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Abstract. We apply Malliavin calculus to the �4
3 equation on the torus and prove existence of densities for the solution of the equation

evaluated at regular enough test functions. We work in the framework of regularity structures and rely on Besov-type spaces of modelled
distributions in order to prove Malliavin differentiability of the solution. Our result applies to a large family of Gaussian space–time
noises including white noise, in particular the noise may be degenerate as long as it is sufficiently rough on small scales.

Résumé. Nous appliquons le calcul de Malliavin à l’équation �4
3 sur le tore et prouvons l’existence des densités pour les évaluations

de la solution contre des fonctions test suffisamment régulières. Nous travaillons dans le cadre des structures de régularité et utilisons
les espaces de distributions modelées de type Besov afin de prouver la différentiabilité au sens de Malliavin de la solution. Notre résultat
s’applique à une large classe de bruits gaussiens en espace-temps incluant le bruit blanc, en particulier le bruit peut être dégénéré tant
qu’il est suffisamment irrégulier à petite échelle.
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1. Introduction

Consider the so-called dynamic �4
d model

∂tu=�u− u3 + ξ, u(0, ·)= u0, (1.1)

on the d-dimensional torus Td of size 1 and driven by a Gaussian noise ξ . In this paper, we focus on d = 3 and investigate
the existence of densities for the solution. Our main result applies to a large family of noises that includes, in particular,
the space–time white noise, the precise assumptions on the noise will be specified later on.

This equation has been the object of several recent works in the fields of stochastic PDEs, let us give a very brief survey
of this literature. In dimension 2 and when ξ is a space–time white noise, the solution of the equation was constructed by
means of Dirichlet forms by Albeverio and Röckner [1] and via a change-of-unknown by Da Prato and Debussche [9].
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Among several subsequent results, let us mention that solutions were shown to be global-in-time [22] and that existence
and uniqueness of an invariant measure together with convergence to equilibrium were studied in [24,26].

In dimension 3, existence of solutions when ξ is irregular (in particular, a space–time white noise) fell out of reach of
classical theories. The theory of regularity structures [13] and the paracontrolled calculus [12] provide new frameworks
in which existence of solutions of such singular SPDEs can be tackled. In the case of the �4

3 model driven by a white
noise, existence of local-in-time solutions was proved by Hairer [13], and Catellier and Chouk [7]. Let us also cite the
work of Zhu and Zhu [27] that constructs the solution by means of Dirichlet forms. Recently, Mourrat and Weber [21]
proved that solutions are actually global-in-time. Notice that the solution has space–time Hölder regularity −1/2− in the
parabolic scale: therefore, it is not a function but only a distribution. In the aforementioned constructions of the solution,
one actually renormalizes the equation by means of infinite constants; the equation formally becomes:

∂tu=�u− u3 +Cu+ ξ, u(0, ·)= u0

with C = +∞.
In the present paper, we consider a noise ξ which is obtained by convolving space–time white noise with a kernel

R satisfying Assumption 1 and either Assumption 2 or Assumption 3. These assumptions are precisely presented in
Section 2, let us simply mention that Assumption 1 requires the kernel to be regular enough (not worse than a Dirac),
Assumption 2 asks for the associated Cameron–Martin space to be dense in L2 while Assumption 3 ensures that ξ is
“rough enough” (i.e. of Hölder regularity strictly less than −2). The existence of solutions to (1.1) in that setting is
essentially granted by [8] and [13].

To illustrate our assumptions, one can write a Paley–Littlewood type decomposition1 ζ = ∑
n≥0Kn ∗ ζ of space–time

white noise such that letting ξ =R ∗ ζ with

R =
∑
n≥0

αnKn,

where αn ∈R for each n, then one has:

• (αn) bounded ⇒ Assumption 1 is satisfied,
• lim supn→∞ 2nβ |αn|> 0 for some β < 1

2 ⇒ Assumption 3 is satisfied,

see Proposition 2.3 below.
We now state our main result. Let ϕi , i = 1, . . . , n be n≥ 1 linearly independent functions in the (parabolically scaled)

Besov space B1/2+κ
1,∞ (R+ ×T3), for some κ > 0, and assume that they are all supported in (0, T )×T3 for some T > 0.

Theorem 1.1. Assume that the driving noise ξ satisfies Assumption 1 and either Assumption 2 or Assumption 3 and that
the solution u of (1.1) starting from some u0 ∈ C−2/3+ exists up to time T almost surely. Then, the random variable
X = (〈u,ϕ1〉, . . . , 〈u,ϕn〉) admits a density with respect to the Lebesgue measure on Rn.

There exists already a substantial literature devoted to proving absolute continuity of densities for SPDEs with degen-
erate noise (and the often related ergodicity properties), going back to Ocone [23] for the case of linear equations. In the
case of polynomial nonlinearities perturbed by an additive noise which is white in time and smooth in space, a rather
complete counterpart to the Hörmander finite-dimensional theory was developed by Mattingly and coauthors ([3,17,18,
20]). Of course, we cannot apply these results to (1.1) due to the roughness of the noise, which is actually one of the
important technical difficulties we have to overcome. We also note that in the case of space–time white noise, the strong
Feller property proved in [16] implies that for each t > 0, the law of u(t, ·) is absolutely continuous w.r.t. the invariant
measure for (1.1), which is a stronger statement than simply considering its finite-dimensional projections.2 Our result
however can be applied to noises which are not white in time, where the Markovian theory is of course not accessible. In
addition, we obtain densities for averages of our solution in space and time, and not just at a fixed time which is the case
considered in virtually all of the literature. (Note that the existence of densities for space–time averages is in principle a
strictly stronger statement than densities for a fixed time, as soon as the regularity required for the test functions allows
for Dirac masses in t . For technical reasons this is however not the case in our theorem).

1The Fourier transform K̂n of Kn is concentrated on frequencies of order 2n , but unlike the standard Paley–Littlewood decomposition, Kn (and not

K̂n) is compactly supported.
2The absolute continuity of finite-dimensional projections of u(t, ·) (still in the case of space–time white noise) has also been proven directly in the
recent work of Romito [25].
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Let us comment on our assumption on the existence of solutions up to time T . Mourrat and Weber [21] showed that the
explosion time of the solution is actually infinite when the driving noise is a space–time white noise. Their proof should
carry through if we replaced the white noise by a more general driving noise satisfying the hypothesis considered in the
present paper: consequently, the assumption on the existence of the solution up to time T is probably not restrictive at all.
Actually, we can disregard this assumption and show that the r.v. of the statement of the theorem, conditionally given the
event {T < Texplo}, admits a density. To prove this more general statement, one needs to take care of the differentiability
of the r.v. 1{T<Texplo}X: this can be done using the same techniques as in [5, Section 5.2]. In order not to clutter this article,
we preferred not to work in this level of generality.

Outline of the proof

We rely on the theory of regularity structures [13] to construct solutions to (1.1). The proof of the theorem is split into two
main parts, corresponding to the two main assumptions required by the classical Bouleau–Hirsch criterion for existence
of densities. First, we show that the random variable of the statement is Malliavin differentiable. Second, we prove that
its Malliavin derivative is almost surely non-degenerate.

To carry out the first task, we start by constructing solutions of (1.1) associated to a shifted noise ξ + h:

∂tu=�u− u3 + ξ + h, u(0, ·)= u0, (1.2)

where h lies in the Cameron–Martin space associated to ξ (under our assumptions, this is always a subspace of L2(R+ ×
T3)), and of the associated tangent equation (formally obtained by differentiating u w.r.t. h):

∂tv =�v − 3u2v + h, v(0, ·)= 0. (1.3)

Then, we prove that X is Malliavin differentiable and identify its derivative in direction h as being (〈v,ϕ1〉, . . . , 〈v,ϕn〉).
To construct solutions of the above equations in the framework of regularity structures, one can think of two ap-

proaches. In the first approach, one adds a new abstract symbol H in the regularity structure and builds the associated
enlarged model. In the case of the generalized parabolic Anderson model, this strategy of proof was followed in [5] since
the action of the model on only three new (but similar to each other) symbols needed to be defined. In the case of the
�4

3 model, the action of the model on many more new symbols would need to be defined so that a construction by hand
would be very tedious. In the second approach, that we actually follow in this paper, one lifts the convolution of h with
the heat kernel into an appropriate space of modelled distributions and solves the equation within the original regularity
structure.

Working with “classical” L∞-type spaces of modelled distributions as introduced in [13] would require to view h as
an element of Cα = Bα∞,∞. Classical embedding theorems show that α <−5/2 so that the convolution of h with the heat
kernel has negative regularity in these spaces, and it is not possible to lift it as an L∞-type modelled distribution in the
polynomial regularity structure.

On the other hand, working with L2-type spaces of modelled distributions as introduced in [15] allows to lift the
convolution of h with the heat kernel into the polynomial regularity structure without losing regularity. However, one
then needs to solve the equation in such an L2-type space and the interplay of the cubic non-linearity with the L2-type
bounds may cause some difficulties. Fortunately, the embedding theorems for spaces of modelled distributions proved in
[15] offer the necessary tools to make sense of these non-linear terms.

At a technical level, the spaces considered in [15] are not weighted near t = 0 so that we have to adapt the analytical
results presented therein to weighted spaces. Let us also mention that we work with space and time L2-type norms: this is
problematic for iterating fixed point arguments since one needs to restart the equation from the already obtained solution
evaluated at a given time (this requires to embed the solution into an L∞-type space in the time variable, thus losing
too much regularity). This difficulty is circumvented by patching together solutions in a different manner, we refer to the
discussion below Proposition 4.3.

To carry out the second task, following [23] (and also [3,20]), we work with a backward representation of the Malliavin
derivative, namely for a given test function ϕ ∈ B1/2+κ

1,∞ supported in (0, T ) × T3, we consider w which is (formally)
solution to

(−∂t −�)w = −3u2w+ ϕ, w(T , ·)= 0 (1.4)

(note that the product u2w is actually ill-defined, so to make rigorous sense of this equation we work again in a suitable
set of modelled distributions), and we are then reduced to proving(〈w,h〉L2([0,T ]×T3) = 0 ∀h ∈ H

) ⇒ ϕ = 0,
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where H is the Cameron–Martin space associated to the noise. Using the equation satisfied by w, a simple induction
argument gives the implication

w = 0 ⇒ ϕ = 0,

so that when H is dense in L2 (Assumption 2) the result follows immediately. When the noise is degenerate, one has near
each point z the local expansion for the r.h.s. of (1.4)

−3u2w+ ϕ = −3w(z) +Rz

where is the (renormalized) square = ( )2, with (∂t − �) = ξ , and our roughness assumption (Assumption 3)
implies that Rz is of homogeneity near z strictly greater than that of −3 w. By testing against suitable localized elements
of H, we can then separate the contributions of the two terms to obtain that under the orthogonality condition, w = 0 a.e.
Note that this type of argument based on the separation of scales appears frequently in this context (of proving the non-
degeneracy of Malliavin derivatives), and is already present in the classical Malliavin proof of Hörmander’s theorem (via
the uniqueness in the decomposition of a continuous semimartingale as the sum of a martingale and a bounded variation
process). The precise argument then takes a different form based on the structure of the problem under consideration,
for instance in the context of rough differential expansions this led to the notion of “true roughness”, cf. [10,11,19]. The
theory of regularity structures is particularly well-suited for this kind of argument, since as soon as the theory is used to
solve an equation, it automatically gives a Taylor-like expansion (with terms of successively higher homogeneity) for the
solutions.

Other SPDEs

Our method is not specific to the dynamic �4 model and can in principle be applied to other singular SPDEs. The main
requirement is that one can set up a fixed point argument for the shifted and tangent equations (1.2), (1.3) in an L2-type
space of modelled distributions. In the case of �4, since the noise is additive, we are able to do that by decomposing
the solution to the shifted equation as sum of an L∞ modelled distribution that captures the most irregular terms in the
equation, and an L2 modelled distribution with higher homogeneities, cf. Section 4.2.2. This method would also apply
for instance to a generalized KPZ equation of the form:

∂tu= ∂2
xu+ f (u)(∂xu)

2 + ξ,

where ξ is space–time white noise on R+ ×T1. We could also treat the case of SHE (with the same noise)

∂tu= ∂2
xu+ g(u)ξ,

by directly solving the shifted equation in an L2-space.
However, it seems that there are SPDEs that fall into the scope of the theory of regularity structures for which our

method would not apply, for instance the generalized KPZ equation with multiplicative noise [4,14] which is the com-
bination of the two equations above. Indeed, in that case one cannot solve the shifted equation directly in L2, while a
decomposition as described above does not hold.

Organisation of the paper

In Section 2, we present the assumptions on the driving noise ξ . In Section 3, we introduce the regularity structure
associated with the �4

3 model, together with the appropriate spaces of modelled distributions we will work with. We also
state the main analytical tools that we will need, and postpone their technical (but rather classical) proofs to Section 6. In
Section 4, we prove Malliavin differentiability of the r.v. X of the statement. In Section 5, we prove that the associated
Malliavin derivative is almost surely non-degenerate and thus complete the proof of our main theorem.

Notations

In this paper, the underlying space will always be the torus T3 of size 1. It is convenient to work with functions defined
on the whole space R3 but which have the periodicity of the torus. From now on, we will call periodic any such map.
Notice that we will deal with space–time maps: periodicity will always refer to the space variable.

Some of our intermediate results hold in arbitrary space dimension so at several occasions in the paper, we will write
d for the space dimension.
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We will be working in the so-called parabolic scaling s = (2,1,1,1) where s0 = 2 refers to time-direction, and
s1, . . . , s3 to space-directions. We set |s| = s0 + · · · + s3. We consider the so-called s-scaled metric |z|s = |z| =
supi=0,...,3 |zi |1/si for all z ∈ R4. For λ ∈ R and z ∈ R4 we let λ · z = (λsi zi)i=0,...,3. For a function φ on R4 and a
given (λ, z) we define φλz : y �→ |λ|−|s|φ(λ−1 · (y− z)) (if z= 0 we just write φλ, and if λ= 1 we just write φz), note that

this transformation preserves the L1-norm. For a multi-index k ∈ N4, we let |k| = |k|s = ∑3
i=0 siki . For any k ∈ Nd+1,

we set ∂k = ∏d+1
i=0 ∂

ki
zi .

We let Cr = Cr (R4) denote the space of all functions on R4 that admit continuous derivatives of order k, for all k ∈N4

such that |k|< r . We further let Br be the subset of Cr whose elements are supported in the s-scaled unit ball and have a
Cr -norm smaller than or equal to 1.

Similarly we let Bα
p(R

4)= Bα
p,∞(R4) be the s-scaled Besov space as defined in [15, Def. 2.1]: notice that the parameter

q in the Besov scale will always be taken equal to +∞ so we omit writing it.
For every n ∈ Z, we define the dyadic grid of s-scaled mesh 2−n

n := {(
k02−2n, k12−n, k22−n, k32−n) : k = (k0, . . . , k3) ∈ Z4}. (1.5)

The Fourier transform of a tempered distribution f ∈ S ′(R4) is denoted by f̂ , it is defined by

〈f̂ , φ〉 = 〈f, φ̂〉
with

φ̂(ξ)=
∫
R4
φ(z)e−iξ ·z dz

for φ in S(R4).
The Fourier transform of a smooth function φ on R×T3 is defined as the function

φ̂(ξ)=
∫
R×T3

φ(z)e−iξ ·z dz

where the argument ξ takes values in R× (2πZ)3. (Note: this is not exactly the same as the Fourier transform of φ viewed
as a distribution on R4. There will hopefully be no confusion by which transform we mean.)

One then has the isometry

‖f ‖L2(R×T3) = ‖f̂ ‖L2(R×(2πZ)3;m̂)

where the measure m̂ is defined by∫
φ(ξ0, ξ1, ξ2, ξ3)m̂(dξ)= 1

2π

∫
R

dξ0

∑
(k1,k2,k3)∈Z3

φ(ξ0,2πk1,2πk2,2πk3). (1.6)

Given f and g two distributions such that the convolution f ∗ g makes sense (say f is compactly supported), if g is
periodic then so is f ∗ g. Therefore it makes sense to view f ∗ g as a distribution on R×T3, and in that case one has

f̂ ∗ g = f̂ ĝ.

For a function g : R1+d →R decaying sufficiently fast at infinity, its periodization gper is defined by

gper(t, x)=
∑
x0∈Zd

g(t, x − x0).

One then has for all periodic f (identified with a function on R×Td )

〈f,g〉L2(R×Rd ) = 〈
f,gper〉

L2(R×Td )
. (1.7)

Finally, the notation A � B means that A ≤ cB for some constant c > 0 which does not depend on the parameters
appearing in A and B .
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2. Assumptions on the noise

We consider a Gaussian noise ξ with covariance given by

E
[〈ξ,φ〉〈ξ,ψ〉] = 〈R ∗ φ,R ∗ψ〉

(i.e. ξ is the convolution of space–time white noise with R).
On R we assume the following

Assumption 1. One has the decomposition R = ∑
n≥0Rn (the series is assumed to converge in the sense of distributions)

where each Rn is an even smooth function, supported in {|x|s ≤ C2−n} for some constant C. In addition, there exists
β ≥ 0, s.t. for each multiindex k, there exists Ck > 0 with

‖∂kRn‖L∞ ≤ Ck2n(|s|+|k|−β), (2.1)

and if β = 0 one further has
∫
Rn(x)dx = 0 for n≥ 1.

The assumption essentially says that ξ has regularity no worse than white noise. The Cameron–Martin space H asso-
ciated to ξ is then given by

H = {
R ∗R ∗ φ,φ ∈ C∞

c

(
R×T3

)}
,

the closure being taken with respect to the norm

‖R ∗R ∗ φ‖H = ‖R ∗ φ‖L2(R×T3).

In fact one also has

‖ψ‖H := inf
{‖φ‖L2(R×T3),ψ =R ∗ φ}

and

H = {
R ∗ φ,φ ∈ C∞

c

}
(this can for instance be checked via the Fourier transform).

The next proposition then shows that under our assumption, H is a subset of L2.

Proposition 2.1. Under Assumption 1, there exists C > 0 such that

∀φ ∈ L2(R×T3), ‖R ∗ φ‖L2 ≤C‖φ‖L2 . (2.2)

Proof. When β > 0, R is in L1 so that the result is obvious. Hence we now assume β = 0. It is enough to prove that R̂ is
bounded.

Using the support property of Rn, by a Bernstein-type lemma (e.g. one can adapt the proof of [2, Lemma 2.1] to our
parabolic setting) one has∥∥∂kR̂n∥∥L∞ � 2−n|k|‖R̂n‖L∞ ≤ 2−n|k|‖Rn‖L1 � 2−n|k|

so that, for n≥ 1, since R̂n(0)= ∫
Rn = 0, one obtains∣∣R̂n(ξ)∣∣ � (

2−n|ξ |) ∧ 1.

In addition, for all i = 0, . . . ,3,

sup
ξ

∣∣R̂n(ξ)|ξi |∣∣ � ‖∂̂ziRn‖L∞ ≤ ‖∂ziRn‖L1 � 2nsi

so that we also have∣∣R̂n(ξ)∣∣ � (
2n|ξ |−1) ∧ 1

and combining these two bounds yields that R̂ = ∑
n≥0 R̂n is bounded. �
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To obtain non-degeneracy of the Malliavin derivative we will need that one of two additional assumptions holds. The
first assumption is a density assumption on the Cameron–Martin space:

Assumption 2. The set {h|[0,T ]×T3 , h ∈H} is dense in L2([0, T ] ×T3).

To formulate the second assumption we need some notations. For C > 1 and n≥ 0, let

AC
n = {

ξ ∈ R4 :C−12n ≤ |ξ | ≤C2n
}

and

BC
n = {(

ξ, ξ ′) ∈ (
R4)2 : ξ, ξ ′, ξ + ξ ′ ∈AC

n

}
.

The assumption is then written as

Assumption 3. One has β < 1
2 and for some C ≥ 1,

lim sup
n→∞

23nβ sup
(ξ,ξ ′)∈BC

n

∣∣R̂(ξ)R̂(
ξ ′)R̂(

ξ + ξ ′)∣∣> 0. (2.3)

The following simple lemma will be needed in the proof of Theorem 1.1.

Lemma 2.2. Under Assumption 1, (2.3) is equivalent to

lim sup
n→∞

22n(3β−|s|)
∫
BC
n

m̂(dξ)m̂
(
dξ ′)∣∣R̂(ξ)R̂(

ξ ′)R̂(
ξ + ξ ′)∣∣2

> 0 (2.4)

(recall that the measure m̂ is defined by (1.6)).

Proof. We only prove that (2.3) implies (2.4) since the converse implication is immediate (and we will in fact not need
it).

One first checks that for any i in {0, . . . ,3},∣∣∂ξi R̂(ξ)∣∣� |ξ |−si . (2.5)

To prove this, we write∣∣∂ξi R̂(ξ)∣∣ ≤
∑

0≤n≤n0

∣∣∂ξi R̂n(ξ)∣∣ +
∑
n>n0

∣∣∂ξi R̂n(ξ)∣∣
with n0 such that 2n0 ≤ |ξ | ≤ 2n0+1. As in the proof of Proposition 2.1, by Bernstein’s lemma it holds that∑

n>n0

‖∂ξi R̂n‖L∞ �
∑
n>n0

2−nsi � |ξ |−si

For the other sum, we note that for N > si ,

sup
ξ

∣∣∂ξi R̂n(ξ)|ξj |N ∣∣ ≤ sup
ξ

∣∣∂ξi (R̂n(ξ)(ξj )N )∣∣ + sup
ξ

∣∣R̂n(ξ)∂ξi (ξj )N ∣∣
� 2−nsi∥∥∂Nzj Rn∥∥L1 + 1i=j

∥∥∂N−1
zi

Rn
∥∥
L1

� 2n(Nsj−si ),

from which we deduce∣∣∂ξi R̂n(ξ)∣∣ � 2−nsi (|ξ |−N2nN ∧ 1
)
.

Hence we obtain∑
n≤n0

∣∣∂ξi R̂n(ξ)∣∣ � ∑
n≤n0

2n(N−si )|ξ |−N � |ξ |−si ,

which concludes the proof of (2.5).
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From (2.5) and Taylor’s formula ([13, Prop. A.1]), if (ζn, ζ ′
n) ∈ BC

n is such that

23nβ
∣∣R̂(ζn)R̂(

ζ ′
n

)
R̂

(
ζn + ζ ′

n

)∣∣ ≥K > 0

then there exists δ > 0 such that

23nβ
∣∣R̂(ξ)R̂(

ξ ′)R̂(
ξ + ξ ′)∣∣ ≥ K

2

whenever(
ξ, ξ ′) ∈ B ′

n := {(
ξ, ξ ′) s.t. |ξ − ζn| ≤ 2nδ,

∣∣ξ ′ − ζ ′
n

∣∣ ≤ 2nδ
}

and we note that

lim sup
n→∞

2−2n|s|(m̂⊗ m̂)
(
B ′
n ∩BC

n

) =K ′ > 0.

It follows that

lim sup
n→∞

22n(3β−|s|)
∫
BC
n

m̂(dξ)m̂
(
dξ ′)∣∣R̂(ξ)R̂(

ξ ′)R̂(
ξ + ξ ′)∣∣2 ≥ K2K ′

4
> 0. �

It is difficult to give examples of kernels R satisfying Assumption 1 which have simple expressions as Fourier multi-
pliers (in particular, because of the assumption that R is compactly supported).

However, in the following proposition, we give an example of a Littlewood–Paley type decomposition
∑

n≥0 ζn of
space–time white noise ζ , such that if one considers the noise ξ = ∑

n≥0 αnζn, there exist simple sufficient conditions on
the sequence (αn)n≥0 for the previous assumptions to be fulfilled.

Proposition 2.3. Assume that ρ is a smooth, even, compactly supported function with
∫
R4 ρ = 1, such that, letting η(x)=

ρ(x)− 2−|s|ρ(2−1 · x), there exists ξ0 in R4 such that∣∣η̂(ξ0)
∣∣ −

∑
n∈Z\{0}

2−nβ ∣∣η̂(2−n · ξ0
)∣∣> 0. (2.6)

Then for any bounded sequence (αn)n≥0, the kernel

R := α0ρ +
∑
n≥1

αnη
2−n

satisfies Assumption 1 for any β such that lim supn→∞ 2nβ |αn| < ∞. In addition, if β < 1
2 and lim supn→∞ 2nβ |αn| ∈

(0,∞) then Assumption 3 is satisfied.

Note that if αn ≡ 1 then R = δ0 which corresponds to space–time white noise.

Proof. The fact thatR satisfies Assumption 1 withR0 = α0ρ andRn = αnη
2−n

for n≥ 1 is a straightforward consequence
of scaling.

We now prove the second point. We note C := lim supn→∞ 2nβ |αn| so that 2nβ |αn| = C+ εn with lim supn→∞ εn = 0.
We then have

2nβ
∣∣R̂(

2n · ξ0
)∣∣ ≥ 2nβ |αn|

∣∣η̂(ξ0)
∣∣ −

∑
m≥1−n;m �=0

2nβ |αn+m|∣∣η̂(2−m · ξ0
)∣∣ − 2nβ |α0

∣∣ρ̂(
2n · ξ0

)∣∣
≥ Cδ + εn

∣∣η̂(ξ0)
∣∣ −

∑
m≥1−n;m �=0

2−mβεn+m
∣∣η̂(2−m · ξ0

)∣∣ − 2nβ |α0
∣∣ρ̂(

2n · ξ0
)∣∣

where we have let δ = |η̂(ξ0)| − ∑
m∈Z\{0} 2−mβ |η̂(2−m · ξ0)|> 0.

Note that the last term in the inequality above goes to 0 as n → ∞ since ρ̂ decays rapidly at infinity. For the sum∑
m 2−mβεn+m|η̂(2−m · ξ0)|, we note that by similar arguments as in the proof of Proposition 2.1, we have that

η̂(ζ )� |ζ | ∧ |ζ |−N
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for N arbitrarily large (N > β will suffice), so that we can bound uniformly (in n) each summand by a term of an
absolutely convergent series (in m). Hence we can interchange limits and obtain

lim sup
n→∞

∑
m≥1−n

2−mβεn+m
∣∣η̂(2−m · ξ0

)∣∣ − 2nβ |α0
∣∣ρ̂(

2n · ξ0
)∣∣

=
∑
m �=0

lim sup
n→∞

εn+m2−mβ ∣∣η̂(2−m · ξ0
)∣∣ = 0.

Finally we have

lim sup
n→∞

2nβ
∣∣R̂(

2n · ξ0
)∣∣> 0,

and (2.3) will be satisfied for any C such that (ξ0, ξ0) ∈ BC
0 . �

For completeness we prove that such dyadic partitions of unity (with compact support in the space variable) exist.

Lemma 2.4. There exists ρ satisfying the assumptions of Proposition 2.3.

Proof. We first proceed as for a standard dyadic partition of unity and define ρ0 to be an even Schwartz function s.t.

ρ̂0 ≡ 1 on |ξ | ≤ 1, ρ̂0 ≡ 0 on |ξ | ≥ 2, ρ̂ ∈ [0,1] everywhere.

Letting η̂0(ξ)= ρ̂0(ξ)− ρ̂0(2ξ), it is clear that (2.6) holds since in fact if we fix ξ0 such that |ξ0| = 1, then

η̂0(ξ0)= 1, and ∀n ∈ Z \ {0}, η̂0
(
2−n · ξ0

) = 0.

Of course the issue is that ρ0 is not compactly supported, so we fix φ smooth, even, compactly supported with φ(0)= 0,
and let ρδ := ρ0φ(δ·), and η̂δ(ξ)= ρ̂δ(ξ)− ρ̂δ(2ξ). Then we note that

ρ̂δ = ρ̂0 ∗ φ̂δ,

and since ‖φ̂δ‖L1 does not depend on δ, we have for all multi-indices k

sup
δ∈(0,1]

∥∥∂kρ̂δ∥∥L∞ � sup
δ∈(0,1]

∥∥∂kρ̂0
∥∥
L∞

∥∥φ̂δ∥∥
L1 � 1.

In addition, using that for all multi-indices k one has for δ ≤ 1 ‖∂kρδ‖L1 �
∑

l≤k ‖∂lρ0‖L1 , we obtain (using the same
arguments as in the proof of Proposition 2.1) that for arbitrary N > 0

sup
δ∈(0,1]

∣∣ρ̂δ(ξ)∣∣ � |ξ |−N ∧ 1

and combining these two bounds yields

sup
δ∈(0,1]

∣∣η̂δ(2−n · ξ0
)∣∣� 2−n ∧ 2nN .

Hence we can pass to the limit and obtain

lim
δ→0

∣∣η̂δ(ξ0)
∣∣ −

∑
n∈Z\{0}

2−nβ ∣∣η̂δ(2−n · ξ0
)∣∣ = 1.

It then suffices to take δ small enough and let

ρ = ρδ∫
R4 ρδ

. �
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3. The regularity structure setting

3.1. Regularity structures

A regularity structure is a triplet (A,T ,G) where:

• A, the so-called set of homogeneities, is a subset of R assumed to be locally finite and bounded from below,
• T = ⊕

ζ∈A Tζ is a graded normed vector space,
• G is a group of continuous linear maps on T which is such that, for every � ∈ G, we have �τ − τ ∈ T<ν :=⊕

ζ∈A,ζ<ν Tζ whenever τ ∈ Tν for some ν ∈A.

We will denote by Qζ the projection from T to Tζ and we will use the notation |τ |ζ = |Qζ τ |.
The regularity structure T we consider is an extension of the usual regularity structure for (�4

3) defined in [13], since
we need additional symbols to solve the dual backward equation (5.1). In particular, we need an abstract integration
operator Ĩ associated to the backward heat kernel. T is then given by all the formal linear combinations of elements of
F where

F = U ∪RU ∪W ∪RW

and U ,RU ,W,RW are the smallest sets of symbols such that

Xk ∈ U ∩RU ∩W ∩RW ∀k ∈ N4,

� ∈RU ,

τ1, τ2, τ3 ∈ U ⇒ τ1τ2τ3 ∈RU ,

τ ∈RU ⇒ I(τ ) ∈ U ,
τ1, τ2 ∈ U , ρ ∈W ⇒ τ1τ2ρ ∈RW,

τ ∈RW ⇒ Ĩ(τ ) ∈ W

where as usual we take I(Xk)= Ĩ(Xk)= 0 for all multiindices k.
The homogeneity of elements of T is defined by letting

|�| = −|s|
2

+ β − κ, |1| = 0,

for some fixed positive κ small enough, and then recursively∣∣I(τ )∣∣ = |τ | + 2,
∣∣Ĩ(τ )∣∣ = |τ | + 2, |τ1τ2| = |τ1| + |τ2|.

To save space we omit the details of the construction of the structure group G since we will not need them here, and
refer instead to [13].

We will frequently use the tree notation to describe elements of T : � is represented by a dot, the integration maps I
and Ĩ are represented by respectively straight lines and dotted lines, and the product of two symbols is represented by
joining the corresponding trees at the root. For example:

I(�)2 = , Ĩ
(
I(�)2

)
I(�)2 = .

3.1.1. The heat kernel
From now on, r is an arbitrary integer larger than 5/2. Recall that we denote by P the usual heat kernel defined on the
whole space R×R3. By [13, Lemma 7.7], for any given T > 0 there exists a collection of smooth compactly supported
functions P− and (Pm)m≥0 which vanish at all negative times and satisfy the following properties:

(1) P ∗ f (z)= P− ∗ f (z)+ ∑
m≥0Pm ∗ f (z) for all z ∈ (−∞, T ] ×R3 and every periodic map f ,

(2) P0 is supported in B(0,1),
(3) we have for all z= (t, x) ∈R×R3 and all m≥ 1

Pm(z)= 2m(|s|−2)P0
(
t22m,x12m, . . . , x32m

)
,
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(4) P0 annihilates polynomials of scaled degree r .

Roughly speaking, P− stands for the smooth part of the heat kernel while for every m ≥ 0, Pm essentially coincides
with P in an annulus of radius 2−m around 0 and vanishes elsewhere.

As a consequence of these properties, we deduce that for any k ∈Nd+1, there exists a constant C′ > 0 such that for all
m≥ 0 and all z ∈ (0,∞)×Rd we have∣∣∂kPm(z)∣∣ ≤ C′2m(d+|k|).

In the sequel we will denote P+ = ∑
m≥0Pm. We will also denote by P̃ (t, x) := P(−t, x) the backward heat kernel

and define similarly the functions P̃− and P̃+.

3.1.2. Admissible models
Let us now recall the notion of admissible model. A pair (�,�) is called an admissible model if it satisfies the following
assumptions:

• For every z ∈ Rd+1, �z is a linear map from T into the space of Schwartz distributions D′(Rd+1) and we have the
bound

‖�‖K := sup
z∈K

sup
λ∈(0,1]

sup
ζ∈A<γ

sup
τ∈Tζ

sup
η∈Br

|〈�zτ,η
λ
z 〉|

|τ |λζ <∞, (3.1)

for every bounded domain K ⊂Rd+1.
• For every z, z′ ∈Rd+1, �z,z′ is an element of G and we have

‖�‖K := sup
z,z′∈K,|z−z′|≤1

sup
ν≤ζ

sup
τ∈Tζ

|�z,z′τ |ν
|τ ||z− z′|ζ−ν <∞,

for every bounded domain K ⊂Rd+1.
• For all z, z′ ∈Rd+1, �z�z,z′ =�z′ .
• For every multiindex k ∈ Nd+1, it holds

�zX
k
(
z′

) = (
z′ − z

)k
,

�zIτ
(
z′

) = 〈
�zτ,P+

(
z′ − ·)〉 − ∑

|k|<|τ |+2

(z′ − z)k

k!
〈
�zτ, ∂

kP+(z− ·)〉,

�zĨτ
(
z′

) = 〈
�zτ, P̃+

(
z′ − ·)〉 − ∑

|k|<|τ |+2

(z′ − z)k

k!
〈
�zτ, ∂

kP̃+(z− ·)〉.
In order to set up a solution theory for (1.1) we also need the following conditions (cf. [13, Section 9.4])

sup
s∈R

‖1{t>s}��‖
C− |s|

2 −κ
(K)

<∞, (3.2)

sup
t∈[0,T ]

∥∥(P+ ∗��)(t, ·)∥∥
C− 1

2 −κ
(K ′)

<∞ (3.3)

for all compact sets K ⊂ R × R3 and K ′ ⊂ R3, all T > 0 and any κ > 0. Here Cα(K) stands for the space of s-scaled
α-Hölder distributions on K .

We let M be the space of admissible models satisfying all of the above, and we equip it with the topology associated
with the corresponding system of semi-norms.

We will consider a model � obtained by renormalizing smooth canonical models as described in full generality in [8]
(note however that our case is only a simple extension of the one in [13], since our noise does not have worse regularity
than white noise and the only additional tree of negative regularity in our structure compared to [13] is which is
renormalized in the exact same way as ).

For a given smooth function ζ on R×T3, the canonical model associated to ζ is the unique admissible model defined
by letting �z�= ζ , and then recursively by letting �z(ττ

′)= (�zτ)(�zτ
′), for τ , τ ′ such that ττ ′ ∈ T .
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We now fix a sequence of mollifiers ρε = ε−|s|ρ(ε−1·), where ρ is a smooth compactly supported function integrating
to 1, and we let ξε = ξ ∗ ρε be regularizations of our noise. The models �ε are then defined as the canonical models
associated to ξε .

It is well known that the sequence �ε does not converge as ε → 0, and that one needs to introduce a renormalization.
In our case, the renormalization we need to consider can be described by the group R of transformations on T of the
form exp(−C1L1 −C2L2 −C3L3), where the Li ’s are determined by the substitutions

L1 : �→ 1, L2 : �→ 1, L3 : �→ 1

(i.e. each Li acts on a tree τ in T by replacing formally each occurence of the associated tree in τ by 1).
One can then define a renormalized model �M for each M in R, and for each admissible model �. We will not need

the precise definition of �M , but in our case one has for each smooth model � the relation(
�M
z τ

)
(z)= (

�z(Mτ)
)
(z), ∀z ∈R×T3 (3.4)

which is useful to determine the equations satisfied by (reconstructions of the) solutions to the abstract fixed point equa-
tions.

In our case, we let Mε correspond to the constants

Cε
1 =

∫ (
Kε(z)

)2
dz,

Cε
2 =

∫
dz1 dz2 dz3P+(z1)Kε(z3 − z1)Kε(z2 − z1)Kε(z3)Kε(z2)

Cε
3 =

∫
dz1 dz2 dz3P+(−z1)Kε(z3 − z1)Kε(z2 − z1)Kε(z3)Kε(z2)

(where Kε =R ∗ P+ ∗ ρε).
In fact, it holds that

Cε
2 = Cε

3 (3.5)

as can be seen by the change of variables (z′1, z′2, z′3)= (−z1, z2 − z1, z3 − z1)

The renormalized models then converge as ε → 0:

Theorem 3.1. Let �̂ε := (�ε)Mε , then there exists an admissible model � such that �̂ε → � in probability in M. In
addition, � does not depend on the particular choice of ρ.

Proof. Convergence of the models is a special case of the results in [8] (and is essentially already contained in [13,
Section 10.5], although our noise is not exactly the same).

The fact that convergence also holds w.r.t. the bounds (3.2) (3.3) follows exactly as in [13, Proposition 9.5] :

• The first bound follows by the exact same proof as in [13], using (2.2).
• The second bound again follows from the proof in [13], once we note that P+ ∗R satisfies the same scaling assumptions

as P+ (cf. e.g. [13, Lemma 10.14, Lemma 10.16]), and these are the only properties of P+ used in the proof). �

3.2. Weighted spaces of Besov modelled distributions

We first recall the definition of the (unweighted) spaces of Besov modelled distributions introduced in [15].

Definition 3.2. Take γ ∈ R. We let Dγ
p be the Banach space of all periodic maps f : R × R3 → T<γ such that for all

ζ ∈ A<γ , we have:

∥∥|f (z)|ζ
∥∥
Lp(R×T3,dz)

<∞, sup
h∈B(0,1)

∥∥∥∥ |f (z+ h)− �z+h,zf (z)|ζ
|h|γ−ζ

∥∥∥∥
Lp(R×T3,dz)

<∞.

We let |||f ||| be the corresponding norm.
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Remark 3.3. For the sake of consistency with [15], we should have denoted our spaces by Dγ
p,q with q = ∞. Since the

parameter q will always be taken equal to +∞ in the present work, we omit writing it.

Let us now introduce spaces of modelled distributions with weights near t = 0+. The reason for considering such
weights is twofold: first, it allows to start the equation at stake from some irregular initial condition, second playing
around with the weight parameter η will eventually allow us to obtain contractivity of the fixed point map.

Definition 3.4. Let γ ∈ R, T > 0 and η ≤ γ . We let Dγ,η,T
p be the space of all periodic maps f : (0, T )× R3 → T<γ

such that for all ζ ∈A<γ :∥∥∥∥ |f (z)|ζ
t
η−ζ

2

∥∥∥∥
Lp((0,T )×T3,dz)

<∞,

sup
h∈B(0,1)

∥∥∥∥ |f (z+ h)− �z+h,zf (z)|ζ
|h|γ−ζ t

η−γ
2

∥∥∥∥
Lp((3|h|2,T−|h|2)×T3,dz)

<∞.

(3.6)

We let |||f ||| be the corresponding norm.

Notice that the exponent of the weight of the local terms is η−ζ
2 , and not (η−ζ )∧0

2 as in [13, Section 6]. The reason for

this choice is simple: the forthcoming embedding theorems would not hold true with (η−ζ )∧0
2 . Let us mention here that

this has some technical consequences: some arguments in the original proof of the convolution with a singular kernel [13,
Thm 6.16] need to be adapted, see in particular the refined bound (6.1) that we will need.

When we are given two models (�,�) and (�̄, �̄), we will need to compare elements f and f̄ that belong respectively
to the spaces Dγ,η,T

p and D̄γ,η,T
p . To that end, we set:

‖f − f̄ ‖ := sup
ζ∈A<γ

∥∥∥∥ |f (z)− f̄ (z)|ζ
t
η−ζ

2

∥∥∥∥
Lp((0,T )×T3,dz)

,

as well as

|||f ; f̄ ||| := ‖f − f̄ ‖ + sup
h∈B(0,1)

∥∥∥∥ |f (z+ h)− f̄ (z+ h)− �z+h,zf (z)+ �̄z+h,zf̄ (z)|ζ
|h|γ−ζ t

η−γ
2

∥∥∥∥
Lp((3|h|2,T−|h|2)×T3,dz)

.

We now present the main analytical tools associated to these spaces that are needed in the construction of the solution
as well as for the proof of the Malliavin differentiability. In order not to clutter the presentation, we postpone the proofs
of the forthcoming statements to Section 6 but make some comments on the differences with their original versions (in
the Hölder setting) in [13].

Recall that r is an integer taken larger than 5/2.

3.2.1. Reconstruction
Since we are dealing with modelled distributions defined on the time interval (0, T ) only, we need to introduce appropriate
Besov-type spaces. To that end, let us introduce some notations. We let Br be the set of all Cr functions from R × Rd

into R, which are compactly supported in B(0,1) and whose Cr -norm is less than or equal to 1. We then define Br
n as the

subset of Br whose elements annihilate all polynomials of scaled degree at most n ∈ N.

Definition 3.5. Fix T > 0. If ν < 0, we let Bν,T
p be the set of all periodic distributions ξ acting on test functions supported

in (−∞, T )×Rd such that

sup
λ∈(0,1]

∥∥∥∥ sup
ϕ∈Br

|〈ξ,ϕλz 〉|
λν

∥∥∥∥
Lp((−∞,T−λ2)×Td ,dz)

<∞. (3.7)

If ν ≥ 0, we let Bν,T
p be the set of all periodic distributions ξ acting on test functions supported in (−∞, T )× Rd such

that

∥∥∥ sup
ϕ∈Br

∣∣〈ξ,ϕz〉∣∣∥∥∥
Lp((−∞,T−1)×Td ,dz)

<∞, sup
λ∈(0,1]

∥∥∥∥ sup
ϕ∈Br�ν�

|〈ξ,ϕλz 〉|
λν

∥∥∥∥
Lp((−∞,T−λ2)×Td ,dz)

<∞. (3.8)
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The following fundamental result asserts the existence and uniqueness of a linear operator that associates to every
modelled distribution a genuine distribution.

Theorem 3.6 (Reconstruction). Let γ > 0, η ∈ R, T > 0 and set α := minA\N. Assume that α ∧ η >−2(1 − 1
p
). We

set ᾱ = α ∧ η if α ∧ η �= 0, otherwise we let ᾱ be any arbitrary negative value. There exists a unique continuous linear
map R :Dγ,η,T

p → Bᾱ,T
p such that 〈Rf,ϕ〉 = 0 whenever the support of ϕ lies in (−∞,0] ×Td , and such that

sup
λ∈(0,1]

∥∥∥∥ sup
ϕ∈Br

|〈Rf −�zf (z),ϕ
λ
z 〉|

λγ t
η−γ

2

∥∥∥∥
Lp((3λ2,T−λ2)×Td ,dz)

� |||f |||, (3.9)

uniformly over all f ∈Dγ,η,T
p .

In the case where there are two models (�,�), (�̄, �̄), we get the following counterpart of (3.9)

sup
λ∈(0,1]

∥∥∥∥ sup
ϕ∈Br

|〈Rf − R̄f̄ −�zf (z)+ �̄zf̄ (z), ϕ
λ
z 〉|

λγ t
η−γ

2

∥∥∥∥
Lp((3λ2,T−λ2)×Td ,dz)

� |||f ; f̄ |||‖�‖(1 + ‖�‖) + |||f̄ |||((‖�− �̄)
(
1 + ‖�‖) + ‖�̄‖‖� − �̄‖), (3.10)

uniformly over all f, f̄ in Dγ,η,T
p , D̄γ,η,T

p .

The proof of this result relies on the reconstruction theorem for unweighted modelled distributions, see [15, Thm 3.1]. In-
deed, since the spaces of weighted and unweighted modelled distributions are locally similar, and since the reconstruction
operator is local, one can apply the operator constructed in the aforementioned reference to weighted modelled distribu-
tions when tested against test functions supported away from the hyperplane t = 0. Then, one needs to patch together in a
consistent way these distributions in order to get an element in Bν,T

p : this raises the restriction η∧α >−2(1−1/p) of the
statement. Notice that this is in line with the restriction α∧ η >−2 of [13, Prop 6.9] in the setting of Hölder distributions
(p = ∞).

3.2.2. Embedding
Classical Besov spaces enjoy embedding properties: in particular, one can improve the integrability of a func-
tion/distribution at the cost of losing some regularity. In [15], embedding theorems were established for unweighted
Besov-type modelled distributions (Definition 3.2). Notice that in the context of regularity structures, the regularity pa-
rameter which is traded off against integrability is no longer the actual regularity of the function/distribution but rather
the parameter γ (which stands for the order of the generalized Taylor expansion at stake). Below, we extend the scope
of the embedding theorems of [15] to the case of weighted spaces near t = 0 (since the parameter q is set to +∞ in this
paper, we do not treat the embedding properties associated with q). The main difference with the original version is that
one also needs to decrease the value of η (by the same amount as γ ) in order to improve integrability.

Theorem 3.7 (Embeddings with weights). The space Dγ,η,T
p is continuously embedded into Dγ ′,η′,T

p′ in any of the
following situations:

(1) p′ <p, γ ′ = γ and η′ = η,
(2) p′ >p, γ ′ < γ − |s|( 1

p
− 1

p′ ) and η′ = η+ γ ′ − γ .

3.2.3. Product
The notion of sector is introduced in [13, Def 2.5]: roughly speaking, a sector V of regularity α is a “sub-regularity
structure” whose smallest level is α. Two sectors V1 and V2 are said to be γ -regular if �(τ1τ2) = �τ1�τ2 for all � ∈ G
and all τi ∈ Tζi ∩ Vi such that the ζi ’s satisfy ζ1 + ζ2 < γ . We denote by Dγ,η,T

p (V ) the subspace of Dγ,η,T
p whose

elements take values in V .

Theorem 3.8 (Multiplication). Let fi ∈ Dγi ,ηi ,T
pi (Vi), i = 1,2, where V1,V2 are γ -regular sectors of regularity α1, α2.

Then f := f1f2 belongs to Dγ,η,T
p , where

γ = (γ1 + α2)∧ (γ2 + α1), η= η1 + η2,
1

p
= 1

p1
+ 1

p2
.
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If we are given two models (�,�) and (�̄, �̄), then we have the bound

|||f1f2;g1g2||| � ‖�‖2‖f1 − g1‖|||f2||| + ‖� − �̄‖(|||g1||||||f2||| + |||g2||||||f1|||
) + |||f1;g1||||||f2|||

+ ‖�‖|||f1||||||f2;g2||| + |||g1|||‖f2 − g2‖ + ‖�̄‖‖f1 − g1‖|||g2|||,
uniformly over all fi ∈Dγi ,ηi

pi (Vi) and all gi ∈ D̄γi ,ηi
pi (Vi).

This result is in the flavour of [13, Prop 6.12]. The main difference is that η is not given by the infimum of η1 + α2,
η2 +α1 and η1 + η2 but is equal to the latter. This is a consequence of our choice of exponents for the weights in the local
terms: η−ζ

2 , and not (η−ζ )∧0
2 as in [13].

3.2.4. Convolution with the heat kernel
Recall the decomposition of the heat kernel introduced in Section 3. For convenience, we set P+ := ∑

m≥0Pm and call
this function the singular part of the heat kernel, by opposition to P− that we call the smooth part of the heat kernel. The
goal of the present section is to lift the convolution with the heat kernel at the level of the spaces Dγ,η,T

p . This will be
carried out separately for the singular part and the smooth part.

We start with the former, which is the most involved. We set for any f ∈ Dγ,η,T
p

Pγ
+f (z) := I

(
f (z)

) +
∑
ζ∈Aγ

∑
k∈Nd+1:|k|<ζ+2

Xk

k!
〈
�zQζ f (z), ∂

kP+(z− ·)〉

+
∑

k∈Nd+1:|k|<γ+2

Xk

k!
〈
Rf −�zf (z), ∂

kP+(z− ·)〉.
Theorem 3.9 (Convolution – singular part). Let α := minA\N. Fix γ > 0 and η ≤ γ , and let γ ′ = γ +2 and η′ < η+2.

Assume that γ ′ /∈N and α∧ η >−2(1 − 1
p
). Then, the operator Pγ

+ is a continuous linear map from Dγ,η,T
p into Dγ ′,η′,T

p

and we have for all f ∈Dγ,η,T
p

RPγ
+f = P+ ∗Rf.

If (�̄, �̄) is another admissible model, then uniformly over all f, f̄ in Dγ,η
p , D̄γ,η

p we have∣∣∣∣∣∣Pγ
+f,P

γ
+f̄

∣∣∣∣∣∣ � ‖�‖(1 + ‖�‖)|||f, f̄ ||| + (‖�− �̄‖(1 + ‖�̄‖) + ‖�̄‖‖� − �̄‖)|||f̄ |||.

Remark 3.10. If ν := minA and if f ∈Dγ,η,T
p , then Pγ

+f takes values in a sector of regularity (ν + 2)∧ 0.

Remark 3.11. Notice that in the original version of the convolution theorem [13, Th. 5.12], the parameter η is sent onto
(η∧α)+ 2 after convolution. As we will be working in situations where η > α, our result provides a better weight index.
Let us also mention that if we had chosen an L∞-norm in time in our spaces of modelled distributions (as this is the case
in the original version of the theorem), then we would have improved the weight index by 2 and not 2−.

We turn to the convolution with the smooth part of the heat kernel. For every f ∈ Dγ,η,T
p , we set

Pγ
−f (z) :=

∑
k∈Nd+1:|k|<γ+2

Xk

k!
〈
Rf, ∂kP−(z− ·)〉.

Theorem 3.12 (Convolution – smooth part). In the context of Theorem 3.9, the operator Pγ
− is a continuous linear map

from Dγ,η,T
p into Dγ ′,η′,T

p and we have

RPγ
−f = P− ∗Rf.

We then define the operator Pγ := Pγ
+ +Pγ

− which is a continuous linear map from Dγ,η,T
p into Dγ ′,η′,T

p such that

RPγ f = P ∗Rf.
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3.2.5. Convolution of the shift
For any function h ∈ L2((0, T )×Td), we define

Ph(z) :=
∑

k∈Nd+1:|k|<2

Xk

k!
〈
h, ∂kP (z− ·)〉.

Although an operator P acting on Dγ,η,T
p was already introduced in the previous subsection, we prefer to keep the same

notation for the present operator as they both refer to the convolution with the heat kernel.

Lemma 3.13. For any h ∈ L2((0, T ) × T3) and any κ > 0, the restriction of Ph to T<2−κ defines an element of
D2−κ,2−κ,T

2 .

4. Malliavin differentiability

4.1. The Bouleau–Hirsch criterion

Let � be a separable Banach space, let P be the law of a zero-mean Gaussian field on � and let H be the associated
Cameron–Martin space. We also let F be the Borel σ -field associated with �, completed with P-null sets.

Definition 4.1. A random variable X on (�,F,P) is said to be locally H-differentiable if there exists an almost surely
positive r.v. q such that h �→X(ω+ h) is Fréchet differentiable on {h ∈ H : ‖h‖H < q(ω)}. For all ω such that q(ω) > 0,
we call DX(ω) the differential at h= 0 of the above map.

In our context, � is taken to be the Hölder space Cα((0, T )×Td) with α <−5/2 and P is the law of the noise ξ .
We then have the following result, essentially due to Bouleau and Hirsch: we refer to [5, Section 2] for details and

references.

Theorem 4.2. Let X be an Rn-valued random variable on (�,F,P). Assume that X is locally H-differentiable and that
P almost surely, DX : H → Rn is onto. Then X admits a density w.r.t. Lebesgue measure on Rn.

4.2. Fixed points

4.2.1. Solution theory for (�4
3)

Let us first recall the theory for the fixed point equation for U

U =P
(−U3 + 1{t>0}�

) +Gu0 (4.1)

Here u0 ∈ Cη(T3) is the initial condition, and Gu0 is the lift into the polynomial regularity structure of the convolution
with the heat kernel of the initial condition:

Gu0(t, x) :=
∑

k∈Nd+1:|k|<γ ′

Xk

k!
〈
u0, ∂

kP (t, x − ·)〉,
see [13, Lemma 7.5].

By [13, Proposition 9.8], for any model (�,�) ∈ M, any u0 ∈ Cη(T3) with η ∈ (−2/3,−1/2 − κ) and any γ > 1,
there exists a time Texplo > 0 such that (4.1) admits a solution U ∈Dγ,η,T∞ for each T < Texplo, and if Texplo <+∞ one has

lim
t→Texplo

∥∥(RU)(t, ·)∥∥Cη(T3)
= +∞.

In addition, the map (�,�) �→U is continuous in the sense that if �ε →� in M, then

lim inf
ε

Texplo
(
�ε

) ≥ Texplo(�)

and for each T < Texplo(�),

lim
ε

∣∣∣∣∣∣Uε;U ∣∣∣∣∣∣
Dγ,η,T∞

= 0,

where Uε =U(�ε), U =U(�).
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Furthermore, if �̂ε is the model obtained from ξ by renormalization and regularization as described in Section 3.1.2,
then one can show that uε := RU(�̂ε) is the solution to

(∂t −�)uε = Cεuε − u3
ε + ξε, uε(0, ·)= u0,

with Cε = 3Cε
1 − 9Cε

2 .
For a fixed sequence (εk)k≥0 converging to 0, we let

�0 := {
ξ,∃�, s.t. �̂εk (ξ)→� in M

}
and note that by Theorem 3.1, at least for a certain choice of (εk), one has P(�0)= 1.

We further let

�0,T =�0 ∩ {
T < Texplo

(
�(ξ)

)}
and we will assume throughout that

P(�0,T )= 1.

We further let

�1,T := {
ξ,∃u, s.t. uεk → u in C

([0, T ],Cη
(
T3))}

and note that �0,T ⊂�1,T . Throughout the rest of the paper, by u we will mean the random variable defined on �1,T as
the limit of the uε’s and arbitrarily (say 0) on �c

1,T .

4.2.2. Shifted equations
From now on, we let U0 ∈ Dγ0,η0,T∞ denote the solution of (4.1) associated to a model (�,�) and an initial condition
u0 ∈ Cη0(T3) with

γ0 > 1, −1/2 − κ > η0 >−2/3.

Notice that the homogeneity of the lowest level on which U0 takes values is −1/2 − κ .
Our first goal is to extend the solution theory to the shifted equation and then to the tangent equation. We start with the

former; we aim at solving the following equation:

Yh = −P
(
3U2

0Yh + 3U0Y
2
h + Y 3

h

) +P(h). (4.2)

Notice that Uh =U0 + Yh is then the solution of (4.1) where � is replaced by �+ h.

Proposition 4.3. Take γ ∈ ( 7
4 + 2κ,2 − 2κ). Then, for any admissible model � such that Texplo(�) > T there exists

q = q(�) > 0 such that for all h in the ball of radius q in L2(0, T ), there exists a unique solution Yh ∈ Dγ,γ,T

2 to (4.2).
Furthermore, the map (�,h) �→ Yh is locally Lipschitz.

Although the statement of this proposition is classical in the framework of the theory of regularity structures, the proof
presents a specific difficulty. Indeed, we are working with spaces of modelled distributions of Lp-type in space and time
so that to evaluate the solution at some given time t , one needs to embed it into a space of modelled distributions of
L∞-type in time: this decreases tremendously the regularity of the corresponding function of space, and unfortunately,
prevents us from iterating a fixed point argument. To circumvent this difficulty, we build the iterations in a different
manner: after having obtained a fixed point on (0, T∗) for some T∗ > 0, we iterate the fixed point argument on the interval
(T∗/2,3T∗/2) but with a slightly different map which takes into account the fixed point already obtained on (0, T∗). The
key point is that everything depends continuously on the L2-norm of the shift h, so that reducing the latter one can always
obtain contractivity.

Proof. For S ≤ T , consider the map

MS : Y �→ −P
(
3U2

0Y + 3U0Y
2 + Y 3) +P(h).
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Let Y,RY be the smallest sets of symbols such that Xk ∈ Y for all k ∈N4 and, for all τ1, τ2, τ3 ∈ U and all ρ1, ρ2, ρ3 ∈ Y ,
we have

τ1τ2ρ1 ∈RY , τ1ρ1ρ2 ∈RY , ρ1ρ2ρ3 ∈ RY ,

and for all ρ ∈ RY we have I(ρ) ∈ Y . It is simple to check that Y then contains only symbols with non-negative homo-
geneities. The proof is now split into five steps.

Step 1. Let us show that MS goes from Dγ,γ,S

2 into Dγ+ε,γ+ε,S
2 for some ε > 0. To that end, we look at every single

term appearing in MS(Y ) and show that it belongs to some Dγ ′,η′,S
2 with γ ′ > γ and η′ > γ . Since Dγ ′,η′,S

2 can be

continuously embedded into Dγ ′′,η′′,S
2 if γ ′′ ≤ γ ′, η′′ ≤ η′ and γ ′′ /∈ A, this is enough to obtain the desired property.

Applying successively the Embedding Theorem (Th. 3.7), the Multiplication Theorem (Th. 3.8) and the Convolution
Theorems (Th. 3.9 and 3.12), we obtain the following: (for the sake of readability, we drop the superscript S)

Y ∈Dγ,γ

2 ⇒ Y ∈ Dγ− 5
3 −κ,γ− 5

3 −κ
6 ⇒ Y 3 ∈Dγ− 5

3 −κ,3γ−5−3κ
2 ⇒ P

(
Y 3) ∈ Dγ+ 1

3 −κ,3γ−3−4κ
2 ,

as well as

Y ∈Dγ,γ

2 ⇒ Y ∈ Dγ− 5
4 −κ,γ− 5

4 −κ
4 ⇒ Y 2 ∈Dγ− 5

4 −κ,2γ− 5
2 −2κ

2

⇒ Y 2U0 ∈Dγ− 7
4 −2κ,2γ− 5

2 −2κ+η0

2 ⇒ P
(
Y 2U0

) ∈Dγ+ 1
4 −2κ,2γ− 1

2 −3κ+η0

2 ,

and

Y ∈Dγ,γ

2 ⇒ YU2
0 ∈Dγ−1−2κ,γ+2η0

2 ⇒ P
(
YU2

0

) ∈ Dγ+1−2κ,γ+2η0+2−κ
2 .

Finally, P(h) ∈ D2−κ,2−κ
2 by Lemma 3.13.

This shows that MS goes from Dγ,γ,S

2 into Dγ+ε,γ+ε,S
2 for some ε > 0. Notice that the embedding from Dγ+ε,γ+ε,S

2

into Dγ,γ,S

2 has a norm of order Sε : we will use this fact below to get a fixed point.

Step 2. In the forthcoming equations, ||| · ||| will refer to the Dγ,γ,S

2 -norm. By the analytical results of Section 3.2, there
exists C > 0 such that∣∣∣∣∣∣MS(Y )

∣∣∣∣∣∣ ≤ CSε
(|||Y ||| + |||Y |||2 + |||Y |||3 + ‖h‖L2((0,S)×T3)

)
,

and ∣∣∣∣∣∣MS(Y )−MS

(
Y ′)∣∣∣∣∣∣ ≤CSε |||Y − Y ′|||(1 + ∣∣∣∣∣∣Y − Y ′∣∣∣∣∣∣ + ∣∣∣∣∣∣Y − Y ′∣∣∣∣∣∣2)

,

uniformly over all S ≤ T and all Y,Y ′ ∈ Dγ,γ,S

2 . Consequently, for any R > 0, one can choose T∗ and q small enough so

that MT∗ maps the centered ball of radius R into the centered ball of radius R/2 in Dγ,γ,T∗
2 and is 1/2-Lipschitz there,

uniformly over all ‖h‖L2(0,T ) ≤ q . Fix R > 0 and let Y∗ = Y∗(h) be the corresponding fixed point for any h such that
‖h‖L2 ≤ q . A simple computation shows that∣∣∣∣∣∣Y∗(h)

∣∣∣∣∣∣ ≤ C′T∗ε‖h‖L2 .

Step 3. We “extend” Y ∗ into an element Y ext of Dγ,γ,3T∗/2
2 that satisfies:

Y ext(t, ·)= Y∗(t, ·), ∀t ∈ (0,2T∗/3),

and

Y ext(t, ·)= 0, ∀t ∈ (3T∗/4,3T∗/2).

To do so, we consider a smooth function of t which equals 1 on (0,2T∗/3) and 0 after 3T∗/4, and we lift it into the
polynomial regularity structure up to level �γ + 2�. The Dγ+2,0,3T∗/2∞ -norm of such a function is of order T −γ−2∗ and we
can apply Theorem 3.8 to take the product of this function with Y∗. Notice that |||Y ext||| � T

−γ−2∗ |||Y∗(h)|||.
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Step 4. Let us now iterate this fixed point procedure. We introduce the space D̂γ,γ,T∗
2 of maps on (T∗/2,3T∗/2)× T3

which vanish on (T∗/2,2T∗/3)×T3 and satisfy the bounds of the Dγ,γ,T∗
2 -norm but shifted by T∗/2 in time: in particular

the weights are given by powers of t − T∗/2 instead of t . We then consider the following map defined on D̂γ,γ,T∗
2 :

M̂T∗ : Y �→ −P
(
3U2

0Y + 3U0Y
2 + Y 3) −P

(
6U0Y

extY + 3Y ext2Y + 3Y extY 2) +P(h1t≥2T∗/3)

−P
(
3U2

0Y
ext + 3U0Y

ext2 + Y ext3) − Y ext +P(h1t<2T∗/3).

Notice that the second line vanishes on (T∗/2,2T∗/3] since Y ext coincides with the fixed point Y∗ of MT∗ on this interval.

The map M̂T∗ then takes values in D̂γ,γ,T∗
2 .

Up to diminishing the value of q , one can check that for any arbitrary δ > 0, M̂T∗ maps the centred ball of radius R in

D̂γ,γ,T∗
2 into the centered ball of radius R/2 + δ in D̂γ,γ,T∗

2 and is (1/2 + δ)-Lipschitz there. Indeed, compared to MT∗ ,

the norms of the additional terms appearing in M̂T∗ all depend on the L2-norm of h so that their contributions can be
made as small as desired by simply diminishing the latter.

This yields a fixed point Y∗∗. Since it vanishes on (T∗/2,2T∗/3], it can be extended into an element of Dγ,γ,3T∗/2
2 by

simply setting its value to 0 before time T∗/2, and one can check that Yext + Y∗∗ is a fixed point of the map M3T∗/2.
Iterating this procedure k times, one obtains a fixed point on the interval [0, (k + 1)T∗/2] so that we can get as close as
desired to time T .

Step 5. The lower-semicontinuity of the maximal time (�,�) �→ T ensures that we can find a neighbourhood of (�,�)
where the maximal time is uniformly larger than T . The local Lipschitz continuity of the solution map (�,�,h) �→ Yh is
then a consequence of the bounds obtained in Theorems 3.6, 3.7, 3.8 and 3.9 applied to the fixed points associated with
the model (�,�) and some close-by model (�̄, �̄). �

In the sequel, we let Uh = U0 + Yh. As these two terms do not live in the same space, we will need to treat them
separately in the next analytical bounds.

We then have the following consistency result:

Proposition 4.4. For all ξ ∈�0,T , for all h ∈H s.t. ‖h‖< q(ξ) where q is given by Proposition 4.3 for the model �(ξ),
one has ξ + h ∈�1,T and

u(ξ + h)=RUh

(
�(ξ)

)
).

Proof. By applying the same arguments identifying the equation satisfied by uε (cf. [13, Proposition 9.10]), one can show
that uεh := RUh(�̂

ε) satisfies the equation

(∂ −�)uεh = −(
uεh

)3 + (
3Cε

1 − 9Cε
2

)
uεh + ξε + h,uεh(0, ·)= u0.

Comparing with the equation satisfied by uε , we obtain that

uε(ξ + h)= uεhε

where hε = h ∗ ρε . Taking the limit and using continuity of (�,h) �→Uh, we obtain the result. �

We then consider the tangent equation

V := P
(−3U2

h0
V

) +Ph. (4.3)

Proposition 4.5. Take γ ∈ ( 7
4 + 2κ,2 − 2κ). Then, for any admissible model � such that Texplo(�)≥ T for all h0 in the

ball of radius q in L2(0, T ) and for all h ∈ L2(0, T ), there exists a unique solution Vh0,h ∈Dγ,γ,T

2 to (4.3). Furthermore,
the map (�,h0, h) �→ Vh0,h is locally Lipschitz.

Proof. The arguments are essentially the same as those presented in the proof of Proposition 4.3. The main difference is
that (4.3) is linear in V so that the solution is itself linear in h: therefore, there is no constraint on the L2-norm of h for
existence of solutions. �

We also identify the equation satisfied by Vh0,h in the case of a regularized model:
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Proposition 4.6. vh0,h,ε := RVh0,h(�̂
ε) satisfies

(∂t −�)vh0,h,ε = −3
(
uh0,ε

)2
vh0,h,ε + (

3Cε
1 − 9Cε

2

)
vh0,h,ε + h,vh0,h,ε(0, ·)= 0. (4.4)

Proof. We fix h0 and h, and for ease of notation we let U = Uε
h0
,V = V ε

h0,h
and u, v their respective reconstructions.

Recall that from the definition of U one gets that

U = + u11 − + (> 1−),
where by (> 1−) we mean a sum of symbols of degree 1− or higher. In particular

u= (P ∗ ξε)+ u1

and also

U2 = + 2u1 − 2 + u2
11 + (> 0).

From (4.3) we get

V = v1 − 3v +
3∑
i=1

viXi + (> 3/2−),

and

−3U2V = −3v − 6u1v + 6v − 3u2
1v1 + 9v − 3

3∑
i=1

viXi + (> 0).

Since R(−3U2V )(z)= �̂ε
z(−3U2V )(z), using (3.4) we obtain

R
(−3U2V

) = −3v
(
(P ∗ ξε)2 −Cε

1

) − 6u1v(P ∗ ξε)− 3u2
1v − 9vCε

2 = −3u2v + 3Cε
1v − 9Cε

2v

and since (∂t −�)(RPf )=Rf for any modelled distribution f , it follows that RV satisfies (4.4). �

4.3. Malliavin differentiability of the solutions

Let ϕi , i = 1, . . . , n be functions in the Besov space B1/2+
1 and assume that they are compactly supported in (0, T ).

Remark 4.7. The regularity of the test functions has to be larger than 1/2 by a quantity related to κ : we prefer not to
write precisely the relationship with κ to avoid dealing with many different constants times κ in the arguments.

We claim that for all ξ ∈ �0,T , for all h lying in the ball of radius q(ξ), the random variable 〈u(ξ + h),ϕi〉 makes
sense. Indeed, recall that we have u(ξ + h)= RU0 +R(Yh). The first term lies in the space B−1/2−,T∞ (at least far from
t = 0+) so that it can be tested against ϕi (which vanishes near t = 0+). On the other hand, Yh ∈ D2−,2−,T

2 ⊂ D0+,0+,T
10−

so that R(Yh) ∈ B0+,T
10− while ϕi ∈ B1/2+

1 ⊂ B0+
10
9 + so that 〈R(Yh),ϕi〉 makes sense.

Proposition 4.8. The random variable ξ �→ (〈u(ξ),ϕ1〉, . . . , 〈u(ξ),ϕn〉) ∈ Rn is locally H-differentiable in the sense of
Definition 4.1.

Proof. Fix ξ ∈�0,T . For any h0 whose L2((0, T )×Td) norm is smaller than the parameter q(ξ) of Proposition 4.3, we
introduce the map

F : L2 ×Dγ,γ,T

2 −→Dγ,γ,T

2

(h,Y ) �−→ Y +P
(
(Y +Uh0)

3 −U3
h0

) −P(h).
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It can be checked that F is Fréchet differentiable and that its partial derivatives satisfy:

∂1F(h,Y )(g)= −Pg,

∂2F(h,Y )(Z)=Z + 3P
(
(Y +Uh0)

2Z
)
.

Notice that the differential depends continuously on h,Y . Let us prove that Z �→ ∂2F(h,Y )(Z) is a bounded, linear
isomorphism.

The linearity is immediate and the boundedness is a consequence of the analytic results on products and convolution,
see Theorems 3.8, 3.9 and 3.12. To prove that Z �→ ∂2F(h,Y )(Z) is a bijection, we proceed as follows. Let X ∈ Dγ,γ,T

2
be given and consider the fixed point equation:

Z = −3P
(
(Y +Uh0)

2Z
) + λX. (4.5)

If we prove that this equation admits a unique solution for all λ > 0 small enough, then the linearity in Z of the equation
ensures that uniqueness holds for all λ > 0 and, in turn, we deduce that Z �→ ∂2F(h,Y )(Z) is a bijection (surjectivity
follows from the existence of solutions, injectivity follows from the uniquess of the solution for X = 0). The proof of the
claim then follows from exactly the same arguments as in the proof of Proposition 4.3: the tuning parameter in that proof
was the L2-norm of h while, in the present case, one decreases the parameter λ in order to get contractivity of the solution
map.

We know that F(0,0) = 0 so that we can apply the Implicit Function Theorem that ensures the existence of a ball
B(0, ε) in L2((0, T ) × Td) and of a differentiable function θ : B(0, ε) �→ Dγ,γ,T

2 such that F(h, θ(h)) = 0 for all h ∈
B(0, ε). Furthermore,

Dθ(h)= −(
∂2F

(
h, θ(h)

))−1(
∂1F

(
h, θ(h)

))
. (4.6)

Comparing the identities F(h, θ(h)) = 0 and (4.2), we deduce from the uniqueness part of Proposition 4.3 that θ(h) =
Yh0+h − Yh0 for all h ∈ B(0, ε). Similarly, comparing the identities (4.6) and (4.3), we deduce from the uniqueness part
of Proposition 4.5 that Dθ(0)(h)= Vh0,h for all h ∈L2(0, T ). Putting everything together, we get

|||Yh0,h − Vh0,h||| =
∣∣∣∣∣∣θ(h)− θ(0)−Dθ(0)(h)

∣∣∣∣∣∣ = o
(‖h‖)

uniformly over all h whose L2-norm is smaller than ε.
Recall that u(ξ + h0 + h)=RU0 +RYh and that v(ξ)h0,h =RVh0,h. Consequently,

u(ξ + h0 + h)− u(ξ + h0)− v(ξ)h0,h =R(Yh0+h − Yh0 − Vh0,h).

Composing with the continuous map

f �→ (〈f,ϕ1〉, . . . , 〈f,ϕn〉
)
,

this yields the asserted differentiability at any point ξ +h0 such that ξ ∈�0,T and the L2-norm of h0 is smaller than q(ξ).
The differential at ξ + h0 is equal to

h �→ (〈
v(ξ)h0,h, ϕ1

〉
, . . . ,

〈
v(ξ)h0,h, ϕn

〉)
.

By Proposition 4.5 this map is continuous in h0 (within the ball of radius q(ξ)), we deduce the asserted Fréchet differen-
tiability, thus concluding the proof. �

5. Existence of densities

We want to study the density of X = (〈u,φ1〉, . . . , 〈u,φn〉) with φ1, . . . , φn linearly independent elements of B1/2+
1 with

support in (0, T )×T3.
Recall that by the results of the previous section, the Malliavin derivative of X is given by

DX : h �→ (〈
vh,φ1

〉
, . . . ,

〈
vh,φn

〉)
where vh =RV h with V h = V0,h defined as above.
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The a.s. surjectivity of DX is then equivalent to proving that a.s. one has〈
vh,

∑
i

λiφi

〉
= 0 ∀h ∈ H =⇒ λ1 = · · · = λn = 0.

5.1. The dual equation

Fix T > 0. We need to introduce spaces of modelled distributions which are amenable to solving SPDEs going backward
in time from time T .

For γ > 0, η ≤ γ , p ∈ [1,∞] and T ′ ≤ T , we introduce the space D̃γ,η,T ′
p as the set of all modelled distributions

f : (T ′, T )× Td → T<γ that satisfy the bounds (3.6) with (0, T ) and (3|h|2, T − |h|2) replaced by (T ′, T ) and (T ′ −
|h|2, T − 3|h|2), and with the weights t (η−ζ )/2 and t (η−γ )/2 replaced by (T − t)(η−ζ )/2 and (T − t)(η−γ )/2. The calculus
presented in Section 3.2 finds naturally its counterpart backward in time: we denote by R̃ and P̃ the associated operators
acting on the spaces D̃.

For δ > 1/2, let ϕ ∈ Bδ
1(R× T3) be a function whose support lies in (0, T )× T3. One can naturally lift this function

into the polynomial regularity structure by setting

�(z) :=
∑

k∈Nd+1:|k|<δ

Xk

k! ∂
kϕ(z).

This defines an element of D̃δ,δ,T
1 : notice that we can take the parameter η in this space to be equal to δ since our function

ϕ vanishes before time T . Applying Theorems 3.9 and 3.12, we deduce that P̃� ∈Dδ+2,δ+2−κ,T
1 .

We want to study the backward equation which is dual to that of V h, given by

W = P̃
(−3U2

0W
) + P̃�. (5.1)

(Note that U0 still denotes the solution to the forward equation (4.1).)

Proposition 5.1. Let � be an admissible model such that Texplo(�)≥ T and set γ̃ = η̃= 2+δ−κ . For every T ′ ∈ (0, T ),

there exists a unique solution W ∈ D̃γ̃ ,η̃,T ′
1 to (5.1). Furthermore, the map � �→W is locally Lipschitz. Finally, we have

the following estimate:

|||W |||D̃γ̃ ,η̃,T ′
1

�
(
T ′)η0−γ0,

uniformly over all T ′ ∈ (0, T ).

Proof. Observe that the restriction of U0 to (T ′, T ) belongs to D̃γ0,η0,T
′

∞ and that its norm satisfies:

|||U0|||D̃γ0,η0,T
′

∞
�

(
T ′) η0−γ0

2 |||U0|||Dγ0,η0,T∞
,

uniformly over all T ′ ∈ (0, T ). Indeed, the norm on the left hand side is not weighted near 0, while the norm on the right
hand side is weighted by exponents no worse than η0−γ0

2 .
Applying the analytical results of Section 3.2, we deduce the following:

W ∈ D̃2+δ−κ,2+δ−κ,T ′
1 ⇒ WU2

0 ∈ D̃2+δ−1−3κ,2+δ−κ+2η0,T
′

1 ⇒ P̃
(
WU2

0

) ∈ D̃2+δ+1−3κ,4+δ−2κ+2η0,T
′

1 ,

so that the map MT ′ :W �→ P̃(−3U2
0W)+ P̃� goes from D̃γ̃ ,η̃,T ′

1 into D̃γ̃+ε,η̃+ε,T ′
1 for some ε > 0.

At this point, we introduce a parameter λ > 0 and consider the modified map MT ′ : W �→ P̃(−3U2
0W) + λP̃�.

Following the same steps as in the proof of Proposition 4.3, we obtain a fixed point to this map: the only difference is
that instead of decreasing the norm of h in order to get contractivity, here we decrease the value of λ. Hence we obtain a
unique solution with � replaced by λ� in the definition of MT ′ for some λ > 0 potentially very small. Since the equation
is actually linear in W , we easily recover the solution for �. �

Since W takes values in non-negative levels only, R̃W is a function on (T ′, T )× T3 with T ′ > 0 arbitrarily small: it
therefore defines a function on (0, T )×T3 and we have the following result.
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Proposition 5.2. Let vh =RVh, wφ =RW , then it holds that

∀(h,φ) ∈ L2 ×B
1
2 +
1 ,

〈
vh,φ

〉 = 〈
h,1(0,T )w

φ
〉
. (5.2)

In particular, wφ is in L2((0, T )×T3).

Proof. By continuity of everything w.r.t. the model, it is enough to prove this identity for the approximating smooth
renormalized models. Recall that by Proposition 4.6 we know that in that case the equation satisfied by vh is given by

(∂t −�)vhε = (−3u2
ε +Cε

)
vhε + h,vh(0, ·)= 0

with Cε = 3Cε
1 − 9Cε

2 . To identify the equation satisfied by wφ , we proceed as in the proof of Proposition 4.6 and obtain
that

W =wφ1 − 3wφ +
∑
i

wiXi + (> 3/2−)

and

−3U2W = −3w − 6u1w + 6w − 3u2
1w1 + 9w − 3

3∑
i=1

viXi + (> 0).

As in the proof of Proposition 4.6 this yields that w satisfies

(−∂t −�)wφ = (−3u2
ε + C̃ε

)
wφ + φ,wφ(T , ·)= 0,

where C̃ε = 3Cε
1 − 9Cε

3 = Cε (recalling (3.5)), and from there a standard integration by parts leads to (5.2). �

5.2. Existence of densities

We will now prove the main result of this paper, Theorem 1.1. The proof relies on the following crucial result.

Proposition 5.3. Let φ ∈ B1/2+
1 supported in (0, T )×T3, W the solution to the fixed point equation (5.1) and w =RW .

If w = 0 a.e. on [0, T ] ×T3, then one has φ = 0.

Proof. Assume that W = 0, then by (5.1) we obtain P̃ ∗φ = 0, hence φ = 0. We therefore only need to prove that W = 0
as soon as w =RW = 〈W,1〉 = 0, which we now assume.

Let

δ = inf
{|τ |, τ ∈ W

∣∣〈W,τ 〉∣∣ is not a.e. 0
}

and assume δ < γ . Each symbol in W which is not a polynomial is of the form τ = Ĩ(ρ1ρ2τ
′), with ρ1, ρ2 ∈ U and

τ ′ ∈W , so that (recalling that the lowest homogeneity in U is − 1
2 + β − κ)

|τ | = 2 + |ρ1| + |ρ2| +
∣∣τ ′∣∣ ≥ 1 + 2β − 2κ + ∣∣τ ′∣∣> ∣∣τ ′∣∣,

and in addition by the fixed point equation one has

〈W,τ 〉 = −3〈U0, ρ1〉〈U0, ρ2〉
〈
W,τ ′〉

so that if 〈W,τ ′〉 = 0 a.e. the same holds for 〈W,τ 〉. Hence it follows that δ is an integer. But then by letting W ′ =Q<γ ′W

where sup(0, γ ′) ∩ A = δ, W ′ is an element of Dγ ′
1 taking value in the polynomial regularity structure, so that by [15,

Prop. 3.4] RW ′ = 0 ⇒W ′ = 0, a contradiction. �

Recall that in order to prove Theorem 1.1, by the Bouleau–Hirsch criterion, it suffices to check that a.s., for all
(λ1, . . . , λn),(

∀h ∈ H,
〈
vh,

∑
i

λiφi

〉
= 0

)
⇒ λ1 = · · · = λn = 0.
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By Proposition 5.2 (and linearity of φ �→wφ), this is equivalent to proving that a.s.

∀φ ∈ span(φ1, . . . , φn),
(∀h ∈ H,

〈
h,wφ1[0,T ]

〉 = 0
) ⇒ φ = 0. (5.3)

We will in fact prove the stronger fact that a.s., the above implication holds for all φ ∈ B1/2+
1 with support in (0, T )×

T3.

Proof of Theorem 1.1 under Assumption 2. This is immediate combining the fact that under Assumption 2,(∀h ∈H,
〈
h,wφ1[0,T ]

〉 = 0
) ⇒wφ1[0,T ] = 0

and Proposition 5.3. �

The proof under Assumption 3 is more involved and we prepare it with a preliminary result.

Lemma 5.4. Let ϕ be a smooth, compactly supported function with vanishing moments up to order one, then one has for
all z

E
[〈�z ,ϕz〉2] = 2

∥∥L(ϕ)∥∥2
L2 (5.4)

where

L(ϕ)(z1, z2)=
∫
dz(P+ ∗ ϕ)(z)(P+ ∗R)(z− z1)(P+ ∗R)(z− z2).

The Fourier transform of L(ϕ) is equal to

L̂(ϕ)(ξ1, ξ2)= (P̂+ϕ̂)(ξ1 + ξ2)(P̂+R̂)(−ξ1)(P̂+R̂)(−ξ2).

Proof. By stationarity of the model, it suffices to take z = 0. For the first assertion, note that since ϕ has vanishing
moments, one has

〈� ,ϕ〉 = 〈
P+(−·) ∗�( ),ϕ

〉 = 〈
�( ),P+ ∗ ϕ〉

.

One then checks via standard Gaussian computations and the definition of � that for any test function ψ one has

E
[〈
�( ),ψ

〉2] = 2
∫
dz1 dz2ψ(z1)ψ(z2)

〈
P+ ∗R(z1 − ·),P+ ∗R(z2 − ·)〉2

and the result follows.
For the second assertion, we write

L̂(ϕ)(ξ1, ξ2) =
∫
dz2 dz1 dze

−i〈ξ1,z1〉e−i〈ξ2,z2〉(P+ ∗ ϕ)(z)(P+ ∗R)(z− z1)(P+ ∗R)(z− z2)

=
∫
dz1 dze

−i〈ξ1,z1〉(P+ ∗ ϕ)(z)(P+ ∗R)(z− z1)e
−i〈ξ2,z〉(P̂+R̂)(−ξ2)

=
∫
dze−i〈ξ1+ξ2,z〉(P+ ∗ ϕ)(z)(P̂+R̂)(−ξ1)(P̂+R̂)(−ξ2)

= (P̂+ϕ̂)(ξ1 + ξ2)(P̂+R̂)(−ξ1)(P̂+R̂)(−ξ2). �

Proof of Theorem 1.1 under Assumption 3. Recall that it suffices to prove that P-a.s., for all φ ∈ B1/2+
1 supported in

(0, T )×T3, if W is the solution to

W = −P̃
(
3U2W

) + P̃(�)

and w := RW is in H⊥, then w = 0 (which implies W = 0 and �= 0 by Proposition 5.3).
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By Assumption 3 and Lemma 2.2, there exists a sequence nk → ∞ s.t.,

lim
k→∞ 22nk(3β−|s|)

∫
Bnk

m̂(dξ1)m̂(dξ2)
∣∣R̂(ξ1 + ξ2)R̂(ξ1)R̂(ξ2)

∣∣2
> 0. (5.5)

Now letting λk = 2−nk , we fix ϕkz =R ∗ ηλkz where η is compactly supported, with vanishing moments up to order r ′ ∈N

with r ′ > r + 4 + β and such that

inf
A0

|η̂|> 0.

Then by Lemma 5.4, one has

E
[〈
�z ,ϕkz

〉2] = 2
∥∥L(

ϕk
)∥∥2

L2 = 2
∥∥L̂(

ϕk
)∥∥2

L2

≥ 2
∫
Bnk

m̂(dξ1)m̂(dξ2)
∣∣(P̂+R̂)(ξ1 + ξ2)(P̂+R̂)(−ξ1)(P̂+R̂)(−ξ2)η̂

(
λk(ξ1 + ξ2)

)∣∣2

� 2−12nk

∫
Bnk

m̂(dξ1)m̂(dξ2)
∣∣R̂(ξ1 + ξ2)R̂(ξ1)R̂(ξ2)

∣∣2

� 22nk(−1−3β)
(

22nk(3β−|s|)
∫
Bnk

m̂(dξ1)m̂(dξ2)
∣∣R̂(ξ1 + ξ2)R̂(ξ1)R̂(ξ2)

∣∣2
)

� 22nk(−1−3β),

where we have used in the second inequality that |P̂+(ξ)| � |ξ |−2 and (5.5) in the last inequality.
We now fix γ and γ ′ such that

1 + 2β < γ ′ < γ <
3

2
+ β − κ (5.6)

(This is possible for κ small enough since β < 1
2 .)

Now since 〈�z ,ϕkz 〉 is an element of a Gaussian chaos of order 2, by the Carbery–Wright inequality [6, Theorem 8]
there exists C > 0 such that for each A> 0,

P
(
2nk(γ

′+β)∣∣〈�z ,ϕkz
〉∣∣ ≤A

) ≤ CA1/22− nk
2 (γ ′+β)

E[〈�z ,ϕkz 〉2]1/4
�A1/22− nk

2 (γ ′−1−2β).

It follows by the Borel–Cantelli Lemma that for any z,

P

(
lim
k→∞

∣∣〈�z ,ϕkz
〉∣∣2nk(γ ′+β) = +∞

)
= 1

and by Fubini’s Theorem that almost surely{
z ∈ (0, T )×T3 : lim

k→∞
∣∣〈�z ,ϕkz

〉∣∣2nk(γ ′+β) = +∞
}

has full measure. (5.7)

Note that ϕkz = (Rλ−1
k ∗ η)λkz and we will use the following inequality (the proof of which is deferred to Lemma 5.5

below):∣∣(Rλ−1
k ∗ η)(z)∣∣ � λ

β
k

(|z| + 1
)−|s|−r ′+β

. (5.8)

We now need to localize W to obtain an element of an unweighted space. Let θε = θε(t) be a smooth function equal
to 0 on (−∞,0) and to 1 on [ε,+∞), and such that ‖θε‖Cγ � ε−γ . We can then lift it to a modelled distribution �ε

and consider the product W ·�ε . It is simple to check that W ·�ε belongs to the unweighted space Dγ

1 = Dγ

1,∞ from

Definition 3.2 and that we have the bound: ‖W ·�ε‖Dγ

1
� ε−δ uniformly over all ε > 0, where δ = γ + γ0 − η0.

Now for each z ∈ (0, T )×Td one has using (1.7) that〈
w1(0,T ), ϕ

k
z

〉
L2(R4)

= 〈
w1(0,T ),

(
ϕkz

)per〉
L2(R×T3)

= 0
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since (ϕkz )
per = (R ∗ ηλkz )per =R ∗ (ηλkz )per is in H, so that

0 = 〈
w,1(0,T )ϕ

k
z

〉
= 〈

w,
(
1(0,T ) − θεk

)
ϕkz

〉 + 〈
R

(
W�εk

) −�z

(
W�εk

)
(z), ϕkz

〉 + 〈
�z

(
W�εk

)
(z), ϕkz

〉
=: Ak

1(z)+Ak
2(z)+Ak

3(z)

where we will take εk = | log(λk)|−1. Hence we have

0 = lim inf
k→∞

∫
(0,T )×T3

dz1{t≥2εk}λ
−γ ′−β
k

∣∣Ak
1(z)+Ak

2(z)+Ak
3(z)

∣∣ (5.9)

We will bound the first two terms from above and the third from below to obtain that w = 0 a.e. First note that letting
z= (t, x), by (5.8) one has that

∣∣ϕkz ∣∣� λ
−|s|+β
k

(
1 + (t − εk)

1/2
+

λk

)−|s|−r ′+β
on the support of 1(0,T ) − θε,

so that for t ≥ 2εk we have by the Cauchy–Schwarz inequality

∣∣Ak
1(z)

∣∣ ≤ ‖w‖L2

∥∥(
1(0,T ) − θεk

)
ϕkz

∥∥
L2 � λr

′
k ε

−|s|−r′+β+1
2

k

and we obtain

lim sup
k→∞

∫
(0,T )×T3

dz1{t≥2εk}λ
−γ ′−β
k

∣∣Ak
1(z)

∣∣ � lim sup
k→∞

λ
−γ ′−β+r ′
k ε

−|s|−r′+β+1
2

k = 0. (5.10)

For the second term, we observe that the function Rλ−1
k ∗ η is supported in a centered ball of radius of order λ−1

k and
satisfies by Lemma 5.5

∥∥Rλ−1
k ∗ η∥∥Cr (B(z,1)) � λ

β
k

(
1 + |z|)−(|s|+c)

with c= r ′ − r − β . Since r ′ − r − β > 4> γ − |�|, Lemma 5.6 yields

lim sup
k→∞

∫
(0,T )×T3

dz1{t≥2εk}λ
−γ ′−β
k

∣∣Ak
2(z)

∣∣ � lim sup
k→∞

∥∥W ·�ε
∥∥
Dγ

1
λ
γ−γ ′
k � lim sup

k→∞
ε−δ
k λ

γ−γ ′
k = 0. (5.11)

For the third term, the expansion of W up to order γ gives

W(z)=w(z)1 − 3w(z) +
3∑
i=1

wi(z)Xi

(the next term in the expansion would be a factor of which is of homogeneity 3
2 + β − κ > γ ). Since ϕkz has vanishing

moments, it holds that〈
�z

(
W�εk

)
(z), ϕkz

〉 = −3w(z)θε(z)
〈
�z ,ϕkz

〉
and by Fatou’s Lemma and (5.7)

lim inf
k→∞

∫
dz1{t≥2εk}λ

−γ ′−β
k

∣∣Ak
3(z)

∣∣ ≥ 3
∫
dz

∣∣w(z)∣∣(lim inf
k→∞ λ

−γ ′−β
k

∣∣〈�z ,ϕkz
〉∣∣)

=
∫
dz

∣∣w(z)∣∣ · ∞.

Combining this inequality with (5.9), (5.10) and (5.11), we see that necessarily w = 0 a.e., which finishes the proof. �
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Lemma 5.5. Let R satisfy Assumption 1, and η be a compactly supported, smooth function, with vanishing moments up
to order ρ > β − |s|. Then it holds that for λ ∈ (0,1], z ∈ R4,

∣∣(Rλ−1 ∗ η)(z)∣∣ � λβ
(
1 + |z|)−|s|−ρ+β

.

Proof. We first prove that

∥∥Rλ−1 ∗ η∥∥
L∞ � λβ,

distinguishing between the cases β = 0 and β > 0. When β = 0, we note that for any L2 function g, one has (using
Proposition 2.1)

∥∥Rλ−1 ∗ g∥∥
L2 = λ|s|/2

∥∥R ∗ gλ∥∥
L2 � λ|s|/2

∥∥gλ∥∥
L2 = ‖g‖L2,

so that by Gagliardo–Nirenberg inequality

∥∥Rλ−1 ∗ η∥∥
L∞ �

∥∥Rλ−1 ∗ η∥∥1/2
L2

∥∥Rλ−1 ∗D4η
∥∥1/2
L2 � ‖η‖1/2

L2

∥∥D4η
∥∥1/2
L2 � 1.

In the case β > 0, we fix n0 s.t. 2−n0 ∼ λ and we write

(
Rλ−1 ∗ η)(z)=

∑
0≤n≤n0

(
Rλ−1

n ∗ η)(z)+
∑
n>n0

(
Rλ−1

n ∗ η)(z).
The second sum is easily found to be of order λβ , using that

(
Rλ−1

n ∗ η)(z)� ∥∥Rλ−1

n

∥∥
L1‖η‖L∞ � 2−nβ.

We set for all z, y and all smooth φ:

Tρ,z(φ)(y)=
∑

k∈Nd+1:|k|<ρ
∂kφ(z)

yk

k! .

For 0 ≤ n≤ n0, we note that since η has vanishing moments up to order ρ, one has

(
Rλ−1

n ∗ η)(z)=
∫ (

Rλ−1

n (z− y)− Tρ,z
(
Rλ−1

n

)
(−y))η(y)dy

and for |y| � 1, by the Taylor formula from [13, Proposition A.1], it holds that

∣∣Rλ−1

n (z− y)− Tρ,z
(
Rλ−1

n

)
(−y)∣∣ � sup

ρ≤|l|≤ρ+2

∥∥∂lRλ−1

n

∥∥
L∞ � λ|s|+ρ2n(|s|+ρ−β).

Hence∑
n≤n0

∣∣(Rλ−1

n ∗ η)(z)∣∣ � λ|s|+ρ ∑
n≤n0

2n(|s|+ρ−β) � λβ.

Finally, let Cη be such that η is supported in B(0,Cη), and C > 0 be as given in Assumption 1, we remark that when
|z| ≥ 2Cη,

C2−n < λ|z|
2

⇒ C2−n < λ
(|z| −Cη

)
so that for such n, for all y in supp(η), Rλ−1

n (z− y)= 0, and (Rλ−1

n ∗ η)(z)= 0.
Hence it holds that

(
Rλ−1 ∗ η)(z)=

∑
n:2−n�λ|z|

∫
Rλ−1

n (z− y)η(y) dy
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so that the same estimate as above gives

(
Rλ−1 ∗ η)(z)� λ|s|+ρ ∑

n:2−n�λ|z|
2n(|s|+ρ−β) � λβ |z|−|s|−ρ+β .

�

Lemma 5.6. Take N r,c
λ as the space of all functions ϕ supported in B(0, λ−1) such that ‖ϕ‖Cr (B(z,1)) ≤ (1 + |z|)−(|s|+c),

with c > p(γ − infA). Then, we have

sup
λ∈(0,1]

∥∥∥∥ sup
ϕ∈N r,c

λ

|〈Rf −�zf (z),ϕ
λ
z 〉|

λγ

∥∥∥∥
Lp(R+×Td ,dz)

� |||f |||Dγ
p
,

uniformly over all f ∈Dγ
p .

Proof. Let ψ : Rd+1 →R be a smooth function, supported in B(0,1), that defines a partition of unity
∑

y∈0
ψy(·)= 1.

We can decompose

ϕ =
∑

y∈0:|y|≤λ−1+1

ψyϕ =:
∑

y∈0:|y|≤λ−1+1

ηy(· − y),

where each ηy is supported in B(0,1) and such that

∥∥ηy∥∥Cr ≤ (
1 + |y|)−(|s|+c)

.

We now rely on the reconstruction theorem [15, Th 3.1] in unweighted spaces. We have

〈
Rf −�zf (z),ϕ

λ
z

〉 =
∑
y∈0

〈
Rf −�zf (z),

(
ηy

)λ
z+λy

〉

=
∑

y∈0:|y|≤λ−1+1

〈
Rf −�z+λyf (z+ λy),

(
ηy

)λ
z+λy

〉

+
∑

y∈0:|y|≤λ−1+1

〈
�z+λy

(
f (z+ λy)− �z+λy,zf (z)

)
,
(
ηy

)λ
z+λy

〉
.

We then bound∫
dz sup

ϕ∈N r,c
λ

∣∣〈Rf −�zf (z),ϕ
λ
z

〉∣∣p

by bounding separately the two terms above. For the first one, we have

∫
dz sup

ϕ∈N r,c
λ

∣∣∣∣ ∑
y∈0

〈
Rf −�z+λyf (z+ λy),

(
ηy

)λ
z+λy

〉∣∣∣∣
p

≤
∫
dz

∣∣∣∣ ∑
y∈0

1

(1 + |y|)|s|+c sup
φ∈Br

∣∣〈Rf −�z+λyf (z+ λy),φλz+λy
〉∣∣∣∣∣∣

p

�
∫ ∑

y∈0

dz′ 1

(1 + |y|)|s|+c
∣∣∣ sup
φ∈Br

∣∣〈Rf −�z′f
(
z′

)
, φλz′

〉∣∣∣∣∣p

� λγp

where we have used Jensen’s inequality and the change of variables z′ = z+ λy. For the second one, note that

〈
�z+λy

(
f (z+ λy)− �z+λy,zf (z)

)
,
(
ηy

)λ
z+λy

〉
�

∑
ζ<γ

∣∣f (z+ λy)− �z+λy,zf (z)
∣∣
ζ

(
1 + |y|)−|s|−c

λζ
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(the sums being taken over elements ζ in A), so that we obtain

∑
ζ<γ

∫
dz

∣∣∣∣ ∑
y∈0:|y|≤λ−1+1

∣∣f (z+ λy)− �z+λy,zf (z)
∣∣
ζ

(
1 + |y|)−|s|−c

λζ
∣∣∣∣
p

�
∑
ζ<γ

∫
dz

∑
y∈0:|y|≤λ−1+1

λpζ

(1 + |y|)|s|+c
∣∣f (z+ λy)− �z+λy,zf (z)

∣∣p
ζ

� λpγ
∑
y∈0

|y|p(γ−ζ )

(1 + |y|)|s|+c |||f |||pDγ
p
� λpγ

where we have again used Jensen’s inequality and the fact that we assumed c > p(γ − β) for all β ∈ A. �

6. Some technical proofs

6.1. Reconstruction

In addition to the Reconstruction Theorem, we will need (in the proof of the Convolution Theorem) a technical result
on the regularity of the image of the reconstruction operator near the hyperplane t = 0. For simplicity, we let Lp(n0)

denote the space Lp((2−2n0 ∧ T ,2−2(n0−1) ∧ T )× Td , dz) for every n0 ∈ Z. Let nT ∈ Z be the unique integer such that
2−2nT ≤ T < 2−2(nT −1).

Proposition 6.1. In the context of Theorem 3.6, for any given ε > 0 and for every multiindex k ∈ Nd+1, we have the
following bounds:

( ∑
n0≥nT

∥∥∥∥ ∑
0≤m≤n0+4

|〈Rf, ∂kPm(z− ·)〉|
2−n0(η+2−ε−|k|)

∥∥∥∥
p

Lp(n0)

) 1
p

� |||f |||, (6.1)

and

( ∑
n0≥nT

∥∥∥∥ |〈Rf, ∂kP−(z− ·)〉|
2−n0(η+2−ε−|k|)

∥∥∥∥
p

Lp(n0)

) 1
p

� |||f |||, (6.2)

uniformly over all f ∈ Dγ,η,T
p . In the case of two models, bounds similar to (3.6) hold.

We now present the proofs of Theorem 3.6 and Proposition 6.1 jointly. For notational simplicity, we take T = 1,
although the arguments carry through if T > 0 is arbitrary. The proof of Theorem 3.6 and Proposition 6.1 relies on three
main arguments. First, we use the reconstruction theorem in unweighted spaces of modelled distributions [15, Thm 3.1].
Indeed, any element f ∈ Dγ,η,T

p , restricted (by a localisation argument) to a ball B(z,λ) with z = (t, x) and 3λ2 < t ,

belongs to Dγ
p and the norm of the injection is of order t

η−γ
2 . This allows to reconstruct f away from the hyperplane

t = 0.
Second, we show that a distribution on the set of test functions supported away from the hyperplane t = 0 can uniquely

be extended to test functions supported on this hyperplane as soon as the regularity index is not too low.
Third, we obtain the specific regularity index near the hyperplane t = 0 by an accurate analysis of the interplay between

the regularity of the model and the growth/decay of the weights.
The second and third steps are the contents of the following lemmas.

Lemma 6.2. Take ν �= 0 and assume that ν > −2(1 − 1
p
). Let ξ be a distribution on the set of all test functions whose

supports lie in ((−∞,0) ∪ (0, T )) × Rd . Assume that 〈ξ,ϕ〉 = 0 whenever the support of ϕ lies in (−∞,0) × Rd . In
addition, assume that:

• if ν < 0, ξ satisfies the bound (3.7) with (−∞, T − λ2) replaced by (3λ2, T − λ2)
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• if ν > 0, ξ satisfies the bounds (3.8) with (−∞, T − λ2) replaced by (3λ2, T − λ2), and for any c′ > 0 we have the
additional bound

sup
m≥0

∥∥∥∥ sup
ϕ∈Br

|〈ξ,ϕ2−m
z 〉|

2−mν

∥∥∥∥
Lp((3·2−2m∧(T−2−2m),c′·2−2m∧(T−2−2m))×Td ,dz)

<∞.

Then, there exists a unique extension of ξ that belongs to the space Bν,T
p .

Proof. The proof consists in two steps: first we show uniqueness of the extension and second we construct the extension.
For further use, we let χ : R → R be a smooth function, supported in a compact subset [a,A] with a > 15 and such that
for all t > 0∑

n∈Z
χ

(
22nt

) = 1.

Uniqueness
If ν > 0, then any element ξ of Bν,T

p is a function in Lp , see for instance [15, Lemma 2.7]; consequently, ξ is completely
determined by its evaluations away from t = 0.

Let us now consider the case ν < 0. Let In0(t) := 1 − ∑
n≤n0

χ(22nt) − ∑
n≤n0

χ(−22nt) and observe that In0 is a

smooth function, supported in [−2−2n0R,2−2n0R] for some R > 0 that does not depend on n0. If we show that

∣∣〈ξ,ϕ(0,x0) · In0〉
∣∣� 2−2n0(1− 1

p
)−n0ν |||ξ |||Bν,T

p
, (6.3)

uniformly over all n0 large enough, all x0 ∈ Td , all ϕ ∈ Br and all ξ ∈ Bν,T
p , then we deduce that any ξ ∈ Bν,T

p is
completely characterised by its evaluations away from the hyperplane t = 0 as soon as ν >−2(1 − 1

p
).

Therefore, we are left with proving (6.3). We consider a smooth function ψ : Rd+1 → R, supported in B(0,1), that
defines a partition of unity:∑

z̄∈0

ψz̄(z)= 1, ∀z ∈Rd+1,

as well as its rescaled version ψn0
z̄ (·) :=ψ(2n0s(· − z̄)) which defines a partition of unity at scale 2−n0 :

∑
z̄∈n0

ψ
n0
z̄ (z)= 1, ∀z ∈Rd+1.

We thus have for any test function ϕ ∈ Br and any x0 ∈ Td

ϕ(0,x0) · In0 =
∑
z̄∈n0

|t̄ |≤(R+1)2−2n0

|x̄|≤3

ϕ(0,x0) · In0 ·ψn0
z̄ .

For any z̄ ∈ n0 and any z ∈ B(z̄,2−n0), the function ϕIn0ψ
n0
z̄ can be written as 2−n0|s|η2−(n0−1)

z for some function
η ∈ Br and up to some multiplicative constant which is uniformly bounded over all the parameters at stake. (Recentering
the function at z instead of z̄ is convenient to recover Lp norms later on.) Using Jensen’s inequality at the second line, we
get

∣∣〈ξ,ϕ(0,x0) · In0〉
∣∣� ∑

z̄∈n0
|t̄ |≤(R+1)2−2n0

|x̄|≤3

∫
z∈B(z̄,2−n0 )

2n0|s| sup
η∈Br

2−n0|s|∣∣〈ξ, η2−(n0−1)

z

〉∣∣dz

�
( ∑

z̄∈n0
|t̄ |≤(R+1)2−2n0

|x̄|≤3

2−n0(|s|−2)
∫
z∈B(z̄,2−n0 )

2n0|s| sup
η∈Br

(
2−2n0

∣∣〈ξ, η2−(n0−1)

z

〉∣∣)p dz) 1
p
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� 2−2n0(1− 1
p
)

(∫
z∈(−(R+2)2−2n0 ,(R+2)2−2n0 )×Td

sup
η∈Br

∣∣〈ξ, η2−(n0−1)

z

〉∣∣p dz) 1
p

� 2−2n0(1− 1
p
)−n0ν‖ξ‖Bν,T

p
,

uniformly over all n0 ≥ 0 such that (R + 2)2−2n0 < T , all x0 ∈ Td and all ϕ ∈ Br . The asserted bound follows, so that
the uniqueness part of the statement is proved.

Existence
For all n ∈ Z and all z̄ ∈n, we set

ψ̃n
z̄

(
z′

) := χ
(
22nt ′

)
ψn
z̄

(
z′

)
, z′ = (

t ′, x′) ∈Rd+1,

and we observe that
∑

n∈Z
∑

z̄∈n
ψ̃n
z̄ (z

′)= 1 for all z′ ∈ (0,∞)×Rd . We need to define 〈ξ,ϕλz 〉 when the support of ϕλz
overlaps the hyperplane t = 0. Since ξ vanishes on (−∞,0)×Rd , it is natural to set

〈
ξ,ϕλz

〉 := ∑
n∈Z

∑
z̄∈n

〈
ξ,ϕλz ψ̃

n
z̄

〉
,

for all λ ∈ (0,1], all z ∈ (−λ2,3λ2] ×Td and all ϕ ∈ Br . Let us show that

sup
λ∈(0,1]

∥∥∥∥ sup
ϕ∈Br

|〈ξ,ϕλz 〉|
λν

∥∥∥∥
Lp((−λ2,3λ2]×Td ,dz)

<∞

holds whatever the sign of ν. Notice that for ν < 0 this is what we need, while for ν > 0 this is stronger than what is
required since ϕ is not assumed to annihilate polynomials here.

Observe that ϕλz ψ̃
n
z̄ vanishes as soon as 2−n > λ: indeed, the cutoff function χ(22n·) is supported in [a2−2n,A2−2n],

the function ϕλz vanishes in [4λ2,∞) × Rd and 4λ2 < aλ2 ≤ a2−2n. Furthermore, for all z′ ∈ B(z̄,2−n), the function

ϕλz ψ̃
n
z̄ coincides with 2−n|s|λ−|s|ρ2−(n−1)

z′ for some function ρ ∈ Br up to a multiplicative factor uniformly bounded over
all the parameters. Then, for every n≥ 0 such that 2−n ≤ λ, we have

∥∥∥∥ ∑
z̄∈n

sup
ϕ∈Br

|〈ξ,ϕλz ψ̃n
z̄ 〉|

λν

∥∥∥∥
Lp((−λ2,3λ2)×Td ,dz)

�
∥∥∥∥ ∑

z̄∈n

|z−z̄|≤λ+2−n
t̄∈[(a−1)2−2n,(A+1)2−2n]

∫
z′∈B(z̄,2−n|s|)

2n|s| sup
ρ∈Br

|〈ξ, ρ2−(n−1)

z′ 〉|
λν

dz′2−n|s|λ−|s|
∥∥∥∥
Lp((−λ2,3λ2)×Td ,dz)

.

The number of non-zero contributions coming from the sum over z̄ is of order λd2nd uniformly over all the parameters.
Hence, by Jensen’s inequality we get

� λ−22−2n
(∫

z∈(−λ2,3λ2)×Td

∑
z̄∈n

|z−z̄|≤λ+2−n
t̄∈[(a−1)2−2n,(A+1)2−2n]

2−ndλ−d

×
∫
z′∈B(z̄,2−n|s|)

2n|s|
(

sup
ρ∈Br

|〈ξ, ρ2−(n−1)

z′ 〉|
λν

)p

dz′ dz
) 1

p

� λ−22−2n
(∫

z∈(−λ2,3λ2)×Td

∫
z′=(t ′,x′)

t ′∈[3·2−2n,c′2−2n]
|z′−z|≤λ+c′2−n

λ−d22n
(

sup
ρ∈Br

|〈ξ, ρ2−(n−1)

z′ 〉|
λν

)p

dz′ dz
) 1

p

,
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for some c′ > 0. Since for every given z′ in the last integral, the integral over z ∈ (−λ2,3λ2) × Td of the indicator of
|z′ − z| ≤ λ+ c′2−n gives a term of order λ|s| we deduce the following bound

� λ
−2(1− 1

p
)−ν2−2n(1− 1

p
)−nν

(∫
z′∈[3·2−2n,c′2−2n]×Td

(
sup
ρ∈Br

|〈ξ,ρ2−(n−1)

z′ 〉|
2−nν

)p

dz′
) 1

p

,

uniformly over all n≥ 0 such that 2−n ≤ λ. Henceforth, we find

∥∥∥∥ sup
ϕ∈Br

|〈ξ,ϕλz 〉|
λν

∥∥∥∥
Lp((−λ2,3λ2)×Td ,dz)

�
∑

n:2−n≤λ

∥∥∥∥ ∑
z̄∈n

sup
ϕ∈Br

|〈ξ,ϕλz ψ̃n
z̄ 〉|

λν

∥∥∥∥
Lp((−λ2,3λ2)×Td ,dz)

�
∑

n:2−n≤λ
λ

−2(1− 1
p
)−ν2−2n(1− 1

p
)−nν

× sup
n:2−n≤λ

(∫
z′∈[3·2−2n,c′2−2n]×Td

(
sup
ρ∈Br

|〈ξ,ρ2−(n−1)

z′ 〉|
2−nν

)p

dz′
) 1

p

� 1,

as desired. �

Lemma 6.3. In the context of Lemma 6.2, take ν′ < ν such that ν′ >−2(1 − 1
p
). Then we have the following bounds for

every multiindex k ∈ Nd+1

(∑
n0≥0

∥∥∥∥ ∑
0≤m≤n0+4

|〈ξ, ∂kPm(z− ·)〉|
2−n0(ν

′−|k|+2)

∥∥∥∥
p

Lp(n0)

) 1
p

<∞, (6.4)

(∑
n0≥0

∥∥∥∥ |〈ξ, ∂kP−(z− ·)〉|
2−n0(ν

′−|k|+2)

∥∥∥∥
p

Lp(n0)

) 1
p

<∞. (6.5)

Proof. We only prove (6.4), (6.5) can be obtained by similar arguments. We adapt the proof of Lemma 6.2 to this specific
test function. First of all, we have for all z ∈ (2−2n0 ,2−2(n0−1))×Td and all 0 ≤m≤ n0 + 4

∂kPm
(
z− z′

) =
∑
n≥n0

∑
z̄∈n

∂kPm
(
z− z′

)
ψ̃n
z̄

(
z′

)
, ∀z′ ∈ (0,∞)×Rd .

We observe that the terms in the sum over z̄ vanish except when t̄ ∈ [(a − 1)2−2n, (A + 1)2−2n] and |x̄ − x| < C2−m
for some constant C > 0 depending on the sizes of the supports of P0 and ψ̃ . Furthermore, for all z′′ ∈ B(z̄,2−n), the
function ∂kPm(z − ·)ψ̃n

z̄ (·) can be viewed as 2m(|k|+d)2−n|s|ρ2−(n−1)

z′′ for some function ρ ∈ Br , up to a multiplicative
constant which is uniformly bounded over all the parameters. This being given, we write

∥∥∥∥ |〈ξ, ∂kPm(z− ·)〉|
2−n0(ν

′−|k|+2)

∥∥∥∥
Lp(n0)

� 2(m−n0)|k| ∑
n≥n0

2−(n−n0)(ν
′+2)

×
∥∥∥∥ ∑

z̄∈n

t̄∈[(a−1)2−2n,(A+1)2−2n]
|x̄−x|≤C2−m

2(m−n)d
∫
z′′∈B(z̄,2−n)

2n|s| sup
ρ∈Br

|〈ξ,ρ2−(n−1)

z′′ 〉|
2−nν′ dz′′

∥∥∥∥
Lp(n0)

.
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Then, using Jensen’s inequality we get

∥∥∥∥ ∑
z̄∈n

t̄∈[(a−1)2−2n,(A+1)2−2n]
|x̄−x|≤C2−m

2(m−n)d
∫
z′′∈B(z̄,2−n)

2n|s| sup
ρ∈Br

|〈ξ,ρ2−(n−1)

z′′ 〉|
2−nν′ dz′′

∥∥∥∥
Lp(n0)

�
(∫

z∈(2−2n0∧T ,2−2(n0−1)∧T )×Td

∑
z̄∈n

t̄∈[(a−1)2−2n,(A+1)2−2n]
|x̄−x|≤C2−m

2(m−n)d

×
∫
z′′∈B(z̄,2−n)

2n|s| sup
ρ∈Br

( |〈ξ,ρ2−(n−1)

z′′ 〉|
2−nν′

)p

dz′′ dz
) 1

p

�
(∫

z′′∈[(a−2)2−2n,(A+2)2−2n]×Td

22(n−n0) sup
ρ∈Br

( |〈ξ,ρ2−(n−1)

z′′ 〉|
2−nν′

)p

dz′′
) 1

p

,

uniformly over all 0 ≤m≤ n0 + 4 and all n0 ≤ n. Observe that the last bound does not depend on m.
We now argue separately according as k = 0 or |k|> 0. In the case k = 0 and let us introduce ν′′ ∈ (ν′, ν). The quantity

∑
0≤m≤n0+4

∑
n≥n0

1

n0
2−(n−n0)(ν

′′+2−2/p),

is uniformly bounded over all n0 ≥ 0. Therefore, using Jensen’s inequality on the sums over m and n we get

(∑
n0≥0

∥∥∥∥ ∑
m≤n0+4

|〈ξ, ∂kPm(z− ·)〉|
2−n0(ν

′−|k|+2)

∥∥∥∥
p

Lp(n0)

) 1
p

�
(∑
n0≥0

∑
0≤m≤n0+4

∑
n≥n0

1

n0
2−(n−n0)(ν

′′+2− 2
p
)

×
∫
z′′∈[(a−2)2−2n,(A+2)2−2n]×Td

sup
ρ∈Br

(
2−n0(ν

′′−ν′)n0
|〈ξ,ρ2−(n−1)

z′′ 〉|
2−nν′′

)p

dz′′
) 1

p

�
(∑
n≥0

∫
z′′∈[(a−2)2−2n,(A+2)2−2n]×Td

sup
ρ∈Br

( |〈ξ,ρ2−(n−1)

z′′ 〉|
2−nν′′

)p

dz′′
) 1

p

.

By concavity of x �→ x1/p on R+, the last term is bounded by

∑
n≥0

(∫
z′′∈[ (a−2)

4 2−2n,
(A+2)

4 2−2n]×Td

sup
ρ∈Br

( |〈ξ,ρ2−n
z′′ 〉|

2−nν′′

)p

dz′′
) 1

p

�
∑
n≥0

2−n(ν−ν′′) sup
n≥0

(

(∫
z′′∈[3·2−2n,c′·2−2n]×Td

sup
ρ∈Br

( |〈ξ,ρ2−n
z′′ 〉|

2−nν

)p

dz′′
) 1

p

,

which is finite by assumption. The case k > 0 is simpler: we don’t need to introduce ν′′ since∑
m≤n0+4

∑
n≥n0

2(m−n0)|k|2−(n−n0)(ν
′+2−2/p),

is bounded uniformly over all n0 ≥ 0. A similar calculation as before allows to complete the proof. �

Proof of Theorem 3.6 and Proposition 6.1. First of all, we set 〈Rf,ϕ〉 := 0 whenever ϕ is supported in {t < 0} ×Rd .
Second, take z = (t, x) and λ ∈ (0,1] such that t ∈ (3λ2, T − λ2), and observe that f satisfies locally the bound of the



Existence of densities for �4
3 359

unweighted space Dγ
p :

∥∥|f (
z′

)|ζ∥∥Lp(D,dz′) + sup
h∈B(0,λ)

∥∥∥∥ |f (z′ + h)− �z′+h,z′f (z′)|ζ
|h|γ−ζ

∥∥∥∥
Lp(Dh,dz

′)
� t

η−γ
2 |||f |||η,T ,D, (6.6)

where

D = [
t − 2λ2, t + λ2] ×B(x,2λ),

Dh = [
t − 2λ2 + |h|2, t + λ2 − |h|2] ×B

(
x,2λ− |h|),

and |||f |||η,T ,D stands for the Dγ,η,T
p -norm where the integrals are restricted to the set D. A careful inspection of the

proof of the reconstruction theorem [15, Th 3.1] in the unweighted space Dγ
p shows that for constructing the quantities

〈Rf,ϕλz 〉 for all ϕ ∈ Br , the finiteness of the l.h.s. of (6.6) suffices. This defines a distribution Rf on the set of all test
functions supported in ((−∞,0)∪ (0, T ))×Rd : indeed, any such test function can be decomposed into a sum of finitely
many test functions of the form ϕλz satisfying the assumption above and on which the action of Rf has been defined. The
reconstruction bound from [15, Th 3.1] together with (6.6) ensures that (3.9) is satisfied.

We now aim at applying Lemma 6.2. If α ∧ η < 0, then for all ζ ∈A we have ζ − α ∧ η ≥ 0 and therefore∥∥∥∥ sup
ϕ∈Br

|〈�zf (z),ϕ
λ
z 〉|

λα∧η

∥∥∥∥
Lp((3λ2,T−λ2)×Td ,dz)

�
∑
ζ

∥∥∥∥ sup
ϕ∈Br

|〈�zfζ (z), ϕ
λ
z 〉|

λζ t
η−ζ

2

λζ−α∧η

t
ζ−η

2

∥∥∥∥
Lp((3λ2,T−λ2)×Td ,dz)

� |||f |||η,T .
If α ∧ η= 0, then the same type of computation with α ∧ η replaced by ᾱ < 0 still applies.

If α ∧ η > 0, then minA = 0 so that the same computation works with α ∧ η replaced by 0. Furthermore, if the test
function ϕ belongs to Br�α∧η� then 〈�zf (z),ϕ

λ
z 〉 = ∑

ζ≥α∧η〈�zfζ (z), ϕ
λ
z 〉, and the same computation as above carries

through with α ∧ η. Finally, for any c′ > 0 we have:∥∥∥∥ sup
ϕ∈Br

|〈�zf (z),ϕ
2−m
z 〉|

2−mη

∥∥∥∥
Lp((3·2−2m∧(T−2−2m),c′·2−2m∧(T−2−2m))×Td ,dz)

�
∑
ζ∈A

∥∥∥∥ |f (z)|ζ
2−m(η−ζ )

∥∥∥∥
Lp((3·2−2m∧(T−2−2m),c′·2−2m∧(T−2−2m))×Td ,dz)

�
∑
ζ∈A

∥∥∥∥ |f (z)|ζ
t
η−ζ

2

∥∥∥∥
Lp((3·2−2m∧(T−2−2m),c′·2−2m∧(T−2−2m))×Td ,dz)

,

so that bounding the !∞-norm by the !p-norm, we get:

sup
m≥0

∥∥∥∥ sup
ϕ∈Br

|〈�zf (z),ϕ
2−m
z 〉|

2−mη

∥∥∥∥
Lp((3·2−2m∧(T−2−2m),c′·2−2m∧(T−2−2m))×Td ,dz)

�
∑
ζ∈A

∥∥∥∥ sup
ϕ∈Br

|f (z)|ζ
t
η−ζ

2

∥∥∥∥
Lp((0,T )×Td ,dz)

.

In any case, by combining the bounds we have just obtained with the reconstruction bound (3.9), we deduce that the
conditions required in Lemma 6.2 are met, thus yielding the extension of Rf as an element of Bᾱ,T

p with ᾱ as in the
statement of the theorem.

Applying Lemma 6.3, we deduce the statement of Proposition 6.1 in the case of a single model.
Finally, we treat the case where we are given two models by using the bound already obtained in the unweighted

case [15, Th 3.1]: the bound (3.6), as well as the two-models counterpart of (6.1) and (6.2), easily follow using the same
argument as above. �

6.2. Embedding theorem

For classical Besov spaces, the difficulty of the proof of the embedding theorem varies according to the definition of the
Besov-norm one opted for: when the norm is “countable”, the proof is simple as it essentially relies on the embedding
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properties of !p-type spaces. In [15, Th 5.1], embedding theorems were obtained for the unweighted spaces Dγ
p,q . The

main idea of the proof therein is the following: if one defines a space of averages D̄γ
p,q (whose elements are defined on a

countable set that approximates R×Rd ) endowed with a “countable” norm, then the proof of the embedding theorem at
the level of this space is simple. The important step is then the equivalence between the space of averages and the space
Dγ
p,q .
We adapt this proof to our setting. In comparison with the original proof, the main technical difficulty comes from

the weights near t = 0+ which need some extra care. For simplicity, we assume that T = 1 in this subsection and
we drop the superscript T in the spaces Dγ,η,T

p . This is a harmless assumption since the general case T > 0 can be
treated by considering the smallest nT ∈ Z such that T ≥ 2−2nT and by considering the slightly modified grids n =
{(k02−2nT , k12−n√T , . . . , kd2−n√T ) : k ∈ Zd+1} for every n≥ nT .

For every n≥ 0, we define

En := {
h ∈n : 0< |h|s ≤ 2−n|s|},

where we recall that n was defined in (1.5).
For every n0 ≥ 0, we introduce the following restriction of the grid

̃n :=n ∩ [
3 · 2−2n,1 − 2 · 2−2n] ×Td,

as well as the associated “boundary”:

∂̃n := ̃n ∩ ([
3 · 2−2n,3 · 2−2(n−1)] ×Td

)
.

We then denote by !pn (̃n) the set of all sequences u(z), z ∈ ̃n such that

‖u‖!pn =
( ∑
z∈̃n

2−n|s|∣∣u(z)∣∣p) 1
p

<∞.

We take a similar definition for !pn (∂̃n).
With these notations at hand, we recast the definition of the space of averages in our context with weights. We let D̄γ,η

p

be the set of all sequences (f̄
n
)n≥0 of maps f̄

n : ̃n → T<γ such that for all ζ ∈ Aγ we have:

(1) Local bound:

(∑
n≥0

∥∥∥∥ |f̄ n
(z)|ζ

t
η−ζ

2

∥∥∥∥
p

!
p
n (∂̃n)

) 1
p

<∞,

(2) Translation bound:

sup
n≥0

sup
h∈En

∥∥∥∥ |f̄ n
(z+ h)− �z+h,zf̄

n
(z)|ζ

2−n(γ−ζ )t
η−γ

2

∥∥∥∥
!
p
n (̃n)

<∞,

(3) Consistency bound:

sup
n≥0

∥∥∥∥ |f̄ n
(z)− f̄

n+1
(z)|ζ

2−n(γ−ζ )t
η−γ

2

∥∥∥∥
!
p
n (̃n)

<∞.

We denote by |||f̄ ||| the corresponding norm. We now follow the strategy of proof of [15, Th 5.1] by adapting the inter-
mediary results.

Observe that if we set ECn := {h ∈n : 0< |h|s ≤ C2−n}, then we have for any given C > 0 the bound

sup
n≥0

sup
h∈ECn

∥∥∥∥1{z+h∈̃n}
|f̄ n+1

(z+ h)− �z+h,zf̄
n
(z)|ζ

2−n(γ−ζ )t
η−γ

2

∥∥∥∥
!
p
n (̃n)

<∞. (6.7)

We first show that the spaces Dγ,η
p and D̄γ,η

p are essentially equivalent. Let us set

B(z, r)+ := B(z, r)∩ {
z′ = (

t ′, x′) ∈Rd+1 : t ′ ≥ t
}
.

Notice that the volume of B(z,2−n) is 2d+12−n|s|, while the volume of B(z,2−n)+ is 2d2−n|s|.
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Proposition 6.4. Let f ∈Dγ,η
p and set for every n≥ 0

f̄
n

(z) :=
∫
B(z,2−n)+

2−d2n|s|�z,z′f
(
z′

)
dz′, z ∈ ̃n.

Then f̄ ∈ D̄γ,η
p .

Conversely, let f̄ ∈ D̄γ,η
p and set

fn(z)= �z,zn f̄
n

(zn),

where zn is the nearest point to z on the grid ̃n. Then, for every n0 ≥ 0, the sequence (fn)n≥n0 converges in Lp((3 ·
2−2n0 ,1)×Td) to an element f ∈ Dγ,η

p .
If f̄ is obtained from some f ∈ Dγ,η

p as in the first part of the statement, then the sequence fn converges to the same
map f .

Proof. We start with the first part of the proposition. To get the local bound on f̄ , we write∥∥∥∥ |f̄ n
(z)|ζ

t
η−ζ

2

∥∥∥∥
!
p
n (∂̃n)

≤
∥∥∥∥
∫
B(z,2−n)+

2−d2n|s|
|�z,z′f (z′)|ζ

t
η−ζ

2

dz′
∥∥∥∥
!
p
n (∂̃n)

�
∑
ν≥ζ

∥∥∥∥
∫
B(z,2−n)+

2−d2n|s| |f (z
′)|ν

t
η−ν

2

dz′
∥∥∥∥
!
p
n (∂̃n)

,

where we have used the fact that t is of order 2−2n in the above integral. Applying Jensen’s inequality on the integral over
z′, we obtain the further bound

�
∑
ν≥ζ

(∫
z′∈((3·2−2n,13·2−2n)∩(0,1))×Td

( |f (z′)|ν
(t ′)

η−ν
2

)p

dz′
) 1

p

,

uniformly over all n≥ 0. Consequently, we find

(∑
n≥0

∥∥∥∥ |f̄ n
(z)|ζ

t
η−ζ

2

∥∥∥∥
p

!
p
n (∂̃n)

) 1
p

�
∑
ν

∥∥∥∥ |f (z)|ν
t
η−ν

2

∥∥∥∥
Lp((0,1)×Td

),

as required. We turn to the translation bound. For all h ∈ En we write

f̄
n

(z+ h)− �z+h,zf̄
n

(z)=
∫
u∈B(0,2−n)+

2−d2n|s|�z+h,z+h+u
(
f (z+ h+ u)− �z+h+u,z+uf (z+ u)

)
du.

Therefore, using Jensen’s inequality at the first line we get∥∥∥∥ |f̄ n
(z+ h)− �z+h,zf̄

n
(z)|ζ

2−n(γ−ζ )t
η−γ

2

∥∥∥∥
!
p
n (̃n)

�
( ∑
z∈̃n

∫
u∈B(0,2−n)+

( |�z+h,z+h+u(f (z+ h+ u)− �z+h+u,z+uf (z+ u))|ζ
|h|γ−ζ t

η−γ
2

)p

du

) 1
p

�
∑
ν≥ζ

(∫
z∈(3·2−2n,1−2−2n)×Td

( |f (z+ h)− �z+h,zf (z)|ν
|h|γ−ν t

η−γ
2

)p

dz

) 1
p

.

Therefore

(∑
n≥0

∥∥∥∥ |f̄ n
(z+ h)− �z+h,zf̄

n
(z)|ζ

2−n(γ−ζ )t
η−γ

2

∥∥∥∥
p

!
p
n (̃n)

) 1
p

� |||f |||,

as required. The consistency bound is obtained similarly so we skip the details.
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Let us now prove the second part of the statement. We first show that (fn)n≥n0 is a Cauchy sequence in Lp((3 ·
2−2n0 ,1)×Td). Fix n0 ≥ 0. We have for every n≥ n0:

∥∥∥∥ |fn+1(z)− fn(z)|ζ
t
η−ζ

2

∥∥∥∥
Lp((3·2−2n0 ,1)×Td )

=
∥∥∥∥ |�z,zn+1(f̄

n+1
(zn+1)− �zn+1,zn f̄

n
(zn))|ζ

t
η−ζ

2

∥∥∥∥
Lp((3·2−2n0 ,1)×Td )

�
∑
ν≥ζ

2−n(ν−ζ )
(∫

z∈(3·2−2n0 ,1)×Td

( |f̄ n+1
(zn+1)− �zn+1,zn f̄

n
(zn)|ν

t
η−ζ

2

)p

dz

) 1
p

.

At this point, we use the fact that there exists C > 0 such that |zn+1 − zn| is bounded by C2−(n+1) uniformly over all z.
We thus get the further bound

�
∑
ν≥ζ

2−n(ν−ζ )
( ∑
zn∈̃n∩(3·2−2n0 ,1)×Td

2−n|s| ∑
h∈ECn+1

( |f̄ n+1
(zn + h)− �zn+h,zn f̄

n
(zn)|ν

t
η−ζ

2

)p) 1
p

�
∑
ν≥ζ

2−n(γ−ζ ) sup
h∈ECn+1

( ∑
zn∈̃n∩(3·2−2n0 ,1)×Td

2−n|s|
( |f̄ n+1

(zn + h)− �zn+h,zn f̄
n
(zn)|ν

|h|γ−ν t
η−γ

2 t
γ−ζ

2

)p) 1
p

� 2−(n−n0)(γ−ζ )∑
ν≥ζ

sup
h∈ECn+1

( ∑
zn∈̃n∩(3·2−2n0 ,1)×Td

2−n|s|
( |f̄ n+1

(zn + h)− �zn+h,zn f̄
n
(zn)|ν

|h|γ−ν t
η−γ

2

)p) 1
p

,

where we have used the fact that t ≥ 2−2n0 at the last line. We deduce that (fn)n≥n0 is a Cauchy sequence in Lp([3 ·
2−2n0 ,1] × Td), for every n0 ≥ 0. We then get an element f ∈ Lp((0,1) × T3) and it remains to show that it actually
belongs to Dγ,η

p . The local bound is already proved, let us focus on the translation bound. For every h ∈ B(0,1) and every
z ∈ [3 · |h|2,1 − |h|2] ×Td , let n0 ≥ 0 be the smallest integer such that 6 · 2−2n0 ≤ 2|h|2. Then, we write

f (z+ h)− �z+h,zf (z) = (
f (z+ h)− fn0(z+ h)

) + (
fn0(z+ h)− �z+h,zfn0(z)

)
+ (

�z+h,z
(
fn0(z)− f (z)

))
. (6.8)

We bound separately the three terms appearing on the r.h.s. Regarding the first term, we use the previous calculation to
get

∥∥∥∥ |f (z+ h)− fn0(z+ h)|ζ
|h|γ−ζ t

η−γ
2

∥∥∥∥
Lp((3·|h|2,1−|h|2)×Td )

≤
∑
n≥n0

∥∥∥∥ |fn+1(z+ h)− fn(z+ h)|ζ
|h|γ−ζ t

η−γ
2

∥∥∥∥
Lp((3·|h|2,1−|h|2)×Td )

≤
∑
n≥n0

∥∥∥∥ |fn+1(z)− fn(z)|ζ
|h|γ−ζ t

η−γ
2

∥∥∥∥
Lp((3·2−2n0 ,1)×Td )

≤
∑
n≥n0

2−(n−n0)(γ−ζ )|||f̄ |||,

so it is bounded by a term of order |||f̄ ||| as required. The bound of the third term of (6.8) is similar. Let us now consider
the second term of (6.8). We have

∥∥∥∥ |fn0(z+ h)− �z+h,zfn0(z)|ζ
|h|γ−ζ t

η−γ
2

∥∥∥∥
Lp([3·|h|2,1−|h|2]×Td )
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≤
∑
ν≥ζ

sup
h̃∈ECn0

∥∥∥∥2−n0(ν−ζ )
|f̄ n0

(zn0 + h̃)− �
zn0 +h̃,zn0

f̄
n0
(zn0)|ν

|h|γ−ζ t
η−γ

2

∥∥∥∥
Lp((3·|h|2,1−|h|2)×Td )

≤
∑
ν≥ζ

sup
h̃∈ECn0

∥∥∥∥ |f̄ n0
(z+ h̃)− �

z+h̃,zf̄
n0
(z)|ν

|h|γ−ν t
η−γ

2

∥∥∥∥
!p(̃n0 )

,

which is bounded by |||f̄ ||| uniformly over all n0 ≥ 0, as required. This completes the proof of the translation bound.
Finally, if f̄ is constructed from some element f ∈ Dγ,η

p , then a simple computation shows that the sequence (f −
fn)n≥n0 converges to 0 in Lp([3 · 2−2n0,1] ×Td) for every n0 ≥ 0. This completes the proof of the proposition. �

Let us state a useful bound for the sequel. For all p ≤ p′ ∈ [1,∞], we have

∥∥u(z)∥∥
!
p′
n (̃n)

≤ 2
n|s|( 1

p
− 1

p′ )∥∥u(z)∥∥
!
p
n (̃n)

, (6.9)

uniformly over all sequences u(z), z ∈ ̃n. Of course, this remains true if ̃n is replaced by ∂̃n.
We have all the elements at hand to prove the embedding theorem.

Proof of Theorem 3.7. The first embedding is a direct consequence of the boundedness of the underlying space which
implies the continuous inclusion Lp ⊂ Lp

′
whenever p′ <p.

The second embedding is more involved and relies on the spaces of averages D̄γ,η
p . If we establish the embedding at

the level of these spaces, namely

|||f̄ |||γ ′,η′,p′ � |||f̄ |||γ,η,p,

uniformly over all f̄ ∈ D̄γ,η
p , then the equivalence stated in Proposition 6.4 yields the desired result.

Let us introduce the notation: (γ, η,p)� (γ ′, η′,p′) if we have η′ − η= γ ′ − γ as well as

γ ′ = γ − |s|
(

1

p
− 1

p′

)
, p′ <∞,

or

γ ′ ≤ γ − |s|
p
, p′ = ∞.

Notice that, for all ζ < γ , there is a unique p(ζ ) ∈ [p,∞] such that (γ, η,p)� (ζ, η+ ζ − γ,p(ζ )).
We let ζ1 > ζ2 > · · · be the elements of Aγ listed in decreasing order. We are going to show the following two

properties:

(1) If γ ′, η′,p′ are such that γ ′ ∈ (ζ1, γ ), p′ ∈ (p,∞] and (γ, η,p)� (γ ′, η′,p′), then f̄ ∈ D̄γ ′,η′
p′ .

(2) If γ ′ ∈ (ζ2, ζ1) and if η′ − η= γ ′ − γ , then f̄ ∈ D̄γ ′,η′
p(ζ1)

.

Let us show that these two properties, combined with a simple recursion, yield the second embedding of the theorem.
Let p′′ < p, γ ′′ < γ − |s|( 1

p
− 1

p′′ ) and η′′ = η + γ ′′ − γ : we aim at showing that D̄γ,η
p is continuously embedded into

D̄γ ′′,η′′
p′′ . We distinguish four cases.

First, if p′′ <p(ζ1) then (1) shows that D̄γ,η
p is continuously embedded into D̄γ ′,η′

p′ with p′ = p′′, γ ′ = γ −|s|( 1
p

− 1
p′′ )

and η′ = η+γ ′ −γ . The latter space is itself continuously embedded into D̄γ ′′,η′′
p′′ so that the desired embedding is proved.

Second, if p′′ = p(ζ1) then (2) shows that D̄γ,η
p is continuously embedded into D̄γ ′,η′

p′′ for all γ ′ ∈ (ζ2, ζ1) and all
η′ = η + γ ′ − γ . If γ ′′ ∈ (ζ2, ζ1) then the desired embedding is proved. If γ ′′ < ζ2, then it is a consequence of the

continuous embedding of D̄γ ′,η′
p′′ into D̄γ ′′,η′′

p′′ whenever γ ′′ − γ ′ = η′′ − η′ < 0.
Third, if p(ζ2) > p′′ >p(ζ1) then there exists γ ′ ∈ (ζ2, ζ1) such that, taking η′ = η+γ ′ −γ , we have (γ ′, η′,p(ζ1))�

(γ ′′, η′′,p′′) so that combining (2) and (1) the desired embedding follows.
Fourth, if p′′ ≥ p(ζ2) then a simple recursion based on the three first cases yields the desired result.
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Let us prove (1). We start with the local bound. Applying (6.9) and using the fact that t is of order 2−2n for all
z= (t, x) ∈ ∂̃n, we get∥∥∥∥ |f̄ n

(z)|ζ
t
η′−ζ

2

∥∥∥∥
!
p′
n (∂̃n)

≤ 2
n|s|( 1

p
− 1

p′ )
∥∥∥∥ |f̄ n

(z)|ζ
t
η′−ζ

2

∥∥∥∥
!
p
n (∂̃n)

�
∥∥∥∥ |f̄ n

(z)|ζ
t
η−ζ

2

∥∥∥∥
!
p
n (∂̃n)

.

Using the classical embedding from !p into !p
′
, we deduce the following bound

(∑
n≥0

∥∥∥∥ |f̄ n
(z)|ζ

t
η′−ζ

2

∥∥∥∥
p′

!
p′
n (∂̃n)

) 1
p′
�

(∑
n≥0

∥∥∥∥ |f̄ n
(z)|ζ

t
η−ζ

2

∥∥∥∥
p

!
p
n (∂̃n)

) 1
p

.

We pass to the translation bound. Applying (6.9), we obtain∥∥∥∥ |f̄ n
(z+ h)− �z+h,zf̄

n
(z)|ζ

2−n(γ ′−ζ )t
η′−γ ′

2

∥∥∥∥
!
p′
n (̃n)

� 2
n|s|( 1

p
− 1

p′ )
∥∥∥∥ |f̄ n

(z+ h)− �z+h,zf̄
n
(z)|ζ

2−n(γ ′−ζ )t
η′−γ ′

2

∥∥∥∥
!
p
n (̃n)

�
∥∥∥∥ |f̄ n

(z+ h)− �z+h,zf̄
n
(z)|ζ

2−n(γ−ζ )t
η−γ

2

∥∥∥∥
!
p
n (̃n)

,

as required. The consistency bound is obtained similarly. This completes the proof of (1).
Instead of proving (2) directly, we show the following:

(2′) For all ε > 0 and all γ ′′ ∈ (ζ2, ζ1), we have f̄ ∈ D̄γ ′′,η′′
p(ζ1+ε) where η′′ = η+ γ ′′ − γ .

If (2′) holds true, then we can apply (1) and deduce that f̄ ∈ D̄γ (ε),η(ε)

p(ζ1)
with

γ (ε)= γ ′′ − |s|
(

1

p(ζ1 + ε)
− 1

p(ζ1)

)
, η(ε)= η′′ + γ (ε)− γ ′′.

Since γ (ε) ↑ γ ′′ and η(ε) ↑ η′′ as ε ↓ 0, Property (2) follows.
We are left with proving (2′). The local bound follows from exactly the same argument as in the proof of (1). Let us

focus on the translation bound. We let f̄<ζ1
be the restriction of f̄ to T<ζ1 . We have for all ζ < ζ1:

∣∣f̄ n

<ζ1
(z+ h)− �z+h,zf̄

n

<ζ1
(z)

∣∣
ζ

≤∣∣f̄ n

(z+ h)− �z+h,zf̄
n

(z)
∣∣
ζ

+ ∣∣�z+h,zf̄ n

ζ1
(z)

∣∣
ζ
. (6.10)

We will bound the contributions to the translation bound of these two terms separately. Applying (6.9) and since ζ1 + ε−
γ ≤ −|s|(1/p− 1/p(ζ1 + ε)), we get for all h ∈ En∥∥∥∥ |f̄ n

(z+ h)− �z+h,zf̄
n
(z)|ζ

|h|γ ′′−ζ t
η′′−γ ′′

2

∥∥∥∥
!
p(ζ1+ε)
n (̃n)

� 2
n|s|( 1

p
− 1

p(ζ1+ε) )
∥∥∥∥ |f̄ n

(z+ h)− �z+h,zf̄
n
(z)|ζ

|h|γ ′′−ζ t
η−γ

2

∥∥∥∥
!
p
n (̃n)

� 2n(γ
′′−ζ1−ε)

∥∥∥∥ |f̄ n
(z+ h)− �z+h,zf̄

n
(z)|ζ

|h|γ−ζ t
η−γ

2

∥∥∥∥
!
p
n (̃n)

,

uniformly over all n≥ 0. This ensures that the supremum over n of the l.h.s. is bounded by a term of order |||f̄ |||.
We turn to the contribution coming from the second term of (6.10). We have∥∥∥∥ |�z+h,zf̄ n

ζ1
(z)|ζ

|h|γ ′′−ζ t
η′′−γ ′′

2

∥∥∥∥
!
p(ζ1+ε)
n (̃n)

� 2−n(ζ1−γ ′′)
∥∥∥∥ |f̄ n

(z)|ζ1

t
η−γ

2

∥∥∥∥
!
p(ζ1+ε)
n (̃n)

,

uniformly over all h ∈ En and all n ≥ 0. At this point, we subdivide ̃n into the union of its components on Dn0 =
[3 · 2−n0 ,3 · 2−(n0−1)] ×Td with n0 = 0,1, . . . , n, and we bound separately the corresponding !p(ζ1+ε)

n norm:∥∥∥∥ |f̄ n
(z)|ζ1

t
η−γ

2

∥∥∥∥
!
p(ζ1+ε)
n (̃n∩Dn0 )

.
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Fix such an n0. For every z ∈ ̃n, we let vz := inf{v ∈ ̃n−1 : v ≥ z} with respect to the lexicographic order and we use
the following decomposition

f̄
n

ζ1
(z)= f̄

n−1

ζ1
(vz)+ f̄

n

ζ1
(z)− f̄

n−1

ζ1
(vz).

We have ‖f̄ n

ζ1
(z)/t

η−γ
2 ‖

!
p(ζ1+ε)
n (̃n∩Dn0 )

≤A1(n)+A2(n) where

A1(n)=
( ∑
z∈̃n∩Dn0

2−n|s|
∣∣∣∣ f̄

n−1

ζ1
(vz)

t
η−γ

2

∣∣∣∣
p(ζ1+ε)) 1

p(ζ1+ε)
,

A2(n)=
( ∑
z∈̃n∩Dn0

2−n|s|
∣∣∣∣ f̄

n

ζ1
(z)− f̄

n−1

ζ1
(vz)

t
η−γ

2

∣∣∣∣
p(ζ1+ε)) 1

p(ζ1+ε)
.

Since for every vertex v = (s, y) ∈ ̃n−1, there are at most 2|s| vertices z ∈ ̃n such that vz = v, and since η− γ ≤ 0, we
get whenever n > n0

A1(n)≤
( ∑
v∈̃n−1∩Dn0

2−(n−1)|s|
∣∣∣∣ f̄

n−1

ζ1
(v)

s
η−γ

2

∣∣∣∣
p(ζ1+ε)) 1

p(ζ1+ε) =
∥∥∥∥ f̄

n−1

ζ1
(z)

t
η−γ

2

∥∥∥∥
!
p(ζ1+ε)
n−1 (̃n−1∩Dn0 )

.

Regarding A2(n), using the fact that ζ1 = maxAγ and (6.9) at the third line, we get whenever n > n0:

A2(n)� sup
h∈ECn

( ∑
v∈̃n−1∩Dn0

2−(n−1)|s|
∣∣∣∣ f̄

n

ζ1
(v + h)− f̄

n−1

ζ1
(v)

s
η−γ

2

∣∣∣∣
p(ζ1+ε)) 1

p(ζ1+ε)

� 2−n(γ−ζ1) sup
h∈ECn

( ∑
v∈̃n−1∩Dn0

2−(n−1)|s|
∣∣∣∣ |f̄

n
(z)− �z,z+hf̄

n−1
(z+ h)|ζ1

2−n(γ−ζ1)s
η−γ

2

∣∣∣∣
p(ζ1+ε)) 1

p(ζ1+ε)

� 2−nε sup
h∈ECn

( ∑
v∈̃n−1∩Dn0

2−(n−1)|s|
∣∣∣∣ |f̄

n
(z)− �z,z+hf̄

n−1
(z+ h)|ζ1

2−n(γ−ζ1)s
η−γ

2

∣∣∣∣
p) 1

p

.

Iterating this, we get∥∥∥∥ |f̄ n
(z)|ζ1

t
η−γ

2

∥∥∥∥
!
p(ζ1+ε)
n (̃n∩Dn0 )

≤
∥∥∥∥ |f̄ n0

(z)|ζ1

t
η−γ

2

∥∥∥∥
!
p(ζ1+ε)
n0 (̃n0 ∩Dn0 )

+C′
n−1∑
m=n0

sup
h∈ECm

2−mε
( ∑
v∈̃m∩Dn0

2−m|s|
∣∣∣∣ |f̄

m+1
(v)− �v,v+hf̄

m
(v + h)|ζ1

2−m(γ−ζ1)s
η−γ

2

∣∣∣∣
p) 1

p

.

Applying (6.9) and using the fact that t is of order 2−n0 in Dn0 , we find∥∥∥∥ |f̄ n0
(z)|ζ1

t
η−γ

2

∥∥∥∥
!
p(ζ1+ε)
n0 (̃n0∩Dn0 )

� 2−n0ε

∥∥∥∥ |f̄ n0
(z)|ζ1

t
η−ζ1

2

∥∥∥∥
!
p
n0 (̃n0∩Dn0 )

,

uniformly over all n0 ≥ 0. Putting everything together, we thus get

∥∥∥∥ |f̄ n
(z)|ζ1

t
η−γ

2

∥∥∥∥
!
p(ζ1+ε)
n (̃n)

≤
(

n∑
n0=0

∥∥∥∥ |f̄ n
(z)|ζ1

t
η−γ

2

∥∥∥∥
p

!
p(ζ1+ε)
n (̃n∩Dn0 )

) 1
p

� |||f̄ |||,

uniformly over all n ≥ 0. We thus get the desired translation bound. The consistency bound is obtained similarly. This
concludes the proof of (2′). �
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6.3. Product

Proof of Theorem 3.8. Regarding the local bound, we have∥∥∥∥ |f |ζ (z)
t
η−ζ

2

∥∥∥∥
Lp((0,T )×Td )

�
∑

ζ1+ζ2=ζ

∥∥∥∥ |f1|ζ1(z)

t
η1−ζ1

2

|f2|ζ2(z)

t
η2−ζ2

2

∥∥∥∥
Lp((0,T )×Td )

,

so that Hölder’s inequality yields the required bound.
We turn to the translation bound, and write

f (z+ h)− �z+h,zf (z) = −(
f1(z+ h)− �z+h,zf1(z)

)(
f2(z+ h)− �z+h,zf2(z)

)
+ �z+h,zf1(z)�z+h,zf2(z)− �z+h,z

(
f1(z)f2(z)

)
+ f1(z+ h)

(
f2(z+ h)− �z+h,zf2(z)

)
+ f2(z+ h)

(
f1(z+ h)− �z+h,zf1(z)

)
, (6.11)

and bound these four terms separately.
The bound of the first term follows from Hölder’s inequality. Regarding the second term, we note that the γ -regularity

of the sectors ensures the following identity:

�z+h,zf1(z)�z+h,zf2(z)− �z+h,z
(
f1(z)f2(z)

) =
∑

ν1+ν2≥γ

(
�z+h,zQν1f1(z)

)(
�z+h,zQν2f2(z)

)
.

Fix ν1, ν2 < γ such that ν1 + ν2 ≥ γ . For any ζi ≤ νi such that ζ = ζ1 + ζ2 < γ , we get

sup
h∈B(0,1)

∥∥∥∥ |(�z+h,zQν1f1(z))ζ1(�z+h,zQν2f2(z))ζ2 |
|h|γ−ζ1−ζ2 t

η−γ
2

∥∥∥∥
Lp((3|h|2,T−|h|2)×Td )

� sup
h∈B(0,1)

∥∥∥∥
( |h|√

t

)ν1+ν2−γ |f1(z)|ν1

t
η1−ν1

2

|f2(z)|ν2

t
η2−ν2

2

∥∥∥∥
Lp((3|h|2,T−|h|2)×Td )

� sup
h∈B(0,1)

∥∥∥∥ |f1(z)|ν1

t
η1−ζ1

2

∥∥∥∥
Lp1 ((3|h|2,T−|h|2)×Td )

∥∥∥∥ |f2(z)|ν2

t
η2−ζ2

2

∥∥∥∥
Lp2 ((3|h|2,T−|h|2)×Td )

� |||f1|||η1,T |||f2|||η2,T ,

uniformly over all f1, f2.
We turn to the third term, we have for any ζ = ζ1 + ζ2 < γ :

sup
h∈B(0,1)

∥∥∥∥Qζ1f1(z+ h)Qζ2(f2(z+ h)− �z+h,zf2(z))

|h|γ−ζ1−ζ2 t
η−γ

2

∥∥∥∥
Lp((3|h|2,T−|h|2)×Td )

≤
∥∥∥∥ |f1(z)|ζ1

t
η1−ζ1

2

∥∥∥∥
Lp1

sup
h∈B(0,1)

∥∥∥∥ |f2(z+ h)− �z+h,zf2(z)|ζ2

|h|γ2−ζ2 t
η2−γ2

2

t
γ−γ2−ζ1

2 |h|γ2+ζ1−γ
∥∥∥∥
Lp2 ((3|h|2,T−|h|2)×Td )

.

Since |h| ≤ √
t in the integral above and since γ ≤ γ2 + α1 ≤ γ2 + ζ1, we deduce that

t
γ−γ2−ζ1

2 |h|γ2+ζ1−γ ≤ 1,

so that the last quantity is bounded by a term of order |||f1|||η1,T |||f2|||η2,T . By symmetry, the fourth term of (6.11) is
bounded in exactly the same way as the third.

In the case where we have two models, the bound of the local terms derives from the same type of arguments as above.
On the other hand, to control the translation term, we write

f1f2(z+ h)− g1g2(z+ h)− �z+h,z(f1f2)(z)+ �̄z+h,z(g1g2)(z)=A+B,

where

A= f1f2(z+ h)− g1g2(z+ h)− �z+h,zf1(z)�z+h,zf2(z)+ �̄z+h,zg1(z)�̄z+h,zg2(z),

B = �z+h,zf1(z)�z+h,zf2(z)− �̄z+h,zg1(z)�̄z+h,zg2(z)− �z+h,z(f1f2)(z)+ �̄z+h,z(g1g2)(z),
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and we bound separately A and B . Regarding A, we write

A= (
f1(z+ h)− g1(z+ h)− �z+h,zf1(z)+ �̄z+h,zg1(z)

)
f2(z+ h)

+ �z+h,zf1(z)
(
f2(z+ h)− g2(z+ h)− �z+h,zf2(z)+ �̄z+h,zg2(z)

)
+ �̄z+h,z

(
g1(z)− f1(z)

)(
�̄z+h,zg2(z)− g2(z+ h)

)
+ (

�̄z+h,zf1(z)− �z+h,zf1(z)
)(
�̄z+h,zg2(z)− g2(z+ h)

)
+ (

g1(z+ h)− �̄z+h,zg1(z)
)(
f2(z+ h)− g2(z+ h)

)
,

and the bound of the terms on the r.h.s. can be obtained using similar arguments as before. We turn to B , which can be
written as the sum over ν1 + ν2 ≥ γ of(

�z+h,zQν1f1(z)�z+h,zQν2f2(z)− �̄z+h,zQν1g1(z)�̄z+h,zQν2g2(z)
)

= �z+h,zQν1

(
f1(z)− g1(z)

)
�z+h,zQν2f2(z)

+ (�z+h,z − �̄z+h,z)Qν1g1(z)�z+h,zQν2f2(z)

− �̄z+h,zQν1g1(z)(�̄z+h,z − �z+h,z)Qν2g2(z). (6.12)

Let us bound the first term on the r.h.s. We have for all ζ1 + ζ2 = ζ < γ∥∥∥∥ |�z+h,zQν1(f1(z)− g1(z))|ζ1 |�z+h,zQν2f2(z)|ζ2

t
η−γ

2 |h|γ−ζ

∥∥∥∥
Lp((3|h|2,T−|h|2)×Td )

�
∥∥∥∥ |f1(z)− g1(z)|ν1

t
η1−ν1

2

∥∥∥∥
Lp1 ((3|h|2,T−|h|2)×Td )

∥∥∥∥ |f2(z)|ν2

t
η2−ν2

2

|h|ν1+ν2−γ

t
ν1+ν2−γ

2

∥∥∥∥
Lp1 ((3|h|2,T−|h|2)×Td )

,

which is bounded by a term of order ‖f1 − g1‖‖f2‖ since ν1 + ν2 − γ ≥ 0 and since |h| ≤ √
t in the integral above. The

bound of the other two terms in (6.12) is obtained similarly. �

6.4. Convolution with the heat kernel

Let us introduce some notations first. We set

P
k,γ ′
m,z,z̄(·) := ∂kPm(z− ·)−

∑
!∈Nd+1:|k+!|<γ ′

(z− z̄)!

!! ∂k+!Pm(z̄− ·), (6.13)

as well as P k,γ ′
z,z̄ = ∑

m≥0P
k,γ ′
m,z,z̄. Recall that γ ′ is not an integer. We introduce

∂γ ′ := {
! ∈ Nd+1 : |!|> γ ′, |!− em(!)|< γ ′},

where ei is the unit vector of Rd+1 in the direction i ∈ {0, . . . , d} and m(!) := inf{i : !i �= 0} for all ! ∈ Nd+1. By [13,
Prop A.1], there exists a signed measure μ!(z− z̄, du) on Rd+1, supported in the set {u ∈ Rd+1 : ui ∈ [0, zi − z̄i]} with

total mass equal to (z−z̄)!
!! and such that

P
k,γ ′
m,z,z̄(·)=

∑
!:k+!∈∂γ ′

∫
Rd+1

∂k+!Pm(z̄+ u− ·)μ!(z− z̄, du). (6.14)

Recall also that Lp(n0) stands for the space Lp((2−2n0 ∧ T ,2−2(n0−1)∧T )×Td, dz). Finally, we set for every m≥ 0:

Pmf (z) :=
∑
ζ∈Aγ

∑
k∈Nd+1:|k|<ζ+2

Xk

k!
〈
�zQζ f (z), ∂

kPm(z− ·)〉

+
∑

k∈Nd+1:|k|<γ+2

Xk

k!
〈
Rf −�zf (z), ∂

kPm(z− ·)〉.
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This is convenient since for every k ∈ Nd+1 we have

QkPγ
+f (z)=

∑
m≥0

QkPmf (z).

Proof of Theorem 3.9. We subdivide the proof into three steps: first we bound the local terms of the Dγ,η,T
p -norm,

second the translation terms and finally we establish the convolution identity. We only consider the case where we work
with a single model. The bounds in the case where we have two models can easily be obtained using the following two
identities:

�zQζ τ − �̄zQζ τ̄ =�zQζ (τ − τ̄ )+ (�z − �̄z)Qζ τ̄ ,

(�z+hQζ �z+h,z − �̄z+hQζ �̄z+h,z)τ̄ =�z+hQζ (�z+h,z − �̄z+h,z)τ̄ + (�z+h − �̄z+h)Qζ �̄z+h,zτ̄ .

For notational convenience, we take T = 1 in the proof. It is plain that the proof carries through if T is arbitrary.

First step: Local terms
At non-integer levels ζ ∈Aγ , we have for all z ∈ (0, T )×Td

|Pγ
+f (z)|ζ+2

t
η′−ζ−2

2

= |I(f (z))|ζ+2

t
η′−ζ−2

2

≤ |f (z)|ζ
t
η−ζ

2

,

so that the required bound follows at once. Let us now consider integer levels: we fix k ∈ Nd+1 such that |k| < γ ′. We
have

∥∥∥∥∑
m≥0

|Qk(Pmf )(z)|
t
η′−|k|

2

∥∥∥∥
Lp((0,1)×Td )

�
(∑
n0≥1

∥∥∥∥∑
m≥0

|Qk(Pmf )(z)|
2−n0(η

′−|k|)

∥∥∥∥
p

Lp(n0)

) 1
p

.

The bound is carried out differently according to the relative values of n0 and m. First, we assume that n0 + 2 ≥m and
we write

k!Qk(Pmf )(z)= 〈
Rf, ∂kPm(z− ·)〉 − ∑

ζ≤|k|−2

〈
�zQζ f (z), ∂

kPm(z− ·)〉.
By (6.1), we immediately get the desired bound for the first term on the r.h.s. Regarding the second term, we only have
to consider non-integer values of ζ : indeed, for integer values of ζ the corresponding terms vanish since Pm is assumed
to annihilate polynomials. We write for all ζ ≤ |k| − 2 (necessarily ζ < |k| − 2 from the previous observation)∥∥∥∥ |〈�zQζ f (z), ∂

kPm(z− ·)〉|
2−n0(η

′−|k|)

∥∥∥∥
Lp(n0)

�
∥∥∥∥ |f (z)|ζ 2−m(2−|k|+ζ )

2−n0(η
′−|k|)

∥∥∥∥
Lp(n0)

� 2−(n0−m)(|k|−2−ζ )
∥∥∥∥ |f (z)|ζ

t
η−ζ

2

∥∥∥∥
Lp(n0)

,

uniformly over all m≤ n0 + 2 and all n0 ≥ 1. Hence

(∑
n0≥1

∥∥∥∥ ∑
m≤n0+2

|〈�zQζ f (z), ∂
kPm(z− ·)〉|

2−n0(η
′−|k|)

∥∥∥∥
p

Lp(n0)

) 1
p

�
∥∥∥∥ |f (z)|ζ

t
η−ζ

2

∥∥∥∥
Lp((0,1)×Td ,dz)

,

as required.
We turn to the case where n0 + 2<m and we write

k!Qk(Pmf )(z)= 〈
Rf −�zf (z), ∂

kPm(z− ·)〉 + ∑
ζ>|k|−2

〈
�zQζ f (z), ∂

kPm(z− ·)〉.
The bound of the second term proceeds analogously to the bound of the second term in the previous case: the change of
sign of n0 + 2 −m is compensated by the change of sign of |k| − 2 − ζ so that the series in m converges. To bound the
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first term, we use Theorem 3.6 to get

∥∥∥∥ |〈Rf −�zf (z), ∂
kPm(z− ·)〉|

2−n0(η
′−|k|)

∥∥∥∥
Lp(n0)

� 2−(m−n0)(γ+2−|k|)
∥∥∥∥ sup
ϕ∈Br

|〈Rf −�zf (z),ϕ
2−m
z 〉|

2−mγ 2−n0(η−γ )

∥∥∥∥
Lp(n0)

� 2−(m−n0)(γ
′−|k|)|||f |||η,T ,D,

uniformly over all 1 ≤ n0 < m − 2, where D = (2−(n0+1),2−(n0−1)) × Td and the notation |||f |||η,T ,D was introduced
below (6.6). Using the fact that |k|< γ ′, we get the bound

(∑
n0≥1

∥∥∥∥ ∑
m>n0+2

|〈Rf −�zf (z), ∂
kPm(z− ·)〉|

2−n0(η
′−|k|)

∥∥∥∥
p

Lp(n0)

) 1
p

� |||f |||,

as required.

Second step: Translation terms
We first consider the case 1

3

√
t ≤ 2−m. We write

k!Qk

(
(Pmf )(z+ h)− �z+h,z(Pmf )(z)

)
= 〈

Rf,P k,γ ′
m,z+h,z

〉 − 〈
�zf (z),P

k,γ ′
m,z+h,z

〉
−

∑
ζ≤|k|−2

〈
�z+hQζ

(
f (z+ h)− �z+h,zf (z)

)
, ∂kPm(z+ h− ·)〉.

We bound separately the three terms on the r.h.s. Let us introduce the convenient notation Lp(n0, h) that stands for the
space

Lp
((

2−2n0 ,2−2(n0−1)) ∩ (
3|h|2,1 − |h|2) ×Td , dz

)
.

We start with the second term. Using (6.14), we find

∥∥∥∥ 〈�zf (z),P
k,γ ′
m,z+h,z〉

2−n0(η
′−γ ′)|h|γ ′−|k|

∥∥∥∥
Lp(n0,h)

�
∑

!:k+!∈∂γ ′

∥∥∥∥
∫
Rd+1

〈�zf (z), ∂
k+!Pm(z+ u− ·)〉

2−n0(η
′−γ ′)|h|γ ′−|k| μ!(h, du)

∥∥∥∥
Lp(n0,h)

�
∑

!:k+!∈∂γ ′
|h||!|+|k|−γ ′

2−n0(γ−ζ )2−m(2−|k|−|!|+ζ )
∥∥∥∥ |f (z)|ζ

2−n0(η−ζ )

∥∥∥∥
Lp(n0,h)

,

so that, since γ ′ − |k| − |!|< 0 and |h| ≤ √
t , we get

∥∥∥∥ ∑
m≤n0+2

〈�zf (z),P
k,γ ′
m,z+h,z〉

2−n0(η
′−γ ′)|h|γ ′−|k|

∥∥∥∥
Lp(n0,h)

�
∥∥∥∥ |f (z)|ζ

2−n0(η−ζ )

∥∥∥∥
Lp(n0,h)

,

uniformly over all n0 ≥ 1. Taking the !p(n0 ≥ 1)-norm of the latter, we find a bound of order |||f ||| as required. We pass
to the first term. Using (6.14), we find

∥∥∥∥ ∑
m≤n0+2

〈Rf,P k,γ ′
m,z+h,z〉

2−n0(η
′−γ ′)|h|γ ′−|k|

∥∥∥∥
Lp(n0,h)
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�
∑

!:k+!∈∂γ ′

∥∥∥∥
∫
Rd+1

∑
m≤n0+2

〈Rf, ∂k+!Pm(z+ u− ·)〉
2−n0(η

′−γ ′)|h|γ ′−|k| μ!(h, du)

∥∥∥∥
Lp(n0,h)

�
∑

!:k+!∈∂γ ′

(
2−n0

|h|
)γ ′−|k|−|!|∥∥∥∥ ∑

m≤n0+2

|〈Rf, ∂k+!Pm(z− ·)〉|
2−n0(η

′−|k|−|!|)

∥∥∥∥
Lp([2−2(n0+1),2−2(n0−2)∧1]×Td )

�
∑

!:k+!∈∂γ ′

∥∥∥∥ ∑
m≤n0+2

|〈Rf, ∂k+!Pm(z− ·)〉|
2−n0(η

′−|k|−|!|)

∥∥∥∥
Lp([2−2(n0+1),2−2(n0−2)∧1]×Td )

.

Since γ ′ − |k| − |!|< 0 and |h| ≤ 2−n0 , we use (6.1) to bound the !p(n0 ≥ 1)-norm of the previous quantity by a term of
order |||f ||| as required. Regarding the third term, by the same argument as above we can disregard the integer values ζ .
Thus, for all ζ < |k| − 2 we have∥∥∥∥ 〈�z+hQζ (f (z+ h)− �z+h,zf (z)), ∂kPm(z+ h− ·)〉

2−n0(η
′−γ ′)|h|γ ′−|k|

∥∥∥∥
Lp(n0,h)

� 2−m(2−|k|+ζ )|h||k|−ζ+γ−γ ′
∥∥∥∥ |f (z+ h)− �z+h,zf (z)|ζ

|h|γ−ζ2−n0(η−γ )

∥∥∥∥
Lp(n0,h)

,

uniformly over all n0 ≥ m − 2 and all |h| ≤ 2−n0 . Using the fact that ζ < |k| − 2, we deduce that the sum over all
m≤ n0 + 2 is bounded by a term of order∥∥∥∥ |f (z+ h)− �z+h,zf (z)|ζ

|h|γ−ζ 2−n0(η−γ )

∥∥∥∥
Lp(n0,h)

,

so that the !p(n0 ≥ 1)-norm of the latter is bounded by a term of order |||f |||.
We now consider the case where |h| ≤ 2−m ≤ 1

3

√
t , in which case we write

k!Qk

(
(Pmf )(z+ h)− �z+h,z(Pmf )(z)

) = 〈
Rf −�zf (z),P

k,γ ′
m,z+h,z

〉
−

∑
ζ≤|k|−2

〈
�z+hQζ

(
f (z+ h)− �z+h,zf (z)

)
, ∂kPm(z+ h− ·)〉.

Using (6.14) and the reconstruction bound (3.9), we get

∥∥∥∥ ∑
m:|h|≤2−m≤ 1

3 2−n0

〈Rf −�zf (z),P
k,γ ′
m,z+h,z〉

2−n0(η
′−γ ′)|h|γ ′−|k|

∥∥∥∥
Lp(n0)

�
∑

!:k+!∈∂γ ′

∥∥∥∥ ∑
m:|h|≤2−m≤ 1

3 2−n0

∫
Rd+1

〈Rf −�zf (z), ∂
k+!Pm(z+ u− ·)〉

2−n0(η
′−γ ′)|h|γ ′−|k| μ!(h, du)

∥∥∥∥
Lp(n0,h)

�
∑

!:k+!∈∂γ ′

∑
m:|h|≤2−m≤ 1

3 2−n0

2−m(γ ′−|k|−|!|)|h||k|+|!|−γ ′ |||f |||(2−(n0+1),2−(n0−2)∧1)×Td

� |||f |||(2−(n0+1),2−(n0−2)∧1)×Td
,

uniformly over all n0 ≥ 1 such that |h| ≤ 2−n0/3. Taking the !p(n0 ≥ 1)) norm, this yields a bound of order |||f ||| as
required. We turn to the second term. By the same argument as above, we consider the non-integer values of ζ only, and
get: ∥∥∥∥ ∑

m:|h|≤2−m≤ 1
3 2−n0

〈�z+hQζ (f (z+ h)− �z+h,zf (z)), ∂kPm(z+ h− ·)〉
2−n0(η

′−γ ′)|h|γ ′−|k|

∥∥∥∥
Lp(n0,h)

�
∑

m:|h|≤2−m≤ 1
3 2−n0

2−m(2−|k|+ζ )|h||k|−ζ+γ−γ ′
∥∥∥∥ |f (z+ h)− �z+h,zf (z)|ζ

2−n0(η−γ )|h|γ−ζ

∥∥∥∥
Lp(n0,h)
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�
∥∥∥∥ |f (z+ h)− �z+h,zf (z)|ζ

2−n0(η−γ )|h|γ−ζ

∥∥∥∥
Lp(n0,h)

,

so that the !p(n0 ≥ 1)-norm of the latter is bounded by a term of order |||f |||.
Let us finally consider the case where 2−m ≤ |h| ≤ 1

3

√
t . We write

k!Qk

(
(Pmf )(z+ h)− �z+h,z(Pmf )(z)

) = 〈
Rf −�z+hf (z+ h), ∂kPm(z+ h− ·)〉
−

〈
Rf −�zf (z),

∑
!:|k+!|<γ ′

h!

!! ∂
k+!Pm(z− ·)

〉

+
∑

ζ>|k|−2

〈
�z+hQζ

(
f (z+ h)− �z+h,zf (z)

)
, ∂kPm(z+ h− ·)〉.

Regarding the first term, we set D = (2−2(n0+1),2−2(n0−1))×Td and we have∥∥∥∥ ∑
m:2−m≤|h|

〈Rf −�z+hf (z+ h), ∂kPm(z+ h− ·)〉
2−n0(η

′−γ ′)|h|γ ′−|k|

∥∥∥∥
Lp(n0,h)

�
∑

m:2−m≤|h|
2−m(2−|k|+γ )|h||k|−γ ′ |||f |||η,T ,D

� |||f |||η,T ,D,
so that the corresponding !p-norm is bounded by a term of order |||f |||. The bound of the second term is very similar.
Regarding the third term, we have∥∥∥∥ ∑

m:2−m≤|h|

〈�z+hQζ (f (z+ h)− �z+h,zf (z)), ∂kPm(z+ h− ·)〉
2−n0(η

′−γ ′)|h|γ ′−|k|

∥∥∥∥
Lp(n0,h)

�
∑

m:2−m≤|h|
2−m(2−|k|+ζ )|h||k|−ζ+γ−γ ′

∥∥∥∥ |f (z+ h)− �z+h,zf (z)|ζ
2−n0(η−γ )|h|γ−ζ

∥∥∥∥
Lp(n0,h)

�
∥∥∥∥ |f (z+ h)− �z+h,zf (z)|ζ

2−n0(η−γ )|h|γ−ζ

∥∥∥∥
Lp(n0,h)

,

so that the corresponding !p-norm is bounded by a term of order |||f |||.
Third step: Convolution identity

The element P+f ∈Dγ ′,η′,T
p can always be restricted to Dγ ′′,η′′,T

p for any given γ ′′ ∈ (0,1), and for η′′ = η′ + (γ ′′ − γ ′).
Using the uniqueness part of Theorem 3.6, we deduce that the identity P+ ∗Rf =RP+f holds as soon as we have

sup
λ∈(0,1]

∥∥∥∥ sup
η∈Br

|〈P+ ∗Rf −�zP+f (z), ηλz 〉|
λγ

′′
t
η′′−γ ′′

2

∥∥∥∥
Lp((3λ2,T−λ2)×Td )

<∞.

A simple computation shows that

〈
P+ ∗Rf −�zP+f (z), ηλz

〉 = ∑
m≥0

〈
Rf −�zf (z),

∫
ηλz (z+ h)P

0,γ ′′
m,z+h,z dh

〉
.

One has to distinguish three cases according as 1
3

√
t ≤ 2−m, λ ≤ 2−m ≤ 1

3

√
t and 2−m ≤ λ ≤ 1

3

√
t . In every case, the

bound is virtually the same as the bound of the translation terms presented above so we do not provide the details. �

Proof of Theorem 3.12. Recall that P− is a compactly supported, smooth function. Using the bound (6.2) that was
proved earlier, we get∥∥∥∥ 〈Rf, ∂kP−(z− ·)〉

t
η′−|k|

2

∥∥∥∥
Lp((0,T )×Td ,dz)

� |||f |||,
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for all k ∈ Nd+1. This yields the required bounds on the local terms of the Dγ ′,η′,T
p -norm. Regarding the translation terms,

we observe that

k!Qk

(
P−f (z+ h)− �z+h,zP−f (z)

) = 〈
Rf,P k,γ ′

−,z+h,z
〉
,

where P
k,γ ′
−,z,z+h is the function defined in (6.13) upon replacing Pm by P−. Combining (6.14) and the bound already

obtained above, we easily deduce that the bound on the translation terms is satisfied.
To get the identity RP−f = P− ∗Rf , we restrict P−f to Tγ ′′ with γ ′′ ∈ (0,1) and we observe that

�zP−f (z)= (P− ∗Rf )(z), z ∈ (0, T )×Td .

Since the r.h.s. defines a smooth function, the uniqueness part of Theorem 3.6 ensures that RP−f coincides with P− ∗Rf
as required. �

6.5. Convolution of the shift

Proof of Lemma 3.13. Recall the notation L2(n0). Any function h ∈ L2((0, T )× Td) can be viewed as an element of
B−κ/3

2 ((−∞, T ] ×Td) for some small κ > 0. Applying Lemma 6.3 and Equation (6.5), we deduce that

( ∑
n0≥nT

∥∥∥∥ ∑
m≤n0+4

|〈h, ∂kPm(z− ·)〉|
2−n0(− κ

2 −|k|+2)

∥∥∥∥
2

L2(n0)

) 1
2

<∞ (6.15)

and

( ∑
n0≥nT

∥∥∥∥ |〈h, ∂kP−(z− ·)〉|
2−n0(− κ

2 −|k|+2)

∥∥∥∥
2

L2(n0)

) 1
2

<∞. (6.16)

We now prove that Ph belongs to Dγ,γ,T

2 with γ = 2 − κ . Regarding the local terms, first observe that

k!∣∣Ph(z)∣∣
k
= ∣∣〈h, ∂kP−(z− ·)〉∣∣ +

∑
m≥0

∣∣〈h, ∂kPm(z− ·)〉∣∣.
We distinguish the cases n0 + 2 < m and n0 + 2 ≥ m where n0 is the integer such that t ∈ [2−2n0 ,2−2(n0−1)]. Assume
first that n0 + 2<m. We have

∥∥∥∥ 〈h, ∂kPm(z− ·)〉
t
γ−|k|

2

∥∥∥∥
L2(n0)

� 2−m(2−|k|− κ
2 )

2−n0(γ−|k|)

∥∥∥∥ 〈h, ∂kPm(z− ·)〉
2−m(2−|k|− κ

2 )

∥∥∥∥
L2(n0)

,

so that

( ∑
n0≥nT

∥∥∥∥ ∑
m>n0+2

|〈h, ∂kPm(z− ·)〉|
t
γ−|k|

2

∥∥∥∥
2

L2(n0)

) 1
2

�
∑
m≥0

( ∑
m−2>n0≥nT

∥∥∥∥ |〈h, ∂kPm(z− ·)〉|
t
γ−|k|

2

∥∥∥∥
2

L2(n0)

) 1
2

�
∑
m≥0

2−mκ
2

( ∑
m−2>n0≥nT

∥∥∥∥ 〈h, ∂kPm(z− ·)〉
2−m(2−|k|− κ

2 )

∥∥∥∥
2

L2(n0)

) 1
2

�
∑
m≥0

2−mκ
2 sup
m≥0

∥∥∥∥ sup
ϕ∈Br

|〈h,ϕ2−m
z 〉|

2m
κ
2

∥∥∥∥
L2((0,T )×Td )

,

which is bounded as required. The computation is similar for P−. On the other hand, when m≤ n0 + 2, (6.15) and (6.16)
yield the desired bound.

To treat translation terms in the norm, one proceeds similarly. Actually, the proof is very similar to that of Theorem 3.9:
one has to distinguish three cases according to the relative values of |h|, √

t and 2−n0 , but the arguments are essentially
the same. �
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