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Abstract. We consider so-called discrete snakes obtained from size-conditioned critical Bienaymé–Galton–Watson trees by assigning
to each node a random spatial position in such a way that the increments along each edge are i.i.d. When the offspring distribution
belongs to the domain of attraction of a stable law with index α ∈ (1,2], we give a necessary and sufficient condition on the tail
distribution of the spatial increments for this spatial tree to converge, in a functional sense, towards the Brownian snake driven by the
α-stable Lévy tree. We also study the case of heavier tails, and apply our result to study the number of inversions of a uniformly random
permutation indexed by the tree.

Résumé. Nous considérons des « serpents stables » obtenus à partir d’arbres de Bienaymé–Galton–Watson critiques conditionnés
par la taille en assignant à chaque nœud une position spatiale de sorte que les accroissements le long des arêtes sont i.i.d. Lorsque
la loi de reproduction appartient au bassin d’attraction d’une loi stable d’indice α ∈ ]1,2], nous donnons une condition nécessaire
et suffisante sur la queue de distribution des accroissements spatiaux pour que cet arbre converge – en un sens fonctionnel – vers le
serpent brownien sur l’arbre de Lévy α-stable. Nous étudions également le cas de queues plus lourdes et nous appliquons nos résultats
au nombre d’inversions d’une permutation aléatoire indexée par l’arbre.
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1. Introduction and main results

We investigate scaling limits of large size-conditioned random Bienaymé–Galton–Watson trees equipped with spatial
positions, when the offspring distribution belongs to the domain of attraction of a stable law. Our results extend previ-
ous ones established by Janson and Marckert [15] when the offspring distribution admits finite exponential moments.
Relaxing this strong assumption to even a finite variance hypothesis is often challenging, and our key result is a tight
control on the geometry of the trees, which is of independent interest. Let us present precisely our main result, assuming
some familiarities with Bienaymé–Galton–Watson trees and their coding by paths. The basic definitions are recalled in
Section 2.1 below. See Figure 1 for an example of a large random spatial tree.

1.1. Large Bienaymé–Galton–Watson trees

Throughout this work, we fix a probability measure μ on Z+ = {0,1, . . . } such that μ(0) > 0 and
∑

k≥0 kμ(k) = 1.
To simplify the exposition, we also assume that μ is aperiodic, in the sense that its support generates the whole group
Z, not just a strict subgroup; the general case only requires mild modifications. For every n ≥ 1, we denote by Tn a
random plane tree distributed as a Bienaymé–Galton–Watson tree with offspring distribution μ and conditioned to have
n + 1 vertices,2 which is well defined for every n large enough from the aperiodicity of μ. Finally, we assume that
there exists α ∈ (1,2] such that μ belongs to the domain of attraction of an α-stable law, which means that there exists
an increasing sequence (Bn)n≥1 such that if (ξn)n≥1 is a sequence of i.i.d. random variables sampled from μ, then

1This work was supported by a public grant as part of the Fondation Mathématique Jacques Hadamard.
2We may more generally condition the trees to have n vertices with out-degree in a fixed set A ⊂ Z+ , appealing to Kortchemski [18].
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Fig. 1. A spatial stable Lévy tree with index α = 1,2; colours indicate the spatial position of each vertex, from blue for the lowest (negative) ones to
green then yellow and finally red for the highest ones. It corresponds to Theorem 1.1 with Y uniformly distributed on {−1,0,1}.

Fig. 2. The Łukasiewicz path and the height process of T10,000 with α = 1,3.

B−1
n (ξ1 + · · · + ξn − n) converges in distribution to a random variable X(α) whose law is given by the Laplace exponent

E[exp(−λX(α))] = exp(λα) for every λ ≥ 0. The reader may want to keep in mind that Bn is of order n1/α (up to a
slowly varying sequence at infinity) and that if μ has finite variance σ 2

μ, then this falls in the case α = 2 and we may take
Bn = (nσ 2

μ/2)1/2.
It is well-known that a planar tree can be encoded by discrete paths; in Section 2.1, we recall the definition of the

Łukasiewicz path Wn, the height process Hn and the contour process Cn associated with the tree Tn. Duquesne [8] (see
also Kortchemski [18,19]) has proved that(

1

Bn

Wn

(�nt�), Bn

n
Hn(nt),

Bn

n
Cn(2nt)

)
t∈[0,1]

(d)−→
n→∞(Xt ,Ht ,Ht )t∈[0,1] (1)

in the Skorokhod space D([0,1],R3), where X is the normalised excursion of the α-stable Lévy process with no negative
jump, whose value at time 1 has the law of X(α), and H is the associated height function; see the references above for
definitions and Figure 2 for an illustration. In the case α = 2, the processes X and H are equal, both to

√
2 times the

standard Brownian excursion. In any case, H is a non-negative, continuous function, which vanishes only at 0 and 1. As
any such function, it encodes a ‘continuum tree’ called the α-stable Lévy tree Tα of Duquesne, Le Gall and Le Jan [8,23],
which generalises the celebrated Brownian tree of Aldous [2] in the case α = 2. The convergence (1) implies that the tree
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Fig. 3. A spatial tree, its height process H on top and its spatial height process H sp below.

Fig. 4. Two instances of the spatial height process σ−1
Y

H
sp
n (n·) associated with the height process of Figure 2: on the left, Y is uniformly distributed

on [−1,1] and on the right, Y is symmetric and such that P(Y > y) = 1
2 (1 + y)−10 so both satisfy Theorem 1.1.

Tn, viewed as a metric space by endowing its vertex-set with the graph distance rescaled by a factor Bn

n
, converges in

distribution in the so-called Gromov–Hausdorff topology towards Tα , see e.g. Duquesne and Le Gall [11].

1.2. Spatial trees and applications

In this paper, we consider spatial trees (or labelled trees, or discrete snakes) which are plane trees in which each node
u of the tree T carries a position Su in R. We shall always assume that the root ∅ of the tree has position S∅ = 0 by
convention so the spatial positions (Su)u∈T are entirely characterised by the displacements (Yu)u∈T \{∅} where Yu is the
difference between the position Su of u and the position of its parent. Several models of such random spatial trees have
been studied and the simplest one is the following: let Y be some random variable, then conditional on a random finite
tree T , the spatial displacements (Yu)u∈T \{∅} are i.i.d. copies of Y . Then the positions Su form a branching random walk.

In the same way a tree Tn with n + 1 vertices is encoded by its height process Hn and its contour process Cn, the
spatial positions are encoded by the spatial height process H

sp
n and the spatial contour process C

sp
n , as depicted in

Figure 3. We consider scaling limits of these processes as n → ∞. The most general such results are due to Janson and
Marckert [15] who considered the case where the tree Tn is a size-conditioned Bienaymé–Galton–Watson tree whose
offspring distribution has finite exponential moments. All their results extend to our setting. The main one is a necessary
and sufficient condition for the convergence towards the so-called Brownian snake driven by the random excursion H ,
which, similarly to the discrete setting, is interpreted as a Brownian motion indexed by the stable tree Tα ; see Section 2.1
for a formal definition and Figure 4 for two simulations.

Theorem 1.1 (Convergence of discrete snakes). Let (H ,S) be the Brownian snake driven by the excursion H . Sup-
pose E[Y ] = 0 and σ 2

Y
:= E[Y 2] ∈ (0,∞), then the following convergence in distribution holds in the sense of finite-

dimensional marginals:(
Bn

n
Hn(nt),

Bn

n
Cn(2nt),

(
Bn

nσ 2
Y

)1/2

H
sp
n (nt),

(
Bn

nσ 2
Y

)1/2

C
sp
n (2nt)

)
t∈[0,1]

(d)−→
n→∞(Ht ,Ht ,St ,St )t∈[0,1].

It holds in C([0,1],R4) if and only if P(|Y | ≥ (n/Bn)
1/2) = o(n−1).
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In the finite-variance case Bn = (nσ 2
μ/2)1/2, the last assumption is equivalent to P(|Y | ≥ y) = o(y−4), which is weaker

than E[Y 4] < ∞ but stronger than E[Y 4−ε] < ∞ for any ε > 0; otherwise, when the tree is less regular (see Lemma 1.4
below), one needs more regularity from the spatial displacements.

Let us mention that general arguments show that Hn and Cn, once rescaled, are close, see e.g. Le Gall [22, Section 1.6].
The same arguments apply for their spatial counterparts H

sp
n and C

sp
n so we concentrate only on the joint convergence of

Hn and H
sp
n .

Janson and Marckert [15] also discuss the case of heavier tails, in which case the spatial processes converge once
suitably rescaled towards a ‘hairy snake’ with vertical peaks; statements are more involved and we defer them to Section 4.
Let us only mention the next result, which extends Theorem 8 in [15].

Theorem 1.2 (Non centred snakes). Suppose that mY := E[Y ] 
= 0. Then each process Bn

n
H

sp
n (n·) and Bn

n
C

sp
n (2n·) is

tight in C([0,1],R) if and only if P(|Y | ≥ n/Bn) = o(n−1), and in this case we have the convergence in distribution in
C([0,1],R4)(

Bn

n
Hn(nt),

Bn

n
Cn(2nt),

Bn

n
H

sp
n (nt),

Bn

n
C

sp
n (2nt)

)
t∈[0,1]

(d)−→
n→∞(Ht ,Ht ,mY Ht ,mY Ht )t∈[0,1].

Again, in the finite-variance case, the assumption is equivalent to P(|Y | ≥ y) = o(y−2), which is slightly weaker than
E[Y 2] < ∞. Let us comment on the result when Y ≥ 0 almost surely and mY > 0. In this case, for every u ∈ Tn, the
displacement Yu can be interpreted as the length of the edge from u to its parent so H

sp
n and C

sp
n can be interpreted as

the height and contour processes of the tree Tn with such random edge-lengths and Theorem 1.2 shows that this tree is
close to the one obtained by assigning deterministic length mY to each edge of Tn, and it converges towards mY times the
stable tree for the Gromov–Hausdorff topology, jointly with the original tree.

In another direction, the main result of [15] has been used very recently by Cai et al. [5] to study the asymptotic number
of inversions in a random tree. Given the random tree Tn with n + 1 vertices listed u0, u1, . . . , un and an independent
uniformly random permutation of {0, . . . , n}, say, σ , assign the label σ(i) to the vertex ui for every i ∈ {0, . . . , n}. The
number of inversions of Tn is then defined by

I (Tn) =
∑

0≤i<j≤n

1{ui is a ancestor of uj }1{σ(i)>σ(j)}.

See Figure 5 for an example. This extends the classical definition of the number of inversions of a permutation, when the
tree contains a single branch. We refer to [5] for a detailed review of the literature on this model. It is easy to see that
E[I (Tn) | Tn] is half the so-called total path length of Tn, whose asymptotic behaviour is well-understood. Cai et al. [5,
Theorem 5] study further the fluctuations of I (Tn) when Tn is a size-conditioned Bienaymé–Galton–Watson tree whose
offspring distribution admits exponential moments. Apparently, this model has nothing to do with spatial trees, but the
key idea from [5] is a coupling which relates the number of inversions of a random permutation on a tree with spatial
positions such that Y has the uniform distribution in (−1/2,1/2); Theorem 1.1 then yields the following.

Fig. 5. A tree labelled by a permutation; there are 9 inversions, indicated by arrows.
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Corollary 1.3 (Inversions on trees). We have the convergences in distribution

2Bn

n2
E

[
I (Tn) | Tn

] (d)−→
n→∞

∫ 1

0
Ht dt, and

(
12Bn

n3

)1/2(
I (Tn) − E

[
I (Tn) | Tn

]) (d)−→
n→∞

∫ 1

0
St dt,

where (H ,S) is the Brownian snake driven by the excursion H .

We stress that the appearance of the Brownian snake really arises from the aforementioned coupling, where the constant
12 is 1/σ 2

Y . If one wanted to view the labels given by the permutation as spatial positions on the tree (the Yu’s would not
be independent anymore), then the corresponding spatial height process would be very different: it would not depend on
the tree and would only be the interpolation of the points (i, σ (i))0≤i≤n, which is much more irregular.

When α = 2, recall that H is
√

2 times the standard Brownian excursion, then the law of 2
∫ 1

0 Ht dt is known as the

Airy distribution; further, if N is a standard Gaussian random variable independent of H , then
∫ 1

0 St dt is distributed as
(
∫

0≤s<t≤1 minr∈[s,t] Hr ds dt)1/2N . We refer to [14] for more information on this random variable.
The main idea to prove tightness of spatial processes is to appeal to Kolmogorov’s criterion, which enables one to

avoid dealing with all the correlations due to the genealogy of the trees. This requires a strong control on the geometry
of the trees. Precisely, although the convergence (1) implies that the sequence (Bn

n
Hn(n·))n≥1 is tight in C([0,1],R), we

need the following more precise estimate on the geometry of the trees which, we believe, is of independent interest.

Lemma 1.4 (Hölder norm of the height process). For every γ ∈ (0, (α − 1)/α), it holds that

lim
C→∞ lim inf

n→∞ P
(

sup
0≤s 
=t≤1

Bn

n
· |Hn(nt) − Hn(ns)|

|t − s|γ ≤ C

)
= 1,

and the same holds when Hn(n·) is replaced by Cn(2n·).

By very different means, Gittenberger [13] proved a similar statement in the case α = 2, when the offspring distribution
admits finite exponential moments3 and Janson and Marckert [15] built upon this result. Note that the maximal exponent
(α − 1)/α corresponds to the maximal exponent for which the limit process H is Hölder continuous, see Duquesne and
Le Gall [10, Theorem 1.4.4].

1.3. More general models and random maps

The initial motivation for studying spatial trees comes from the theory of random planar maps. Indeed, the Schaeffer
bijection relates uniformly random quadrangulations of the sphere with n faces and such a model of spatial trees, when
μ is the geometric distribution with parameter 1/2 – in which case Tn has the uniform distribution amongst plane trees
of size n + 1 – and when Y has the uniform distribution on {−1,0,1}. The convergence of this particular spatial tree
has been obtained Chassaing and Schaeffer [6]. More general models of random maps are also related to spatial trees,
via the Bouttier–Di Francesco–Guitter bijection [4] and the Janson–Stefánsson bijection [16]; however, in this case, the
displacements are neither independent nor identically distributed. Analogous convergences to Theorem 1.1 in this case
have been proved by Marckert and Mokkadem [27] still for the uniform random trees, but for general displacements,
under an ‘(8 + ε)-moment’ assumption; Gittenberger [13] extended this result to the case where μ has finite exponential
moments, and then Marckert and Miermont [26] reduced the assumption on the displacements to a ‘(4 + ε)-moment’; see
also Miermont [29] for similar results on multi-type Bienaymé–Galton–Watson trees, Marckert [25] for ‘globally centred’
displacements, and finally [28] for trees (more general than size-conditioned Bienaymé–Galton–Watson trees) with finite
variance, but only for the very particular displacements associated with maps. Appealing to Lemma 1.4, it seems that the
‘(4+ ε)-moment’ assumption suffices in the case where μ belongs to the domain of attraction of a Gaussian law to ensure
the convergence towards (H ,S). However in the α-stable case with α < 2, the limit may be different and depend more
precisely on the displacements, see Le Gall and Miermont [24], again for the very particular displacements associated
with maps.

3Even if the assumption is written as ‘finite variance’ in [13], the proof requires exponential moments.
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1.4. Techniques

The rest of this paper is organised as follows: In Section 2, we first recall the coding of plane trees by paths and define
the limit object of interest (H ,S); after recalling a few results on slowly varying functions and well-known results on
Bienaymé–Galton–Watson trees, we prove Lemma 1.4. The idea is to rely on the Łukasiewicz path of the tree, since
height of vertices corresponds to positive records of the latter, which is an excursion of a left-continuous random walk
in the domain of attraction of a stable law, so it already has attracted a lot of attention and we may use several existing
results, such as those due to Doney [7]. In Section 3, we prove Theorem 1.1, Theorem 1.2 and Corollary 1.3. The proof
of the two theorems follows the ideas of Janson and Marckert [15] which are quite general once we have Lemma 1.4.
However, several technical adaptations are needed here to deal with the heavier tails for the offspring distribution. Finally,
in Section 4, we state and prove results similar to Theorem 1.1 when Y has heavier, regularly varying tails. Again, the
proof scheme follows that of [15] but requires technical adaptation.

2. Geometry of large Bienaymé–Galton–Watson trees

2.1. Discrete and continuum snakes

Following the notation of [30], we view discrete trees as words. Let N = {1,2, . . . } be the set of all positive integers
and set N0 = {∅}. Then a (plane) tree is a non-empty subset T ⊂ ⋃

n≥0 Nn such that: ∅ ∈ T , it is called the root of T ,
and for every v = (v1, . . . , vn) ∈ T , we have pr(v) := (v1, . . . , vn−1) ∈ T and there exists an integer kv ≥ 0 such that
vi := (v1, . . . , vn, i) ∈ T if and only if 1 ≤ i ≤ kv . We shall view each vertex v of a tree T as an individual of a population
for which T is the genealogical tree. For every v = (v1, . . . , vn) ∈ T , the vertex pr(v) is its parent, kv is the number of
children of v (if kv = 0, then v is called a leaf, otherwise, v is called an internal vertex), and |v| = n is its generation. We
shall denote by �u,v� the unique non-crossing path between u and v.

Fix a tree T with n + 1 vertices, listed ∅ = u0 < u1 < · · · < un in lexicographical order. We describe three discrete
paths which each encode T . First, its Łukasiewicz path W = (W(j);0 ≤ j ≤ n+ 1) is defined by W(0) = 0 and for every
0 ≤ j ≤ n,

W(j + 1) = W(j) + kuj
− 1.

One easily checks that W(j) ≥ 0 for every 0 ≤ j ≤ n but W(n + 1) = −1. Next, we define the height process H =
(H(j);0 ≤ j ≤ n) by setting for every 0 ≤ j ≤ n,

H(j) = |uj |.
Finally, define the contour sequence (c0, c1, . . . , c2n) of T as follows: c0 = ∅ and for each i ∈ {0, . . . ,2n − 1}, ci+1 is
either the first child of ci which does not appear in the sequence (c0, . . . , ci), or the parent of ci if all its children already
appear in this sequence. The lexicographical order on the tree corresponds to the depth-first search order, whereas the
contour order corresponds to ‘moving around the tree in clockwise order’. The contour process C = (C(j);0 ≤ j ≤ 2n)

is defined by setting for every 0 ≤ j ≤ 2n,

C(j) = |cj |.
We refer to Figure 6 for an illustration of these functions.

A spatial tree (T , (Su;u ∈ T )) is a tree T in which each individual u is assigned a spatial position Su ∈ R, with
S∅ = 0. We encode these positions via the spatial height and spatial contour processes H sp and Csp respectively, defined
by H sp(j) = Suj

for every 0 ≤ j ≤ n and Csp(j) = Scj
for every 0 ≤ j ≤ 2n, where n is the number of edges of the tree.

See Figure 3 for an illustration of H sp.
Without further notice, throughout this work, every Łukasiewicz path shall be viewed as a step function, jumping

at integer times, whereas height and contour processes, as well as their spatial versions, shall be viewed as continuous
functions after interpolating linearly between integer times.

The analogous continuum objects we shall consider are the stable Lévy tree of Duquesne, Le Gall and Le Jan [8,23]
which generalise Aldous’ Brownian Continuum Random Tree [2] in the case α = 2. Recall that H = (Ht ; t ∈ [0,1])
denotes the excursion of the height process associated with the α-stable Lévy process with no negative jump; we shall not
need the precise definition of this process but we refer the reader to [8, Section 3.1 and 3.2]. For every s, t ∈ [0,1], set

dH (s, t) = Hs + Ht − 2 min
r∈[s∧t,s∨t]Hr .
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Fig. 6. A tree on the left with the lexicographical order of the vertices, and on the right, from top to bottom: its Łukasiewicz path W , its height process
H , and its contour process C.

One easily checks that dH is a random pseudo-metric on [0,1], we then define an equivalence relation on [0,1] by setting
s ∼H t whenever dH (s, t) = 0. Consider the quotient space Tα = [0,1]/∼H , we let πH be the canonical projection
[0,1] → Tα ; then dH induces a metric on Tα that we still denote by dH . The space (Tα, dH ) is a so-called compact
real-tree, naturally rooted at πH (0) = πH (1), called the stable tree coded by H .

We construct another process S = (St ; t ∈ [0,1]) on the same probability space as H which, conditional on H , is a
centred Gaussian process satisfying for every 0 ≤ s ≤ t ≤ 1,

E
[|Ss − St |2 | H] = dH (s, t) or, equivalently, E[SsSt | H ] = min

r∈[s,t]Hr .

Observe that, almost surely, S0 = 0 and Ss = St whenever s ∼H t so S can be seen as a Brownian motion indexed by
Tα by setting SπH (t) = St for every t ∈ [0,1]. We interpret Sx as the spatial position of an element x ∈ Tα ; the pair
(Tα, (Sx;x ∈ Tα)) is a continuum analogue of spatial plane trees.

The Brownian snake driven by H [10,21] is a path-valued process which associates with each time t ∈ [0,1] the whole
path of values Sx where x ranges over all the ancestors of πH (t) in Tα , from the root to πH (t), so the process S that
we consider is only its ‘tip’, which is called the head of the Brownian snake. In this work we only consider the head of
the snakes, which is in principle different from the entire snakes; nevertheless, Marckert and Mokkadem [27] proved a
homeomorphism theorem which translates one into the other. Theorem 1.1 then implies the convergence of the whole
snake towards the Brownian snake, see [15, Corollary 2].

It is known, see, e.g. [21, Chapter IV.4] on the whole Brownian snake, that the pair (H ,S) admits a continuous version
and, without further notice, we shall work throughout this paper with this version.

2.2. Bienaymé–Galton–Watson trees and random walks

Recall that μ is an aperiodic probability measure on Z+ with mean one, in the domain of attraction of an α-stable law
for some α ∈ (1,2]. The Bienaymé–Galton–Watson distribution is the law on the set of all finite plane trees, which gives
mass

∏
u∈T μ(ku) to every such tree T . We then denote by Tn such a random tree conditioned to have n + 1 vertices.

The key to prove Lemma 1.4 is a well-known relation between the height process Hn and the Łukasiewicz path Wn,
as well as a representation of the latter from a random walk. Our argument is inspired by the work of Le Gall and
Miermont [24, Proof of Lemma 6 and 7] who consider an infinite forest of unconditioned trees, which is slightly easier
thanks to the fact that the Łukasiewicz path is then a non-conditioned random walk; furthermore, there it is supposed that
μ([k,∞)) ∼ ck−α for some constant c > 0, which is a stronger assumption than ours, and several arguments do not carry
over.
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2.2.1. On slowly varying functions and stable domains of attraction
Let us present a few prerequisites on slowly varying functions. First, recall that a measurable function l : [0,∞) → R is
said to be slowly varying (at infinity) when for every c > 0, it holds that

lim
x→∞

l(cx)

l(x)
= 1.

A property of slowly varying functions that we shall used repeatedly in Sections 3 and 4 is that for every ε > 0, it holds
that

lim
x→∞x−εl(x) = 0 and lim

x→∞xεl(x) = ∞,

see e.g. Seneta’s book [33] for more information on slowly varying functions (see Chapter 1.5 there for this property).
Let us fix a random variable X on {−1,0,1, . . . } with law P(X = k) = μ(k + 1) for every k ≥ −1, so E[X] = 0. Since

μ belongs to the domain of attraction of a stable law with index α ∈ (1,2], there exist two slowly varying functions L and
L1 such that for every n ≥ 1,

E
[
X21{X≤n}

] = n2−αL(n) and P(X ≥ n) = n−αL1(n).

The two functions are related by

lim
n→∞

L1(n)

L(n)
= lim

n→∞
n2P(X ≥ n)

E[X21{X≤n}] = 2 − α

α
,

see Feller [12, Chapter XVII, Equation 5.16]. We shall need a third slowly varying function L∗ (see Doney [7, Equation
2.2]), defined uniquely up to asymptotic equivalence as the conjugate of 1/L by the following equivalent asymptotic
relations:

lim
x→∞L(x)−1/αL∗(xαL(x)−1) = 1 and lim

x→∞L∗(x)−αL
(
x1/αL∗(x)

) = 1.

We refer to [33, Chapter 1.6] for more information about conjugation of slowly varying functions. Let S = (S(n))n≥0 be
a random walk started from 0 with step distribution X. As recalled in the introduction, there exists an increasing sequence
(Bn)n≥1 such that if (Xn)n≥1 are i.d.d. copies of X, then B−1

n S(n) converges in distribution to some α-stable random
variable. The sequence 	(n) = n−1/αBn is slowly varying at infinity and in fact, the ratio L∗(n)/	(n) converges to some
positive and finite limit. For α < 2, this was observed by Doney [7], but it extends to the case α = 2, see the remark
between Equation 2.2 and Theorem 1 in [7]: the function L there is 1/L here. By comparing the preceding asymptotic
relations between L and L∗ to [20, Equation 7], one gets precisely

lim
x→∞

L∗(x)

	(x)
= 1

(2 − α)
(−α)
,

where, by continuity, the limit is interpreted as equal to 2 if α = 2.
Doney [7, Theorem 1] studies the behaviour of the strict record times of the walk S, but his work extends mutatis

mutandis to weak record times: let τ0 = 0 and for every i ≥ 1, let τi = inf{k > τi−1 : S(k) ≥ S(τi−1)}; in other words, the
times (τn)n≥0 list those k ≥ 0 such that S(k) = max0≤i≤k S(i). Then the random variables (τn+1 − τn)n≥0 are i.d.d. and
according to [7, Theorem 1], it holds that

P(τ1 ≥ n) ∼
n→∞C · n− α−1

α L∗(n), (2)

with a constant C > 0 which shall not be important here. By a Tauberian theorem, see e.g. [12, Chapter XVII, Theo-
rem 5.5] it follows that

1 − E
[
e−λτ1

] = (
1 − e−λ

)∑
n≥0

e−λnP(τ1 > n)

∼
λ↓0

C · 
(1/α) · (1 − e−λ
) α−1

α L∗((1 − e−λ
)−1)

∼
λ↓0

Cα · λα−1
α 	

(
λ−1),
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for some constant Cα > 0, where we recall that 	 is a slowly varying function at infinity such that Bn = n1/α	(n). Taking
λ = N−1 with N ∈ N, we obtain in particular that there exists a constant K > 0, which depend on μ, such that

E
[
e−N−1τ1

] ≤ 1 − K · N−1BN for every N ∈ N. (3)

2.2.2. Łukasiewicz paths and random walks
Recall that S = (S(i))i≥0 denotes a random walk started from 0 with steps (Xi)i≥1 given by i.i.d. random variables with
law P(X1 = k) = μ(k + 1) for every k ≥ −1. Let Xn = (Xn(i))1≤i≤n+1 have the law of (Xi)1≤i≤n+1 conditioned to
satisfy X1 + · · · + Xn+1 = −1 and let Sn = (Sn(i))0≤i≤n+1 be the associated path. For every 1 ≤ j ≤ n + 1, put

X
j
n(k) = Xn(k + j modn + 1), 1 ≤ k ≤ n + 1.

We say that X
j
n is the j th cyclic shift of Xn. Obviously, for every 1 ≤ j ≤ n+ 1, we have X

j
n(1)+ · · ·+X

j
n(n+ 1) = −1,

but it turns out there is a unique j such that X
j
n(1) + · · · + X

j
n(k) ≥ 0 for every 1 ≤ k ≤ n. This index is the least time at

which the path Sn achieves its minimum overall value:

j = inf
{
k ∈ {1, . . . , n + 1} : Sn(k) = inf

1≤i≤n+1
Sn(i)

}
. (4)

Moreover, it is a standard fact that this time j has the uniform distribution on {1, . . . , n + 1} and furthermore X∗
n = X

j
n

has the same law as the increments of the Łukasiewicz path Wn of the tree Tn and it is independent of j . See e.g. [32,
Chapter 6.1] for details.

We see that cyclicly shifting the path Wn at a fixed time, we obtain a random walk bridge Sn. The latter is invari-
ant in law under time and space reversal, so by combining these observations, we obtain the following property: let
(Xn(i))1≤i≤n+1 be the increments of Sn and for a given 1 ≤ i ≤ n + 1, let X̂

(i)
n (k) = Xn(i + 1 − k) for 1 ≤ k ≤ i and

X̂
(i)
n (k) = Xn(n + 2 + i − k) for i + 1 ≤ k ≤ n + 1; let Ŝ

(i)
n be the associated path started from 0, then it has the same

distribution as Sn.
Let us finally note that the bridge conditioning is not important: an argument based on the Markov property of S

applied at time �n/2� and the local limit theorem shows that there exists a constant C > 0 such that for every n ∈ N and
every event An depending only on the first �n/2� steps of the path, we have

P
(
An | S(n) = −1

) ≤ C · P(An),

see e.g. [20], near the end of the proof of Theorem 9 there.

2.2.3. The height process as local times
Let us list the vertices of Tn in lexicographical order as ∅ = u0 < u1 < · · · < un. It is well-known that the processes Hn

and Wn are related as follows (see e.g. Le Gall and Le Jan [23]): for every 0 ≤ j ≤ n,

Hn(j) = #
{
k ∈ [0, j − 1] : Wn(k) ≤ inf

k+1≤l≤j
Wn(l)

}
.

Indeed, for k < j , we have Wn(k) ≤ infk+1≤l≤j Wn(l) if and only if uk is an ancestor of uj ; moreover, the inequality
is an equality if and only if the last child of uk is also an ancestor of uj . Fix i < j and suppose that ui is not an
ancestor of uj (this case is treated similarly); denote by ij < i the index of the last common ancestor of ui and uj , and
j ′ ∈ (i, j ] the index of the child of uij which is an ancestor of uj . It follows from the preceding identity that the quantity
Wn(i) − mini≤k≤j Wn(k) counts the number of vertices branching-off of the ancestral line �uij , ui � which lie between ui

and uj , i.e. all the vertices visited between time i and j whose parent belongs to �uij , ui �. Indeed, started from i, the path
Wn will take only values larger than or equal to Wn(i) until it visits the last descendant of ui , in which case it takes value
exactly Wn(i). Then Wn will decrease by one exactly at every time it visits a vertex whose parent belongs to �uij , ui �,
until the last one which is uj ′ . We conclude that

Wn

(
j ′) = inf

i≤k≤j
Wn(k) and Hn

(
j ′) = inf

i≤k≤j
Hn(k).

It follows that the length of the path �uj ′ , uj � is

Hn(j) − Hn

(
j ′) = #

{
k ∈ [

j ′, j
] : Wn(k) = min

k≤l≤j
Wn(l)

}
= #

{
k ∈ [i, j ] : Wn(k) = min

k≤l≤j
Wn(l)

}
.

We can now prove Lemma 1.4 appealing to the preceding subsections.
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2.3. Proof of Lemma 1.4

Fix γ ∈ (0, (α − 1)/α). We claim that there exists a sequence of events (En)n≥1 whose probability tends to 1 such that
the following holds. There exists c1, c2 > 0 which depend on μ such that for every n large enough, every 0 ≤ s ≤ t ≤ 1,
and every x ≥ 0, we have

P
(∣∣∣Hn(nt) − inf

r∈[s,t]Hn(nr)

∣∣∣ ≥ x
n

Bn

|t − s|γ
)

≤ c1e−c2x, (5)

and

P
(∣∣∣Hn(ns) − inf

r∈[s,t]Hn(nr)

∣∣∣ ≥ x
n

Bn

|t − s|γ
∣∣∣∣ En

)
≤ c1e−c2x. (6)

This shows that under the conditional probability P(· | En), the moments of Bn

n
|Hn(nt)−Hn(ns)|

|t−s|γ are bounded uniformly in
n and s, t ∈ [0,1], so Lemma 1.4, first under P(· | En), but then under the unconditioned law, follows from Kolmogorov’s
tightness criterion. Let us start by considering the right branch and prove (5).

Proof of (5). According to the discussion closing Section 2.2.3, our claim (5) reads as follows: for every pair s < t ,

P
(

#
{
k ∈ [ns,nt] : Wn(k) = min

k≤l≤nt
Wn(l)

}
≥ x

n

Bn

|t − s|γ
)

≤ c1e−c2x. (7)

Let us first consider the random walk bridge Sn and prove that (7) holds when Wn is replaced by Sn. Note that we may,
and shall, restrict to times such that t − s ≤ 1/2 and both ns and nt are integers. By shifting the path at time nt and then
taking its time and space reversal, the cardinal of the set in this probability has the same law as the number of weak records
of Sn up to time n|t − s|. Let (τn(i))i≥0 be the weak record times of Sn, we therefore aim at bounding the probability

P
(

τn

(⌊
x

n

Bn

|t − s|γ
⌋)

≤ n|t − s|
)

.

Since n|t − s| ≤ n/2, as explained in Section 2.2.2, this probability is bounded by some constant C > 0 times

P
(

τ

(⌊
x

n

Bn

|t − s|γ
⌋)

≤ n|t − s|
)

,

where (τ (i))i≥0 are the weak record times of the unconditioned walk S. Recall that (τ (i + 1) − τ(i))i≥0 are i.d.d. and let
τ = τ(1). The exponential Markov inequality shows that the preceding probability is bounded by

e · E
[

exp

(
−τ(�x n

Bn
|t − s|γ �)

n|t − s|
)]

= exp

(
1 +

⌊
x

n

Bn

|t − s|γ
⌋

ln E
[

exp

(
− τ

n|t − s|
)])

.

From (3), we get that

ln E
[

exp

(
− τ

n|t − s|
)]

≤ ln

(
1 − K

Bn|t−s|
n|t − s|

)
≤ −K

Bn|t−s|
n|t − s| .

It follows that

e · E
[

exp

(
−τ(�x n

Bn
|t − s|γ �)

n|t − s|
)]

≤ exp

(
1 − x

n

Bn

|t − s|γ K
Bn|t−s|
n|t − s|

)

= exp

(
1 − Kx

(n|t − s|)− 1
α Bn|t−s|

n− 1
α Bn

|t − s|γ−1+ 1
α

)
.

Let ε = 1 − 1
α

− γ > 0, since the sequence (n−1/αBn)n≥1 is slowly varying, the so-called Potter bound (see e.g.[3,
Lemma 4.2] or [20, Equation 9]) asserts that there exists a constant c, depending on ε (and so on γ ), such that for every
n large enough,

(n|t − s|)−1/αBn|t−s|
n−1/αBn

≥ c · |t − s|ε.
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Fig. 7. A bridge Sn and its shifted excursion Wn; the times s, t fall into the first case, whereas p,q fall into the second case and s,p into the third case.

We conclude that

P
(

#
{
k ∈ [ns,nt] : Sn(k) = min

k≤l≤nt
Sn(l)

}
≥ x

n

Bn

|t − s|γ
)

≤ C · exp(1 − cKx),

for every pair s < t , which indeed corresponds to (7) with Sn instead of Wn.
We next prove (7) by relating Wn and Sn, as depicted in Figure 7. Recall that these paths have length n + 1. Let us

denote by an the time j in (4) so the path Sn shifted at time an has the law of Wn. Fix two times s < t such that ns and nt

are integers and denote by s′ and t ′ their respective image after the shift. We distinguish three cases:

(i) Either ns < nt ≤ an, in which case ns′ = ns + (n + 1 − an) < nt + (n + 1 − an) = nt ′;
(ii) Either an ≤ ns < nt , in which case ns′ = ns − an < nt − an = nt ′;

(iii) Or ns < an < nt , in which case nt ′ = nt − an < ns + (n + 1 − an) = ns′.
In the first two cases, the parts of the two paths (Sn(k))ns≤k≤nt and (Wn(k))ns′≤k≤nt ′ are identical (up to a vertical

shift), and t ′ − s′ = t − s so, according to (5), we have

P
(

#
{
k ∈ [

ns′, nt ′
] : Wn(k) = min

k≤l≤nt ′
Wn(l)

}
≥ x

n

Bn

∣∣t ′ − s′∣∣γ )
≤ c1e−c2x.

In the third case above, we have to be a little more careful; by cutting Wn at time n + 1 − an (which corresponds to n + 1
for Sn), we observe that #{k ∈ [nt ′, ns′] : Wn(k) = mink≤l≤ns′ Wn(l)} is smaller than or equal to

#
{
k ∈ [

nt ′, n + 1 − an

] : Wn(k) = min
k≤l≤n+1−an

Wn(l)
}

+ #
{
k ∈ [

n + 1 − an,ns′] : Wn(k) = min
k≤l≤ns′ Wn(l)

}
= #

{
k ∈ [nt, n + 1] : Sn(k) = min

k≤l≤n+1
Sn(l)

}
+ #

{
k ∈ [0, ns] : Sn(k) = min

k≤l≤ns
Sn(l)

}
.

Therefore, if we have

#
{
k ∈ [

nt ′, ns′] : Wn(k) = min
k≤l≤ns′ Wn(l)

}
≥ x

n

Bn

∣∣t ′ − s′∣∣γ ,

then either

#
{
k ∈ [nt, n + 1] : Sn(k) = min

k≤l≤n+1
Sn(l)

}
≥ x

2

n

Bn

∣∣t ′ − s′∣∣γ ≥ x

2

n

Bn

|1 − t |γ ,

or (and both can occur)

#
{
k ∈ [0, ns] : Sn(k) = min

k≤l≤ns
Sn(l)

}
≥ x

2

n

Bn

∣∣t ′ − s′∣∣γ ≥ x

2

n

Bn

|s|γ .

A union bound thus yields

P
(

#
{
k ∈ [

nt ′, ns′] : Wn(k) = min
k≤l≤nt ′

Wn(l)
}

≥ x
n

Bn

∣∣t ′ − s′∣∣γ )
≤ 2c1e−c2x/2,

which concludes the proof of (7). �



Discrete snakes with stable branching 513

Fig. 8. On the left: a portion of the tree Tn and two vertices ui and uj ; on the right: the ‘mirror’ images T̃n, ĩ and j̃ . The vertices visited by Wn (resp.

W̃n) between time i and j (resp. j̃ and ĩ) are those black dots on the right branch as well as all the vertices strictly inside the grey trees.

The idea to control the left branch |Hn(ns) − infr∈[s,t] Hn(nr)| is to consider the ‘mirror tree’ obtained from Tn by
flipping the order of the children of every vertex. There is one subtlety though, let us explain how to make this argument
rigorous, with the help of Figure 8. Put i = ns and j = nt . Let us denote by T̃n the image of Tn by the following two
operations: first exchange the subtrees of the progeny of the ith and the j th vertices of Tn and then take the mirror image
of the whole tree, the resulting tree is T̃n. Observe that Tn and T̃n have the same law. Let ĩ > j̃ be the indices such that
the ĩth and the j̃ th vertices of T̃n correspond to the ith and the j th vertices of Tn respectively. Then between times i and
j , in Tn, the Łukasiewicz path Wn visits all the progeny of the ith vertex, then all the vertices that lie strictly between
the two ancestral lines between the ith and j th vertices and their last common ancestor, and also all the vertices on this
ancestral line leading to j . Similarly, between times j̃ and ĩ, in T̃n, the Łukasiewicz path W̃n visits all the progeny of the
j̃ th vertex, which is the same as that of the ith vertex of Tn, then all the vertices that lie strictly between the two ancestral
lines between the j̃ th and ĩth vertices and their last common ancestor, which again are the same as in Tn, and also all the
vertices on this ancestral line leading to ĩ. So the two Łukasiewicz paths visit the same vertices, except that Wn visits the
ancestors of the j th vertex of Tn and not those of its ith vertex, whereas W̃n visits the ancestors of the ith vertex of Tn

and not those of its j th vertex. In principle, the lexicographical distance |j̃ − ĩ| may thus be much larger than |i − j | so
we cannot directly apply the bound (5) to W̃n (note that it could also be smaller, but this is not an issue for us, it actually
helps). The following lemma shows that this difference is indeed not important.

Recall that for a vertex v of a tree T different from its root, we denote by pr(v) its parent and by kpr(v) the number
of children of the latter; denote further by χv the relative position of v among the children of pr(v): formally, the index
χv ∈ {1, . . . , kpr(v)} satisfies v = pr(v)χv .

Lemma 2.1. Let C = 5/μ(0)2 and define the set

ATn =
{
(u, v) ∈ Tn : u ∈ �∅, v� and #�u,v� > C lnn and

#{w ∈ �u,v� : χw = kpr(w)}
#�u,v�

> 1 − μ(0)

2

}
.

Then the probability that there exists a pair (u, v) ∈ ATn converges to 0 as n → ∞.

We can now finish the proof of Lemma 1.4.

Proof of (6). From the preceding lemma, we deduce that with high probability, on all ancestral paths in Tn of length
at least logarithmic, there is a proportion at least μ(0)/2 of individuals which are not the last child of their parent.
Consequently, the length of such a path is at most 2/μ(0) times the number of individuals branching-off strictly to the
right of the path. With the notation of the discussion preceding the lemma, with high probability, the lexicographical
distance in T̃n between the images of the ith and j th vertex of Tn is

|j̃ − ĩ| = |i − j | −
∣∣∣Hn(j) − inf

i≤k≤j
Hn(k)

∣∣∣ +
∣∣∣Hn(i) − inf

i≤k≤j
Hn(k)

∣∣∣ ≤ |i − j | + 2

μ(0)
|i − j |,

where the second (very rough) bound holds when |Hn(i) − infi≤k≤j Hn(k)| > C lnn, with C as in Lemma 2.1. Note
that when this length is smaller than C lnn, then (6) is trivial since |t − s| ≥ 1

n
as we restricted to integer times, so

x n
Bn

|t − s|γ ≥ x n1−γ

Bn
which tends to infinity like a power of n. We then conclude from the bound (5) applied to the

‘mirror’ Łukasiewicz path W̃n. �
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It remains to prove Lemma 2.1. A similar statement was proved in [28, Corollary 3] in the context of trees ‘with a
prescribed degree sequence’. The argument may be extended to our present case but we chose to modify it in order to
directly use the existing references on Bienaymé–Galton–Watson trees.

Proof of Lemma 2.1. Fix ε > 0 and let T be an unconditioned Bienaymé–Galton–Watson tree with offspring distribution
μ. Let us consider the set AT . Note that the maximal height of a tree cannot exceed its total size. Then we have

P
(∃(u, v) ∈ AT and #T = n + 1

) ≤ 1

n + 1

n+1∑
h=1

E
[ ∑

v∈T|v|=h

1{∃u∈T such that (u,v)∈AT }
]
. (8)

We then use a spinal decomposition due to Duquesne [9, Equation 24] which results in an absolute continuity relation
between the tree T and the tree T∞ ‘conditioned to survive’, which is the infinite tree which arises as the local limit of Tn.
It was introduced by Kesten [17] and the most general results on such convergences are due to Abraham and Delmas [1].
The tree T∞ contains a unique infinite simple path called the spine, starting from the root: the vertices which belong to this
spine reproduce according to the size-biased law (iμ(i))i≥1, and the unique child which remains on the spine is chosen
uniformly at random, whereas the other vertices reproduce according to μ, and all the vertices reproduce independently.
Let v∗

h be the only vertex on the spine of T∞ at height h, then, by [9, Equation 24], the expectation in (8) equals

P
(

∃u ∈ T∞ : u ∈ �∅, v∗
h� and #�u,v∗

h� > C lnn and
#{w ∈ �u,v∗

h� : χw = kpr(w)}
#�u,v∗

h�
> 1 − μ(0)

2

)

≤
h∑

k=C lnn

P
(

#{w ∈ �v∗
h−k, v

∗
h� : χw = kpr(w)}
k

> 1 − μ(0)

2

)
.

Now for every vertex w on the spine, we have P(χw = kpr(w)) = ∑
i≥1 i−1(iμ(i)) = 1 − μ(0) and these events are

independent. Therefore, if Bin(N,p) denotes a random variable with the binomial law with parameters N and p, then the
expectation in (8) is bounded by

h∑
k=C lnn

P
(

k−1 Bin
(
k,1 − μ(0)

)
> 1 − μ(0)

2

)
≤

h∑
k=C lnn

e−kμ(0)2/2,

where we have used the celebrated Chernoff bound. Putting things together, we obtain the bound

P
(∃(u, v) ∈ AT | #T = n + 1

) ≤ 1

(n + 1)P(#T = n + 1)

n+1∑
h=1

h∑
k=C lnn

e−kμ(0)2/2

≤ 1

P(#T = n + 1)

e−C lnnμ(0)2/2

1 − e−μ(0)2/2
.

It is well-known that nBnP(#T = n + 1) → p1(0) as n → ∞, where p1 is the density of the stable random variable X(α)

from the introduction; this follows e.g. from the fact that P(#T = n + 1) is the probability that the random walk S first
hits −1 at time n+ 1, which equals by cyclic shift (n+ 1)−1 times the probability that S(n+ 1) = −1 and the asymptotic
behaviour of this probability is dictated by the local limit theorem, see e.g. [19, Lemma 1]. We conclude that for n large
enough

P
(∃(u, v) ∈ AT | #T = n + 1

) ≤ n1−Cμ(0)2/2Bn

p1(0)(1 − e−μ(0)2/2)

(
1 + o(1)

)
,

which converges to 0 from our choice of C since Bn = o(n). �

3. Convergence of snakes

We prove in this section the results presented in the introduction when we add to Tn spatial positions given by i.i.d.
increments with law Y . Recall that we concentrate only on the joint convergence of Hn and H

sp
n .
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3.1. Proof of Theorem 1.1 for centred snakes

Let us first focus on the case E[Y ] = 0; we aim at showing the convergence in distribution in C([0,1],R2)

(
Bn

n
Hn(nt),

(
Bn

nσ 2
Y

)1/2

H
sp
n (nt)

)
t∈[0,1]

(d)−→
n→∞(Ht ,St )t∈[0,1],

where σ 2
Y

:= E[Y 2] ∈ (0,∞); this convergence in the sense of finite-dimensional marginals follows easily from (1) ap-
pealing e.g. to Skorohod’s representation theorem and Donsker’s invariance principle applied to finitely many branches.
We thus only focus on the tightness of the rescaled process (Bn

n
)1/2H

sp
n (n·). The idea is to apply Kolmogorov’s criterion

but our assumption does not give us sufficiently large moments. We therefore adapt the argument from [15] and treat
separately the large and small values of Y ’s: the large ones are too rare to contribute much and the small ones now have
sufficiently large moments. The proof takes five steps.

3.1.1. Necessity of the assumption
Suppose first that the assumption P(|Y | ≥ (n/Bn)

1/2) = o(n−1) does not hold. Then there exists δ > 0 such that for
infinitely many indices n ∈ N, we have P(|Y | ≥ (n/Bn)

1/2) ≥ δn−1; let us implicitly restrict ourselves to such indices.
Let us denote by ι(Tn) the number of internal vertices of Tn. The conditional probability given Tn that there exists an
internal vertex u such that its first child satisfies |Yu1| ≥ (n/Bn)

1/2 equals

1 − P
(|Y | < (n/Bn)

1/2)ι(Tn) ≥ 1 −
(

1 − δ

n

)ι(Tn)

.

Since ι(Tn)/n converges to 1 − μ(0), see e.g. [18, Lemma 2.5], the right-most term is bounded away from 0 uniformly
in n. We conclude that with a probability bounded away from 0, for infinitely many indices n ∈ N, there exists 0 ≤ i < n

such that (Bn

n
)1/2|H sp

n (i +1)−H
sp
n (i)| ≥ 1 so the sequence of continuous processes ((Bn

n
)1/2H

sp
n (n·))n≥1 cannot be tight.

3.1.2. A cut-off argument

We assume for the rest of the proof that P(|Y | ≥ (n/Bn)
1/2) = o(n−1). Recall that for every δ > 0, we have n

1
α
−δ �

Bn � n
1
α
+δ so this assumption implies P(|Y | ≥ y) = o(y

− 2α
α(1+δ)−1 ). Set bn = (n2/Bn)

α−1
4α

+ε for some ε > 0; we shall

tune ε and δ small. For example, we have P(|Y | > bn) � (n2/Bn)
−( α−1

4α
+ε)( 2α

α(1+δ)−1 ), and the exponent is smaller than
−1/2 if δ is sufficiently small. It follows that

n2

Bn

P
(|Y | > bn

)2 −→
n→∞ 0. (9)

The idea is to take into account separately the large increments. For every vertex u ∈ Tn, let Y ′
u = Yu1{|Yu|≤bn} and

Y ′′
u = Yu1{|Yu|>bn}, define then H

sp
n

′ and H
sp
n

′′ as the spatial processes in which the increments Yu are replaced by Y ′
u and

Y ′′
u respectively, so H

sp
n = H

sp
n

′ + H
sp
n

′′.

3.1.3. Contribution of the large jumps
Let En be the event that Tn contains two vertices, say u and v, such that u is an ancestor of v and both |Yu| > bn and
|Yv| > bn; we claim that its probability tends to 0. First note that P(En | Tn) ≤ �(Tn) · P(|Y | > bn)

2, where �(Tn) =∑
u∈Tn

|u| = ∑
i≤n Hn(i) is called the total path length of Tn. The convergence (1) implies that

Bn

n2
�(Tn) =

∫ 1

0

Bn

n
Hn

(�nt�)dt
(d)−→

n→∞

∫ 1

0
Ht dt. (10)

We then write for every K > 0,

lim sup
n→∞

P(En) ≤ lim sup
n→∞

P
(

�(Tn) > K
n2

Bn

)
+ K lim sup

n→∞
n2

Bn

P
(|Y | > bn

)2
.

According to (9), the second term on the right vanishes for any K > 0, and the first term further tends 0 when K → ∞
according to (10). Now on the complement event Ec

n, there is at most one edge on each branch along which the spatial
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displacement is in absolute value larger than bn, therefore max0≤i≤n |H sp
n

′′(i)| simply equals maxu∈Tn |Y ′′
u | and so for

every γ > 0, we have

P
({

max
0≤t≤1

∣∣H sp
n

′′(2nt)
∣∣ > γ

(
n

Bn

)1/2}
∩ Ec

n

)
≤ P

(
max
u∈Tn

|Yu| > γ

(
n

Bn

)1/2)
≤ n · P

(
|Y | > γ

(
n

Bn

)1/2)
,

which converges to 0 as n → ∞. Thus (Bn

n
)1/2H

sp
n

′′(n·) converges to 0 so it only remains to prove that (Bn

n
)1/2H

sp
n

′(n·)
is tight.

3.1.4. Average contribution of small jumps
The process (Bn

n
)1/2H

sp
n

′(n·) is simpler to analyse than (Bn

n
)1/2H

sp
n (n·) since its increments are bounded. Note nonethe-

less that it is non centred in general, we next prove that its conditional expectation given Tn is negligible. Let
mn = E[Y ′] = −E[Y ′′] and observe that E[H sp

n
′(n·) | Tn] = mnHn(n·). Recall that Bn

n
Hn(n·) converges in distribution

(to H ); from the tail behaviour of Y we get:

|mn| ≤ E
[∣∣Y ′′∣∣] ≤ bnP

(|Y | > bn

) +
∫ ∞

bn

P
(|Y | > y

)
dy = O

(
b

1− 2α
α(1+δ)−1

n

)
.

By definition, we have ( n
Bn

)1/2b
1− 2α

α(1+δ)−1
n = n

2( α−1
4α

+ε)(1− 2α
α(1+δ)−1 )+ 1

2 · B
−( α−1

4α
+ε)(1− 2α

α(1+δ)−1 )− 1
2

n and we claim that both

exponents are negative, i.e. − 1
2 < (α−1

4α
+ ε)(1 − 2α

α(1+δ)−1 ) < − 1
4 . For ε = δ = 0, it reduces to − 1

2 < −α+1
4α

< − 1
4 which

is easily checked, and the bounds still hold by continuity for ε and δ sufficiently small. Therefore

lim
n→∞

(
n

Bn

)1/2

mn = 0, (11)

and thus (Bn/n)1/2E[H sp
n

′(n·) | Tn] converges in probability to the null process; we finally focus on the centred process
H̃

sp
n

′(n·) = H
sp
n

′(n·) − E[H sp
n

′(n·) | Tn].

3.1.5. Re-centred small jumps are tight
It only remains to prove that (Bn/n)1/2H̃

sp
n

′(n·) is tight. Fix γ ∈ (0, (α − 1)/α). According to Lemma 1.4, we may fix
C > 0 such that the probability of the event

An =
{

sup
0≤s 
=t≤1

Bn

n
· |Hn(nt) − Hn(ns)|

|t − s|γ ≤ C

}

is arbitrarily close to 1 when n is large. Our aim is to apply Kolmogorov’s tightness criterion to (Bn/n)1/2H̃
sp
n

′(n·) on
the event An. Let us enumerate the vertices of Tn in lexicographical order as u0 < u1 < · · · < un. Fix 0 ≤ s < t ≤ 1 such
that ns and nt are both integers. Then H̃

sp
n

′(nt) − H̃
sp
n

′(ns) is the sum of #�uns, unt � i.i.d. random variables distributed
as Ỹ ′ = Y ′ − E[Y ′]. Let r ∈ [s, t] be as follows: set r = s if uns is an ancestor of unt ; otherwise, nr is an integer and
unr is the ancestor of unt whose parent is the last common ancestor of uns and unt . In this way, r satisfies Hn(nr) =
inf[s,t] Hn(n·) and it holds that #�uns, unt � ≤ 2 + Hn(ns) + Hn(nt) − 2Hn(nr) which, on the event An, is bounded by
C n

Bn
(|t − r|γ + |r − s|γ ) ≤ 2C n

Bn
|t − s|γ . Fix any q ≥ 2 and let us write Cq for a constant which will vary from one line

to the other, and which depends on q and the law of Y , but not on s, t nor n.

Note that E[|Ỹ ′|2] = Var(Y ′) ≤ E[|Y ′|2] ≤ E[|Y |2] < ∞ and |Ỹ ′|q ≤ 2q( n2

Bn
)q( α−1

4α
+ε). Appealing to [31, Theorem 2.9]

(sometimes called the Rosenthal inequality), we obtain

E
[( |H̃ sp

n
′(nt) − H̃

sp
n

′(ns)|
(n/Bn)1/2

)q ∣∣∣ An

]
≤ Cq

(
Bn

n

) q
2
(

n

Bn

|t − s|γ E
[∣∣Ỹ ′∣∣q] +

(
n

Bn

|t − s|γ
) q

2

E
[∣∣Ỹ ′∣∣2] q

2

)

≤ Cq

((
Bn

n

) q
2 −1(

n2

Bn

)q( α−1
4α

+ε)

|t − s|γ + |t − s| qγ
2

)
.

Recall that for every δ > 0, we have n
1
α
−δ � Bn � n

1
α
+δ , then one can check that (Bn

n
)

q
2 −1( n2

Bn
)q( α−1

4α
+ε) is

bounded above by some power of n which converges to −∞ as q → ∞. Indeed, taking ε = δ = 0, we obtain
1

lnn
ln((n

1
α
−1)

q
2 −1(n2− 1

α )q
α−1
4α ) = −q α−1

4α2 + α−1
α

, and the result still hold by continuity for ε and δ sufficiently small.
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Since we assume that ns and nt are integers, it holds that n−1 ≤ |s − t | ≤ 1, and therefore our expectation is bounded by
some constant Cq times a power of |t − s| which converges to ∞ as q → ∞; in particular, for q large enough,

E
[( |H̃ sp

n
′(nt) − H̃

sp
n

′(ns)|
(n/Bn)1/2

)q ∣∣∣ An

]
≤ Cq |t − s|2.

This bound holds whenever s, t ∈ [0,1] are such that ns and nt are both integers. Since H̃
sp
n

′ is defined by linear inter-
polation between such times, then it also holds for every s, t ∈ [0,1]. The standard Kolmogorov criterion then shows that
the sequence (Bn/n)1/2H̃

sp
n

′(n·) is tight under the conditional probability P(· | An) but then also unconditionally and the
proof is complete.

3.2. Proof of Theorem 1.2 for non-centred snakes

We next assume that E[Y ] = mY 
= 0 and prove Theorem 1.2. The intuition behind the result is that the fluctuations are
small and disappear after scaling, only the contribution of the expected displacement remains. Indeed, as in the preceding
proof, we have Bn

n
E[H sp

n (n·) | Tn] = mY
Bn

n
Hn(n·) which converges to mY · H so it is equivalent to consider the centred

version of Y . For the rest of the proof, we thus assume instead that E[Y ] = 0 and P(|Y | ≥ n/Bn) = o(n−1), and we prove
that the corresponding scaled spatial process Bn

n
H

sp
n (n·) converges to the null process.

The fact that our assumption is necessary for tightness of this process goes exactly as for Theorem 1.1, in the first step:
Now the tails of Y are so that P(|Y | ≥ y) = o(y

− α
α(1+δ)−1 ) for every δ > 0 and we may proceed as previously, with the

sequence bn = (n2/Bn)
α−1
2α

+ε instead: up to δ, ε, both exponents in the tails of Y and in bn are half what they were in the
preceding section, so these changes compensate each other. Then the previous arguments apply mutatis mutandis and the
limits (9) and (11) now become

lim
n→∞

n2

Bn

P
(|Y | > bn

)2 = 0, and lim
n→∞mn = 0,

so both processes Bn

n
H

sp
n

′′(n·) and Bn

n
E[H sp

n
′(n·) | Tn] = mn

Bn

n
Hn(n·) converge to the null process. Similarly, for s, t ∈

[0,1] such that ns,nt ∈ N, we have

E
[( |H̃ sp

n
′(nt) − H̃

sp
n

′(ns)|
n/Bn

)q ∣∣∣ An

]
≤ Cq

(
Bn

n

)q(
n

Bn

|t − s|γ E
[∣∣Ỹ ′∣∣q] +

(
n

Bn

|t − s|γ
) q

2

E
[∣∣Ỹ ′∣∣2] q

2

)

≤ Cq

((
Bn

n

)q−1(
n2

Bn

)q( α−1
2α

+ε)

|t − s|γ +
(

Bn

n
E

[∣∣Y ′∣∣2]|t − s|γ
) q

2
)

.

The first term in the last line is controlled as previously: the factor 1/2 in the exponent in bn compensates the fact that we
now rescale by n

Bn
instead of ( n

Bn
)1/2 and similar calculations as in the preceding section show that there exists Kq → ∞

as q → ∞ such that (Bn

n
)q−1( n2

Bn
)q( α−1

2α
+ε) ≤ n−Kq ≤ |t − s|Kq . The only change compared to the proof of Theorem 1.1

is that we may not have E[|Y ′|2] < ∞.
If α = 2, observe that n−1/2Bn either converges to (σ 2

μ/2)1/2, when μ variance σ 2
μ < ∞, or it converges to ∞ oth-

erwise. Therefore, one can fix K > 0 such that we have eventually K ≥ n1/2B−1
n , and so P(|Y | ≥ Kn1/2) ≤ P(|Y | ≥

n/Bn) = o(n−1) by our assumption. It easily follows that P(|Y | ≥ y) = o(y−2) and so

E
[∣∣Y ′∣∣2] = 2

∫ bn

0
yP

(|Y | > y
)

dy = O(lnbn) = O(lnn).

If α < 2, then yP(|Y | ≥ y) is small compared to y
1− α

α(1+δ)−1 and the exponent is smaller than −1 for δ sufficiently small so
the integral above converges. In any case, there exists η > 0 such that Bn

n
E[|Y ′|2] ≤ n−η ≤ |t − s|η and we may conclude

as in the preceding proof that for q large enough,

E
[( |H̃ sp

n
′(nt) − H̃

sp
n

′(ns)|
n/Bn

)q ∣∣∣ An

]
≤ Cq |t − s|2,

and so the process Bn

n
H̃

sp
n

′(n·) is tight. Moreover, the preceding bounds applied with s = 0 and t ∈ [0,1] fixed show that
the moments of the one-dimensional marginals converge to 0 so the whole process converges in distribution to the null
process, which completes the proof.
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3.3. Application to the number of inversions

Before discussing heavy-tailed snakes, let us apply Theorem 1.1 to prove Corollary 1.3, following the argument of Cai et
al. [5, Section 5]. First note that for a given tree T with n + 1 vertices listed ∅ = u0 < u1 < · · · < un in lexicographical
order, we have

E
[
I (T )

] = 1

2

∑
0≤i<j≤n

1{ui is a ancestor of uj } = 1

2

∑
u∈T

|u| = 1

2
�(T ),

where we recall the notation �(T ) for the total path length of T . Therefore the convergence of the conditional expectation
of I (Tn) in Corollary 1.3 follows from (10). We focus on the fluctuations.

Let (Yu)u∈Tn be i.i.d. spatial increments on the tree Tn, where each Yu has the uniform distribution on the interval
(−1/2,1/2). The main idea, see the discussion around Equation (5.1) in [5], is the introduction of a coupling between an
inversion I on Tn and (Yu)u∈Tn , which yields the following comparison:∣∣∣∣J (Tn) −

(
I (Tn) − �(Tn)

2

)∣∣∣∣ ≤ 2n,

where J (Tn) = ∑
v∈Tn

Sv = ∑
1≤k≤n H

sp
n (k) and we recall that Sv is the spatial position of the vertex v associated with

i.d.d. increments of law Y . Since σ 2
Y = 1/12, Theorem 1.1 yields

(
12Bn

n3

)1/2

J (Tn) =
∫ 1

0

(
12Bn

n

)1/2

H
sp
n

(�nt�)dt
(d)−→

n→∞

∫ 1

0
St dt.

Since (n3/Bn)
1/2 � n, the coupling above finally implies(

12Bn

n3

)1/2(
I (Tn) − �(Tn)

2

)
(d)−→

n→∞

∫ 1

0
St dt,

which is the second convergence in Corollary 1.3.

4. Heavy-tailed snakes

We investigate more precisely in this section the behaviour of H
sp
n and C

sp
n when the assumption P(|Y | ≥ ( n

Bn
)1/2) =

o(n−1) of Theorem 1.1 fails. In this case, we have seen that these processes cannot converge to continuous function since
they admit large increments. In fact, they do not converge to functions at all; indeed, with high probability as n becomes
large, we may find in the tree Tn vertices, say, u, which have a microscopic descendance and such that |Yu| is very large
so the processes H

sp
n and C

sp
n have a macroscopic increment, almost immediately followed by the opposite increment,

which gives rise at the limit to a vertical peak. Nonetheless, as proved by Janson and Marckert [15] they still converge in
distribution in the following weaker sense.

Throughout this section, we identify continuous functions from [0,1] to R with their graph, which belongs to the space
K of compact subsets of [0,1] × R, which is a Polish space when equipped with the Hausdorff distance: the distance
between two compact sets A and B is

dH (A,B) = inf
{
r > 0 : A ⊂ B(r) and B ⊂ A(r)

}
,

where A(r) = {x ∈ R2 : d(x,A) ≤ r}. Then a sequence of functions (fn)n≥1 in C([0,1],R) may converge in K to a
limit K which is not the graph of a function; note that if K is the graph of a continuous function, then this convergence
is equivalent to the uniform convergence considered previously. The type of limits we shall consider are constructed as
follows. Take f ∈ C([0,1],R) and � a collection of points in [0,1] × R such that for every x ∈ [0,1] there exists at most
one element y ∈ R such that (x, y) ∈ �, and for every η > 0, the set � ∩ ([0,1] × (R \ [−η,η])) is finite. We then define
a subset f �� � ⊂ [0,1] × R as the union of the graph of f and the following collection of vertical segments: for every
point (x, y) ∈ �, we place a vertical segment of length |y| at (x, f (x)), directed up or down according to the sign of y.
Then f �� � belongs to K and the map (f,�) �→ f �� � is measurable (even continuous) so we may take a random
function f and a random set � and obtain a random set f �� �.

Again, our results focus on the head of the snakes, but they imply the convergence of the entire snakes towards ‘jumping
snakes’, see [15, Section 3.1].
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4.1. The intermediate regime

In the next result, we investigate the case where n · P(|Y | ≥ ( n
Bn

)1/2) is uniformly bounded. Extracting a subsequence if
necessary, we may assume that both tails converge.

Theorem 4.1 (Convergence to a ‘hairy snake’). Suppose that E[Y ] = 0, that σ 2
Y

:= E[Y 2] ∈ (0,∞), and that there exist
a+, a− ∈ [0,∞) such that a+ + a− > 0 and

lim
n→∞n · P

(
Y ≥ (n/Bn)

1/2) = a+ and lim
n→∞n · P

(−Y ≥ (n/Bn)
1/2) = a−.

Let � be a Poisson random measure on [0,1] × R with intensity 2α
α−1y−1− 2α

α−1 (a+1{y>0} + a−1{y<0})dx dy which is
independent of the pair (H ,S). Then the convergence in distribution of the sets

{(
Bn

n

)1/2

H
sp
n (nt); t ∈ [0,1]

}
(d)−→

n→∞(σY · S) �� �,

holds in K , jointly with (1). The same holds (jointly) when H
sp
n (n·) is replaced by C

sp
n (2n·).

The intuition behind this result is that, as opposed to Theorem 1.1, we can find here vertices u of Tn such that |Yu| is
macroscopic, and these points lead to the peaks given by � at the limit. Indeed, for every c > 0, we have

(
cn

Bcn

)1/2

= c
α−1
2α

(
n

Bn

)1/2(
n−1/αBn

(cn)−1/αBcn

)1/2

,

and the very last term converges to 1 since n−1/αBn is slowly varying. Taking y = c
α−1
2α , we deduce that the assumption

of Theorem 4.1 implies that

lim
n→∞n · P

(
Y > y(n/Bn)

1/2) = a+y− 2α
α−1 , and lim

n→∞n · P
(−Y < y(n/Bn)

1/2) = a−y− 2α
α−1 .

Conditional on Tn, the cardinal #{u ∈ Tn : Yu > y(n/Bn)
1/2} has the binomial distribution with parameters n and P(Y >

y(n/Bn)
1/2), so this number is asymptotically Poisson distributed with rate a+y− 2α

α−1 , which indeed corresponds to �,
since furthermore the locations are uniformly distributed in the tree.

As for Theorem 1.1, let us decompose the proof into several steps; here the argument is more straightforwardly adapted
from the proof of Theorem 5 in [15] so we shall only give the main ideas.

4.1.1. Contribution of the small jumps

As in the proof of Theorem 1.1, let us treat separately the large and small increments: put bn = (n2/Bn)
α−1
4α

+ε for some
ε > 0 small to be tuned. For every vertex u ∈ Tn, let Y ′

u = Yu1{|Yu|≤bn} and Y ′′
u = Yu1{|Yu|>bn}, define then H

sp
n

′ and H
sp
n

′′
as the spatial processes in which the increments Yu are replaced by Y ′

u and Y ′′
u respectively, so H

sp
n = H

sp
n

′ + H
sp
n

′′. Our

assumption implies that P(|Y | ≥ y) = o(y
− 2α

α(1+δ)−1 ) for every δ > 0, and we have seen in Section 3.1.4 and 3.1.5 that

(
Bn

n
Hn(nt),

(
Bn

n

)1/2

H
sp
n

′(nt)

)
t∈[0,1]

(d)−→
n→∞

(
Ht , σ

2
Y · St

)
t∈[0,1]. (12)

We next claim that we have the convergence in K

{(
Bn

n

)1/2

H
sp
n

′′(nt); t ∈ [0,1]
}

(d)−→
n→∞ 0 �� �. (13)

4.1.2. Contribution of the large jumps
The convergence (13) is basically [15, Lemma 9], let us describe the argument and refer to this reference for details.
The idea is to truncate further Y ′′

u by setting Y
η
u = Yu1{|Yu|>η(n/Bn)1/2} for some η > 0 and then define H

sp
n

η as the spatial
process in which the increments Yu are replaced by Y

η
u . Recall the event En that Tn contains two vertices, say u and v,

such that u is an ancestor of v and both |Yu| > bn and |Yv| > bn. Then again, P(En) converges to 0, and on Ec
n, we have

that 0 ≤ max0≤i≤n |H sp
n

′′(i)| − max0≤i≤n |H sp
n

η(i)| ≤ η( n
Bn

)1/2. Let us then replace H
sp
n

′′ by H
sp
n

η in the left-hand side
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of (13). We implicitly work conditional on the event Ec
n so there is at most one non-zero value of Y

η
u along each branch

of Tn. Let ∅= u0 < u1 < · · · < un be the vertices of Tn listed in lexicographical order, and let 1 ≤ k1 < · · · < kNn ≤ n be
the indices of those vertices u of Tn for which Y

η
u 
= 0. Define then the sets ξ

η
n = {(n−1ki, (Bn/n)1/2Yuki

);1 ≤ i ≤ Nn}
and �η = �∩ ([0,1]× (R \ [−η,η])) which has a finite intensity measure. Then in this context, it is easy to check (recall
the discussion just after the statement of the theorem on the asymptotic behaviour of Nn and the ki ’s) that ξ

η
n converges

in distribution to �η. By continuity, this yields the convergence in law 0 �� ξ
η
n → 0 �� �η and the latter is at Hausdorff

distance at most η from 0 �� � by construction.
Now on the event Ec

n, the process H
sp
n

η goes as follows: it is null until time k1 −1, then it moves to a random value Yuk1
at time k1, it stays at this value for a time given by the total progeny of uk1 before going back to zero where it stays until
time k2 − 1 and so on. As shown in [15, Lemma 8], and the argument is easily adapted using (10), the total progeny of a
uniformly random vertex of Tn is o(n) in probability, so as n → ∞, the process H

sp
n

η(n·) goes back almost immediately
to 0 after reaching a high value, leading at the limit to vertical peaks as in 0 �� ξ

η
n . It follows that the Hausdorff distance

between {(Bn

n
)1/2H

sp
n

η(nt); t ∈ [0,1]} and 0 �� ξ
η
n converges to zero in probability, which, combined with the preceding

paragraph, yields (13).

4.1.3. Combining small and large jumps
The proof is not finished! We cannot directly conclude from (12) and (13) that{(

Bn

n

)1/2(
H

sp
n

′(nt) + H
sp
n

′′(nt)
); t ∈ [0,1]

}
(d)−→

n→∞
(
σ 2

Y · St

) �� �, (14)

because (12) and (13) may not hold simultaneously. Indeed, the processes H
sp
n

′ and H
sp
n

′′ are not independent since each
Yu contributes either to one or to the other. As in [15, Proof of Theorem 5], we create independence by re-sampling
the Yu’s which contribute to H

sp
n

′′ as follows: let (Zi)i≥1 be i.i.d. copies of Y1{|Y |≤bn} independent of the rest and put
Ŷi = Yi1{|Y |≤bn} +Zi1{|Y |>bn} for each 1 ≤ i ≤ n. Now the processes Ĥ

sp
n and H

sp
n

′′(nt) are independent, and furthermore,
the error between H

sp
n

′ and Ĥ
sp
n comes from those Yu’s for which |Yu| > bn; on the event Ec

n, there exists at most one
such u on each branch and therefore max0≤i≤n |Ĥ sp

n (i) − H
sp
n

′(i)| ≤ bn = o( n
Bn

)1/2 since each Ŷi and each Y ′
i belongs to

[0, bn]. Therefore the left-hand side of (14) is close to the similar set when H
sp
n

′ is replaced by Ĥ
sp
n which satisfies (12)

and is independent of H
sp
n

′′. We conclude that (14) does hold and the proof of Theorem 4.1 is now complete.

4.2. The heavy tail regime

We finally investigate the regime where the tails of Y are much heavier than what requires Theorem 1.1. In this case, the
extreme values dominate the small ones and the snake disappears at the limit, only the vertical peaks remain, see Figure 9
for a comparison with the previous case.

Theorem 4.2 (Convergence to a ‘flat hairy snake’). Fix p ∈ (0,2] and suppose that E[Y ] = 0. Assume that there exist
� ∈ [0,1] and two slowly varying functions at infinity L+ and L− such that if L = L+ + L−, then as x → ∞, the ratios
L+(x)/L(x) and L−(x)/L(x) converge respectively to � and 1 − �, and furthermore

n · P
(
Y ≥ (n/Bn)

1/pL+(n/Bn)
) −→

n→∞ 1 and n · P
(−Y ≥ (n/Bn)

1/pL−(n/Bn)
) −→

n→∞ 1.

Fig. 9. Two instances of the spatial height process H
sp
n (n·) associated with the height process of Figure 2 where in both cases, Y is symmetric and such

that limn→∞ n · P(Y ≥ (n/Bn)1/p) = 1; on the left, p = 2 and on the right, p = 0.6.
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If p = 2, assume also that the function L tends to infinity. Let � be a Poisson random measure on [0,1]×R independent of
the pair (H ,S), with intensity pα

α−1y−1− pα
α−1 (�

pα
α−1 1{y>0} + (1 − �)

pα
α−1 1{y<0})dx dy. Then the convergence in distribution

of the sets

{
B

1/p
n

n1/pL( n
Bn

)
H

sp
n (nt); t ∈ [0,1]

}
(d)−→

n→∞ 0 �� �,

holds in K , jointly with (1). The same holds (jointly) when H
sp
n (n·) is replaced by C

sp
n (2n·).

In the case L+(x) → c+ ∈ [0,∞) and L−(x) → c− ∈ [0,∞), the assumption reads

n · P
(
Y ≥ (n/Bn)

1/p
) −→

n→∞a+ and n · P
(−Y ≥ (n/Bn)

1/p
) −→

n→∞a−,

where a+ = (c+)
pα
α−1 and a− = (c−)

pα
α−1 , and then the conclusion reads

{(
Bn

n

)1/p

H
sp
n (nt); t ∈ [0,1]

}
(d)−→

n→∞ 0 �� �,

where � has intensity pα
α−1y−1− pα

α−1 (a+1{y>0} + a−1{y<0})dx dy, which recovers [15, Theorem 6].

Remark 4.3. Recall from Theorem 1.2 that if E[Y ] = mY 
= 0, then Bn

n
E[H sp

n (n·) | Tn] converges to mY · H . Therefore
the previous result still holds in this case for p < 1; when p = 1 and L+ and L− both converge, then

{(
Bn

n

)1/p

H
sp
n (nt); t ∈ [0,1]

}
(d)−→

n→∞(mY · H) �� �,

in K , jointly with (1), where H and � are independent, and the same holds (jointly) when H
sp
n (n·) is replaced by

C
sp
n (2n·).

Proof. Since L+/− are slowly varying, we have (n/Bn)
−θ � L+/−(n/Bn) � (n/Bn)

θ for every θ > 0 so the tails of Y

satisfy now P((Y )+/− > y) = o(y
− α(p−θ)

α(1+δ)−1 ) for every δ, θ > 0. As usual, let us cut the increments: put bn = (n2/Bn)
α−1
2pα

+ε

for some ε > 0 small. For every vertex u ∈ Tn, let Y ′
u = Yu1{|Yu|≤bn} and Y ′′

u = Yu1{|Yu|>bn}, define then H
sp
n

′ and H
sp
n

′′ as
the spatial processes in which the increments Yu are replaced by Y ′

u and Y ′′
u respectively, finally set mn = E[Y ′] = −E[Y ′′]

and H̃
sp
n

′(n·) = H
sp
n

′(n·) − mnHn(n·). Then we have H
sp
n = H

sp
n

′′ + mnHn + H̃
sp
n

′. Similarly as in the preceding proofs,
the exponent in bn matches that in the tails of Y . Therefore, taking ε, δ, θ small enough, similarly to (9) and (11), it holds
that

lim
n→∞

n2

Bn

P
(|Y | > bn

)2 = 0, and lim
n→∞

n(p−1)/p

B
(p−1)/p
n L(n/Bn)

mn = 0.

The event En that Tn contains two vertices, say u and v, such that u is an ancestor of v and both |Yu| > bn and |Yv| > bn,
thus has a probability tending to 0. Then the arguments used in the proof of Theorem 4.1 extend readily to prove that

{
B

1/p
n

n1/pL(n/Bn)
H

sp
n

′′(nt); t ∈ [0,1]
}

(d)−→
n→∞ 0 �� �,

furthermore it holds that

B
1/p
n

n1/pL(n/Bn)
mnHn(n·) = n(p−1)/p

B
(p−1)/p
n L(n/Bn)

mn · Bn

n
Hn(n·) P−→

n→∞ 0.

Finally, with the notation from Section 3, for s, t ∈ [0,1] such that ns,nt ∈ N, we have

E
[(

B
1/p
n

n1/pL(n/Bn)

∣∣H̃ sp
n

′(nt) − H̃
sp
n

′(ns)
∣∣)q ∣∣∣ An

]
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≤ Cq

B
q/p
n

nq/pL(n/Bn)q

(
n

Bn

|t − s|γ E
[∣∣Ỹ ′∣∣q] +

(
n

Bn

|t − s|γ
) q

2

E
[∣∣Ỹ ′∣∣2] q

2

)

≤ Cq

(
L

(
n

Bn

)−q(
Bn

n

) q
p

−1(
n2

Bn

)q( α−1
pα

+ε)

|t − s|γ +
[
L

(
n

Bn

)−2(
Bn

n

) 2
p

−1

E
[∣∣Y ′∣∣2]] q

2 |t − s|qγ /2
)

.

The first term in the last line is controlled exactly as in the proof of Theorem 1.2: the slowly varying function will not
cause any trouble, and the factor 1/p here acts as 1/2 there. On the other hand, exactly as in the proof of Theorem 1.2, one

can check from the tail behaviour of Y that if p < 2, then there exists η > 0 such that (Bn

n
)

2
p

−1E[|Y ′|2] ≤ n−η ≤ |t − s|η;

this fails when p = 2 but in this case (Bn

n
)

2
p

−1E[|Y ′|2] is uniformly bounded, so this is not an issue. We conclude as in

the proof of Theorem 1.2 that the process Bn

n
H̃

sp
n

′(n·) is tight and even converges to the null process, which completes
the proof. �
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