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Abstract. We present a novel approach of coupling two multi-dimensional and non-degenerate Itô processes (Xt ) and (Yt ) which
follow dynamics with different drifts. Our coupling is sticky in the sense that there is a stochastic process (rt ), which solves a
one-dimensional stochastic differential equation with a sticky boundary behavior at zero, such that almost surely |Xt − Yt | ≤ rt for
all t ≥ 0. The coupling is constructed as a weak limit of Markovian couplings. We provide explicit, non-asymptotic and long-time
stable bounds for the probability of the event {Xt = Yt }.

Résumé. On présente une nouvelle approche de couplage de deux processus de Itô (Xt ) et (Yt ) multi dimensionnels et non
dégénérés qui suivent une dynamique avec des drifts différents. Le couplage est collant dans le sens qu’il existe un processus
stochastique (rt ), qui résout une équation différentielle stochastique en dimension un avec un comportement collant à zéro, de sorte
que presque sûrement, |Xt −Yt | ≤ rt pour tous t ≥ 0. Le couplage est construit comme une limite faible de couplages markoviens.
On fournit des bornes explicites, non asymptotiques et stables à long terme pour la probabilité de l’événement {Xt = Yt }.
MSC: 60J60; 60H10

Keywords: Diffusion process; Reflection coupling; Sticky boundary conditions; Stochastic stability; Perturbations of Markov processes; Total
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1. Introduction

Let (Bt ) and (B̃t ) be d-dimensional Brownian motions. We consider two diffusion processes with values in R
d which

follow dynamics with different drifts, i.e.

dXt = b(t,Xt ) dt + dBt , X0 = x, (1.1)

dYt = b̃(t, Yt ) dt + dB̃t , Y0 = y. (1.2)

We assume that the drift coefficients b, b̃ : R+ × R
d → R

d are locally Lipschitz. Moreover, we impose assumptions
which imply that a geometric Lyapunov drift condition holds for (1.1) and that there is a constant M > 0 such that
uniformly |b − b̃| ≤ M .

Diffusions with different drifts occur in many application areas. For example, one could consider a Langevin
diffusion (Xt ) and a perturbation or approximation (Yt ) of the latter. Other natural examples are McKean–Vlasov pro-
cesses, where the drift coefficients depend not only on the current position of the process but also on the corresponding
law. A natural question arising is how to obtain explicit bounds for the distance of Xt and Yt in Kantorovich distances,
e.g. in total variation norm. There are a few articles which try to answer this question in a general setting: Using
Girsanov’s theorem and coupling on the path space, the works [32,35,36] establish bounds on the total variation norm
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Fig. 1. Sticky coupling of two diffusion processes on R
1.

of such diffusions. In [4] bounds for the distance between transition probabilities of diffusions with different drifts are
derived using analytic arguments, see also the related work [39]. The drawback of these approaches is that the derived
bounds are typically only useful for small time horizons and are not long-time stable. The article [3] provides bounds
for the distance between stationary measures of diffusions with different drifts. Coupling methods are used in [11] to
provide long-time stable bounds on the distance between a Langevin diffusion and its Euler approximation. Howitt
constructs in [27] a sticky coupling of two one-dimensional Brownian motions with different drifts using time-change
arguments which are restricted to the one-dimensional setting.

In this article, we discuss a novel approach of constructing couplings (Xt , Yt ) of solutions to (1.1) and (1.2) in
a multi-dimensional setting. Consider for example the case where b̃ differs from b by a non-zero constant m, i.e.,
b̃(t, x) = b(t, x) + m for some m ∈ R

d , and let (Xt ) and (Yt ) be solutions of (1.1) and (1.2) respectively. In this case,
whenever Xt and Yt meet, the drift forces the processes to immediately move apart from each other. It is clear that,
regardless of how the processes are coupled, one cannot hope for the existence of an almost surely finite stopping
time T such that P [Xt = Yt ∀t ≥ T ] = 1. Nevertheless, we construct a coupling such that for any given t > 0, we
have P [Xt = Yt ] > 0 and the coupling is sticky in the sense that there is a continuous semimartingale (rt ) which
solves a one-dimensional stochastic differential equation with a sticky boundary behavior at zero such that almost
surely |Xt − Yt | ≤ rt for all t ≥ 0. This allows us to establish explicit, non-asymptotic and long-time stable bounds
for the probability of the event {Xt = Yt }. The coupling is constructed as a weak limit of Markovian couplings. The
idea for the coupling is based on [13,15] where coupling approaches for particle systems and nonlinear McKean–
Vlasov processes are discussed, cf. Section 2.2 for a comprehensive comparison. We show that sticky couplings can
be applied effectively to provide total variation bounds between the laws of both linear and non-linear diffusions with
varying drifts. Figure 1 illustrates a sticky coupling of two diffusion processes on R1.

Outline: The main results are presented in Section 2. In Section 3 we recall results on the existence and uniqueness
of one-dimensional SDEs with sticky boundary, we establish an approximation result for the latter, and we study the
long-time behavior of solutions to such equations using coupling methods. Based on these results, the proof of our
main theorem and the construction of the sticky coupling are presented in Section 4.

2. Main results

2.1. Sticky couplings

We impose the following assumptions:

Assumption 1. There is a constant M ∈ [0,∞) such that∣∣b(t, x) − b̃(t, x)
∣∣ ≤ M for any x ∈R

d and t ≥ 0.
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Assumption 2. There is a Lipschitz function κ : [0,∞) →R such that〈
x − y, b(t, x) − b(t, y)

〉 ≤ κ
(|x − y|) · |x − y|2 for any x, y ∈ R

d and t ≥ 0.

Outside of a bounded interval, the function κ is constant and strictly negative.

The assumptions imply in particular that the unique strong solutions (Xt ) and (Yt ) of (1.1) and (1.2) respectively
are non-explosive. We present our main result:

Theorem 3 (Sticky coupling). Suppose that Assumptions 1 and 2 hold true. Then for any initial values x, y ∈ R
d ,

there is a coupling (Xt , Yt ) of solutions to (1.1) and (1.2), respectively, such that Xt − Yt is sticky at zero in the sense
that the difference is controlled by a solution of a one-dimensional SDE with a sticky boundary behavior at zero. More
precisely, there is a real-valued process (rt ) solving the SDE

drt = (
M + κ(rt )rt

)
dt + 2I (rt > 0) dWt , r0 = |x − y|, (2.1)

driven by a one-dimensional Brownian motion (Wt), such that almost surely,

|Xt − Yt | ≤ rt for any t ≥ 0. (2.2)

The process (rt ) is sticky at zero in the sense that almost surely,

2M

∫ t

0
I (rs = 0) ds = �0

t (r), 0 ≤ t < ∞,

where �0
t (r) is the right local time at 0 of (rt ), i.e.,

�0
t (r) = lim

ε↓0

1

ε

∫ t

0
I (0 ≤ rs < ε)d[r]s = 4 lim

ε↓0

1

ε

∫ t

0
I (0 < rs < ε)ds.

Equation (2.1) admits an invariant probability measure π . For M = 0, π = δ0, and for M > 0, π is determined by

π(dx) ∝
(

2

M
δ0(dx) + exp

(
1

2

∫ x

0

(
M + κ(y)y

)
dy

)
λ(0,∞)(dx)

)
. (2.3)

If the initial conditions coincide, i.e., if x = y, then for any t ≥ 0,

P [Xt = Yt ] ≥ π
[{0}] =

(
1 + M

2

∫ ∞

0
exp

(
1

2

∫ x

0

(
M + κ(y)y

)
dy

)
dx

)−1

.

In general, there are constants c, ε ∈ (0,∞), depending only on M and κ , such that for any t > 0 and any initial
values x, y ∈R

d ,

P [Xt 
= Yt ] ≤ 1

ε

c

ect − 1
|x − y| + π

[
(0,∞)

]
. (2.4)

The constants c and ε are given by

c =
(

2
∫ R1

0

�(s)

ϕ(s)
ds

)−1

and ε = min

{(
2
∫ R1

0

1

ϕ(s)
ds

)−1

, c�(R1)

}
,

where ϕ(r) = exp(− 1
2

∫ r

0 (M + κ(s)s)+ ds), �(r) = ∫ r

0 ϕ(s) ds,

R0 = inf
{
R ≥ 0 : (M + κ(r)r

) ≤ 0 for any r ≥ R
}
, and

R1 = inf
{
R ≥ R0 : R(R − R0)

(
M/r + κ(r)

) ≤ −4 for any r ≥ R
}
.



Sticky couplings of diffusions 2373

In Section 3 we also provide explicit bounds on the expected values E[|Xt − Yt |], cf. Theorem 26 further below.
The coupling (Xt , Yt ) in Theorem 3 is constructed as a weak limit of Markovian couplings. The construction of the
coupling and the proof of the theorem are given in Section 4.

Remark 4 (Reflection coupling). The classical reflection coupling of Lindvall and Rogers [37] occurs as a special
case of the coupling in Theorem 3 when the drift coefficients coincide, i.e., b = b̃. In this case we can choose M = 0
so that 0 is an absorbing boundary for the diffusion process (rt ). The equation (2.5) reduces to

P [Xt 
= Yt ] ≤ 1

ε

c

ect − 1
|x − y|, (2.5)

which is a well-known bound for reflection coupling [5,37].

In the two special cases M = 0 and x = y, the bound in (2.5) takes a very simple and intuitive form. In general,
however, the rate c depends on M . This dependence can be avoided by considering a modified coupling.

Theorem 5. There is a coupling (X̃t , Ỹt ) of solutions to (1.1) and (1.2) such that

P [X̃t 
= Ỹt ] ≤ 1

ε̃

c̃

ec̃t − 1
|x − y| + π

[
(0,∞)

]
for any t ≥ 0, (2.6)

where c̃, ε̃ are defined analogously to c and ε but with M = 0.

Proof of Theorem 5. Consider a process (Zt ) satisfying

dZt = b(t,Zt ) dt + dBt , Z0 = y.

Let (X̃t , Z̃t ) be a standard reflection coupling of (Xt ) and (Zt ), i.e., a sticky coupling in the case where the drifts
coincide. Then we can glue this coupling with a sticky coupling of (Zt ) and (Yt ), i.e., there are processes (X̃t , Z̃t , Ỹt )

defined on a joint probability space such that (X̃t , Z̃t ) is a sticky coupling of (Xt ,Zt ), and (Z̃t , Ỹt ) is a sticky coupling
of (Zt , Yt ), see e.g. the “glueing lemma” in [51]. For t ≥ 0, we obtain by Theorem 3:

P [X̃t 
= Ỹt ] ≤ P [X̃t 
= Z̃t ] + P [Z̃t 
= Ỹt ] ≤ 1

ε̃

c̃

ec̃t − 1
|x − y| + π

[
(0,∞)

]
. �

To make the bounds in the theorems more explicit, we now assume that we are given constants R,L ∈ [0,∞) and
K ∈ (0,∞) such that for any t ≥ 0,

〈
x − y, b(t, x) − b(t, y)

〉 ≤
{

L|x − y|2 for any x, y ∈Rd,

−K|x − y|2 for x, y ∈ R
d s.t. |x − y| ≥R.

(2.7)

Hence Assumption 2 is satisfied with κ(r) = LI (r < R) − KI (r ≥ R). In this case, the exponential decay rate c̃ in
Theorem 5 is bounded from below by

c̃−1 ≤

⎧⎪⎨
⎪⎩

4 max(R2,K−1) if L = 0,

3e max(R2,4K−1) if LR2 ≤ 4,

8
√

πL−1/2(L−1 + K−1)R−1 exp(LR2/4) + 16K−2R−2 if LR2 > 4,

see Lemma 1 in [13]. (Note that the definitions of the function κ and the constant c in [13] differ from the defini-
tions above by a factor −2, 2, respectively.) The following lemma provides explicit upper bounds on the long-time
asymptotics of the probabilities in (2.5) and (2.6). The proof is included in Section 4.
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Lemma 6. Suppose that Condition (2.7) is satisfied. Then π[(0,∞)] = α/(1 +α) where α is a non-negative constant
such that for M ≤ KR,

α ≤ (
π1/2e1/2K−1/2 + 2Rmax

(
4,LR2 + 2MR

)−1)
M exp

(
MR/2 + LR2/4

)
,

and for M ≥ KR,

α ≤
(√

π

K
+ 2R

max(4,2MR+ LR2)

)
M exp

(
M2

4K
+ L + K

4
R2

)
.

The theorems imply bounds on the total variation distance between the laws of Xt and Yt for any time t ≥ 0. We
now verify that in two simple examples, the bound in (2.6) is of the correct order:

Example 7 (Ornstein–Uhlenbeck processes). Fix m ∈R
d \ {0}. We consider Ornstein–Uhlenbeck processes on R

d ,
given by

dXt = −Xt/2dt + dBt , X0 = x,

dYt = −(Yt − m)/2dt + dB̃t , Y0 = y,

where (Bt ) and (B̃t ) are d-dimensional Brownian motions. Let d(t) denote the total variation distance between the
laws of Xt and Yt at time t . It is well-known that Xt and Yt are normally distributed with

Law(Xt ) = N
(
e−t/2x,

(
1 − e−t

)
Id

)
,

Law(Yt ) = N
(
e−t/2y + (

1 − e−t/2)m,
(
1 − e−t

)
Id

)
.

The total variation distance between d-dimensional normal distributions N (a, bId) and N (ã, bId) with a, ã ∈R
d and

b ∈ (0,∞) is given by �1(|a − ã|/(2√
b)) where

�1(r) := √
2/π

∫ r

0
exp

(−x2/2
)
dx,

cf. e.g. [10, Exercise 15.12]. Hence for any t > 0,

d(t) = ∥∥Law(Xt ) − Law(Yt )
∥∥

TV = �1

( |m + e−t/2(y − m − x)|
2
√

1 − e−t

)
. (2.8)

We now compare the upper bound (2.6) for the total variation distance that has been derived by sticky couplings to
the exact expression (2.8). Observe that Assumptions 1 and 2 are satisfied with M = |m|/2 and the constant function
κ(r) = −1/2 respectively. By a straightforward computation we obtain

π
[
(0,∞)

] = 1 − (
1 + √

π/8|m|em2/8(1 + �1
(|m|/2

)))−1
. (2.9)

Asymptotically as t → ∞, the upper bound for P [X̃t 
= Ỹt ] in (2.6) approaches (2.9), whereas the total variation
distance d(t) converges to �1(|m|/2). Comparing both expressions for small and large values of |m|, we see that as
|m| → 0,

π
[
(0,∞)

] ∼ √
π/8|m|, whereas �1

(|m|/2
) ∼ |m|/√2π,

and as |m| → ∞,

1 − π
[
(0,∞)

] ∼ 2√
2π |m|e

−|m|2/8, whereas 1 − �1
(|m|/2

) ∼ 4√
2π |m|e

−|m|2/2.
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Hence as m ↓ 0, the bounds for the long time limit of the total variation distance provided by sticky couplings are of
the correct order up to a multiplicative constant, whereas for m → ∞, we loose a factor 4 in the exponential.

Furthermore, we can compare the decay rate c̃ in (2.6) with the rate of convergence of d(t) to its limit �1(|m|/2).
Asymptotically as t ↑ ∞, (2.8) implies

∣∣d(t) − �1
(|m|/2

)∣∣ ∼ �′
1

(|m|/2
)
e−t/2|y − m − x|/2

= (2π)−1/2e−m2/8e−t/2|y − m − x|.

On the other hand, in this case c̃ = 1/8 and ε̃ = 1/(2
√

8), so by (2.6),

P [X̃t 
= Ỹt ] − π
[
(0,∞)

] ≤ 2−1/2(et/8 − 1
)−1|x − y|.

We see that the exponential rate of decay in our bound differs from the optimal rate only by a factor 4.

Example 8 (Confined Brownian motion). Fix R,k,m ∈ (0,∞), and let

b(x) = 0 for |x| ≤ R, and b(x) = −k
(
x − R sgn(x)

)
/2 otherwise.

Moreover, let b̃(x) = b(x) + m/2. In this case, Condition (2.7) is satisfied with L = 0, K = k/6 and R = 3R, and
Assumption 1 holds with M = m/2. Assuming m ≤ kR and mR ≤ 4/3, Theorem 5 and the first bound in Lemma 6
show that there is a coupling (X̃t , Ỹt ) of the corresponding solutions to (1.1) and (1.2) with arbitrary initial values x

and y such that

lim sup
t→∞

P [X̃t 
= Ỹt ] ≤
(

3e

4
R + (

3πe3/2
)1/2

k−1/2
)

m. (2.10)

On the other hand, the unique invariant probability measures for (1.1) and (1.2) are given explicitly by ν(dx) =
Z−1

f f (x) dx, μ(dx) = Z−1
g g(x) dx, respectively, where f (x) = exp(−k max(|x| − R,0)2/2), g(x) = exp(mx)f (x),

Zf = ∫ ∞
−∞ f (x)dx and Zg = ∫ ∞

−∞ g(x)dx. Noting that Zg ≥ Zf , an explicit computation yields the lower bounds

‖μ − ν‖TV ≥ (
exp(−mR) − 1 + mR

)
/(mR),

and, for Rk1/2 ≤ 1,

‖μ − ν‖TV ≥ (
1 − exp

(−mR + m2/(2k)
) + 21/2(πk)−1/2m exp(−mR)

)
/4,

see the Appendix. In particular,

lim inf
m↓0

‖μ − ν‖TV/m ≥ 1

4

(
R + (2/π)1/2k−1/2).

Hence for small m, the bound in (2.10) is sharp up to a constant factor.

Remark 9 (Comparison with Girsanov couplings). An alternative approach to construct couplings of solutions
to (1.1) and (1.2) is by Girsanov’s Theorem. If the initial conditions X0 and Y0 coincide and T ∈ [0,∞) is a fixed
constant, then Girsanov’s Theorem can be applied to construct a coupling (Xs,Ys) such that with positive probability,
Xs = Ys for all s ∈ [0, T ]. Moreover, explicit bounds on this probability can be derived via Hellinger integrals [32,
35,36]. Notice, however, that the corresponding bounds typically degenerate rapidly as T → ∞. Hence Girsanov’s
Theorem provides a very strong coupling over short time intervals, whereas the sticky couplings introduced above are
stable for long times in the sense that lim inft→∞ P [Xt = Yt ] ≥ π[{0}] > 0.
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2.2. McKean–Vlasov processes

We consider nonlinear diffusions on R
d of type

dXt = η(Xt ) dt + τ

∫
ϑ(Xt , y)μx

t (dy) dt + dBt , X0 = x,

μx
t = Law(Xt ),

(2.11)

where (Bt ) is a d-dimensional Brownian motion and τ ∈ R. The SDE is nonlinear in the sense of McKean, i.e., the
future development after time t depends on the current state Xt and on the law of Xt , cf. e.g. [41,50]. Let η : Rd → R

d

and ϑ : Rd ×R
d → R

d be Lipschitz continuous functions. Then the equation above admits a unique strong solution,
cf. [41, Theorem 2.2]. Let us fix initial values x0, y0 ∈ R

d , x0 
= y0, and consider solutions (Xt ) and (Yt ) of (2.11)
with X0 = x0 and Y0 = y0 respectively. We define drift coefficients

bx0(t, x) = η(x) + τ

∫
ϑ(x, y)μ

x0
t (dy), (2.12)

by0(t, x) = η(x) + τ

∫
ϑ(x, y)μ

y0
t (dy), (2.13)

which are uniformly Lipschitz in x and continuous in t . Notice that due to pathwise uniqueness, (Xt ) and (Yt ) are the
unique strong solutions to the equations

dXt = bx0(t,Xt ) dt + dBt , X0 = x0, (2.14)

dYt = by0(t, Yt ) dt + dBt , Y0 = y0, (2.15)

and hence we can interpret the processes as two diffusions with different drifts.

Assumption 10. There is a Lipschitz function κ : [0,∞) →R such that

〈
x − y,η(x) − η(y)

〉 ≤ κ
(|x − y|) · |x − y|2 for any x, y ∈R

d and t ≥ 0.

Outside of a bounded interval, the function κ is constant and strictly negative.

Assuming that Assumption 10 holds, we have shown in [15] that there are constants A,λ, τ0 ∈ (0,∞) such that for
|τ | ≤ τ0,

W1(μx
t ,μ

y
t

) ≤ Ae−λt |x − y| for any t ≥ 0 and x, y ∈R
d, (2.16)

where W1 denotes the standard L1 Wasserstein distance. The proof is based on an application of reflection coupling
if |Xt − Yt | ≥ δ and synchronous coupling if |Xt − Yt | ≤ δ/2, where δ is a small positive constant. In the intermediate
region, a combination of both couplings is applied. The bound in (2.16) is obtained when considering the limit of the
resulting bounds as δ ↓ 0. The couplings considered in [15] now turn out to be approximations of a sticky coupling.
By applying directly the sticky coupling and using Theorem 27 further below, we can extend the result in [15] and
derive a corresponding exponential decay in total variation norm:

Theorem 11. Let η and ϑ be Lipschitz and let Assumption 10 be true. There is τ0 ∈ (0,∞) such that for any |τ | ≤ τ0

and any x, y ∈R
d there are constants B,c ∈ (0,∞) such that,∥∥μx

t − μ
y
t

∥∥
TV ≤ Be−ct for any t ≥ 0.

The proof is given in Section 4.
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2.3. Outlook

The concept of sticky couplings sheds new light onto several results that have been previously derived using combi-
nations of reflection and synchronous couplings. A first example of this type has been given in Theorem 11. Without
carrying out details, we mention three further results that probably can be reinterpreted in terms of sticky couplings:

(a) Componentwise reflection couplings for interacting diffusions. In [13], Wasserstein bounds for interacting dif-
fusions with small interaction term (for example of mean-field-type) have been derived by coupling each component
independently with a reflection coupling if the distance is greater than a given constant δ > 0, and with a synchronous
coupling otherwise. Instead, one could now directly consider a componentwise sticky coupling. As time evolves, more
and more components in this coupling would get stuck at nearby positions until, after some finite coupling time, all
components coincide. We expect that such a coupling could be used to derive total variation bounds similar to those
in Theorem 11 for interacting particle systems.

(b) Couplings for infinite-dimensional diffusions. In [55], Wasserstein contraction rates have been derived for a
class of diffusions on a Hilbert space with possibly degenerate noise. Here a reflection coupling has been applied to
the projection of the process on a finite dimensional subspace, whereas the remaining (orthogonal) components have
been coupled synchronously. Again, because of the interaction between the components, the reflection coupling is
switched off when the finite dimensional projections of the two copies are close to each other. Similarly as above, it
should be possible to replace the coupling for the finite dimensional projection by a sticky coupling. The resulting
infinite dimensional coupling process would then spend a certain amount of time at states where the finite dimensional
projections of the two copies coincide. Under the assumptions made in [55], the orthogonal infinite dimensional com-
ponents would approach each other for large t , and, consequently, the finite dimensional projections would coincide
for an increasing proportion of time.

(c) Couplings for Langevin processes. In [14], we consider couplings for (kinetic) Langevin diffusions (Xt ,Vt )t≥0

with state space R
2d that are given by stochastic differential equations of type

dXt = Vt dt,

dVt = −γVt dt − u∇U(Xt) dt + √
2γ udBt .

Here (Bt )t≥0 is a d dimensional Brownian motion, u and γ are positive constants, and U is a C1 function on R
d .

We apply a reflection coupling that is replaced by a synchronous coupling when the values of Xt + γ −1Vt are
close to each other for both components. Again, at least informally, this coupling could be replaced by a coupling
((Xt ,Vt ), (X

′
t , V

′
t )) that is sticky when Xt + γ −1Vt = X′

t + γ −1V ′
t . Under the assumptions that we impose on U , the

coupling would be contractive on the corresponding 3d dimensional linear subspace of R4d , and as time evolves, it
would spend a positive amount of time on this subspace.

We hope that the potential applications listed above show how sticky couplings provide a valuable concept for
building intuition about ways to couple diffusion processes in an efficient way. Carrying out carefully the ideas de-
scribed above would go far beyond the scope of this paper.

3. Diffusions on R+ with a sticky reflecting boundary

In this section we prove some basic results on diffusions on R+ with a sticky boundary at 0. In particular, we prove
the existence of a synchronous coupling of two sticky diffusions and a corresponding comparison theorem, which is
then applied to study the long time behavior of the processes. At first, we need to adapt some known facts on existence
and uniqueness of weak solutions to our setup. We consider the stochastic differential equation

drt = α(t, rt ) dt + 2I (rt > 0) dWt , Law(r0) = μ, (3.1)

on the positive real line R+ = [0,∞), where (Wt) is a one-dimensional Brownian motion and μ is a probability
measure on R+. Below, we will impose conditions on the drift coefficient α : R+ ×R+ → R which imply existence
and uniqueness of weak solutions. In particular, we will assume that α(t,0) > 0 for any t ≥ 0. Let us briefly discuss
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the consequences of this assumption: Suppose that (rt ) is a solution of (3.1). An application of the Itô–Tanaka formula
to f (rt ) with the function f (x) = max(0, x) and a comparison with (3.1) shows that almost surely,∫ t

0
α(s,0)I (rs = 0) ds = 1

2
�0
t (r), 0 ≤ t < ∞, (3.2)

where �0
t (r) = limε↓0 ε−1

∫ t

0 I (0 ≤ rs ≤ ε)d[r]s is the right local time of (rt ). Equation (3.2) shows that there is
reflection at zero. Moreover, for almost all trajectories, the Lebesgue measure of the set {0 ≤ s ≤ t : rs = 0} increases
whenever �0

t (r) increases. In this sense (rt ) is sticky at zero.
Stochastic differential equations with boundary conditions have a long history. The discovery of a sticky boundary

behavior for one-dimensional diffusions seems to go back to Feller [18,19]. A historical overview is given in [42].
We give references to the most relevant works for our application and some recent developments. Existence and
uniqueness results for multi-dimensional diffusion processes with various boundary behaviors have been established
by Ikeda and Watanabe in [28,53,54]. These are based on results by Skorokhod and McKean [40,46,47]. Martingale
problems with boundary conditions have been investigated by Stroock and Varadhan [48], see also the related work
[20]. Non-existence of a strong solution to the SDE for sticky Brownian motion has been established in [8]. In [52],
Warren identifies the law of a sticky Brownian motion conditioned on the driving Wiener process, see also the related
work [23]. A recent publication on existence and uniqueness, which is also a good introduction into the topic, is the
work by Engelbert and Peskir [16] and the related work [2]. First steps towards sticky couplings in a one-dimensional
setting have been made by Howitt in [27] based on time-changes. The recent articles [21,22] use Dirichlet forms
to investigate sticky diffusions and provide some ergodicity results. Rácz and Shkolnikov [45] construct a multi-
dimensional sticky Brownian motion as a limit of exclusion processes, see also [1] and [24].

3.1. Existence, uniqueness and comparison of solutions

We use the concept of weak solutions. Let (�,A, (Ft ),P ) be a filtered probability space satisfying the usual con-
ditions. An (Ft ) adapted process (rt ,Wt ) on (�,A,P ) is called a weak solution of (3.1) if P ◦ r−1

0 = μ, (Wt) is a
one-dimensional (Ft )-Brownian motion w.r.t. P , and (rt ) is continuous, non-negative, and P -almost surely,

rt − r0 =
∫ t

0
α(s, rs) ds +

∫ t

0
2I (rs > 0) dWs, 0 ≤ t < ∞.

We will make the following assumptions on the drift coefficient:

Assumption 12. For any R > 0, inft∈[0,R] α(t,0) > 0.

Assumption 13. For any R > 0 there is LR ∈ (0,∞) such that∣∣α(t, x) − α(s, y)
∣∣ ≤ LR

(|t − s| + |x − y|) for any x, y, s, t ∈ [0,R].

Assumption 14. There is C ∈ (0,∞) such that for any x ∈ R+,

sup
t∈[0,∞)

α(t, x) ≤ C
(
1 + |x|).

The assumptions above imply existence and uniqueness in law of weak solutions to (3.1). This has been proven
by Watanabe in [53,54] assuming that the maps (t, x) �→ α(t, x) and t �→ 1/α(t,0) are bounded and Lipschitz. Using
localization techniques for martingale problems, following the work of Stroock and Varadhan [49], Watanabe’s results
can be transferred to our slightly more general setup:

3.1.1. Uniqueness in law
Let W = C(R+,R) be the space of continuous functions endowed with the topology of uniform convergence on
compacts, and let B(W) denote the Borel σ -Algebra. Let Ft = σ(rs : 0 ≤ s ≤ t) be the natural filtration generated by
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the canonical process r t (ω) = ω(t). Given a solution (rt ) of (3.1), defined on a probability space (�,A,P ), we write
P = P ◦ r−1 for the law of r on (W,B(W)). We say that solutions to (3.1) are unique in law, if any two solutions (r1

t )

and (r2
t ) with coinciding initial law have the same law on the space (W,B(W)).

In order to apply existing localization techniques for martingale problems, we interpret equation (3.1) as an equa-
tion on R, instead of R+, setting α(t, x) = α(t,0) for x < 0. This does not cause any problems since, under the
assumptions imposed above, any solution (rt ) with initial law supported on R+ satisfies almost surely rt ≥ 0 for all
t ≥ 0, see e.g. the argument in [16, Proof of Theorem 5].

We follow [33,49] and define a family of second order differential operators

(Lt f )(x) = α(t, x)f ′(x) + (1/2)I (x > 0)f ′′(x).

A probability measure P on (W,B(W)) is called a solution to the martingale problem w.r.t. (Lt ) iff for any f ∈ C2
0(R),

M
f
t = f (r t ) − f (r0) −

∫ t

0
(Luf )(ru) du

is a continuous (Ft )-martingale under P. The solution to the martingale problem is called unique, if any two solutions
P

1 and P
2 coincide whenever P1 ◦ r−1

0 = P
2 ◦ r−1

0 . The next two results are well-known:

Lemma 15 ([33,49]). The following statements are equivalent:

(i) There is a weak solution of (3.1) with initial distribution μ.
(ii) There is a solution P to the martingale problem w.r.t. (Lt ) s.t. P ◦ r−1

0 = μ.

Moreover, the uniqueness of solutions to the martingale problem w.r.t. (Lt ) and the uniqueness in law of weak solutions
to (3.1) are equivalent.

Lemma 16 ([53,54]). Assume that the maps (t, x) �→ α(t, x) and t �→ 1/α(t,0) are bounded and Lipschitz. Then for
any initial law μ on R+, there is a weak solution to (3.1) which is unique in law.

A detailed proof of Lemma 15 can be found in [33, Chapter 5, Section 4.B]. A proof of Lemma 16 is given in [30,
Chapter IV, Section 7].

Lemma 17. If Assumptions 12 and 13 are satisfied then the solution to the martingale problem w.r.t. (Lt ) is unique
for a given initial law, and thus uniqueness in law holds for solutions to (3.1).

Proof. We set αn(s, x) = α(s ∧ n,x ∧ n) for n ∈ N. By the assumptions, the maps (t, x) �→ αn(t, x) and t �→
1/αn(t,0) are bounded and Lipschitz continuous. Hence uniqueness holds for the corresponding martingale prob-
lem for any initial law μ on R+ according to Lemma 16 and 15. The uniqueness for the martingale problem w.r.t. (Lt )

for such initial laws can now be shown by a localization argument, cf. [49, Theorem 10.1.2]. �

3.1.2. Approximation, existence and coupling of solutions
We now consider two equations of the form (3.1) with drift coefficients β and γ that both satisfy Assumptions 12, 13
and 14. We construct a synchronous coupling of solutions to these equations as a weak limit of solutions to approx-
imating equations with locally Lipschitz continuous coefficients. We introduce the family of stochastic differential
equations, indexed by n ∈N, given by

dr̃n
t = β

(
t, r̃n

t

)
dt + 2ϑn

(
r̃n
t

)
dW̃t , Law

(
r̃n

0 , s̃n
0

) = μ̃n ⊗ ν̃n,

ds̃n
t = γ

(
t, s̃n

t

)
dt + 2ϑn

(
s̃n
t

)
dW̃t ,

(3.3)

Here (W̃t ) is a Brownian motion, and we assume that:

Assumption 18. (μ̃n) and (ν̃n) are sequences of probability measures on R+ converging weakly towards probability
measures μ̃ and ν̃, respectively.
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Assumption 19. For each n ∈ N, the function ϑn : R+ → [0,1] is Lipschitz continuous with ϑn(0) = 0, ϑn(x) > 0
for x > 0, and ϑn(x) = 1 for x ≥ 1/n.

Remark 20. In [16], a sticky Brownian motion (rt ) satisfying

drt = I (rt 
= 0) dW̃t , I (rt = 0)μdt = d�0
t (r), μ ∈ (0,∞),

is approximated by solutions of equations

drn
t = (√

2μ/nI
(∣∣rn

t

∣∣ ≤ 1/n
) + I

(∣∣rn
t

∣∣ > 1/n
))

dW̃t ,

The approximation is tailored in such a way that it is compliant with the time-changes frequently used to show
existence and uniqueness of weak solutions to sticky SDEs, see e.g. [16,54]. Our approximation result follows a
similar spirit but it does not rely on time changes.

Lemma 21. Suppose that β and γ satisfy Assumptions 12, 13 and 14. Moreover, let Assumptions 18 and 19 be true.
Then for each n ∈ N, there is a strong solution (r̃n

t , s̃n
t ) of Equation (3.3) with values in R

2+. Moreover, uniqueness in
law holds.

Proof. Fix n ∈N. For x < 0 we set ϑn(x) = 0, β(t, x) = β(t,0), and γ (t, x) = γ (t,0). Equation (3.3) is then a stan-
dard SDE on R

2 with locally Lipschitz coefficients. Hence there is a strong and pathwise unique solution. Moreover,
Assumption 14 implies that the solution is non-explosive. Similarly to [16, Proof of Theorem 5], we can apply the
Itô–Tanaka formula to the negative part of r̃n

t in order to show that the process is non-negative. Indeed,

(
r̃n
t

)− − (
r̃n

0

)− = −
∫ t

0
I
(
r̃n
s ≤ 0

)
dr̃n

s + 1

2
�0
t

(
r̃n

)
,

where �0
t (r̃

n) is the right local time of (r̃n
t ), i.e.,

�0
t

(
r̃n

) = lim
ε↓0

ε−1
∫ t

0
I
(
0 ≤ r̃n

s ≤ ε
)
d
[
r̃n

]
s
= 4 lim

ε↓0
ε−1

∫ t

0
I
(
0 ≤ r̃n

s ≤ ε
)
ϑn

(
r̃n
s

)2
ds.

Since ϑn is Lipschitz with ϑn(0) = 0, the local time vanishes. Therefore, and since β(s,0) > 0 for any s ≥ 0, we have
0 ≤ (r̃n

t )− ≤ (r̃n
0 )− = 0. A similar argument can be used for (s̃n

t ). �

For each n ∈ N, there are a probability space (�n,An,P n) and random variables r̃n, s̃n : �n → W such that
(r̃n

t , s̃n
t ) is a solution of (3.3). Let Pn = P n ◦ (r̃n, s̃n)−1 denote the law on W ×W. For w = (w1,w2) ∈ W×W, we

define the coordinate mappings r(w) = w1 and s(w) = w2.

Theorem 22. Suppose that β and γ satisfy Assumptions 12, 13 and 14, and let μ̃ and ν̃ be probability measures on
R+. Suppose that the sequences (ϑn), (μ̃n) and (ν̃n) satisfy Assumptions 18 and 19. Then there is a random variable
(r̃, s̃) with values in W×W, defined on some probability space (�,A,P ), such that (r̃t , s̃t ) is a weak solution of

dr̃t = β(t, r̃t ) dt + 2I (r̃t > 0) dW̃t , Law(r̃0, s̃0) = μ̃ ⊗ ν̃,

ds̃t = γ (t, s̃t ) dt + 2I (s̃t > 0) dW̃t ,
(3.4)

for some Brownian motion (W̃t ). Moreover, there is a subsequence (nk) such that P nk ◦ (r̃nk , s̃nk )−1 converges weakly
towards P ◦ (r̃, s̃)−1. If additionally,

β(t, x) ≤ γ (t, x) for any x, t ∈R+, and (3.5)

P n
[
r̃n

0 ≤ s̃n
0

] = 1 for any n ∈N, (3.6)

then P [r̃t ≤ s̃t for all t ≥ 0] = 1.
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Proof. We fix sequences of diffusion coefficients (ϑn) and initial conditions (μ̃n) and (ν̃n) satisfying Assumptions 18
and 19.

Tightness: We claim that the sequence (Pn)n∈N of probability measures on (W×W,B(W) ⊗B(W)) is tight. This
can be shown by similar arguments as in [25,26], so we only explain briefly how to adapt these arguments to our
setting. At first, we observe that a uniform Lyapunov condition holds for the Markov processes (r̃n

t , s̃n
t ) defined by

(3.3). Indeed, these processes solve a local martingale problem w.r.t. the generators

Ln
t = β(t, ·)∂r + γ (t, ·)∂s + 2

(
ϑn

)2(
∂2
r + ∂2

s

)
(3.7)

defined on smooth functions on R
2. Let V (x) := 1 + |x|2 for x ∈ R

2. Recall that the drift coefficients in (3.7) do not
depend on n and that they satisfy the linear growth Assumption 14. Moreover, the diffusion coefficients are uniformly
bounded by one. It follows that there is a constant λ ∈ (0,∞), not depending on n, such that Ln

t V ≤ λV for any
n ∈ N. From this one can conclude that for each finite time interval [0, T ] and every ε > 0, there is a compact set
K ⊆R

2 such that for any n ∈N, P [(r̃n
t , s̃n

t ) ∈ K for t ≤ T ] ≥ 1 − ε. Moreover, the drift and diffusion coefficients are
uniformly bounded on the set K . Combining these arguments, we can conclude tightness of the laws on W×W. We
refer to [25,26] for a detailled proof in a similar setting. By Prokhorov’s Theorem, we can conclude that there is a
subsequence nk → ∞ and a probability measure P on W × W such that Pnk → P weakly. To simplify notation we
will write in the following n instead of nk , keeping in mind that we have convergence only along a subsequence.

Identification of the limit: We now characterize the measure P. In principle, we follow well-known strategies for
identifying limits of semimartingales, cf. [17,31,49]. However, we can not apply those results directly, because the
diffusion coefficients in (3.4) are discontinuous.

We know that P ◦ (r0, s0)
−1 = μ ⊗ ν, since P

n ◦ (r0, s0)
−1 = μn ⊗ νn converges weakly to μ ⊗ ν by assumption.

We define maps M,N : W×W→ W by

M t = r t − r0 −
∫ t

0
β(u, ru) du and N t = st − s0 −

∫ t

0
γ (u, su) du.

We claim that (M t ,Ft ,P) and (N t ,Ft ,P) are martingales w.r.t. the canonical filtration Ft = σ((ru, su)0≤u≤t ). In-
deed, the mappings M and N are continuous on W, so by the continuous mapping theorem, Pn ◦ (r, s,M,N)−1

converges weakly to P ◦ (r, s,M,N)−1. Notice that for each n ∈ N, (M t ,Ft ,P
n) is a martingale. Moreover, for any

fixed t ≥ 0, the family (M t ,P
n)n∈N is uniformly integrable. Hence (M t ,Ft ,P) is a continuous martingale, cf. [31,

Chapter IX, Proposition 1.12]. In particular, the quadratic variation ([M]t ) exists P-almost surely. Notice that, by
(3.3), [M]t ≤ 4t Pn-almost surely for every n. Thus for any t ≥ 0,

E

[
sup

0≤s≤t

|Ms |2
]

≤ lim inf
R→∞ E

[
sup

0≤s≤t

|Ms |2 ∧ R
]

= lim inf
R→∞ lim

n→∞E
n
[

sup
0≤s≤t

|Ms |2 ∧ R
]

≤ lim inf
n→∞ E

n
[

sup
0≤s≤t

|Ms |2
]

≤ 4 lim inf
n→∞ E

n
[[M]t

] ≤ 16t.

Hence, under P, (M t ) is a square integrable martingale, and thus (M2
t − [M]t ) is a martingale, cf. [34, Theorem

21.70]. Similar statements hold for (N t ).
As a next step, we compute the quadratic variations and covariations of (M t ) and (N t ) under P. Here we follow

arguments from [45]. Similarly as above, the family (M2
t ,P

n) is uniformly integrable for any fixed t ≥ 0, i.e.,

lim
δ→∞ sup

n∈N
E

n
[|M t |2; |M t |2 > δ

] = 0. (3.8)

Indeed, by Burkholder’s inequality, there is a constant C ∈ (0,∞) such that

E
n
[
M4

t

] ≤ CE
n
[[M]2

t

] ≤ 16Ct2 for any n ∈ N.

Let G : W →R+ be bounded, continuous and non-negative. Equation (3.8) implies

lim
δ→∞ sup

n∈N
E

n
[∣∣GM2

t − G
(
M2

t ∧ δ
)∣∣] ≤ |G|∞ lim inf

δ→∞ sup
n∈N

E
n
[
M2

t ;M2
t > δ

] = 0.
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Hence for any such G and any t ≥ 0,

E
[
GM2

t

] = lim
δ→∞E

[
G

(
M2

t ∧ δ
)] = lim

δ→∞ lim
n→∞E

n
[
G

(
M2

t ∧ δ
)]

= lim
n→∞ lim

δ→∞E
n
[
G

(
M2

t ∧ δ
)] = lim

n→∞E
n
[
GM2

t

]
. (3.9)

We now show that (M2
t − 4

∫ t

0 I (ru > 0) du,P) is a submartingale. Fix 0 ≤ s < t . Then for any continuous, bounded
and Fs -measurable function G : W →R+,

lim
n→∞E

n

[
G

∫ t

s

4ϑn(ru)
2 du

]
= lim

n→∞E
n
[
G

(
M2

t − M2
s

)] = E
[
G

(
M2

t − M2
s

)]
. (3.10)

On the other hand, the map w �→ ∫ ·
0 I (ws > ε)ds from W to W is lower semicontinuous for any ε ≥ 0. Fatou’s lemma

and the Portemanteau theorem imply

E

[
G

∫ t

s

I (ru > 0) du

]
≤ lim inf

ε↓0
E

[
G

∫ t

s

I (ru > ε)du

]

≤ lim inf
ε↓0

lim inf
n→∞ E

n

[
G

∫ t

s

I (ru > ε)du

]
. (3.11)

Notice that for any fixed ε > 0,

lim inf
n→∞ E

n

[
G

(∫ t

s

ϑn(ru)
2 du −

∫ t

s

I (ru > ε)du

)]
≥ 0. (3.12)

By (3.10), (3.11) and (3.12), we have

E

[
G

(
M2

t − M2
s − 4

∫ t

s

I (ru > 0) du

)]
≥ 0.

Invoking a monotone class argument, cf. [44, Theorem 8], we see that (M2
t − 4

∫ t

0 I (rs > 0) ds,Ft ,P) is indeed a
submartingale. We show that it is also a supermartingale and hence a martingale. By (3.9), for any function G as
above,

E
[
G

(
M2

t − M2
s − 4(t − s)

)] = lim
n→∞E

n
[
G

(
M2

t − M2
s − 4(t − s)

)] ≤ 0.

Hence, M2
t − 4t is a supermartingale under P. The uniqueness of the Doob–Meyer decomposition [44, Theorem

16] implies that the map t �→ [M]t − 4t is P-almost surely decreasing. Observe that (r t ,Ft ,P) is a continuous
semimartingale with [r] = [M]. Hence the Itô–Tanaka formula implies that P-almost surely,

∫ t

0
I (ru = 0) d[M]u =

∫ t

0
I (ru = 0) d[r]u =

∫ ∞

−∞
I (y = 0)�

y
t (r) dy = 0.

We conclude that for any 0 ≤ s < t ,

[M]t − [M]s =
∫ t

s

I (ru > 0) d[M]u ≤ 4
∫ t

s

I (ru > 0) du,

and hence for any Fs -measurable function G ∈ Cb(W),

E

[
G

(
M2

t − M2
s − 4

∫ t

s

I (ru > 0) du

)]
≤ 0.
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As above we conclude by a monotone class argument that (M2
t − 4

∫ t

0 I (ru > 0) du) is a supermartingale, and hence
a martingale, i.e.,

[M] = 4
∫ ·

0
I (ru > 0) du P-almost surely. (3.13)

Similarly, we can show that

[N] = 4
∫ ·

0
I (su > 0) du P-almost surely. (3.14)

Moreover, we claim that

[M,N] = 4
∫ ·

0
I (ru > 0, su > 0) du P-almost surely. (3.15)

The proof does not involve new arguments, so we just sketch the main steps: With the same arguments as before, one
can conclude that

t �→ M tN t − 4
∫ t

0
I (ru > 0, su > 0) du

is a submartingale and that the map t �→ M tN t − 4t is P-almost surely decreasing. Moreover, by (3.13), (3.14), and
the Kunita-Watanabe inequality, we see that P-a.s.,

∫ t

s

I (ru = 0 or su = 0) d[M,N]u = 0 for 0 ≤ s ≤ t, and thus

[M,N ]t − [M,N]s =
∫ t

s

I (ru > 0, su > 0) d[M,N]u

≤ 4
∫ t

s

I (ru > 0, su > 0) du for 0 ≤ s ≤ t.

This completes the proof of (3.15). Invoking a martingale representation theorem, see e.g. [30, Ch. II, Theorem 7.1′],
we conclude that there is a probability space (�,A,P ) supporting a Brownian motion W̃ , and random variables (r̃, s̃)

such that P ◦ (r̃, s̃)−1 = P ◦ (r, s)−1, and such that (r̃t , s̃t , W̃t ) is a weak solution of (3.4).
It remains to show that (3.5) and (3.6) imply P [r̃t ≤ s̃t for all t ≥ 0] = 1. Applying a comparison theorem [29,

Theorem 1] to the approximating diffusions (3.3) shows that Pn[r t ≤ st for all t ≥ 0] = 1 for all n. The monotonicity
carries over to the limit, since Pn ◦ (r, s)−1 converges weakly, along a subsequence, towards P ◦ (r, s)−1. �

3.2. Long time behaviour

We now derive bounds for solutions to (3.1) that are stable for long times. We assume that t �→ α(t, x) is non-
increasing, so that the stickiness of solutions to (3.1) is non-decreasing in time.

Assumption 23. The function α : [0,∞)×[0,∞) → R is locally Lipschitz continuous with α(t, x) ≤ α(s, x) for any
s ≤ t and x ∈R+, α(t,0) > 0 for any t ≥ 0, and

lim sup
r→∞

(
r−1α(0, r)

)
< 0.

Notice that Assumption 23 implies Assumptions 12, 13 and 14 from above.



2384 A. Eberle and R. Zimmer

3.2.1. Invariant measure in the time-homogenous case
We first consider drift coefficients which do not depend on time, i.e., functions of the form α(t, x) = α(x).

Lemma 24. Suppose that Assumption 23 holds true, and α(t, ·) = α for a function α : [0,∞) → R. Let π be the
probability measure on [0,∞) defined by

π(dx) = 1

Z

(
2

α(0)
δ0(dx) + exp

(
1

2

∫ x

0
α(y)dy

)
λ(0,∞)(dx)

)
, (3.16)

where Z = 2
α(0)

+ ∫ ∞
0 exp( 1

2

∫ x

0 α(y)dy)dx. Then π is invariant for (3.1), i.e., if (rt ) is a solution with initial law π ,
then Law(rt ) = π for any t ≥ 0.

Proof. We use an approximation as in (3.3) with β(t, x) = α(x) and a sequence of smooth functions ϑn : [0,∞) →
[0,1] satisfying Assumption 19. It is well-known that under our assumptions, for each n ∈ N, the probability measure
μ̃n on R+ with distribution function

F̃ n(x) =
∫ x

0
1

ϑn(y)2 exp(
∫ y

1/n
α(z)

2ϑn(z)2 dz)dy∫ ∞
0

1
ϑn(y)2 exp(

∫ y

1/n
α(z)

2ϑn(z)2 dz)dy
x ∈ [0,∞),

is an invariant measure for the process (r̃n
t ) defined by (3.3), see e.g. [38, Chapter 4.4, Theorem 7]. Note in particular

that by Assumptions 23 and 19, the occurring integrals are well defined and finite. Let F denote the distribution
function of π . We show that for any x > 0, F̃ n(x) → F(x) as n → ∞, which implies that μ̃n → π weakly. Indeed,
fix x ∈ (0,∞]. Then for n > 1/x,∫ x

0

1

ϑn(y)2
exp

(∫ y

1/n

α(z)

2ϑn(z)2
dz

)
dy

=
∫ x

1/n

exp

(∫ y

1/n

1

2
α(z) dz

)
dy +

∫ 1/n

0

1

ϑn(y)2
exp

(∫ y

1/n

α(z)

2ϑn(z)2
dz

)
dy. (3.17)

If C ∈ (0,∞) is a constant then∫ 1/n

0

1

ϑn(y)2
exp

(∫ y

1/n

C

ϑn(z)2
dz

)
dy = lim

ε↓0

∫ 1/n

ε

1

ϑn(y)2
exp

(∫ y

1/n

C

ϑn(z)2
dz

)
dy

= lim
ε↓0

1

C

(
1 − exp

(
−

∫ 1/n

ε

C

ϑn(z)2
dz

))
= 1

C
. (3.18)

For 0 < y < 1/n, we have the bounds

exp

(
max

u∈[0,1/n]
α(u)

∫ y

1/n

1

2ϑn(z)2
dz

)
≤ exp

(∫ y

1/n

α(z)

2ϑn(z)2
dz

)

≤ exp

(
min

u∈[0,1/n]α(u)

∫ y

1/n

1

2ϑn(z)2
dz

)
.

Using (3.17), the continuity of α, and (3.18), we can conclude that as n → ∞,∫ x

0

1

ϑn(y)2
exp

(∫ y

1/n

α(z)

2ϑn(z)2
dz

)
dy →

∫ x

0
exp

(∫ y

0

1

2
α(z) dz

)
dy + 2

α(0)
.

Since this also holds for x = ∞, we see that F̃ n(x) → F(x) for any x > 0, and hence μ̃n → π weakly. Consequently,
by Lemma 17 and Theorem 22, the laws of the solutions of (3.3) with initial distributions μ̃n converge weakly to
the law of the solution of (3.1) with initial distribution π . Since the approximating processes are stationary, the limit
process is stationary, too. Hence π is an invariant measure. �
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3.2.2. Long time stability in the time-inhomogenous case
Let (rt ) be a solution of (3.1) with an arbitrary but fixed initial distribution μ on R+. Our aim is to provide bounds on
P [rt > 0] and E[rt ] for any fixed t ≥ 0. To this end we fix a continuous function a : [0,∞) →R such that

α(0, x) ≤ a(x) for any x ∈ [0,∞), and lim sup
r→∞

(
r−1a(r)

)
< 0. (3.19)

For example, by Assumption 23, we can always choose a(x) = α(0, x). However, sometimes it can be more convenient
to choose the function a in a different way. Following [12,13] (see also [5–7,9]), we define constants R0,R1 ∈ (0,∞)

and a concave function f :R+ → R+ by

R0 = inf
{
R ≥ 0 : a(r) ≤ 0 for any r ≥ R

}
, (3.20)

R1 = inf
{
R ≥ R0 : R(R − R0)a(r)/r ≤ −4 for any r ≥ R

}
, (3.21)

f (r) =
∫ r

0
ϕ(s)g(s) ds, where ϕ(r) = exp

(
−1

2

∫ r

0
a(s)+ ds

)
and (3.22)

g(r) = 1 − 1

4

∫ r∧R1

0

�(s)

ϕ(s)
ds

/ ∫ R1

0

�(s)

ϕ(s)
ds − 1

4

∫ r∧R1

0

1

ϕ(s)
ds

/ ∫ R1

0

1

ϕ(s)
ds

with �(r) = ∫ r

0 ϕ(s) ds. The function f is concave, strictly increasing and continuous. Observe that (3.19) implies
that 0 < R0 < R1 < ∞. We define constants

c =
(

2
∫ R1

0

�(s)

ϕ(s)
ds

)−1

, ε = min

{(
2
∫ R1

0

1

ϕ(s)
ds

)−1

, c�(R1)

}
. (3.23)

Notice that 1/2 ≤ g ≤ 1, and thus �(r)/2 ≤ f (r) ≤ �(r). Hence for 0 < r < R1,

2f ′′(r) + f ′(r)a(r)+ ≤ −ε − c�(r) ≤ −(
ε + cf (r)

)
. (3.24)

Lemma 25. Suppose that Assumption 23 holds true. Let (rt ) be a solution of (3.1), and let T0 = inf{t ≥ 0 : rt = 0}.
Then for any t > 0,

E
[
f (rt ); t < T0

] ≤ e−ctE
[
f (r0)

]
, and

P [t < T0] ≤ 1

ε

c

ect − 1
E

[
f (r0)

]
.

Proof. Notice that the function f can be extended to a concave function on R by setting f (x) = x for x < 0. Since
the process (rt ) is a continuous semimartingale, we can apply the Itô–Tanaka formula to conclude that almost surely,

df (rt ) = f ′(rt )α(t, rt ) dt + 2f ′′(rt )I (rt > 0) dt + dMt, (3.25)

where Mt = 2
∫ t

0 f ′(rs)I (rs > 0) dWs is a martingale. By Assumption 23 and (3.19), α(t, rt ) ≤ α(0, rt ) ≤ a(rt ).
Therefore, for 0 < rt < R1, we can apply (3.24) to bound the right hand side of (3.25). On the other hand, for
rt ≥ R1, we have f ′′(rt ) = 0 and r−1

t α(rt ) < 0. Moreover, by definition of f and ϕ, f ′(rt ) = ϕ(R0)/2, and by
(3.21), R1(R1 − R0)α(rt )/rt

−1 ≤ −4. Therefore, we can conclude similarly to [13, Proof of Theorem 2.2] that for
rt > R1,

f ′(rt )α(t, rt ) ≤ ϕ(R0)a(rt )/2 ≤ −2
ϕ(R0)

R1 − R0

rt

R1
< −2

ϕ(R0)

R1 − R0

�(rt )

�(R1)

≤ −�(rt )

/ ∫ R1

R0

�(s)ϕ(s)−1 ds ≤ −2c�(rt )

≤ −c�(R1) − cf (rt ) ≤ −(
ε + cf (rt )

)
. (3.26)
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Here we have used that
∫ R1
R0

�(s)ϕ(s)−1 ds ≥ (R1 − R0)�(R1)ϕ(R0)
−1/2. Combining (3.25), (3.24) and (3.26), we

see that almost surely,

df (rt ) ≤ −(
ε + cf (rt )

)
dt + dMt for t < T0. (3.27)

Using Itô’s product rule and (3.27), we finally obtain

ectE
[
f (rt ); t < T0

] ≤ E
[
f (r0)

] + E
[
ec(t∧T0)f (rt∧T0) − f (r0)

]
≤ E

[
f (r0)

] − ε

c

(
E

[
ec(t∧T0)

] − 1
)
, and

P [t < T0] ≤ E

[
ec(t∧T0) − 1

ect − 1

]
≤ 1

ε

c

ect − 1
E

[
f (r0)

]
. �

For s ∈ [0,∞), we denote by πs the invariant probability measure for the time-homogeneous sticky diffusion with
drift α(s, ·) that is given by (3.16), i.e.,

πs(dx) ∝ 2

α(s,0)
δ0(dx) + exp

(
1

2

∫ x

0
α(s, y) dy

)
λ(0,∞)(dx). (3.28)

Theorem 26. Suppose that Assumption 23 holds true, and let (rt ) be a solution of (3.1) with initial distribution μ on
R+. Then for any t > 0,

E
[
f (rt )

] ≤ e−ctE
[
f (r0)

] +
∫

f dπ0, E[rt ] ≤ 2ϕ(R0)
−1E

[
f (rt )

]
, and

P [rt > 0] ≤ 1

ε

c

ect − 1
E

[
f (r0)

] + π0
[
(0,∞)

]
.

Proof. Based on the results of Theorem 22, we can construct a filtered probability space (�,A, (Ft ),P ) satisfying
the usual conditions and supporting random variables r,W, r̃, s̃, W̃ : � → W such that w.r.t. (�,A, (Ft ),P ),

• (r,W) and (r̃, s̃, W̃ ) are independent,
• (rt ,Wt ) is a weak solution of (3.1) with initial distribution μ, and
• (r̃t , s̃t , W̃t ) is a weak solution of (3.4) with β(t, x) = α(t, x), γ (t, x) = α(0, x), μ̃ = δ0, ν̃ = π0, and

P [r̃t ≤ s̃t for all t ≥ 0] = 1. (3.29)

Let T := inf{t ≥ 0 : rt = r̃t } be the first meeting time of (rt ) and (r̃t ). We define

r̄t := rt for t < T , and r̄t := r̃t for t ≥ T .

Then (r̄t ) solves the martingale problem corresponding to (3.1) with initial law μ, cf. e.g. [43, Section 3.1]. By
Lemma 17, this martingale problem has a unique solution. Hence, we can conclude that the laws of r̄ and r on W

coincide. Let T0 = inf{t ≥ 0 : rt = 0}. Observe that since t �→ rt and t �→ r̃t are continuous with r̃0 = 0 ≤ r0, we have
T ≤ T0. In particular, by Lemma 25, (3.29), and since f is increasing,

E
[
f (rt )

] = E
[
f (r̄t )

] = E
[
f (rt ); t < T

] + E
[
f (r̃t ); t ≥ T

]
≤ E

[
f (rt ); t < T0

] + E
[
f (s̃t )

] ≤ e−ctE
[
f (r0)

] +
∫

f dπ0.

Here we have used that by Lemma 24, the process (s̃t ) is stationary. By (3.22), (3.20), and since g ≥ 1/2, we have
f ′ ≥ ϕ(R0)/2. Hence the inequality r ≤ 2ϕ(R0)

−1f (r) holds for any r ≥ 0, and thus, we can conclude that

E[rt ] ≤ 2ϕ(R0)
−1E

[
f (rt )

]
.
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Finally, by the second part of Lemma 25, we see that

P [rt > 0] = P [r̄t > 0] = P [rt > 0, t < T ] + P [r̃t > 0, t ≥ T ]
≤ P [t < T0] + P [s̃t > 0] ≤ 1

ε

c

ect − 1
E

[
f (r0)

] + π0
[
(0,∞)

]
. �

By applying Theorem 26 on the time intervals [s, t] and [0, s], we obtain:

Corollary 27. Suppose that Assumption 23 holds true, and let (rt ) be a solution of (3.1). Then for any 0 ≤ s < t ,

E
[
f (rt )

] ≤ e−ctE
[
f (r0)

] + e−c(t−s)

∫
f dπ0 +

∫
f dπs, and

P [rt > 0] ≤ 1

ε

c

ec(t−s) − 1

(
e−csE

[
f (r0)

] +
∫

f dπ0

)
+ πs

[
(0,∞)

]
.

where f , c and ε are defined as above. Furthermore,

E
[
fs(rt )

] ≤ 2

ϕ(R0)
e−cs (t−s)

(
e−csE

[
f (r0)

] +
∫

f dπ0

)
+

∫
fs dπs, and

P [rt > 0] ≤ 2

ϕ(R0)εs

cs

ecs(t−s) − 1

(
e−csE

[
f (r0)

] +
∫

f dπ0

)
+ πs

[
(0,∞)

]
,

where fs , cs and εs are defined by (3.22), (3.23) and (3.16) with a replaced by α(s, ·).

Proof. Fix s ∈ [0,∞). Then the process (rs+t )t≥0 solves (3.1) with drift coefficient αs(t, x) = α(s + t, x) and initial
distribution P ◦ r−1

s . Since αs(t, x) ≤ α(s, x) ≤ a(x) for any t, x ≥ 0, we can apply Theorem 26 either with a,f, c

and ε as above, or with a,f, c and ε replaced by α(s, ·), fs, cs and εs . For t > s we obtain

E
[
f (rt )

] ≤ e−c(t−s)E
[
f (rs)

] +
∫

f dπs,

P [rt > 0] ≤ 1

ε

c

ec(t−s) − 1
E

[
f (rs)

] + πs

[
(0,∞)

]
,

E
[
fs(rt )

] ≤ e−cs(t−s)E
[
fs(rs)

] +
∫

fs dπs,

P [rt > 0] ≤ 1

εs

cs

ecs(t−s) − 1
E

[
fs(rs)

] + πs

[
(0,∞)

]
.

Noting that fs(rs) ≤ rs , the assertion follows by applying Theorem 26 once more. �

4. Coupling construction and proofs of the main results

In this section, we prove our main theorems. First of all, we construct the sticky coupling (Xt , Yt ) of solutions to (1.1)
and (1.2) respectively, advertised in Theorem 3. The coupling is obtained as a weak limit of Markovian couplings
(Xδ

t , Y
δ
t ), δ > 0. The couplings (Xδ

t , Y
δ
t ) are reflection couplings for |Xδ

t − Y δ
t | ≥ δ and synchronuous couplings for

|Xδ
t − Y δ

t | = 0. Inbetween there is an interpolation between the two types of couplings. We argue that the family of
couplings is tight and thus there is a subsequence converging to a coupling (Xt , Yt )t≥0. It is then argued that this
limiting coupling is sticky and shares the properties stated in Theorem 3.

We now define the couplings (Xδ
t , Y

δ
t ) rigorously. The technical realization follows [13]. We introduce Lipschitz

functions rcδ, scδ : R+ → [0,1] such that rcδ(0) = 0, rcδ(r) > 0 for 0 < r < δ, rcδ(r) = 1 for r ≥ δ, and

rcδ(r)2 + scδ(r)2 = 1 for any r ≥ 0. (4.1)
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Let (B1
t ) and (B2

t ) be independent d-dimensional Brownian motions, and let u ∈ Rd be some arbitrary unit vector.
We define the coupling (Xδ

t , Y
δ
t ) for (1.1) and (1.2) as a diffusion process in R

2d satisfying the stochastic differential
equation

dXδ
t = b

(
t,Xδ

t

)
dt + rcδ

(
r̃ δ
t

)
dB1

t + scδ
(
r̃ δ
t

)
dB2

t , (4.2)

dY δ
t = b̃

(
t, Y δ

t

)
dt + rcδ

(
r̃ δ
t

)(
IdRd −2eδ

t

〈
eδ
t , ·

〉)
dB1

t + scδ
(
r̃ δ
t

)
dB2

t , (4.3)

with initial condition (Xδ
0, Y

δ
0 ) = (x, y). Here Zδ

t = Xδ
t − Y δ

t , r̃δ
t = |Zδ

t |, eδ
t = Zδ

t /r̃
δ
t if r̃ δ

t 
= 0, and eδ
t = u if r̃ δ

t = 0.
Since rcδ(0) = 0, the arbitrary value u is not relevant for the dynamics. The process (Xδ

t , Y
δ
t ) can be realized as

a standard diffusion process in R
2d with locally Lipschitz coefficients. Moreover, Assumptions 1 and 2 imply the

non-explosiveness of the process. Using Lévy’s characterization of Brownian motion and (4.1), one can check that
(Xδ

t , Y
δ
t ) is indeed a coupling of solutions to Equations (1.1) and (1.2). Notice that the process Wδ

t = ∫ t

0 〈eδ
s , dB1

s 〉 is a
one-dimensional Brownian motion.

Lemma 28. Suppose that Assumptions 1 and 2 are satisfied. Then, almost surely,

dr̃δ
t = 〈

eδ
t , b

(
t,Xδ

t

) − b̃
(
t, Y δ

t

)〉
dt + 2 rcδ

(
r̃ δ
t

)
dWδ

t (4.4)

≤ (
M + κ

(
r̃ δ
t

)
r̃ δ
t

)
dt + 2 rcδ

(
r̃ δ
t

)
dWδ

t . (4.5)

Proof. By (4.2) and (4.3),

d
(
r̃ δ
t

)2 = 2
〈
Zδ

t , b
(
t,Xδ

t

) − b̃
(
t, Y δ

t

)〉
dt + 4 rcδ

(
r̃ δ
t

)2
dt + 4 rcδ

(
r̃ δ
t

)〈
Zδ

t , e
δ
t

〉
dWδ

t .

For ε > 0, we define a C2 approximation of the square root by

Sε(r) = −(1/8)ε−3/2r2 + (3/4)ε−1/2r + (3/8)ε1/2 for r < ε,

Sε(r) = √
r for r ≥ ε. By Itô’s formula,

dSε

((
r̃ δ
t

)2) = 2S′
ε

((
r̃ δ
t

)2)〈
Zδ

t , b
(
t,Xδ

t

) − b̃
(
t, Y δ

t

)〉
dt + 4S′

ε

((
r̃ δ
t

)2) rcδ
(
r̃ δ
t

)2
dt

+ 8S′′
ε

((
r̃ δ
t

)2) rcδ
(
r̃ δ
t

)2(
r̃ δ
t

)2
dt + 4S′

ε

((
r̃ δ
t

)2) rcδ
(
r̃ δ
t

)
r̃ δ
t dWδ

t .

We can now pass to the limit ε ↓ 0 to obtain (4.4). Notice that sup0≤r≤ε |S′
ε(r)| � ε−1/2, sup0≤r≤ε |S′′

ε (r)| � ε−3/2

and that rcδ is Lipschitz with rcδ(0) = 0. Hence, one can use Lebesgue’s dominated convergence theorem for the
convergence of the first three integrals. Moreover, the stochastic integral converges almost surely, along a subsequence,
to

∫ t

0 2 rcδ(r̃δ
s ) dWδ

s . Finally, by Assumptions 1 and 2,

〈
Zδ

t , b
(
t,Xδ

t

) − b̃
(
t, Y δ

t

)〉 ≤ 〈
Zδ

t , b
(
t,Xδ

t

) − b
(
t, Y δ

t

) + b
(
t, Y δ

t

) − b̃
(
t, Y δ

t

)〉
≤ Mr̃δ

t + κ
(
r̃ δ
t

)(
r̃ δ
t

)2
. �

In order to control the distance of Xδ
t and Y δ

t , we introduce a one-dimensional process (rδ
t ) that is defined as the

unique and strong solution to the equation

drδ
t = (

M + κ
(
rδ
t

) · rδ
t

)
dt + 2 rcδ

(
rδ
t

)
dWδ

t , rδ
0 = r̃ δ

0 , (4.6)

with (r̃δ
t ) and (Wδ

t ) as above.

Lemma 29. We have |Xδ
t − Y δ

t | = r̃ δ
t ≤ rδ

t , almost surely for all t ≥ 0.
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Proof. The processes (r̃δ
t ) and (rδ

t ) are driven by the same noise, start at the same position, and, by (4.5), the drift of
(r̃δ

t ) is smaller or equal to the one of (rδ
t ). Therefore, the assertion follows by Ikeda-Watanabe’s comparison theorem

for one-dimensional diffusions, cf. [29, Theorem 1.1]. �

Proof of Theorem 3. We consider the diffusion Uδ
t := (Xδ

t , Y
δ
t , rδ

t ) on R
2d+1. Let Pδ denote the law of Uδ on

the space C(R+,R2d+1). We define X,Y : C(R+,R2d+1) → C(R+,Rd) and r : C(R+,R2d+1) → C(R+,R) as the
canonical projections onto the first d , the second d , and the last coordinate.

Notice that in each of the equations (4.2), (4.3) and (4.6), the drift coefficients do not depend on δ and the diffusion
coefficients are uniformly bounded. Moreover, Assumptions 1 and 2 imply that, similarly as in the proof of Theorem
22, the diffusions (Uδ

t ) satisfy uniformly a Lyapunov non-explosion criterion, and the drift coefficients are uniformly
bounded on compact sets. Therefore, the family (Pδ) is tight, cf. [25,26]. In particular, there is a sequence δn ↓ 0
such that (Pδn) converges towards a measure P on C(R+,R2d+1). For each δ > 0, (Xδ

t ) and (Y δ
t ) are solutions

to (1.1) and (1.2) respectively. Since those solutions are unique in law, we know that Pδ ◦ (Xδ)−1 = P ◦ X−1 and
P

δ ◦ (Y δ)−1 = P ◦ Y−1 for any δ > 0. Hence, P ◦ (X,Y )−1 is a coupling of (1.1) and (1.2). Moreover, Lemma 17
and the proof of Theorem 22 reveal that, after extending the underlying probability space, there is a Brownian motion
(W̃t ) such that (rt , W̃t ) is a solution of (2.1). The statement from Lemma 29 carries over to the limiting processes,
since such inequalities are preserved under weak convergence, and thus (2.2) holds. The inequality (2.4) is implied by
Theorem 26 setting α(t, x) = a(x) = M + κ(x) · x. �

Proof of Lemma 6. By (2.3), π[(0,∞)] = α
1+α

with

α := M

2

∫ ∞

0
exp

(
1

2

∫ x

0

(
M + κ(y)y

)
dy

)
dx.

In order to provide upper bounds on α, we decompose α = M(a + b)/2 with

a =
∫ ∞

R
exp

(
1

2

∫ x

0

(
M + κ(y)y

)
dy

)
dx and

b =
∫ R

0
exp

(
1

2

∫ x

0

(
M + κ(y)y

)
dy

)
dx.

By Condition (2.7), we have

1

2

∫ x

0

(
M + κ(y)y

)
dy = 1

2

∫ R

0
(M + Ly)dy + 1

2

∫ x

R
(M − Ky)dy

= Mx/2 − Kx2/4 + (L + K)R2/4

= −K(x − M/K)2/4 + M2/(4K) + (L + K)R2/4

for x ≥R and

1

2

∫ x

0

(
M + κ(y)y

)
dy = 1

2

∫ x

0
(M + Ly)dy = Mx/2 + Lx2/4

for x ≤R. We obtain

a = exp
(
M2/(4K) + (L + K)R2/4

)∫ ∞

R
exp

(−K(x − M/K)2/4
)
dx

=
√

2√
K

exp
(
M2/(4K) + (L + K)R2/4

)∫ ∞

(R−M/K)
√

K/2
exp

(−z2/2
)
dz and

b =
∫ R

0
exp

(
Mx/2 + Lx2/4

)
dx
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and give upper bounds for these quantities:

b ≤ R exp
(
MR/2 + LR2/4

)
(4.7)

b = exp
(
MR/2 + LR2/4

)∫ R

0
exp

(
M(R− x)/2 − L

(
R2 − x2)/4

)
dx

= exp
(
MR/2 + LR2/4

)∫ R

0
exp

(−My/2 − Ly(2R− y)/4
)
dy

≤ exp
(
MR/2 + LR2/4

)∫ R

0
exp(−My/2 − LRy/4) dy

≤ 1

M/2 + LR/4
exp

(
MR/2 + LR2/4

)
. (4.8)

Combining (4.7) and (4.8), we conclude that

b ≤ 4R
max(4,2MR+ LR2)

exp
(
MR/2 + LR2/4

)
. (4.9)

We use the bound
∫ ∞

0 e−z2/2 dz ≤ √
2π to conclude that

a ≤ 2
√

π/K exp
(
M2/(4K) + (L + K)R2/4

)
= 2

√
π/K exp

(
K(R − M/K)2/4

)
exp

(
MR/2 + LR2/4

)
≤ 2

√
πe

K
exp

(
MR/2 + LR2/4

)
for K(R − M/K)2 ≤ 2. (4.10)

On the other hand,
∫ ∞
y

e−z2/2 dz ≤ e−y2/2/y for any y > 0 and thus

(4.11)

a ≤ 2

K

1

R− M/K
exp

((−K(R− M/K)2 + M2/K + (L + K)R2)/4
)

= 2√
K

1√
K(R − M/K)2

exp
(
MR/2 + LR2/4

)

≤
√

2√
K

exp
(
MR/2 + LR2/4

)
provided R ≥ M/K and K(R − M/K)2 ≥ 2. Combining (4.9), (4.10) and (4.11), we obtain in the case R ≥ M/K

the bound

α = M(a + b)/2

≤ (
π1/2e1/2K−1/2 + 2Rmax

(
4,LR2 + 2MR

)−1)
M exp

(
MR/2 + LR2/4

)
.

In the case R≤ M/K , (4.9) implies

b ≤ 4R
max(4,2MR+ LR2)

exp
(
M2/(4K) + (L + K)R2/4

)
. (4.12)

Combining (4.12) and (4.10), we can conclude for R≤ M/K the bound

α ≤
(√

π

K
+ 2R

max(4,2MR+ LR2)

)
M exp

(
M2

4K
+ L + K

4
R2

)
. �
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Proof of Theorem 11. The proof is similar to the proof of Theorem 3. We fix x0, y0 ∈ Rd and corresponding drifts
b(t, x) = bx0(t, x) and b̃(t, x) = by0(t, x) as in (2.12) and (2.13) respectively. Moreover, we choose τ0 ∈ (0,∞) such
that (2.16) holds for |τ | ≤ τ0. Since ϑ is Lipschitz, we can conclude by (2.16) that for any x ∈R

d ,

∣∣b(t, x) − b̃(t, x)
∣∣ = |τ | ·

∣∣∣∣
∫

ϑ(x, y)μ
x0
t (dy) −

∫
ϑ(x, y)μ

y0
t (dy)

∣∣∣∣
≤ |τ |LW1(μx0

t ,μ
y0
t

) ≤ LAe−λt |x0 − y0|,

where L is the corresponding Lipschitz constant. We can now repeat the procedure leading to the proof of Theorem 3,
replacing M by |τ |LAe−λt |x0 − y0|. In particular, we can conclude that there is a coupling (Xt , Yt ) of (2.14) and
(2.15) and a solution (rt ,Wt ) of (3.1) with r0 = |x0 − y0| and drift

α(t, x) = |τ |LAe−λt |x0 − y0| + κ(x)x (4.13)

such that |Xt − Yt | ≤ rt . Notice that Assumption 10 implies Assumption 23 for the drift α. We now want to apply
Corollary 27. First, we fix the function a in (3.19) as a(·) := α(0, ·). Applying Corollary 27 now yields that for any
0 ≤ s < t ,

∥∥μ
x0
t − μ

y0
t

∥∥
TV ≤ 1

ε

c

ec(t−s) − 1

(
e−csf

(|x0 − y0|
) +

∫
f dπ0

)
+ πs

[
(0,∞)

]
.

By (3.28), Assumption 23, and since f (r) ≤ r , we have f (|x0 − y0|) ≤ |x0 − y0| and
∫

f dπ0 < ∞. Moreover, by
(3.28), (4.13) and Assumption 23,

πs

[
(0,∞)

] ≤ 1

2
α(s,0)

∫ ∞

0
exp

(
1

2

∫ x

0
α(s, y) dy

)
dx ≤ Ce−λs,

where C := 1
2 |τ |LA

∫ ∞
0 exp( 1

2

∫ x

0 α(s, y) dy)dx is a finite constant. Thus, there is a constant A ∈ (0,∞) such that

∥∥μ
x0
t − μ

y0
t

∥∥
TV ≤ A

ec(t−s) − 1
+ Ce−λs = e−c(t−s) A

1 − e−c(t−s)
+ Ce−λs

for any 0 ≤ s < t . We can now set s = t/2 and use the boundedness of ‖ · ‖TV to see that there is a constant B ∈ (0,∞)

such that

∥∥μ
x0
t − μ

y0
t

∥∥
TV ≤ B exp

(−min(c, λ)t/2
)

for all t ≥ 0.

It should be stressed, that the constants B and c depend on the initial conditions. �

Appendix: Computations for Example 8

In this appendix we prove lower bounds on the total variation distance between the probability measures ν(dx) =
Z−1

f f (x) dx and μ(dx) = Z−1
g g(x) dx on R

1 that have been considered in Example 8. Noticing that by symmetry of
f ,

Zg =
∫ ∞

−∞
g(x)dx =

∫ ∞

−∞
emxf (x) dx =

∫ ∞

0

(
emx + e−mx

)
f (x)dx

≥ 2
∫ ∞

0
f (x)dx =

∫ ∞

−∞
f (x)dx = Zf , we obtain
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‖μ − ν‖TV =
∫
R

(1 − dμ/dν)+dν =
∫
R

(
1 − emxZf /Zg

)+
ν(dx)

≥
∫ 0

−∞
(
1 − emx

)
ν(dx) =

∫ ∞

0

(
1 − e−mx

)
ν(dx)

= ν
[
(0,R)

] ∫ R

0

(
1 − e−mx

)
dx

/
R

+ ν
[
(R,∞)

] ∫ ∞

R

(
1 − e−mx

)
e−k(x−R)2/2 dx

/ ∫ ∞

R

e−k(x−R)2/2 dx

= ν
[
(0,R)

](
mR − 1 + e−mR

)
/(mR)

+ ν
[
(R,∞)

] ∫ ∞

0

(
1 − e−m(R+t)

)
e−kt2/2 dt

/ ∫ ∞

0
e−kt2/2 dt. (A.1)

Using that (e−x − 1 + x)/x ≤ 1 − e−x for any x > 0, we obtain the lower bound

‖μ − ν‖TV ≥ (
e−mR − 1 + mR

)
/(mR).

We now derive an improved bound for small k. Suppose that R
√

k ≤ 1. Then

ν
[
(R,∞)

]
/ν

[
(0,R)

] =
∫ ∞

0
e−kt2/2 dt

/
R = √

π/(2k)R−1,

implies ν[(R,∞)] = 1
2 (1 + R

√
2k/π)−1 ≥ 1

4 . Hence by (A.1),

‖μ − ν‖TV ≥ 1

4

∫ ∞

0

(
1 − e−m(R+t)

)
e−kt2/2 dt

/ ∫ ∞

0
e−kt2/2 dt

= 1

4

(
1 − e−mR+m2/(2k)

(
1 − √

2/π

∫ m/
√

k

0
e−s2/2 ds

))

≥ 1

4

(
1 − e−mR+m2/(2k) + √

2/(πk)me−mR
)
.
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