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Abstract. We obtain moderate deviations theorems and exponential (Bernstein type) concentration inequalities for “nonconventional”
sums of the form SN = ∑N

n=1(F (ξq1(n), ξq2(n), . . . , ξq�(n)) − F̄ ), where most of the time we consider qi(n) = in, but our results
also hold true for more general qi(n)’s such as polynomials. Here ξn, n ≥ 0 is a sufficiently fast mixing vector process with some
stationarity conditions, F is a function satisfying certain regularity conditions and F̄ is a certain centralizing constant. When ξn, n ≥ 0
are independent and identically distributed a large deviations theorem was obtained in (Probab. Theory Related Fields 158 (2014) 197–
224) and one of the purposes of this paper is to obtain related results in the (weakly) dependent case. Several normal approximation
type results will also be derived. In particular, two more proofs of the nonconventional central limit theorem are given and a Rosenthal
type inequality is obtained. Our results hold true, for instance, when ξn = (T nfi)

℘
i=1 where T is a topologically mixing subshift of

finite type, a Gibbs–Markov map, a hyperbolic diffeomorphism, a Young tower or an expanding transformation taken with a Gibbs
invariant measure, as well as in the case when ξn, n ≥ 0 forms a stationary and (stretched) exponentially fast φ-mixing sequence,
which, for instance, holds true when ξn = (fi(ϒn))

℘
i=1 where ϒn is a Markov chain satisfying the Doeblin condition considered as a

stationary process with respect to its invariant measure.

Résumé. Nous obtenons un théorème de déviations modérées et des inégalités de concentration exponentielles (du type de Bernstein)
pour des sommes «non-conventionnelles» de la forme SN = ∑N

n=1(F (ξq1(n), ξq2(n), . . . , ξq�(n)) − F̄ ), où la plupart du temps nous
considérons qi(n) = in, mais nos résultats restent aussi vrais pour des qi(n) plus généraux tels que des polynômes. Ici, ξn, n ≥ 0
est un processus vectoriel suffisamment mélangeant avec des conditions de stationnarité, F est une fonction satisfaisant certaines
propriétés de régularité et F̄ est une constante de centrage. Quand ξn, n ≥ 0 sont indépendants et identiquement distribués, un principe
de grande déviation a été obtenu dans (Probab. Theory Related Fields 158 (2014) 197–224) et un des objectifs de cet article est
d’obtenir des résultats analogues dans le cas faiblement dépendant. Plusieurs résultats de type approximation normale sont aussi
obtenus. En particulier, deux nouvelles preuves du théorème central limite non-conventionnel sont données et une inégalité de type
Rosenthal est obtenue. Nos résultats sont vrais par exemple quand ξn = (T nfi)

℘
i=1 où T est un sous-shift de type fini topologiquement

mélangeant, une application Gibbs–Markov, un difféomorphisme hyperbolique, une tour de Young ou une transformation expansive
pour une mesure invariante de Gibbs, tout comme dans le cas où ξn, n ≥ 0 forme une suite stationnaire exponentiellement (ou streched
exponentiellement) φ-mélangeante, ce qui, par exemple, et vrai lorsque ξn = (fi(ϒn))

℘
i=1 où ϒn est une chaîne de Markov satisfaisant

une condition de Doeblin, considérée comme un processus stationnaire par rapport à une mesure invariante.
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1. Introduction

Partially motivated by the research on nonconventional ergodic theorems (the term “nonconventional” comes from [13]),
probabilistic limit theorems for sums of the form SN = ∑N

n=1(F (ξq1(n), ξq2(n), . . . , ξq�(n))− F̄ ) have become a well stud-
ied topic. Here ξn, n ≥ 0 is a sufficiently fast mixing vector process with some stationarity properties, F is a function
satisfying some regularity conditions and F̄ is a certain centralizing constant. During the past decade many of the clas-
sical results such as the (functional) central limit theorem, Berry–Esseen type theorem, the local central limit theorem,
Poissonian limit theorems and large deviations theorems were obtained for such sums (see [19,23,26,27] and references
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therein). One of the most interesting choices of qi ’s is the situation when qi(n) = in for any i = 1,2, . . . , �. This was the
original motivation for the study of nonconventional sums and yields appropriate limit theorems for number of multiple
recurrencies to a given set by ξk’s at times forming arithmetic progressions of the type n,2n, . . . , �n.

The large deviation priciple proved in [27] holds true in the case when SN = ∑N
n=1(F (ξn, ξ2n, . . . , ξ�n) − F̄ ) only for

independent and identically distributed ξn’s, while when the qi(n)’s satisfy certain (faster than linear) growth conditions
the results from there hold true also for certain Markov chains and dynamical systems. The main goal of this paper is to
obtain related results when the ξn’s are weakly dependent and not necessarily generated by a Markov chain or a dynamical
system. We will first obtain moderate deviation type theorems for such sums, namely, study the asymptotic behaviour as
N → ∞ of probabilities of the form

P

(
1

Nζ
SN ∈ �

)

for arbitrary Borel measurable sets � ⊂ R. Here 1
2 < ζ < 1 depends on the amount of regularity of F and on the growth

of E|ξ1|k as k → ∞. Formally (see [9]), any choice of ζ is considered as large deviations type result, but under our
conditions 1

N
SN will satisfy the law of large numbers (see [24]) and so we will use the standard informal convention of

referring to the case when ζ = 1 as the large deviations case, while the case when 0 < ζ < 1 will be referred to as the

moderate deviations case, where in our situation it is natural to require that 1
2 < ζ since N− 1

2 SN satisfies the central limit
theorem (see [26] and [18]). Exponential concentration inequalities (i.e. estimates of P(SN ≥ x), x > 0) and Gaussian
type estimates of the moments of SN will also be derived. All of the above results are obtained using the so-called
method of cumulants (see [30]) and the local dependence structure of nonconventional sums introduced in [19]. The best
exponential inequality obtained by this method yields estimates of the form

P(SN ≥ εN) ≤ e−c(εN)
1
2
, ε > 0,N ≥ cε− 5

2

where c > 0 is some constant. Such estimates are not optimal since the power of N is 1
2 and not 1. In the case when F is

bounded we are able to improve these estimates. We first approximate SN in the L∞ norm by martingales with bounded
differences and then apply the Hoeffding–Azuma inequality in order to obtain, in particular, estimates of the form

P(SN ≥ εN) ≤ e−c(ε)N , ε > 0,N ≥ 1

where c(ε) > 0 is some constant which depends on ε but not on N . In the case when either ξn, n ≥ 0 forms a sufficiently
fast φ-mixing process or it is generated by a topologically mixing subshift of finite type or a Young tower with exponential
tails we can choose c(ε) = cε2 for some c > 0 which does not depend on ε and N . Note that all the results described
above hold true also with S̄N = SN −ESN in place of SN .

Our results hold true, for instance, when ξn = T nf where f = (f1, . . . , fd), T is a topologically mixing subshift of
finite type, a hyperbolic diffeomorphism (see [2]), a Young tower (see [31] and [32]) with sufficiently fast cecaying tails,
a Gibbs–Markov map considered in [1] or an expanding transformation taken with a Gibbs invariant measure, as well as
in the case when ξn = f (ϒn), f = (f1, . . . , fd) where ϒn is a Markov chain satisfying the Doeblin condition considered
as a stationary process with respect to its invariant measure. In fact, any stationary and exponentially fast φ-mixing
sequence {ξn} can be considered. In the dynamical systems case each fi should be either Hölder continuous or piecewise
constant on elements of Markov partitions. As an application we can consider ξn = ((ξn)1, . . . , (ξn)�), (ξn)j = 1Aj

(T nx)

in the dynamical systems case and (ξn)j = 1Aj
(ϒn) in the Markov chain case where 1A is the indicator of a set A. Let

F = F(x1, . . . , x�), xj = (x
(1)
j , . . . , x

(�)
j ) be a bounded Hölder continuous function which identifies with the function

G(x1, . . . , x�) = x
(1)
1 · x

(2)
2 · · ·x(�)

� on the cube ([0,1]℘)�. Let N(n) be the number of l’s between 0 and n for which
T qj (l)x ∈ Aj for j = 0,1, . . . , � (or ϒqj (l) ∈ Aj in the Markov chains case), where we set q0 = 0, namely the number
of �-tuples of return times to Aj ’s (either by T qj (l) or by ϒqj (l)). Then our results yield moderate deviation theorems
and exponential concentration inequalities for the numbers N(n). In fact, in this case, and more generally for product
functions of the form F(x1, . . . , x�) = ∏�

i=1 gi(xi), our results hold true for (stretched) exponentially fast mixing α-
mixing processes. When fi ’s and gi ’s are Hölder continuous then our results also hold true for the (deterministic) distance
expanding maps considered in [28], even though there are no underlying Markov partitions.

In general, the sum SN is a nonlinear function of the random vector {ξ1, ξ2, . . . , ξq�(N)}, and therefore our results can
also be viewed as a part of the research on nonlinear large deviations theorems (see [4] and [5]). Moreover, in view of
the large variety of dynamical systems that can be considered, our results can be viewed as a part of the research on
concentration of measure for dynamical systems (see, for instance, [6]), as well.
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2. Preliminaries and main results

Our setup consists of a ℘-dimensional stochastic process ξn, n ≥ 0 on a probability space (�,F,P ) and a family of
sub-σ -algebras Fk,l , −∞ ≤ k ≤ l ≤ ∞ such that Fk,l ⊂Fk′,l′ ⊂F if k′ ≤ k and l′ ≥ l. We will impose restrictions on the
mixing coefficients

φ(n) = sup
{
φ(F−∞,k,Fk+n,∞) : k ∈ Z

}
(2.1)

where we recall that for any two sub-σ -algebras G,H ⊂F ,

φ(G,H) = sup

{∣∣∣∣P(A ∩ B)

P (A)
− P(B)

∣∣∣∣ : A ∈ G,B ∈H,P (A) > 0

}
. (2.2)

In order to ensure some applications, in particular, to dynamical systems we will not assume that ξn is measurable with
respect to Fn,n but instead impose restrictions on the approximation rates

βq(r) = sup
k≥0

∥∥ξk −E[ξk|Fk−r,k+r ]
∥∥

q
(2.3)

where ‖X‖q := ‖X‖Lq for any 0 < q ≤ ∞ and a random variable X.
We do not require stationarity of the process ξn, n ≥ 0, assuming only that the distribution of ξn does not depend on n

and that the joint distribution of (ξn, ξm) depends only on n − m, which we write for further reference by

ξn ∼ μ and (ξn, ξm) ∼ μm−n (2.4)

where Y ∼ μ means that Y has μ for its distribution. In fact, some of our results hold true assuming only that ξn ∼ μ for
any n ≥ 0, and we will point out when the assumption about the distribution of (ξn, ξm) is not needed.

Let F = F(x1, . . . , x�), xj ∈ R
℘ be a function on (R℘)� such that for some K ≥ 1, an integer λ ≥ 0, κ ∈ (0,1] and all

xi, zi ∈ R
℘ , i = 1, . . . , �, we have

∣∣F(x) − F(z)
∣∣ ≤ K

[
1 +

�∑
i=1

(|xi |λ + |zi |λ
)] �∑

i=1

|xj − zj |κ (2.5)

and

∣∣F(x)
∣∣ ≤ K

[
1 +

�∑
i=1

|xi |λ
]

(2.6)

where x = (x1, . . . , x�) and z = (z1, . . . , z�). In fact, if ξn is measurable with respect to Fn,n then our results will follow
with any Borel function F satisfying (2.6) without imposing (2.5), since the latter is needed only for approximation of ξn

by conditional expectations E[ξn|Fn−r,n+r ] using (2.3). To simplify formulas we assume the centering condition

F̄ :=
∫

F(x1, . . . , x�) dμ(x1) · · ·dμ(x�) = 0 (2.7)

which is not really a restriction since we can always replace F by F − F̄ . Let � ≥ 1 be an integer, set

SN =
N∑

n=1

F(ξn, ξ2n, . . . , ξ�n)

and S̄N = SN −ESN . All the results presented here hold true in the situation when qi(n)’s are polynomials with positive
leading coefficients taking integer values on the integers, while some of the results hold true even for more general qi(n)’s.
This “nonlinear indexation” case requires some preparation, and so, for the sake of readability, we will discuss it only in
Section 5.

We will obtain our main results under either
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Assumption 2.1. λ = 0 (i.e. F is a bounded Hölder function) and there exist a, d, η > 0 so that

φ(n) + βκ
κ (n) ≤ de−anη

for any n ≥ 1,

or

Assumption 2.2. λ > 0 and there exist d, a, η,M, ζ > 0 so that

φ(n) + βκ∞(n) ≤ de−anη

for any n ≥ 1, and for any k ∈N,

τ k
k = E|ξ1|k =

∫
|x|k dμ(x) ≤ Mk(k!)ζ . (2.8)

Note that under either Assumption 2.1 or Assumption 2.2 there exists a constant a0 so that |ESN | ≤ a0K for any
N ≥ 1. In fact, this estimate holds true under weaker conditions, see the paragraph proceeding Theorem 2.7.

Our first result is the following

Theorem 2.3.

(i) Suppose that Assumption 2.1 holds true and set γ = 1
η

. Then there exist constants c1, c2 > 0 which depend only on
K , �, d , a, η and κ so that for any x > 0,

P(S̄N ≥ x) ≤ exp

(
− x2

2(c1 + c2xN
− 1

2+4γ )
1+2γ
1+γ

)
. (2.9)

(ii) When Assumption 2.2 holds true then (2.9) hold true with γ = 1
η

+ λζ in place of 1
η

and constants c1 and c2 which
depend only on K , �, d , a, η, M , ζ , κ , λ and τλ.

The above theorem holds true also for certain nonlinear qi(n)’s such as polynomials and functions with exponential
growth, see Section 5. Note that when βq(r0) = 0 for some q and r0 then Theorem 2.3 holds true for any Borel function
F satisfying (2.6), namely, there is no need in (2.5) or of any other type of continuity.

Next, by taking x = εN , ε > 0 in (2.9) (or in the corresponding estimate under Assumption 2.2) and using that
|ESN | ≤ a0K we obtain that

max
(
P(S̄N ≥ εN),P (SN ≥ εN)

) ≤ e−c7(εN)
1

1+γ
, N ≥ c6ε

−2− 1
γ (2.10)

where c6 and c7 are positive constants which do not depend on N and a, and γ equals either 1
η

or 1
η

+ λζ , depending on
the case. The power of N in (2.10) is not optimal since it is smaller than 1. In order to obtain more accurate estimates on
the tail probabilities we also prove the following

Theorem 2.4. Suppose that F is a bounded Hölder continuous function and that

ϕ :=
∞∑

n=0

φ(n) < ∞.

Fix some N ≥ 1 and r ≥ 0 and set δ1 := K(ϕ + r + 1) and δ2 = KNβκ∞(r) + δ1. Then there exists a constant B > 0
which depends only on � so that for any λ > 0,

EeλSN ≤ eBλ2N�δ1+Bλδ2 . (2.11)

When β∞(r0) = 0 for some r0 ≥ 0 then the above results hold true with r = r0 for any bounded Borel function F , i.e.
there is no need in any kind of continuity.
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Theorem 2.4 holds true also when qi(n)’s are polynomials with positive leading coefficients taking integer values on
the integers, see Section 5. Note that the above theorem does not require that (ξn, ξm) ∼ μm−n since it does not involve the
limit D2 = limN→∞ 1

N
ES2

N (which does not necessarily exist without this assumption about the distribution of (ξn, ξm)).
Most of the rest of the results obtained in this paper require that D2 exists, and so we have assumed that (ξn, ξm) ∼ μm−n

at the beginning for the sake of convenience.
Next, using the Chernoff bounding method, in Section 4 we derive from (2.11) that for any t > 0,

P(SN ≥ t + Bδ2) ≤ e
− t2

4B2N�δ2
1 . (2.12)

When β∞(r0) = 0 for some r0 ≥ 0 then by taking r = r0 the terms δ1 and δ2 are constants, and therefore we obtain
optimal exponential concentration inequalities of the form

P(SN ≥ εN) ≤ e−cε2N, N ≥ 2Bδ2

ε

where c = δ2
16�δ2

1
> 0 and ε > 0. When β∞(r) convergence to 0 as r → ∞ then for any ε > 0 we can take a sufficiently

large r0 = r0(ε) and obtain that there exists a constant c(ε) > 0 so that for any N ≥ 1 and t > 0,

P(SN ≥ t + 0.5εN) ≤ e−c(ε) t2
N

and in particular

P(SN ≥ εN) ≤ e−c1(ε)N (2.13)

for some constant c1(ε) > 0 which depends on ε but not on N . When some rate of decay of βκ∞(r) to 0 is known we can
find an explicit c(ε). For instance, when βκ∞(r) ≤ de−ur , d,u > 0 for any r ≥ 0, we can take r0 of the form r0 = −c ln ε

and then the above estimate will hold true with c(ε) having the form c(ε) = q0| ln ε|−1 for some constant q0 which
depends only on �, d , u, κ and K .

Remark 2.5. Let (X , T ) be a Young tower (see [31] and [32]) and μ be an appropriate absolutely continuous invariant
measure. Consider the σ -algebras Fn,m = ∨m

k=n T −kM which are generated by T and the partition M defining the
separation time on the tower. Then (see [21]), the mixing coefficients φ(n) decay in the same speed as the tails of the
tower. Let h1, . . . , h℘ be real valued functions on X which are either constant on atoms of the partition or are Hölder
continuous functions and let ξn = (h1 ◦ T n, . . . , h℘ ◦ T n), n ≥ 1. Then, (2.13) holds true (with an appropriate c(ε)’s)
assuming that the tails converge sufficiently fast to 0. Note that when h1, . . . , h℘ are Hölder continuous functions, then
the centralized sum S̄N can be written as a reverse martingale, and therefore (see [7]), in these circumstances we obtain
optimal exponential concentration inequality of the form

P(S̄N ≥ t) ≤ e−c t2
N , N ≥ 1, t > 0

where c is some constant. Plugging in t = εN , ε > 0 we derive that for any N ≥ 1,

P(S̄N ≥ εN) ≤ e−cε2N,

namely we can take c(ε) of the form c(ε) = cε2 when SN is replaced with S̄N .

Recall now (see [9]) that a sequence of probability measures μN , N ≥ 1 on a topological space X is said to satisfy the
large deviation principle (LDP) with speed sN ↗ ∞ and good rate function I (·) if I is lower semicontinuous, the sets
I−1[0, α], α ≥ 0 are compact and for any Borel measurable set � ⊂X ,

lim inf
N→∞

1

sN
lnμN(�) ≥ − inf

x∈�o
I (x)

and

lim sup
N→∞

1

sN
lnμN(�) ≤ − inf

x∈�̄
I (x)
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where �o denotes the interior of a set � and �̄ denotes its closure. A sequence of random variables WN,N ≥ 1 is said
to satisfy the LDP with speed sN and good rate function I (·) if the sequence L(WN), N ≥ 1 of the laws of the WN ’s
satisfies the appropriate LDP. We also recall the following terminological convention. When WN , N ≥ 1 satisfies the
law of large numbers and sN grows slower than linear in N the appropriate LDP is usually called a moderate deviation
principle (MDP) and the case when sN = N is referred to as the LDP.

We will also prove the following

Theorem 2.6.

(i) Suppose that Assumption 2.1 holds true and set γ = 1
η

. Set vN = √
Var(SN) and when vN > 0 also set ZN = S̄N

vN
. Let

� be the standard normal distribution function. Then the limit D2 = limN→∞ 1
N
ES2

N exists and when D2 > 0 there
exist constants c3, c4, c5 > 0 which depend only on �, K , κ , a, d and η so that for any N ≥ c3 we have vN > 0 and

for any 0 ≤ x < c4N
1

2+4γ ,∣∣∣∣ln P(ZN ≥ x)

1 − �(x)

∣∣∣∣ ≤ c5
(
1 + x3)N− 1

2+4γ and

∣∣∣∣ln P(ZN ≤ −x)

�(−x)

∣∣∣∣ ≤ c5
(
1 + x3)N− 1

2+4γ .

(2.14)

Moreover, let aN , N ≥ 1 be a sequence of real numbers so that

lim
N→∞aN = ∞ and lim

N→∞aNN
− 1

2+4γ = 0.

Then the sequence (DN
1
2 aN)−1SN , N ≥ 1 satisfies the MDP with the speed sN = a2

N and the rate function I (x) = x2

2 .
(ii) When Assumption 2.2 holds true all the results stated above hold true with γ = 1

η
+ λζ in place of 1

η
and constants

c1, c2 and c3 which depend only on K , �, d , a, η, M , ζ , κ , λ and τλ.

Theorem 2.6 also holds true when qi(n)’s are polynomials, or functions with certain exponential growth, see Section 5.
When βq(r0) = 0 for some q and r0 then all the results stated in Theorem 2.6 hold true for any Borel function F satisfying
(2.6). We also remark that (2.14) is obtained using Lemma 2.3 in [30]. This lemma yields certain estimates close to the
ones in (2.14), but for larger domain of x’s. For the sake of readability these results are not stated here.

Theorems 2.3, 2.4 and 2.6 will follow from the following general results. The first one is

Theorem 2.7. Suppose that for some b > 2 and m > 0,

1

b
≥ λ

m
+ 1, max(τm, τλb) < ∞ (2.15)

and

�(b,κ) :=
∞∑

n=0

(n + 1)φ1− 1
b (n) +

∞∑
n=0

(n + 1)βκ
κ (n) < ∞.

Then the limit D2 = limN→∞ 1
N
ES2

N exists and there exists c� > 0 which depends only on � so that

∣∣ES2
N − D2N

∣∣ ≤ c�C0N
1
2 (2.16)

for any N ∈ N, where C0 = K2(1 + γ λ
m)�(b, κ). Moreover, D2 > 0 if and only if there exists no stationary in the wide

sense process {Vn : n ≥ 1} such that

F
(
ξ (1)
n , ξ

(n)
2n , . . . , ξ

(�)
�n

) = Vn+1 − Vn, P -a.s.

for any n ∈ N, where ξ (i), i = 1, . . . , � are independent copies of ξ = {ξn : n ≥ 1}. When λ = 0 then the above results
hold true without assuming (2.15) while when β∞(r) = 0 for some r they hold true for Borel measurable F ’s without
assuming (2.5).
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This theorem is a particular case of Theorem 1.3.4 in [19] and Theorem 2.2 in [15]. In fact, it is a consequence of the
arguments in [25,26] and [17] and is formulated here for readers’ convenience. We refer the readers to [16] for conditions
in the special case when ξn, n ≥ 0 forms a sufficiently fast mixing Markov chain. Remark that in the circumstance of
Theorem 2.7 there exists a constant a� which depends only on � so that |ESN | ≤ a�KC0 for any N ≥ 1. Indeed this is a
consequence of (2.7) and Corollary 1.3.14 in [19]. Therefore, for any N ≥ 1,

∣∣Var(SN) − D2N
∣∣ ≤ C1N

1
2 (2.17)

for some constant C1 which depends only on C0, � and K .
We recall next that the k-th cumulant of a random variable W with finite moments of all orders is given by

�k(W) = 1

ik

dk

dtk

(
lnEeitW

)|t=0.

Note that �1(W) = EW , �2(W) = Var(W) and that �k(aW) = ak�k(W) for any a ∈R and k ≥ 1.

Theorem 2.8. Under Assumption 2.1, there exists a constant c0 which depends only on K , �, d , a, η and κ so that for
any k ≥ 3,∣∣�k(S̄N )

∣∣ ≤ N(k!)1+γ1(c0)
k−2

where γ1 = 1
η

. When Assumption 2.2 holds true, there exists a constant c0 which depends only on K , �, d , a, η, M , ζ , κ

and λ so that for any k ≥ 3,∣∣�k(S̄N )
∣∣ ≤ N(k!)1+γ2(c0)

k−2

where γ2 = γ1 + λζ .

Note that Theorem 2.8 holds true without assuming that (ξn, ξm)∼ μm−n since its proof does not require that the limit

D2 exists. When (ξn, ξm)∼ μm−n then N− 1
2 S̄N satisfies the CLT and so the term N on the above right hand sides should

not be alarming since Theorem 2.8 implies that

∣∣�k

(
N− 1

2 S̄N

)∣∣ ≤ (k!)1+γ
(
N− 1

2 c0
)k−2

for any k ≥ 3, where γ is either γ1 or γ2, depending on the case. After proving Theorem 2.8, the moderate deviations
theorems and the (stretched) exponential concentration inequalities stated in Theorems 2.3 and 2.6 follow from the so
called method of cumulants (see [30] and [10]).

Theorem 2.4 will follow from the following result together with the Hoeffding–Azuma inequality.

Theorem 2.9. Suppose that F is a bounded Hölder function and that

ϕ :=
∞∑

n=0

φ(n) < ∞.

Then there exists a constant B > 0 which depends only on � so that for any N ≥ 1 and r ≥ 0 there is a martingale M
(N,r)
n ,

n ≥ 1 whose differences are bounded by δ′
1 := BK(ϕ + r + 1) and

∥∥SN − M
(N,r)
�N

∥∥∞ ≤ δ′
2 := BKNβκ∞(r) + δ′

1.

When β∞(r0) = 0 for some r0 ≥ 0 then the above results hold true with r = r0 for any bounded Borel function F .

2.1. Product functions

In the special case when F has the form

F(x1, . . . , x�) =
�∏

i=1

fi(xi) (2.18)
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the results stated in Theorems 2.3 (i) and Theorem 2.6 (i) hold true under weaker assumptions, as described in what
follows.

Recall first that the α-mixing coefficients are given by

α(n) = sup
{
α(F−∞,k,Fk+n,∞) : k ∈ Z

}
(2.19)

where for any two sub-σ -algebras G,H ⊂F ,

α(G,H) = sup
{∣∣P(A ∩ B) − P(A)P (B)

∣∣ : A ∈ G,B ∈H
}
. (2.20)

Then (see [3]) α(n) ≤ 1
2φ(n) for any n ≥ 0, and so, assumptions involving α(n) are weaker than ones involving φ(n).

We also recall that (see [11]) for any bounded functions g1, . . . , gL, numbers m1 < n1 < m2 < n2 < · · · < mL < nL and
Fmi,ni

-measurable random vectors Ui , i = 1,2, . . . ,L,∣∣∣∣∣E
L∏

i=1

gi(Ui) −
L∏

i=1

Eg(Ui)

∣∣∣∣∣ ≤ 8

(
L∏

i=1

sup |gj |
)

L∑
t=2

α(mt − nt−1). (2.21)

Relying on (2.21) we show in Section 3.4 that all the results stated in Theorems 2.3 (i) and Theorem 2.6 (i) hold true
when fi ’s are bounded. The situation of unbounded fi ’s satisfying certain moment conditions is discussed there, as well.

Next, let T : � → � be a measurable and P -preserving map. We assume here that there exists a space H of real valued
bounded functions on �, a norm ‖ · ‖H on H, a constant d and a sequence c(m), m ≥ 1, which converges to 0 as m → ∞,
so that for any f,g ∈H and n ≥ 1,

CorP
(
g,f ◦ T n

) ≤ d‖g‖H sup |f |c(n). (2.22)

Usually, in applications, � will be a topological space and H will be a space of Hölder continuous functions equipped with
an appropriate norm. We also assume that the fi ’s are members of H. Obtaining the MDP and exponential concentration
inequalities under condition (2.22) is important when either there are no underlying Markov partitions or there is no
effective estimate on the diameter of such partitions (so it is impossible to approximate effectively Hölder continuous
functions by functions which are constant on elements of such partitions). For instance, (2.22) holds true with c(n) =
e−an, a > 0 in the (nonrandom) setup of [28], where T is a locally distance expanding map and H is a space of (locally)
Hölder continuous functions, while there are no underlying Markov partitions. Let n1 < nL < · · · < nL and g1, . . . , gL ∈
H. By writing

L∏
i=1

gi ◦ T ni = (
g1 · G ◦ T n2−n1

) ◦ T n1

where G = ∏L
i=2 gi ◦ T ni−n2 we obtain that∣∣∣∣∣EP

L∏
i=1

gi ◦ T ni −
L∏

i=1

EP gi ◦ T ni

∣∣∣∣∣ ≤ dML
L∑

t=2

c(nt − nt−1) (2.23)

where M = max{sup |gi |,‖gi‖H : i = 1,2, . . . ,L}. Suppose next that

∞∑
n=1

nc(n) < ∞.

Using (2.23) in place of (2.21), we will prove in Section 3.4 that all the results stated in Theorem 2.3 (i), Theorem 2.6 (ii)
and Theorem 2.7 hold true with βκ(n) ≡ 0 and c(n) in place of φ(n).

3. Nonconventional moderate deviations and exponential inequalities via the method of cumulants

3.1. General estimates of cumulants

Let V be a finite set and ρ : V × V → [0,∞) be so that ρ(v, v) = 0 and ρ(u, v) = ρ(v,u) for any u,v ∈ V . For any
A,B ⊂ V set

ρ(A,B) = min
{
ρ(a, b) : a ∈ A,b ∈ B

}
.
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Let Xv , v ∈ V be a collection of centered random variables with finite moments of all orders, and for each v ∈ V and
t ∈ (0,∞] let �v,t ∈ (0,∞] be so that ‖Xv‖t ≤ �v,t . Set W = ∑

v∈V Xv . The following result is (essentially) proved in
[14] (see Theorem 1 there).

Theorem 3.1. Let 0 < δ ≤ ∞. Suppose that for any k ≥ 1, b > 0 and a finite collection Aj , j ∈ J of (nonempty) subsets
of V so that mini �=j ρ(Ai,Aj ) ≥ b and r := ∑

j∈J |Aj | ≤ k we have

∣∣∣∣E ∏
j∈J

∏
i∈Aj

Xi −
∏
j∈J

E

∏
j∈Aj

Xi

∣∣∣∣ ≤ (r − 1)

( ∏
j∈J

∏
i∈Aj

�i,(1+δ)k

)
γδ(b, k) (3.1)

where γδ(b, r) is some nonnegative number which depends only on δ, b and r , and |�| stands for the cardinality of a
finite set �. Then for any k ≥ 2 and s > 0,

∣∣�k(W)
∣∣ ≤ kk

(
2kC(k)

(
Ls(k)

)k−1 + Rs(δ, k)
)

where for any 0 < t ≤ ∞,

Ls(t) = sup

{ ∑
u∈V :ρ(u,v)≤s

�u,t : v ∈ V

}
, C(t) =

∑
v∈V

�v,t ,

Rs(δ, k) =
∑

m≥s+1

(
Lm

(
(1 + δ)k

))k−1
C

(
(1 + δ)k

)
λ
(
γ̃δ(m, k), k

)
,

γ̃δ(m, k) = max
{
γδ(m, r)/r : 1 ≤ r ≤ k

}

and λ(ε, k) = k!
[ k

2 ]∑
r=1

εr(3r + 1)k−2r

r(k − 2r)! .

The difference in the formulations of Theorem 1 in [14] and Theorem 3.1 is that the result from [14] relies on a certain
local mixing condition instead of (3.1). But in proof from there the author obtains (3.1) with �v,t = ‖Xv‖t and appropriate
γδ(b, k) relying on that mixing condition, and so Theorem 3.1 is proved exactly as in [14]. We reformulated this theorem
in order to include the case when βq(r) �= 0 for any r and the second situation considered in Section 2.1.

Note that by Stirling’s approximation there exists a constant C > 0 so that kk ≤ Cekk! for any k ≥ 1. Remark also that
when condition (3.1) holds true only in the case when |J | = 2, then using induction this implies that (3.1) holds true with
kγδ(b, k) instead of γδ(b, k), for collections of more than two sets. Compare this with [12,22] and [8] in the case when
V = {1, . . . , n} and ρ(x, y) = |x − y|.

Next, the following result is a consequence of Theorem 3.1.

Corollary 3.2. Suppose, in addition to the assumptions of Theorem 3.1, that there exist c0 ≥ 1 and u0 ≥ 0 so that∣∣{u ∈ V : ρ(u, v) ≤ s
}∣∣ ≤ c0s

u0 (3.2)

for any v ∈ V and s ≥ 1. Assume also that γ̃δ(m, k) ≤ de−amη
for some a,η > 0, d ≥ 1 and all k,m ≥ 1. Then there exists

a constant c which depends only on c0, a,u0 and η so that for any k ≥ 2,

∣∣�k(W)
∣∣ ≤ dk|V |ck(k!)1+ u0

η
(
Mk

k + Mk
(1+δ)k

)
(3.3)

where for any q > 0,

Mq = max{�v,q : v ∈ V } and Mk
q = (Mq)k.

When the Xv’s are bounded and (3.1) holds true with δ = ∞ we can always take �v,t = �v,∞, t > 0 and then for any
k ≥ 2,

∣∣�k(W)
∣∣ ≤ 2dk|V |Mk∞ck(k!)1+ u0

η . (3.4)
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When δ < ∞ and there exist θ ≥ 0 and M > 0 so that

(�v,k)
k ≤ Mk(k!)θ (3.5)

for any v ∈ V and k ≥ 1, then for any k ≥ 2,

∣∣�k(W)
∣∣ ≤ 3C

θ
1+δ dk|V |ck(1 + δ)kMk(k!)1+ u0

η
+θ (3.6)

where C is some absolute constant.

The proof of this corollary is elementary but for readers’ convenience we will give all the details.

Proof. Let k ≥ 2 and m ≥ s ≥ k
1
η . Set ε = εm = e−amη

. Then γ̃δ(m, k) ≤ dε and so

λ
(
γ̃δ(m, k), k

) ≤ dkk!4k

[ k
2 ]∑

r=1

εrrk−2r−1

(k − 2r)! ≤ dkk!4k

[ k
2 ]−1∑
r=1

εrrk−2r

(k − 2r)! + dkk!4kε[ k
2 ].

Observe that k!4kε[ k
2 ] ≤ Hε for some constant H which depends only on a and η, where we used that mη ≥ k. Moreover,

by Stirling’s approximation there exists an absolute constant C > 0 so that for any 1 ≤ r ≤ [ k
2 ] − 1,

1

(k − 2r)! ≤ C
ek−2r

(k − 2r)k−2r
.

Therefore,

λ
(
γ̃δ(m, k), k

) ≤ Ck!(4de)k
[ k

2 ]−1∑
r=1

εr

(
r

k − 2r

)k−2r

+ dkHε. (3.7)

Consider next the function gm = gm,k : [1, k
2 − 1] → R given by

gm(r) = εr

(
r

k − 2r

)k−2r

= er ln ε−(k−2r) ln( k
r
−2).

Then,

g′
m(r) =

(
ln ε + 2 ln

(
k

r
− 2

)
+ k

r

)
gm(r).

If g′
m(r0) = 0 for some r0 ∈ [1, k

2 − 1] then

ak ≤ amη = − ln ε = 2 ln

(
k

r0
− 2

)
+ k

r0
≤ 3k

r0

and so r0 ≤ 3
a

:= q . Hence,

max
r∈[1, k

2 −1]
gm(r) ≤ max

(
gm(1), gm

(
k

2
− 1

)
, max
w∈[1,qk]

gm(w)

)

where qk = min( k
2 − 1, q) and we set max∅ = −∞. Observe now that

gm(1) = ε

(k − 2)k−2
≤ k2ε

k! ≤ 3k(k!)−1ε.

Since mη ≥ k we also have

gm

(
k

2
− 1

)
≤ k2ε

k
2 −1 ≤ εk2e−ak( k

2 −2) ≤ c1ε(k!)−1
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where c1 is a constant which depends only on a. When k ≤ 2(q + 1) we can trivially write

max
w∈[1,qk]

gm(w) ≤ ε(ψ0)
k(k!)−1

for some constant ψ0 which depends only on a. On the other hand, when k > 2(q + 1) then using that the function
x → x−x is strictly decreasing on [1,∞) and then Stirling’s approximation we derive that

max
w∈[1,qk]

gm(w) = max
w∈[1,q]

gm(w) ≤ ε(q + 1)k
(
k − [2q] − 1

)−(k−[2q]−1) ≤ εψk(k!)−1

where ψ is a constant which depends only on a, and we also used the inequality k! ≤ (k − l)!kl ≤ (k − l)!3kl , 1 ≤ l ≤ k.
We conclude from the above estimates that there exists a constant R = R(a,η) which depends only on a and η so that for
any 1 ≤ r ≤ k

2 − 1,

gm(r) = εr

(
r

k − 2r

)k−2r

≤ εRk(k!)−1

which together with (3.7) yields

λ
(
γ̃δ(m, k), k

) ≤ dkRk
0ε = dkRk

0e−amη

(3.8)

where R0 = R0(a, η) ≥ 1 is another constant.
Next, using (3.2), (3.8) and the definitions of C(t) and Ls(t) we obtain that

Rs(δ, k) ≤ dk(1 + H)Rk
0(M(1+δ)k)

k|V |
∑

m≥s+1

mu0(k−1)e−amη

where Ls(t), C(t), Rs(δ, k) are defined in Theorem 3.1. Set j0 = j0(k, η) = [ (k−1)u0+2
η

] + 1. Then

mu0(k−1)e−amη ≤ mu0(k−1)j0!
(
amη

)−j0 ≤ j0!a−j0m−2.

By Stirling’s approximation there exists a constant Q which depends only on η and u0 so that j0! ≤ Qk(k!)
u0
η and

therefore,

∑
m≥s+1

mu0(k−1)e−amη ≤ j0!
∑

m≥s+1

1

m2
≤ 1

s
j0! ≤ 1

s
(Q1)

k(k!)
u0
η

where Q1 is a constant which depends only on η, a and u0. Taking s = k
1
η the estimate (3.3) follows by Theorem 3.1, the

definition of Ls(m), Stirling’s approximation and (3.2). By Stirling’s approximation ((1 + δ)k)! ≤ C(k!)1+δ(1 + δ)(1+δ)k

and (3.6) follows now by (3.3) and the inequality (1 + δ)
1

1+δ ≤ e. �

3.2. Proof the Theorem 2.8

Fix some N ≥ 1 and set V = VN = {1,2, . . . ,N}. For any n,m ∈ V set

ρ(n,m) = ρ�(n,m) = min
1≤i,j≤�

|in − jm|.

Then for any �1,�2 ⊂ V ,

ρ(�1,�2) = inf
{|x − y| : x ∈ T1, y ∈ T2

} := dist(T1,T2) (3.9)

where Ti = {j t : t ∈ �i,1 ≤ j ≤ �}, i = 1,2. Moreover, for any s ≥ 1 and 1 ≤ n ≤ N ,

As(n,N) := {
m ∈ V : ρ(m,n) ≤ s

} =
⋃

1≤i,j≤�

[
in − s

j
,
in + s

j

]
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and so

∣∣As(n,N)
∣∣ ≤ 3�2s. (3.10)

Therefore (3.2) holds true in our situation with u0 = 1. For each n ∈ V put �n = (ξn, ξ2n, . . . , ξ�n) and

Xn = F(�n) −EF(�n).

Then S̄N = ∑
n∈V Xn. We will verify that the remaining assumptions of Corollary 3.2 hold true with the above Xn’s.

First, for each r ≥ 0 and n ≥ 1, set ξn,r = E[ξn|Fn−r,n+r ], �n,r = (ξn,r , ξ2n,r , . . . , ξ�n,r ) and

Xn,r = F(�n,r ) −EF(�n,r ).

Set ρ∞ = 2K(1 + �) and �t = 2K(1 + �τλ
λt ), 0 < t < ∞. When λ = 0 then by (2.6) for any n ≥ 1 and r ≥ 0,

max
(‖Xn‖∞,‖Xn,r‖∞

) ≤ 2K(1 + �) = �∞ (3.11)

while when λ > 0 we derive similarly that for any 0 < t < ∞, n ≥ 1 and r ≥ 0,

max
(‖Xn‖t ,‖Xn,r‖t

) ≤ 2K
(
1 + �τλ

λt

) = �t (3.12)

where we also used the contraction of conditional expectations. Note that �t1 ≤ �t2 whenever 0 < t1 ≤ t2 < ∞. In our
future applications of Corollary 3.2 we will always take �v,∞ = �∞ and �v,t = �t for 0 < t < ∞.

Next, when (2.8) holds true and λ > 0 then by Stirling’s approximation there exists an absolute constant C > 1 so that
for any k ≥ 1,

τλk
λk = E|ξ1|kλ ≤ Mkλ

(
(kλ)!)ζ ≤ Cζ(λ+1)Qk(k!)λζ ≤ (

Cζ(λ+1)Q
)k

(k!)λζ (3.13)

where Q = λζλMλ ≥ 1. Therefore, the collection of numbers �v,k = �k satisfies (3.5) with 4K�Cζ(λ+1)Q in place of M

and with θ = λζ .
Now we will verify condition (3.1). We will need first the following general result. Let Ui , i = 1,2, . . . ,L be di -

dimensional random vectors defined on the probability space (�,F,P ) from Section 1, and {Cj : 1 ≤ j ≤ s} be a partition
of {1,2, . . . ,L}. Consider the random vectors U(Cj ) = {Ui : i ∈ Cj }, j = 1, . . . , s, and let

U(j)(Ci ) = {
U

(j)
i : i ∈ Cj

}
, j = 1, . . . , s

be independent copies of the U(Cj )’s. For each 1 ≤ i ≤ L let ai ∈ {1, . . . , s} be the unique index such that i ∈ Cai
, and for

any bounded Borel function H : Rd1+d2+···+dL →R set

D(H) = ∣∣EH(U1,U2, . . . ,UL) −EH
(
U

(a1)
1 ,U

(a2)
2 , . . . ,U

(aL)
L

)∣∣. (3.14)

The following result is proved in Corollary 1.3.11 in [19] (see also Corollary 3.3 in [15]),

Lemma 3.3. Suppose that each Ui is Fmi,ni
-measurable, where ni−1 < mi ≤ ni < mi+1, i = 1, . . . ,L, n0 = −∞ and

mL+1 = ∞. Then, for any bounded Borel function H :Rd1+d2+···+dL → R,

D(H) ≤ 4 sup |H |
L∑

i=2

φ(mi − ni−1) (3.15)

where sup |H | is the supremum of |H |. In particular, when s = 2 then

α
(
σ
{
U(C1)

}
, σ

{
U(C2)

}) ≤ 4
L∑

i=2

φ(mi − ni−1) (3.16)

where σ {X} stands for the σ -algebra generated by a random variable X.
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Next, in order to show that (3.1) holds true we first notice that for any set of pairs (ai, bi), i = 1,2, . . . ,m,

m∏
i=1

ai −
m∏

i=1

bi =
m∑

i=1

∏
1≤j<i

aj (ai − bi)
∏

i<j≤m

bj . (3.17)

Let n1, . . . , nm ∈ V and q ≥ 0. When λ = 0 using (3.17), (3.11) and (2.5) we obtain that for each 1 ≤ i ≤ m,∣∣∣∣∣E
m∏

i=1

Xni
−E

m∏
i=1

Xni,q

∣∣∣∣∣ ≤ m(�∞)m−1 max
{
E|Xni

− Xni,q |,1 ≤ i ≤ m
}

≤ m(�∞)m�βκ
κ (q). (3.18)

When λ > 0 then by the contraction of conditional expectations for any 1 ≤ i ≤ m,

‖Xni
− Xni,q‖m ≤ K

∥∥∥∥∥1 +
�∑

j=1

(|ξjni
|λ + |ξjni ,q |λ)

∥∥∥∥∥
m

�∑
j=1

∥∥|ξjni
− ξjni ,q |κ∥∥∞

≤ K�
(
1 + 2�τλ

mλ

)
βκ∞(q) ≤ �m�βκ∞(q),

where �m is defined in (3.12). Therefore by (3.17), (3.12), (2.5) and the Hölder inequality,∣∣∣∣∣E
m∏

i=1

Xni
−E

m∏
i=1

Xni,q

∣∣∣∣∣ ≤ m(�m)m�βκ∞(q). (3.19)

Now, let k, b ≥ 1 and a finite collection Aj , j ∈ J of nonempty subsets of V be so that r := ∑
j∈J |Aj | ≤ k and

ρ(Aj ,Ai) ≥ b whenever i �= j . Set qb = [ b
3 ]. When λ = 0 set δ = ∞ and

γ (b, r) = γ∞(b, r) = 128�r
(
φ(qb) + βκ

κ (qb)
)

while when λ > 0 set δ = 1 and

γ (b, r) = γ1(b, r) = 128�r
(
φ

1
2 (qb) + βκ∞(qb)

)
.

We claim that in both cases (3.1) holds true with �v,t = �t defined in (3.12) and (3.11) and the above δ and γδ(b, r)

(depending on the case). Indeed, when λ = 0 and δ = ∞ set γ ′
δ(b, r) = 32�rφ(qb), while when λ > 0 and δ = 1 we set

γ ′
δ(b, r) = 32�r(φ(qb))

δ
1+δ = 32�r

√
φ(qb). In order to prove this claim we first assert that in both cases,∣∣∣∣E ∏

j∈J

∏
i∈Aj

Xi,qb
−

∏
j∈J

E

∏
j∈Aj

Xi,qb

∣∣∣∣ ≤ (r − 1)

( ∏
j∈J

∏
i∈Aj

‖Xi,qb
‖(1+δ)k

)
γ ′
δ(b, k). (3.20)

It is clear that (3.1) with these Aj ’s, b and k follow from either (3.18) and (3.20) or (3.19) and (3.20), depending on the
case, where when r ≥ 2 we use that r ≤ 2(r − 1). In order to obtain (3.20) we need first the following. Let �1,�2 ⊂ N

be so that ρ(�1,�2) ≥ b and set d1 = |�1| + |�2| and Ti = {jx : x ∈ �i,1 ≤ j ≤ �}, i = 1,2. Then by (3.9) we have
dist(T1,T2) = ρ(�1,�2) ≥ b and so we can write

T := T1 ∪ T2 =
L⋃

i=1

Ci

where L ≤ �d1, ci + b ≤ ci+1 for any ci ∈ Ci and ci+1 ∈ Ci+1, i = 1,2, . . . ,L − 1 and each one of the Ci ’s is either
a subset of T1 or a subset of T2. Applying (3.16) with the random vectors Ui = {ξj,qb

: j ∈ Ci}, i = 1,2, . . . ,L and the
partition of {1,2, . . . ,L} into the sets C1 = {1 ≤ i ≤ L : Ci ⊂ T1} and C2 = {1 ≤ i ≤ L : Ci ⊂ T2} we obtain that

α
(
σ {Xi,qb

: i ∈ �1}, σ {Xj,qb
: j ∈ �2}

) ≤ 4�d1φ(qb). (3.21)

Recall next that (see Corollary A.2 in [20]) for any two sub-σ -algebras G,H ⊂F ,

Cov(η1, η2) ≤ 8‖η1‖u‖η2‖v

(
α(G,H)

)1− 1
u
− 1

v , (3.22)
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whenever h1 is G-measurable, h2 is H-measurable and 1 < u,v ≤ ∞ satisfy that 1
u

+ 1
v

< 1 (where we set 1
∞ = 0). The

estimate (3.20) follows now exactly as in the paragraph preceeding equality (10) in [14], relying on (3.22) and on (3.21),
in place of the mixing conditions from [14]. Indeed, writing J = {1,2, . . . , J }, setting �1 = A1 and �2 = ⋃

1<i≤J Ai

and applying (3.22) with u = (1+δ)k
|�1| and v = (1+δ)k

|�2| we obtain that

∣∣∣∣Cov

( ∏
i∈�1

Xi,qb
,

∏
i∈�2

Xi,qb

)∣∣∣∣ ≤ 8

∥∥∥∥ ∏
i∈�1

Xi,qb

∥∥∥∥
u

∥∥∥∥ ∏
i∈�2

Xi,qb

∥∥∥∥
v

α1− 1
1+δ (3.23)

where α = α(σ {Xi,qb
: i ∈ �1}, σ {Xj,qb

: j ∈ �2}) and we also used that α ≤ 1 and

1

u
+ 1

v
= |�1 ∪ �2|

k(1 + δ)
= r

k(1 + δ)
≤ 1

1 + δ
.

Using the Hölder inequality to estimate the norms on the right hand side of (3.23) and then repeating the above argu-
ments with Ji = {i, i + 1, . . . , J }, i = 2,3, . . . , J in place of J we obtain (3.20), taking into account that J = |J | ≤∑

i∈J |Ai | = r . Using either (3.11) or (3.12) we conclude that all the conditions of Corollary 3.2 are satisfied under either
Assumption 2.1 or Assumption 2.2, and the proof of Theorem 2.8 is complete.

3.3. Proof of Theorems 2.3 and 2.6

First, (2.9) from Theorem 2.3 follows from Theorem 2.8 and Lemma 2.3 in [30]. Next, for the purpose of proving
Theorem 2.6, suppose that D2 > 0. Then (2.14) follows by Lemma 6.2 in [10] (which is a consequence of Lemma 2.3 in
[30]). Finally, let aN , N ≥ 1 be a sequence of real numbers so that

lim
N→∞aN = ∞ and lim

N→∞aNN
− 1

2+4γ = 0

where γ = γ1 = 1
η

under Assumption 2.1 and γ = γ2 = γ1 + λζ under Assumption 2.2. The variances vN grow linearly

fast in N and therefore by Theorem 2.8 and Theorem 1.1 in [10] the sequence (aN)−1ZN , N ≥ 1 satisfies the MDP with
the speed sN = a2

N and the rate function I (x) = 1
2x2. Since vN/N converges to D2 > 0 as N → ∞, |ESN | is bounded in

N and I is continuous we derive that (DN
1
2 aN)−1SN , N ≥ 1 satisfies the MDP stated in Theorem 2.6, and the proof of

Theorem 2.6 is complete.

3.4. Product functions case

Consider the situation when F has the form

F(x1, . . . , x�) =
�∏

i=1

fi(xi).

We will describe here shortly how to prove Theorems 2.3 and 2.6 in the situations discussed at the end of Section 2.

3.4.1. α-mixing case
First, in the notations of Lemma 3.3, we obtain that (3.15) holds true for functions of the form H(u) = ∏L

i=1 gi(ui) when
all of the gi ’s are bounded, where φ(mi − ni−1) is replaced by 4α(mi − ni−1) for i = 2,3, . . . ,L. Indeed, setting

u(Cj ) = {ui : i ∈ Cj } and Gj

(
u(Cj )

) =
∏
i∈Cj

gi(ui), j = 1,2, . . . , s,

we derive from (2.21), exactly as in the proof of Corollary 1.3.11 in [19] (or Corollary 3.3 in [15]), that∣∣∣∣∣EH(U1, . . . ,UL) −
s∏

j=1

EGj

(
U(Cj )

)∣∣∣∣∣ ≤ 16

(
L∏

j=1

sup |gj |
)

L∑
i=2

α(mi − ni−1). (3.24)

Note that the derivation of (3.24) is indeed possible since (2.21) holds true for arbitrary bounded gi ’s, appropriate Ui ’s
and partitions C’s. Relying on (3.24) we can approximate the left-hand side of (3.1) and therefore the results stated in
Theorems 2.3 and 2.6 hold true with α(n) in place of φ(n).
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We remark that (2.21) follows, in fact, by a repetitive application of (3.22) with u = v = ∞. Applying (3.22) with finite
u’s and v’s we obtain similar estimates when the gi(Ui)’s are not bounded but only satisfy certain moment conditions,
where the product

∏L
j=1 sup |gj | is replaced with an appropriate product of the form

∏L
i=1 ‖gi(Ui)‖q and α(mt − nt−1)

is replaced with (α(mt − nt−1))
ζ for an appropriate 0 < ζ < 1. We refer the readers to the proof of (3.20) for the exact

details. Relying on this “unbounded version” of (3.24), we can approximate the left-hand side of (3.1) and obtain results
similar to the ones stated in Theorem 2.3 (ii) and Theorem 2.6 (ii), but with with α(n) in place of φ(n).

3.4.2. Decay of correlations case
Let T , H and c(m),m ≥ 1 be as described at the end of Section 2. Let n1 < n2 < · · · < nL and g1, . . . , gL ∈ H. In the
notations of Lemma 3.3, using (2.23) and the T -invariance of P , we obtain similarly to the above α-mixing case that∣∣∣∣∣EP

L∏
i=1

gi ◦ T ni −
s∏

j=1

EP

∏
i∈Cj

gi ◦ T ni

∣∣∣∣∣ ≤ 2dML
L∑

t=2

c(nt − nt−1) (3.25)

where M = max{sup |gi |,‖gi‖H : i = 1,2, . . . ,L}. Note that when
∑∞

n=1 nc(n) < ∞ then all the results stated in The-
orem 2.7 are proved similarly to [17,26] and [25] relying on (3.25) instead of the mixing assumptions from there. The
inequality (3.25) also yields appropriate estimates of the left-hand side of (3.1), and we conclude that that all the results
stated in Theorem 2.3 (i) and Theorem 2.6 (i) hold true with βκ(n) ≡ 0 and c(n) in place of φ(n).

4. Exponential inequalities via martingale approximation-proof of Theorems 2.4 and 2.9

In this section we adapt the martingale approximation technique from [26] and approximate SN in the L∞ norm by
martingales with bounded differences. As in [26] we first write

F(x1, . . . , x�) =
�∑

i=1

Fi(x1, . . . , xi) (4.1)

where

F�(x1, . . . , x�) = F(x1, . . . , x�) −
∫

F(x1, . . . , x�−1, z) dμ(z)

and for i = 1,2, . . . , � − 1,

Fi(x1, . . . , xi) =
∫

F(x1, . . . , xi, zi+1, . . . , z�) dμ(zi+1) · · ·dμ(z�)

−
∫

F(x1, . . . , xi−1, zi , . . . , z�) dμ(zi) · · ·dμ(z�).

Then for each 1 ≤ i ≤ �,∫
Fi(y1, . . . , yi−1, z) dμ(z) = 0, ∀y1, . . . , yi−1

where for i = 1 we used that F̄ = 0.
Next, recall that (see [3], Ch. 4) for any two sub-σ -algebras G,H ⊂F ,

2φ(G,H) = sup
{∥∥E[g|G] −Eg

∥∥∞ : g ∈ L∞(�,H,P ),‖g‖∞ ≤ 1
}

(4.2)

where φ(G,H) is defined by (2.2). The following result is a version of Corollary 3.6 in [26] and Lemma 1.3.10 in [19]
(see also Lemma 3.2 in [15]). It does not seem to be new but for readers’ convenience and completeness we will prove it
here.

Lemma 4.1. Let G,H ⊂ F be two sub-σ -algebras of F and d ∈ N. Let f (·,ω) : Rd → R be a random function so that
f (x,ω) is H-measurable for any fixed x ∈R

d and P -a.s. for any x, y ∈ R
d ,∣∣f (x,ω)

∣∣ ≤ C and
∣∣f (x,ω) − f (y,ω)

∣∣ ≤ C|x − y|κ (4.3)
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where C > 0 and κ ∈ (0,1] are constants which do not depend on x, y and ω. Set f̃ (x,ω) = E[f (x, ·)|G](ω) and
f̄ (x) = ∫

f (x,ω)dP (ω) = ∫
f̃ (x,ω)dP (ω). Then there exists a measurable set �′ ⊂ � so that P(�′) = 1, f̃ (x,ω) is

defined for all ω ∈ �′ and x ∈ R
d and

sup
x∈Rd

∣∣f̃ (x,ω) − f̄ (x)
∣∣ ≤ 2Cφ(G,H), P -a.s. (4.4)

In particular, for any R
d -valued random variable X,∣∣f̃ (X,ω) − f̄ (X)
∣∣ ≤ 2Cφ(G,H), P -a.s. (4.5)

Proof. Let A = {Ai : i ∈ I} be a countable partition of Rd and denote its diameter by diamA. For each i ∈ I let 1Ai
be

the indicator function of Ai and choose some ai ∈ Ai . Then by (4.3), P -a.s. for any x ∈R
d we have∣∣∣∣f (x,ω) −

∑
i∈I

1Ai
(x)f (ai,ω)

∣∣∣∣ ≤ C(diamA)κ .

Taking conditional expectations with respect to G and then the limit as diamA → 0 we obtain the existence of �′ as in
the statement of the lemma. Fixing A and taking again conditional expectations with respect to G we derive that

sup
x∈Rd

∣∣∣∣f̃ (x,ω) −
∑
i∈I

1Ai
(x)f̃ (ai,ω)

∣∣∣∣ ≤ C(diamA)κ , P -a.s.

Similarly, we obtain by taking expectations that

sup
x∈Rd

∣∣∣∣f̄ (x) −
∑
i∈I

1Ai
(x)f̄ (ai)

∣∣∣∣ ≤ C(diamA)κ .

Using (4.2) and (4.3) we deduce that for each i,∣∣f̃ (ai,ω) − f̄ (ai)
∣∣ ≤ 2

∥∥f (ai, ·)
∥∥∞φ(G,H) ≤ 2Cφ(G,H), P -a.s.

and therefore, P -a.s.,

sup
x∈Rd

∣∣f̃ (x,ω) − f̄ (x)
∣∣ ≤ 2Cφ(G,H) + 2C(diamA)κ .

Taking the limit as diamA→ 0 we obtain (4.4). �

Next, consider the random functions Fi,n,r given by

Fi,n,r (x1, . . . , xi−1,ω) = E
[
Fi(x1, . . . , xi−1, ξn)|Fn−r,n+r

]
(ω).

Note that in view of the uniform continuity of F these are indeed random functions, i.e. all the random variables
Fi,n,r (x1, . . . , xi−1, ·), x1, . . . , xi−1 ∈R

℘ can be defined on a measurable set �′ so that P(�′) = 1. Set

Yi,in = F(ξn, ξ2n, . . . , ξin) and Yi,m = 0 if m /∈ {in : n ∈ N} and

Yi,in,r = Fi,in,r (ξn,r , ξ2n,r , . . . , ξ(i−1)n,r ,ω) and Yi,m,r = 0 if m /∈ {in : n ∈ N} (4.6)

where we recall that ξm,r = E[ξm|Fm−r,m+r ] for any m ≥ 1.
The following result is proved exactly as in the proof of Proposition 5.8 in [26] using Lemma 4.1 and the inequality

|F | ≤ K(1 + �) instead of Corollary 3.6 (ii) and the moment assumptions from there.

Corollary 4.2. Suppose that ϕ := ∑∞
n=0 φ(n) < ∞. Then there exists a constant B > 0 which depends only on � so that

for any l ≥ 0 and r ≥ 0,

∞∑
n=l

∥∥E[Yi,n,r |F−∞,l+r ]
∥∥∞ ≤ BK(r + 1 + ϕ).
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Now we introduced the martingales constructed in [17] relying on ideas originated in [26]. For any 1 ≤ i ≤ �, n ≥ 0
and r ≥ 0 set Ri,n,r = ∑

s≥n+1 E[Yi,s,r |F−∞,n+r ] and

Wi,n,r = Yi,n,r + Ri,n,r − Ri,n−1,r .

Then when i and r are fixed Wi,n,r , n ≥ 1 is a martingale difference with respect to the filtration {F−∞,n+r : n ≥ 1} and
by Corollary 4.2,

‖Ri,n,r‖∞ ≤ 2BK(ϕ + r + 1) (4.7)

and therefore there exists a constant B1 > 0 which depends only on � so that

‖Wi,n,r‖∞ ≤ B1K(ϕ + r + 1).

Set W
(N)
i,n,r = 1{n≤iN}Wi,n,r ,

W(N)
n,r =

�∑
i=1

W
(N)
i,n,r ,

M
(N)
i,n,r = ∑n

m=1 W
(N)
i,m,r and

M(N,r)
n =

n∑
m=1

W(N)
m,r =

�∑
i=1

M
(N)
i,n,r .

Then when r and N are fixed M
(N,r)
n , n ≥ 1 is a martingale (with respect to the above filtration) whose differences are

bounded by �B1K(ϕ + r + 1). We estimate now the L∞-norm

∥∥SN − M
(N,r)
N�

∥∥∞.

We first write

SN − M
(N,r)
N� =

�∑
i=1

N∑
n=1

(Yi,in − Yi,in,r ) +
�∑

i=1

(Ri,N�,r − Ri,0,r )

where we used (4.1). By replacing ξjn with ξjn,r , j = 1,2, . . . , i in the definitions of Yi,in and Yi,in,r , using the Hölder
continuity of F and that ξ�n,r is F�n−r,�n+r -measurable we obtain that

|Yi,in − Yi,in,r | ≤ KB2β
κ∞(r), P -a.s.

for any 1 ≤ i ≤ �, n ∈ N and r ≥ 0, where B2 = B2(�) is some constant which depends only on �. Combining this with
(4.7) we obtain that

∥∥SN − M
(N,r)
N�

∥∥∞ ≤ B3K
(
Nβκ∞(r) + ϕ + r + 1

) := δ′
2 (4.8)

where B3 = B3(�) is another constant, and the proof of Theorem 2.9 is complete. In order to prove Theorem 2.4, we first
apply the Hoeffding–Azuma inequality (see, for instance, page 33 in [29]) and obtain that for any λ > 0,

EeλM
(N,r)
N� ≤ eλ2 ∑�N

n=1 ‖W(N,r)
n ‖2∞ ≤ e�Nδ2

0λ2

where δ0 = B1K(ϕ + r + 1). Combining this with (4.8) we obtain (2.11). Next, by the Markov inequality for any random
variable Z, t0 > 0 and λ > 0 we have P(Z ≥ t0) ≤ e−λt0EeλZ . Taking Z = SN , t0 = t + δ2, using (2.11) and then
optimizing by taking λ = t

2�Nδ2
2

we obtain (2.12), and the proof of Theorem 2.4 is complete.
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5. Nonlinear indexes

Let q1, . . . , q� be functions which map N to N, are strictly increasing on some ray [R,∞) and are ordered so that

q1(n) < q2(n) < · · · < q�(n)

for any sufficiently large n. For any N ∈N consider the random variable

SN =
N∑

n=1

(
F(ξq1(n), ξq2(n), . . . , ξq�(n)) − F̄

)
(5.1)

where F̄ is given by (2.7). We further assume that the difference qi(n) − qi−1(n) tends to ∞ as n → ∞ for any
i = 1,2, . . . , �, where q0 ≡ 0, though the situation when some of these differences are nonnegative constants can be
considered, as well (see Section 3 in [18]). Next, for any n,m ∈ N set

ρ̃(n,m) = ρ̃�(n,m) = min
1≤i,j≤�

∣∣qi(n) − qj (m)
∣∣.

We will rely on the following

Assumption 5.1. There exists Q ≥ 1 so that for any 1 ≤ j ≤ � and a, b ≥ qj (R),

∣∣q−1
j (a) − q−1

j (b)
∣∣ ≤ Q

(
1 + |a − b|) (5.2)

where q−1
j is the inverse of the restriction of qj to the ray [R,∞).

Set Ãs(n,N) = {1 ≤ m ≤ N : ρ̃(n,m) ≤ s}. When (5.2) holds true then for any 1 ≤ n ≤ N and s ≥ 1,

∣∣Ãs(n,N)
∣∣ ≤ Q�2(1 + 2s) ≤ 3�2Qs

which means that (3.2) holds true with c0 = 3Q�2 and u0 = 1. Condition (5.2) holds true, for instance, when all qj ’s have
the form qj (x) = [pj (x)] where each pj is a strictly increasing function whose inverse p−1

j has bounded derivative on
some ray [K,∞). For example we can take pj ’s to be a polynomial with positive leading coefficient, exponential function
etc.

We conclude that under Assumption 5.1, all the results stated in Theorem 2.8 hold true. Therefore, (2.9) holds true and
all the results stated in Theorem 2.6 hold true when D2 exists and it is positive. The limit D2 exists when qi ’s satisfy the
conditions from [26] or, as in [18], when they are polynomials taking integer values on the integers. See [17] and [18]
for conditions equivalent to D2 > 0. Note also that for such qi ’s Theorem 2.9 holds true, as well, since the martingale
approximation method was applied in [26] and [17] successfully, and so the arguments from Section 4 can be repeated.

Remark 5.2. Let q(n), n ≥ 1 be a strictly increasing sequence of natural numbers, and consider the process ξ̃n, n ≥ 1
given by ξ̃n = ξq(n). Set F̃m,n = Fq(m),q(n) and let φ̃(n) and β̃q(n) be defined similarly to φ(n) and βq(n) but with the
F̃m,n’s in place of the Fm,n’s. Then β̃q(n) ≤ βq(q(n)) and φ̃(n) ≤ φ(j (n)), where

j (n) = inf
m≥1

(
q(m + n) − q(m)

)
.

When q(n), j (n) ≥ cnl for some l ≥ 2 and c > 0 then the mixing and approximation coefficients φ̃(n) and β̃q(n) converge
to 0 faster than φ(n) and βq(n), and by writing s = q(s′) ≥ c(s′)l we can take u0 = 1

l
in (3.2). Repeating the arguments

from the proof of Theorem 2.8, we obtain similar estimates of |�k(S̄N)|, but with γ ′
1 = 1

ηl2
< γ1 in place of γ1 = 1

η
. The

assumption that the distribution of (ξn, ξm) depends only on n − m was only needed in order for D2 to exist and for
obtaining convergence rate towards it. Therefore, (2.9) and the corresponding estimate from Theorem 2.3 (ii) hold true
with ξq(n) and γ ′

1 in place of ξn and γ1, respectively. If we know that the limit D2 exists (after this replacement) then all
the other results stated in Theorems 2.3 and 2.6 also hold true with 1

ηl2
in place of 1

η
.
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Consider, for instance, the case when qi ’s are polynomials and q(n) = nl for some l ≥ 2, namely, nonconventional
sums of the form

S̃N =
N∑

n=1

F(ξp1(n
l), ξp2(n

l), . . . , ξp�(n
l)) (5.3)

when all pi ’s are polynomials. Then the limit D2 exists (see [18]) and so all the results described above hold true.

6. Additional results

6.1. The CLT and Berry–Esseen type estimates

We recall first the following result (see Corollary 2.1 in [30]),

Lemma 6.1. Let W be a random variable. Suppose that there exist γ ≥ 0 and � > 0 so that for any k ≥ 3,

∣∣�k(W)
∣∣ ≤ (k!)1+γ �−(k−2).

Let � be the standard normal distribution. Then,

sup
x∈R

∣∣P(W ≤ x) − �(x)
∣∣ ≤ cγ �

− 1
1+2γ

where cγ = 1
6 (

√
2

6 )
1

1+2γ .

Note that when |�k(W)| ≤ C(k!)1+γ �−(k−2), k ≥ 3 for some constant C ≥ 1 then the conditions of Lemma 6.1 are
satisfied with �C−1 in place of �. This lemma together with the cumulants’ estimates obtained in Theorem 2.8 yields

convergence rates in the nonconventional CLT for SN/D
√

N which (when η = 1) are at best of order N− 1
6 , since in our

circumstances � is of order N
1
2 and γ ≥ 1, where in the case when F is bounded we can take γ = 1. The rate N− 1

6 is
better than the ones obtained in [17], which is important since the rates obtained in [15] and [19] do not apply to the cases
considered in Section 5. Note that, in fact, we obtain here for the first time the CLT under condition (2.22) when F has
the form (2.18).

Remark 6.2. Consider the case discussed in Remark 5.2 when all qi ’s have the form qi(n) = pi(n
l) for some polynomials

p1, . . . , p� and an integer l ≥ 2, namely the sums N− 1
2 S̃N where S̃N is defined in (5.3). Then under Assumption 2.1 we

obtain (when D2 > 0) closer to optimal rates. Indeed, in these circumstances Theorem 2.8 holds true with γ ′
1 = 1

ηl2
in

place of γ1 = 1
η

and so, using the equality �k(aW) = ak�k(W), a ∈R, we can apply now Lemma 6.1 with γ = γ ′
1 and �

of the form � = c
√

N and obtain rates of order N
− 1

2+4(ηl2)−1 , which are better than N− 1
6 when η = 1.

6.2. Moment estimates of Gaussian type

Theorem 2.8 also implies the following

Theorem 6.3. Suppose that the conditions of Theorem 2.8 hold true. Let Z be a random variable which is distributed
according to the standard normal law. Then for any p ≥ 1,

∣∣E(S̄N )p − (
Var(SN)

) p
2 EZp

∣∣ ≤ (c0,1)
p(p!)1+γ

∑
1≤u≤ p−1

2

Nu pu

(u!)2

where c0,1 = max(1, c0), γ = γ1 when Assumption 2.1 holds true, γ = γ2 when Assumption 2.2 holds true and c0, γ1 and
γ2 are specified in Theorem 2.8.
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Proof. The arguments below are based on the proof of Theorem 3 in [12]. By formula (1.53) in [30], for any p ≥ 1 and
N ∈N,

E(S̄N )p =
∑

1≤u≤ p
2

1

u!
∑

k1+k2+···+ku=p

p!
k1! · · ·ku!�k1(S̄N ) · · ·�ku(S̄N ).

Let 1 ≤ u ≤ p
2 . When ki = 1 for some 1 ≤ i ≤ u then �ki

(S̄N ) = ES̄N = 0 and so the corresponding summand
p!∏u

i=1 �ki
(S̄N )∏u

i=1(ki !) vanishes. When p is even and u = p
2 then the unique non-vanishing summand corresponds to the choice of

ki = 2, i = 1,2, . . . , u and it equals (Var(SN))
p
2 EZp . When p is odd then EZp = 0, and therefore for any p ≥ 1,

∣∣E(S̄N )p − (
Var(SN)

) p
2 EZp

∣∣
≤

∑
1≤u≤ p−1

2

1

u!
∑

k1+k2+···+ku=p

p!
k1! · · ·ku!

∣∣�k1(S̄N ) · · ·�ku(S̄N )
∣∣.

Applying the Hölder inequality to Euler’s � function we obtain that (k!)p ≤ (p!)k for any integers k and p so that
1 ≤ k ≤ p. Using Theorem 2.8 we derive that

|�k1(S̄N ) · · ·�ku(S̄N )|
k1! · · ·ku! ≤ Nuc

∑u
i=1 ki−2u

0

(
u∏

i=1

(ki !)
)γ

≤ (c0,1)
p(p!)γ

for any 1 ≤ k1, . . . , ku so that
∑u

i=1 ki = p, where γ is described in the statement of Theorem 6.3. Thus,

∣∣E(S̄N )p − (
Var(SN)

) p
2 EZp

∣∣ ≤ (c0,1)
p(p!)1+γ

∑
1≤u≤ p−1

2

N (u,p)

u!

where

N (u,p) :=
∣∣∣∣∣
{

2 ≤ k1, . . . , ku ≤ p :
u∑

i=1

ki = p

}∣∣∣∣∣
≤

∣∣∣∣∣
{

1 ≤ k1, . . . , ku ≤ p :
u∑

i=1

ki = p

}∣∣∣∣∣ ≤ pu

u! .

We conclude from the above estimates that for any integer p ≥ 1,

∣∣E(S̄N )p − (
Var(SN)

) p
2 EZp

∣∣ ≤ (c0,1)
p(p!)1+γ

∑
1≤u≤ p−1

2

Nu pu

(u!)2

and the proof of Theorem 6.3 is complete. �

We note that this theorem yields an appropriate Rosenthal type inequality for the nonconventional sums S̄N and that, in
fact, makes the method of moments effective for them, which provides an additional proof of the nonconventional central
limit theorem. See Remarks 4 and 5 in [12], where we also use (2.17) (which implies that N−1Var(SN) converges to D2

as N → ∞).
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