suffices to analyze the behaviour of the latter observable.
Our purpose is to characterize path-space moderate deviations for the dynamical model of SOC with Gaussian spins

introduced in [15]. A moderate deviation principle is technically a large deviation principle and consists in a refinement
of a central limit theorem, in the sense that it characterizes the exponential decay of the probability of deviations from the
average on a smaller scale.

We apply the approach to large deviations by Feng–Kurtz [13] to characterize the most likely behavior for the tra-
jectories of fluctuations. The techniques are based on the convergence of Hamiltonians and well-posedness of a class of
Hamilton–Jacobi equations corresponding to a limiting Hamiltonian H . These techniques have been recently exploited
to analyze moderate fluctuations from equilibrium in the various regimes in the standard [6] and the random-field version
[7] of the Curie–Weiss model. The major difference in comparison to these papers is that now we are dealing with un-
bounded spin state space. Nevertheless, we can implement the same strategy as in [7]. We use the perturbation theory for
Markov processes [17,18,20] to formally identify a limiting operator H and we relax our definition of limiting operator
to allow for unbounded functions in the domain. More precisely, we follow [13] and introduce two Hamiltonians H† and
H‡, that are limiting upper and lower bounds for the sequence of Hamiltonians Hn, respectively. We then characterize H

by matching the upper and lower bound.
From a qualitative viewpoint, we derive a projected large deviation principle. Indeed, there is a natural time-scale

separation for the evolutions of the two processes (n−1Sn(t), t ≥ 0) and (n−1Tn(t), t ≥ 0): n−1Tn is fast and converges
exponentially quickly to σ 2, the variance of the single-spin distribution, while n−1Sn is slow and its limiting behavior can
be determined after suitably “averaging out” the dynamics of n−1Tn. Corresponding to this observation, we need to prove
a large deviation principle for the component n−1Sn only. Our main result shows that self-organized criticality is reflected
by moderate deviations, since the rate function for the path-space moderate deviation principle retains the features of the
“critical” evolution derived in [15].

The outline of the paper is as follows: in Section 2.2 we formally introduce the dynamical version of the Curie–
Weiss model of SOC and we state the large deviation principle. The proof is given in Section 3. The Appendix contains
the mathematical tools needed to derive our large deviation principle via solving a class of associated Hamilton–Jacobi
equations and it is included to make the paper self-contained. A similar version of the appendix appears also in [7].

2. Model and main result

2.1. Notation and definitions

Before starting with the main contents of the paper, we introduce some notation. We start with the definition of good
rate-function and of large deviation principle for a sequence of random variables.

Definition 2.1. Let (Xn)n∈N∗ be a sequence of random variables on a Polish space X . Furthermore, consider a function
I : X → [0,∞] and a sequence (rn)n∈N∗ of positive numbers such that rn ↑ ∞. We say that

• the function I is a good rate-function if the set {x | I (x) ≤ c} is compact for every c ≥ 0.
• the sequence (Xn)n∈N∗ is exponentially tight at speed rn if, for every a ≥ 0, there exists a compact set Ka ⊆ X such

that lim supn r−1
n logP[Xn /∈ Ka] ≤ −a.

• the sequence (Xn)n∈N∗ satisfies the large deviation principle with speed rn and good rate-function I , denoted by

P[Xn ≈ a] 
 e−rnI (a),
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if, for every closed set A ⊆X , we have

lim sup
n↑∞

r−1
n logP[Xn ∈ A] ≤ − inf

x∈A
I (x),

and, for every open set U ⊆X ,

lim inf
n↑∞ r−1

n logP[Xn ∈ U ] ≥ − inf
x∈U

I (x).

Definition 2.2. A curve γ : [0, T ] → R is absolutely continuous if there exists a function g ∈ L1([0, T ],R) such that
for t ∈ [0, T ] we have γ (t) = γ (0) + ∫ t

0 g(s)ds. We write g = γ̇ . A curve γ : R+ → R is absolutely continuous if the
restriction to [0, T ] is absolutely continuous for every T ≥ 0. Throughout the whole paper AC will denote the set of
absolutely continuous curves in R.

To conclude we fix notation for some collections of function-spaces.

Definition 2.3. Let k ≥ 1 and E a closed subset of Rd . We will denote by

• Ck
l (E) (resp. Ck

u(E)) the set of functions that are bounded from below (resp. above) in E and are k times continuously
differentiable on a neighborhood of E in R

d .
• Ck

c (E) the set of functions that are constant outside some compact set in E and are k times continuously differentiable
on a neighborhood of E in R

d . Finally, we set C∞
c (E) := ⋂

k Ck
c (E).

2.2. Description of the model and main result

Let ρ be a symmetric probability measure on R, with variance σ 2, and such that we have
∫
R

exp(az2)dρ(z) < ∞, for
every a ≥ 0. The generalized Curie–Weiss model associated with ρ and inverse temperature β > 0 is an infinite triangular
array of real-valued spin random variables (Xk

n)1≤k≤n having joint distribution

dμCW
n,ρ,β(z1, . . . , zn) = 1

Zn(β)
exp

(
β

2

(z1 + · · · + zn)
2

n

) n∏
i=1

dρ(zi), (2.1)

where Zn(β) is a normalizing constant. For any n ≥ 1, set Sn := X1
n + · · · + Xn

n . We have the following results for the
asymptotics of Sn (cf. [10]):

• If β < 1
σ 2 , then the fluctuations of Sn are of order

√
n and, in particular, Sn√

n
converges in law to a centered Gaussian

random variable with variance σ 2

1−βσ 2 .

• The point β = 1
σ 2 is the critical point for the system. The fluctuations of Sn become of higher order and their limit is

no more Gaussian. Indeed, there exist k ∈N \ {0,1} and λ > 0 (both depending on ρ), such that

Sn

n1−1/2k

L−−−→
n↑∞ S with density Ck,λ exp

(
−λ

s2k

(2k)!
)

ds, (2.2)

where Ck,λ is a normalizing constant.

In [5] the authors modified the distribution (2.1) so as to build a system of interacting random variables that exhibits
a phenomenon of self-organized criticality. In other words, they constructed a spin system converging to the critical state
of (2.1) (corresponding to β = 1

σ 2 ) without tuning any external parameter. Based on the observation that if the spins were

independent the quantity n(z2
1 + · · · + z2

n)
−1 would be a good estimator for 1

σ 2 by strong law of large numbers, they

decided to replace the inverse temperature β in (2.1) with n(z2
1 + · · · + z2

n)
−1, obtaining

dμSOC
n,ρ (z1, . . . , zn) = 1

Zn

exp

(
1

2

(z1 + · · · + zn)
2

z2
1 + · · · + z2

n

) n∏
i=1

dρ(zi), (2.3)

where Zn is a normalizing constant. An infinite triangular array of real-valued spins (Xk
n)1≤k≤n having joint distribution

(2.3) is a Curie–Weiss model of self-organized criticality and it indeed evolves spontaneously towards criticality. The
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fluctuations of Sn, under (2.3), have the same asymptotics as the critical generalized Curie–Weiss model, in the sense that
they obey the same result as (2.2) with a universal exponent k = 2.

In [15] a dynamical version of the Curie–Weiss model of SOC was introduced. It consists in a Markov process, defined
through a system of n interacting Langevin diffusions, whose unique invariant distribution is

dμ̃SOC
n,ρ (z1, . . . , zn) = 1

Zn

exp

(
1

2

(z1 + · · · + zn)
2

z2
1 + · · · + z2

n + 1

) n∏
i=1

dρ(zi), (2.4)

where Zn is a normalizing constant. Observe that (2.4) is a slight modification of (2.3) aimed at avoiding technical
difficulties due to ill-definition of the distribution at the origin and to the non-Lipschitzianity of the coefficients of the
associated Langevin diffusions. Nevertheless the distributions (2.3) and (2.4) provide two equivalent formulations for a
Curie–Weiss model of SOC (see [15] and references therein for further details). Now we come to the description of the
dynamics we are interested in.

Let ϕ : R → R be an even function of class C2 such that exp(2ϕ) is integrable over R. Moreover, suppose that there
exists a positive constant c such that, for any z ∈ R, zϕ′(z) ≤ c(1 + z2). We define ρ to be the probability measure having
density

ρ(z) = exp
(
2ϕ(z)

)(∫
R

exp
(
2ϕ(w)

)
dw

)−1

,

with respect to the Lebesgue measure on R. The dynamical counterpart of the Curie–Weiss model of SOC (2.4) is an
infinite triangular array of stochastic processes (Xk

n(t), t ≥ 0)1≤k≤n such that, for all n ≥ 1, ((X1
n(t), . . . ,X

n
n(t)), t ≥ 0) is

the unique solution of the following system of stochastic differential equations:

dX
j
n(t) = 1

2

[
2ϕ′(Xj

n(t)
) + Sn(t)

Tn(t) + 1
− X

j
n(t)

(
Sn(t)

Tn(t) + 1

)2]
dt + dBj (t) (j = 1, . . . , n) (2.5)

where

• for every t ≥ 0,

Sn(t) := X1
n(t) + · · · + Xn

n(t) and Tn(t) = (
X1

n(t)
)2 + · · · + (

Xn
n(t)

)2;
• the process ((B1(t), . . . ,Bn(t)), t ≥ 0) is a standard n-dimensional Brownian motion.

The solution ((X1
n(t), . . . ,X

n
n(t)), t ≥ 0) of (2.5) is a Markov diffusion process on R

n. For any f ∈ C2(Rn) and z ∈ R
n,

it evolves with infinitesimal generator

Lnf (z) = 1

2

n∑
j=1

∂2f (z)

∂z2
j

+ 1

2

n∑
j=1

[
2ϕ′(zj ) + Sn[z]

Tn[z] + 1
− zj

(
Sn[z]

Tn[z] + 1

)2]
∂f (z)

∂zj

, (2.6)

with Sn[z] := ∑n
i=1 zi and Tn[z] := ∑n

i=1 z2
i . We recall once more that the measure (2.4) is the unique invariant distribu-

tion for Ln.
Our main aim is to describe the limiting behavior of moderate fluctuations for the evolution (2.4); the technical dif-

ficulties arising have not allowed us to obtained the desired results under the present assumptions, in particular with no
requirements on the function ϕ (except evenness and exponential integrability). Thus we find it preferable to make the
following assumption at this point:

(A) ϕ(z) = − z2

4σ 2 , for some σ > 0.

Assumption (A) corresponds to choosing the Gaussian probability density as reference measure ρ for the spin vari-
ables. Under assumption (A), the process ((n−1Sn(t), n

−1Tn(t)), t ≥ 0) is a sufficient statistics for our model. Indeed, the
dynamics (2.6) on the configurations induce a Markovian dynamics on R

2 for the process ((n−1Sn(t), n
−1Tn(t)−σ 2), t ≥

0) that evolves with generator

Anf (x, y) = 1

2n

∂2f

∂x2
(x, y) + 2x

n

∂2f

∂x∂y
(x, y) + 2(y + σ 2)

n

∂2f

∂y2
(x, y)
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+ 1

2

[
− n2x3

(ny + nσ 2 + 1)2
+ nx

ny + nσ 2 + 1
− x

σ 2

]
∂f

∂x
(x, y)

+
[

nx2

(ny + nσ 2 + 1)2
− y

σ 2

]
∂f

∂y
(x, y). (2.7)

The derivation of the previous formula from (2.4) is omitted, since it is tedious and rather standard. We refer to [15,
Section 3, Prop. 6] for the detailed derivation of a similar result (the main difference being the space-time scaling the
process is subject to).

As a consequence of (2.7), the task of characterizing the time-evolution of the fluctuation flow(
1

n

n∑
k=1

δXk
n(t)(dz) − ρ(dz)

)
t≥0

turns into analyzing the path-space deviations of ((n−1Sn(t), n
−1Tn(t) − σ 2), t ≥ 0). From being infinite dimensional,

the problem reduces to a two dimensional problem.
First consider a standard central limit theorem setting and therefore consider the two dimensional process classically

rescaled by
√

n. Computing the formal limit of (2.7) for functions of the variable x (resp. y) only, we find that, as n ↑ ∞,
the process (n−1/2Sn(t), t ≥ 0) converges weakly to a standard Brownian motion, whereas (

√
n(n−1Tn(t) − σ 2), t ≥ 0)

to the Ornstein–Uhlenbeck process solution of

dY(t) = −Y(t)

σ 2
dt + 2σ dB1(t), (2.8)

where (B1(t), t ≥ 0) is a standard Brownian motion. Thus, the second component of the pair ((n−1/2Sn(t),
√

n ×
(n−1Tn(t) − σ 2)), t ≥ 0) has a confined process as a limit, whereas the first one fluctuates homogeneously in space.
Indeed, in this last case, as shown in [15], a further rescaling allows one to see that the process (n−3/4Sn(

√
nt), t ≥ 0)

converges weakly to the solution of

dX(t) = −X3(t)

2σ 4
dt + dB(t), (2.9)

with (B(t), t ≥ 0) standard Brownian motion. Under this critical space-time rescaling the process, (n−1Tn(t)−σ 2, t ≥ 0)

collapses: at times of order
√

nt the process (
√

n(n−1Tn(
√

nt) − σ 2), t ≥ 0) equilibrates at a Gaussian measure and
therefore, when refining the space rescaling, the process (n1/4(n−1Tn(

√
nt) − σ 2), t ≥ 0) equilibrates at δ0. This was

proven in [15, Lem. 9].
We complement the analysis by considering the moderate deviations of n−1Sn(t) around equilibrium, under the mi-

croscopic dynamics (2.7). As in the weak convergence setting mentioned above, corresponding to the separation of time-
scales for the evolutions of the two processes, we need to prove a projected path-space large deviation principle, in other
words for the component n−1Sn only. More precisely, we get the following statement.

Theorem 2.4. Let (bn)n∈N∗ be a sequence of positive real numbers such that bn ↑ ∞ and b4
nn

−1 ↓ 0. Suppose that
bnn

−1Sn(0) satisfies a large deviation principle with speed nb−4
n on R and rate function I0. Then, the trajectories

(bnn
−1Sn(b

2
nt), t ≥ 0) satisfy the large deviation principle

P
[(

bnn
−1Sn

(
b2
nt

)
, t ≥ 0

) ≈ (
γ (t), t ≥ 0

)] 
 e−nb−4
n I (γ )

on CR(R+), with good rate function

I (γ ) =
{

I0(γ (0)) + ∫ +∞
0 L(γ (s), γ̇ (s))ds if γ ∈AC,

∞ otherwise,
(2.10)

where

L(x, v) := 1

2

∣∣∣∣v + x3

2σ 4

∣∣∣∣
2

.

By choosing the sequence bn = nα , with α > 0, we can rephrase Theorem 2.4 in terms of more familiar moderate
scalings involving powers of the system-size. We therefore get estimates for the probability of a typical trajectory on a



770 F. Collet, M. Gorny and R. C. Kraaij

Table 1
Path-space fluctuations for the magnetization of the Curie–Weiss model of self-organized criticality in the case
of Gaussian spins

Scaling exponent Rescaled process Limiting theorem

α ∈ (0, 1
4 ) (nα−1Sn(n2αt), t ≥ 0) LDP at speed n1−4α with rate function (2.10)

α = 1
4 (n−3/4Sn(n1/2t), t ≥ 0) weak convergence to the unique solution of (2.9) with

initial condition X(0) = 0 (see [15, Thm. 1])

scale that is between a law of large numbers and a central limit theorem. This result extends our understanding of the
path-space fluctuations for the Curie–Weiss model of self-organized criticality, in the case of Gaussian spins. We have
stated this result, in combination with the non-standard central limit theorem in [15, Thm. 1] in Table 1. The displayed
conclusions are drawn under the assumption that in each case the initial condition satisfies a large deviation principle
at the correct speed. Observe that self-organized criticality is reflected by moderate deviations, since the rate function
retains the features of the “critical” evolution (2.9). To conclude, it is worth to mention that the methods of the papers
[6,7] are not sufficient to obtain a path-space large deviation principle for the process ((n−1Sn(t), n

−1Tn(t)), t ≥ 0) by
the Feng–Kurtz approach. Indeed, the Hamiltonian is not of the standard type dealt with in [6] and it is not immediately
clear how the comparison principle can be treated.

3. Proof

We aim at studying moderate deviations by following the methods in [13]. The techniques are based on the convergence of
Hamiltonians and well-posedness of a class of Hamilton–Jacobi equations corresponding to a limiting Hamiltonian. These
techniques have been applied also in [6–8,12,16]. In particular, in [7] moderate deviation principles for projected processes
are proved by combining the perturbation theory for Markov processes with a sophisticated notion of convergence of
Hamiltonians, based on limiting upper and lower bounds. Here we apply those same techniques, as they allow to take
care of unbounded spin state space. We summarize the notions needed for our result and the abstract machinery used for
the proof of a large deviation principle via well-posedness of Hamilton–Jacobi equations in the Appendix. We rely on
Theorem A.9 for which we must check the following conditions:

• The processes ((bnn
−1Sn(b

2
nt), bn(n

−1Tn(b
2
nt) − σ 2)), t ≥ 0) satisfy an appropriate exponential compact containment

condition. See Section 3.3.
• There exist two Hamiltonians H† ⊆ Cl(R

2) × Cb(R
2) and H‡ ⊆ Cu(R

2) × Cb(R
2) such that H† ⊆ ex − subLIMn Hn

and H‡ ⊆ ex − superLIMn Hn. This extension allows for unbounded functions in the domain. See Section 3.2. More-
over, we refer to Definition A.5 for the notions of subLIM and superLIM.

• There is an operator H ⊆ Cb(R) × Cb(R) such that, for all λ > 0 and h ∈ Cb(R), every viscosity subsolution to
f − λHf = h is a viscosity subsolution to f − λH†f = h and every viscosity supersolution to f − λHf = h is a
viscosity supersolution to f − λH‡f = h. The operators H† and H‡ should be thought of as upper and lower bounds
for the “true” limiting H of the sequence Hn. See Section 3.2.

• The comparison principle holds for sub- and supersolutions of the Hamilton–Jacobi equations f − λH†f = h and
f − λH‡f = h respectively, for all h ∈ Cb(R) and all λ > 0. The proof of this statement is immediate, since the
operators H†, H‡ that we will be dealing with are of the type considered in [6]. In particular, see the proof of [6,
Prop. A.11]. The statement of the latter proposition is concerned with the limiting Hamiltonian H but, to prove that the
comparison principle holds for the Hamilton–Jacobi equation associated with H , the first step in the proof is turning
the analysis to H† and H‡ and show that the comparison principle is in fact satisfied by the Hamiltoni–Jacobi equations
associated with these extensions.

For the verification of all the open conditions we use the limiting behaviour of the sequence of Hamiltonians Hn. We
then start by deriving an expansion for the Hamiltonians associated to the re-scaled fluctuation process.

3.1. Expansion of the Hamiltonian

Let (bn)n∈N∗ be a sequence of positive real numbers such that bn ↑ ∞ and b4
nn

−1 ↓ 0. The fluctuation process
((bnn

−1Sn(b
2
nt), bn(n

−1Tn(b
2
nt) − σ 2)), t ≥ 0) has Markovian evolution on state space En := R × (−σ 2bn,+∞) and

its generator Gn can be deduced from (2.7).
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Lemma 3.1. Let n ∈N
∗. The Markov process ((bnn

−1Sn(b
2
nt), bn(n

−1Tn(b
2
nt)− σ 2)), t ≥ 0) has infinitesimal generator

Gn that, for any f ∈ C2
c (En), satisfies

Gnf (x, y) = 1

2

(
xb2

n

σ 2

(
hn(y) − 1

) − x3

σ 4
h2

n(y)

)
∂f

∂x
(x, y) +

(
bnx

2

nσ 4
h2

n(y) − b2
ny

σ 2

)
∂f

∂y
(x, y)

+ b4
n

2n

∂2f

∂x2
(x, y) + 2b3

nx

n

∂2f

∂x∂y
(x, y) + 2b4

n

n

(
y

bn

+ σ 2
)

∂2f

∂y2
(x, y), (3.1)

where the function hn : (−σ 2bn,+∞) →R is defined by hn(y) = (1 + y

bnσ 2 + 1
nσ 2 )−1.

By applying the chain rule to the function exp{nb−4
n f (x, y)}, for f ∈ C2

c (En), it is easy to see that, at speed nb−4
n , the

Hamiltonian

Hnf (x, y) = b4
nn

−1e−nb−4
n f (x,y)Gn

(
enb−4

n f
)
(x, y)

results in

Hnf (x, y) = Gnf (x, y) + 1

2

(
∂f

∂x
(x, y)

)2

+ 2σ 2
(

∂f

∂y
(x, y)

)2

+ 2x

bn

∂f

∂x
(x, y)

∂f

∂y
(x, y) + 2y

bn

(
∂f

∂y
(x, y)

)2

, (3.2)

with Gn given by (3.1). We Taylor expand the function hn(y) appearing in the definition of Gn up to second order:

hn(y) = 1 − y

bnσ 2
+ y2

b2
nσ

4
+ 1

b2
n

εn(y), (3.3)

where the sequence of functions (εn)n∈N∗ converges to zero, uniformly in n, on compact sets of R.
In what follows we will require a more accurate control on the reminder εn(y). For this reason we give here the

following lemma.

Lemma 3.2. Set Kn = [−σ 2 log1/2 b
1/2
n , σ 2 log1/2 b

1/2
n ]. There exists a positive constant c, independent of n, such that

we have

sup
y∈Kn

∣∣εn(y)
∣∣ ≤ cb−1

n log3/2 b
1/2
n . (3.4)

Proof. We Taylor expand the function hn(y) up to second order and we express the reminder in Lagrange’s form. Taking
out the highest order terms to obtain (3.3), we find

εn(y) = − b2
n

1 + nσ 2
− bny

σ 2

[(
1 − 1

1 + nσ 2

)2

− 1

]
+ y2

σ 4

[(
1 − 1

1 + nσ 2

)3

− 1

]

− y3

bnσ 6

(
1 + ζ

bnσ 2
+ 1

nσ 2

)−4

,

with |ζ | < |y|. Note that the first three terms on the right-hand side are at most of order b−2
n . The final term is of order

b−1
n log3/2 b

1/2
n , as the fraction that is taken to the fourth power is asymptotically converging to 1. �

Turning back to the expansion of Gn in (3.2), by (3.3) we get

Hnf (x, y) = 1

2

(
−bnxy

σ 4
+ xy2

σ 6
− x3

σ 4

)
∂f

∂x
(x, y) − b2

ny

σ 2

∂f

∂y
(x, y)

+ 1

2

(
∂f

∂x
(x, y)

)2

+ 2σ 2
(

∂f

∂y
(x, y)

)2

+ R
f
n (x, y) (3.5)
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and the remainder

R
f
n (x, y) =

(
xεn(y)

2σ 2
− x3

2σ 4

(
h2

n(y) − 1
))∂f

∂x
(x, y) + bnx

2h2
n(y)

nσ 4

∂f

∂y
(x, y)

+ b4
n

2n

∂2f

∂x2
(x, y) + 2

(
b4
nσ

2

n
+ b3

ny

n

)
∂2f

∂y2
(x, y) + 2b3

nx

n

∂2f

∂x∂y
(x, y)

+ 2x

bn

∂f

∂x
(x, y)

∂f

∂y
(x, y) + 2y

bn

(
∂f

∂y
(x, y)

)2

(3.6)

converges to zero, uniformly in n, on compact sets of R2.

3.2. Perturbative approach and approximating Hamiltonians

Observe that the expansion (3.5) is diverging and, more precisely, is diverging through terms containing the y vari-
able, thus relative to the time-evolution of the process (bn(n

−1Tn(b
2
nt) − σ 2), t ≥ 0). Indeed, the two components

of ((bnn
−1Sn(b

2
nt), bn(n

−1Tn(b
2
nt) − σ 2)), t ≥ 0) live on two different time-scales and the asymptotic behavior of

(bnn
−1Sn(b

2
nt), t ≥ 0) can be determined after having averaged out the evolution of (bn(n

−1Tn(b
2
nt) − σ 2), t ≥ 0). The

“averaging” is obtained through a perturbative approach leading to a projected large deviation principle. This argument
takes inspiration from the perturbation theory for Markov processes applied in [17,18,20] and it was also used to study
path-space moderate deviations for the Curie–Weiss model with random field in [7].

In the present section we will first give some heuristics about the perturbative method, since it will provide a guideline
for getting the approximating Hamiltonians H†, H‡, and then we will make it rigorous.

3.2.0.1. Heuristics on perturbation. In the expansion (3.5) the leading term is of order b2
n and thus explodes as n ↑ ∞.

We think of b−1
n as a perturbative parameter and we use a second order perturbation Fn,f of f to introduce some negligible

(in the infinite volume limit) terms providing that the whole expansion does not diverge.
More precisely, given two arbitrary functions �f ,�f :R2 → R, we define the perturbation of f as

Fn,f : (x, y) �−→ f (x) + b−1
n �f (x, y) + b−2

n �f (x, y) (3.7)

and then we choose �f and �f so that

HnFn,f (x, y) = Hf (x) + remainder,

where Hf (x) is of order 1 with respect to bn and the remainder contains smaller order terms. We assume that �f and �f

are at least of class C2 and we compute HnFn,f . Using (3.5) yields

HnFn,f (x, y) = −bnxy

2σ 4
f ′(x) +

(
xy2

2σ 6
− x3

2σ 4

)
f ′(x) + 1

2

(
f ′(x)

)2

− ybn

σ 2

∂�f

∂y
(x, y) − xy

2σ 4

∂�f

∂x
(x, y) − y

σ 2

∂�f

∂y
(x, y) + remainder.

To eliminate the terms of order bn and of order 1 in the variable y, the functions �f and �f must necessarily verify

∀(x, y) ∈ R
2

{− y

σ 2
∂�f

∂y
(x, y) − xy

2σ 4 f ′(x) = 0

− y

σ 2
∂�f

∂y
(x, y) − xy

2σ 4
∂�f

∂x
(x, y) + xy2

2σ 6 f ′(x) = 0.
(3.8)

If we take

�f : (x, y) �−→ − xy

2σ 2
f ′(x) and �f : (x, y) �−→ xy2

8σ 4

(
3f ′(x) + xf ′′(x)

)
, (3.9)

then the conditions (3.8) are satisfied and we obtain

HnFn,f (x, y) = − x3

2σ 4
f ′(x) + 1

2

(
f ′(x)

)2 + remainder.
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Provided we can control the remainder, for any function f in a suitable regularity class, we formally get the following
candidate limiting operator

Hf (x) = − x3

2σ 4
f ′(x) + 1

2

(
f ′(x)

)2
. (3.10)

To rigorously conclude that the Hamiltonian H is the limit of the sequence (Hn)n∈N∗ , with Hn given in (3.5), we
should prove that H ⊆ LIMn Hn (see Definition A.6). The proof of the latter assertion would consist in showing that,
for every f ∈ C4

c (R), we have LIMn Fn,f = f and LIMn HnFn,f = Hf . Recall that in our setting (x, y) ∈ En =
R× (−σ 2bn,+∞). Therefore, the functions �f and �f in (3.9) are unbounded in En, implying in turn that also Fn,f is
unbounded in En. Due to this unboundedness, even if f ∈ C4

c (R), we can not guarantee supn ‖Fn,f ‖ < ∞ and thus we
can not prove LIMn Fn,f = f .

We apply the same techniques as in [7]. To circumvent the problem and allow for unbounded functions in the do-
main, we relax our definition of limiting operator. In particular, we introduce two limiting Hamiltonians H† and H‡,
approximating H from above and below respectively, and then we characterize H by matching upper and lower bound.

3.2.0.2. Approximating Hamiltonians and domain extensions. We have seen that the natural perturbations of our func-
tions f are unbounded. We repair this unboundedness by cutting off the functions. To this purpose, we introduce a
collection of smooth increasing functions χn : R→R such that

χn(z) =

⎧⎪⎨
⎪⎩

−σ 2 logb
1/2
n + 1 if z ≤ −σ 2 logb

1/2
n

z if − σ 2 logb
1/2
n + 2 ≤ z ≤ σ 2 logb

1/2
n − 2

σ 2 logb
1/2
n − 1 if z ≥ σ 2 logb

1/2
n .

(3.11)

To make sure that the cut-off acts only outside a compact set, we first perturb our function f by a Lyapunov function
ε(y2 + log(1+x2)). The latter function will indeed play a special role in establishing the exponential compact containment
condition in Section 3.3 below.

Lemma 3.3. Let ε ∈ (0,1) and f ∈ C4
c (R). Consider the cut-off (3.11) and define the functions

χn

(
Fn,f (x, y) ± ε

(
y2 + Fn,g(x, y)

))
,

with Fn,• as in (3.7), (3.9) and g(x) = log(1 + x2). Then,

(a) For any C > 0 there is an N = N(C) such that, for any n ≥ N , we have

χn

(
Fn,f (x, y) ± ε

(
y2 + Fn,g(x, y)

)) = Fn,f (x, y) ± ε
(
y2 + Fn,g(x, y)

)
on the set K1 = K1(C) := {(x, y) ∈R

2 | ε(y2 + log(1 + x2)) ≤ C}.
(b) Let C be the positive constant defined in (3.12) and set N1 := sup{n ∈ N | ε ≤ 6Cb−2

n }. Then, for any n > N1,
the function χn(Fn,f (x, y) ± ε(y2 + Fn,g(x, y))) is constant outside the compact set K2,n := {(x, y) ∈ R

2 | ε(y2 +
log(1 + x2)) ≤ 2σ 2 logb

1/2
n + 6C}.

Proof. We start by proving (a). Recall that f ∈ C4
c (R), so there exists a positive constant M such that the derivatives of

f (and, as a consequence, �f and �f ) vanish at x /∈ [−M,M]. Therefore, it yields

∣∣f (x)
∣∣ + b−1

n

∣∣�f (x, y)
∣∣ + b−2

n

∣∣�f (x, y)
∣∣ ≤ ‖f ‖ + M

2σ 2

∥∥f ′∥∥|y| + M

8σ 4

(
3
∥∥f ′∥∥ + M

∥∥f ′′∥∥)
y2,

where ‖ · ‖ denotes the L∞-norm. Moreover, since |xg′(x)| ≤ 1 and |x(3g′(x) + xg′′(x))| ≤ 8 we also get the bound

ε
(
b−1
n

∣∣�g(x, y)
∣∣ + b−2

n

∣∣�g(x, y)
∣∣) ≤ |y|

σ 2
+ y2

σ 4
.

Setting

C := max

{
‖f ‖, 1

2σ 2

(
M

∥∥f ′∥∥ + 2
)
,

1

8σ 4

(
3M

∥∥f ′∥∥ + M2
∥∥f ′′∥∥ + 8

)}
(3.12)
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and putting the two previous estimates together we obtain∣∣Fn,f (x, y) ± ε
(
b−1
n �g(x, y) + b−2

n �g(x, y)
)∣∣ ≤ C

(
1 + b−1

n |y| + b−2
n y2) ≤ 3C

(
1 + b−2

n y2), (3.13)

where the last inequality follows from |ab| ≤ 2(a2 + b2), with a, b ∈ R. Consider an arbitrary C > 0. By (3.13), we find
that (x, y) �→ Fn,f (x, y)± ε(y2 +Fn,g(x, y)) is bounded uniformly in n on the set K1. To conclude, simply observe that,
since the cut-off is moving to infinity, for sufficiently large n, we obtain χn ≡ id on K1.

We proceed with the proof of (b). For any n > N1 and any (x, y) /∈ K2,n, we obtain

Fn,f (x, y) + ε
(
y2 + Fn,g(x, y)

) = Fn,f (x, y) + ε
(
b−1
n �g(x, y) + b−2

n �g(x, y)
) + ε

(
y2 + log

(
1 + x2))

≥ −3C
(
1 + b−2

n y2) + ε

2
y2 + ε

2

(
y2 + 2 log

(
1 + x2))

≥ −3C + ε

2

(
y2 + 2 log

(
1 + x2))

> σ 2 logb
1/2
n .

The definition (3.11) of the cut-off leads then to the conclusion. The proof for the function Fn,f (x, y)−ε(y2 +Fn,g(x, y))

follows similarly. �

Before stating the next lemma, we want to make a remark on the notation N� used therein. This index is an explicit
positive integer larger than N1, introduced in Lemma 3.3(b), and it will be defined precisely in (3.16) at the end of this
section.

Lemma 3.4. Let ε ∈ (0,1) and f ∈ C4
c (R). Consider the cut-off (3.11) and define the functions

f ε,±
n (x, y) :=

{
0 if n ≤ N�

χn(Fn,f (x, y) ± ε(y2 + Fn,g(x, y))) if n > N�

and

f ε,±(x, y) := f (x) ± ε
(
y2 + g(x)

)
,

with Fn,• as in (3.7), (3.9) and g(x) = log(1 + x2). Then, for every ε ∈ (0,1), the following properties are satisfied:

(a) f
ε,±
n ∈ D(Hn).

(b) f ε,+ ∈ Cl(R
2) and f ε,− ∈ Cu(R

2).
(c) We have

inf
n

inf
(x,y)∈En

f ε,+
n (x, y) > −∞ and sup

n
sup

(x,y)∈En

f ε,−
n (x, y) < ∞.

(d) For every compact set K ⊆ R
2, there exists a positive integer N = N(K) such that, for n ≥ N and (x, y) ∈ K , we

have

f ε,±
n (x, y) = Fn,f (x, y) ± ε

(
y2 + Fn,g(x, y)

)
.

(e) For every c ∈ R, we have

LIM
n↑∞ f ε,+

n ∧ c = f ε,+ ∧ c and LIM
n↑∞ f ε,−

n ∨ c = f ε,− ∨ c.

Proof. If n < N� all the statements are trivial. We assume n ≥ N� and we prove all the properties for the ‘+’ superscript
case, the other being similar.

(a) It is clear from the definition (3.16) of N� that N� ≥ N1. Then, as the cut-off (3.11) is smooth, Lemma 3.3(b) yields
f

ε,±
n ∈ C∞

c (R2). In addition, the location of the cut-off and Lemma 3.3(b) make sure that f
ε,±
n is constant outside a

compact set K ⊂ En, implying f
ε,±
n ∈ D(Gn) and, as a consequence, f

ε,±
n ∈ D(Hn). See equations (3.1) and (3.2)

for the definitions of Gn and Hn respectively.
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(b) This is immediate from the definitions of f ε,±.
(c) From the estimate (3.13), we deduce (keeping the same notation)

inf
(x,y)∈R2

Fn,f (x, y) + ε
(
y2 + Fn,g(x, y)

) ≥ −3C
(
1 + b−2

n y2) + ε
(
y2 + log

(
1 + x2)),

which is bounded from below uniformly in n > N1. The conclusion follows as N� ≥ N1 (cf. equation (3.16)).
(d) This follows immediately by Lemma 3.3(a).
(e) Fix ε > 0 and c ∈ R. By (c), the sequence (f

ε,+
n ∧ c)n∈N∗ is uniformly bounded from below and then, we obviously

get supn∈N∗ ‖f ε,+
n ∧ c‖ < ∞. Thus, it suffices to prove uniform convergence on compact sets. Let us consider an

arbitrary sequence (xn, yn) converging to (x, y) and prove limn f
ε,+
n (xn, yn) = f ε,+(x, y). As a converging sequence

is bounded, it follows from (d) that, for sufficiently large n, we have

f ε,+
n (xn, yn) = Fn,f (xn, yn) + ε

(
y2
n + Fn,g(xn, yn)

)
,

which indeed converges to f ε,+(x, y) as n ↑ ∞. �

Definition 3.5. Let H ⊆ Cb(R) × Cb(R), with domain D(H) = C∞
c (R), be defined as

Hf (x) = − x3

2σ 4
f ′(x) + 1

2

(
f ′(x)

)2
.

We define the approximating Hamiltonians H† ⊆ Cl(R
2) × Cb(R

2) and H‡ ⊆ Cu(R
2) × Cb(R

2) as

H† :=
{(

f (x) + ε
(
y2 + log

(
1 + x2)),Hf (x) + ε

2

∥∥f ′∥∥ + ε2
) ∣∣∣ f ∈ C∞

c (R), ε ∈ (0,1)

}
,

H‡ :=
{(

f (x) − ε
(
y2 + log

(
1 + x2)),Hf (x) − ε

2

∥∥f ′∥∥ − ε2
) ∣∣∣ f ∈ C∞

c (R), ε ∈ (0,1)

}
.

Proposition 3.6. Consider notation as in Definitions 3.5 and A.5. We have H† ⊆ ex − subLIMn Hn and H‡ ⊆ ex −
superLIMn Hn.

Proof. We prove only the first statement, i.e. H† ⊆ ex − subLIMn Hn. Fix ε > 0 and f ∈ C4
c (R). Set fn := f

ε,+
n as in

Lemma 3.4. We show that (f (x) + ε(y2 + log(1 + x2)),Hf (x) + ε
2‖f ′‖ + ε2) is approximated by (fn,Hnfn) as in

Definition A.5(a). Since (A.1) was proved in Lemma 3.4(e), we are left to check conditions (A.2) and (A.3).

(A.2) We start by showing that we can get a uniform (in n) upper bound for the function Hnf
ε,+
n . To avoid trivialities,

we consider the sequence for n ≥ N�.
– If |Fn,f (x, y)+ ε(y2 + Fn,g(x, y))| ≥ σ 2 logb

1/2
n , then the function f

ε,+
n is constant and therefore Hnf

ε,+
n ≡ 0.

– If |Fn,f (x, y)+ ε(y2 +Fn,g(x, y))| < σ 2 logb
1/2
n , the variables x and y are at most of order b

1/4
n and log1/2 b

1/2
n

respectively and we can characterize Hnf
ε,+
n by means of (3.5), since we can control the remainder term. Indeed,

∗ by Lemma 3.2, we control εn(y) up to y’s of order log1/2 b
1/2
n ;

∗ the function f is constant outside a compact set and thus has zero derivatives outside such a compact set;
∗ by smoothness of the cut-off (3.11), the derivatives χ ′

n and χ ′′
n are bounded.

We thus find

Hnf
ε,+
n (x, y) =

[
− x3

2σ 4
f ′(x) − ε

(
x4

σ 4(1 + x2)
+ 2b2

ny
2

σ 2

)]
χ ′

n(−)

+ 1

2

[(
f ′(x)

)2 + 4ε2x2

(1 + x2)2

](
χ ′

n(−)
)2

+ 8ε2σ 2y2
[

b4
n

n
χ ′′

n (−) + (
χ ′

n(−)
)2

]
+ Qn(x, y) (3.14)

and sup(x,y) |Qn(x, y)| ≤ c0, for a suitable positive constant c0, independent of n and ε. Observe that the re-
mainder term Qn(x, y) collects all the smaller order contributions coming from Fn,f (x, y), Fn,g(x, y) and y2.
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We want to show that (3.14) is uniformly bounded from above. The terms involving f are ok, since f ∈ C4
c (R)

implies that there exists a positive constant M such that f ′ vanishes at x /∈ [−M,M]. The function − x4

σ 4(1+x2)
is

non-positive and the term 2x2

(1+x2)2 is bounded from above by 2. Moreover, if we set

N2 := sup

{
n ∈N

∣∣∣ −2b2
n

σ 2
+ 8σ 2

[
b4
n

n
χ ′′

n (−) + (
χ ′

n(−)
)2

]
> 0

}
, (3.15)

we obtain that − 2b2
ny2

σ 2 + 8σ 2[ b4
n

n
χ ′′

n (−) + (χ ′
n(−))2]y2 is uniformly bounded from above, for all n > N2. By

definition (3.16), N� ≥ N2. Therefore, we can find a positive constant c1 (dependent on M and σ , but not on n

and ε) such that Hnf
ε,+
n (x, y) ≤ c1.

To conclude, observe that, since there exists a positive constant c2 (independent of n) such that |Hnf
ε,+
n | ≤

c2b
2
n logbn + c0 (cf. equation (3.14)), choosing the sequence vn := bn leads to supn v−1

n log‖Hnf
ε,+
n ‖ < ∞.

(A.3) Let K be a compact set. Consider an arbitrary converging sequence (xn, yn) ∈ K and let (x, y) ∈ K be its limit.
We want to show lim supn Hnf

ε,+
n (xn, yn) ≤ Hf (x).

As a converging sequence is bounded, by Lemma 3.4(d) we can find a sufficiently large N = N(K) ∈ N such
that, for all n ≥ N , we have

f ε,+
n (xn, yn) = Fn,f (xn, yn) + ε

(
y2
n + Fn,g(xn, yn)

)
.

Thus, for any n ≥ N , it yields

Hnf
ε,+
n (xn, yn) ≤ − x3

n

2σ 4
f ′(xn) + 1

2

(
f ′(xn)

)2

+ ε

(
xn

1 + x2
n

f ′(xn) − x4
n

σ 4(1 + x2
n)

− 2b2
ny

2
n

σ 2

)

+ ε2
(

2x2
n

(1 + x2
n)2

+ 8σ 2y2
n

)
+ Qn(xn, yn).

Using that x(1 + x2)−1 ≤ 1/2, we find

Hnf
ε,+
n (xn, yn) ≤ Hf (xn) + ε

2

∥∥f ′∥∥ + ε2 + εy2
n

[
8εσ 2 − 2b2

n

σ 2

]
+ Qn(xn, yn),

where the remainder term Qn converges to zero uniformly on compact sets. Since bn ↑ ∞, the conclusion follows.�

At this point we are ready to complete the definition of the sequences {f ε,±
n }n∈N∗ by defining the index N�. We set

N� := N1 ∨ N2, (3.16)

with N1 and N2 given respectively in Lemma 3.3(b) and in (3.15). To conclude this section we obtain the Hamiltonian
extensions.

Proposition 3.7. Consider notation as in Definition 3.5. Fix λ > 0 and h ∈ Cb(E). Every viscosity subsolution to f −
λHf = h is also a viscosity subsolution to f − λH†f = h. Every viscosity supersolution to f − λHf = h is also a
viscosity supersolution to f − λH‡f = h.

Proof. We prove only the statement about H†, the other being similar. We have to show that H† is a viscosity subextension
of H [6, Def. A.5]. This follows similarly as in [6, Lem. A.8]. Indeed, our operator H† (see Definition 3.5) is similar to
the form dealt with in [6] with f (x) instead of �α(x, y) and ϒ(x,y) = y2 + log(1 + x2). �

3.3. Exponential compact containment

The last open question we must address consists in verifying exponential compact containment for the fluctuation process.
The validity of the compactness condition will be shown in Proposition 3.9 below. We start with an informal discussion
on the validity of this property.
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Recall that the sequence of processes (
√

n(n−1Tn(t) − σ 2), t ≥ 0) converges weakly to the solution of (2.8). Thus,
speeding up time by a factor b2

n, we find that the process
√

n(n−1Tn(b
2
nt) − σ 2) has roughly equilibrated as a centered

normal random variable with variance 2σ 4. This implies that, for any a > 0, the tail probability P[bn(n
−1Tn(b

2
nt)−σ 2) ≥

a] scales like

∫ ∞

a

1

2σ 2
√

π

√
n

bn

e
− n

b2
n

y2

4σ4 dy. (3.17)

By Lemma 2 in [11, Section 7.1], (3.17) is bounded above by

1

2aσ 2
√

π

bn√
n

exp

{
− n

b2
n

a2

4σ 4

}
,

which is indeed decaying on an exponential scale that is faster than nb−4
n . As a consequence, it is the dynamics of the

process (bnn
−1Sn(b

2
nt), t ≥ 0) that needs to be properly controlled, as well as the interplay between the two processes.

To do so, we use a Lyapunov argument based on [13, Lem. 4.22] (included for completeness as Lemma A.3). We start
by proving an auxiliary lemma showing that the function (x, y) �→ 1

2 (y2 + log(1 + x2)) is appropriate for this purpose,
whenever we carry out the appropriate perturbation and cut-off as in the previous section.

Lemma 3.8. Let G ⊆R
2 be a relatively compact open set. Consider the cut-off introduced in (3.11) and define

ϒn(x, y) = χn

[
1

2

(
y2 + Fn,g(x, y)

)]
,

with Fn,• as in (3.7), (3.9) and g(x) = log(1 + x2). Then, we have

lim sup
n↑∞

sup
(x,y)∈G∩En

Hnϒn(x, y) ≤ 1

4
.

Proof. This follows immediately from the statement H† ⊆ ex − subLIMn Hn proved in Proposition 3.6. Namely, one can
consider f ≡ 0 and ε = 1

2 . �

Proposition 3.9. Assume that the sequence (bnn
−1Sn(0), bn(n

−1Tn(0)−σ 2)) is exponentially tight at speed nb−4
n . Then,

the processes((
Xn(t), Yn(t)

)
, t ≥ 0

) := ((
bnn

−1Sn

(
b2
nt

)
, bn

(
n−1Tn

(
b2
nt

) − σ 2)), t ≥ 0
)

satisfy the exponential compact containment condition at speed nb−4
n . In other words, for every compact set K ⊆ R

2,
every constant a ≥ 0 and time T ≥ 0, there exists a compact set K ′ = K ′(K,a,T ) ⊆R

2 such that

lim sup
n↑∞

sup
(x,y)∈K∩En

b4
nn

−1 logP
[(

Xn(t), Yn(t)
)

/∈ K ′ for some t ≤ T | (Xn(0), Yn(0)
) = (x, y)

] ≤ −a.

Proof. The statement follows from Lemmas 3.8 and A.3 by choosing fn ≡ ϒn on a fixed, sufficiently large, compact set
of R2. For similar proofs see e.g. [8, Lem. 3.2], [6, Prop. A.15]. �

3.4. Proof of Theorem 2.4

We check the assumptions of Theorem A.9. We use operators H†, H‡ as in Definition 3.5 and limiting Hamiltonian
H ⊆ Cb(R) × Cb(R), with domain C∞

c (R), of the form Hf (x) = H(x,f ′(x)) where

H(x,p) = − x3

2σ 4
p + 1

2
p2.

We first verify Condition A.8: (a) follows from Proposition 3.6, (b) is satisfied by definition and (c) follows from Propo-
sition 3.7.

The comparison principle for f − λHf = h for h ∈ Cb(R) and λ > 0 has been verified in e.g. [6, Prop. 3.5]. Recall
again that the proof of [6, Prop. 3.5] is based on [6, Prop. A.11], which first establishes that sub- and supersolutions to
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f −λHf = h give sub- and supersolutions to f −λH†f = h and f −λH‡f = h respectively. Since the operators H† and
H‡ in [6, Prop. A.11] are of the same type as our current H† and H‡, we can use the same proof to establish comparison
for our H† and H‡ directly.

Two further things should be noted. The statement of [6, Prop. 3.5] is valid for f ∈ C2
c (R), but the result generalizes

straightforwardly to class C∞
c (R) as the penalization and containment functions used in the proof are C∞. In addition,

the proposition was stated for strong viscosity solutions, but the proof works for our notion of viscosity solutions as well.
See the discussion following [13, Def. 6.1 and Def. 7.1] on the difference between the two notions of solutions.

Finally, the exponential compact containment condition follows from Proposition 3.9.

Appendix: Path-space large deviations for a projected process

We turn to the derivation of the large deviation principle. We first introduce our setting.

Assumption A.1. Assume that, for each n ∈ N
∗, we have a Polish subset En ⊆ R

2 such that for each x ∈ R
2 there are

xn ∈ En with xn → x. Let An ⊆ Cb(En) × Cb(En) and existence and uniqueness holds for the DEn(R
+) martingale

problem for (An,μ) for each initial distribution μ ∈ P(En). Letting P
n
z ∈ P(DEn(R

+)) be the solution to (An, δz), the
mapping z �→ P

n
z is measurable for the weak topology on P(DEn(R

+)). Let Zn be the solution to the martingale problem
for An and set

Hnf = 1

rn
e−rnf Ane

rnf , ernf ∈D(An),

for some sequence of speeds (rn)n∈N∗ , with limn↑∞ rn = ∞.

Following the strategy of [13], the convergence of Hamiltonians (Hn)n∈N∗ is a major component in the proof of
the large deviation principle. We postpone the discussion on how determining a limiting Hamiltonian H due to the
difficulties that taking the n ↑ ∞ limit introduces in our particular context. We first focus on exponential tightness, an
equally important aspect.

A.1. Compact containment condition

Given the convergence of the Hamiltonians, to have exponential tightness it suffices to establish an exponential compact
containment condition.

Definition A.2. We say that a sequence of processes (Zn(t), t ≥ 0) on En ⊆ R
2 satisfies the exponential compact con-

tainment condition at speed (rn)n∈N∗ , with limn↑∞ rn = ∞, if for all compact sets K ⊆ R
2, constants a ≥ 0 and times

T > 0, there is a compact set K ′ ⊆R
2 with the property that

lim sup
n↑∞

sup
z∈K

1

rn
logP

[
Zn(t) /∈ K ′ for some t ≤ T | Zn(0) = z

] ≤ −a.

The exponential compact containment condition can be verified by using approximate Lyapunov functions and martin-
gale methods. This is summarized in the following lemma. Note that exponential compact containment can be obtained
by taking deterministic initial conditions.

Lemma A.3 (Lemma 4.22 in [13]). Suppose Assumption A.1 is satisfied. Let Zn(t) be a solution of the martingale
problem for An and assume that (Zn(0))n∈N∗ is exponentially tight with speed (rn)n∈N∗ . Consider the compact set K =
[a, b] × [c, d] and let G ⊆ R

2 be open and such that [a, b] × [c, d] ⊆ G. For each n, suppose we have (fn, gn) ∈ Hn.
Define

β(q,G) := lim inf
n↑∞

(
inf

(x,y)∈Gc
fn(x, y) − sup

(x,y)∈K

fn(x, y)
)
,

γ (G) := lim sup
n↑∞

sup
(x,y)∈G

gn(x, y).

Then

lim sup
n↑∞

1

rn
logP

[
Zn(t) /∈ G for some t ≤ T

] ≤ max
{
−β(q,G) + T γ (G), lim sup

n↑∞
P
[
Zn(0) /∈ [a, b] × [c, d]]}.
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A.2. Operator convergence for a projected process

In the papers [6,8,16] one of the main steps in proving the large deviation principle was proving directly the existence
of an operator H such that H ⊆ LIMn Hn; in other words, verifying that, for all (f, g) ∈ H , there are fn ∈ Hn such that
LIMn fn = f and LIMn Hnfn = g (the notion of LIM is introduced in Definition A.4). Here it is hard to follow a similar
strategy. We rather proceed as done in [7].

We are dealing with functions

fn(x, y) = f (x) + b−1
n f1(x, y) + b−2

n f2(x, y) (for suitably chosen f1 and f2)

given in a perturbative fashion and satisfying intuitively fn → f and Hnfn → Hf with Hamiltonian H ⊆ Cb(R)×Cb(R)

of the form (3.10). The unboundedness of the state space En causes that, for most functions f ∈ C4
c (R), supn ‖fn‖ = ∞,

implying we do not have LIMfn = f . To circumvent this issue, we relax our definition of limiting operator.
In particular, we will work with two Hamiltonians H† and H‡, that are limiting upper and lower bounds for the

sequence of Hamiltonians Hn, respectively, and thus serve as natural upper and lower bounds for H . This extension
allows us to consider unbounded functions in the domain and to argue with inequalities rather than equalities.

Definition A.4 (Definition 2.5 in [13]). For fn ∈ Cb(En) and f ∈ Cb(R
2), we will write LIMfn = f if supn ‖fn‖ < ∞

and, for all compact sets K ⊆R
2,

lim
n↑∞ sup

(x,y)∈K∩En

∣∣fn(x, y) − f (x, y)
∣∣ = 0.

Definition A.5 (Condition 7.11 in [13]). Suppose that for each n we have an operator Hn ⊆ Cb(En) × Cb(En). Let
(vn)n∈N∗ be a sequence of real numbers such that vn ↑ ∞.

(a) The extended sub-limit, denoted by ex − subLIMn Hn, is defined by the collection (f, g) ∈ Cl(R
2)×Cb(R) for which

there exist (fn, gn) ∈ Hn such that

LIMfn ∧ c = f ∧ c, ∀c ∈R, (A.1)

sup
n

1

vn

log‖gn‖ < ∞, sup
n

sup
x∈R2

gn(x) < ∞, (A.2)

and that, for every compact set K ⊆ R
2 and every sequence zn ∈ K satisfying limn zn = z and limn fn(zn) = f (z) <

∞,

lim sup
n↑∞

gn(zn) ≤ g(z). (A.3)

(b) The extended super-limit, denoted by ex − superLIMn Hn, is defined by the collection (f, g) ∈ Cu(R
2) × Cb(R) for

which there exist (fn, gn) ∈ Hn such that

LIMfn ∨ c = f ∨ c, ∀c ∈R, (A.4)

sup
n

1

vn

log‖gn‖ < ∞, inf
n

inf
x∈R2

gn(x) > −∞, (A.5)

and that, for every compact set K ⊆ R
2 and every sequence zn ∈ K satisfying limn zn = z and limn fn(zn) = f (z) >

−∞,

lim inf
n↑∞ gn(zn) ≥ g(z). (A.6)

For completeness, we also give the definition of the extended limit.

Definition A.6. Suppose that for each n we have an operator Hn ⊆ Cb(En) × Cb(En). We write ex − LIMHn for the set
of (f, g) ∈ Cb(R

2) × Cb(R
2) for which there exist (fn, gn) ∈ Hn such that f = LIMfn and g = LIMgn.
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Definition A.7 (Viscosity solutions). Let H† ⊆ Cl(R
2) × Cb(R

2) and H‡ ⊆ Cu(R
2) × Cb(R

2) and let λ > 0 and h ∈
Cb(R

2). Consider the Hamilton–Jacobi equations

f − λH†f = h, (A.7)

f − λH‡f = h. (A.8)

We say that u is a (viscosity) subsolution of equation (A.7) if u is bounded, upper semi-continuous and if, for every
f ∈ D(H†) such that supx u(x) − f (x) < ∞ there exists a sequence xn ∈ R

2 such that

lim
n↑∞u(xn) − f (xn) = sup

x
u(x) − f (x),

and

lim
n↑∞u(xn) − λH†f (xn) − h(xn) ≤ 0.

We say that v is a (viscosity) supersolution of equation (A.8) if v is bounded, lower semi-continuous and if, for every
f ∈ D(H‡) such that infx v(x) − f (x) > −∞ there exists a sequence xn ∈R

2 such that

lim
n↑∞v(xn) − f (xn) = inf

x
v(x) − f (x),

and

lim
n↑∞v(xn) − λH‡f (xn) − h(xn) ≥ 0.

We say that u is a (viscosity) solution of equations (A.7) and (A.8) if it is both a subsolution to (A.7) and a supersolution
to (A.8).

We say that (A.7) and (A.8) satisfy the comparison principle if for every subsolution u to (A.7) and supersolution v to
(A.8), we have u ≤ v.

Note that the comparison principle implies uniqueness of viscosity solutions. This in turn implies that a new Hamilto-
nian can be constructed based on the set of viscosity solutions.

Condition A.8. Suppose we are in the setting of Assumption A.1. Suppose there are operators H† ⊆ Cl(R
2) × Cb(R

2),
H‡ ⊆ Cu(R

2) × Cb(R
2) and H ⊆ Cb(R) × Cb(R) with the following properties:

(a) H† ⊆ ex − subLIMn Hn and H‡ ⊆ ex − superLIMn Hn (recall Definition A.5).
(b) The domain D(H) contains C∞

c (R) and, for f ∈ C∞
c (R), we have Hf (x) = H(x,∇f (x)).

(c) For all λ > 0 and h ∈ Cb(R), every subsolution to f − λHf = h is a subsolution to f − λH†f = h and every
supersolution to f − λHf = h is a supersolution to f − λH‡f = h.

Now we are ready to state the main result of this appendix: the large deviation principle for the projected process. We
denote by ηn : En →R the projection map ηn(x, y) = x.

Theorem A.9 (Large deviation principle). Suppose we are in the setting of Assumption A.1 and Condition A.8 is
satisfied. Suppose that for all λ > 0 and h ∈ Cb(R) the comparison principle holds for sub- and supersolutions to
f − λH†f = h and f − λH‡f = h respectively.

Let Zn(t) be the solution to the martingale problem for An. Suppose that the large deviation principle at speed (rn)n∈N∗
holds for ηn(Zn(0)) on R with good rate-function I0. Additionally suppose that the exponential compact containment
condition holds at speed (rn)n∈N∗ for the processes Zn(t).

Then the large deviation principle holds with speed (rn)n∈N∗ for (ηn(Zn(t)))n∈N∗ on DR(R+) with good rate func-
tion I . Additionally, suppose that the map p �→ H(x,p) is convex and differentiable for every x and that the map
(x,p) �→ d

dp
H(x,p) is continuous. Then the rate function I is given by

I (γ ) =
{

I0(γ (0)) + ∫ ∞
0 L(γ (s), γ̇ (s))ds if γ ∈AC,

∞ otherwise,

where L : R2 →R is defined by L(x, v) = supp{pv − H(x,p)}.
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Proof. The large deviation result follows by [13, Cor. 8.28] with H† and H‡ as in the present paper and H† = H‡ = H .
The verification of the conditions for [13, Thm. 8.27] corresponding to a Hamiltonian of this type have been carried out
in e.g. [13, Section 10.3] or [6]. �
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