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Abstract. We introduce a general framework allowing to apply the theory of regularity structures to discretisations of stochastic
PDEs. The approach pursued in this article is that we do not focus on any one specific discretisation procedure. Instead, we assume
that we are given a scale ε > 0 and a “black box” describing the behaviour of our discretised objects at scales below ε.

Résumé. Nous introduisons un cadre général permettant d’appliquer la théorie des structures de régularité à des discrétisations
d’EDP stochastiques. L’approche suivie dans cet article est que, au lieu de nous focaliser sur un type d’approximation spécifique,
nous supposons donnée une échelle ε > 0 et une “boîte noire” décrivant le comportement des objets discrétisés aux échelles plus
petites.
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1. Introduction

The theory of regularity structures is a framework developed by the second author in [15] which allows to renormalise
stochastic PDEs of the form

Lu = F(u,∇u, ξ), (1.1)

that are ill-posed in the classical sense. Here, L is typically a parabolic differential operator, ξ is a very irregular
random input and F is some local non-linearity. The naïve approach to study well-posedness of (1.1) would be to
consider a sequence of smooth approximations

Luε = F(uε,∇uε, ξε), (1.2)

and simply declare the limit of this sequence to be the solution to (1.1). However, in many cases it turns out that the
sequence uε either does not possess a limit or the limit is trivial. A way to circumvent this is to renormalise, which
can be interpreted as a kind of “recentering” of the equation, see [2].

This amounts to allowing some of the constants appearing in the definition of F appearing in the right hand side
of (1.2) to be ε-dependent and more specifically to diverge as ε tends to zero. The theory of regularity structures is
very successful when applied to approximations uε that are functions defined on Rd , it however presently does not in
general apply to discrete approximations of stochastic PDEs or to equations where the operator L itself is perturbed
by a higher-order term, in such a way that its scaling properties are different at small scales (think for instance of L
given by ∂t − � and Lε = ∂t − � + ε2�2). In the present article, we develop a general framework that is able to deal
with these cases. The guiding principle is a separation of scales, i.e., above a certain scale ε we show that the theory
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of regularity structures still applies, whereas scales below ε are treated as a black box. As a result, our framework
is flexible and does not rely on any specific discretisation procedure. More precisely the results in the article show
that, given a stochastic PDE such that the theory of regularity structures can be applied to renormalise it, our present
framework can be used to treat a large class of natural discretisations for it.

1.1. Discussion

Let us first comment on our motivation for this work as well as its relation to some previous work. One of the guiding
questions in the study of particle systems is the question of universality, i.e., what are the characterising features for
a class of particle systems that converge to the same limit under appropriate rescaling and how can one prove this
convergence? The bulk of the literature is concerned with scaling limits of a fixed system which necessarily implies
that the resulting limit is itself a scale-invariant object. The present article however is motivated by the situation where
one considers a family of systems indexed by some parameter and one simultaneously tunes this parameter as one
rescales the system. In this way, one typically obtains scaling limits that are not scale invariant themselves. One of the
insights of the theory presented in [15] is that they are however locally described by linear combinations of objects
that are scale-invariant, but with different scaling exponents.

So far, the state of the art for answering such questions (in the second case where the limiting object can, at least
formally, be described by a singular stochastic PDE) is to heavily rely on special features of the model(s) under
consideration. In the type of situation of interest to us, some standard techniques consist of

• extending the discrete equation to an equation defined on Rd , see for instance the articles of Gubinelli and Perkowski
[14], Mourrat and Weber [22], Shen and Weber [23], Zhu and Zhu [24,25];

• linearising the problem via a Hopf-Cole transformation, see for example the articles of Bertini and Giacomin [1],
Corwin and Shen [4], Corwin, Shen and Tsai [5], Corwin and Tsai [6], Dembo and Tsai [7], Labbé [21] in the
setting of the KPZ equation;

• transforming the equation into a martingale problem, see for instance the series of articles by Gonçalvez and Jara
[11], Gubinelli and Jara [12], Gubinelli and Perkowski [13], in which the concept of energy solution is developed
to study the stochastic Burgers / KPZ equation.

When applied in the correct context these techniques can be very powerful. The drawback however is that they are
often quite sensitive to small perturbations of the model. Another problem of analytical techniques like regularity
structures or paraproducts is that while they provide a rather clean and general-purpose toolbox in the continuum,
their extensions to the discrete setting require purpose-built modifications that are much less reusable. It is therefore
desirable to have a robust theory at hand which is insensitive to the details of the underlying discrete setting, and it is
the goal of the present article to make a first attempt at developing such a theory.

Another motivation to introduce the framework developed here stems from the fact that a common way to derive
properties of a stochastic PDE is to approximate it by discrete systems for which the desired property holds and then
show that it remains stable under passage to the limit. This methodology was for instance successfully applied by
Hairer and Matetski [17] to prove that the �4

3-measure built in [9,10] is invariant for the �4
3-equation. In the specific

case where the solution to the stochastic PDE at hand is a function of time, [17] developed a framework adapting the
theory of regularity structures to allow for certain spatial discretisations.

1.2. Strategy

This article aims to justify the philosophy that small scales actually do not matter much. The way we formulate
this here is that we assume some reasonable (albeit technical) assumptions on scales smaller than ε, that are almost
independent of the specific discretisation one deals with, and we show that this implies desirable estimates on all
scales up to order one. The precise strategy to do so then results in a series of statements that are described further
below.

The main idea to accommodate a large class of discretisations of stochastic PDEs is to consider the behaviour
below scale ε as encoded in a “black box”. In order to describe this, our main ingredient is a sequence of linear
spaces Xε that can be viewed as subspaces of D′(Rd), the space of distributions, and that possess a natural family
of (extended) seminorms. We then work with stochastic PDEs of the type (1.2) such that uε ∈ Xε . Examples for Xε
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include D′(Rd) (thus recovering the original setting in [15]), but also the space of functions defined on a discrete grid
of mesh size ε, or simply some space of smooth functions. To cast this into the framework of regularity structures we
first work with an abstract version of uε , i.e., we write uε as a generalised Taylor expansion. Here, the monomials
may represent the classical Taylor monomials or they may represent abstract expressions that are functions of ξ . The
control of these monomials typically amount to the control of explicit stochastic objects and heavily depend on the
choice of the equation at hand.

The “Taylor coefficients” can be thought of as the “derivatives” of an abstract version of a Cγ -function and they
are given by the solution of an abstract fixed point problem. We denote the class of abstract functions just described
by Dγ

ε . The subindex ε indicates that the way regularity is measured above and below scale ε may differ. Indeed,
above scale ε regularity is measured as in the continuous setting [15], whereas below scale ε, besides some natural
constraints, the way to measure regularity is not further determined. The idea of introducing Dγ -spaces that depend
on a parameter ε is not new and already appeared in the works [18,20]. In a sense the current article generalises some
of the ideas developed there.

Note that the solution to (1.2) is a random space-time function / distribution, whereas the approach outlined above
gives rise to an abstract “modelled distribution” f ∈Dγ

ε . To link the abstract object with a concrete object we construct
a “reconstruction map” Rε . Unlike in [15], we do not think of Rεf as a distribution, but rather as an element of Xε ,
which could for example represent a space of functions defined on a discrete grid at scale ε. The way to construct Rε is
to postulate the existence of a map Rε satisfying certain estimates on scales below ε and to then show that analogous
estimates automatically hold on all larger scales. Note that there may be several candidates for Rε all satisfying the
same quantitative estimates on small scales, so that in our context the reconstruction map is in general not uniquely
defined. To proceed, we further need to define operations on Dγ

ε in order to actually construct abstract solutions to
(1.2). In particular we define an abstract notion of convolution Kε

γ against the Green function Kε of L in (1.2) (which
is an operator mapping into Xε!) and we show that Kε

γ satisfies a certain Schauder estimate. It turns out that unlike in
the continuous setting [15] it is not necessarily true that the convolution operator Kε

γ can be defined in a natural way
so that it intertwines with Rε in the sense that

RεKε
γ = KεRε. (1.3)

We however argue that in many cases one can enforce (1.3) by tweaking the definition of Kε
γ . So far the strategy

outlined above appears to only allow us to describe solutions to (1.2), but, as shown in [15] and [2], the encoding of
renormalisation procedures in the theory of regularity structures is of purely algebraic nature and does not depend on
any specific discretisation procedure, see also Remark 1.1 below.

We finish with some concluding remarks that comment on how one does apply the theory developed in this article.

Remark 1.1. To apply the theory developed in this article to a concrete problem, an important ingredient is the
construction of a suitable regularity structure and a suitable renormalised model. In the usual (continuous) case, a
framework was built in [15, Section 8], and further refined in [2,3] that automatises this construction. To perform an
analogous construction in the present context, one then needs an algebra structure on Xε , as well as a representation
of the Taylor polynomials, which is often the case. The general analytical results of [3] however fall out the scope of
this article and would have to be adapted.

Remark 1.2. It was shown in [15, Thm. 10.7] (see also [3,19]) that in order to obtain convergence of a sequence
of models to a limiting model it is enough to obtain suitable bounds on sufficiently high moments for its terms
of negative homogeneity. An important ingredient of the proof is the recursive definition of the regularity structure
and the model, provided by the algebraic framework alluded to above. This is the same in the current case. Another
ingredient is the identity �zτ =Rfτ,z, where fτ,z(y) = 
yzτ − τ for any � ∈ A and τ ∈ T� with positive homogeneity
and fτ,z(y) = 
yzτ in case τ has negative homogeneity. Provided that the norm ||| · |||γ ;K;ε of Definition 2.1 below is
chosen such that |||z �→ 
ε

zz′τ |||�;K;ε = 0 for any � ∈ A, any τ ∈ T� and any z′ ∈Rd , the aforementioned identity follows
from Assumption 3.1. A further ingredient is the characterisation of the spaces of distributions under consideration by
a wavelet basis. On scales larger than ε a similar characterisation holds in the current case, see Definition 2.7 below.
On small scales, the situation depends on the choice of seminorms on Xε introduced in Definition 2.1, but, in many
cases of interest, we expect to have a choice of these seminorms which makes the corresponding bounds simple to
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verify. Finally, the last ingredient is the extension theorem [15, Thm. 5.14]. The analogous statement in the present
setup is the content of Theorem 4.18. Thus, under the appropriate assumptions [15, Thm. 10.7] also holds in the
framework constructed in this article.

1.3. Structure of the article

In Section 2 we develop the framework we will work with, in particular we introduce the sequence of spaces Xε ,
we define the notion of discrete models and the Dγ

ε -spaces. In Sections 3–6 we explain the main operations on these
spaces.

1.4. Notation

Throughout this work s= (s1, . . . , sd) ∈ Nd
≥1 denotes a scaling of Rd and we associate to it the metric ds on Rd given

by

ds(y, z) = sup
i∈{1,...,d}

|yi − zi |1/si . (1.4)

We sometimes use the notation ‖y−z‖s in place of ds(y, z). Moreover, we let |s| = s1 +· · ·+sd and for a multiindex k

we use the notation |k|s = ∑
i siki . Given a set B ⊂Rd and z ∈ Rd we denote the distance of z to B with respect to the

metric ds by ds(z,B). Given δ > 0 and ϕ : Rd → R we set Sδ
s(z1, . . . , zd) = (δ−s1z1, . . . , δ

−sd zd) and (Sδ
s,zϕ)(y) =

δ−|s|ϕ(Sδ
s(y − z)). We also use occasionally the notation ϕδ

z . Moreover, we also write ϕn
z in place of ϕ2−n

z . For a

compact subset K of Rd (also written as K � Rd ) we denote its 1-fattening and 2-fattening by K̄ and ¯̄
K, respectively.

We further denote the ds-ball of radius δ around z ∈Rd by Bs(z, δ).
We occasionally use the notation [η] to denote the support of the function η. In this article we use various notions

of norms, seminorms and metrics on various spaces. To improve readability we inserted a norm index in the appendix
listing all these distances.

Given a distribution ξ and a test function ϕ, we use interchangeably the notations ξ(ϕ), 〈ξ,ϕ〉, and
∫

ϕ(x)ξ(dx)

for the corresponding pairing.

2. A framework for discretisations

Convention: From now on we assume that we are given a scaling s of Rd and a regularity structure T = (A,T ,G)

containing the canonical s-scaled polynomials in d indeterminates. We also fix a value r > |minA| and we denote
by � the set of all functions ϕ ∈ Cr with ‖ϕ‖Cr ≤ 1 such that suppϕ ⊂ Bs(0,1) and we simply say that “ϕ is a test
function” whenever ϕ ∈ �. Given an element τ ∈ T = ⊕

α∈A Tα , we write ‖τ‖α for the norm of its component in Tα

and ‖τ‖ for its norm in T . Moreover Qα denotes the projection onto Tα .
We build a general framework for allowing for discretisations of models and their convergence to continuous

limiting models. Our construction relies crucially on the following notion.

Definition 2.1. A discretisation for the regularity structure T and scaling s on Rd consists of the following data.

1. A collection of linear spaces Xε with ε ∈ (0,1] endowed with inclusion maps ιε : Xε ↪→ D′(Rd), so that elements
of Xε can be interpreted as distributions.

2. Each Xε admits a family of extended seminorms ‖ · ‖α;Kε;z;ε (i.e., we do not exclude the possibility that
‖f ‖α;Kε;z;ε = ∞ for some f ∈ Xε) with α ∈ R, the Kε are compact subsets of Rd of diameter at most 2ε and
z ∈ Rd . We moreover assume that these seminorms are local in the sense that if f,g ∈Xε and (ιεf )(ϕ) = (ιεg)(ϕ)

for every ϕ ∈ Cr supported in Kε , then ‖f − g‖α;Kε;z;ε = 0.
3. Uniformly over all f ∈Xε , z ∈ Rd , α ∈ R, and ϕ ∈ �, one has the bound∣∣(ιεf )

(
ϕε

z

)∣∣ � εα‖f ‖α;[ϕε
z ];z;ε. (2.1)



Discretisation of regularity structures 2213

4. For any function 
 : Rd ×Rd → G, there exists a family of extended seminorms ||| · |||γ ;K;ε on the space of functions
f : Rd → T<γ with γ ∈ R, K � Rd and ε ∈ (0,1]. For the same set of indices, and given two functions 
1,
2 :
Rd ×Rd → G, there is a family of seminorms |||·; ·|||γ ;K;ε on the space of pairs (f, g), with f,g :Rd → T<γ . Both
families of seminorms are assumed to depend only on the values of f (and g respectively) in a neighbourhood of
size cε around K, for c ≥ 0 a fixed constant.

Remark 2.2. The above way of introducing the seminorms in the fourth item may be a bit misleading. As we will see
in the examples below, they indeed depend on the functions 
,
1, and 
2 introduced above, so that the correct way
of denoting them would be ||| · |||γ ;
;K;ε and |||·; ·|||γ ;
1,
2,K;ε . However, for the sake of readability and since they will
always be clear from context, we omit these additional indices.

Remark 2.3. Assume that in the fourth item in the above definition one has 
1 = 
2. In practice one then often has
the relation |||f ;g|||γ ;K;ε = |||f − g|||γ ;K;ε . See for instance the four examples introduced further below, where this is
indeed the case.

Remark 2.4. In practice we are not interested in all possible functions 
1 and 
2 as above, but in specific sequences
of maps (
ε)ε∈(0,1] that depend on the underlying model, see Definition 2.7 for an explanation of that terminology.

To illustrate the setup described above, we mention the following four examples to which we will refer frequently
in this work. We leave it as an exercise to verify that these are indeed examples of discretisations in the above sense.
In all examples below Kε denotes a compact subset of Rd with diameter bounded by 2ε.

1. The purely discrete case. Let �d
ε ⊂ Rd be a locally finite set such that, for some constants c,C ∈ (0,1], it holds

that for every z ∈ �d
ε , infz �=z′∈�d

ε
‖z − z′‖s ∈ [cε,Cε]. We then set Xε =R�d

ε with

(ιεf )(ϕ) = ε|s| ∑
z∈�d

ε

f (z)ϕ(z), ‖f ‖α;Kε;z;ε = ε−α sup
y∈Kε∩�d

ε

∣∣f (y)
∣∣. (2.2)

Moreover, we set

|||f |||γ ;K;ε = sup
y,z∈K∩�d

ε :‖y−z‖s<ε

sup
β<γ

εβ−γ
∥∥f (z) − 
ε

zyf (y)
∥∥

β
, (2.3)

and

|||f ; f̄ |||γ ;K;ε = sup
y,z∈K∩�d

ε :‖y−z‖s<ε

sup
β<γ

εβ−γ
∥∥f (z) − 
ε

zyf (y) − f̄ (z) + 
̄ε
zy f̄ (y)

∥∥
β
, (2.4)

for all γ ∈R, ε ∈ (0,1], K� Rd and f, f̄ :Rd → T<γ .
2. The semidiscrete case. Let �d−1

ε ⊂ Rd−1 be as above. We let Xε = L∞(R× �d−1
ε ) and we write s = (s1, s̄). The

inclusion map ιε and the family of (extended) seminorms ‖ · ‖α;Kε;z;ε are then defined by

(ιεf )(ϕ) = ε|s̄| ∑
x∈�d−1

ε

∫
R

f (t, x)ϕ(t, x) dt,

‖f ‖α;Kε;z;ε = ε−α sup
y∈Kε∩R×�d−1

ε

∣∣f (y)
∣∣. (2.5)

Furthermore,

|||f |||γ ;K;ε = sup
y,z∈K∩R×�d−1

ε‖y−z‖s<ε

sup
β<γ

εβ−γ
∥∥f (z) − 
ε

zyf (y)
∥∥

β
, (2.6)
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and

|||f ; f̄ |||γ ;K;ε = sup
y,z∈K∩R×�d−1

ε‖y−z‖s<ε

sup
β<γ

εβ−γ
∥∥f (z) − 
ε

zyf (y) − f̄ (z) + 
̄ε
zy f̄ (y)

∥∥
β
, (2.7)

for all γ ∈R, ε ∈ (0,1], K �R and f, f̄ : Rd → T<γ .
3. The continuous case. In this case, we set Xε = C(Rd ,R) with ιε given by the canonical identification between

continuous functions and distributions. We set

‖f ‖α;Kε;z;ε = ε−α sup
y∈Kε

∣∣f (y)
∣∣, (2.8)

as well as

|||f |||γ ;K;ε = sup
y,z∈K,‖y−z‖s<ε

sup
β<γ

εβ−γ
∥∥f (z) − 
ε

zyf (y)
∥∥

β
,

and

|||f ; f̄ |||γ ;K;ε = sup
y,z∈K,‖y−z‖s<ε

sup
β<γ

εβ−γ
∥∥f (z) − 
ε

zyf (y) − f̄ (z) + 
̄ε
zy f̄ (y)

∥∥
β
, (2.9)

for γ ∈R,K� Rd , ε ∈ (0,1] and f, f̄ : Rd → T<γ .
4. The transparent case. We let Xε = D′(Rd) with ιε given by the identity. Let λ ∈ (0, ε] and z ∈ Kε , we write �λ

ε,z

for the set of all ϕ ∈ � such that [Sλ
s,zϕ] ⊂ Kε . We endow Xε with

‖f ‖α;Kε;z;ε = sup
λ∈(0,ε]

sup
ϕ∈�λ

ε,z

λ−α
∣∣f (

ϕλ
z

)∣∣.
Finally, we define

|||f |||γ ;K;ε = sup
y,z∈K,‖y−z‖s<ε

sup
β<γ

‖f (z) − 
ε
zyf (y)‖β

‖y − z‖γ−β
s

, (2.10)

and

|||f ; f̄ |||γ ;K;ε = sup
y,z∈K,‖y−z‖s<ε

sup
β<γ

‖f (z) − 
ε
zyf (y) − f̄ (z) + 
̄ε

zy f̄ (y)‖β

‖y − z‖γ−β
s

, (2.11)

for γ ∈R,K� Rd , ε ∈ (0,1] and f, f̄ : Rd → T<γ .

Remark 2.5. Note that in the first three examples the extended seminorms ‖ · ‖α;Kε;z;ε are always finite and thus
proper seminorms. This is not true anymore in the last example. The fact that in the former examples the index z does
not appear in the respective definitions is not a typo. Thus when considering a concrete equation that falls into the
framework of one of these three examples one may also simply omit this index.

Remark 2.6. The transparent case is actually the setting of the original theory of regularity structures developed in
[15]. In particular it is possible to check that the various assumptions stated in this article are satisfied in the original
setup. Another example in which our setup could be applied is the space-discrete �4

3-model studied in [17], which
falls into the semidiscrete case. In the forthcoming article [8] we investigate the parabolic Anderson model in discrete
space, where the noise term is given by the fluctuation field of the simple symmetric exclusion process, and we let the
mesh of the space tend to zero. The framework of the present article allows to study that problem (it indeed served as
the original motivation for this article).

We denote by L(T ,Xε) the space of all linear maps from T to Xε . We then have the following definition.
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Definition 2.7. A discrete model for a given regularity structure T = (A,T ,G) consists of a collection of maps
z �→ �ε

z ∈ L(T ,Xε) and (x, y) �→ 
ε
xy ∈ G such that

• 
ε
zz = id, the identity operator, and 
ε

xy

ε
yz = 
ε

xz for x, y, z ∈Rd .
• One has �ε

z = �ε
y


ε
yz for all y, z ∈Rd .

Furthermore, for any compact set K⊂Rd and every γ > 0 one has the analytical estimates∣∣(ιε�ε
zτ

)(
Sλ
s,zϕ

)∣∣ � ‖τ‖λ|τ |,
∥∥�ε

zτ
∥∥|τ |;Kε;z;ε � ‖τ‖, (2.12)

and, setting f
τ,
ε

z (y) = 
ε
yzτ − τ ,

∥∥
ε
zz′τ

∥∥
m

� ‖τ‖∥∥z − z′∥∥|τ |−m

s
,

∣∣∣∣∣∣f τ,
ε

z

∣∣∣∣∣∣|τ |;K;ε � ‖τ‖, (2.13)

uniformly over λ ∈ (ε,1], test functions ϕ ∈ �, all homogeneous τ ∈ T with |τ | < γ , all m < |τ |, and uniformly
over z, z′ ∈ K such that ‖z − z′‖s ∈ (ε,1]. In the second bound in (2.12) we moreover considered compact sets Kε of
diameter bounded by 2ε.

Remark 2.8. In the above definition, the proportionality constants are allowed to depend on ε. In practice however
one is interested in obtaining convergence to a limit as ε tends to zero, and this usually requires them to be independent
of ε in order to obtain useful statements. The same remark applies to all estimates stated in this article. In particular
if in any of the assumptions stated in this article the corresponding proportionality constants do not depend on ε, then
the same is true for any derived estimate.

Remark 2.9. For a compact set K ⊂ Rd we let ‖�ε‖(ε)
γ ;K and ‖
ε‖(ε)

γ ;K be the smallest proportionality constants such

that (2.12) and (2.13) hold respectively. Let Zε = (�ε,
ε) be a model, we set |||Zε|||(ε)
γ,K

= ‖�ε‖(ε)
γ ;K + ‖
ε‖(ε)

γ ;K and

for a second model Z̄ε = (�̄ε, 
̄ε) we denote |||Zε; Z̄ε|||(ε)
γ ;K = ‖�ε − �̄ε‖(ε)

γ ;K + ‖
ε; 
̄ε‖(ε)
γ ;K. Here, ‖
ε; 
̄ε‖(ε)

γ ;K
denotes the sum of the suprema of ‖(
ε

zz′ − 
̄ε
zz′)τ‖m/‖z − z′‖|τ |−m

s and |||f τ,
ε

z ;f τ,
̄ε

z ||||τ |;K;ε over the same set as in
Definition 2.7.

Remark 2.10. In [15] the definition of a model required �ε to map into the space of distributions D′(Rd) (this means
Xε =D′(Rd) in the current framework). Moreover, only the first inequalities in (2.12) and (2.13) were imposed. They
were however imposed for all λ ∈ (0,1]. We refer to such models as “continuous models” and we denote them by
(�,
). The “transparent case” above shows that the notion of “discrete model” is a (strict) generalisation of that of a
continuous model. A natural way to compare a continuous model to a discrete model (�ε,
ε) is via the quantities∥∥� − �ε

∥∥
γ ;K;≥ε

= sup
λ∈(ε,1]

sup
�∈A
�<γ

sup
τ∈T�

sup
ϕ∈�

sup
z∈K

λ−|τ |∣∣(�zτ − ιε�
ε
zτ

)(
Sλ
s,zϕ

)∣∣, and

∥∥
 − 
ε
∥∥

γ ;K;≥ε
= sup

�∈A
�<γ

sup
m<�

sup
τ∈T�

sup
z,z′∈K

‖z−z′‖s∈(ε,1]

∥∥z − z′∥∥m−�

s

∥∥
zz′τ − 
ε
zz′τ

∥∥
m
.

(2.14)

With Remark 2.10 at hand we have the following definition.

Definition 2.11. Let Z = (�,
) be a continuous model and let Zε = (�ε,
ε) be a discrete model. For every compact
set K⊂Rd , we define a distance between � and �ε via∥∥�;�ε

∥∥
γ ;K = ∥∥� − �ε

∥∥
γ ;K;≥ε

+ sup
�,z,τ,Kε

∥∥�ε
zτ

∥∥|τ |;Kε;z;ε + sup
λ,ϕ,�,τ,z

λ−|τ |∣∣(�zτ)
(
Sλ
s,zϕ

)∣∣, (2.15)

and between 
 and 
ε via∥∥
;
ε
∥∥

γ ;K = ∥∥
 − 
ε
∥∥

γ ;K;≥ε
+ sup

z,τ

∣∣∣∣∣∣f τ,
ε

z

∣∣∣∣∣∣|τ |;K;ε + sup
m,z,z′,τ

∥∥z − z′∥∥m−|τ |
s

‖
zz′τ‖m. (2.16)
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Here, when referring to the discrete model Zε the supremum is taken over the same set of indices as in Definition 2.7,
whereas when referring to the model Z the supremum is additionally taken over λ ∈ (0, ε] and ‖z − z′‖s ≤ ε, respec-
tively. We finally define the distance between Z and Zε by∣∣∣∣∣∣Z;Zε

∣∣∣∣∣∣
γ ;K = ∥∥�;�ε

∥∥
γ ;K + ∥∥
;
ε

∥∥
γ ;K. (2.17)

We have the following definition.

Definition 2.12. Let γ ∈ R and fix a discrete model (�ε,
ε). The space Dγ
ε consists of all maps f :Rd → T<γ such

that for every compact set K ⊂Rd one has

|||f |||(ε)
γ ;K

def= sup
(y,z)∈K

ε≤‖y−z‖s≤1

sup
β<γ

‖f (z) − 
ε
zyf (y)‖β

‖y − z‖γ−β
s

+ |||f |||γ ;K;ε < ∞. (2.18)

We say that f ∈Dγ
ε is a modelled distribution.

Remark 2.13. Note that we could have equipped the Dγ
ε -spaces with a norm that involves the expression

sup
z∈K

sup
β<γ

∥∥f (z)
∥∥

β
, (2.19)

as was done in [15]. However, since this term will not be part of any bound that we state in this article, we decided to
omit this term in Definition 2.12.

Remark 2.14. In some situations we only consider elements of Dγ
ε taking values in some given sector V of T . In this

case we also use the notation Dγ
ε (V ). In cases where V is of regularity α we also write Dγ

α,ε . Occasionally we want
to emphasize the dependence on a given model Zε = (�ε,
ε), and we use the notation Dγ

ε (Zε) or Dγ
ε (
ε) to do so.

Remark 2.15. Given two models (�ε,
ε), (�̄ε, 
̄ε) and two functions f ∈ Dγ
ε (
ε) and f̄ ∈ Dγ

ε (
̄ε) we define a
distance between f and f̄ via

|||f ; f̄ |||(ε)
γ ;K = sup

(y,z)∈K
ε≤‖y−z‖s≤1

sup
β<γ

‖f (z) − f̄ (z) − 
ε
zyf (y) + 
̄ε

zy f̄ (y)‖β

‖y − z‖γ−β
s

+ |||f ; f̄ |||γ ;K;ε. (2.20)

Remark 2.16. Fix a continuous model (�,
). One can define the space of functions Dγ (
) as all maps f : Rd →
T<γ such that

|||f |||γ ;K := sup
(y,z)∈K

‖y−z‖s≤1

sup
β<γ

‖f (z) − 
zyf (y)‖β

‖y − z‖γ−β
s

< ∞. (2.21)

Note that this definition differs from [15, Def. 3.1]. However, the finiteness of the norm in (2.21) implies the finiteness
of the corresponding norm in [15], so that the current setup indeed agrees with the one in [15]. It is also consistent
with (2.18) in the sense that the two expressions agree in the transparent case.

Definition 2.17. Given a continuous model (�,
) and a discrete model (�ε,
ε) and two functions f ∈ Dγ (
) and
f ε ∈Dγ

ε (
ε), we define the distance between f and f ε via

∣∣∣∣∣∣f ;f ε
∣∣∣∣∣∣

γ ;K = sup
(y,z)∈K

‖y−z‖s<ε

sup
β<γ

‖f (z) − 
zyf (y)‖β

‖y − z‖γ−β
s

+ ∣∣∣∣∣∣f ε
∣∣∣∣∣∣

γ ;K;ε

+ sup
(y,z)∈K

ε≤‖y−z‖s≤1

sup
β<γ

‖f (z) − f ε(z) − 
zyf (y) + 
ε
zyf

ε(y)‖β

‖y − z‖γ−β
s

. (2.22)
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In plain words, at scales larger than ε we compare f and f ε in the natural way, and at scales smaller than ε we simply
add the bits describing f and f ε at these scales.

Convention: For the rest of this article the symbol Kε is reserved for a compact subset of Rd with diameter bounded
by 2ε.

3. The reconstruction theorem

In this section we prove that given an element f in Dγ
ε and an operator Rε : Dγ

ε → Xε such that Rεf is close to
�ε

zf (z) on a local scale, then they are also close globally. The significance of it is that �ε
zf (z) is a local object,

whereas Rεf can be thought of as a global object. The following two assumptions are key for this and they are
assumed to hold throughout this article.

Assumption 3.1. Let γ > 0 and fix a discrete model (�ε,
ε). We assume that there is a linear map Rε : Dγ
ε (
ε) →

Xε such that for every z ∈Rd and every compact set Kε ⊂Rd of diameter at most 2ε containing z,

∥∥Rεf − �ε
zf (z)

∥∥
γ ;Kε;z;ε �

∥∥�ε
∥∥(ε)

γ ;K̄ε
|||f |||γ ;Kε;ε, (3.1)

locally uniformly over all z, over all such compact sets Kε , and ε > 0. Any map Rε satisfying (3.1) is called a
reconstruction operator.

Remark 3.2. Recall that the norm ||| · |||γ ;Kε;ε is allowed to depend on a neighbourhood of size cε of Kε for some
fixed value of c. In practice it is often (3.1) that determines the choice of c, i.e., one first chooses a candidate for Rε

and then one verifies for which choice of c, given a reasonable candidate for ||| · |||γ ;Kε;ε , a bound of the type (3.1) is
satisfied.

Remark 3.3. A common choice for Rε is given by Rεf (z) = (�ε
zf (z))(z), provided of course that this is a mean-

ingful expression, which is the case in the first three examples given in the previous section. To verify Assumption 3.1
in the purely discrete case, fix z ∈ �d

ε and a compact set Kε as required above. Then for every y ∈ Kε , we can write

ε−γ
∣∣(�ε

yf (y)
)
(y) − (

�ε
zf (z)

)
(z)

∣∣ = ε−γ
∣∣�ε

y

[
f (y) − 
ε

yzf (z)
]
(y)

∣∣
≤

∑
�<γ

ε−γ
∣∣�ε

yQ�

[
f (y) − 
ε

yzf (z)
]
(y)

∣∣
�

∥∥�ε
∥∥(ε)

γ ;K̄ε

∑
�<γ

ε−γ+�
∥∥f (y) − 
ε

yzf (z)
∥∥

�
, (3.2)

and, since there are only finitely many terms of homogeneity smaller than γ , (3.1) readily follows from the definition
of ||| · |||γ ;Kε;ε . Essentially the same computation can be done in the semidiscrete and continuous case. In the transparent
case, it is a consequence of [15, Theorem 3.10] that the reconstruction operator satisfies Assumption 3.1.

When comparing reconstruction operators corresponding to different models, we also need to make the following
assumption.

Assumption 3.4. Fix two discrete models (�ε,
ε) and (�̄ε, 
̄ε) with associated reconstruction operators Rε and
R̄ε , and let f ∈ Dγ

ε (
ε) and f̄ ∈ Dγ
ε (
̄ε). We assume that for every z ∈ Rd and every compact set Kε of diameter at

most 2ε containing z,∥∥Rεf − �ε
zf (z) − R̄εf̄ (z) + �̄ε

zf̄ (z)
∥∥

γ ;Kε;z;ε

�
∥∥�̄ε

∥∥(ε)

γ ;K̄ε
|||f ; f̄ |||γ ;Kε;ε + ∥∥�ε − �̄ε

∥∥(ε)

γ ;K̄ε
|||f |||γ ;Kε;ε (3.3)
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locally uniformly over all z, over all such compact sets Kε , and ε > 0. Fix a continuous model (�,
) with associated
reconstruction operator R, f ∈Dγ (
), and f ε ∈ Dγ

ε (
ε). We assume that for every η ∈ �,∣∣[ιε(Rεf ε − �ε
zf

ε(z)
) − (

Rf − �zf (z)
)](

ηε
z

)∣∣
� εγ

[∥∥�ε
∥∥(ε)

γ ;[ηε
z ]
∣∣∣∣∣∣f ;f ε

∣∣∣∣∣∣
γ ;[ηε

z ] + ∥∥�;�ε
∥∥

γ ;[ηε
z ]|||f |||γ ;[ηε

z ]
]
, (3.4)

locally uniformly in z ∈Rd , and uniformly over all ε.

Remark 3.5. Given two discrete models as above, the form of the reconstruction operator alluded to in Remark 3.3
shows that Rε is usually a bilinear function of the pair (f,�ε). Therefore, the validity of the Assumption 3.4 can be
shown in a similar way as the one for Assumption 3.1.

Theorem 3.6. Let γ > 0, and fix a compact set K. Fix a discrete model (�ε,
ε) such that Assumption 3.1 is satisfied.
We then have the estimate∣∣ιε(Rεf − �ε

zf (z)
)(

ηδ
z

)∣∣ � δγ
∥∥�ε

∥∥(ε)

γ ;K̄|||f |||(ε)
γ ;[ηδ

z ], (3.5)

uniformly over all test function η ∈ �, all δ ∈ (ε,1], all f ∈ Dγ
ε , all z ∈ K, and all ε ∈ (0,1]. Given a second discrete

model (�̄ε, 
̄ε) such that additionally Assumption 3.4 is satisfied, then for all f ∈Dγ
ε (
ε) and f̄ ∈Dγ

ε (
̄ε),∣∣ιε(Rεf − R̄εf̄ − �ε
zf (z) + �̄ε

zf̄ (z)
)(

ηδ
z

)∣∣
� δγ

(∥∥�̄ε
∥∥(ε)

γ ;K̄|||f ; f̄ |||(ε)
γ ;[ηδ

z ] + ∥∥�ε − �̄ε
∥∥(ε)

γ ;K̄|||f |||(ε)
γ ;[ηδ

z ]
)
, (3.6)

uniformly over all parameters as above. Finally, if R is the reconstruction operator corresponding to a continuous
model (�,
) such that Assumption 3.4 holds, f ∈ Dγ (
), and f ε ∈ Dγ

ε (
ε), then∣∣(ιε(Rεf ε − �ε
zf

ε(z)
) −Rf + �zf (z)

)(
ηδ

z

)∣∣
� δγ

(∥∥�(ε)
∥∥(ε)

γ ;K̄
∣∣∣∣∣∣f ε;f ∣∣∣∣∣∣

γ ;[ηδ
z ] + ∥∥�ε;�∥∥

γ ;K̄|||f |||(ε)
γ ;[ηδ

z ]
)
, (3.7)

uniformly over all parameters as above.

Before we give the proof we need to introduce more notation. For n ∈N we define the scaled lattice

�s
n =

{
d∑

j=1

2−nsj kj ej : kj ∈ Z

}
, (3.8)

where we denote by e1, . . . , ed the canonical basis of Rd .

Proof. We fix a smooth function � : R → [0,1] such that supp� ⊂ [−1,1] and such that additionally for every
z ∈ R,∑

k∈Z
�(z + k) = 1. (3.9)

Fix k ∈N and let zk ∈ �s
k , zk+1 ∈ �s

k+1. We define rescaled versions of � via

�[zk](y) =
d∏

i=1

�
(
2ksi (yi − zk,i )

)
, and �[zk,zk+1](y) = �[zk](y)�[zk+1](y), (3.10)
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where yi and zk,i denote the i-th coordinate of y and zk , respectively. Note the simple but useful identity

∑
zk∈�s

k

�[zk] = 1, (3.11)

which immediately follows from (3.9). We may now start with the core part of the proof. To that end, let n0 be the
smallest integer such that 2−n0 ≤ δ and define �̃

δ,k
z,[zk] = ηδ

z�[zk], as well as �̃
δ,k
z,[zk,zk+1] = ηδ

z�[zk,zk+1]. Note that for

each k ≥ n0 the support of �̃
δ,k
z,[zk] is contained in a ball of radius 2−k with center zk , and a similar statement holds for

�̃
δ,k
z,[zk,zk+1]. To continue, for each zk ∈ �s

k such that ds(zk, [ηδ
z]) < 2−k we let z|k be an arbitrary chosen element in

[ηδ
z] such that ds(zk, z|k) < 2−k . With all this at hand we see that for every N > n0 we can write

ιε
(
Rεf − �ε

zf (z)
)(

ηδ
z

) = I + II + III, (3.12)

where

I =
∑

zN∈�s
N

ιε
(
Rεf − �ε

z|N f (z|N)
)(

�̃
δ,N
z,[zN ]

)
,

II =
N−1∑
k=n0

∑
zk∈�s

k ,zk+1∈�s
k+1

ιε
(
�ε

z|k+1
f (z|k+1) − �ε

z|k f (z|k)
)(

�̃
δ,k
z,[zk,zk+1]

)
,

III =
∑

zn0∈�s
n0

ιε
(
�ε

z|n0
f (z|n0) − �ε

zf (z)
)(

�̃
δ,n0
z,[zn0 ]

)
,

(3.13)

where we made use of the identities (3.11) (recall at this point that z|k is really a function of zk). We now choose N

to be the smallest value such that 2−N ≤ ε, so that the support of �̃
δ,N
z,[zN ] is a compact set of diameter at most 2ε. We

also remark that for any k ∈ [n0,N ] there exists an element ψ ∈ � and a constant ck that is uniformly bounded in k

such that(
δ2k

)|s|
�̃

δ,k
z,[zk,zk+1] = ckS2−k−1

z|k+1
ψ,

and similarly for �̃
δ,k
z,[zk]. Here, the constants ck appear since the various derivates of (δ2k)|s|�̃δ,k

z,[zk,zk+1] up to order r

may not satisfy the estimates that rescaled elements of � necessarily do satisfy. We can therefore estimate

∣∣ιε(Rεf − �ε
z|N f (z|N)

)(
�̃δ

z,[zN ]
)∣∣ �

(
δ2N

)−|s|2−Nγ
∥∥Rεf − �ε

z|N f (z|N)
∥∥

γ ;[�̃δ
z,[zN ]];z|N ;ε

�
(
δ2N

)−|s|
2−Nγ

∥∥�ε
∥∥(ε)

γ,K̄
|||f |||γ ;[�̃δ

z,[zN ]];ε. (3.14)

Thus, the desired estimate (3.5) on I follows from the fact that, since N > n0, one has �̃
δ,N
z,[zN ] = 0 if δ � ‖zN −

z‖s, combined with the bound |{zN ∈ �s
N : ‖zN − z‖s ≤ δ}| � (2Nδ)|s|. Here, the proportionality constants only

depend on the dimension. To deal with II, note that �̃
δ,k
z,[zk,zk+1] = 0, unless ds(zk, zk+1) < 2−k+1. Recall that Q�

denotes the projection onto the subspace of degree � in our regularity structure, we can therefore estimate for each
k ∈ [n0, . . . ,N − 1] and each pair zk, zk+1 contributing to the sum in II,

∣∣ιε(�ε
z|k+1

f (z|k+1) − �ε
z|k f (z|k)

)(
�̃

δ,k
z,[zk,zk+1]

)∣∣
= ∣∣ιε(�ε

z|k+1

[
f (z|k+1) − 
ε

z|k+1z|k f (z|k)
])(

�̃
δ,k
z,[zk,zk+1]

)∣∣
≤

∑
�<γ

∣∣ιε(�ε
z|k+1

Q�

[
f (z|k+1) − 
ε

z|k+1z|k f (z|k)
])(

�̃
δ,k
z,[zk,zk+1]

)∣∣
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≤ (
δ2k

)−|s|∥∥�ε
∥∥(ε)

γ,K̄

∑
�<γ

2−(k+1)�
∥∥f (z|k+1) − 
ε

z|k+1z|k f (z|k)
∥∥

�

�
(
δ2k

)−|s|∥∥�ε
∥∥(ε)

γ,K̄
|||f |||(ε)

γ,[ηδ
z ]2

−kγ , (3.15)

where we exploited the fact that the distance between z|k and z|k+1 is at most of order 2−k . To conclude the estimate
of II we note that for each zk ∈ �s

k , the number of values for zk+1 that contribute to the corresponding sum in (3.13) is

at most 5d and the number of zk such that �̃
δ,k
z,[zk,zk+1] �= 0, i.e., ‖zk − z‖s � (δ +2−k) is of the order (δ2k)|s|. Thus, we

see that summing the right hand side of (3.15) over k ∈ [n0,N − 1] yields the desired estimate on II. The estimate on
III is similar and we therefore omit the details. To prove (3.6) we first write ιε(Rεf − R̄εf̄ −�ε

zf (z)+ �̄ε
zf̄ (z))(ηδ

z)

as a sum of three terms I′, II′ and III′ where,

I′ =
∑

zN∈�s
N

ιε
(
Rεf − R̄εf̄ − �ε

z|N f (z|N) + �̄ε
z|N f̄ (z|N)

)(
�̃

δ,N
z,[zN ]

)
,

(3.16)

and II′ and III′ are the “telescopic sum” terms analogous to II and III in (3.13). To estimate I′ we may use Assump-
tion 3.4 and we can proceed in exactly the same way as we did to estimate I. To bound II′ and III′ we make use of the
identity

�ε
zf (z) − �̄ε

zf̄ (z) − �ε
yf (y) + �̄ε

yf̄ (y)

= �̄ε
z

(
f (z) − 
ε

zyf (y) − f̄ (z) + 
̄ε
zy f̄ (y)

) + (
�ε

z − �̄ε
z

)(
f (z) − 
ε

zyf (y)
)
. (3.17)

From that point on, one proceeds in the same way as for the bounds on II and III. The bound (3.7) is then obtained in
virtually the same way as (3.6). �

3.1. The reconstruction operator in weighted Dγ
ε -spaces

In [15], versions of the Dγ -spaces were introduced that allow for singularities on a hyperplane P . In the present
context this translates to spaces Dγ,η

ε that have an additional dependence on ε and that generalise the corresponding
spaces Dγ,η in [15]. Fix d̄ ∈ [1, d), let P be the hyperplane given by

P = {
z ∈Rd : zi = 0, i = 1, . . . , d̄

}
, (3.18)

and denote by m = s1 + · · · + sd̄ the (effective) codimension of P . We further let

‖z‖P = 1 ∧ ds(z,P ), and ‖y, z‖P = ‖y‖P ∧ ‖z‖P , (3.19)

as well as

KP = {
(y, z) ∈ (K \ P)2 : y �= z,‖y − z‖s ≤ ‖y, z‖P

}
. (3.20)

Our construction relies again on the existence of a family of “small-scale” norms exhibiting the correct kind of
behaviour for ε �= 0.

Assumption 3.7. We are given two families of extended seminorms ||| · |||γ,η;K;ε and |||·; ·|||γ,η;K;ε on the space of
functions f : Rd → T<γ , respectively on pairs (f, f̄ ) of such functions, with γ,η ∈R, K� Rd and ε ∈ (0,1].

These are such that, for any two discrete models (�ε,
ε) and (�̄ε, 
̄ε), and two functions f ∈ Dγ
ε (
ε) and

f̄ ∈ Dγ
ε (
̄ε) one has

|||f |||γ ;K;ε � ds(z,P )η−γ |||f |||γ,η;K;ε,

|||f ; f̄ |||γ ;K;ε � ds(z,P )η−γ |||f ; f̄ |||γ,η;K;ε,
(3.21)

for any compact set K � z such that ds(K,P ) ≥ diam(K) ∈ (ε,1], as well as any γ > 0 and η ∈ R.



Discretisation of regularity structures 2221

Remark 3.8. The way to think about ||| · |||γ,η;K;ε and |||·; ·|||γ,η;K;ε is that they are weighted versions of ||| · |||γ ;K;ε and
|||·; ·|||γ ;K;ε , respectively. A natural choice in the transparent case is given by [15, Def. 6.2], but with the first supremum
restricted to points z with ‖z‖P < ε and the second supremum restricted to pairs y, z with ‖y − z‖s < ε.

Similarly, a possible choice in the purely discrete case is

|||f |||γ,η;K;ε = sup
z∈K\P
‖z‖P <ε

sup
β<γ

‖f (z)‖β

‖z‖(η−β)∧0
P,ε

+ sup
(y,z)∈KP ,
‖y−z‖s<ε

sup
β<γ

‖f (z) − 
ε
zyf (y)‖β

εγ−β‖y, z‖η−γ

P,ε

, (3.22)

and

|||f ; f̄ |||γ,η;K;ε = sup
z∈K\P
‖z‖P <ε

sup
β<γ

‖f (z) − f̄ (z)‖β

‖z‖(η−β)∧0
P,ε

+ sup
(y,z)∈KP ,
‖y−z‖s<ε

sup
β<γ

‖f (z) − 
ε
zyf (y) − f̄ (z) + 
̄ε

zy f̄ (y)‖β

εγ−β‖y, z‖η−γ

P,ε

, (3.23)

where ‖z‖P,ε = ‖z‖P ∨ ε and ‖y, z‖P,ε = ‖y, z‖P ∨ ε. In a similar manner, one may choose the corresponding norms
in the continuous and in the semidiscrete case.

We then have the following definition.

Definition 3.9. Fix a regularity structure T and a discrete model (�ε,
ε) and let η ∈ R. We define the space Dγ,η
ε

as the space of all functions f : Rd \ P → T<γ such that |||f |||(ε)
γ,η;K < ∞, where |||f |||(ε)

γ,η;K is defined by

sup
z∈K\P
‖z‖P ≥ε

sup
β<γ

‖f (z)‖β

‖z‖(η−β)∧0
P

+ sup
(y,z)∈KP ,

ε≤‖y−z‖s≤1

sup
β<γ

‖f (z) − 
ε
zyf (y)‖β

‖y − z‖γ−β
s ‖y, z‖η−γ

P

+ |||f |||γ,η;K;ε. (3.24)

Elements of Dγ,η
ε are called singular modelled distributions.

Remark 3.10. Given two discrete models (�ε,
ε) and (�̄ε, 
̄ε), and f ∈ Dγ,η
ε (
ε) as well as f̄ ∈ Dγ,η

ε (
̄ε), we
define |||f ; f̄ |||(ε)

γ,η;K via

|||f ; f̄ |||(ε)
γ,η;K = sup

z∈K\P
‖z‖P ≥ε

sup
β<γ

‖f (z) − f̄ (z)‖β

‖z‖(η−β)∧0
P

+ |||f ; f̄ |||γ,η;K;ε

+ sup
(y,z)∈KP ,

ε≤‖y−z‖s≤1

sup
β<γ

‖f (z) − f̄ (z) − 
ε
zyf (y) + 
̄ε

zy f̄ (y)‖β

‖y − z‖γ−β
s ‖y, z‖η−γ

P

. (3.25)

Remark 3.11. Given a continuous model (�,
), if we choose ||| · |||γ,η;K;ε as in the transparent case of Remark 3.8,
then Definition 3.9 coincides with [15, Def. 6.2]. From now on we assume that in the transparent case ||| · |||γ,η;K;ε is
given in this way.

Definition 3.12. Fix a continuous model (�,
), a discrete model (�ε,
ε), and two functions f ∈ Dγ,η(
) and
f ε ∈Dγ,η

ε (
ε). We define their distance |||f ;f ε|||γ,η;K as the sum

∣∣∣∣∣∣f ;f ε
∣∣∣∣∣∣

γ,η;K;≥ε
+ |||f |||γ,η;K;ε + ∣∣∣∣∣∣f ε

∣∣∣∣∣∣
γ,η;K;ε, (3.26)
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where

∣∣∣∣∣∣f ;f ε
∣∣∣∣∣∣

γ,η;K;≥ε
= sup

z∈K\P
‖z‖P ≥ε

sup
β<γ

‖f (z) − f ε(z)‖β

‖z‖(η−β)∧0
P

+ sup
(y,z)∈KP ,

ε≤‖y−z‖s≤1

sup
β<γ

‖f (z) − 
zyf (y) − f ε(z) + 
ε
zyf

ε(y)‖β

‖y − z‖γ−β
s ‖y, z‖η−γ

P

. (3.27)

Here, we remind the reader of the convention made in Remark 3.11.

We make the following assumption.

Assumption 3.13. Let V be a sector of a regularity structure T of regularity α, let (�ε,
ε) and (�̄ε, 
̄ε) be two
discrete models with associated reconstruction operators Rε and R̄ε , and let f ∈ Dγ,η

ε (
ε) and f̄ ∈ Dγ,η
ε (
̄ε). Let

further f and f̄ be such that they take values in V . We assume that,∥∥Rεf
∥∥

α∧η;Kε;z;ε � |||f |||(ε)
γ,η;Kε

,∥∥Rεf − R̄εf̄
∥∥

α∧η;Kε;z;ε �
∥∥�̄ε

∥∥(ε)

γ ;K̄ε
|||f ; f̄ |||(ε)

γ,η;Kε
+ ∥∥�ε − �̄ε

∥∥(ε)

γ ;K̄ε
|||f |||(ε)

γ,η;Kε

(3.28)

locally uniformly over z and over all compact sets Kε with diam(Kε) ≤ 2ε containing z. Fix a continuous model
(�,
) with associated reconstruction operator R, further fix f ∈ Dγ,η(
), and f ε ∈ Dγ,η

ε (
ε) both taking values
in V . We assume that for every η ∈ �,∣∣(ιεRεf ε −Rf

)(
ηε

z

)∣∣
� εα∧η

[∥∥�ε
∥∥(ε)

γ ;[ηε
z ]
∣∣∣∣∣∣f ;f ε

∣∣∣∣∣∣
γ ;[ηε

z ] + ∥∥�;�ε
∥∥

γ ;[ηε
z ]|||f |||γ ;[ηε

z ]
]
, (3.29)

locally uniformly in z ∈Rd , and uniformly over all ε ∈ (0,1].

Remark 3.14. We shortly argue why Assumption 3.13 is reasonable. Assume that we are in the purely discrete case
and that Rε is given as in Remark 3.3. Then, for every f ∈ Dγ,η

ε (
ε), any compact set Kε , and any y ∈ �d
ε ∩ Kε we

have ∣∣Rεf (y)
∣∣ = ∣∣(�ε

yf (y)
)
(y)

∣∣ ≤
∑
�<γ

∣∣(�ε
yQ�f (y)

)
(y)

∣∣ �
∥∥�ε

∥∥(ε)

γ ;Kε

∑
�<γ

∥∥f (y)
∥∥

�
ε�. (3.30)

To see that this implies the first bound in (3.28), multiply and divide each summand above by ‖y‖(η−�)∧0
P,ε and note

that ‖y‖(η−�)∧0
P,ε ε�−α∧η ≤ 1. The remaining two parts of the assumption can be shown in a similar way in this case.

Theorem 3.15. Fix a discrete model (�ε,
ε), let f ∈ Dγ,η
ε (
ε) for some γ > 0, some η ≤ γ , such that f takes

values in a sector V of regularity α ≤ 0, and assume that Assumption 3.7 holds. Further let K be a compact set, and
let η ∈ �. Then, provided that α ∧ η > −m, the reconstruction operator Rε satisfies the following.

1. One has the bound∣∣ιε(Rεf − �ε
zf (z)

)(
ηδ

z

)∣∣ � ds(z,P )η−γ δγ , (3.31)

for all δ ∈ [ε,1], and for all z ∈ K such that ds(z,P ) ≥ cε + 2δ.
2. If Assumption 3.13 is satisfied, then∣∣ιε(Rεf

)(
ηδ

z

)∣∣ � δα∧η (3.32)
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for all δ ∈ [ε,1], and for all z ∈ K. In particular, there is no requirement on the location of the support of ηδ
z . In both

estimates the proportionality constant is a multiple of ‖�ε‖(ε)

γ ;K̄|||f |||(ε)
γ,η;[ηδ

z ].

3. Let (�̄ε, 
̄ε) be a second discrete model with associated reconstruction operator R̄ε such that Assumption 3.13 is
satisfied, then∣∣ιε(Rεf − R̄εf̄ − �ε

zf (z) + �̄ε
zf̄ (z)

)(
ηδ

z

)∣∣ � ds(z,P )η−γ δγ , (3.33)

for all δ ∈ [ε,1] and for all z ∈ K such that ds(z,P ) ≥ cε + 2δ. Moreover, the estimate (3.32) holds for |ιε(Rεf −
R̄εf̄ )(ηδ

z)| as well. In both cases, the proportionality constant is a multiple of

∥∥�̄ε
∥∥(ε)

γ ;K̄|||f ; f̄ |||(ε)
γ,η;[ηδ

z ] + ∥∥�ε − �̄ε
∥∥(ε)

γ ;K̄|||f |||(ε)
γ,η;[ηδ

z ]. (3.34)

4. Let (�,
) be a continuous model such that Assumption 3.13 holds, then Item 3. holds for it as well. More precisely,
if one replaces (�̄ε, 
̄ε) by (�,
), the discrete reconstruction operator R̄ε by R and f̄ by f ∈Dγ,η(
), the same
bounds as in Item 3. hold, provided the proportionality constants are adapted accordingly.

Remark 3.16. We assume for the rest of this article that Assumptions 3.7 and 3.13 hold.

Proof. The bound (3.31) can be derived in the same way as [15, Eq. 6.6] (note that instead of using [15, Lem. 6.7]
one may directly apply Theorem 3.6). Thus, we assume from now on that ds([ηδ

z],P ) < cε +2δ. We start by choosing
a smooth function �̃ :R+ → [0,1] such that �̃(�) = 0 for � /∈ [1/2,2] and such that∑

n∈Z
�̃

(
2n�

) = 1, for all � > 0. (3.35)

Furthermore, we let � : R → [0,1] be as in (3.9). The final ingredients are a smooth mapping NP : Rd \ P → R+
that satisfies the scaling relation NP (Sδ−1

s z) = δNP (z), depends only on (z1, . . . , zd̄ ), is such that for some constant
c > 0, the relation c−1NP (z) ≤ ds(z,P ) ≤ cNP (z) holds for any z ∈ Rd , and the sets �n

P defined by

�n
P = {

z ∈ Rd : zi = 0 for i ≤ d̄ and zi ∈ 2−nsiZ for i > d̄
}
. (3.36)

We then define

�̃n(y) = �̃
(
2nNP (y)

)
. (3.37)

Let n0 ∈ Z be the greatest integer with [�̃k] ∩ [ηδ
z] = ∅ for all k < n0 and N be the greatest integer such that

ds([�̃N ],P ) ≥ (1 + c)ε. Note that the former (together with our additional assumption on the support of ηδ
z at the

beginning of the proof) implies that 2−n0 is of the order δ, whereas the latter implies that 2−N is of the order ε. It then
follows from (3.35) that

ηδ
z =

∑
n0≤n≤N

ηδ
z�̃n +

∑
n>N

ηδ
z�̃n, (3.38)

which we write as Iz + IIz. Note that

Iz =
∑

n0≤n≤N

∑
y∈�n

P

ηδ
z�̃n�

(
2nsd̄+1(· − yd̄+1)

) · . . . · �(
2nsd (· − yd)

)
. (3.39)

To proceed define χn,zy(x) = δ|s|2n|s|ηδ
z(x)�̃n(x)�(2nsd̄+1(xd̄+1 − yd̄+1)) · . . . · �(2nsd (xd − yd)) and note that each

χn,zy defines a test function. Applying a suitable partition of the identity we may write

χn,zy =
M∑

j=1

χ
j
n,zy (3.40)
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for some fixed constant M and each χ
j
n,zy is supported in some ball with center zy,j ∈ (Rd \ P) ∩ [χn,zy] and whose

radius r satisfies cε + 2r � ds(zy,j ,P ). Thus, by 3.31, for each j ∈ {1, . . . ,M},
∣∣ιε(Rεf − �ε

zy,j
f (zy,j )

)(
χ

j
n,zy

)∣∣ � ds(zy,j ,P )η−γ 2−γ n � 2−ηn. (3.41)

Since |ιε(�ε
zy,j

f (zy,j ))(χ
j
n,zy)| � 2−n(α∧η) and the fact that 2−n0 ≈ δ, we may conclude as in the proof of [15,

Prop. 6.9]. To deal with IIz we multiply it by a partition of unity like so:

IIz =
∑

y∈�N
P

IIz�
(
2Nsd̄+1(· − yd̄+1)

) · . . . · �(
2Nsd (· − yd)

)
. (3.42)

Define χ̂N,zy(x) = δ|s|2N |s|IIz(x)�(2Nsd̄+1(xd̄+1 −yd̄+1)) · . . . ·�(2Nsd (xd − yd)) and note that by Assumption 3.13
and Equation 2.1,

∣∣ιε(Rεf
)
(χ̂N,zy)

∣∣ � εα∧η
∥∥Rεf

∥∥
α∧η;[χ̂N,zy ];z;ε � εα∧η|||f |||(ε)

γ,η;[χ̂N,zy ]. (3.43)

We may now finish as above. We omit the details. Items 3. and 4. may be shown in a similar manner. �

4. Convolution operators

In this section we explain how to convolve a modelled distribution with a discrete kernel. Here, one should think of
the kernel given by the Green’s function of the linear part of the equation at hand. It will be a standing assumption
from now on that our regularity structure contains the polynomial regularity structure, and we write T̄ for the span of
the symbols Xk representing the usual Taylor monomials. Throughout all of this section, the following assumption is
in force.

Assumption 4.1. The regularity structure T contains the polynomial regularity structure T̄ = (T̄ , Ḡ,N) correspond-
ing to the scaling s. We also assume that we are given a family of discrete “polynomial models” (�ε,
ε) on T
converging to the canonical continuous polynomial model.

Remark 4.2. It follows from our assumption that, for ε small enough, the map �z is injective on T̄ for every z. We
henceforth assume that this is the case for all ε, which is of course not a real assumption since we are mostly interested
in the case of ε → 0.

We now describe the assumptions we want the kernel at hand to satisfy. Unfortunately these have a quite abstract
appearance, so to illustrate what these really mean in practice we provide concrete examples in Remark 4.11 below.
Let N be the smallest integer such that 2−N ≤ ε. Throughout this section we fix β > 0. For z ∈ R, and ζ ∈ R we let
Xε,ζ,z be the set of all F ∈ Xε such that

∣∣ιε(F )
(
ϕn

z

)∣∣ � 2−nζ , and ‖F‖ζ ;Kε;z;ε � 1,

for all scaled test functions ϕn
z with n ≤ N , and all compact sets Kε of diameter at most 2ε containing z, and we require

the proportionality constants to be independent of n ≤ N . Recall at this point that we use the notation ϕn
z = ϕ2−n

z . We
let Xε,ζ = ⋃

z∈RXε,ζ,z. We then assume that there is a family of linear operators Kε
n on Xε , as well as a family of

linear operators T ε
n,ζ : Xε,ζ → (T̄<ζ+β)R

d
. For F ∈ Xε,ζ,z we use the notation

(
T ε

n,ζ F
)
(z) =

∑
|k|s<ζ+β

XkQk

((
T ε

n,ζ F
)
(z)

)
, (4.1)

and we abbreviate Kε = ∑N
n=0 Kε

n , and T ε
ζ = ∑N

n=0 T ε
n,ζ . We then require the following.
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Assumption 4.3. There is β > 0 such that for all n ≤ N , ζ, ζ ′ ∈ R with ζ ′ ≤ ζ , all y, z ∈ Rd such that ε ≤ ‖y − z‖s ≤
2−n, and all F ∈Xε,ζ,z ∩Xε,ζ,y ,

1. the consistency relation Qk((T
ε
n,ζ F )(z)) =Qk((T

ε
n,ζ ′F)(z)) holds for all multiindices |k|s < ζ ′ + β ,

2. one has the estimates

∥∥(
T ε

n,ζ F
)
(z)

∥∥
k
�

{
2n(|k|s−β) supϕ∈� |(ιεF )(ϕn

z )|, if n ≤ N − 1,

2N(|k|s−β−ζ )‖F‖ζ ;Kε;z;ε, if n = N,
(4.2)

where in the latter estimate Kε denotes a ball of radius ε centred at z,
3. one has the estimate∥∥(

T ε
n,ζ F

)
(z) − 
ε

zy

(
T ε

n,ζ F
)
(y)

∥∥
k

� 2n(�ζ+β�−β)‖y − z‖�ζ+β�−|k|s
s sup

ϕ∈�

∣∣(ιεF )
(
ϕn−1

z

)∣∣, (4.3)

which only needs to be satisfied for n ≤ N − 1,
4. one has the estimate∑

n≤N

∥∥Kε
nF − �ε

z

(
T ε

n,ζ F
)
(z)

∥∥
ζ+β;Kε;z;ε

� sup
n≤N

2nζ sup
ϕ∈�
z′∈Kε

∣∣ιε(F )
(
ϕn−1

z′
)∣∣ + sup

h∈Bs(z,2ε)

‖F‖ζ ;Kε;z+h;ε, (4.4)

locally uniformly over all compact sets Kε of diameter bounded by 2ε,
5. uniformly over ϕ ∈ � and δ ∈ (ε,1] one has the estimates∣∣ιε(Kε

nF
)(

ϕδ
z

)∣∣ �
∣∣〈Q0

((
T ε

n,0F
)
(·)), ϕδ

z

〉∣∣,∣∣ιε(Kε
nF

)(
ϕδ

z

)∣∣ � 2−nβ sup
η∈�

∣∣(ιεF )
(
η2δ

z

)∣∣,
where the second inequality above is only required for 2−n ≤ δ. The proportionality constants above are uniform
over y, z and n.

Remark 4.4. The fourth item above is only needed in the proof of Theorem 4.9 to show that the reconstruction
operator and the convolution operator Kε

γ (whose definition will be given in the sequel) do essentially commute (see
Theorem 4.9 for a more precise statement). It however follows from Remark 4.13 and 4.14 that in many cases of
interest this follows immediately from the respective definitions, in which case the fourth item above is unnecessary.

As in [15] we impose that the kernels Kε
n kill polynomials up to a sufficiently high degree. In our setting this may

be formulated as follows.

Assumption 4.5. There is a σ > 0 such that for all n ≤ N , all z ∈ Rd , and all |k|s ≤ σ , one has Kε
n�ε

zX
k = 0 and

(T ε
n,ζ �

ε
zX

k)(z) = 0.

We remind the reader of the following definition from [15].

Definition 4.6. Given a sector V , a linear map I : V → T is an abstract integration map of order β > 0, if the
following properties are satisfied:

1. One has I : Vζ → Tζ+β , and this mapping is continuous.
2. One has Iτ = 0 for all τ ∈ V ∩ T̄ .
3. One has 
I − I
 ∈ T̄ for every 
 ∈ G.
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Definition 4.7. Fix a sector V and an abstract integration map I on it. We say that �ε realises Kε for I , if for every
ζ ∈ A, every τ ∈ Vζ , and every z ∈ Rd ,

�ε
zI(τ ) = Kε�ε

zτ − �ε
z

(
T ε|τ |�ε

zτ
)
(z). (4.5)

We furthermore require that �ε agrees with the discrete polynomial model from Assumption 4.1 on T̄ .

With all of these definitions at hand, we are now in the position to provide the definition of the “convolution map”
Kε on modelled distributions announced at the beginning of this section. As in [15] it turns out that for different values
of γ one should use slightly different definitions. Given f ∈Dγ

ε , we set

Kε
γ f (z) = If (z) +

∑
ζ∈A

(
T ε

ζ �ε
zQζ f (z)

)
(z) + (

T ε
γ

(
Rεf − �ε

zf (z)
))

(z). (4.6)

Before we state one of the main results of this article we need one more assumption.

Assumption 4.8. Let T = (A,T ,G) be a regularity structure, let V be a sector of T , let (�ε,
ε) be a discrete
model, and fix γ,β > 0. We assume that, for f ∈ Dγ

ε (V ,
ε) and any compact set K,

∣∣∣∣∣∣Kε
γ f

∣∣∣∣∣∣
γ+β;K;ε �

∥∥�ε
∥∥(ε)

γ ; ¯̄
K
|||f |||

γ ; ¯̄
K;ε. (4.7)

Let (�̄ε, 
̄ε) be a second discrete model for T , denote by K̄ε
γ the associated convolution operator, and let f̄ ∈

Dγ
ε (V , 
̄ε). We assume that,

∣∣∣∣∣∣Kε
γ f ; K̄ε

γ f̄
∣∣∣∣∣∣

γ+β;K;ε �
∥∥�ε

∥∥(ε)

γ ; ¯̄
K
|||f ; f̄ |||(ε)

γ ; ¯̄
K

+ ∥∥�ε − �̄ε
∥∥(ε)

γ ; ¯̄
K
|||f |||(ε)

γ ; ¯̄
K
. (4.8)

In both estimates the proportionality constant is supposed to be uniform in ε > 0 and we remind the reader that ¯̄
K

denotes the 2-fattening of K.

Theorem 4.9. Let T = (A,T ,G) be a regularity structure and (�ε,
ε) be a model for T satisfying Assumption 4.1
and fix a compact set K. Let β > 0 and assume that there are operators Kε

n and T ε
n,ζ satisfying Assumption 4.3, let

I be an abstract integration map acting on some sector V and let Zε = (�ε,
ε) be a discrete model realising
Kε = ∑N

n=0 Kε
n for I . Let furthermore γ > 0, assume that Assumption 4.5 is satisfied for σ = γ and define the

operator Kε
γ by (4.6). Then provided that γ + β /∈ N, and that Kε

γ satisfies Assumption 4.8 we have that Kε
γ maps

Dγ
ε (V ) into Dγ+β

ε (V ) and there is an operator Aε :Dγ
ε (V ) → Xε such that the identity

RεKε
γ f = KεRεf + Aεf (4.9)

holds for every f ∈Dγ
ε (V ). The operator Aε satisfies the estimate

∥∥Aεf
∥∥

γ+β;Kε;z;ε � |||f |||(ε)
γ ; ¯̄

Kε

(4.10)

locally uniformly over compact sets Kε of diameter bounded by 2ε and over z ∈ Rd . The proportionality constant
depends on the norm of the model, but is independent of ε otherwise. If Z̄ε = (�̄ε, 
̄ε) is a second model satisfying
Assumption 4.1 and realising Kε for I such that Assumption 4.8 is satisfied, then one has for every f ∈ Dγ

ε (V ,
ε)

and f̄ ∈ Dγ (V , 
̄ε) the bound

∣∣∣∣∣∣Kε
γ f ; K̄ε

γ f̄
∣∣∣∣∣∣(ε)

γ+β;K �
∥∥�̄ε

∥∥(ε)

γ ; ¯̄
K
|||f ; f̄ |||(ε)

γ ; ¯̄
K

+ ∥∥�ε − �̄ε
∥∥(ε)

γ ; ¯̄
K
|||f |||(ε)

γ ; ¯̄
K
, (4.11)

uniformly in ε.
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Remark 4.10. Assumption 4.8 will never be explicitely used in the proof of Theorem 4.9. Therefore, the above
theorem essentially states that given f ∈Dγ

ε , then Kε
γ f satisfies the large scale estimate in the Definition 2.12.

Remark 4.11. Examples of kernels satisfying all assumptions from this section are:

1. the usual heat kernel, i.e., the fundamental solution to ∂tK(t, x) = �K(t, x);
2. the usual discrete heat kernel, i.e., the fundamental solution to ∂tK(t, x) = �dK(t, x), where �d is the discrete

Laplacian acting on functions defined on Zd ;
3. the fundamental solution to ∂tK

ε(t, x) = (� − ε2�2)Kε(t, x).

We will only give the arguments for the kernel Kε in the third item. For the heat kernel (discrete heat kernel) the
arguments then follow in the same way (but using the estimates in [17, Section 5] for the discrete heat kernel). We
assume that we are in the continuous case, and that the scaling is given by s= (2,1, . . . ,1). We claim that for ‖z‖s ≥ ε

this kernel satisfies the bounds∣∣D�
xD

m
t Kε(z)

∣∣ � ‖z‖−|s|+2−|�|−2|m|
s . (4.12)

To show (4.12), setting z = (t, x) as usual, we distinguish between the case t ≤ ε2 and the case t ≥ ε2 and we exploit
the explicit form of Kε:

D�
xD

m
t Kε = ̂f ε

�,m(·, t), f ε
�,m(k, t) = (−1)mi�k�

(|k|2 + ε2|k|4)m
e−(|k|2+ε2|k|4)t .

For t ≤ ε2, we exploit the identity

1

td/2
f ε

�,m(k/
√

t, t) = t−
|�|+2|m|+d

2 g�,m

(
ε2/t, k

)
,

where we set

g�,m(c, k) = (−1)mi�k�
(|k|2 + c|k|4)m

e−(|k|2+c|k|4).

Since g�,m(c, ·) is a Schwartz function for every c with all its seminorms bounded uniformly over c ∈ [0,1], we deduce
that there exists a uniformly bounded collection of Schwartz functions G(c, ·) such that

D�
xD

m
t Kε(t, x) = t−

|�|+2|m|+d
2 G

(
ε2

t
,

x√
t

)
.

This immediately implies that

∣∣D�
xD

m
t Kε(t, x)

∣∣ � t−
|�|+2|m|+d

2

1 + |t−1/2x||�|+2|m|+d
� ‖z‖−d−|�|−2|m|

s ,

as claimed. For t ≤ ε2 we similarly note that

1

(ε2t)d/4
f ε

�,m

(
k/

(
ε2t

)d/4
, t

) = ε− d+|�|
2 t−

|�|+4|m|+d
4 h�,m

(
t/ε2, k

)
,

for some collection h�,m(c, ·) of Schwartz functions, uniformly bounded over c ∈ [0,1], so that for t ≤ ε2 one can
write

D�
xD

m
t Kε(t, x) = ε− d+|�|

2 t−
|�|+4|m|+d

4 H

(
t

ε2
,

x

(ε2t)1/4

)
, (4.13)

with H having the same properties as G. This yields as before

∣∣D�
xD

m
t Kε(t, x)

∣∣ � ε2|m|

|ε2t | |�|+4|m|+d
4 + |x||�|+4|m|+d

, (4.14)
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which yields the required bound when combining it with |t | ≤ ε2 and |x| ≥ ε. We moreover note that as a consequence
of (4.13) and (4.14) the bound (4.12) holds even for ‖z‖s ≤ ε provided that m = � = 0.

With this estimate at hand we can then use the same techniques as in [15, Sections 5 and 7] to decompose the kernel
Kε as

Kε = Rε + Kε
N +

N−1∑
n=1

Kε
n, (4.15)

where Rε is a smooth (uniformly in ε) remainder and each Kε
n is supported in the set {z : ‖z‖s ≤ 2−n}, and satisfies

the estimate

sup
z

∣∣D�
xD

m
t Kε

n(t, x)
∣∣ � 2n(|s|−2+|�|+2|m|), (4.16)

but only for � = m = 0 when n = N . We then define for any ζ ∈R, and any n ≤ N ,

(
T ε

n,ζ F
)
(z) =

{∑
|k|s<ζ+2

Xk

k!
∫

DkKε
n(z − y)F (y)dy, if n ≤ N − 1,

δζ+2>01
∫

Kε
N(z − y)F (y)dy, if n = N,

(4.17)

and now we can finally show the validity of all the assumptions in this section. To that end we assume that ζ is such
that ζ + 2 > 0, since otherwise there is nothing to be shown. The first item follows directly from the construction
of T ε

n,ζ . To see that the second item is satisfied note that for all n ≤ N − 1 and all multiindices k the function z �→
2n(2−|k|s)DkKε

n(z) defines a scaled test function, so that we can write

k!∥∥(
T ε

n,ζ F
)
(z)

∥∥
k
=

∣∣∣∣
∫

DkKε
n(z − y)F (y)dy

∣∣∣∣
= 2n(|k|s−2)

∣∣∣∣
∫

2n(2−|k|s )DkKε
n(z − y)F (y)dy

∣∣∣∣, (4.18)

which implies the first part in the estimate (4.2) (with β = 2). For the small scale estimate, in the same way we see
that

∥∥(
T ε

N,ζ F
)
(z)

∥∥
0 =

∣∣∣∣
∫

Kε
N(z − y)F (y)dy

∣∣∣∣ � 2−N(2+ζ )‖F‖ζ ;Kε;z;ε,

where we used the definition (2.8) of ‖ · ‖ζ ;Kε;z;ε to gain the additional factor 2−ζN . Since ‖(T ε
N,ζ F )(z)‖k = 0 by defi-

nition for all multi-indices k with at least one positive coordinate, we conclude that the second item in Assumption 4.3
is satisfied. We turn to the third item in Assumption 4.3. To that end we note that for n ≤ N − 1,

k!∥∥(
T ε

n,ζ F
)
(z) − 
ε

zy

(
T ε

n,ζ F
)
(y)

∥∥
k

=
∣∣∣∣
∫ [

DkKε
n(z − x) −

∑
|α+k|s<ζ+2

1

α! (z − y)αDk+αKε
n(y − x)

]
F(x)dx

∣∣∣∣, (4.19)

so that the proof of [15, Lemma 5.18] yields the desired estimate. Indeed, one may simply copy its proof (which is an
application of Taylor’s formula), but in [15, Equ. 5.29] one uses the fact that 2n(2−|k+�|s)Dk+�Kε

n(y + h − z) defines
a test function with a support of radius 2n−1 centred around y. Since we are in the continuous case, according to
Remarks 4.13 and 4.14 the fourth item is in practice not necessary, so that we omit its proof. The first part in the fifth
item of Assumption 4.3 is a direct consequence of the construction of T ε

n,ζ . Regarding the second part we note that
for n ≤ N − 1, such that 2−n ≤ δ,

ιε
(
Kε

nF
)(

ϕδ
z

) =
∫

ϕδ
z (y)Kε

n(y − x)F (x)dx, (4.20)
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and that 22nKε
n(y − x) � 2n|s|, so that∫

22nKε
n(y − x)ϕδ

z (y) dy (4.21)

defines a test function with a support of radius 2δ centred around z. The estimate in the case n ≤ N − 1 is then imme-
diate. To see that we also have the desired estimate for n = N we simply use the fact that

∫
Kε

N � 2−2N . It moreover
follows from the proof of [15, Lemma 5.5] that one can modify the Kε

n’s such that additionally Assumption 4.5 is
satisfied. Finally, Assumption 4.8 is actually a consequence of Theorem 4.9. Indeed, according to Remark 4.10 As-
sumption 4.8 is never explicitly used in its proof. Since in the continuous case the Dγ

ε -norm on small scales involves
division by powers of ε (and not the true distance between any chosen points y and z), and since moreover in the the
large scale part of the definition of the Dγ

ε -spaces one is allowed to choose y and z such that their distance is of order
ε, a triangle inequality argument shows the validity of Assumption 4.8.

Remark 4.12. In the above example for the kernel Kε we assumed that we are in the continuous case. This would
be for example a good choice in the case of the �3

4-equation, since one can make sense of Kε ∗ ξ , where ξ denotes
space-time white noise, “by hand” as a continuous function. One might however imagine other examples where the
continuous case is not the right choice. If this happens then it seems to be the case that one may also choose some
sort of inhomogeneous transparent case, where one keeps the definitions of the usual transparent case, but at scales
smaller than ε test functions are scaled differently, i.e., they are scaled in the following way:

ϕδ
(t,x)(s, y) = δ−d−4ε2ϕ

(
δ−4ε2(s − t), δ−1(y − x)

)
.

This scaling is such that, at scale ε, it coincides with the usual parabolic scaling, but at scales below ε it respects the
fact that as a consequence of (4.13) and (4.14) one has for all multi-indices � and m the estimate∣∣D�

xD
m
t Kε(t, x)

∣∣ � ε2|m|‖z‖−(|s|−2)−|�|−4|m|
ε ,

for ‖z‖s ≤ ε, where ‖z‖ε = ((ε2t)1/4 + |x|).
Remark 4.13. As a consequence of Theorem 4.9 one only has an identity of the form RεKε

γ = KεRε + small error.
Since the kind of approximation schemes we are interested in usually have a divergent part, one might get worried
that one is not able to control the error term. However, it turns out that in many examples of interest one is able to
enforce the identity RεKε

γ = KεRε by modifying Kε
γ . Indeed, consider the common situation in which elements of

Xε can be identified with functions on Rd (or some subset thereof) and where the reconstruction operator is given by
(Rεf )(z) = (�ε

zf (z))(z). One then has(
RεKε

γ f
)
(z) = (

Kε�ε
zf (z)

)
(z) + �ε

z

(
T ε

γ

(
Rεf − �ε

zf (z)
)
(z)

)
(z). (4.22)

The example to have in mind to think about (4.22) is that the first summand on the right hand side is given by∫
Kε(z, y)

(
�ε

zf (z)
)
(y) dy, (4.23)

(for a suitable, possibly discrete, reference measure dz), whereas the second term on the right hand side is given by

∑
|k|s<γ+β

(�ε
zX

k)(z)

k!
∫

Dk
1Kε(z, y)

(
Rεf − �ε

zf (z)
)
(y) dy. (4.24)

Assume that �ε
z1 = 1 (here, we set 1 = X0). The definition of a model then yields (�ε

zX
k)(z) ≈ ε|k|s (it does however

not yield (�ε
zX

k)(z) = 0). In this setting one then has(
RεKε

γ f
)
(z) − (

KεRεf
)
(z)

=
∑
n

∑
0<|k|s<γ+β

(�ε
zX

k)(z)

k!
∫

Dk
1Kε

n(z, y)
(
Rεf − �ε

zf (z)
)
(y) dy. (4.25)
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Define now an operator Aε via

(
Aεf

)
(z) =

[∑
n

∑
0<|k|s<γ+β

(�ε
zX

k)(z)

k!
∫

Dk
1Kε

n(z, y)
(
Rεf − �ε

zf (z)
)
(y) dy

]
1. (4.26)

Then, the operator K̄ε
γ =Kε

γ −Aε satisfies RεK̄ε
γ = KεRε as desired.

Remark 4.14. The problem with the above construction is that there seems to be no reason in general for Aε to map
Dγ

ε into Dγ+β
ε so that it may be necessary to introduce higher order corrections to Aε . However, consider the discrete,

semidiscrete or continuous case introduced in Section 2. It is usually possible to impose (�ε
zX

k)(z) = 0, for all z

in the support of the reference measure (this was for instance imposed in [17]), in which case (4.25) shows that the
choice (Rεf )(z) = (�ε

zf (z))(z), automatically yields Aε ≡ 0. Finally, let us mention at this point that it was shown
in [15] that the identity Aε ≡ 0 also holds in the transparent case. This illustrates that for most cases of interest no
further modification of Kε

γ is needed.

Proof. Fix y, z ∈ K such that ε ≤ ‖y − z‖s ≤ 1. We first estimate the non-polynomial part. Making use of the first
and third property in Definition 4.6 we see that for any � /∈N,∥∥Kε

γ f (z) − 
ε
zyKε

γ f (y)
∥∥

�

= ∥∥I(
f (z) − 
ε

zyf (y)
)∥∥

�
�

∥∥f (z) − 
ε
zyf (y)

∥∥
�−β

≤ ‖y − z‖γ+β−�
s |||f |||(ε)

γ ; ¯̄
K
. (4.27)

In a similar way we see that∥∥Kε
γ f (z) − 
ε

zyKε
γ f (y) − K̄ε

γ f̄ (z) + 
̄ε
zy f̄ (y)

∥∥
�
� ‖y − z‖γ+β−�

s |||f ; f̄ |||(ε)
γ ; ¯̄

K
. (4.28)

Thus, (4.27)–(4.28) show that the non-polynomial components satisfy the desired estimates. To deal with the polyno-
mial components of Kε

γ we make use of the following lemma that is established after this proof.

Lemma 4.15. Under the assumptions of Theorem 4.9, for any ζ ∈ A and any a ∈ V with homogeneity ζ , one has the
identity


ε
zy

(
Ia +

∑
n

(
T ε

n,ζ �
ε
ya

)
(y)

)
= I
ε

zya +
∑

n,ζ̄∈A

(
T ε

n,ζ̄
�ε

zQζ̄ 

ε
zya

)
(z) (4.29)

for any choice of y, z ∈Rd .

As a consequence of Lemma 4.15 we see that,


ε
zyIf (y) + 
ε

zy

∑
n,ζ

(
T ε

n,ζ �
ε
yQζ f (y)

)
(y)

= I
ε
zyf (y) +

∑
n,ζ̄

(
T ε

n,ζ̄
�ε

zQζ̄ 

ε
zyf (y)

)
(z). (4.30)

Note that I does not produce any polynomial component. Thus, with (4.30) at hand, we see that for any multiindex k,
(
ε

zyKε
γ f (y))k − (Kε

γ f (z))k = ∑
n[In + IIn − IIIn], where

In =
∑
ζ̄

Qk

(
T ε

n,ζ̄

(
�ε

zQζ̄

[

ε

zyf (y) − f (z)
])

(z)
)
,

IIn =Qk(

ε
zy

(
T ε

n,γ

(
Rεf − �ε

yf (y)
)
(y)

)
,

IIIn = Qk

(
T ε

n,γ

(
Rεf − �ε

zf (z)
)
(z)

)
.

(4.31)
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We first assume that 2−n ≤ ‖y−z‖s. In this case we bound In, IIn and IIIn seperately. We deduce from Assumption 4.3
that for all ζ̄ and all n,

∥∥T ε

n,ζ̄

(
�ε

zQζ̄

[

ε

zyf (y) − f (z)
])

(z)
∥∥|k|s � 2n(|k|s−β−ζ̄ )‖y − z‖γ−ζ̄

s

∥∥�ε
∥∥(ε)

γ ; ¯̄
K
|||f |||(ε)

γ ; ¯̄
K
. (4.32)

We deduce from the representation in (4.31) that only those values ζ̄ contribute to the first sum in (4.31) for which
ζ̄ > |k|s − β . Thus, summing the right hand side of (4.32) over n such that 2−n ≤ ‖y − z‖s we obtain an upper bound
that is a multiple of ‖y −z‖γ+β−|k|s

s . In a similar way we can deal with IIIn, but making also use of the Reconstruction
Theorem 3.6. To estimate IIn we first note that as a consequence of Assumption 4.1,∥∥
ε

zyT
ε
n,γ

(
Rεf − �ε

yf (y)
)
(y)

∥∥|k|s

�
∑

�:|k+�|s<γ+β

(
k + �

�

)
‖z − y‖�

s

∣∣Q�+k

(
T ε

n,γ

(
Rεf − �ε

yf (y)
)
(y)

)∣∣
�

∑
�:|k+�|s<γ+β

2n(|�+k|s−β−γ )‖z − y‖|�|s
s |||f |||(ε)

γ, ¯̄
K

∥∥�ε
∥∥(ε)

γ ; ¯̄
K
. (4.33)

Summing each summand in (4.33) first over n such that 2−n ≤ ‖y − z‖s, we obtain a bound that is a multiple of
‖y − z‖γ+β−|k|s |||f |||(ε)

γ, ¯̄
K
‖�ε‖(ε)

γ ; ¯̄
K

as desired. The corresponding bounds on the difference Kε
γ − K̄ε

γ are obtained in a

similar fashion. We now seek for bounds on large scales, i.e., for ‖y − z‖s < 2−n. Recall the consistency relation in
Assumption 4.3. Thus, for any ζ̄ ∈ (|k|s − β,γ )

Qk

(
T ε

n,ζ̄

(
�ε

zQζ̄

[

ε

zyf (y) − f (z)
])

(z)
) =Qk

(
T ε

n,γ

(
�ε

zQζ̄

[

ε

zyf (y) − f (z)
])

(z)
)
. (4.34)

Consequently, adding and subtracting Qk(T
ε
n,γ �ε

z[
ε
zyf (y) − f (z)](z)) to In + IIn − IIIn, we see that we can write

In + IIn − IIIn as −I′n + II′n − III′n, where

I′n =
∑

ζ̄≤|k|s−β

Qk

(
T ε

n,γ

(
�ε

zQζ̄

[

ε

zyf (y) − f (z)
])

(z)
)
,

II′n =Qk

(
T ε

n,γ

(
�ε

yf (y) −Rεf
)
(z)

)
,

III′n =Qk

(

ε

zy

(
T ε

n,γ

(
�ε

yf (y) −Rεf
))

(y)
)
.

(4.35)

To bound I′n first note that for any ζ̄ ≤ |k|s − β ,

I′n � 2n(|k|s−β−ζ̄ )
∥∥�ε

∥∥(ε)

γ ; ¯̄
K
‖y − z‖γ−ζ̄

s |||f |||(ε)
γ ; ¯̄

K
. (4.36)

Summing this over n, such that 2n < ‖y − z‖−1
s , leads to a bound that is a multiple of ‖y − z‖γ+β−|k|s

s . It remains to
bound the difference II′n − III′n. We note that as a consequence of the third item in Assumption 4.3,

∣∣II′n − III′n
∣∣ � 2n(�γ+β�−β)‖y − z‖�γ+β�−|k|s

s sup
ϕ∈�

∣∣ιε(�ε
yf (y) −Rεf

)(
ϕn−1

z

)∣∣. (4.37)

Writing

�ε
yf (y) −Rεf = (

�ε
zf (z) −Rεf

) + �ε
z

(

ε

zyf (y) − f (z)
)
, (4.38)

we may estimate using the Reconstruction Theorem 3.6,

sup
ϕ∈�

∣∣ιε(�ε
zf (z) −Rεf

)(
ϕn

z

)∣∣ � 2−nγ
∥∥�ε

∥∥(ε)

γ ; ¯̄
K
|||f |||(ε)

γ ; ¯̄
K
. (4.39)
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Regarding the second term on the right hand side of (4.38), we can estimate

sup
ϕ∈�

∣∣ιε(�ε
z

(

ε

zyf (y) − f (z)
))(

ϕn−1
z

)∣∣ �
∑
ζ<γ

∥∥�ε
∥∥(ε)

γ ; ¯̄
K
‖y − z‖γ−ζ |||f |||(ε)

γ ; ¯̄
K

2−nζ . (4.40)

Plugging the right hand sides of (4.39) and (4.40) into (4.37), and summing over n such that 2n ≤ ‖y − z‖−1
s yields

the bound of the required order. The corresponding bounds on the difference Kε
γ − K̄ε

γ can be obtained in a similar
way. We omit the details.

We now turn to the proof of (4.9). As a consequence of (3.1) and Assumption 4.8 we have that for every compact
set Kε of diameter bounded by 2ε, and every z ∈ Rd ,

∥∥RεKε
γ f − �ε

zKε
γ f (z)

∥∥
γ+β;Kε;z;ε �

∥∥�ε
∥∥(ε)

γ+β;K̄ε

∣∣∣∣∣∣Kε
γ f

∣∣∣∣∣∣
γ+β;Kε;ε

�
(∥∥�ε

∥∥(ε)

γ+β; ¯̄
Kε

)2|||f |||
γ ; ¯̄

Kε;ε. (4.41)

Setting Aεf =RεKε
γ f − KεRεf , it remains to show that

∥∥�ε
zKε

γ f (z) − KεRεf
∥∥

γ+β;Kε;z;ε �
∥∥�ε

∥∥(ε)

γ+β;K̄ε
|||f |||(ε)

γ ; ¯̄
Kε

. (4.42)

Since the model realises Kε for I , one has

�ε
zKε

γ f (z) =
∑
n

(
Kε

n�ε
zf (z) + �ε

z

(
T ε

n,γ

[
Rεf − �ε

zf (z)
])

(z)
)
. (4.43)

Consequently, the left hand side in (4.42) can be written as∑
n

(
Kε

n

(
�ε

zf (z) −Rεf
) − �ε

z

(
T ε

n,γ

[
�ε

zf (z) −Rεf
]
(z)

))
(4.44)

and we may deduce (4.42) using the fourth item in Assumption 4.3. �

We now provide the proof of Lemma 4.15.

Proof. First note that 
ε
zyIa − I
ε

zya ∈ T̄ . Since we assumed that �ε
z is injective on T̄ , it is enough to show that

�ε
z

(

ε

zyIa +
∑
n


ε
zy

(
T ε

n,ζ �
ε
ya

)
(y)

)
= �ε

z

(
I
ε

zya +
∑
n,ζ̄

(
T ε

n,ζ̄
�ε

zQζ̄ 

ε
zya

)
(z)

)
. (4.45)

This identity however follows from the fact that �ε realises Kε for I . �

Remark 4.16. At first sight it is not clear that a map I with the properties as stated in this section exists. However,
the result below shows that one is always able to extend the regularity structure such that it accommodates a map
I as in Definition 4.6. It also shows that one is able to extend the model to a pair (�̂ε, 
̂ε) such that �̂ε realises
Kε for I . The pair (�̂ε, 
̂ε) turns out to satisfy all defining properties of a model except the second inequality in
(2.13) (which however still holds on the original regularity structure). We call such a pair a large scale model for the
extended regularity structure.

Remark 4.17. The proof of Theorem 4.18 below shows that in the setup of the discrete, semidiscrete or continuous
case, assuming that on the right hand side of (4.3) the factor ‖y−z‖�ζ+β�−|k|s

s can be replaced by ε�ζ+β�−|k|s whenever
‖y − z‖s ≤ ε, the large scale model (�̂ε, 
̂ε) turns out to be a (proper) model. In the transparent setting it is sufficient
that (4.3) also holds for all ‖y − z‖s ≤ ε.
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Theorem 4.18. Let T = (A,T ,G) be a regularity structure and (�ε,
ε) be a model for T satisfying Assump-
tion 4.1. Let β > 0 and assume that there are operators Kε

n and T ε
n,ζ satisfying Assumption 4.3. Let V be a sector

with the property that for every α /∈ N with Vα �= 0, one has α + β /∈ N. Let furthermore W be a subsector of V and
let I : W → T be an abstract integration map of order β such that the model (�ε,
ε) realises Kε for I . Then, there
exists a regularity structure T̂ containing T and a large scale model (�̂ε, 
̂ε) (see Remark 4.16) for T̂ extending
(�ε,
ε) and an abstract integration map Î of order β defined on V such that �̂ε realises Kε for Î and such that
Îτ = Iτ for all τ ∈ W . Moreover, this extension is continuous.

Remark 4.19. We refer the reader to [15, Thm. 5.14] for a formulation of a more quantitative version of the continuity
statement, which also holds in our case.

Proof. As in the proof of [15, Thm. 5.14] we may restrict ourselves to the situation where the sector V is given by

V = Vα1 ⊕ Vα2 ⊕ · · · ⊕ Vαn, (4.46)

the αi are an increasing sequence of elements in A, and Wαk
= Vαk

for all k < n. The algebraic part of the proof of
[15, Thm. 5.14] shows that it is possible to define Î on V such that it satisfies the properties stated in Definition 4.6.
It remains to extend the model (�ε,
ε). To that end we define for τ ∈ Vαn ,

�̂ε
zÎ(τ )

def= Kε�̂ε
zτ − �̂ε

z

(
T ε|τ |�̂ε

zτ
)
(z),


̂ε
zy Î(τ )

def= Î
̂ε
zyτ +

∑
ζ∈A

(
T ε

ζ �̂ε
zQζ 
̂

ε
zyτ

)
(z) − 
̂ε

zy

(
T ε|τ |�̂ε

yτ
)
(y).

(4.47)

Note that both quantities are well defined, since on the corresponding right hand sides �̂ε and 
̂ε are either applied to
elements of homogeneity smaller or equal to |τ | or to polynomials. We leave it as an exercise to verify that �̂ε and 
̂ε

defined in this way indeed satisfy the required algebraic constraints. We now show that �̂ε
zÎ(τ ) satisfies the analytical

estimates stated in Definition 2.7. First of all, note that by the fourth item in Assumption 4.3,

∥∥�̂ε
zÎ(τ )

∥∥|τ |+β;Kε;z;ε ≤
∑
n≤N

∥∥Kε
n�̂ε

zτ − �̂ε
z

(
T ε

n,|τ |�̂ε
zτ

)
(z)

∥∥|τ |+β;Kε;z;ε � 1, (4.48)

where we recall that N is the smallest integer such that 2−N ≤ ε. We now turn to the required estimates on scales larger
than ε. We first treat the case |τ | + β < 0. Let δ ∈ (ε,1], fix η ∈ �, and z ∈ Rd . We first note that �̂ε

zÎ(τ ) = Kε�̂ε
zτ .

Thus, for n such that 2−n > δ we can estimate using the fifth and second item in Assumption 4.3,

∣∣ιε(Kε
n�̂ε

zτ
)(

ηδ
z

)∣∣ �
∣∣∣∣
∫

Q0
((

T ε
n,0�̂

ε
zτ

)
(x)

)
ηδ

z(x) dx

∣∣∣∣
� 2−nβ

∫
sup
ϕ∈�

∣∣(ιε�̂ε
zτ

)(
ϕδ

x

)∣∣∣∣ηδ
z(x)

∣∣dx. (4.49)

One may now show that uniformly over all x in the support of ηδ
z

∣∣(ιε�̂ε
zτ

)(
ϕn

x

)∣∣ �
∑
α≤|τ |

2−nαδ|τ |−α. (4.50)

Thus, plugging this estimate in into the right hand side of (4.49) and summing over 2−n > δ yields the correct bound.
The bound in the case 2−n ≤ δ may be obtained in a similar manner, but making use of the second estimate of the fifth
item in Assumption 4.3. We now deal with the case |τ | + β > 0, and we note that the case |τ | + β = 0 is excluded by
assumption. Define as in the proof of Theorem 3.6 functions �̃

δ,k
z,[zk] and �̃

δ,k
z,[zk,zk+1] with zk ∈ �s

k and zk+1 ∈ �s
k+1.
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Moreover, let n0 be the smallest integer such that 2−n0 ≤ δ and let z|k be as in the aforementioned proof. We can write
ιε(�̂

ε
zÎ(τ ))(ηδ

z) = I + II + III, where

I =
∑

zN∈�s
N

ιε
(
�̂ε

z|N Î(τ )
)(

�̃
δ,k
z,[zN ]

)
,

II =
N−1∑
k=n0

∑
zk∈�s

k ,zk+1∈�s
k+1

ιε
(
�̂ε

z|k Î(τ ) − �̂ε
z|k+1

Î(τ )
)(

�̃
δ,k
z,[zk,zk+1]

)
,

III =
∑

zn0∈�s
n0

ιε
(
�̂ε

zÎ(τ ) − �̂ε
z|n0

Î(τ )
)(

�̃
δ,n0
z,[zn0 ]

)
.

As in (3.14) we can estimate

∣∣ιε(�̂ε
z|N Î(τ )

)(
�̃

δ,k
z,[zN ]

)∣∣ �
(
δ2N

)−|s|2−N(|τ |+β)
∥∥�̂ε

z|N Î(τ )
∥∥|τ |+β;[�̃δ,N

z,[zN ]];z|N ;ε. (4.51)

We now obtain the desired estimate on I making use of (4.48) and arguing in the same way as in the proof of Theo-
rem 3.6. To estimate II, note that

�̂ε
z|k Î(τ ) − �̂ε

z|k+1
Î(τ ) = �̂ε

z|k
(
Î(τ ) − 
̂ε

z|kz|k+1
Î(τ )

)
. (4.52)

By the defining equation of 
̂ε in (4.47), the term inside the brackets may be written as

Î
(
τ − 
̂ε

z|kz|k+1
τ
) −

∑
ζ∈A

(
T ε

ζ �̂ε
z|kQζ 
̂

ε
z|kz|k+1

τ
)
(z|k) + 
̂ε

z|kz|k+1

(
T ε|τ |�̂ε

z|k+1
τ
)
(z|k+1). (4.53)

We estimate the polynomial and non-polynomial parts separately. Note that τ − 
̂ε
z|kz|k+1

τ is an element of T<|τ |. Thus,
by our recursive construction

∣∣ιε(�̂ε
z|k Î

(
τ − 
̂ε

z|kz|k+1
τ
))(

�̃
δ,k
z,[zk,zk+1]

)∣∣
�

(
δ2k

)−|s| ∑
ζ<|τ |+β

2−kζ
∥∥Î(

τ − 
̂ε
z|kz|k+1

τ
)∥∥

ζ

�
(
δ2k

)−|s| ∑
ζ<|τ |+β

2−kζ
∥∥τ − 
̂ε

z|kz|k+1
τ
∥∥

ζ−β

� 2−k(|τ |+β)
(
δ2k

)−|s|
. (4.54)

Here we used the continuity of Î in the penultimate inequality. To obtain the last inequality we used the fact that by
our recursive construction 
̂ε satisfies the required analytical estimates on large scales when applied to elements of
homogeneity smaller than or equal to |τ |. Summing the above over the domain of summation of II yields the desired
bound. To bound the non-polynomial part we make use of the following lemma whose proof is deferred to the end of
this section.

Lemma 4.20. Fix α < |τ | + β , then uniformly in k ∈ [n0, . . . ,N − 1],∥∥∥∥∑
ζ∈A

(
T ε

ζ �̂ε
z|kQζ 
̂

ε
z|kz|k+1

τ
)
(z|k) − 
̂ε

z|kz|k+1

(
T ε|τ |�̂ε

z|k+1
τ
)
(z|k+1)

∥∥∥∥
α

� ‖z|k − z|k+1‖|τ |+β−α
s . (4.55)
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With Lemma 4.20 at hand the desired estimate on II readily follows. The estimate on III works along the same
lines, we omit the details. This shows that �̂ε satisfies the required analytical estimates. We turn to the analytical
estimates of 
̂ε . To that end recall (4.47). We first deal with the non-polynomial part. In that case we have for any
α < |τ | + β ,∥∥Î(


̂ε
zyτ − τ

)∥∥
α

�
∥∥
̂ε

zyτ − τ
∥∥

α−β
. (4.56)

Thus, the desired estimate follows from our recursive construction. The desired estimate of the polynomial part is a
consequence of Lemma 4.20. �

We finish this section with the proof of Lemma 4.20.

Proof. We write T ε
ζ = ∑

n T ε
n,ζ and analogously for T ε|τ |. Then, for each n, the component of order α of the term on

the left hand side of (4.55) can be written as∑
ζ>α−β

Qα

((
T ε

n,|τ |�̂ε
z|kQζ 
̂

ε
z|kz|k+1

τ
)
(z|k)

) −Qα

(

̂ε

z|kz|k+1

(
T ε

n,|τ |�̂ε
z|k+1

τ
)
(z|k+1)

)
. (4.57)

We first treat the case 2−n ≤ ‖z|k − z|k+1‖s. We bound the terms above seperately. The second term in (4.57) is
bounded from above by∑

ζ<|τ |+β

∥∥
̂ε
z|kz|k+1

Qζ

(
T ε

n,|τ |�̂ε
z|k+1

τ
)
(z|k+1))

∥∥
α

�
∑

ζ<|τ |+β

‖z|k − z|k+1‖ζ−α
s 2n(ζ−β−|τ |),

where we made use of the second item in Assumption 4.3. Summing the above over n such that 2−n ≤ ‖z|k − z|k+1‖s
yields the desired bound. Making again use of the second item in Assumption 4.3 and our recursive construction we
see that the first term in (4.57) is bounded from above by∑

ζ>α−β

2n(α−β−ζ )
∥∥
̂ε

z|kz|k+1
τ
∥∥

ζ
�

∑
ζ>α−β

2n(α−β−ζ )‖z|k − z|k+1‖|τ |−ζ
s . (4.58)

Summing over n such that 2−n ≤ ‖z|k − z|k+1‖s yields the the correct bound. We now treat the case ‖z|k − z|k+1‖s <

2−n. To that end we rewrite (4.57) as Iαz|kz|k+1
− IIαz|kz|k+1

, where

Iαz|kz|k+1
=Qα

((
T ε

n,|τ |�̂ε
z|k+1

τ
)
(z|k)

) −Qα

(

̂ε

z|kz|k+1

(
T ε

n,|τ |�̂ε
z|k+1

τ
)
(z|k+1)

)
,

IIαz|kz|k+1
=

∑
ζ≤α−β

Qα

((
T ε

n,|τ |�̂ε
z|kQζ 
̂

ε
z|kz|k+1

τ
)
(z|k)

)
.

The third item in Assumption 4.3 shows that Iαz|kz|k+1
is bounded from above by

2n(�|τ |+β�−β)‖z|k − z|k+1‖�|τ |+β�−α
s 2−n|τ |. (4.59)

We turn to the estimate of IIαz|kz|k+1
. A similar reasoning as above yields

IIαz|kz|k+1
�

∑
ζ≤α−β

2n(α−β−ζ )‖z|k − z|k+1‖|τ |−ζ
s . (4.60)

Thus, summing (4.59) and (4.60) over 2n ≤ ‖z|k − z|k+1‖−1
s once again yields the correct bound. �
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4.1. Comparison between continuous and discrete convolution operators

In this section we show how one can compare the convolution operators built from a continuous model (�,
) and
from a discrete model (�ε,
ε). Before we dive into the details we shortly explain the notion of continuous convolution
operators. This notion was introduced in [15, Section 5] and we explain here how it fits into the framework of the
current article. Assume that there is a kernel K :Rd ×Rd →R that can be decomposed as

K(y, z) =
∑
n≥0

Kn(y, z), (4.61)

where the Kn’s are smooth functions supported in the set {(y, z) : ‖y − z‖s ≤ 2−n}. Given a distribution ξ ∈ D′(Rd)

such that for some ζ ∈R,∣∣ξ(
ϕn

z

)∣∣ � 2−nζ , (4.62)

for all scaled test functions ϕn
z , all z ∈Rd and all n ≤ N , we define for any multiindex k,

Qk

(
(Tn,ζ ξ)(z)

) =
{

1
k!

∫
DkKn(z, y)ξ(dy), if n < N,

1
k!

∑
n≥N

∫
DkKn(z, y)ξ(dy), if n = N.

(4.63)

We can now define (Tn,ζ ξ)(z) in the same way as (T ε
n,ζ F )(z) in Equation (4.1).

We note that the first item in Assumption 4.3 is satisfied for Tn,ζ by construction and we assume that there is β > 0
such that also the remaining four items are satisfied for it. We moreover assume that the value of β coincides with
the value of β for the discrete convolution operator. We now define a continuous convolution operator Kγ in the same

way as Kε
γ in (4.6) with the only difference that each T

(ε)
ζ is replaced by Tζ , and likewise T

(ε)
γ is replaced by Tγ . We

make the following assumption.

Remark 4.21. We note that Assumption 4.3 was shown to hold in the transparent case. Indeed, as mentioned above,
the first item is a direct consequence of the construction of the Tn,ζ ’s, the second item is a consequence of [15,
Equ. 5.4], the third item is a consequence of [15, Equs 5.28 & 5.31] and the fourth item can be deduced from the third
by making use of choice of the family of seminorms on Xε =D′(Rd) in the transparent case.

Assumption 4.22. There is a constant C(ε) > 0 such that for all n ≤ N , all ζ ∈ A, all y, z ∈ Rd such that ε ≤
‖y − z‖s ≤ 2−n, and Fε ∈Xε,ζ,z ∩Xε,ζ,y and F ∈ D′(Rd) satisfying (4.62),

1. one has the estimate,∥∥(
T ε

n,ζ F
ε
)
(z) − (Tn,ζ F )(z)

∥∥|k|s

� 2n(|k|s−β)
(

sup
ϕ∈�

∣∣(ιεF ε
)(

ϕn
z

) − F
(
ϕn

z

)∣∣ + C(ε) sup
ϕ∈�

∣∣F (
ϕn

z

)∣∣), (4.64)

2. one has the estimate,∥∥(
T ε

n,ζ F
ε
)
(z) − (Tn,ζ F )(z) − 
ε

zy

(
T ε

n,ζ F
ε
)
(y) + 
zy(Tn,ζ F )(y)

∥∥|k|s
� 2n(�ζ+β�−β)‖y − z‖�ζ+β�−|k|s

s

×
(

sup
ϕ∈�

∣∣(ιεF ε
)(

ϕn−1
z

) − F
(
ϕn−1

z

)∣∣ + C(ε) sup
ϕ∈�

∣∣F (
ϕn−1

z

)∣∣).

The proportionality constants above are assumed to be independent of all parameters involved.

Remark 4.23. Although we did not state it like this, this assumption only seems to be useful when limε→0 C(ε) = 0.
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With Assumption 4.22 at hand, we have the following comparison theorem.

Theorem 4.24. Let (A,T ,G) be a regularity structure and let (�ε,
ε) and (�,
) be a discrete and a continuous
model for it. Let the assumptions of Theorem 4.9 be satisfied and let Assumption 4.22 be satisfied. Then, for any
f ε ∈Dγ

ε and f ∈Dγ , one has the bound

∣∣∣∣∣∣Kγ f ;Kε
γ f ε

∣∣∣∣∣∣
γ+β;K �

∥∥�;�ε
∥∥

γ ; ¯̄
K
|||f |||

γ ; ¯̄
K

+ ∥∥�(ε)
∥∥(ε)

γ ; ¯̄
K

∣∣∣∣∣∣f ;f ε
∣∣∣∣∣∣

γ ; ¯̄
K

+ C(ε)‖�‖
γ ; ¯̄

K
|||f |||

γ ; ¯̄
K

+ ∣∣∣∣∣∣Kε
γ f ε

∣∣∣∣∣∣
γ+β;K,ε

+ sup
(y,z)∈K

‖y−z‖s<ε

sup
β<γ

‖Kγ f (z) − 
zyKγ f (y)‖β

‖y − z‖γ−β
s

, (4.65)

where the proportionality constant is independent of all parameters.

Proof. Since the proof works along similar lines as the proof of Theorem 4.9, we refrain from providing all the
details. We however illustrate the appearance of the terms in the second line of (4.65). First of all, the last two terms
are a direct consequence of Definition 2.17 of |||·, ·|||γ ;K. To see how the first term appears, note that the term in (4.32)
equals in the current context

Qk

(
Tn,ζ̄

(
�ε

zQζ̄

[

ε

zyf
ε(y) − f ε(z)

])
(z)

) −Qk

(
Tn,ζ̄

(
�zQζ̄

[

zyf (y) − f (z)

])
(z)

)
. (4.66)

According to Assumption 4.22 it may be bounded by

2n(|k|s−β)
(

sup
ϕn

z

∣∣ιε(�ε
zQζ̄

[

ε

zyf
ε(y) − f ε(z)

])(
ϕn

z

) − �zQζ̄

[

zyf (y) − f (z)

](
ϕn

z

)∣∣
+ C(ε) sup

ϕn
z

∣∣�zQζ̄

[

zyf (y) − f (z)

](
ϕn

z

)∣∣), (4.67)

and one see that the latter term in (4.67) is responsible for the appearance of the term C(ε)‖�‖γ ;K̄|||f |||γ ;K̄. �

4.2. Convolution operators in weigthed Dγ
ε -spaces

In this section we extend the result from the previous section to spaces of singular modelled distributions. Before we
state the main result of this subsection we need one more assumption.

Assumption 4.25. Let T = (A,T ,G) be a regularity structure and let V be a sector of regularity α ∈ A. Fix γ,β > 0,
η ∈ R and a compact set K. We assume that

∣∣∣∣∣∣Kε
γ f

∣∣∣∣∣∣

̄,η̄;K;ε �

∥∥�ε
∥∥(ε)

γ ; ¯̄
K
|||f |||

γ,η; ¯̄
K;ε, (4.68)

where 
̄ = γ +β and η̄ = (α ∧ η)+β and f ∈Dγ,η
ε (V ,
ε). Given a second discrete model (�̄ε, 
̄ε) with associated

convolution operator K̄ε
γ , and f̄ ∈ Dγ,η

ε (V , 
̄ε) taking values in V , we assume that

∣∣∣∣∣∣Kε
γ f ; K̄ε

γ f̄
∣∣∣∣∣∣


̄,η̄;K;ε �
∥∥�ε

∥∥(ε)

γ ; ¯̄
K
|||f ; f̄ |||(ε)

γ,η; ¯̄
K

+ ∥∥�ε − �̄ε
∥∥(ε)

γ ; ¯̄
K
|||f |||(ε)

γ,η; ¯̄
K
. (4.69)

Here, the proportionality constant is independent of ε.

Theorem 4.26. Under the same assumption as in Theorem 4.9 let α be the regularity of the sector V , let η < γ ,
assume that α ∧ η > −m and that the operators Kε

γ and K̄ε
γ satisfy Assumption 4.25. If we also assume that the



2238 D. Erhard and M. Hairer

reconstruction operator satisfies Assumption 3.13, then, provided that 
̄ = γ + β /∈ N and η̄ = (α ∧ η) + β /∈ N one

has Kε
γ f ∈D
̄,η̄

ε (V ). Furthermore, one has the bound

∣∣∣∣∣∣Kε
γ f ; K̄ε

γ f̄
∣∣∣∣∣∣(ε)


̄,η̄;K � |||f ; f̄ |||(ε)
γ,η; ¯̄

K
+ ∥∥�ε − �̄ε

∥∥(ε)

γ ; ¯̄
K
. (4.70)

Let (�,
) be a continuous model with associated convolution operator Kγ . If additionally Assumption 4.22 is satis-
fied, then for any f ∈Dγ,η(
) and any f ε ∈Dγ,η

ε (
ε) we have the estimate

∣∣∣∣∣∣Kγ f ;Kε
γ f ε

∣∣∣∣∣∣

̄,η̄;K �

∥∥�;�ε
∥∥

γ ; ¯̄
K
|||f |||

γ,η; ¯̄
K

+ ∥∥�(ε)
∥∥(ε)

γ ; ¯̄
K

∣∣∣∣∣∣f ;f ε
∣∣∣∣∣∣

γ,η; ¯̄
K

+ C(ε)‖�‖
γ ; ¯̄

K
|||f |||

γ,η; ¯̄
K

+ ∣∣∣∣∣∣Kε
γ f ε

∣∣∣∣∣∣
γ,η;K;ε

+ sup
(y,z)∈KP‖y−z‖s<ε

sup
β<γ

‖Kγ f (z) − 
zyKγ f (y)‖β

‖y − z‖γ−β
s ‖y, z‖η−γ

P

. (4.71)

Proof. To show that Kε
γ f ∈ D
̄,η̄

ε (V ) we proceed as in the proof of Theorem 4.9. We first note that for non-integer
values k we can bound the corresponding terms exactly as in the proof of Theorem 4.9. To bound the differences
‖Kε

γ f (z) − 
ε
zyKε

γ f (y)‖k for integer values k, we distinguish the cases 2−n ≤ ‖y − z‖s, 2−n ∈ (‖y − z‖s, 1
2‖y, z‖P ]

and 2−n > ‖y − z‖s ∨ 1
2‖y, z‖P . In all these cases it is assumed that ε ≤ ‖y − z‖s and ‖y − z‖s ≤ ‖y, z‖P . The first

two cases can be dealt with in a very similar way as in the proof of Theorem 4.9. We will now provide the details for
the third case for the expression ‖Kε

γ f (z) − 
ε
zyKε

γ f (y)‖k and we refer to [15, Prop. 6.16] for a proof in a similar
setup. Following the proof of Theorem 4.9 we see that we need to estimate [−I′n + II′n − III′n] in (4.35). The first term
can again be dealt with as in the proof of Theorem 4.9. Regarding the difference of the other two terms we may invoke
the third item in Assumption 4.3 to estimate

∣∣II′n − III′n
∣∣ ≤ 2n(�γ+β�−β)‖y − z‖�γ+β�−|k|s

s sup
ϕ∈�

∣∣ιε(�ε
yf (y) −Rεf

)(
ϕn−1

z

)∣∣. (4.72)

To estimate the right hand side of (4.72) we apply the triangle inequality to the last term. We further estimate, making
use of Theorem 3.15,∣∣ιε(Rεf

)(
ϕn−1

z

)∣∣ � 2−n(α∧η). (4.73)

Now note that the range of values of n we are considering implies in particular that 2n � ‖y, z‖−1
P . Plugging (4.73)

into (4.72) and summing over those n yields a bound that is a multiple of ‖y, z‖(α∧η)+β−�γ+β�
P ‖y − z‖�γ+β�−|k|s

s .
Note that in any case ‖y − z‖s ≤ ‖y, z‖P , so that

‖y, z‖(α∧η)+β−�γ+β�
P ≤ ‖y, z‖(α∧η)−γ

P ‖y − z‖γ+β−�γ+β�
s , (4.74)

yielding the desired estimate. It remains to estimate the term involving �ε
yf (y) in (4.72). Shifting the model, we have

∣∣ιε(�ε
z


ε
zyf (y)

)(
ϕn−1

z

)∣∣ ≤
∑

ζ̄<γ,ζ≤ζ̄

∣∣ιε(�ε
zQζ

(

ε

zyQζ̄ f (y)
))(

ϕn−1
z

)∣∣

�
∑

ζ̄<γ,ζ≤ζ̄

2−nζ ‖y − z‖ζ̄−ζ
s ‖y‖(η−ζ̄ )∧0

P . (4.75)

To estimate this, we first note that we have the bound ‖y‖(η−ζ̄ )∧0
P ≤ ‖y, z‖(η−ζ̄ )∧0

P and ‖y − z‖ζ̄−ζ
s ≤ 2−n(ζ̄−ζ ). We

distinguish two cases. First, if η − ζ̄ ≥ 0, the corresponding terms in (4.75) are bounded by 2−nζ̄ ≤ 2−n(α∧η). This
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estimate is of the same form as in (4.73), so we may conclude as above. If on the other hand η − ζ̄ < 0, the corre-

sponding terms in (4.75) are bounded by 2−nζ̄ ‖y, z‖η−ζ̄
P . Taking the prefactor 2n(�γ+β�−β)‖y − z‖�γ+β�−|k|s

s coming
from (4.72) into account, and summing over the range of values of n under consideration yields the bound

‖y, z‖β−�γ+β�+η

P ‖y − z‖�γ+β�−|k|s
s . (4.76)

Using that ‖y − z‖s ≤ ‖y, z‖P we see that this is indeed bounded by

‖y − z‖γ+β−|k|s
s ‖y, z‖η−γ

P , (4.77)

as desired. The bound∥∥Kε
γ f (z)

∥∥
β

� ‖z‖(η̄−β)∧0
P , (4.78)

may be obtained in a similar way as in [15, Prop. 6.16]. The expression ‖Kε
γ f (z) − 
ε

zyf (y) − K̄ε
γ f̄ (z) +


̄ε
zyK̄ε

γ f̄ (y)‖k can also be dealt with in a similar way and the proof of (4.71) works along the same lines. �

5. Local operations

5.1. Multiplication

One of the surprising results in [15] is that the multiplication between two (singular) modelled distributions behaves
very much like the multiplication of two continuous functions. We show that under a suitable assumption the same
holds true in the setting of the current article. Before we dive into the details we shortly remind the reader of [15,
Def. 4.1], which defines a product to be a continuous bilinear map (a, b) �→ a � b such that

• For every a ∈ Tα , and b ∈ Tβ , one has a � b ∈ Tα+β .
• There exists a unit vector 1 ∈ T0 such that 1 � a = a � 1 for every a ∈ T .

Given a regularity structure T and a pair of sectors (V ,W), we say that (V ,W) is γ -regular if 
(a �b) = (
a) � (
b)

for every 
 ∈ G, for every a ∈ Vα and b ∈ Wβ such that α + β < γ .

Assumption 5.1. Let (V ,W) be a pair of sectors of regularity α1 and α2, respectively. Let Zε = (�ε,
ε) and Z̄ε =
(�̄ε, 
̄ε) be two discrete models. Let f1 ∈ Dγ1

ε (V ,
ε), g1 ∈ Dγ1
ε (V , 
̄ε), f2 ∈ Dγ2

ε (W,
ε), and g2 ∈Dγ2
ε (W, 
̄ε) and

let γ = (γ1 + α2) ∧ (γ2 + α1). Then, provided that (V ,W) is γ -regular, we assume that for every compact set K

|||f1 � f2|||γ ;K;ε � |||f1|||γ1;K;ε|||f2|||γ2;K;ε,

|||f1 � f2;g1 � g2|||γ ;K;ε � |||f1;g1|||γ1;K,ε + |||f2;g2|||γ2;K;ε + ∥∥
ε; 
̄ε
∥∥(ε)

γ1+γ2;K.
(5.1)

If f1 ∈Dγ1,η1
ε (V ,
ε), g1 ∈Dγ1,η1

ε (V , 
̄ε), f2 ∈Dγ2,η2
ε (W,
ε), and g2 ∈Dγ2,η2

ε (W, 
̄ε) we further assume that

|||f1 � f2|||γ,η;K;ε � |||f1|||γ1,η1;K;ε|||f2|||γ2,η2;K;ε,

|||f1 � f2;g1 � g2|||γ,η;K;ε � |||f1;g1|||γ1,η1;K,ε + |||f2;g2|||γ2,η2;K;ε + ∥∥
ε; 
̄ε
∥∥(ε)

γ1+γ2;K,
(5.2)

where η = (η1 + α2) ∧ (η2 + α1) ∧ (η1 + η2).

Under Assumption 5.1, with the same choice of coefficients, a straightforward adaptation of the proofs in [15,
Sections 4 and 6.2] yield that:

• f1 � f2 ∈ Dγ
ε (f1 � f2 ∈ Dγ,η

ε ) provided that f1 ∈ Dγ1
ε (V ) (f1 ∈Dγ1,η1

ε (V )) and f2 ∈Dγ2
ε (W) (f2 ∈Dγ2,η2

ε (W)).
• The product between two (singular) modelled distributions is continuous. See [15, Props 4.10, 6.12] for precise

quantitative statements.

One can furthermore verify that all examples mentioned in Section 2 (discrete, semidiscrete, continuous and transpar-
ent) satisfy Assumption 5.1.
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5.2. Composition with a smooth function

We shortly review the setup of [15, Section 4.2]. Given a function-like sector V (i.e., a sector with regularity zero),
one can write a ∈ V as a = Ā1 + ã with ã ∈ T +

0 . For a smooth function F :Rn → R, we define

F̂ (a) =
∑

k

DkF (Ā)

k! ã�k, (5.3)

where the sum is locally finite. Here, a = (a1, . . . , an) with ai ∈ V and k is a multiindex.

Assumption 5.2. Let V be a function-like sector. Fix γ > 0, and let F ∈ Cκ (Rn,R) for some κ ≥ γ /ζ ∨ 1, where
ζ > 0 is the smallest value such that Vζ �= ∅. Given a collection of n functions fi ∈ Dγ

ε (V ) for a γ -regular sector V ,
define F̂γ (f )(x) = Q−

γ F̂ (f (x)), where f = (f1, . . . , fn). We assume that for every compact set K,

∣∣∣∣∣∣F̂γ (f )
∣∣∣∣∣∣

γ ;K;ε � 1. (5.4)

If furthermore κ ≥ (γ /ζ ∨ 1) + 1, then if g = (g1, . . . , gn) for some functions g1, . . . , gn ∈ Dγ
ε (V ), we also assume

that

∣∣∣∣∣∣F̂ (f ); F̂ (g)
∣∣∣∣∣∣

γ ;K;ε � |||f ;g|||γ ;K. (5.5)

In (5.4) the proportionality constant is allowed to depend only on the norm of f , whereas in (5.5) it is allowed to
depend also on the norm of g. In case that fi, gi ∈Dγ,η

ε (V ) for some η ∈ [0, γ ], we assume the bounds (5.4) and (5.5)
to hold for the norms ||| · |||γ,η;K;ε and |||·; ·|||γ,η;K;ε , respectively.

The arguments in [15, Sections 4.2, 6.3] then show that F̂γ (f ) defined as above defines an element in Dγ
ε (V ) and

Dγ,η
ε (V ), respectively. Moreover, in the case that κ ≥ (γ /ζ ∨1)+1 they also show that f �→ F̂ (f ) is locally Lipschitz

continuous in Dγ
ε (V ) and Dγ,η

ε (V ), respectively. The same arguments also show that Assumption 5.2 is satisfied for
the four examples introduced in Section 2.

5.3. Differentiation

Following [15, Def. 5.25], given a sector V , we say that a family of continuous operators Di : V → T for i in some
finite index set I , is an abstract collection of derivations if

1. There is a map g : I → {1,2, . . . , d} such that Dia ∈ Tα−si
for every a ∈ Vα , and every i ∈ I ,

2. one has 
Dia = Di
a for every a ∈ V and every i ∈ I .

Furthermore, a model (�,
) on Rd is said to be compatible with D if the identity Di�za = �zDia holds for every
a ∈ V , z ∈ Rd and every i where Di denotes the usual distributional derivative in some direction vi ∈ Rd which
belongs to the subspace spanned by those directions j such that sj = sg(i).

Remark 5.3. This is a minor generalisation of the setting of [15] which is natural in some discrete settings. For
example, in the case of a one-dimensional finite difference discretisation of the derivative, one naturally has one
operation corresponding to left-differences and one corresponding to right-differences. Similarly, if we consider a
discretisation of the plane by a triangular grid, we have six natural differentiation operators.

This notion of compatibility is not well suited to the current context when ε > 0. Indeed, given f ∈Xε , there is no
reason to assume in general that Diιεf is again in the range of ιε . Instead, we make the following assumption where,
given a compact set K and h ∈ R, we denote by τhK the translation of K in direction h, namely τhK= K+ h:
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Assumption 5.4. There are operators Dε
i , i ∈ I , on Xε such that for all f ∈ Xε , all i ∈ I , all α ∈ R, all compact sets

Kε , and all z ∈Rd ,

∥∥Dε
i f

∥∥
α−sg(i);Kε;z;ε � sup

h∈Bs(0,ε)

‖f ‖α;τhKε;z;ε, (5.6)

with a proportionality constant that is independent of ε.

The main definition of this section then reads as follows.

Definition 5.5. With the same notation as in Assumption 5.4, we say that a family of continuous operators Di : V →
T , i ∈ I , is an abstract gradient for Rd with scaling s if Dia ∈ Tα−sg(i)

for every a ∈ Vα and every i, and if Property 2.
above is satisfied. We say that a model (�ε,
ε) is compatible with D if the identity

Dε
i �

ε
z = �ε

zDi , (5.7)

holds for all i and all z ∈Rd .

We have the following result.

Proposition 5.6. Let f ∈ Dγ
α,ε for some γ > sg(i) and some model compatible with D . Then, Dif ∈ Dγ−sg(i)

α−sg(i),ε
,

provided that for all compact sets K,

|||Dif |||γ−sg(i);K;ε � |||f |||γ ;K;ε, (5.8)

Under the same assumption, the identity RεDif =Dε
iRεf + Hε

i f holds. Here, the operator Hε
i satisfies

∥∥Hε
i f

∥∥
γ−sg(i);Kε;z;ε �

∥∥�ε
∥∥(ε)

γ ;K̄ε
ε

sup
h∈Bs(0,ε)

|||f |||γ ;τhKε;ε, (5.9)

for all compact sets Kε (of diameter at most 2ε) and all z ∈Rd . Here, we denoted by K̄ε
ε the (1 + ε)-fattening of Kε .

Proof. The first property is a consequence of the respective definitions. To see (5.9), note that for any compact set Kε

and any z ∈ Kε , by Assumptions 3.1, 5.4 and the fact that the model is compatible with D ,∥∥�ε
zDif (z) −Dε

iRεf
∥∥

γ−sg(i);Kε;z;ε = ∥∥Dε
i

(
�ε

zf (z) −Rεf
)∥∥

γ−sg(i);Kε;z;ε

� sup
h∈Bs(0,ε)

∥∥�ε
zf (z) −Rεf

∥∥
γ ;τhKε;z;ε

�
∥∥�ε

∥∥(ε)

γ ;K̄ε
ε

sup
h∈Bs(0,ε)

|||f |||γ ;τhKε;ε. (5.10)

The claim now follows from this chain of inequalities and Assumption 3.1. �

Remark 5.7. To illustrate the above definitions, consider the polynomial regularity structure T̄ and assume that Xε =
R�ε , where �ε ⊂R is a graph of degree two, i.e., each vertex has two neighbours. Assume that the distance between
two vertices is between ε and 2ε. We moreover assume that the action of the model (�ε,
ε) on the monomials Xk

are given via (�ε
zX

k)(y) = (y − z)k and 
ε
yzX

k = (X + (y − z))k . A natural candidate for Dε is given by

(
Dεf

)
(z) = f (z + εz) − f (z)

εz

, (5.11)
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where εz denotes the distance of z from its neighbour to the right. To enforce the compatibility condition (5.7) one
could define D via

DXk = 1

εz

[
(X + εz)

k − Xk
] =

k−1∑
�=0

(
k

l

)
X�εk−�−1

z . (5.12)

This choice is motivated by the discrete product rule (Dεfg)(z) = (Dεf )(z)g(z) + (Dεg)(z)f (z) + εz(D
εf )(z) ×

(Dεg)(z). The problem with the above definition however is, that it makes the structural object D dependent on εz.
A way to circumvent this is to introduce a new symbol E , having homogeneity s as in [18], and such that additionally
for every τ ∈ T̄ the symbol Eτ has homogeneity s+ |τ | (in the multidimensional case one would introduce symbols
Ei with homogeneity sg(i)). One can then define

DXk =
k−1∑
�=0

(
k

l

)
X�Ek−�−1 (5.13)

and letting the action of �ε on Ek be given by �ε
zX

kE� = ε�
z�

ε
zX

k yields that the model (�ε,
ε) is compatible
with D .

Remark 5.8. Assume that (�ε,
ε) is a model that is compatible with D and that �ε
z is injective on T for every

z ∈ Rd . In this case the identity Di
 = 
Di is automatic. Indeed, one has

�ε
z


ε
zyDia = �ε

yDia =Dε
i �

ε
ya

=Dε
i �

ε
z


ε
zya = �ε

zDi

ε
zya,

so that 
ε
zyDi = Di


ε
zy as desired.

Remark 5.9. Let (�ε,
ε) be a discrete model, and let g be the identity, further let Dε
i be a finite difference approx-

imation of the usual gradient in direction i (as for instance in Remark 5.7) and assume that D is compatible with
(�ε,
ε). Given a scaled test function ϕλ

z with λ ≥ ε, integration by parts typically yields for any a ∈ T ,

(
�ε

zDia
)(

ϕλ
z

) = (
Dε

i �
ε
za

)(
ϕλ

z

) = −(
�ε

za
)(
Dε

i ϕ
λ
z

)
. (5.14)

Note that Dε
i ϕ

λ
z often behaves like a rescaled version of ϕλ

z , so that analytical bounds on Dia are implied by analytical
bounds on a. This is analogous to the continuous case.

Remark 5.10. In the transparent case g is the identity and (5.9) already implies that H ≡ 0. Hence, in this case one
has the identity RεDi = Dε

iRε (and Dε
i coincides with the distributional derivative Di ). In all other three examples

mentioned in Section 2, this identity is not necessarily true. This is of course not very surprising since all objects are
only described up to some error term.

6. A fixed point theorem

The goal of this section is to establish a fixed point theorem for the discrete analogue of the setting in [15]. More
precisely, in order to avoid the problem of having to control the behaviour of functions at infinity, we assume that
there is a discrete subgroup S of the group of isometries of Rd−1 acting on Rd via Tg(t, x) = (t, Tgx) for all g ∈ S .
Here, t ∈ R and x ∈ Rd−1 and we denote points in Rd either by (t, x) or by z. A further assumption we make is that
the fundamental domain of S is compact. Moreover, we assume that S acts on our regularity structures and that
all models we are considering are adapted to it in the sense of [15, Sections 3.6 and 5.3] (think for instance of S
restricting the space variable to the torus).

We note at this point that following the approach of Hairer and Labbé [16] one could probably also deal with
non-compact situations. However, to keep this exposition technically less involved we refrain from elaborating more
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on it. One feature of SPDEs is that they come with boundary data, which in our context will typically given by an
initial condition. Depending on the data the solution to the SPDE at hand may have a singularity for small times. To
deal with these situations we let the hyperplane P , introduced in Section 3.1, be given by the “time 0”-hyperplane, i.e.

P = {
(t, x) : t = 0

}
. (6.1)

Further, we let R+ : R×Rd−1 → R be the indicator function of {(t, x) : t ≥ 0}. We assume that the map f �→ R+f

is bounded from Dγ,η
ε to Dγ,η

ε , uniformly over ε, for any choice of γ and η. This assumption is satisfied for all four
examples mentioned in Section 2. Given T ∈R, we set O = [−1,3]×Rd−1 and OT = (−∞, T ]×Rd−1, and we use

||| · |||(ε)
γ,η;T as a shorthand for ||| · |||(ε)

γ,η;OT
. For many concrete SPDEs it may not be possible to decompose the Green’s

function Gε of the linear part of the equation such that it satisfies the assumptions of Section 4. However, it is often
possible to write Gε = Kε + Rε , where for some β > 0, Kε satisfies all assumptions of Section 4 and Rε is a smooth,
compactly supported remainder. The same remark holds for the Green’s function G corresponding to the linear part
of an equation defined on Rd , i.e., we write G as G = K + R, where K satisfies all assumptions of Section 4.1. We
make the following assumption.

Assumption 6.1. Fix two discrete models Zε = (�ε,
ε) and Z̄ε = (�̄ε, 
̄ε), and η > −s1. Let V be a sector of
regularity α > −s1. We assume that the operator Rε : Xε → Xε alluded to above can be lifted to an operator Rε

γ :
Xε →Dγ

ε (
ε) for any γ > 0. We moreover assume that for every T ∈ (0,1], every γ > 0 and every f ε ∈Dγ,η
ε (
ε),

RεRε
γ = Rε, (6.2)

and ∣∣∣∣∣∣Rε
γ+βRεR+f ε

∣∣∣∣∣∣(ε)
γ+β,η̄;T � T

∣∣∣∣∣∣f ε
∣∣∣∣∣∣(ε)

γ,η;T , (6.3)

and ∣∣∣∣∣∣Rε
γ+βRεR+f ε;Rε

γ+βR̄εR+f̄ ε
∣∣∣∣∣∣(ε)

γ+β,η̄;T � T
(∣∣∣∣∣∣f ε; f̄ ε

∣∣∣∣∣∣(ε)
γ,η;T + ∣∣∣∣∣∣Zε; Z̄ε

∣∣∣∣∣∣(ε)
γ ;O

)
. (6.4)

The proportionality constant in the first bound is allowed to depend only on |||Zε|||(ε)
γ ;O whereas it is allowed to depend

also on |||f ε|||(ε)
γ,η;T and |||f̄ ε|||(ε)

γ,η;T in the second bound. Here, R̄ε is the reconstruction operator corresponding to the

model Z̄ε , f̄ ε ∈ Dγ,η
ε (
̄ε) and η̄ = α ∧ η + β − κ for some κ > 0. Let Z = (�,
) be a continuous model. In the

same setting as above we assume that there is an operator R : D′(Rd) → D′(Rd) that can be lifted to an operator
Rγ :D′(Rd) → Dγ (
) for any γ > 0 such that there is a constant C(ε) > 0 with∣∣∣∣∣∣Rγ+βRR+f ;Rε

γ+βRεR+f ε
∣∣∣∣∣∣

γ+β,η̄;T ;≥ε

� T
(∣∣∣∣∣∣Z;Zε

∣∣∣∣∣∣
γ ;O + ∣∣∣∣∣∣f ;f ε

∣∣∣∣∣∣
γ,η;T + C(ε)|||Z|||γ ;O

)
, (6.5)

where f ∈ Dγ,η(Z). Here, the proportionality constant is allowed to depend on the bounds of the models and on
|||f |||γ,η;T and |||f ε|||(ε)

γ,η;T .

A further assumption that we need is that Kε
n and T ε

n,γ+β defined in Section 4 are non-anticipative in the sense

that the test functions ϕn
z appearing in Equations (4.2)–(4.4) have support contained in {z̄ = (t̄ , x̄) ∈ Rd : ‖z̄ − z‖s ≤

2−n, t̄ ≤ t} and (Kε
γ f )(t, x) depends only on those values (t̄ , x) such that t̄ ≤ t . Going carefully through the proofs of

Theorems 4.9 and 4.26 we see that as a consequence of that extra assumption

∣∣∣∣∣∣Kε
γ f ε

∣∣∣∣∣∣(ε)
γ+β,η̄;T �

∣∣∣∣∣∣f ε
∣∣∣∣∣∣(ε)

γ,η;T ,∣∣∣∣∣∣Kε
γ f ε; K̄ε

γ f̄ ε
∣∣∣∣∣∣(ε)

γ+β,η̄;T �
∣∣∣∣∣∣f ε; f̄ ε

∣∣∣∣∣∣(ε)
γ,η;T + ∥∥�ε − �̄ε

∥∥(ε)

γ ;O.

(6.6)
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Here η̄ is chosen as in Assumption 6.1. We assume the same for Kn and Tn,γ+β , then [15, Thm. 7.1] shows the
analogue of (6.6) in the case of continuous convolution operators.

Lemma 6.2. With the same notation as in Assumption 6.1, assume that

∣∣∣∣∣∣Kε
γ R+f ε

∣∣∣∣∣∣
γ+β,η̄;T ;ε � T κ/s1

∣∣∣∣∣∣f ε
∣∣∣∣∣∣(ε)

γ,η;T ,∣∣∣∣∣∣Kε
γ R+f ε; K̄ε

γ R+f̄ ε
∣∣∣∣∣∣

γ+β,η̄;T ;ε � T κ/s1
(∣∣∣∣∣∣f ε; f̄ ε

∣∣∣∣∣∣(ε)
γ,η;T + ∣∣∣∣∣∣Zε; Z̄ε

∣∣∣∣∣∣(ε)
γ ;O

)
,

(6.7)

where the proportionality constant in the first bound is allowed to depend only on |||Zε|||(ε)
γ ;O , while the proportionality

constant in the second bound is allowed to depend also on |||f ε|||(ε)
γ,η;T and |||f̄ ε|||(ε)

γ,η;T . Then,

∣∣∣∣∣∣Kε
γ R+f ε

∣∣∣∣∣∣(ε)
γ+β,η̄;T � T κ/s1

∣∣∣∣∣∣f ε
∣∣∣∣∣∣(ε)

γ,η;T ,∣∣∣∣∣∣Kε
γ R+f ε; K̄ε

γ R+f̄ ε
∣∣∣∣∣∣(ε)

γ+β,η̄;T � T κ/s1
(∣∣∣∣∣∣f ε; f̄ ε

∣∣∣∣∣∣(ε)
γ,η;T + ∣∣∣∣∣∣Zε; Z̄ε

∣∣∣∣∣∣(ε)
γ ;O

)
,

and ∣∣∣∣∣∣Kγ R+f ;Kε
γ R+f ε

∣∣∣∣∣∣
γ+β,η̄;T ;≥ε

� T κ/s1
(∣∣∣∣∣∣f ;f ε

∣∣∣∣∣∣
γ,η;T ;≥ε

+ ∣∣∣∣∣∣Z;Zε
∣∣∣∣∣∣

γ ;O + C(ε)|||Z|||γ ;O
)
. (6.8)

Here, the proportionality constants are analogue to the ones is (6.7) and C(ε) is as in Theorem 4.24.

Proof. The proof uses some ideas of [15, Proof of Lemma 6.5]. We therefore only sketch some of the arguments and
provide details only for those ingredients that are new. We first note that as a consequence of Theorem 4.26 and the
definition of the Dγ,η

ε -norm we only need to control components k such that |k|s < α ∧ η + β . We define a sequence
zn = S2−n

P z, where S2−n

P z = (2−nt, x1, . . . , xd−1). Then, ‖zn+1 − zn‖s = ‖zn+1‖P , provided that ds(zn+1,P ) ≤ 1
(which is satisfied for n large enough). One then proceeds via reverse induction. More precisely, we assume that there
is a multiindex k such that that∥∥Kε

γ R+f (z)
∥∥

m
� ‖z‖(α∧η)+β−m

P , for all m > |k|s. (6.9)

Since Kε
γ R+f ∈ Dγ+β,α∧η+β

ε , this is certainly the case for k ∈ A such that |k|s is smaller than α ∧ η + β . Provided
that ‖zn+1 − zn‖s ≥ ε, one may then show as in [15] that∥∥Kε

γRεR+f (zn+1) −Kε
γRεR+f (zn)

∥∥|k|s � 2−n(α∧η+β−|k|s). (6.10)

Assume now that for any fixed c̄ > 0 and z̄ ∈Rd such that ‖z̄‖P ≤ c̄ε we have the estimate∥∥Kε
γ R+f (z̄)

∥∥|k|s � εη∧α+β−|k|s for |k|s < η ∧ α + β. (6.11)

In this case a teleskop sum argument as in [15, Lemma 6.5] yields the claim. It remains to establish (6.11). To that
end we first intend to show that

(
T ε

γ RεR+f
)
(t, x) = 0, if t ≤ −cε. (6.12)

Here, c ≥ 0, is the constant introduced in Definition 2.1. We first note that by (4.2),∣∣Qk

((
T ε

n,γRεR+f
)
(t, x)

)∣∣ ≤ 2n(|k|s−β) sup
ϕn

(t,x)

∣∣(ιεRεR+f
)(

ϕn
(t,x)

)∣∣, (6.13)
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for all multiindex k and any n. By our additional assumption of non-anticipativity, we see that the support of each
ϕn

(t,x) is contained in the set

{
(t̄ , x̄) : t̄ ≤ t,

∥∥(t̄ , x̄) − (t, x)
∥∥
s

≤ 2−n
}
. (6.14)

In what follows we write ϕn
z instead of ϕn

(t,x). To proceed we fix a smooth function � as in the proof of Theorem 3.6.

Let z̄ ∈ �s
N (recall that �s

N denotes the d-dimensional grid with mesh 2−N , see Equation (3.8)), we define a function
�z̄ on Rd via

�z̄(z) =
d∏

i=1

�
(
2Nsi (zi − z̄i )

)
. (6.15)

As a consequence of (3.9) we can write

ϕn
z =

∑
z̄∈�s

N

ϕn
z �z̄, (6.16)

and we see that χn
z,z̄ := 2(N−n)|s|ϕn

z �z̄ is a test function with support of size ε. Note that by (3.32),

∣∣ιε(RεR+f
)(

χn
z,z̄

)∣∣ � 2−nα∧η
∥∥�ε

∥∥(ε)

γ ;O
∣∣∣∣∣∣R+f

∣∣∣∣∣∣(ε)
γ,η;[χn

z,z̄]. (6.17)

Thus, (6.12) is a consequence of the fact that R+f ≡ 0 on the cε-fattening of [χn
z,z̄], provided that t ≤ −cε. To

continue, note that

• IR+f ∈ T +
α∧η+β , and

• Qk((T
ε
n,ζ �

ε
zQζ R

+f (z))(z)) = Qk((T
ε
n,γ �ε

zQζ R
+f (z))(z)) for |k|s < ζ + β and all n (note that on the left hand

side the index of T ε is ζ , whereas on the right hand side it is γ ).

As a consequence of these two items and the definition of Kε
γ , the only term we need to estimate to derive (6.11) is

Qk

((
T ε

n,γRεR+f
)
(z̄)

)
. (6.18)

Fix z = (t, x̄) ∈ Rd such that t = −cε. Note that z is chosen such that the spatial coordinates of z and z̄ coincide, in
particular ‖z − z̄‖s ≈ ε. Let n ∈N such that ‖z − z̄‖s ≤ 2−n. Then, (6.12) yields

Qk

((
T ε

n,γRεR+f
)
(z̄)

) =Qk

((
T ε

n,γRεR+f
)
(z̄)

) −Qk

(

ε

z̄z

(
T ε

n,γRεR+f
)
(z)

)
. (6.19)

Using (4.3) we see that the above is bounded by

2n(�γ+β�−β)‖z − z̄‖�γ+β�−|k|s
s sup

ϕn−1
z̃

∣∣(ιεRεR+f
)(

ϕn−1
z̃

)∣∣. (6.20)

Applying Theorem 3.15 and summing over n such that ‖z− z̄‖s ≤ 2−n yields an upper bound of the order εα∧η+β−|k|s .
If ‖z − z̄‖s > 2−n, then our choice of z and z̄ yield 2−n ≈ ε. Thus, we may conclude with (4.2) and Theorem 3.15.
The bound on ‖Kε

γ R+f ; K̄ε
γ R+f̄ ‖(ε)


̄,η̄;T and (6.8) follow in a similar manner. �

Recall that we only have the identity RεKε
γ = KεRε + Aεf , where Aε is an operator that can be controlled on

small scales. We saw in Remark 4.13 that typically one is able to lift Aε to an operator Aε : Dγ
ε →Dγ+β

ε . The precise
form of Aε in (4.26) and the arguments in the proof of Lemma 6.2 show that the following assumption is natural.
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Assumption 6.3. We assume that there is an operator Aε : Dγ
ε → Dγ+β

ε taking values only in the polynomial part of
the regularity structure such that RεAε = Aε . Moreover, in the setting of Assumption 6.1 we have the estimates

∣∣∣∣∣∣AεR+f ε
∣∣∣∣∣∣(ε)

γ+β,η̄;T � T κ/s1
∣∣∣∣∣∣f ε

∣∣∣∣∣∣(ε)
γ,η;T ,∣∣∣∣∣∣AεR+f ε; ĀεR+f̄ ε

∣∣∣∣∣∣(ε)
γ+β,η̄;T � T κ/s1

(∣∣∣∣∣∣f ε; f̄ ε
∣∣∣∣∣∣(ε)

γ,η;T + ∣∣∣∣∣∣Zε; Z̄ε
∣∣∣∣∣∣(ε)

γ ;O
)
.

The smallest proportonality constant in the first bound is denoted |||Aε|||(ε)
γ+β,η̄;T and is allowed to depend only on

‖Zε‖(ε)
γ ;O . The proportionality constant in the second bound is only allowed to depend on the norm of the models, on

the norms of Aε and Āε and on |||f ε|||(ε)
γ,η;T , |||f̄ ε|||(ε)

γ,η;T .

Before we can finally state the fixed point theorem we are after, we need to introduce more setup. Let γ ≥ γ̄ > 0,
F :Rd × Tγ → Tγ̄ and f :Rd → Tγ . We define

(
F(f )

)
(z) = F

(
z,f (z)

)
. (6.21)

Fix R > 0 and assume that F maps Dγ,η

P,ε into D
γ̄ ,η̄

P,ε for some η, η̄ ∈ R. We say that F is strongly locally Lipschitz
continuous if∣∣∣∣∣∣F(f );F(g)

∣∣∣∣∣∣(ε)
γ̄ ,η̄;K �

(|||f ;g|||(ε)
γ,η;K + ∣∣∣∣∣∣Zε; Z̄ε

∣∣∣∣∣∣(ε)
γ ;K̄

)
. (6.22)

Here, Zε and Z̄ε and f ∈ Dγ,η
ε (Zε), g ∈ Dγ,η

ε (Z̄ε) are such that |||Zε|||(ε)
γ ;K̄ + |||Z̄ε|||(ε)

γ ;K̄ ≤ R and |||f |||(ε)
γ,η;K +

|||g|||(ε)
γ,η;K ≤ R. We have the following result.

Theorem 6.4. Let V, V̄ be two sectors of a regularity structure T with regularities ζ, ζ̄ ∈ R with ζ ≤ ζ̄ + β . Under
all the assumptions stated in this section and in the setup described above, for some γ ≥ γ̄ > 0 and some η ∈ R, let
F :Rd × Vγ → V̄γ̄ be a smooth function such that, if f ∈ Dγ,η

ε is symmetric with respect to the action S , then F(f )

defined above belongs to Dγ̄ ,η̄
ε and is also symmetric with respect to S . Moreover, assume that there is an abstract

integration map I such that Q−1
γ IV̄γ̄ ⊂ Vγ . If η < (η̄ ∧ ζ̄ ) + β , γ < γ̄ + β , (η̄ ∧ ζ̄ ) > −s1, and F is strongly locally

Lipschitz continuous, then, for every v ∈ Dγ,η
ε which is symmetric with respect to S , and for every symmetric model

Zε = (�ε,
ε) for the regularity structure T such that I is adapted to the kernel Kε , there exists T ε > 0 such that
the equation

uε = (
Kε

γ̄ −Aε + Rε
γRε

)
R+F

(
uε

) + vε (6.23)

admits a unique solution uε ∈ Dγ,η
ε (Zε) on (0, T ε). The solution map is (vε,Zε) �→ uε jointly Lipschitz continuous.

Let Z = (�,
) be a continuous model and under the same assumptions as above let u ∈ Dγ,η(Z) be the unique
solution to the fixed point problem

u = (Kγ̄ + RγR)R+F(u) + v (6.24)

on some time interval (0, T ). Then,

∣∣∣∣∣∣u;uε
∣∣∣∣∣∣

γ,η;T ε∧T ;≥ε
�

∣∣∣∣∣∣Z;Zε
∣∣∣∣∣∣

γ ;O + C(ε)|||Z|||γ ;O + ∣∣∣∣∣∣v;vε
∣∣∣∣∣∣

γ,η;T ε∧T
+ ∣∣∣∣∣∣Aε

∣∣∣∣∣∣(ε)
γ,η;T ε∧T

, (6.25)

and the proportionality constant only depends on R defined above Equation (6.22).

Remark 6.5. In practice one would like to guarantee that lim infε→0 T ε > 0. For that it is enough to show that the
bounds one gets on the various terms appearing in the theorem above are independent of ε.
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Remark 6.6. Theorem 6.4 does not allow for an abstract formulation of (1.1) in case the non-linearity depends on
a discrete version of the gradient. The reason for not including this case is that there are numerous ways to define a
notion of the discrete derivative. Hence, it is not clear how to state a single theorem dealing with all these possibilities
at once. Yet, the estimates on the various objects obtained in this article probably allow to adapt the abstract fixed
point problem in most cases.

Proof. With Assumptions 6.1 and 6.3, and with Lemma 6.2 at hand the proof follows in the same way as in [15,
Thm. 7.8]. �

Appendix A: Norm index

In this appendix we collect the various norms and metrics used in this article together with their meaning.

Norm Meaning

ds(·, ·) Metric with scaling s on Rd

‖x − y‖s Alternative expression for ds(x, y)

‖ · ‖α;Kε;z;ε Extended seminorm at scale ε on Xε

||| · |||γ ;K;ε Seminorm at scale ε on functions f :Rd → T<γ

|||·, ·|||γ ;K;ε Distance at scale ε on pairs (f, g) with f,g :Rd → T<γ

||| · |||γ,η;K;ε Seminorm at scale ε on functions f :Rd → T<γ

|||·, ·|||γ,η;K;ε Distance at scale ε on pairs (f, g) with f,g :Rd → T<γ

||| · |||(ε)
γ ;K Norm on the space Dγ

ε (
ε)

|||·, ·|||(ε)
γ ;K Distance between f ∈Dγ

ε (
ε) and g ∈Dγ
ε (
̄ε)

||| · |||(ε)
γ,η;K Norm on the space Dγ,η

ε (
ε)

|||·, ·|||(ε)
γ,η;K Distance between f ∈Dγ,η

ε (
ε) and g ∈Dγ,η
ε (
̄ε)

‖ · ‖m Norm on Tm

‖�ε‖(ε)
γ ;K Smallest proportionality constant such that (2.12) holds

‖
ε‖(ε)
γ ;K Smallest proportionality constant such that (2.13) holds

|||Zε|||(ε)
γ ;K Norm on models given by |||Zε|||(ε)

γ ;K = ‖�ε‖(ε)
γ ;K + ‖
ε‖(ε)

γ ;K
|||Zε; Z̄ε |||(ε)

γ ;K Pseudo-metric to compare two different models

‖ · ‖P Distance to P given by ‖z‖P = (1 ∧ ds(z,P ))

‖·, ·‖P Distance defined via ‖y, z‖P = ‖y‖P ∧ ‖z‖P

‖� − �ε‖γ ;K;≥ε Distance between � and �ε at scales above ε

‖
 − 
ε‖γ ;K;≥ε Distance between 
 and 
ε at scales above ε

|||Z;Zε|||γ ;K Distance between limiting model Z and ε-model Zε

|||f |||γ ;K Dγ -norm for a map f with respect to a continous model
|||f ;f ε |||γ ;K Distance between f ∈Dγ (
) and f ε ∈ Dγ

ε (
ε)

|||f |||γ,η;K Dγ,η-norm for a map f with respect to a continuous model
|||f ;f ε |||γ,η;K Distance between f ∈Dγ,η(
) and f ε ∈ Dγ,η

ε (
ε)

‖�;�ε‖γ ;K Distance between � and �ε

‖
;
ε‖γ ;K Distance between 
 and 
ε

|||f ;f ε |||γ,η;K;≥ε Distance in Dγ,η
ε between f and f ε at scales above ε
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