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Abstract. We obtain results on mixing for a large class of (not necessarily Markov) infinite measure semiflows and flows. Erickson
proved, amongst other things, a strong renewal theorem in the corresponding i.i.d. setting. Using operator renewal theory, we extend
Erickson’s methods to the deterministic (i.e. non-i.i.d.) continuous time setting and obtain results on mixing as a consequence.

Our results apply to intermittent semiflows and flows of Pomeau–Manneville type (both Markov and nonMarkov), and to semiflows
and flows over Collet–Eckmann maps with nonintegrable roof function.

Résumé. Nous obtenons des résultats de mélange pour une large classe de flots et de semi-flots préservant une mesure de masse infinie
(et qui ne sont pas necessairement markoviens). Erickson a prouvé, entre autres choses, un théorème de renouvellement fort dans le
contexte de variables aleatoires indépendantes et identiquement distribuées. En utilisant la théorie des opérateurs de renouvellement,
nous étendons les méthodes d’Erickson au cas du temps continu déterministe (et donc on i.i.d.) et en déduisons des résultats sur le
mélange.

Nos résultats s’appliquent a des semi-flots et flots intermittents de type Pomeau–Manneville (à la fois de type markoviens ou de
type non-markoviens) ainsi qu’à des suspensions au-dessus de transformations de Collet–Eckmann pour lesquelles la fonction toit est
non-intégrable.
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1. Introduction

Recently, there has been increasing interest in the investigation of mixing properties for infinite measure-preserving
dynamical systems [2,13,24,27,28,31–35,37,40,41,43]. Most of these results are for discrete time noninvertible systems.

For results on semiflows preserving an infinite measure, we refer to [37] (the Markov case) and [13] (which does not
assume a Markov structure). The setting is that F : Y → Y is a mixing uniformly expanding map defined on a probability
space (Y,μ) and τ : Y → R

+ is a nonintegrable roof function with regularly varying tails:

μ
(
y ∈ Y : τ(y) > t

) = �(t)t−β for various ranges of β ∈ [0,1]. (1.1)

Here, � : [0,∞) → [0,∞) is a measurable slowly varying function (so limt→∞ �(λt)/�(t) = 1 for all λ > 0). Consider
the suspension (Y τ ,μτ ) and suspension semiflow Ft : Y τ → Y τ (the standard definitions are recalled in Section 3). The
aim is to prove a mixing result of the form

lim
t→∞at

∫
Y τ

vw ◦ Ft dμτ =
∫

Y τ

v dμτ

∫
Y τ

w dμτ ,

for a suitable normalisation at → ∞ and suitable classes of observables v,w : Y τ → R.
Under certain hypotheses, [13,37] obtained results on mixing and rates of mixing for such semiflows. The hypotheses

were of two types: (i) assumptions on “renewal operators” associated to the transfer operator of F and the roof function
τ , and (ii) Dolgopyat-type assumptions of the type used to obtain mixing rates for finite measure (semi)flows [17].
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As pointed out to us by Dima Dolgopyat, Péter Nándori and Doma Szász, mixing for indicator functions can be
regarded as a local limit theorem and hence hypotheses of type (ii) should not be necessary.

In this paper, we show that operator renewal-theoretic assumptions (i) are indeed sufficient for obtaining the mixing
results in [13,37]. The abstract framework in [13] turns out again to be flexible enough to cover nonMarkov situations.
Moreover, our main results extend to flows and we are able to treat large classes of observables v, w. (Conditions of
type (i) alone are not sufficient for obtaining rates of mixing; the best results remain those in [13].)

The analogous probabilistic results go back to Erickson [20] who obtained strong renewal theorems in an i.i.d. contin-
uous time framework under the assumption β ∈ ( 1

2 ,1]. (In the discrete time setting, see [22] for the i.i.d. case and [35]
for the deterministic case.) Our results on mixing when β ∈ ( 1

2 ,1] for semiflows (Corollary 3.1 and the extensions in
Section 9) and for flows (Theorem 10.5), are proved by adapting Erickson’s methods to the deterministic setting.

For β ≤ 1
2 , additional hypotheses are needed on the tail of τ to obtain a strong renewal theorem (and hence mixing)

even for discrete time; see [15,19,22] for i.i.d. results and [24] for deterministic results (see also [41] for higher order
theory in both the i.i.d. and deterministic settings). For the continuous time case, Dolgopyat & Nándori [18] obtain strong
renewal theorems for a class of Markov semiflows including the range β ≤ 1

2 (again under extra hypotheses on the tail
μ(τ > t)), though our main examples seem beyond their framework. In the absence of additional tail hypotheses, [20]
showed how to obtain a partial result in the probabilistic setting with limit replaced by lim inf. In Corollary 3.5, we obtain
such a lim inf result for semiflows with β ∈ (0, 1

2 ].
We now describe two families of examples to which our results apply. For definiteness, we restrict to our main mixing

result Corollary 3.1 which applies when β ∈ ( 1
2 ,1]. (Corollary 3.3 and Corollary 3.5 hold for all β ∈ (0,1].)

Example 1.1 (NonMarkovian intermittent semiflows and flows). Consider the map f : [0,1] → [0,1] given by

f (x) = x
(
1 + c1x

1/β
)

mod 1 where β ∈
(

1

2
,1

]
, c1 > 0.

This is an example of an AFN map [45], namely a nonuniformly expanding one-dimensional map with at most countably
(in this case finitely) many branches with finite images and satisfying Adler’s distortion condition sup |f ′′|/|f ′|2 < ∞.
Up to scaling, there is a unique absolutely continuous invariant measure μ0. The measure μ0 is infinite and the density
has a singularity at the neutral fixed point 0.

Let τ0 : [0,1] → [1,∞) be a roof function of bounded variation and Hölder continuous, and let ft denote the suspen-
sion semiflow on [0,1]τ0 with invariant measure μ

τ0
0 = μ0 × Lebesgue. Note that there is now a neutral periodic orbit of

period τ0(0).
In [13], under a Dolgopyat-type condition on τ0 and for sufficiently regular observables v and w supported away from

the neutral periodic orbit, we proved a mixing result with rates and higher order asymptotics. Here we obtain the mixing
result without requiring the Dolgopyat-type condition or high regularity for the observables. It suffices that ft has two
periodic orbits (other than the neutral periodic orbit) whose periods have irrational ratio. Define

m(t) =
{

log t β = 1,

t1−β β ∈ ( 1
2 ,1).

We show that

lim
t→∞m(t)

∫
vw ◦ ft dμ

τ0
0 = const.

∫
v dμ

τ0
0

∫
w dμ

τ0
0 , (1.2)

where the constant depends only on f and τ0. Here, v is any continuous function supported away from the neutral periodic
orbit and w is any integrable function.

Remark 1.2. If c1 is a positive integer, then f is Markov and is a special case of the class of maps considered by [42]. In
this case, it suffices that τ0 is Hölder continuous. Moreover, it follows from [18] that the mixing result (1.2) holds for all
β ≤ 1. When c1 is not an integer, f is not Markov and [18] does not apply, as far as we can tell, regardless of the value
of β .

As in [33,34], we can also consider solenoidal flows with a neutral periodic orbit. Our results on mixing apply equally
to such flows, see Remark 11.3.

Example 1.3 (Suspensions over unimodal maps). We consider a class of examples studied in [13, Example 1.2]. Under
a Dolgopyat-type condition on τ0 and for sufficiently regular observables v and w, we proved a mixing result with rates



Renewal theorems and mixing for non Markov flows with infinite measure 451

and higher order asymptotics. Again, the emphasis is now on mixing rather than mixing rates, with significantly relaxed
hypotheses on the roof function and the observables.

Let f : [0,1] → [0,1] be a C2 unimodal map with unique non-flat critical point x0 ∈ (0,1). We suppose further that f

is Collet–Eckmann [16]: there are constants C > 0, λCE > 1 such that |(f n)′(f x0)| ≥ Cλn
CE for all n ≥ 1. It follows [26]

that there is a unique acip μ0 that is mixing up to a finite cycle. We restrict to the case when μ0 is mixing. Finally, we
suppose that x0 satisfies slow recurrence in the sense that limn→∞ n−1 log |f nx0 − x0| = 0.

Consider a roof function τ0 : [0,1] → R
+ of the form τ0(x) = g(x)|x − x0|−1/β where β ∈ ( 1

2 ,1) and g : [0,1] →
(1,∞) is differentiable, and form the suspension semiflow ft : [0,1]τ0 → [0,1]τ0 . Suppose that ft has two periodic orbits
whose periods have irrational ratio. We obtain the mixing property (1.2) for any continuous function v supported in
[0,1] × [0,1] and any integrable w.

The remainder of this paper is organised as follows. In Section 2, we describe the operator renewal-theoretic hypotheses
required in this paper and we state a strong renewal theorem for β ∈ ( 1

2 ,1] as well as related results for β ≤ 1
2 . In Section 3,

we show how these results lead to mixing properties for semiflows. Sections 4 and 6 are devoted to the proof of the strong
renewal theorem, while Sections 7 and 8 contain the proofs of the remaining results in Section 2. Section 5 contains
prerequisites from operator renewal theory.

Corollary 3.1 (mixing for semiflows) is stated for observables that are certain indicator functions. This restriction is
relaxed considerably in Section 9. The corresponding result for flows is stated and proved in Section 10.

Finally, in Section 11 we return to Examples 1.1 and 1.3.

Notation. We use “big O” and 	 notation interchangeably, writing an = O(bn) or an 	 bn if there is a constant C > 0
such that an ≤ Cbn for all n ≥ 1. Also, we write an ∼ bn if limn→∞ an/bn = 1.

2. Strong renewal theorem for continuous time deterministic systems

Let (Y,μ) be a probability space and let F : Y → Y be an ergodic and mixing measure-preserving transformation. Let τ :
Y → R

+ be a measurable nonintegrable function bounded away from zero. For convenience, we suppose that ess inf τ >

1. Throughout we assume the regularly varying tail condition (1.1).
Let τn = ∑n−1

j=0 τ ◦ Fj . Given measurable sets A,B ⊂ Y , define the renewal measure

UA,B(I ) =
∞∑

n=0

μ
(
y ∈ A ∩ F−nB : τn(y) ∈ I

)
, (2.1)

for intervals I ⊂ R. We write UA,B(x) = UA,B([0, x]) for x > 0. Our aim is to generalise [20, Theorems 1 and 2] to this
set up. That is, we want to obtain the asymptotics of UA,B(t + h) − UA,B(t) for any h > 0.

With the same notation as in [13], let H = {Re s ≥ 0}. Given δ > 0 and L > 0, let Hδ,L = (H∩ Bδ(0)) ∪ {ib : |b| ≤ L}.
Define the family of operators for s ∈ H,

R̂(s) : L1(Y ) → L1(Y ), R̂(s)v = R
(
e−sτ v

)
.

Here R : L1(Y ) → L1(Y ) is the transfer operator for F (so
∫
Y

Rvw dμ = ∫
Y

vw ◦ F dμ for all v ∈ L1(Y ), w ∈ L∞(Y )).
We assume that there exists p0 ≥ 1, and for each p ∈ (p0,∞), γ ∈ (0, β) and L > 0 there exists a Banach space

B = B(Y ) containing constant functions, with norm ‖‖B , and constants δ ∈ (0,L), α0 ∈ (0,1) and C > 0 such that

(H) (i) B is compactly embedded in Lp .
(ii) ‖R̂(s)nv‖B ≤ C(|v|p + αn

0‖v‖B) for all s ∈ Hδ,L, v ∈ B, n ≥ 1.
(iii) |R(τγ v)|p ≤ C‖v‖B for all v ∈ B.

Also, most of our results require one of the following conditions:

(S) (i) For all b ∈ [−L,L], b �= 0, the spectrum of R̂(ib) : B → B does not contain 1.
(ii) For all b ∈ [−L,L], b �= 0, the spectral radius of R̂(ib) : B → B is less than 1.

Hypothesis (H) is similar to [13, hypothesis (H1)]. The hypotheses in (S) are significant weakenings of [13, hypothe-
sis (H4)] and the diophantine ratio assumption used in [37] (Dolgopyat-type condition). The remaining hypotheses in
[13], namely (H2) and (H3) (re-inducing), are not required.
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Remark 2.1.

(a) For ease of exposition, hypothesis (H) is stated on the half-plane H, though we only use s real and s imaginary in
this paper. For Theorems 2.3 and 2.4, we can take s = ib, b ∈ [−L,L] in (H)(ii). For Theorem 2.6, we can take s = a,
a ∈ [0, δ) in (H)(ii).

(b) For our main results Theorem 2.3 and Corollary 3.1, it suffices that γ > 1 − β (this is possible since β > 1
2 in

those results). For our other results which include β ≤ 1
2 , it suffices that γ > 0.

In addition, as in [13], there exists p0 ≥ 1 depending only on β and γ such that (H) is required to hold only for one
value of p > p0.

Remark 2.2. In the simplest setting, studied in [37], where the map F : Y → Y is Gibbs–Markov [1,3], hypothesis (H) is
satisfied with B a symbolic Hölder space and p = ∞. See [13, Remark 2.4] and [37, Proposition 3.5] for further details.
This includes the case of Markovian intermittent semiflows.

As explained in Section 11.1, this situation generalizes to the case when F is an AFU map (i.e. an AFN map as defined
in Example 1.1 but uniformly expanding instead of nonuniformly expanding), with B consisting of bounded variation
functions, enabling us to treat the nonMarkovian intermittent semiflows in Example 1.1.

Define

dβ =
{

1
π

sinβπ β < 1,

1 β = 1,
m(t) =

{
�(t)t1−β β < 1,∫ t

1 �(s)s−1 ds β = 1.

Throughout we suppose that A,B ⊂ Y are measurable and that 1A ∈ B.
Our main result generalizes [20, Theorem 1] to the present non i.i.d. set up:

Theorem 2.3 (Strong renewal theorem). Assume μ(τ > t) = �(t)t−β where β ∈ ( 1
2 ,1]. Suppose that (H) and (S)(i)

holds. Then for any h > 0,

lim
t→∞m(t)

(
UA,B(t + h) − UA,B(t)

) = dβμ(A)μ(B)h.

As discussed in the Introduction, additional hypotheses are needed to obtain a strong renewal theorem when β ≤ 1
2 .

However, generalizing [20, Theorem 2] to the present non i.i.d. set up, we still obtain a lim inf result:

Theorem 2.4. Assume μ(τ > t) = �(t)t−β where β ∈ (0,1). Suppose that (H) and (S)(ii) holds. Then for any h > 0,

lim inf
t→∞ m(t)

(
UA,B(t + h) − UA,B(t)

) = dβμ(A)μ(B)h.

Remark 2.5. In the i.i.d. setting, results of this type are first due to [22] for discrete time and β < 1. The results of [20]
extended [22] to continuous time and incorporated the case β = 1.

For the proof of Theorem 2.4, we will need the following result which gives the asymptotics of UA,B for the entire
range β ∈ [0,1]. This implies a property for the semiflow Ft known as weak rational ergodicity [1,4] (see Corollary 3.3
below) and thus is of interest in its own right.

Theorem 2.6. Assume μ(τ > t) = �(t)t−β where β ∈ [0,1]. Suppose that (H) holds. Then

lim
t→∞ t−1m(t)UA,B(t) = Dβμ(A)μ(B),

where Dβ = {
(1 − β)
(1 + β)}−1 if β ∈ (0,1) and D0 = D1 = 1.

For the proof of Theorem 2.4, we will also require the following local limit theorem with error term which may also
be of interest in its own right. Let

qβ(t) = 1

2π

∫ ∞

−∞
eibt e−cβ |b|β db, cβ = i

∫ ∞

0
e−iσ σ−β dσ.
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Theorem 2.7 (LLT). Assume the setting of Theorem 2.4 with β ∈ (0,1). Let dn > 0 be an increasing sequence with
dn → ∞ such that nμ(τ > dn) = n�(dn)d

−β
n → 1, as n → ∞. Then for any h > 0 there exists en > 0 with limn→∞ en = 0

such that for all t > 0, n ≥ 1,∣∣∣∣μ(
y ∈ A ∩ F−nB : τn(y) ∈ [t, t + h]) − h

dn

qβ(t/dn)μ(A)μ(B)

∣∣∣∣ ≤ en

dn

.

Alternative hypotheses. In certain examples, such as those where F : Y → Y is modelled by a Young tower with ex-
ponential tails [44], hypothesis (H)(iii) is problematic. In such cases, it is necessary as in [13] to consider alternative
hypotheses.

We assume that for every (sufficiently large) p ∈ (1,∞), there exists a Banach space B containing constant functions,
with norm ‖‖B , and constants δ > 0, α0 ∈ (0,1) and C > 0 such that

(A)(i) B is compactly embedded in Lp .
(ii) ‖R̂(s)nv‖B ≤ C(|v|L1 + αn

0‖v‖B) for all s ∈ Hδ,L, v ∈ B, n ≥ 1.

It follows from these assumptions (see Lemma 5.1(d) below), that (after possibly shrinking δ) there is a continuous
family of simple eigenvalues λ(s) for R̂(s) : B → B, s ∈ H ∩ Bδ(0), with λ(0) = 1. Let ζ(s) ∈ B be the corresponding
family of eigenfunctions normalized so that

∫
Y

ζ(s) dμ = 1. We assume further that there exists β+ ∈ (β,1) such that

(A) (iii) | ∫
Y
(e−sτ − 1)(ζ(s) − 1) dμ| ≤ C|s|β+ for all s ∈H∩ Bδ(0).

Theorem 2.8. Suppose that hypothesis (H) is replaced by hypothesis (A). Then Theorems 2.4, 2.6 and 2.7 remain valid.
If in addition μ(τ > t) = ct−β + O(t−q) where c > 0, β ∈ ( 1

2 ,1), q > 1, then Theorem 2.3 remains valid.

3. Mixing for infinite measure semiflows

In this section, we obtain various mixing results for semiflows as consequences of the results in Section 2.
Let F : Y → Y and τ : Y → R

+ be as in Section 2. Define the suspension Y τ = {(y,u) ∈ Y × R : 0 ≤ u ≤ τ(y)}/ ∼
where (y, τ (y)) ∼ (Fy,0). The suspension semiflow Ft : Y τ → Y τ is given by Ft(y,u) = (y,u + t), computed modulo
identifications. The measure μτ = μ × Lebesgue is ergodic, Ft -invariant and σ -finite. Since τ is nonintegrable, μτ is an
infinite measure.

Throughout this section, we suppose that A1 = A × [a1, a2], B1 = B × [b1, b2] are measurable subsets of {(y,u) ∈
Y × R : 0 ≤ u ≤ τ(u)} (so 0 ≤ a1 < a2 ≤ ess infA τ , 0 ≤ b1 < b2 ≤ ess infB τ ), and that 1A ∈ B. Also, we continue to
suppose that μ(τ > t) = �(t)t−β for various ranges of β ∈ [0,1].

Corollary 3.1. Assume the setting of Theorem 2.3 (alternatively Theorem 2.8), so in particular β ∈ ( 1
2 ,1]. Then

limt→∞ m(t)μτ (A1 ∩ F−1
t B1) = dβμτ (A1)μ

τ (B1).

Proof. Recall that ess inf τ > 1. Let h ∈ (0,1) and note using (2.1) that

UA,B(t + h) − UA,B(t) = μ
(
y ∈ A : Fny ∈ B and τn(y) ∈ [t, t + h] for some n ≥ 0

)
= μ

(
y ∈ A : Ft+h(y,0) ∈ B × [0, h]).

After dividing rectangles into smaller subrectangles, we can suppose without loss that b2 − b1 < 1. Set h = b2 − b1.
Then

μτ
(
A1 ∩ F−1

t B1
) = μτ

{
(y,u) ∈ A × [a1, a2] : Ft(y,u) ∈ B × [b1, b2]

}
= μτ

{
(y,u) ∈ A × [a1, a2] : Ft+u−b1(y,0) ∈ B × [0, h]}

=
∫ a2

a1

μ
{
y ∈ A : Ft+u−b1(y,0) ∈ B × [0, h]}du

=
∫ a2

a1

(
UA,B(t + u − b1) − UA,B(t + u − b1 − h)

)
du. (3.1)
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Hence

m(t)μτ
(
A1 ∩ F−1

t B1
) =

∫ a2

a1

m(t)
(
UA,B(t + u − b1) − UA,B(t + u − b1 − h)

)
du

=
∫ a2

a1

m(t)

m(t + u − b1 − h)
χ(t + u − b1 − h)du,

where χ(t) = m(t)(UA,B(t + h) − UA,B(t)) is bounded by Theorem 2.3. Also m(t)/m(t + u − b1 − h) is bounded by
Potter’s bounds (see for instance [11]). Since m(t) is regularly varying, we have limt→∞ m(t)/m(t + u − b1 − h) = 1
for each u ∈ [0,1]. By Theorem 2.3, limt→∞ χ(t + u − b1 − h) = dβμ(A)μ(B)h = dβμ(A)μτ (B1) for each u ∈ [0,1].
Hence the result follows from the bounded convergence theorem. �

Remark 3.2. The result also holds for all sets of the form F−1
r A1 and F−1

s B1 for fixed r, s > 0. Indeed, by Corollary 3.1,
using that m(t) ∼ m(t + s − r),

m(t)μτ
(
F−1

r A1 ∩ F−1
t+sB1

) = m(t)μτ
(
A1 ∩ F−1

t+s−rB1
)

→ μτ (A1)μ
τ (A2) = μτ

(
F−1

r A1
)
μτ

(
F−1

s A2
)
.

Corollary 3.3 (Weak rational ergodicity). Assume the setting of Theorem 2.6 (alternatively Theorem 2.8), with β ∈
[0,1]. Then

lim
t→∞ t−1m(t)

∫ t

0
μτ

(
A1 ∩ F−1

x B1
)
dx = Dβμτ (A1)μ

τ (B1).

Proof. Continuing from (3.1) (with h = b2 − b1),

∫ t

0
μτ

(
A1 ∩ F−1

x B1
)
dx =

∫ a2

a1

∫ t

0

(
UA,B(x + u − b1) − UA,B(x + u − b1 − h)

)
dx du

=
∫ a2

a1

∫ t

0
UA,B(x + u − b1) dx du −

∫ a2

a1

∫ t−h

−h

UA,B(x + u − b1) dx du

=
∫ a2

a1

∫ t

t−h

UA,B(x + u − b1) dx du −
∫ a2

a1

∫ 0

−h

UA,B(x + u − b1) dx du = I1 + I2.

Now

t−1m(t)I1 = t−1m(t)UA,B(t)

∫ a2

a1

∫ 0

−h

UA,B(x + t + u − b1)

UA,B(t)
dx du.

By Theorem 2.6, UA,B(t) is regularly varying so the integrand UA,B(x + t +u−b1)/UA,B(t) is bounded for x, u bounded
and converges pointwise to 1 as t → ∞. Hence

lim
t→∞

∫ a2

a1

∫ 0

−h

UA,B(x + t + u − b1)

UA,B(t)
dx du = (a2 − a1)h = (a2 − a1)(b2 − b1).

By Theorem 2.6, t−1m(t)UA,B(t) = Dβμ(A)μ(B)(1+o(1)). Hence, limt→∞ t−1m(t)I1 = Dβμ(A)μ(B)(a2 −a1)(b2 −
b1) = μτ (A1)μ

τ (B1). A simpler argument shows that t−1m(t)I2 = o(1). �

Proposition 3.4. Let f : [0,∞) →R be bounded and integrable on compact sets, and let K ∈R. Suppose that β ∈ (0,1),
that �(t) is slowly varying, and that

(a) lim inft→∞ �(t)t1−βf (t) ≥ K ,
(b) limt→∞ �(t)t−β

∫ t

0 f (x)dx = β−1K .

Then there exists a set E ⊂ [0,∞) of density zero such that limt→∞,t /∈E �(t)t1−βf (t) = K .
In particular, lim inft→∞ �(t)t1−βf (t) = K .
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Proof. This is the continuous time analogue of [35, Proposition 8.2] (which is itself a version of [38, p. 65, Lemma 6.2]).
We list the main steps which are proved exactly as in [35].

Step 1. Without loss of generality, K = 0 and �(t)t1−β is increasing.
Step 2. Define the nested sequence of sets Eq = {t > 0 : �(t)t1−βf (t) > 1/q}, q = 1,2, . . . Then Eq has density zero

for each q , i.e. limt→∞ 1
t

∫ t

0 1Eq (x) dx = 0.

Step 3. By Step 2, we can choose 0 = i0 < i1 < i2 < · · · such that 1
t

∫ t

0 1Eq (x) dx < 1/q for t ≥ iq−1, q ≥ 2. Define
E = ⋃∞

q=1 Eq ∩ (iq−1, iq). Then E has density zero and limt→∞,t /∈E �(t)t1−βf (t) = 0. �

Corollary 3.5. Assume the setting of Theorem 2.4 (alternatively Theorem 2.8), with β ∈ (0,1). Then

(i) lim inft→∞ m(t)μτ (A1 ∩ F−1
t B1) = dβμτ (A1)μ

τ (B1), and
(ii) There exists a set E ⊂ [0,∞) of density zero such that limt→∞,t /∈E m(t)μτ (A1 ∩ F−1

t B1) = dβμτ (A1)μ
τ (B1).

Proof. We start from the conclusion of Theorem 2.4. Arguing as in the proof of Corollary 3.1, but with lim replaced by
lim inf and using Fatou’s lemma instead of the bounded convergence theorem, we obtain

lim inf
t→∞ �(t)t1−βμτ

(
A1 ∩ F−1

t B1
) ≥ dβμτ (A1)μ

τ (B1).

This is condition (a) in Proposition 3.4, and Corollary 3.3 is condition (b). Hence the result follows from Proposi-
tion 3.4. �

4. Main results used in the proof of Theorem 2.3

The first result needed in the proof of the strong renewal theorem, Theorem 2.3, is an inversion formula for the symmetric
measure

VA,B(I ) = 1

2

(
UA,B(I ) + UA,B(−I )

)
.

Here, U(−I ) = U({x : −x ∈ I }) (with U(−I ) = 0 if I ⊂ [0,∞]). We find it convenient to adapt the formulation in [20,
Section 4], but such an inversion formula goes back to [21] (see also [12, Chapter 10]).1

By (H) and (S)(i), T̂ (s) = (I − R̂(s))−1 is a bounded operator on B for all s ∈ H \ {0}. Let A,B ⊂ Y be measurable
with 1A ∈ B.

Proposition 4.1 (Analogue of [20, Inversion formula, Section 4]). Let g : R→R be a continuous compactly supported
function with Fourier transform ĝ(x) = ∫ ∞

−∞ eixbg(b) db satisfying ĝ(x) = O(x−2) as x → ∞. Then for all λ, t ∈ R,

∫ ∞

−∞
e−iλ(x−t)ĝ(x − t) dVA,B(x) =

∫ ∞

−∞
e−itbg(b + λ)Re

∫
B

T̂ (ib)1A dμdb.

The second result required in the proof of Theorem 2.3 comes directly from [20] and does not require any modification
in our set up. To state this result, for each a > 0 we let ĝa(0) = 1 and for x �= 0, define

ĝa(x) = 2(1 − cosax)

a2x2
.

Proposition 4.2 ([20, Lemma 8]). Let {μt , t > 0} be a family of measures such that μt(I ) < ∞ for every compact set I

and all t . Suppose that for some constant C,

lim
t→∞

∫ ∞

−∞
e−iλx ĝa(x) dμt (x) = C

∫ ∞

−∞
e−iλx ĝa(x) dx,

for all a > 0, λ ∈ R. Then μt(I ) → C|I | for every bounded interval I , where |I | denotes the length of I .

1The result does not require any regular variation assumptions on μ(τ > t), but we use the extra structure for simplicity.
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Next, note that ĝa is the Fourier transform of

ga(b) =
{

a−1(1 − |b|/a) |b| ≤ a,

0 |b| > a.

The final result required in the proof of Theorem 2.3 is as follows.

Proposition 4.3. For all a > 0 and λ ∈R,

lim
t→∞m(t)

∫ ∞

−∞
e−itbga(b + λ)Re

∫
B

T̂ (ib)1A dμdb = πdβga(λ)μ(A)μ(B).

Proof of Theorem 2.3. With the convention I + t = {x : x − t ∈ I }, let

μt(I ) = 2m(t)VA,B(I + t) = m(t)
(
UA,B(I + t) + UA,B(−I − t)

)
and note that for I = [0, h] with h > 0,

m(t)
(
UA,B(t + h) − UA,B(t)

) = μt(I ).

Now,

m(t)

∫ ∞

−∞
e−iλ(x−t)ĝa(x − t) dVA,B(x) = m(t)

∫ ∞

−∞
e−iλx ĝa(x) dVA,B(x + t)

= 1

2

∫ ∞

−∞
e−iλx ĝa(x) dμt (x).

Since ĝa satisfies the assumptions of Proposition 4.1,

∫ ∞

−∞
e−iλx ĝa(x) dμt (x) = 2m(t)

∫ ∞

−∞
e−itbga(b + λ)Re

∫
B

T̂ (ib)1A dμdb.

By Proposition 4.3 together with the Fourier inversion formula
∫ ∞
−∞ e−iλx ĝa(x) dx = 2πga(λ),

lim
t→∞

∫ ∞

−∞
e−iλx ĝa(x) dμt (x) = 2πdβga(λ)μ(A)μ(B) = dβ

∫ ∞

−∞
e−iλx ĝa(x) dxμ(A)μ(B).

Hence, we have shown that the hypothesis of Proposition 4.2 holds with C = dβμ(A)μ(B). It now follows from Propo-
sition 4.2 with I = [0, h] that

m(t)
(
UA,B(t + h) − UA,B(t)

) = μt

([0, h]) → dβμ(A)μ(B)h,

as t → ∞. �

The proof of Propositions 4.1 and 4.3 are given in Section 6.

5. Prerequisites from operator renewal theory

In this section, we establish some estimates for T̂ = (I − R̂)−1. The arguments closely follow [13, Section 4] (which was
restricted to the case �(t) = c + o(1) for some constant c > 0 and did not include the case β = 1).

The estimates are carried out under hypotheses (H) and (S)(i) in Section 5.1. The analogous results required under
hypotheses (A) and (S)(i) are obtained in Section 5.2.
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5.1. Estimates under hypotheses (H) and (S)(i)

Throughout this subsection, β ∈ (0,1] and L > 0 are fixed. We begin with γ ∈ (0, β), δ ∈ (0,L) and p > 1 as in (H).
During the subsection, the values of γ , δ and p change finitely many times; the changes in γ are arbitrarily small. Also
C > 0 is a constant whose value changes finitely many times.

For r ∈ [0,1], let T̂r (s) = (I − rR̂(s))−1. Define

�̃(t) =
{

�(t) β < 1,∫ t

1 �(s)s−1 ds β = 1,
cβ =

{
i
∫ ∞

0 e−iσ σ−β dσ β < 1,

1 β = 1.

Lemma 5.1.

(a) ‖R̂(s1) − R̂(s2)‖B→Lp ≤ C|s1 − s2|γ for all s1, s2 ∈H.
(b) There exists r0 < 1 such that ‖T̂r (ib)‖B ≤ C for all |b| ∈ [δ,L], r ∈ [r0,1].
(c) For all δ ≤ b < b + h < L,∥∥T̂

(
i(b + h)

) − T̂ (ib)
∥∥
B→Lp ≤ Chγ .

(d) There exists a continuous family λ(s), s ∈ H ∩ Bδ(0), of simple eigenvalues for R̂(s) : B → B with λ(0) = 1. In
addition, the corresponding family of spectral projections P(s) are bounded linear operators on B for all s ∈ H∩ Bδ(0)

and sups∈H∩Bδ(0) ‖P(s)‖B < ∞. Moreover,

∥∥P(s1) − P(s2)
∥∥
B→Lp ≤ C|s1 − s2|γ for all s1, s2 ∈ H∩ Bδ(0).

(e) Define the complementary projections Q(s) = I − P(s). Then

∥∥(
I − rR̂(ib)

)−1
Q(ib)

∥∥
B ≤ C for all |b| < δ, r ∈ [0,1].

Proof. (a) Recall that R̂(s)v = R(e−sτ v). Since R is a positive operator,∣∣(R̂(s1) − R̂(s2)
)
v
∣∣ ≤ R

(∣∣e−s1τ − e−s2τ
∣∣|v|) ≤ 2|s1 − s2|γ R

(
τγ |v|).

By (H)(iii), |(R̂(s1) − R̂(s2))v|p ≤ 2|s1 − s2|γ |R(τγ |v|)|p 	 |s1 − s2|γ ‖v‖B .
(b,c) Fix b > 0. It is immediate from hypothesis (S)(i) that ‖T̂ (ib)‖B < ∞. Using also part (a), it follows from

(H)(i,ii) and [29, Theorem 1] that there exists h0 > 0, r0 < 1 and C > 0 such that ‖T̂r (i(b + h))‖B ≤ C and ‖T̂ (i(b +
h)) − T̂ (ib)‖B→Lp ≤ C|h|γ for all |h| < h0, r ∈ (r0,1]. The desired estimates follow from compactness of [δ,L].

(d) This follows from (H)(i,ii) by [29, Corollary 1] exactly as in [13, Lemma 4.4] (with β − ε replaced by γ ).
(e) By (H)(i,ii) and [29, Corollary 2], for δ > 0 sufficiently small there exists ρ ∈ (0,1) such that ‖(rR(ib)Q(ib))n‖B ≤

‖(R(ib)Q(ib))n‖B ≤ Cρn for all |b| < δ, n ≥ 0. �

Let ζ(s) denote the corresponding family of eigenfunctions normalized so that
∫
Y

ζ(s) dμ = 1. We have ζ(0) ≡ 1 and
P(0)v = ∫

Y
v dμ for all v ∈ B. It is immediate that ζ(s) inherits the estimates obtained for P(s). In particular, there is a

constant C > 0 such that |ζ(s) − ζ(0)|p ≤ C|s|γ for all s ∈H∩ Bδ(0).
Following [23] (see [13, Equation (4.2)]),

λ(s) =
∫

Y

e−sτ dμ + χ(s) where χ(s) =
∫

Y

(
e−sτ − 1

)(
ζ(s) − ζ(0)

)
dμ. (5.1)

From now on, we fix δ ∈ (0,1) so that all conclusions of Lemma 5.1 hold.

Proposition 5.2. Write s = a + ib ∈H.

(a) 1 − ∫
Y

e−sτ dμ ∼ cβ �̃(1/|s|)sβ as s → 0.
(b) When β = 1, Re(1 − ∫

Y
e−ibτ dμ) ∼ π

2 �(1/|b|)|b| as b → 0.
(c) | ∫

Y
(e−i(b+h)τ − e−ibτ ) dμ| ≤ C�̃(1/h)hβ for 0 < h < b < δ.
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Proof. Part (a) is proved as in [36, Lemma 2.4] for β < 1. Suppose that β = 1 and let G(x) = μ(τ > x). Then 1 −∫
Y

e−sτ dμ = s
∫ ∞

0 e−sx(1 − G(x)) dx = sIC(s) − isIS(s), where

IC(s) =
∫ ∞

0
e−ax cosbx

(
1 − G(x)

)
dx, IS(s) =

∫ ∞

0
e−ax sinbx

(
1 − G(x)

)
dx.

By [35, Proposition 6.2], we have for a ≥ |b| that

IC(s) = �̃(1/a)
(
1 + o(1)

) + O
(|b|a−1�(1/a)

) = �̃
(
1/|s|)(1 + o(1)

) + O
(
�
(
1/|s|)) ∼ �̃

(
1/|s|).

Similarly, for a ≤ |b|, we have IC(s) = �̃(1/|b|)(1 + o(1)) + O(a|b|−1�(1/|b|)) ∼ �̃(1/|s|). Hence IC(s) ∼ �̃(1/|s|)
as s → 0. In the same way, it follows from [35, Proposition 6.2] that |IS(s)| 	 �(1/|s|). Part (a) for β = 1 follows
immediately from these estimates. Moreover, IS(ib) ∼ π

2 �(1/|b|) sgnb as b → 0 by the proof of [35, Lemma 6.8]. Since
Re(1 − ∫

Y
e−ibτ dμ) = bIS(ib), part (b) follows.

Finally, part (c) follows by the argument used in the proof of [22, Lemma 3.3.2]. �

Proposition 5.3.

(a) |χ(s)| ≤ C|s|β+γ for s ∈ H∩ Bδ(0).
(b) When β > 1

2 , |χ(i(b + h)) − χ(ib)| ≤ Cbβhγ for 0 < h < b < δ.

Proof. Choose ε > 0 arbitrarily small and r > 1 such that (β − ε)r < β with conjugate exponent r ′. Then τ (β−ε)r ∈ L1

and it follows from Hölder’s inequality that∣∣χ(s)
∣∣ ≤ 2|s|β−ε

∣∣τβ−ε
(
ζ(s) − 1

)∣∣
1 ≤ 2|s|β−ε

∣∣τβ−ε
∣∣
r

∣∣ζ(s) − 1
∣∣
r ′ 	 |s|β−ε+γ ,

yielding part (a). Here we used that |ζ(s) − 1|p = O(|s|γ ) for p as large as desired. Similarly,

∣∣χ(
i(b + h)

) − χ(ib)
∣∣ ≤ ∣∣(ei(b+h)τ − 1

)(
ζ
(
i(b + h)

) − ζ(ib)
)∣∣

1 + ∣∣(eihτ − 1
)(

ζ(ib) − 1
)∣∣

1

	 (b + h)β−εhγ + hβ−εbγ 	 bβhγ−ε .

(Note that hβ−εbγ = hγ−εhβ−γ bγ ≤ hγ−εbβ since γ < β and h < b.) This proves part (b). �

Corollary 5.4. Write s = a + ib ∈H.

(a) 1 − λ(s) ∼ cβ �̃(1/|s|)sβ as s → 0.
(b) When β = 1, Re(1 − λ(ib)) ∼ π

2 �(1/|b|)|b| as b → 0.
(c) When β > 1

2 , |λ(i(b + h)) − λ(ib)| ≤ C(�̃(1/h)hβ + bβhγ ), for 0 < h < b < δ.
(d) |1 − rλ(ib)|−1 ≤ C�̃(1/|b|)−1|b|−β for all |b| < δ, r ∈ [ 1

2 ,1].
(e) When β = 1, |Re(1 − rλ(ib))|−1 ≤ C�(1/|b|)�̃(1/|b|)−2|b|−1 for all |b| < δ, r ∈ [ 1

2 ,1].

Proof. Parts (a) and (b) are immediate from (5.1) and Propositions 5.2(a,b) and 5.3(a). Part (c) follows from (5.1) and
Propositions 5.2(c) and 5.3(b). By part (a),

∣∣1 − rλ(ib)
∣∣ ≥ ∣∣Im(

1 − rλ(ib)
)∣∣ ≥ 1

2

∣∣Imλ(ib)
∣∣ ∼ 1

2

∣∣Im(
iβcβ

)∣∣�̃(1/|b|)|b|β,

yielding part (d). Using also that Reλ(ib) ∈ [0,1] for |b| < δ, we compute for β = 1 that

∣∣Re
(
1 − rλ(ib)−1)∣∣ = Re

(
1 − rλ(ib)

)∣∣1 − rλ(ib)
∣∣−2

≤ Re
(
1 − λ(ib)

)∣∣r Im
(
λ(ib)

)∣∣−2 ≤ 4 Re
(
1 − λ(ib)

)∣∣r Im
(
λ(ib)

)∣∣−2
,

so part (e) follows from parts (a) and (b). �

Lemma 5.5. T̂ (s) = c−1
β �̃(1/|s|)−1s−β(P (0) + E(s)) for s ∈ H ∩ Bδ(0), where E(s) is a family of operators satisfying

lims→0 ‖E(s)‖B→L1 = 0.
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Proof. By Corollary 5.4(a), (1 − λ(s))−1 ∼ c−1
β �̃(1/|s|)−1s−β as s → 0. Also,

T̂ (s) = (
1 − λ(s)

)−1
P(s) + (

I − R̂(s)
)−1

Q(s) = (
1 − λ(s)

)−1(
P(0) + E(s)

)
,

where

E(s) = P(s) − P(0) + (
1 − λ(s)

)(
I − R̂(s)

)−1
Q(s). (5.2)

By (H), ‖(I − R̂(s))−1Q(s)‖B = O(1). By Lemma 5.1(d), ‖P(s) − P(0)‖B→L1 = O(|s|γ ). Hence ‖E(s)‖B→L1 	
|s|γ + |s|β−ε . �

Lemma 5.6. Let β = 1. Then Re T̂ (ib) = π
2 �(1/|b|)�̃(1/|b|)−2|b|−1(P (0) + E(b)) for b ∈ R, 0 < |b| < δ, where

limb→0 ‖E(b)‖B→L1 = 0.

Proof. By Corollary 5.4(a,b),

Re
((

1 − λ(ib)
)−1) = Re

(
1 − λ(ib)

)∣∣1 − λ(ib)
∣∣−2 ∼ π

2
�
(
1/|b|)�̃(1/|b|)−2|b|−1.

As in the proof of Lemma 5.5, Re T̂ (ib) = {Re((1 − λ(ib))−1)}(P (0) + E(b)) where

E(b) = Re
(
1 − λ(ib)

)
Re

{(
1 − λ(ib)

)−1(
P(ib) − P(0)

) + (
I − R(ib)

)−1
Q(ib)

}
,

and ∥∥E(b)
∥∥
B→L1 	 ∥∥P(ib) − P(0)

∥∥
B→L1 + ∣∣1 − λ(ib)

∣∣∥∥(
I − R(ib)

)−1
Q(ib)

∥∥
B→L1) 	 |b|1−ε,

completing the proof. �

Corollary 5.7. Let β ≤ 1, L > 0. There are constants r0 < 1 and C > 0 such that∥∥Re T̂r (ib)
∥∥
B→L1 ≤ Cψβ

(|b|) for 0 < |b| ≤ L, r0 ≤ r ≤ 1,

where

ψβ(x) =
{

�(1/x)−1x−β β < 1,

�(1/x)�̃(1/x)−2x−1 β = 1.

Proof. By Lemma 5.1(b), we can restrict to the range |b| < δ on which

T̂r (ib) = (
I − rR̂(ib)

)−1 = (
1 − rλ(ib)

)−1
P(ib) + (

I − rR̂(ib)
)−1

Q(ib).

The result follows from the estimates for P , (I − rR̂)−1Q and (1 − rλ)−1 obtained in Lemma 5.1(d,e) and Corol-
lary 5.4(d,e). �

Remark 5.8.

(a) Note that ψβ is integrable on [0,L] for all β ≤ 1. This is clear for β < 1 while �̃(1/x)−1 is an antiderivative for
ψ1. In particular, supr |Re T̂r (ib)1A|1 ≤ Cψβ(b)‖1A‖B which is integrable.

(b) By Karamata’s theorem on integration of regularly varying sequences [11], �̃ is slowly varying and �(x) = o(�̃(x))

as x → ∞ when β = 1. In particular, ψβ(b) 	 �̃(1/|b|)−1|b|−β for all β ≤ 1.

Lemma 5.9. Let β ∈ ( 1
2 ,1]. For 0 < h < b < δ,

∥∥T̂
(
i(b + h)

) − T̂ (ib)
∥∥
B→L1 ≤ C

{
�̃(1/b)−2b−2β �̃(1/h)hβ + b−βhγ

}
.
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Proof. Recall as in Lemma 5.5 that T̂ (ib) = A1(b) + A2(b), where

A1(b) = (
1 − λ(ib)

)−1
P(ib), A2(b) = (

I − R̂(ib)
)−1

Q(ib).

Using Lemma 5.1(d) and Corollary 5.4(a,c),∥∥A1(b + h) − A1(b)
∥∥
B→L1 	 ∣∣1 − λ

(
i(b + h)

)∣∣−1∥∥P
(
i(b + h)

) − P(ib)
∥∥
B→L1

+ ∣∣1 − λ(ib)
∣∣−1∣∣1 − λ

(
i(b + h)

)∣∣−1∣∣λ(
i(b + h)

) − λ(ib)
∣∣∥∥P(ib)

∥∥
B→L1

	 �̃(1/b)b−βhγ + �̃(1/b)−2b−2β
(
�̃(1/h)hβ + bβhγ

)
	 �̃(1/b)−2b−2β �̃(1/h)hβ + b−βhγ−ε .

An argument from [33, Proposition 3.8] shows that ‖A2(b + h) − A2(b)‖B→L1 	 hγ−ε , completing the proof. �

5.2. Estimates under hypotheses (A) and (S)(i)

Let ε ∈ (0, β). Since R : L1 → L1 is a contraction,∣∣(R̂(s1) − R̂(s2)
)
v
∣∣
1 ≤ ∣∣(e−s1τ − e−s2τ

)
v
∣∣
1 ≤ 2|s1 − s2|β−ε

∣∣τβ−εv
∣∣
1.

Choose r > 1 such that (β − ε)r < β with conjugate exponent r ′. By Hölder’s inequality and (A)(i), |τβ−εv|1 ≤
|τβ−ε |r |v|r ′ 	 ‖v‖B . Hence ‖R̂(s1) − R̂(s2)‖B→L1 	 |s1 − s2|β−ε for all s1, s2 ∈H.

Using [29] as before, we deduce that the conclusions of Lemma 5.1 hold with Lp replaced by L1 and γ replaced by
β − ε.

Proposition 5.10. The conclusions of Lemmas 5.5 and 5.6 and Corollary 5.7 are unchanged under hypotheses (A) and
(S)(i).

Proof. It is immediate from hypothesis (A)(iii) that |χ(s)| 	 |s|β+ where β+ > β , and hence the proofs are unchanged. �

Lemma 5.9 becomes:

Lemma 5.11. ‖T̂ (i(b + h)) − T̂ (ib)‖B→L1 ≤ Cb−2βhβ−ε for all 0 < h < b < δ.

Proof. Since ‖ζ(s)‖B is bounded, it follows again from Hölder’s inequality that∣∣χ(
i(b + h)

) − χ(ib)
∣∣ ≤ ∣∣(ei(b+h)τ − 1

)(
ζ
(
i(b + h)

) − ζ(ib)
)∣∣

1 + ∣∣(eihτ − 1
)(

ζ(ib) − 1
)∣∣

1

≤ 2
∣∣ζ (

i(b + h)
) − ζ(ib)

∣∣
1 + 2hβ−ε

∣∣τβ−ε
∣∣
r

∣∣(ζ(ib) − 1
)∣∣

r ′ 	 hβ−ε .

Hence by (5.1) and Proposition 5.2(c), |λ(i(b + h)) − λ(ib)| 	 hβ−ε . Now proceed as in the proof of Lemma 5.9. �

The presence of the ε in Lemma 5.11 necessitates some alterations to the strategy in [20]. As in [13], we make use of
the following refinement of Lemma 5.5.

Lemma 5.12. Assume that μ(τ > t) = ct−β + O(t−q) where c > 0, β ∈ ( 1
2 ,1), q > 1. Then cT̂ (ib) = c−1

β b−βP (0) +
Ẽ(b) for b ∈ [0, δ), where ‖Ẽ(b)‖B→L1 ≤ Cb−(2β−β+).

Proof. A calculation using only the expression for μ(τ > t) shows that 1 − ∫
Y

e−sτ dμ = ccβbβ + O(b) (see [13, Eq.
(4.4)]). By (5.1) and the estimate |χ(s)| 	 |s|β+ where β+ ∈ (β,1), we obtain 1−λ(ib) = ccβbβ(1+O(bβ+−β)). Hence

c
(
1 − λ(ib)

)−1 = c−1
β b−β

(
1 + O

(
b−(2β−β+)

))
.

By (5.2), cT̂ (ib) = c(1 − λ(ib))−1P(0) + c(1 − λ(ib))−1E(ib) = c−1
β b−βP (0) + cẼ(b) where Ẽ(b) = (1 − λ(ib))−1 ×

E(ib) + O(b−(2β−β+)) and

E(ib) = P(ib) − P(0) + (
1 − λ(ib)

)(
I − R̂(ib)

)−1
Q(ib) = O

(
bβ−ε

)
.
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Hence Ẽ(b) 	 b−ε + b−(2β−β+). Recall that 2β − β+ > 2β − 1 > 0, so we can choose ε ∈ (0,2β − β+) completing the
proof. �

6. Completion of the proof of Theorem 2.3

In this section, we give the proof of Propositions 4.1 and 4.3, thereby completing the proof of Theorem 2.3. In Sections 6.1
and 6.2, we assume hypotheses (H) and (S)(i). In Section 6.3, we show that the results remain true under hypotheses (A)
and (S)(i).

6.1. Proof of Proposition 4.1

Fix β ≤ 1. Throughout, we write U and V instead of UA,B and VA,B . Following [12, Chapter 10] (see also [20, Section 4]),
we define for r ∈ (0,1),

Ur(I ) =
∞∑

n=0

rnμ
(
y ∈ A ∩ F−nB : τn(y) ∈ I

)
,

Vr(I ) = 1

2

(
Ur(I ) + Ur(−I )

)
.

For n ≥ 0, the Fourier transform of the distribution Gn(x) = μ(τn(y) ≤ x, y ∈ A ∩ F−nB) is given by
∫
Y

1A1B ◦
Fneibτn dμ = ∫

B
R̂(−ib)n1A dμ. Hence∫ ∞

−∞
eibx dVr(x) = Re

∫ ∞

0
eibx dUr(x)

=
∞∑

n=0

rn Re
∫

B

R̂(ib)n1A dμ = Re
∫

B

T̂r (ib)1A dμ,

where T̂r (s) = (I − rR̂(s))−1.
Let ĝ and g be as in the statement of Proposition 4.1. Note that dVr is a finite measure and g is compactly supported,

so eibxg(b) lies in L1(dVr × db). Hence it follows from Fubini’s theorem that for r ∈ (0,1),∫ ∞

−∞
ĝ(x) dVr(x) =

∫ ∞

−∞

{∫ ∞

−∞
eibxg(b) db

}
dVr(x)

=
∫ ∞

−∞
g(b)

{∫ ∞

−∞
eibx dVr(x)

}
db =

∫ ∞

−∞
g(b)Re

∫
B

T̂r (ib)1A dμdb.

Replacing g(b) by g1(b) = e−ibt g(b + λ) and ĝ(x) by ĝ1(x) = ∫ ∞
−∞ eibxg1(b) db = e−iλ(x−t)ĝ(x − t), we obtain

∫ ∞

−∞
e−iλ(x−t)ĝ(x − t) dVr(x) =

∫ ∞

−∞
e−ibt g(b + λ)Re

∫
B

T̂r (ib)1A dμdb. (6.1)

It remains to justify passing to the limit r → 1− on both sides of (6.1).
First, we consider the left-hand side of (6.1). Since τ ≥ 1, we have U(x) = U([0, x]) ≤ ∑∞

n=0 μ(τn ≤ x) ≤ x + 1 for
all x. Integrating by parts,∫ ∞

1
x−2 dU(x) = −U(1) + 2

∫ ∞

1
U(x)x−3 dx < ∞.

Hence
∫
|x|≥1 x−2 dV (x) < ∞. Since

∫ 1
−1 |ĝ(x − t)|dV (x) < ∞ and ĝ(x − t) = O(x−2) for each fixed t , it follows that

f (x) = e−iλ(x−t)ĝ(x − t) is integrable with respect to dV (x). But Vr(I ) ↗ V (I) as r → 1− for every measurable I , so
limr→1−

∫ ∞
−∞ f (x)dVr(x) = ∫ ∞

−∞ f (x)dV (x) which is the required result for the left-hand side.
Finally, we consider the right-hand side of (6.1). Choose L > 0 such that suppg ∈ [−L,L]. By Remark 5.8(a),

|Re T̂r (ib)1A|1 	 ψβ(b)‖1A‖B for |b| ≤ L + |λ|, where ψβ is integrable. Hence the desired limit as r → 1− follows
from the dominated convergence theorem.
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6.2. Proof of Proposition 4.3

Fix β ∈ ( 1
2 ,1]. We follow the proof of [20, Theorem 1] (an adaptation of the argument in [22]). Let W(b) =

Re
∫
B

T̂ (ib)1A dμ.

Fix ω > 1 and write
∫ ∞
−∞ e−itbga(b + λ)Re

∫
B

T̂ (ib)1A dμdb = I1(t,ω) + I2(t,ω) where

I1(t,ω) =
∫ ω/t

−ω/t

e−itbga(b + λ)W(b)db, I2(t,ω) =
∫

|b|>ω/t

e−itbga(b + λ)W(b)db.

Proposition 4.3 follows immediately from the estimates for I1(t,ω) and I2(t,ω) below.

Lemma 6.1. limω→∞ limt→∞ m(t)I1(t,ω) = πdβga(λ)μ(A)μ(B).

Proof. It follows from the definition of ga that |ga(b1) − ga(b2)| ≤ a−2|b1 − b2|. Hence∣∣∣∣I1(t,ω) − ga(λ)

∫ ω/t

−ω/t

e−itbW(b)db

∣∣∣∣ ≤
∫ ω/t

−ω/t

∣∣ga(b + λ) − ga(λ)
∣∣∣∣W(b)

∣∣db

≤ 2a−2ωt−1
∫ ω/t

0

∣∣W(b)
∣∣db.

By Remark 5.8(a),
∫ ω/t

0 |W(b)|db 	 ‖1A‖ for t > ω/δ. Hence

lim
t→∞m(t)I1(t,ω) = 2ga(λ) lim

t→∞m(t)

∫ ω/t

0
W(b) cos tb db.

For β < 1, define ξ(b) = μ(A)μ(B) + ∫
B

E(ib)1A dμ where E is as in Lemma 5.5. In particular, |ξ(b)| ≤ |1A|1 +
|E(ib)1A|1 	 ‖1A‖ and |ξ(b) − μ(A)μ(B)| ≤ ‖E(ib)‖B→L1‖1A‖ → 0 as b → 0. Hence

m(t)

∫ ω/t

0
W(b) cos tb db = �(t)t1−β Re

{
c−1
β

∫ ω/t

0
�(1/b)−1b−βξ(b) cos tb db

}

= Re

{
c−1
β

∫ ω

0

[
�(t)/�(t/b)

]
b−βξ(b/t) cosb db

}
.

By the dominated convergence theorem,

lim
t→∞m(t)

∫ ω/t

0
W(b) cos tb db = (

Re c−1
β

)∫ ω

0
b−β cosb dbμ(A)μ(B),

and the result for β < 1 follows.
Now suppose that β = 1 and recall that ψ1(b) = �(1/b)�̃(1/b)−2b−1. By Lemma 5.6,

m(t)

∫ ω/t

0
W(b) cos tb db = �̃(t)

π

2

∫ ω/t

0
ψ1(b)ξ(b) cos tb db,

where ξ(b) has the same properties as before. Now

�̃(t)

∫ ω/t

0
ψ1(b)ξ(b) db = �̃(t)

∫ ω/t

0
ψ1(b)

(
μ(A)μ(B) + o(1)

)
db

= �̃(t)�̃(t/ω)−1(μ(A)μ(B) + o(1)
) → μ(A)μ(B).

Next,

�̃(t)

∫ ω/t

0
ψ1(b)ξ(b)(cos tb − 1) db =

∫ ω

0

�̃(t)

�̃(t/σ )

�(t/σ )

�̃(t/σ )
ξ(σ/t)

cosσ − 1

σ
dσ.
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By Remark 5.8(b), �̃ is slowly varying and �(x) = o(�̃(x)) as x → ∞. By Potter’s bounds, the integrand is dominated by
σ 1−ε for any ε > 0, so the integrand converges to zero pointwise and �̃(t)

∫ ω/t

0 ψ1(b)ξ(b)(cos tb − 1) db → 0 as t → ∞.

Hence limt→∞ m(t)
∫ ω/t

0 W(b) cos tb db = π
2 μ(A)μ(B) yielding the result for β = 1. �

Lemma 6.2. Let β ′ ∈ ( 1
2 , β). Then lim supt→∞ m(t)I2(t,ω) = O(ω−(2β ′−1)).

Proof. It follows from evenness of ga and W(b), together with the fact that suppga = [−a, a], that

I2(t,ω) =
∫

b>ω/t

[
e−itbga(b + λ) + eitbga(b − λ)

]
W(b)db =

∫ a+|λ|

ω/t

h(b)W(b)db,

where h(b) = e−itbga(b + λ) + eitbga(b − λ). Continuing as on [20, p. 278] down as far as [20, Equation (5.14)], we
obtain m(t)|I2(t,ω)| ≤ a−1J1(t,ω) + πa−2J2(t,ω) + a−1J3(t,ω), where

J1(t,ω) = m(t)

∫ ω/t

(ω−π)/t

∣∣W(b + π/t)
∣∣db, J2(t,ω) = m(t)t−1

∫ a+|λ|

ω/t

∣∣W(b)
∣∣db,

J3(t,ω) = m(t)

∫ a+|λ|

ω/t

∣∣W(b + π/t) − W(b)
∣∣db.

By Remark 5.8(a), W is integrable on [0, a + |λ|] so J2(t,ω) 	 �̃(t)t−β → 0 as t → ∞. By Lemma 5.5, for β < 1,

J1(t,ω) 	 �(t)t1−β

∫ (ω+π)/t

ω/t

�(1/b)−1b−β db =
∫ ω+π

ω

(
�(t)/�(t/σ )

)
σ−β dσ 	 ω−(β−ε),

for any ε > 0 by Potter’s bounds. By Lemma 5.6 and Remark 5.8(b), for β = 1,

J1(t,ω) 	 �̃(t)

∫ (ω+π)/t

ω/t

ψ1(b) db = �̃(t)
{
�̃
(
t/(ω + π)

)−1 − �̃(t/ω)
} → 0 as t → ∞.

By Lemma 5.9 with h = π/t ,

J3(t,ω) 	 �̃(t)2t1−2β

∫ ∞

ω/t

�̃(1/b)−2b−2β db + t1−β+ε−γ

∫ a+|λ|

0
b−β db = J3,1 + J3,2.

By Potter’s bounds,

J3,1 =
∫ ∞

ω

[
�̃(t)/�̃(t/σ )

]2
σ−2β dσ 	

∫ ∞

ω

σ−2β ′
dσ 	 ω−(2β ′−1).

Finally, since we are in the case β > 1
2 , we can choose γ ∈ (1 − β,β) in hypothesis (H). Hence J3,2 	 t1−β+ε−γ = o(1)

as t → ∞ for ε > 0 sufficiently small. �

6.3. Modified argument under hypotheses (A) and (S)(i)

Assume hypotheses (A) and (S)(i) and that μ(τ > t) = ct−β +O(t−q) where c > 0, β ∈ ( 1
2 ,1), q > 1. Recall that β+ > β .

First, we note by Proposition 5.10 that Corollary 5.7 is unchanged. Hence the proof of Proposition 4.1 is unchanged.
For Proposition 4.3, we adopt a different strategy from before. Instead of considering limω→∞ lim supt→∞ Ir (t,ω) for

r = 1,2, we consider limt→∞ Ir (t, t
κ ) for a suitable choice of κ > 0.

Lemma 6.3. limt→∞ m(t)I1(t, t
κ ) = πdβga(λ)μ(A)μ(B) for all κ > 0.

Proof. Following the proof of Lemma 6.1 and using Lemma 5.5 and Proposition 5.10,

∣∣∣∣m(t)I1(t,ω) − 2m(t)ga(λ)

∫ ω/t

0
W(b) cos tb db

∣∣∣∣ 	 ωt−β

∫ ω/t

0
b−β db 	 ω2−βt−1.
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By Lemma 5.12,

m(t)

∫ ω/t

0
W(b) cos tb db = t1−β

∫ ω/t

0
(Re c−1

β b−βμ(A)μ(B) + O
(
b−(2β−β+)

)
cos tb db

= Re c−1
β

∫ ω

0
b−β cosb dbμ(A)μ(B) + O

(
t−(β+−β)ω1−2β+β+)

.

Finally, a calculation (see for example [35, Proposition 9.5]) shows that
∫ ω

0 b−β cosb db = 
(1−β) sin(βπ/2)+O(ω−β).
Hence the result follows with ω = tκ for any κ > 0. �

Lemma 6.4. limt→∞ m(t)I2(t, t
κ ) = 0 for all κ > 0 sufficiently large.

Proof. We use the same decomposition m(t)|I2(t,ω)| ≤ a−1J1(t,ω) + πa−2J2(t,ω) + a−1J3(t,ω) as in the proof of
Lemma 6.2. By Proposition 5.10, we still have J1(t,ω) 	 ω−(β−ε) and J2(t,ω) 	 t−β . By Lemma 5.11 with h = π/t ,

J3(t,ω) 	 t1−βt−(β−ε)

∫ ∞

ω/t

b−2β db 	 tεω−(2β−1),

for any choice of ε > 0. Now take ω = tκ with ε < κ(2β − 1). �

7. Proof of the local limit theorem with error term

In this section, we prove Theorem 2.7. The proof combines results from Section 5 with arguments from [39]. (A related
argument [3, Theorem 6.3] based on [12] gives a similar conclusion but without the error term.)

For ease of exposition, we assume hypotheses (H) and (S)(ii) throughout. However, Lemma 5.9 is not required in this
section, so we can just as well use hypothesis (A) instead of hypothesis (H) by Proposition 5.10. Recall that qβ(t) =

1
2π

∫ ∞
−∞ eibt e−cβ |b|β db where cβ = i

∫ ∞
0 e−iσ σ−β dσ .

In Section 4, we made use of the family of kernels ga(b) = a−1g(b/a) with Fourier transforms ĝa(x) = ĝ(ax), where

g(b) =
{

1 − |b| |b| ≤ 1,

0 |b| > 1
and ĝ(x) = 2(1 − cosx)

x2
.

Since the current section closely follows [39] which uses slightly different conventions, we now use ka(b) = g(ab) with
transforms k̂a(x) = 1

2π
a−1ĝ(b/a). (In [39], k̂a is called Ka .)

Let

μn(I) = μ
(
y ∈ A ∩ F−nB : τn(y) ∈ I

)
,

and define

Vn(t, h, a) =
∫ ∞

−∞
k̂a

(
t − t ′

)
μn

([
dnt

′, dn

(
t ′ + h

)])
dt ′.

Lemma 7.1. Let L > 0. Then

Vn(t, h, a) = h
{
qβ(t)μ(A)μ(B) + e(n,h, a, t)

}
for a ≥ (Ldn)

−1,

where e(n,h, a, t) → 0 as n → ∞, h → 0 and a → 0, uniformly in t ∈ R.

Proof. In fact, we show that∣∣Vn(t, h, a) − hqβ(t)μ(A)μ(B)
∣∣ ≤ const.h

{
e1(n) + e2(h) + e3(a)

}
where limn→∞ e1(n) = limh→0 e2(h) = lima→0 e3(a) = 0.

As in Section 5, we write R̂(ib) = λ(ib)P (ib) + Q̃(b) for |b| ≤ δ, where Q̃(b) = R(ib)Q(ib). Then

R̂(ib)n = λ(ib)nP (0) + λ(ib)n
(
P(ib) − P(0)

) + Q̃(b)n. (7.1)
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Moreover, there exist constants C > 0, γ > 1 − β , α1 ∈ (0,1), where∥∥P(ib) − P(0)
∥∥
B→L1 ≤ C|b|γ ,

∥∥Q̃(b)n
∥∥
B ≤ Cαn

1 , for all |b| ≤ δ, n ≥ 1. (7.2)

Also, we can choose C > 0, α1 ∈ (0,1) so that∥∥R̂(ib)n
∥∥
B ≤ Cαn

1 for all b ∈ [δ,L], n ≥ 1. (7.3)

(Such an estimate for fixed b > 0 holds by (S)(ii). The uniform estimate follows from [29, Corollary 2, part 2].)
By Corollary 5.4(a), 1 − λ(ib) ∼ cβ�(1/|b|)bβ . Hence

λ(ib) ∼ e−cβ�(1/|b|)|b|β as b → 0, lim
n→∞λ

(
id−1

n b
)n = e−cβ |b|β . (7.4)

Let β ′ ∈ (0, β). By (7.4) and Potter’s bounds, for each fixed n, there exists C1(n),C2(n) > 0 such that |λ(id−1
n b)|n ≤

C1(n)e−C2(n)|b|β′
for all |b| ≤ δdn. Also, there exists n0 ≥ 1 such that |λ(id−1

n b)|n ≤ 2e−cβ |b|β for all |b| ≤ δdn, n ≥ n0.
Hence there exists C1,C2 > 0 such that

∣∣λ(
id−1

n b
)∣∣n ≤ C1e

−C2|b|β′
for all |b| ≤ δdn, n ≥ 1. (7.5)

Now k̂a(t) = 1
2π

∫
R

e−ibt ka(b) db and hence

Vn(t, h, a) = 1

2π

∫ ∞

−∞

∫ ∞

−∞
e−ib(t−t ′)ka(b) db

∫
A∩F−nB

1{τn∈[dnt ′,dn(t ′+h)]} dμdt ′

= 1

2π

∫
|b|≤a−1

e−ibt ka(b)

∫
A∩F−nB

∫ d−1
n τn

d−1
n τn−h

eibt ′ dt ′ dμdb

= 1

2π

∫
|b|≤a−1

e−itbka(b)
(
1 − e−ihb)(ib)−1

∫
A∩F−nB

eid−1
n bτn dμdb

= h

2π

∫
|b|≤a−1

e−itbG(b,h, a)

∫
B

R̂
(
id−1

n b
)n1A dμdb,

where G(b,h, a) = ka(b)(1 − e−ihb)(ihb)−1.
Note that |G(b,h, a)| ≤ 1. Using (7.3) and that a ≥ (Ldn)

−1,∣∣∣∣
∫

δdn≤|b|≤a−1
e−itbG(b,h, a)

∫
B

R̂
(
id−1

n b
)n1A dμdb

∣∣∣∣ ≤ ‖1A‖B
∫

δdn≤|b|≤Ldn

∥∥R̂
(
id−1

n b
)n∥∥

B db

= ‖1A‖B dn

∫
δ≤|b|≤L

∥∥R̂(ib)n
∥∥
B db ≤ C‖1A‖B dnα

n
1 .

Hence this term can be incorporated into e1(n).
It remains to analyse

h

2π

∫
|b|≤δdn

e−itbG(b,h, a)

∫
B

R̂
(
id−1

n b
)n1A dμdb = h

2π
(I1 + I2 + I3),

where by (7.1),

I1 =
∫

|b|≤δdn

e−itbG(b,h, a)

∫
B

λ
(
id−1

n b
)n

P (0)1A dμdb,

I2 =
∫

|b|≤δdn

e−itbG(b,h, a)

∫
B

λ
(
id−1

n b
)n(

P
(
id−1

n b
) − P(0)

)
1A dμdb,

I3 =
∫

|b|≤δdn

e−itbG(b,h, a)

∫
B

Q̃
(
d−1
n b

)n
1A dμdb.
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By (7.2) and (7.5),

|I2| ≤
∫

|b|≤δdn

C1e
−C2|b|β′

C
∣∣d−1

n b
∣∣γ ‖1A‖B db ≤ CC1‖1A‖B d

−γ
n

∫ ∞

−∞
|b|γ e−C2|b|β′

db 	 d
−γ
n ,

and

|I3| ≤ dn

∫
|b|≤δ

Cαn
1‖1A‖B db 	 dnα

n
1 .

Again, these terms can be incorporated into e1(n).
This leaves the term I1 = I ′

1μ(A)μ(B) where I ′
1 = ∫

|b|≤δdn
e−itbG(b,h, a)λ(id−1

n b)n db. Write I ′
1 = J1 + J2 + J3

where

J1 =
∫

|b|≤δdn

e−itbka(b)
{(

1 − e−ihb)(ihb)−1 − 1
}
λ
(
id−1

n b
)n

db,

J2 =
∫

|b|≤δdn

e−itb
(
ka(b) − 1

)
λ
(
id−1

n b
)n

db,

J3 =
∫

|b|≤δdn

e−itbλ
(
id−1

n b
)n

db.

Since |(1 − e−ihb)(ihb)−1 − 1| ≤ 1
2h|b| it follows from (7.5) that

|J1| ≤ h

∫ ∞

−∞
C1e

−C2|b|β′ |b|db 	 h.

Also,

|J2| ≤
∫ ∞

−∞
∣∣ka(b) − 1

∣∣C1e
−C2|b|β′

db,

which converges to zero by the dominated convergence theorem as a → 0. These are the sole contributions to e2 and e3
respectively.

Finally,

∣∣J3 − 2πqβ(t)
∣∣ ≤

∫
|b|≤δdn

∣∣λ(
id−1

n b
)n − e−cβ |b|β ∣∣db +

∫
|b|≥δdn

e−cβ |b|β db,

which converges to zero by (7.4), (7.5) and the dominated convergence theorem as n → ∞. �

Lemma 7.2. Let ε > 0 and L > 0. There exists n0 ≥ 1 and h0 > 0 such that

h
(
qβ(t)μ(A)μ(B) − ε

) ≤ μn

([
dnt, dn(t + h)

]) ≤ h
(
qβ(t)μ(A)μ(B) + ε

)
,

for all n ≥ n0, h ∈ [(Ldn)
−1, h0], t ∈ R.

Proof. Let q̃β = qβμ(A)μ(B). Since qβ is the Fourier transform of an L1 function, q̃β is uniformly continuous and
bounded. Let q∞ = |q̃β |∞ and choose h1 ∈ (0,1) such that |q̃β(t) − q̃β(t ′)| ≤ 1

4ε whenever |t − t ′| ≤ h1.

For ε1 > 0, set ε2 = ∫
|x|>1/ε1

k̂1(x) dx. We choose ε1 ∈ (0, 1
6 ) sufficiently small that

(
q∞ + 2ε1q∞ + 1

2
ε

)
(1 − ε2)

−1 − q∞ ≤ ε, 2ε1q∞ + ε2(q∞ + ε) ≤ 1

2
ε. (7.6)

By Lemma 7.1, there exists n0 ≥ 1 and h0 ∈ (0, h1) such that for all n ≥ n0, h ∈ [(Ldn)
−1, h0], t ∈R,

Vn

(
t − ε1h,h(1 + 2ε1), ε

2
1h

) ≤ h(1 + 2ε1)q̃β(t − ε1h) + 1

6
εh

≤ h(1 + 2ε1)

(
q̃β(t) + 1

4
ε

)
+ 1

6
εh ≤ h

(
q̃β(t) + 2ε1q∞ + 1

2
ε

)
, (7.7)
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where we used the constraint ε1 ≤ 1
6 . Also, we can ensure that

Vn

(
t + ε1h,h(1 − 2ε1), ε

2
1h

) ≥ h(1 − 2ε1)q̃β(t + ε1h) − 1

4
εh

≥ h(1 − 2ε1)

(
q̃β(t) − 1

4
ε

)
− 1

4
εh ≥ h

(
q̃β(t) − 2ε1q∞ − 1

2
ε

)
. (7.8)

Now, for |t ′| ≤ ε1h,

μn

([
dn

(
t + ε1h − t ′

)
, dn

(
t − ε1h − t ′ + h

)]) ≤ μn

([
dnt, dn(t + h)

])
≤ μn

([
dn

(
t − ε1h − t ′

)
, dn

(
t + ε1h − t ′ + h

)])
.

Also
∫ ∞
−∞ k̂1 dx = 1, so

1 − ε2 =
∫

|x|≤1/ε1

k̂1(x) dx = ε2
1h

∫
|x|≤1/ε1

k̂ε2
1h

(
ε2

1hx
)
dx =

∫
|x|≤ε1h

k̂ε2
1h(x) dx.

Hence

Vn

(
t − ε1h,h(1 + 2ε1), ε

2
1h

)
=

∫ ∞

−∞
k̂ε2

1h

(
t ′
)
μn

([
dn

(
t − ε1h − t ′

)
, dn

(
t + ε1h − t ′ + h

)])
dt ′

≥
∫

|t ′|≤ε1h

k̂ε2
1h

(
t ′
)
μn

([
dn

(
t − ε1h − t ′

)
, dn

(
t + ε1h − t ′ + h

)])
dt ′

≥
∫

|t ′|≤ε1h

k̂ε2
1h

(
t ′
)
μn

([
dnt, dn(t + h)

])
dt ′ = (1 − ε2)μn

([
dnt, dn(t + h)

])
.

By (7.6) and (7.7),

μn

([
dnt, dn(t + h)

]) ≤ (1 − ε2)
−1Vn

(
t − ε1h,h(1 + 2ε1), ε

2
1h

)
≤ h

(
q̃β(t) + 2ε1q∞ + 1

2
ε

)
(1 − ε2)

−1 ≤ h
(
q̃β(t) + ε

)
.

Arguing similarly, and exploiting the last estimate for μn([dnt, dn(t + h)]),

Vn

(
t + ε1h,h(1 − 2ε1), ε

2
1h

)
≤

∫
|t ′|≤ε1h

k̂ε2
1h

(
t ′
)
μn

([
dn

(
t + ε1h − t ′

)
, dn

(
t − ε1h − t ′ + h

)])
dt ′

+
∫

|t ′|≥ε1h

k̂ε2
1h

(
t ′
)
h(q∞ + ε) dt ′

≤ μn

([
dnt, dn(t + h)

]) + ε2h(q∞ + ε).

By (7.6) and (7.8),

μn

([
dnt, dn(t + h)

]) ≥ Vn

(
t + ε1h,h(1 − 2ε1), ε

2
1h

) − ε2h(q∞ + ε)

≥ h(

(
q̃β(t) − 2ε1q∞ − 1

2
ε − ε2(q∞ + ε)

)
≥ h

(
q̃β(t) − ε

)
.

This completes the proof. �

Proof of Theorem 2.7. After a change of variables, Lemma 7.2 reads as follows:
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Let ε > 0 and L > 0. There exists n0 ≥ 1 and h0 > 0 such that

sup
t∈R

dn

∣∣∣∣μn

([t, t + h]) − h

dn

qβ

(
d−1
n t

)
μ(A)μ(B)

∣∣∣∣ ≤ hε, (7.9)

for all n ≥ n0, h ∈ [L−1, dnh0].
Fix h > 0 and define en = supt∈R dn|μn([t, t + h]) − h

dn
qβ(d−1

n t)μ(A)μ(B)|. We must show that limn→∞ en = 0.
Let L = 1/h. By (7.9), for any ε > 0 there exists n0 ≥ 1, h0 > 0, such that en ≤ hε for all n ≥ n0 subject to the

constraint dnh0 ≥ h. Since dn → ∞, there exists n1 ≥ n0 such that dnh0 ≥ h for all n ≥ n1. Hence en ≤ hε for all n ≥ n1
as required. �

8. Proofs of Theorems 2.4 and 2.6

In this section, we prove Theorem 2.4 by establishing separately an upper bound (Corollary 8.3) and a lower bound
(Corollary 8.4). In the process of obtaining the upper bound, we prove Theorem 2.6.

For ease of exposition, we assume hypothesis (H) throughout. Again, Lemma 5.9 is not required in this section, so we
can just as well use hypothesis (A) by Proposition 5.10.

8.1. Upper bound for lim inf

In this subsection, we only require hypothesis (H) with s ∈ R
+ in (H)(ii). A simplified version of the argument used in

the proof of Lemma 5.5 can be used to obtain

Proposition 8.1. Assume the setting of Theorem 2.6 with β ∈ [0,1]. For σ > 0,

T̂ (σ ) = Dβ
′�̃(1/σ)−1σ−β

(
P(0) + E(σ)

)
,

where Dβ
′ = 
(1 − β)−1 for β ∈ (0,1) and D0

′ = D1
′ = 1, and E(σ) is a family of operators satisfying

limσ→0 ‖E(σ)‖B→L1 = 0.

We can now complete

Proof of Theorem 2.6. For n ≥ 0, the real Laplace transform of the distribution Gn(x) = μ(τn(y) ≤ x, y ∈ A ∩ F−nB)

is given by
∫
Y

1A1B ◦ Fne−στn dμ = ∫
B

R̂(e−σ )n1A dμ. Hence,∫ ∞

−∞
e−σ t dUA,B(t) =

∞∑
n=0

∫
B

R̂
(
e−σ

)n1A dμ =
∫

B

T̂
(
e−σ

)
1A dμ.

The conclusion follows from Proposition 8.1 by the continuous time version of Karamata’s Tauberian Theorem [11,
Theorem 1.7.1]. �

Lemma 8.2. Assume the setting of Theorem 2.6 with β ∈ (0,1]. Let z : [0,∞) → [0,∞) be integrable. Then

lim inf
t→∞ m(t)

∫ t

0
z(t − y)dUA,B(y) ≤ dβμ(A)μ(B)

∫ ∞

0
z dx.

Proof. This is proved in the same way as [20, Lemma 9] using Theorem 2.6. �

Corollary 8.3. Assume the setting of Theorem 2.6 with β ∈ (0,1]. Then for any h > 0,

lim inf
t→∞ m(t)

(
UA,B(t + h) − UA,B(t)

) ≤ dβμ(A)μ(B)h.

Proof. Let z = 1[0,h]. By Lemma 8.2,

lim inf
t→∞ m(t)

(
UA,B(t + h) − UA,B(t)

) = lim inf
t→∞ m(t + h)

∫ t+h

0
z(t + h − y)dUA.B(y)

≤ dβμ(A)μ(B)

∫ ∞

0
z dx = dβμ(A)μ(B)h,

as required. �
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8.2. Lower bound for lim inf

Corollary 8.4. Assume the setting of Theorem 2.4. Then for any h > 0,

lim inf
t→∞ m(t)

(
UA,B(t + h) − UA,B(t)

) ≥ dβμ(A)μ(B)h.

Proof. Let m ≥ k ≥ 0. By (2.1) and Theorem 2.7,

UA,B(t + h) − UA,B(t) ≥
m∑

n=k

μ
(
y ∈ A ∩ F−nB : τn(y) ∈ [t, t + h])

=
m∑

n=k

h

dn

qβ(t/dn)μ(A)μ(B) + Ek,m,

where Ek,m = ∑m
n=k en/dn.

Let κ ∈ (1,1/β). Then d−1
n = O(n−κ) and Ek,m = O(supn≥k |en|) → 0 as k → ∞.

Choosing k = [C1t
β/�(t)] and m = [C2t

β/�(t)], for fixed C2 > C1 > 0 and arguing word for word as in [20, Proof of
eq. (7.2)], we obtain

lim inf
t→∞ m(t)

(
UA,B(t + h) − UA,B(t)

) ≥ μ(A)μ(B)

∫ C2

C1

x−1/βqβ

(
x−1/β

)
dx.

Now let C1 → 0 and C2 → ∞ and use that
∫ ∞

0 x−1/βqβ(x−1/β) dx = dβ . �

9. General class of observables

In this section, we extend mixing for semiflows, Corollary 3.1, to cover more general classes of observables. As well as
being of interest in its own right, this is useful for the extension to flows in Section 10.

Throughout, we suppose that we are in the setting of Corollary 3.1; in particular β ∈ ( 1
2 ,1] and hypotheses (H) and

(S)(i) hold. We also suppose from now on that Y is a metric space with inner regular2 Borel probability measure μ and
that F and τ are almost everywhere continuous. It is well-known that mixing for infinite measure system is not a measure-
theoretic property [25,30] and that care needs to be taken with the class of observables. Here we follow Krickeberg [30].
As a special case of the general theory, we prove the following result:

Theorem 9.1. Define Hn = {(y,u) ∈ Y × [0,∞) : τ(y) − n ≤ u ≤ τ(y)}, n ≥ 1. Then

lim
t→∞m(t)

∫
Y τ

vw ◦ Ft dμτ = dβ

∫
Y τ

v dμτ

∫
Y τ

w dμτ (9.1)

for all bounded and almost everywhere continuous functions v : Y τ → R supported in Hn for some n, and all w ∈ L1(Y τ ).

Note that this includes all bounded almost everywhere continuous observables v supported in a set of the form A ×
[a1, a2] ⊂ Y τ where A ⊂ Y , 0 < a1 < a2 ≤ infA τ and supA τ < ∞. For the results on flows in Section 10 we require the
more general class of observables in Theorem 9.1.

In the remainder of this section, we prove a more general result along the lines of [30] and use this to prove Theo-
rem 9.1.

Let C be a collection of measurable subsets A ⊂ Y with 1A ∈ B such that

(i) μ(∂A) = 0 for all A ∈ C,
(ii) A1 ∩ A2 ∈ C for all A1,A2 ∈ C,

(iii) C is a basis for the topology on Y .

In practice, we can often take C to consist of all measurable sets A ⊂ Y with 1A ∈ B and μ(∂A) = 0. This is the case for
the examples in Section 11.

2μ is inner regular if μ(A) = supμ(K : K ⊂ A,A compact} for all open sets A ⊂ Y .
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Proposition 9.2. Let C′ = {A × [a1, a2] ⊂ Y τ : A ∈ C}. Let D be the ring generated by C′ and let H ∈ D. Then (9.1)
holds for all bounded and almost everywhere continuous functions v : Y τ →R supported in H , and all w ∈ L1(Y τ ).

Proof. It is immediate that conditions (i)–(iii) for C are inherited by the collection C′ of subsets of Y τ (with μ replaced
by μτ ).

Write q(t) = d−1
β m(t). By Corollary 3.1,

lim
t→∞q(t)μτ

(
A ∩ F−1

t B
) = μτ (A)μτ (B), (9.2)

for all A ∈ C′ and all measurable rectangles B ⊂ Y τ . The argument now proceeds as in [30, Section 2]. We provide the
details for completeness.

Step 1: Let B ⊂ Y τ be a measurable rectangle. Then (9.2) holds for all A ∈ C′ and hence (using condition (ii)) for all
finite unions and differences of elements of C′. In other words, (9.2) holds for all A ∈ D.

Step 2: Let B ⊂ Y τ be a measurable rectangle. Recall that H ∈ D and let A ⊂ H such that μτ (∂A) = 0. Suppose that
K ⊂ IntA is compact. Since C′ is a basis and D is stable under finite unions, there exists D ∈D such that K ⊂ D ⊂ IntA.
Using also the inner regularity of μτ ,

μτ (A) = μτ (IntA) = sup
{
μτ (K) : K ⊂ IntA,K compact

}
= sup

{
μτ (D) : D ⊂ A,D ∈D

}
.

Similarly,

μτ (H \ A) = sup
{
μτ (D) : D ⊂ H \ A,D ∈ D

} = sup
{
μτ (H \ D) : D ⊃ A,D ∈D

}
,

so μτ (A) = inf{μτ (D) : D ⊃ A,D ∈ D}. Hence for any ε > 0, there exist D1,D2 ∈ D such that D1 ⊂ A ⊂ D2 and
μτ (D2) − μτ (D1) < ε. Since (9.2) holds for D1 and D2 and μτ (D1 ∩ F−1

t B) ≤ μτ (A ∩ F−1
t B) ≤ μτ (D2 ∩ F−1

t B),

(
μτ (A) − ε

)
μτ (B) ≤ μτ (D1)μ

τ (B) ≤ lim inf
t→∞ q(t)μτ

(
A ∩ F−1

t B
)

≤ lim sup
t→∞

q(t)μτ
(
A ∩ F−1

t B
) ≤ μτ (D2)μ

τ (B) ≤ (
μτ (A) + ε

)
μτ (B).

As ε is arbitrary, we have verified that (9.2) holds for all A ⊂ H with μτ (∂A) = 0. In other words, limt→∞ q(t)
∫
Y τ v ×

1B ◦ Ft dμτ = ∫
Y τ v dμτμτ (B) where v = 1A. This extends to all finite linear combinations v = ∑

cj 1Aj
by linearity.

We will refer to such functions v as step functions.
Step 3: Let B ⊂ YH be a measurable rectangle and suppose that v is as in the statement of the proposition. We claim

that for any ε > 0 there exist step functions v1 and v2 such that v1 ≤ v ≤ v2 and
∫
Y τ v2 dμτ − ∫

Y τ v1 dμτ < ε. Then

(∫
Y τ

v dμτ − ε

)
μτ (B) ≤

∫
Y τ

v1 dμτμτ (B) ≤ lim inf
t→∞ q(t)

∫
Y τ

v1B ◦ Ft dμτ

≤ lim sup
t→∞

q(t)

∫
Y τ

v1B ◦ Ft dμτ ≤
∫

Y τ

v2 dμτμτ (B) ≤
(∫

Y τ

v dμτ + ε

)
μτ (B).

Hence (9.1) holds for all v of the desired form and all indicator functions w = 1B where B is a measurable rectangle.
To prove the claim, let δ > 0 such that δ(μτ (Y ) + 2|v|∞) < ε/2 and let I be a closed interval covering the image of v.

We can write I as a finite union of closed intervals I1, . . . , IN with diam Ij < δ intersecting only at endpoints.
Let Aj = v−1(Ij ) and define Z to be the set of discontinuity points of v. Then ∂Aj ⊂ Z ∪ v−1(∂Ij ) for all j . Hence

μτ (∂Aj ) ≤ μτ (v−1(∂Ij )).
Also, there are at most countably many xk ∈ R such that μτ (v−1(xk)) > 0. We can modify the intervals Ij slightly so

that xk /∈ ∂Ij for all j , k. This ensures that μτ (∂Aj ) = 0 for all j .
As in Step 2, it follows from inner regularity of μτ that for each j there exists Dj ∈ D with Dj ⊂ Aj such that

μτ (Aj \ Dj) < δ/N . Now define

v1 =
∑

inf
Dj

v1Dj
+ inf

Y
v1H\⋃Dj

, v2 =
∑

sup
Dj

v1Dj
+ sup

Y

v1H\⋃Dj
.
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Then v1 ≤ v ≤ v2. Also,∫
Y τ

v2 dμτ −
∫

Y τ

v dμτ ≤
∑

μτ (Dj )
(

sup
Dj

v − inf
Dj

v
)

+ 2μτ
(
H \

⋃
Dj

)
|v|∞

≤ μτ (Y )δ + 2|v|∞
∑

μτ (Aj \ Dj) < δ
(
μτ (Y ) + 2|v|∞

)
< ε/2.

Similarly,
∫
Y τ v dμτ − ∫

Y τ v1 dμτ < ε/2 verifying the claim.
Step 4: To prove the general result, suppose without loss that v ≥ 0 and let w ∈ L1(Y τ ). By a more standard ap-

proximation argument than the one in Step 3, there exist simple functions w1 and w2 such that w1 ≤ w ≤ w2 and∫
Y τ w2 dμτ − ∫

Y τ w1 dμτ< ε. The result follows. �

Proof of Theorem 9.1. Let C′′ = C′ ∪ {En,n ≥ 1} where C′ is the collection of rectangles in Proposition 9.2 and
En = ⋃n

j=1 F−1
j (Y × [0,1]). Let I = {C ∩ En : C ∈ C′, n ≥ 1} and define C′′′ = C′′ ∪ I . Then C′′′ is closed under fi-

nite intersections, and hence conditions (i)–(iii) are satisfied by the collection C′′′. We claim that property (9.2) holds
for all A ∈ C′′′. Certainly, the sets En lie in the ring generated by C′′′, and Hn ⊂ En, so the conclusion follows from the
approximate argument used to prove Proposition 9.2.

It remains to verify the claim. By Corollary 3.1, property (9.2) holds for all A ∈ C′. By Remark 3.2, this holds also for
the sets En. Finally, if I ∈ I , then I is contained in one of the rectangles in C′ and μτ (∂I) = 0. Hence 1I is a bounded
and almost everywhere continuous function supported in a rectangle in C′. The claim follows from Proposition 9.2. �

10. Mixing for infinite measure flows

In this section, we show how mixing for semiflows extends to mixing for flows.

10.1. Assumptions and disintegration

We suppose throughout that Ft : Y τ → Y τ is a suspension semiflow over a map F : Y → Y with nonintegrable almost
everywhere continuous roof function τ : Y → R

+ satisfying ess inf τ > 1 and μ(τ > t) = �(t)t−β , β ∈ ( 1
2 ,1], and we

assume that hypotheses (H) and (S)(i) hold.
Let X = Y × N where Y and N are bounded metric space. Let f (y, z) = (Fy,G(y, z)) where F : Y → Y and G :

Y ×N → N are continuous almost everywhere. The projection π : X → Y , π(y, z) = y, defines a semiconjugacy between
f and F . There exists a unique f -invariant ergodic probability measure μX on X such that π∗μX = μ, see for instance
[9, Section 6].

Define τ : X → R
+ by setting τ(y, z) = τ(y) and define the suspension Xτ = {(x,u) ∈ X × R : 0 ≤ u ≤ τ(x)}/ ∼

where (x, τ (x)) ∼ (f x,0). The suspension flow ft : Xτ → Xτ is given by ft (x,u) = (x,u + t) computed modulo iden-
tifications, with ergodic invariant measure μτ

X = μX × Lebesgue.
Under two additional assumptions (F1) and (F2) below, we show in Theorem 10.5 that Corollary 3.1 for the semiflow

Ft applies equally to the flow ft .
First, we assume contractivity along N :

(F1) limn→∞ d(f n(y, z), f n(y, z′)) = 0 for all z, z′ ∈ N uniformly in y ∈ Y .

Recall that R denotes the transfer operator for F : Y → Y .

Proposition 10.1. Fix z0 ∈ N . Suppose v ∈ C0(X). Then the limit

ηy(v) = lim
n→∞

(
Rnvn

)
(y), vn(y) = v ◦ f n(y, z0),

exists for almost every y ∈ Y and defines a probability measure supported on π−1(y). Moreover y �→ ηy(v) =∫
π−1(y)

v dηy is integrable and
∫
X

v dμX = ∫
Y

∫
π−1(y)

v dηy dμ(y).

Proof. See for instance [14, Proposition 3]. �

Remark 10.2. The proof of [14, Proposition 3] shows that the sequence Rnvn is Cauchy in L∞(Y ). If the metric on Y

can be chosen so that Rnvn is continuous for each n, then v̄ ∈ C0(Y ). (In fact, it can often be shown that v̄ is Hölder when
v is Hölder [14].)
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Note that Xτ = Y τ × N . Given v ∈ C0(Xτ ), define

v̄ : Y τ → R, v̄(y,u) =
∫

x∈π−1(y)

v(x,u) dηy(x).

Then ∫
Xτ

v dμτ
X =

∫
Y τ

v̄(y,u) dμτ (y,u).

We require the additional assumption:

(F2) The function v̄ : Y τ →R is almost everywhere continuous.

Remark 10.3. If v is uniformly continuous, then for any ε > 0 there exists δ < 0 such that |v̄(y, u) − v̄(y, u′)| < ε for
all (y,u), (y,u′) ∈ Y τ with |u − u′| < δ. This combined with Remark 10.2 shows that condition (F2) is easily satisfied in
practice for a large class of observables v ∈ C0(Xτ ).

Remark 10.4. The set up in this section (skew product X = Y × N , roof function τ constant in the N direction) is
not very restrictive. Suppose that Tt : M → M is a smooth flow defined on a Riemannian manifold M and that � is a
partially hyperbolic attractor, so there exists a continuous DTt -invariant splitting T�M = Es ⊕Ecu where Es is uniformly
contracting and dominates Ecu. By [7, Proposition 3.2, Theorem 4.2], the stable bundle Es extends to a neighbourhood
U of � and integrates to a Tt -invariant collection Ws of stable leaves that topologically foliate U .

This means that we can choose a topological submanifold X ⊂ M that is a cross-section to the flow Tt formed as a
union of stable leaves, and automatically the roof function τ is constant along stable leaves. (This construction has been
widely used recently [5,6,8,10].) Assuming for convenience the existence of a global chart for Ws , we obtain a Poincaré
map f : X → X where X = Y × N with N playing the role of the stable direction. Moreover, f has the desired skew
product form f (y, z) = (Fy,G(y, z)), where F : Y → Y is defined by quotienting along the stable leaves, and condition
(F1) is automatically satisfied. Also (F2) holds by Remark 10.2. Hence our set up holds in its entirety provided F : Y → Y

and τ : Y → Z
+ satisfy the required properties.

10.2. The mixing result

Choose a subset H of Y τ as in Proposition 9.2.

Theorem 10.5. Suppose that μ(τ > n) = �(n)n−β where β ∈ ( 1
2 ,1]. Let v ∈ C0(Xτ ) be supported in C × N where C is

a closed subset of IntH . Let w ∈ C0(Xτ ) be uniformly continuous and supported on a set of finite measure. Assume that
(H), (S1), (F1) and (F2) hold. Then

lim
t→∞m(t)

∫
Xτ

vw ◦ ft dμτ
X = dβ

∫
Xτ

v dμτ
X

∫
Xτ

w dμτ
X.

Proof. Following [10], we define ws : Y τ → R, s > 0, by setting

ws(y,u) = w ◦ fs =
∫

x∈π−1(y)

w ◦ fs(x,u)dηy(x).

Note that
∫
Y τ |ws |dμτ ≤ ∫

Xτ |w| ◦ fs dμτ
X = ∫

Xτ |w|dμτ
X so ws ∈ L1(Y τ ) for all s.

The semiconjugacy π : X → Y extends to a measure-preserving semiconjugacy πτ : Xτ → Y τ , πτ (x,u) = (πx,u).
Write m(t)

∫
Xτ vw ◦ ft dμτ

X = I1(s, t) + I2(s, t) where

I1(s, t) = m(t)

∫
Xτ

vws ◦ πτ ◦ ft−s dμτ
X,

I2(s, t) = m(t)

∫
Xτ

v
(
w ◦ fs − ws ◦ πτ

) ◦ ft−s dμτ
X.

For t > s,

I1(s, t) = m(t)

∫
Xτ

vws ◦ Ft−s ◦ πτ dμτ
X = m(t)

∫
Y τ

v̄ws ◦ Ft−s dμτ .
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Since v̄ is bounded and almost everywhere continuous, supported in H , and ws ∈ L1(Y τ ), it follows from Proposition 9.2
that for all s > 0,

lim
t→∞ I1(s, t) = dβ

∫
Y τ

v̄ dμτ

∫
Y τ

ws dμτ = dβ

∫
Xτ

v dμτ
X

∫
Xτ

w dμτ
X.

Choose ψ : Y τ → [0,1] continuous such that suppv ⊂ suppψ × N ⊂ H × N . Define

Ds : Y τ → R, Ds(y,u) = diamw ◦ fs

((
πτ

)−1
(y,u)

)
.

Note that |Ds | ≤ 2|w|∞ and μτ (suppDs) ≤ μτ
X(f −1

s suppw) = μτ
X(suppw) < ∞, so Ds ∈ L1(Y τ ). Also, |w◦fs(x,u)−

ws ◦ πτ (x,u)| ≤ Ds ◦ πτ (x,u). Hence for t > s,

∣∣I2(s, t)
∣∣ ≤ |v|∞m(t)

∫
Xτ

ψ ◦ πτDs ◦ πτ ◦ ft−s dμτ
X = |v|∞m(t)

∫
Y τ

ψDs ◦ Ft−s dμτ
Y .

Since ψ ∈ C0(Y τ ) is supported in H and Ds ∈ L1(Y τ ), it again follows from Proposition 9.2 that for all s > 0,

lim sup
t→∞

I2(s, t) ≤ |v|∞ dβ

∫
Y τ

ψ dμτ

∫
Y τ

Ds dμτ .

By uniform continuity of w and (F1), lims→∞ |Ds |∞ = 0. Hence |Ds |1 ≤ |Ds |∞μτ (suppDs) ≤ |Ds |∞μτ
X(suppw) →

0 as s → ∞. This combined with the estimates for I1 and I2 yields the desired result. �

11. Examples

In this section, we demonstrate how the methods in this paper apply to the examples described in the Introduction.

11.1. NonMarkovian intermittent semiflows and flows

Let ft : [0,1]τ0 → [0,1]τ0 be an intermittent semiflow as in Example 1.1. The first step is to pass from the original sus-
pension semiflow on [0,1]τ0 to a suspension of the form Y τ where (Y,μ) is a probability space and τ is an nonintegrable
roof function.

We take Y ⊂ [0,1] to be the interval of domain of the rightmost branch of the AFN map f : [0,1] → [0,1]. Define the
first return map F = f σ : Y → Y where σ = min{n ≥ 1 : f ny ∈ Y }. Then μ = (μ0|Y)/μ0(Y ) is an absolutely continuous
invariant probability measure for F . Define the induced roof function τ → R

+ given by τ(y) = ∑σ(y)−1
�=0 τ0(f

�y). Let
Ft : Y τ → Y τ be the corresponding suspension semiflow with infinite invariant measure μτ .

Since τ0 is Hölder, it is standard that μ(τ > t) ∼ ct−β for some c > 0 (see for example [13, Proposition 9.1]).

Proposition 11.1. Suppose that ft has two periodic orbits (other than the neutral one) whose periods have irrational
ratio. Then hypotheses (H) and (S)(i) hold with B = BV being the space of bounded variation functions on Y , with norm
‖v‖BV = |v|1 + Varv.

Proof. Hypotheses (H)(i,iii) are verified in [13, Proposition 9.2]. Also, hypothesis (H)(ii) is verified in [13, Proposi-
tion 9.2] for s ∈H∩ Bδ(0).

To complete the verification of (H)(ii), we proceed as follows. Since the density dμ/d Leb lies in BV and is bounded
above and below, it suffices to work with the non-normalised transfer operator P̂ (ib)v = P(eibτ v) where

∫
Y

Pvw d Leb =∫
Y

vw ◦ F d Leb.
Let λ = infg|Y > 1. Fix L > 0. It suffices to show that there exists a constant C′ such that∥∥P̂ (ib)nv

∥∥
BV ≤ C′n|v|1 + C′nλ−n Varv,

for all |b| ≤ L, n ≥ 1, v ∈ BV.
Let n ≥ 1 and let {I } be the partition of domains of branches for Fn. There is a constant C0 independent of n such that

supI 1/(Fn)′ ≤ C0 diam I for all I . Also F ′ ≥ λ, so |1/(Fn)′| ≤ 1/λn for all n.
Write

P̂ (ib)nv =
∑
I

{
ζne

ibτnv
} ◦ ψI 1FnI ,
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where ζn = 1/(Fn)′, ψI is the inverse branch (F n|I )−1, and τn = ∑n−1
j=0 τ ◦Fj (not to be confused with τ0). We have the

standard estimate∣∣P̂ (ib)nv
∣∣
1 ≤ ∣∣P̂ (ib)nv

∣∣∞ ≤
∑
I

sup
I

(
ζn|v|) ≤

∑
I

sup
I

ζn

(
inf
I

|v| + VarI v
)

≤
∑
I

sup
I

ζn(diam I )−1
∫

I

|v| +
∑
I

λ−n VarI v ≤ C0|v|1 + λ−n Varv.

Next,

Var
(
P̂ (ib)nv

) ≤
∑
I

VarI
(
ζne

ibτnv
) + 2

∑
I

sup
I

(
ζn|v|)

≤
∑
I

VarI (ζnv) +
∑
I

sup
I

(
ζn|v|)VarI eibτn + 2C0|v|1 + 2λ−n Varv.

A standard argument shows that∑
I

VarI (ζnv) ≤ C1|v|1 + λ−n Varv,

where C1 = supn |(F n)′′/[(F n)′]2|. Also,

VarI eibτn ≤ |b|VarI τn ≤ L

n−1∑
j=0

VarI
(
τ ◦ Fj

) = L

n−1∑
j=0

VarFj I τ.

Let a be the domain of a branch for F . Then τ |a = ∑σ(a)−1
�=0 τ0 ◦ f �. Since the images f �a are disjoint for � < σ(a),

it follows that Vara τ ≤ Var τ0. But FjI lies in such a domain a, so VarFj I τ ≤ Var τ0 and it follows that VarI eibτn ≤
Ln Var τ0. Hence∑

I

sup
I

(
ζn|v|)VarI eibτn ≤ Ln Var τ0

∑
I

sup
I

(
ζn|v|) ≤ Ln Var τ0

(
C0|v|1 + λ−n Varv

)
.

Combining these estimates we have shown that ‖P̂ (ib)nv‖BV ≤ (3C0 +C1 +C0LVar τ0)n|v|1 +(4+LVar τ0)nλ−n Varv
as required.

Passing to the L2 adjoint of R̂(ib), to verify (S)(i) it is equivalent to rule out the possibility that there exists b �= 0
and a BV eigenfunction v : Y → S1 such that eibτ v ◦ F = v. Suppose that y ∈ Y is a periodic point of period k for F .
Now, BV functions have one-sided limits, and F is orientation preserving, so v(y+) = v(F k(y+)). Substituting into the
equation eibτk v ◦ Fk = v we obtain eibq = 1 where q = τk(y+) is the period of the corresponding periodic orbit for ft .
This is impossible under the periodic orbit assumption, so the BV eigenfunction v cannot exist. �

It follows from Theorem 9.1 that mixing for Ft holds for all bounded almost everywhere continuous v̂ supported in
Hn = {(y,u) ∈ Y × [0,∞) : τ(y) − n ≤ u ≤ τ(y)} for some n ≥ 1, and all ŵ ∈ L1(Y τ ).

Let v,w : [0,1]τ0 → R be observables where v is bounded and almost everywhere continuous and w is integrable.
The projection π : Y τ → [0,1]τ0 , π(y,u) = fu(y,0), defines a measure-preserving semiconjugacy from Ft : Y τ → Y τ to
ft : [0,1]τ0 → [0,1]τ0 . Define the lifted observables v̂ = v ◦ π , ŵ = w ◦ π : Y τ →R. Then mixing for Ft holds provided
v̂ is supported in an Hn and hence the desired mixing result (1.2) holds for ft and the observables v and w. This includes
all (finite linear combinations of) observables v supported in A × [0, infA τ0] where A ⊂ {σ ≤ j} for some j ≥ 1. (For
such an observable v, we have supp v̂ ⊂ Hn for n ≥ j |τ0|∞.)

We can enlarge the class of observables v to include all bounded almost everywhere continuous functions that vanish
on a neighborhood of the neutral fixed point. First, by adjoining preimages of Y we can enlarge Y so that it contains [ε,1]
for any prescribed ε > 0. Hence we can suppose without loss that suppv ⊂ {(x,u) ∈ [0,1]τ0 : x ∈ Y }. Since Y is the first
return for F , it follows that supp v̂ ⊂ {(y,u) ∈ Y τ : u ≤ τ0(y)}. Let Yj = {y ∈ Y : σ(y) = j}. Define C′ = C × [0, |τ0|∞]
where C = ⋃

j≥1{Yj : |τ0|∞ < infYj
τ }. For the remaining Yj , we have j ≤ infYj

τ ≤ |τ0|∞ so supYj
τ ≤ j |τ0|∞ ≤ |τ0|2∞.

Hence supp v̂ ⊂ C′ ∪ Hn for n ≥ |τ0|2∞. Such observables are covered by Section 9: Take C to be the collection of finite
unions of intervals in Y and define C′ as in Proposition 9.2. Certainly C′ ∈ C′. Define C′′ as in the proof of Theorem 9.1.
Then C′,Hn ∈ C′′, so C′ ∪ Hn lies in the ring generated by C′′. In particular, mixing holds for observables such as v̂

supported in C′ ∪ Hn.
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Remark 11.2. To verify hypothesis (S)(ii) it suffices to rule out the possibility that there exists b �= 0, λ ∈ S1 and a BV
eigenfunction v : Y → S1 such that eibτ v ◦ F = λv. But then every period q = τ(y) corresponding to a fixed point y for
F satisfies eibq = λ. Hence hypothesis (S)(ii) holds provided this set of periods is not contained in a lattice of the form
a1 + a2Z for some a1, a2 > 0.

Remark 11.3. Combining this example with Remark 10.4 leads to examples of partially hyperbolic intermittent flows
preserving an infinite measure. See [33,34] for similar examples in the discrete time invertible setting. In addition to
extending to continuous time, our examples are an improvement over those in [33,34] as far as mixing is concerned, since
we require no assumptions on smoothness of foliations (in contrast to [33]) or Markov structure (in contrast to [34]).

11.2. Suspensions over unimodal maps

Let ft : [0,1]τ0 → [0,1]τ0 be a suspension over a unimodal map f : [0,1] → [0,1] as described in Example 1.3. We
sketch the main ingredients following [13, Section 10].

By [13, Lemma 10.2(a)], μ0(τ0 > t) = ct−β + O(t−2β) where the constant c > 0 is given explicitly. By [44], f :
[0,1] → [0,1] is modelled by a Young tower F : Y → Y where Y is a tower with exponential tails over a suitable
inducing set Z ⊂ [0,1]. The roof function τ0 lifts to a roof function τ : Y → R

+ satisfying μ(τ > t) = ct−β + O(t−2β)

where μ is the SRB measure on Y .
To prove (1.2), it remains to verify hypotheses (A) and (S)(i). In [13, Section 8.1], a new function space B is defined

for Young towers with exponential tails, and hypothesis (A)(i,ii) are verified. This relies on a technical condition called
(H3) in [13] which is verified in [13, Lemma 10.3]. (The Lasota–Yorke inequality (A)(ii) is proved in [13, Theorem B.2]
for s ∈ H ∩ B1(0) but holds equally for s ∈ H ∩ BL(0) for any L > 0.) By [13, Proposition 8.6 and Lemma 10.4],
hypothesis (A)(iii) is satisfied. Finally, hypothesis (S)(i) is immediate from the quasicompactness assumptions (A)(i,ii)
and the assumption about periodic orbits for ft .
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