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Abstract. Let logC n ≤ d ≤ n/2 for a sufficiently large constant C > 0 and let An denote the adjacency matrix of a uniform
random d-regular directed graph on n vertices. We prove that as n tends to infinity, the empirical spectral distribution of An,
suitably rescaled, is governed by the Circular Law. A key step is to obtain quantitative lower tail bounds for the smallest singular
value of additive perturbations of An.

Résumé. Soit logC n ≤ d ≤ n/2 pour une constante suffisamment grande C > 0. Notons An la matrice d’adjacence d’un graphe
dirigé aléatoire d-régulier sur n sommets. Nous montrons que lorsque n tend vers l’infini, la distribution empirique des valeurs
propres de An, convenablement normalisée, suit la loi du cercle. Une étape cruciale consiste à obtenir une borne inférieure quanti-
tative asymptotique pour la plus petite valeur singulière de perturbations additives de An.
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1. Introduction

1.1. Convergence of ESDs and the Circular Law

For an n× n matrix M with complex entries and eigenvalues λ1, . . . , λn ∈ C (counted with multiplicity and labeled
in some arbitrary fashion), denote the empirical spectral distribution (ESD)

μM = 1

n

n∑
i=1

δλi
. (1.1)

We give the space of probability measures on C the vague topology. Thus, a sequence of random probability measures
μn over C converges to another measure μ in probability if for every f ∈Cc(C) and every ε > 0,

lim
n→∞P

(∣∣∣∣∫
C

f dμn −
∫
C

f dμ

∣∣∣∣ > ε

)
= 0, (1.2)

and μn converges to μ almost surely if for every f ∈ Cc(C),
∫
C

f dμn →
∫
C

f dμ almost surely. We say that μn

converges to μ in expectation if E
∫
C

f dμn→ E
∫
C

f dμ for every f ∈Cc(C).
A well-studied class of non-Hermitian random matrices is the iid matrix Xn, which has iid centered entries of unit

variance. A seminal result in the theory of non-Hermitian random matrices is the Circular Law for iid matrices, which
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was established in various forms over several decades. We denote by μcirc the normalized Lebesgue measure on the
unit disk in C.

Theorem 1.1 (Strong Circular Law for iid matrices [74]). Fix a complex random variable ξ with zero mean and
unit variance, and for each n≥ 1 form an n× n random matrix Xn = (ξ

(n)
ij ) with entries that are iid copies of ξ . Then

the rescaled ESDs μ 1√
n
Xn

converge to μcirc almost surely.

The above strong form of the Circular Law due to Tao and Vu, and is the culmination of the work of many
authors. Previous works had obtained the Circular Law under additional assumptions on the atom variable ξ , or with
convergence in probability or expectation rather than almost-sure convergence (the above result is called a “strong law”
in analogy with the strong law of large numbers). The earliest result was by Ginibre, who established the Circular Law
(with convergence in expectation) for the Ginibre ensemble, where the atom variable ξ is a standard complex Gaussian
[36] (see also [53]); the harder case of real Gaussian entries was handled by Edelman [34]. These results relied on
explicit formulas available for Gaussian ensembles for the joint density of eigenvalues. Following influential work of
Girko [37], Bai was the first to rigorously establish the Circular Law for a general class of atom variables, assuming
that ξ has bounded density and finite sixth moment [9]. Following breakthrough work of Rudelson [63], Tao–Vu
[73] and Rudelson–Vershynin [64] on the smallest singular value for random matrices with independent entries, the
assumptions on the atom variable were progressively relaxed in works of Götze–Tikhomirov [38], Pan–Zhou [60],
and Tao–Vu [72,74].

Theorem 1.1 is an instance of the universality phenomenon in random matrix theory, exhibiting an asymptotic
behavior of the spectrum which is insensitive to all but a few details of the atom variable (in this case the first two
moments). In fact, it is a consequence of a more general “universality principle” established in [74], which states that
if Xn, X′n are iid matrices generated from atom variables ξ and ξ ′, respectively, and Mn is a deterministic matrix
satisfying 1

n
‖Mn‖HS =O(1) (where ‖M‖HS is the Hilbert–Schmidt norm), then

μMn+Xn −μMn+X′n → 0 in probability.

(Almost sure convergence is also obtained under an additional technical assumption that we do not state here.) The
Circular Law for general iid matrices can then be deduced from the universality principle (taking Mn = 0) and the
Circular Law for the Ginibre ensemble. The perturbations Mn can also give rise to limiting measures different from
μcirc.

Since the work of Tao and Vu the Circular Law has been strengthened and extended in several directions. In
a sequence of works, Bourgade, Yau and Yin [21,22,79] have established the local Circular Law, showing that μcirc
provides a good estimate for the number of eigenvalues of 1√

n
Xn in a fixed small ball B(z, r) down to the optimal scale

r ∼ n−1/2+ε for arbitrary fixed ε > 0, assuming an exponential decay condition for the tails of the atom variable ξ .
A weaker local law was obtained by Tao and Vu in [70] as part of their proof of universality for local eigenvalue
statistics.

We will informally say that a random matrix Yn (that is, a sequence of n × n random matrices (Yn)n≥1) lies in
the Circular Law universality class if, after rescaling, the ESDs μYn converge in probability to μcirc. Theorem 1.1
shows this class contains all iid matrices Xn, but in recent years various works have shown it to be somewhat larger.
In [12,38,72,77] it has been shown that the Circular Law is robust under sparsification, i.e. that matrices of the form
Yn =An ◦Xn lie in the Circular Law universality class, where ◦ denotes the Hadamard (entrywise) product, Xn is an
iid matrix, and An is a 0–1 matrix of iid Bernoulli(p) variables, independent of Xn, with p = o(n) and pn growing
at some speed. In particular, Wood [77] showed the Circular Law holds with convergence in probability if pn = nε

for any fixed ε ∈ (0,1), while the recent work [12] allows pn= ω(log2 n) under higher moment assumptions on the
atom variable.

There has also been extensive work on non-Hermitian matrices with dependent entries. In [18], Bordenave, Caputo
and Chafaï showed the Circular Law class includes random Markov matrices obtained by normalizing the entries of a
matrix with iid nonnegative entries of finite variance by the row sums. Nguyen and Vu obtained the Circular Law for
random ±1 matrices with prescribed row sums |s| ≤ (1− ε)n for some fixed ε ∈ (0,1] [57]. Later, Nguyen proved
the Circular Law for random doubly stochastic matrices (drawn uniformly from the Birkhoff polytope), which do not
enjoy independence between rows or columns [56]. In [1], Adamczak and Chafaï showed that random real matrices
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having unconditional log-concave distribution obey the Circular Law, extending Edelman’s result for real Gaussian
matrices. Adamczak, Chafaï and Wolff proved the Circular Law for random matrices with exchangeable entries having
finite moments of order 20+ ε (if not for the moment assumption this result would generalize the Circular Law for iid
matrices) [2]. In [28], the author obtained the Circular Law for adjacency matrices of dense random regular digraphs
with random edge weights, i.e. matrices of the form An ◦Xn with Xn an iid matrix and An a 0–1 matrix constrained
to have all rows and columns sum to �pn
 for some fixed p ∈ (0,1). Such matrices An, which are the focus of the
present work, can be seen as a discrete version of the doubly stochastic matrices considered by Nguyen.

The second moment hypothesis in Theorem 1.1 is sharp. Indeed, in [17], Bordenave, Caputo and Chafaï established
a different limiting law for matrices with iid entries lying in the domain of attraction of an α-stable distribution for
α ∈ (0,2). In [19] the same authors together with Piras have considered random stochastic matrices obtained by
normalizing the entries of an iid heavy-tailed matrix with α ∈ (0,1) by the row sums, proving convergence of the
ESDs to deterministic measure supported on a compact disk (while they do not obtain an expression for the limiting
density, simulations indicate that it is not the uniform measure on the disk).

Finally, a natural question is whether the Circular Law extends to matrices with independent but non-identically
distributed entries having finite second moment. If the entries all have unit variance then one can replace the assump-
tion of identical distribution with some more general technical hypotheses; see [72], [8, p. 428]. Recently, the work
[32] studied the asymptotic ESDs for matrices of the form Yn = 1√

n
An ◦Xn, with Xn an iid matrix having entries with

finite (4+ε)th moment, and An = (σij ) a fixed “profile” of standard deviations σij ∈ [0,1]. In particular, it was shown
that the Circular Law holds if the standard deviations σij are uniformly bounded and the variance profile ( 1

n
σ 2

ij ) is
doubly stochastic. Examples were also provided of variance profiles leading to limiting measures different from μcirc,
though they are always compactly supported and rotationally symmetric. Another recent work [6] has obtained a local
law (analogous to the above-mentioned local Circular Law of Bourgade–Yau–Yin) for Yn as above, but under stronger
assumptions: that the entries have smooth distribution and the variances are uniformly bounded above and below by
positive constants.

The Circular Law and its extensions have been applied to the stability analysis of complex dynamical systems, in
theoretical ecology [51] and neuroscience [67]. In the latter work, an iid matrix was used to model the synaptic matrix
for a large neural network. There has since been significant effort to extend the results of [67] to various random matrix
models incorporating additional structural features of natural neural networks such as the brain, using both rigorous
and non-rigorous methods [3–5,61]. However, a key feature that has not been covered by these works is sparsity.
While the aforementioned works such as [12,77] can be used to extend the analysis of [67] to sparse iid matrices, it
would also be interesting to treat networks where each node has a specified valence. However, such constraints destroy
the independence between entries, making the analysis of such models challenging.

In the present work we make a first step in this direction by extending the Circular Law to adjacency matrices of
random regular digraphs. For integers n≥ 1 and d ∈ [n] denote

An,d =
{
A ∈ {0,1}n×n :A1=AT1= d1

}
, (1.3)

which is the set of 0–1 adjacency matrices for d-regular directed graphs (digraphs) on n vertices, allowing self-loops.
(Here and throughout, 1= 1n denotes the column vector of all 1s.) Given A ∈An,d , we denote the normalized matrix

Ā= 1√
d(1− d/n)

A. (1.4)

The main result of this paper is the following:

Theorem 1.2 (Circular Law for random regular digraphs). Assume d = d(n) satisfies min(d,n− d)≥ logC0 n for
a sufficiently large constant C0 > 0. For each n≥ 1 let An be a uniform random element of An,d . Then μĀn

→ μcirc
in probability.

Remark 1.3. The proof shows we can take C0 = 96, but we have not tried to optimize this constant. Various parts of
the argument work for smaller degree, and for the interested reader we state the required range for d in the statements
of the lemmas, sometimes indicating how the range might be improved by longer arguments.
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Remark 1.4. The methods in this paper can also be used to prove the Circular Law for random regular digraphs
with random edge weights, extending the result of [28] to the sparse setting (in fact this is somewhat easier than
Theorem 1.2). Specifically, letting Xn be an iid matrix as in Theorem 1.1 with entries having finite fourth moment,
and putting Yn = 1√

d
An ◦Xn, it can be shown that μYn → μcirc in probability if min(d,n− d)≥ logC0 n. We do not

include the proof in order to keep the article of reasonable length.

Remark 1.5 (Reduction to d ≤ n/2). From (1.3) we have that 1 is an eigenvector of An with eigenvalue d (this is
the Perron–Frobenius eigenvalue). A routine calculation shows that if λ ∈ C \ {d − n} is an eigenvalue of An with
nonzero eigenvector v ∈C

n, then putting A′n := 11T −An we have A′nw =−λw, where

w =w(λ,v) := v− 〈v,1〉
λ+ n− d

1.

Note that w(λ,v)= 0 only if λ= d and v ∈ 〈1〉. Thus, each eigenvalue of−An (counting multiplicity) is an eigenvalue
of A′n, with at most one exception, and conversely. In particular, μ

A′n and the reflected ESD μ−Ān
= μĀn

(−·) differ in
total variation distance by at most 2/n. Since μcirc is invariant under the refection λ �→ −λ, in the proof of Theorem 1.2
we may and will assume that d ≤ n/2, as we can replace An with A′n if necessary.

We conjecture that Theorem 1.2 still holds if min(d,n− d) tends to infinity with n at any speed. For fixed degree
we have the following well-known conjecture.

Conjecture 1.6 ([20]). Fix d ≥ 3 and let A
(d)
n ∈An,d be drawn uniformly at random. Then μ

A
(d)
n
→ μ

(d)
KM in proba-

bility, where μ
(d)
KM is the oriented Kesten–McKay law on C with density

f
(d)
KM(z)= 1

π

d2(d − 1)

(d2 − |z|2)2
1{|z|≤√d} (1.5)

with respect to Lebesgue measure.

For some numerical evidence supporting this conjecture the reader is referred to [28]. The measure (1.5) is the
Brown measure for the free sum of d Haar unitary operators; see [41, Example 5.5]. Basak and Dembo established
the conclusion of Conjecture 1.6 with A

(d)
n replaced by the sum of d independent Haar unitary or orthogonal matrices

[11]. Conjecture 1.6 would follow from an extension of their proof to the sum S
(d)
n of d independent Haar permutation

matrices. Indeed, note that S
(d)
n is a random element of Mn,d , the set of adjacency matrices for d-regular directed

multi-graphs on n vertices. While the law of S
(d)
n and the uniform distribution on An,d ⊂Mn,d are different measures,

contiguity results [44] state any sequence of events En ⊂Mn,d with probability o(1) under the former distribution
must also have probability o(1) under the latter, provided d is fixed independent of n. This allows one to deduce
asymptotic results for A

(d)
n from results for S

(d)
n .

A proof of Conjecture 1.6 would require a significantly different approach than the one we take to prove The-
orem 1.2. For instance, to prove Theorem 1.2 we will need to understand the asymptotic empirical distribution of
singular values μ√

(Ān−z)∗(Ān−z)
for arbitrary fixed z ∈ C (see Section 7 for additional explanation). In the present

work we do this by comparing with a Gaussian matrix, for which the asymptotics are well understood. However,
when Ān is replaced by A

(d)
n the conjectured asymptotic singular value distributions are different, and in particular we

cannot compare with a Gaussian matrix or any other well-understood model.
We mention that in the recent work [10] with Basak and Zeitouni we established the Circular Law for the permu-

tation model S
(d)
n (rescaled by

√
d) under the assumption that d grows poly-logarithmically as in the present work.

Parts of the proof in [10] follow a significantly different approach from the present paper. In particular, in the present
work the singular value distributions of Ān − z for z ∈ C are analyzed by first replacing An with an iid Bernoulli
matrix Bn using a lower bound for the number of 0–1 matrices with constrained row and column sums, and then re-
placing the Bernoulli matrix with a Gaussian matrix using a Lindeberg exchange-type argument (see Section 9). Such
a comparison is unavailable for the sum of permutation matrices. In [10] we derive and analyze the Schwinger–Dyson
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loop equations for the Stieltjes transform of empirical singular value distributions, implementing a discrete analogue
of techniques that were used in [11,39] for the unitary group.

1.2. The smallest singular value

In this section and in the sequel we make use of standard asymptotic notation; the reader is referred to Section 1.4 for
our conventions.

A key challenge for proving convergence of the ESDs of non-normal random matrices is to deal with possi-
ble spectral instability for such matrices. This can be quantified in terms of the pseudospectrum. Recall that the
ε-pseudospectrum of a matrix Mn ∈Mn(C) is the set


ε(Mn)=
(Mn)∪
{
z ∈C \
(Mn) :

∥∥(Mn − z)−1
∥∥≥ ε−1},

where 
(Mn) is the set of eigenvalues of Mn. (Here and throughout, ‖ · ‖ denote the operator norm when applied to
matrices.) If the pseudospectrum of a matrix is much larger than the spectrum itself, then the ESD can vary wildly
under perturbations of small norm. For a random matrix Mn the pseudospectrum is a random subset of the complex
plane, and we will need it to be small in the sense that

P
(
z ∈
ε(Mn)

)= o(1) for a.e. z ∈C (1.6)

for some ε ≥ exp(−no(1)). (Here the rate of convergence in the o(1) terms may depend on z.) Establishing (1.6) is a
key step in all known approaches to proving the Circular Law for a given random matrix ensemble (Mn)n≥1 (except
in the case of integrable models such as the Ginibre ensemble). See the survey [20] for additional discussion of the
pseudospectrum and its role in proving the Circular Law for random matrices.

Denote the singular values of a matrix M by s1(M)≥ · · · ≥ sn(M)≥ 0. We can alternatively express our goal (1.6)
as showing that for a.e. z ∈C,

P
(
sn(Mn − z)≤ ε

)= o(1). (1.7)

Establishing (1.7) is an extension of the invertibility problem, which is to show

P
(
sn(Mn)= 0

)= P
(
det(Mn)= 0

)= o(1). (1.8)

The problem of proving (1.8), along with quantifying the rate of convergence, has received much attention for the case
of random matrices with discrete distribution, such as matrices with iid uniform ±1 entries – see [23,45,47,71].

The problem of proving (1.7) with Mn =Xn as in Theorem 1.1 (i.e. having iid entries with zero mean and unit vari-
ance) was addressed in works of Rudelson [63], Tao–Vu [72,73] and Rudelson–Vershynin [64]. In particular, through
new advances in the Littlewood–Offord theory from additive combinatorics, for certain random discrete matrices [73]
established bounds of the form P(sn(Xn) ≤ n−A) = O(n−B) for arbitrary B > 0 and A = OB(1). This result was
extended in [72] to allow general entry distributions with finite second moment and deterministic perturbations (such
as scalar perturbations as in (1.7)). The work [64] obtained the optimal dependence A = B + 1/2 under a stronger
subgaussian hypothesis for the entry distributions. Recently, this optimal bound was obtained for centered real iid
matrices only assuming finite second moment [62].

The invertibility problem for adjacency matrices of random regular digraphs An as in Theorem 1.2 was first ad-
dressed in [31], where it was shown that if min(d,n− d)≥ C log2 n, then

P
(
sn(An)= 0

)=O
(
d−c

)
(1.9)

for some absolute constants C,c > 0. The main difficulties in proving (1.9) over the case of, say, iid ±1 matrices are
the lack of independence among entries and the sparsity of the matrix. The author introduced an approach based on a
combination of strong graph regularity properties and the method of switchings.

In its most basic form, one performs a simple switching on a regular digraph by replacing directed edges i1 → j1,
i2 → j2 with edges i1 → j2, i2 → j1 when this is allowed (i.e. when this does not create parallel edges); see Figure 1.
The switching preserves the degrees of all vertices. One can create coupled pairs (An, Ãn) of random elements of
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Fig. 1. Two possible configurations of directed edges passing from a pair of vertices {i1, i2} to a pair of vertices {j1, j2} in a digraph, where a
dashed arrow indicates the absense of a directed edge. Note that there may be edges passing from {j1, j2} to {i1, i2}, or between i1 and i2 or j1
and j2. A simple switching replaces the configuration on the left with the one on the right and vice versa; for any other configuration the simple
switching leaves the graph unchanged.

An,d by first drawing An uniformly at random, and then applying several switchings at different 2× 2 submatrices
of An independently at random to form Ãn. Taking care to do this in a way that Ãn is also uniformly distributed, one
can condition on An (perhaps restricted to a “good” event on which An enjoys certain graph regularity properties)
and proceed using only the randomness of the independent switchings. In particular one gains access to tools of
Littlewood–Offord theory. See [31] for additional motivation of the switchings method for the invertibility problem.

The switchings method has long been a popular tool for analyzing random regular graphs – for additional back-
ground see the survey [78]. It has also recently been applied in the random matrix setting in [13–15] to prove local
laws for the empirical spectral distribution and universality of local spectral statistics for undirected random regular
graphs.

Following the work [31], it was shown in [50] that for C ≤ d ≤ cn/ log2 n we have

P
(
sn(An)= 0

)� log3 d√
d

(1.10)

for some absolute constants C,c > 0. Together with (1.9) this shows that An is invertible with probability 1− o(1)

as soon as min(d,n − d) = ω(1). The work [50] also follows the approach of using random switchings and graph
regularity properties. The key new ingredients are finer regularity properties that apply for smaller degree, as well
as an efficient averaging argument to improve the probability bound. (We make use of a variant of this averaging
argument in the proof of Theorem 1.7 below.) A natural conjecture is that P(sn(An)= 0)= o(1) for all 3≤ d ≤ n− 3,
which mirrors a conjecture by Vu for adjacency matrices of undirected random regular graphs [76].

In the present work we extend the approaches of [31,50] to obtain lower tail bounds on the smallest singular value
of Ān − z for arbitrary scalar shifts z ∈ C. It turns out that we can handle a more general class of perturbations; to
describe them we need some notation. First, note that 1 is a left and right eigenvector of An with eigenvalue d . By a
standard argument using the Cauchy–Schwarz inequality we have ‖An‖ ≤ d , so that in fact

An1=A∗n1= ‖An‖1= d1. (1.11)

We will be able to handle perturbations Z ∈Mn(C) that also preserve the space 1, and which have polynomially-
bounded norm on 〈1〉⊥. For instance, Z could be the adjacency matrix of another regular digraph, either fixed or
random and independent of An. For a subspace W ⊂C

n we write

‖M‖W :=
∥∥M :W →C

n
∥∥= sup

u∈Sn−1∩W

‖Mu‖. (1.12)

In the statement and proof of the following result we regard n as a sufficiently large fixed integer and give quanti-
tative bounds. As such, we will generally suppress the subscript n from our matrices.

Theorem 1.7 (The smallest singular value). Let 1≤ d ≤ n/2 and let A be a uniform random element of An,d . Fix
γ ≥ 1 and let Z be a deterministic n× n matrix with ‖Z‖〈1〉⊥ ≤ nγ and such that Z1= ζ1, Z∗1= ζ1 for some ζ ∈C

with |d + ζ | ≥ n−10. There exists 
 =O(γ logd n) such that

P
(
sn(A+Z)≤ n−


)�γ

logC1 n√
d

(1.13)

for some absolute constant C1 > 0.
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Remark 1.8. We note that (1.13) only gives a nontrivial bound if d ≥ C log2C1 n for some C = C(γ ) sufficiently
large. The proof shows we can take C1 = 11/2, though there is certainly room for improvement. For instance, this
exponent could be lowered using some refined graph expansion and discrepancy lemmas – see Remark 2.4.

For our purposes of proving Theorem 1.2 we only need the following consequence (recall the notation (1.4)):

Corollary 1.9. Assume logC′1 n ≤ d ≤ n/2 for a sufficiently large constant C′1 > 0, and let A be a uniform random
element of An,d . Fix z ∈C. There exists 
 = o(logn) such that

P
(
sn(Ā− z)≤ n−


)= oz(1). (1.14)

Proof. We may assume n is sufficiently large depending on z. Up to perturbing 
 by a constant factor, it suffices to
verify the matrix

Z =−z
√

d(1− d/n) In

satisfies the conditions of Theorem 1.7. The condition ‖Z‖〈1〉⊥ ≤ nγ holds with γ = 0.51, say, when n is sufficiently
large. Taking ζ = z

√
d(1− d/n) we have

|d − ζ | ≥ d − |z|√d = d
(
1− oz(1)

)→∞
and the condition on ζ easily holds when n is sufficiently large. The result now follows from Theorem 1.7 and taking
C′1 = 2C1 + 1, say. �

Recently (a few months after this paper was first posted to arXiv) [49] obtained an improvement of Theorem 1.7
(for the case of scalar shifts), showing that for some constants C,c > 0 and any fixed z ∈ C with |z| ≤ d/6, if
C ≤ d ≤ cn/(logn)(log logn) then sn(An − z) ≥ n−6 with probability 1−O(log2 d/

√
d). We also mentioned that

even more recently it has been shown that uniform random adjacency matrices for regular digraphs and undirected
graphs of fixed degree at least 3 are invertible with probability tending to one as n→∞ [42,43,54,58].

1.3. Overview of the paper

The first part of the paper (Sections 2–6) is devoted to the proof of Theorem 1.7. In Section 2 we recall some con-
centration inequalities for random regular digraphs from [30] and use these to show that a random element of An,d

satisfies certain graph regularity properties with high probability. In Section 3 we describe the general approach to
Theorem 1.7, which proceeds by partitioning the sphere S

n−1
0 into sets whose elements have a similar level of “struc-

ture” (in a certain precise sense that we do not describe here), and separately controlling infv∈S ‖(A + Z)v‖ for
each part S of the partition. We then establish bounds on covering numbers for sets of highly structured vectors, and
prove anti-concentration properties for unstructured vectors. In Section 4 we establish uniform control from below
on ‖(A+Z)v‖ for “highly structured” vectors v, and in Section 5 we boost this to control for less structured vectors
by an iterative argument. In Section 6 we obtain control over the remaining unstructured vectors. We mention that in
each of Sections 4, 5 and 6 we make use of a different graph regularity property from Section 2, and all three sections
use coupling arguments based on switchings.

In the remainder of the paper we prove Theorem 1.2. In Section 7 we recall the approach to proving the Circular
Law via the logarithmic potential, and give a high-level proof of Theorem 1.2 using Theorem 1.7 and two propositions
concerning the empirical singular value distributions for certain perturbations of Ān. In Sections 8 and 9 we prove
these propositions by a two-step comparison approach, first comparing An with a matrix Bn having iid Bernoulli
entries, and then comparing Bn (suitably centered and rescaled) with an iid Gaussian matrix Gn, for which the desired
results are known. The comparison of singular value distributions for An with those of Bn is accomplished using a
conditioning argument of Tran, Vu and Wang from [75], together with a new estimate for the probability that Bn lies
in An,d , proved in Appendix B. For the comparison between Bn and Gn we use the Lindeberg replacement strategy,
through an invariance principle of Chatterjee (Theorem 9.4). In the Appendix we prove Lemma 8.4, which gives a
near-optimal estimate on local density of small singular values for perturbed Gaussian matrices.
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1.4. Notation

C, c, c′, c0, etc. denote unspecified constants whose value may change from line to line, understood to be absolute
unless otherwise stated. We use the Vinogradov symbol�; thus, f =O(g), f � g and g� f all mean that |f | ≤ Cg

for some absolute constant C <∞. By f � g we mean f � g� f . The statements f = o(g) and g = ω(f ) mean
that f/g→ 0 as n→∞. We indicate dependence of implied constants with subscripts, e.g. f �α g; by f = oα(g)

we mean f/g→ 0 when α is fixed and n→∞, where the rate of convergence may depend on α.
Mn(C) denotes the set of n × n matrices with complex entries. For M = (mij ) ∈Mn(C) it will sometimes be

convenient to denote the (i, j)th entry by M(i, j)=mij . For i1, . . . , ik, j1, . . . , jl ∈ [n] we write

M(i1,...,ik)×(j1,...,jl ) := (mik′ jl′ )k′∈[k],l′∈[l]. (1.15)

If one of the sequences (i1, . . . , ik), (j1, . . . , jl) is replaced by an unordered set J ⊂ [n] then we interpret J as a
sequence with the natural ordering inherited from [n]. We also write M(i1,i2) for the (n− 2)× n matrix obtained by
removing rows i1 and i2 (assuming i1 �= i2). We label the singular values of M in non-increasing order:

s1(M)≥ · · · ≥ sn(M)≥ 0.

In addition to our notation (1.1) for the empirical spectral distribution, we denote the empirical singular value distri-
bution by

νM := 1

n

n∑
i=1

δsi (M). (1.16)

‖ · ‖ denotes the Euclidean norm when applied to vectors and the �n
2 → �n

2 operator norm when applied to ele-
ments of Mn(C). Other norms are indicated with subscripts; in particular, ‖M‖HS denotes the Hilbert–Schmidt (or
Frobenius) norm of a matrix M . We denote the (Euclidean) closed unit ball in C

n by B
n and the unit sphere by S

n−1.
We write C

J for the subspace of vectors supported on J ⊂ [n], and write B
J , SJ for the unit ball and sphere in this

subspace. Given v ∈ C
n and J ⊂ [n], vJ denotes the projection of v to C

J . 1= 1n denotes the n-dimensional vector
with all components equal to one, and consequently 1J denotes the vector with j th component equal to 1 for j ∈ J

and 0 otherwise. We will frequently consider the unit sphere in 〈1〉⊥, which we denote

S
n−1
0 := S

n−1 ∩ 〈1〉⊥ = {
u ∈C

n : ‖u‖ = 1, 〈u,1〉 = 0
}
. (1.17)

It will be conceptually helpful to associate a 0–1 n×n matrix A= (aij ) to a directed graph 
A = ([n],EA), which
we do in the natural way, i.e. EA = {(i, j) ∈ [n]2 : aij = 1}. Given a vertex i ∈ [n] we denote its set of out-neighbors
by

NA(i) := {
j ∈ [n] : aij = 1

}
. (1.18)

Its set of in-neighbors is consequently given by NAT(i). For i ∈ [n] and L⊂ [n] we sometimes abbreviate

LA(i) :=NA(i)∩L. (1.19)

We denote the out-neighorhood of a set I ⊂ [n] by

NA(I) :=
⋃
i∈I

NA(i). (1.20)

Given I, J ⊂ [n], we denote by

eA(I, J )=
∑

i∈I,j∈J

aij (1.21)

the number of directed edges which start in I and end in J . For sets J ⊂ [n]we will frequently abbreviate J c := [n]\J .
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2. Graph regularity properties

Recall the graph theoretic notation from Section 1.4. In this section we define three collections of “good” subsets of
An,d , namely

Acodeg(i1, i2), Adisc(n0, δ), and Aexp(κ)

whose elements are associated to digraphs enjoying certain graph regularity properties. We will show that for appro-
priate values of the parameters, each of these sets constitutes most of An,d . The key tools to establish this are sharp
tail bounds for codegrees and edge densities for random regular digraphs that were proved in [30].

For A ∈ An,d , the number of common out-neighbors |NA(i1) ∩ NA(i2)| of a pair of vertices i1, i2 ∈ [n] in the
associated digraph is called the out-codegree of i1, i2. By a routine calculation, for a fixed pair {i1, i2} ⊂ [n] and
A ∈An,d drawn uniformly at random we have

E
∣∣NA(i1)∩NA(i2)

∣∣= d(d − 1)

n− 1
≈ d2

n
.

In the proof of Theorem 1.7 we will want to restrict attention to those A ∈An,d whose out-codegree at a fixed pair of
vertices is not too large. For distinct i1, i2 ∈ [n] and K > 0 define the set of elements of An,d having good codegrees

Acodeg(i1, i2) :=
{
A ∈An,d :

∣∣NA(i1)∩NA(i2)
∣∣≤ d/4

}
. (2.1)

Lemma 2.1 (Control on codegrees, cf. [30, Proposition 4.1]). Let 1≤ d ≤ n and let A ∈An,d be drawn uniformly
at random. For any distinct i1, i2 ∈ [n] and K > 0,

P

(∣∣NA(i1)∩NA(i2)
∣∣≥ (1+K)

d2

n

)
≤ exp

(
− K2

4+ 2K

d2

n

)
. (2.2)

In particular, taking K to be a sufficiently large constant multiple of n/d , we have

P
(
A /∈Acodeg(i1, i2)

)≤ e−cd (2.3)

for some constant c > 0.

For fixed sets I, J ⊂ [n] and A ∈An,d drawn uniformly at random, the expected number of directed edges passing
from I to J in the digraph associated to A is

EeA(I, J )= d

n
|I ||J |.

In the random graphs literature, a graph for which the edge densities eA(I, J )/|I ||J | (for all sufficiently large sets I ,
J ) do not deviate too much from the overall density d/n= eA([n], [n])/n2 is said to satisfy a discrepancy property.
For n0 ∈ [n] and δ > 0 we define the set of elements of An,d enjoying a discrepancy property:

Adisc(n0, δ)=
⋂

I,J⊂[n]:
|I |,|J |>n0

{
A ∈An,d :

∣∣∣∣eA(I, J )− d

n
|I ||J |

∣∣∣∣ < δ
d

n
|I ||J |

}
. (2.4)

The following is an easy corollary of the main result in [30].

Lemma 2.2 (Discrepancy property). Assume 1≤ d ≤ n/2. Let δ ∈ (0,1). If (C/δ)nd−1/2 ≤ n0 ≤ n for a sufficiently
large constant C > 0, then for a uniform random element A ∈An,d we have

P
(
A ∈Adisc(n0, δ)

)= 1− nO(1) exp
(−cδ min(d, δn)

)
.
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Proof. By [30, Theorem 1.5], there is a set G0 ⊂An,d with P(A ∈ G0)= 1− nO(1) exp(−cδ min(d, δn)) such that for
any fixed I, J ⊂ [n],

P

(
A ∈ G0,

∣∣∣∣eA(I, J )− d

n
|I ||J |

∣∣∣∣≥ δ
d

n
|I ||J |

)
≤ 2 exp

(
−cδ2 d

n
|I ||J |

)
. (2.5)

Let n0 be as in the statement of the lemma. Applying the union bound over choices of I , J with |I |, |J |> n0,

P
(
A ∈ G0 ∩Adisc(n0, δ)

c
)≤ 4n × 2 exp

(
−cδ2 d

n
n2

0

)
≤ 2−n,

where in the last bound we took the constant C in the lower bound on n0 sufficiently large. Thus,

P
(
A ∈Adisc(n0, δ)

)≥ 1− P(A /∈ G0)− 2−n = 1− nO(1) exp
(−cδ min(d, δn)

)
as desired. �

Finally, we will need to show that most elements of An,d satisfy a certain neighborhood expansion property. By
the d-regularity constraint, for any I ⊂ [n] and A⊂An,d we have∣∣NA(I)

∣∣≤ d|I |.

It turns out that for random regular digraphs and |I |< n/d , this upper bound is not far from the truth. For κ ∈ (0,1)

we define the set of elements of An,d enjoying the “good expansion property”:

Aexp(κ)=
⋂

J⊂[n]:
|J |≤n/2κd

{
A ∈An,d :

∣∣NAT(J )
∣∣ > κd|J |}. (2.6)

Lemma 2.3 (Expansion property). There are absolute constants C,c > 0 such that if C logn≤ d ≤ n/2, then

P

(
A ∈Aexp

(
c

logn

))
= 1−O

(
e−cd

)
.

Remark 2.4. While the above will be sufficient for our purposes, we note that Litvak et al. obtained a stronger “log-
free” version in [50] (see Theorem 2.2 there), showing that with high probability one has |NAT(J )| ≥ κd|J | with κ

arbitrarily close to one, uniformly over |J | ≤ cκn/d (in fact they allow κ → 1 at a certain rate with d). Moreover,
their result holds for all d at least a sufficiently large constant. Using their result in place of Lemma 2.3 would lower
the power of log by 2 in our assumption on d in Theorem 1.7.

Proof. This is essentially a restatement of [31, Corollary 3.7], taking the parameter γ there to be κ logn. While it
was assumed there that d = ω(logn), the proof actually only assumes d ≥ C logn for a sufficiently large constant
C > 0. �

By definition, for A ∈Aexp(κ) and a sufficiently small set J ⊂ [n], the number of rows of A whose support overlaps
with J is within a factor κ of its maximum value d|J |. However, we will also need lower bounds on the number of
rows whose overlap with J has cardinality within a specified range. For J ⊂ [n] and r ≥ 1 write

N≤r

AT (J )= {
i ∈ [n] : 1≤ ∣∣NA(i)∩ J

∣∣≤ r
}
,

N≥r

AT (J )= {
i ∈ [n] : ∣∣NA(i)∩ J

∣∣≥ r
}
,

and similarly define N<r
AT (J ), N>r

AT (J ).
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Lemma 2.5. Let 1≤ d ≤ n/2, κ ∈ (0,1) and A ∈Aexp(κ). Then the following hold:

(1) For all J ⊂ [n] such that |J | ≤ n/2κd ,

∣∣N≤r

AT (J )
∣∣≥ (

κ − 1

r + 1

)
d|J | (2.7)

for all r ≥ 1.
(2) For all J ⊂ [n] such that |J |> n/2κd ,∣∣N>r

AT (J )
∣∣ > n/8 (2.8)

for all 1≤ r ≤ κd|J |/4n.

Proof. We begin with (1). Fix such a set J and let r ≥ 1. We have

d|J | = eA

(
NAT(J ), J

)
=

∑
i∈N≤r

AT (J )

∣∣NA(i)∩ J
∣∣+ ∑

i∈N>r

AT (J )

∣∣NA(i)∩ J
∣∣

≥ (r + 1)
∣∣N>r

AT (J )
∣∣

≥ (r + 1)
(
κd|J | − ∣∣N≤r

AT (J )
∣∣)

and (2.7) follows upon rearranging.
We turn to (2). Let J and r be as in the statement of the lemma. Let m ∈ ( n

4κd
, n

2κd
] be an integer, put k = �|J |/m
,

and let J1, . . . , Jk be pairwise disjoint subsets of J of size m. Denote J ′ =⋃m
l=1 Jl , and note that |J ′| ≥ |J |/2. By our

restriction to Aexp(κ), for each l ∈ [m] we have∣∣NAT(Jl)
∣∣≥ κdm. (2.9)

Let B be the adjacency matrix of the bipartite graph with vertex parts U =NAT(J ′), V = [k] which puts an edge at
(i, l) when |NA(i) ∩ Jl | ≥ 1. From (2.9) we have that the number of edges eB(U,V ) in this graph is bounded below
by κdmk. On the other hand,

eB(U,V )≤ k
∣∣{i ∈U : ∣∣NB(i)

∣∣ > r
}∣∣+ r

∣∣{i ∈U : 1≤ ∣∣NB(i)
∣∣≤ r

}∣∣
≤ k

∣∣N>r
AT (J )

∣∣+ rn.

Combining these bounds on eB(U,V ) and rearranging, we have

∣∣N>r
AT (J )

∣∣≥ κdm− rn

k
≥ κdm

(
1− |J |

4km

)
,

where in the second inequality we applied our assumption on r . Now since km= |J ′| ≥ |J |/2 we conclude∣∣N>r
AT (J )

∣∣≥ 1

2
κdm >

n

8

as desired. �

3. Partitioning the sphere

In this section we begin the proof of Theorem 1.7. Throughout this section A denotes a uniform random element
of An,d .
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3.1. Structured and unstructured vectors

A well-known approach to bounding the probability a random matrix M is singular is to classify potential null vectors
v �= 0 as “structured” or “unstructured”, and use different arguments to bound

P(∃ structured v :Mv = 0) and P(∃ unstructured v :Mv = 0).

This approach goes back to the work of Komlós on iid Bernoulli matrices X = (ξij ), where an integer vector v is said
to be structured if it is sparse, i.e. | supp(v)| ≤ n/10, say. The key observation is that unstructured vectors v enjoy
good anti-concentration for random walks

Ri · v =
n∑

j=1

ξij vj , (3.1)

in the sense that Ri · v is unlikely to be zero, where Ri denotes the ith row of X. On the other hand, while structured
vectors only have crude anti-concentration properties, the set of structured vectors has low entropy (i.e. cardinality),
which allows one to obtain uniform control via the union bound. Later, in [71] Tao and Vu used more complicated
classifications of potential null vectors v ∈ Z

n \ {0} by relating concentration properties of the random walks (3.1) to
arithmetic structure in the components of v using tools from additive combinatorics (such as Freiman’s theorem).

This approach carries over to the problem of bounding the smallest singular value. From the variational formula

sn(M)= inf
u∈Sn−1

‖Mu‖,

if S1 ∪ · · · ∪ SN is a partition of Sn−1, then

P
(
sn(M)≤ ε

)≤ P

(
inf

u∈S1
‖Mu‖ ≤ ε

)
+ · · · + P

(
inf

u∈SN

‖Mu‖ ≤ ε
)
. (3.2)

The analogue of Komlós’s argument for the invertibility problem was accomplished by Rudelson for a general class
of iid matrices in [63] (see also [64]). There a unit vector is said to be structured if it is close to a sparse vector.
Specifically, for m ∈ [n] we denote the set of m-sparse vectors

Sparse(m)= {
v ∈C

n : ∣∣supp(v)
∣∣≤m

}
, (3.3)

where supp(v)= {j ∈ [n] : vj �= 0}, and for m ∈ [n], ρ ∈ (0,1) we define the set of compressible vectors

Comp(m,ρ)= S
n−1 ∩ (

Sparse(m)+ ρBn
)
, (3.4)

where we recall that Bn denotes the closed unit ball in C
n, so that E + ρBn denotes the closed ρ-neighborhood

of a set E ⊂ C
n. In [63], (3.2) is applied with N = 2, taking S1 to be the set of compressible vectors (with an

appropriate choice of paramers) and S2 the complementary set of “incompressible” vectors. As in the invertibility
problem, incompressible vectors enjoy good anti-concentration properties for the associated random walks (3.1),
while the set of compressible vectors has low metric entropy, which allows one to obtain uniform control using nets
and the union bound. Later works of Tao–Vu [72,73] and Rudelson–Vershynin [64] used larger partitions based on
arithmetic structural properties.

In the present work, the distribution of An calls for a different notion of structure than those discussed above. In
the work [31] on the invertibility problem for An an integer vector was said to be structured if it had a large level set.
Thus, for controlling the smallest singular value, we consider a unit vector u ∈ S

n−1 to be structured if it is close to a
vector with a large level set, and call such vectors “flat”. Alternatively, non-flat vectors are those u ∈ S

n−1 for which
the empirical measure 1

n

∑n
i=1 δui

of components enjoys some anti-concentration estimate; this perspective will be
expanded upon in Section 3.3.
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Formally, for m ∈ [n] and ρ ∈ (0,1), define the set of (m,ρ)-flat vectors

Flat(m,ρ)= S
n−1 ∩

(
ρBn +

⋃
λ∈C

(
λ1+ Sparse(m)

))
= {

u ∈ S
n−1 : ∃v ∈ Sparse(m),λ ∈C with ‖u− v − λ1‖ ≤ ρ

}
. (3.5)

We denote the mean-zero flat vectors by

Flat0(m,ρ)= Flat(m,ρ)∩ 〈1〉⊥. (3.6)

For non-integral x ≥ 0 we will sometimes abuse notation and write Sparse(x), Flat(x,ρ), etc. to mean Sparse(�x
),
Flat(�x
, ρ).

Now we state our main proposition controlling the event that ‖(A+ Z)u‖ is small for some structured vector u.
For K ≥ 1 we denote the boundedness event

B(K)= {‖A+Z‖〈1〉⊥ ≤K
√

d
}

(3.7)

(recall the notation (1.12)). From (1.11), our assumptions on Z and the triangle inequality, B(K) holds with probability
one for K

√
d = d + nγ . (Sharper bounds than this hold with high probability, but are not necessary for our purposes.)

For much of the proof we will leave the parameter K generic. For K ≥ 1 and m ∈ [n], ρ ∈ (0,1), denote

EK(m,ρ)= B(K)∧ {∃u ∈ Flat0(m,ρ) : ∥∥(A+Z)u
∥∥≤ ρK

√
d
}
. (3.8)

Proposition 3.1 (Control on flat vectors). Assume log4 n≤ d ≤ n/2 and 1≤K ≤ nγ0 for some fixed γ0 ≥ 1/2. There
exists 
0 � γ0 logd n such that for all n sufficiently large depending on γ0,

P

(
EK

(
cn

γ0 log3 n
,n−
0

))
≤ e−cd , (3.9)

where c > 0 is an absolute constant.

We briefly outline some of the ideas of the proof. As in prior works controlling invertibility over structured vectors,
we will reduce to controlling the size of ‖(A+Z)u‖ for u ranging over a ρ-net for the set Flat0(m,ρ) – that is, a finite
set �0(m,ρ)⊂ Flat0(m,ρ) whose ρ-neighborhood contains Flat0(m,ρ). The restriction to B(K) allows us to argue

P
(
EK(m,ρ)

)≤ P
(∃u ∈�0(m,ρ) : ∥∥(A+Z)u

∥∥≤ 2ρK
√

d
)
.

Applying the union bound,

P
(
EK(m,ρ)

)≤ ∣∣�0(m,ρ)
∣∣ max
u∈�0(m,ρ)

P
(∥∥(A+Z)u

∥∥≤ 2ρK
√

d
)
.

In the next subsection we construct such ρ-nets of controlled cardinality. Our task is then to obtain a strong enough
lower tail bound for ‖(A+Z)u‖, holding uniformly over fixed u ∈�0(m,ρ), to beat the cardinality of the net.

It turns out that with no additional information on u we can only beat the cardinality of the net when m is fairly
small (of size m� d/ logn). However, once we have shown EK(m0, ρ0) is small for some m0, ρ0, then when trying
to control vectors in a net �0(m,ρ) for Flat0(m,ρ) with m > m0, we can restrict the net to the complement of
Flat0(m0, ρ0):

P
(
EK(m,ρ) \ EK(m0, ρ0)

)≤ ∣∣�0(m,ρ)
∣∣ max
u∈�0(m,ρ)\Flat0(m0,ρ0)

P
(∥∥(A+Z)u

∥∥≤ 2ρK
√

d
)
.

This additional information that u /∈ Flat0(m0, ρ0) allows us to get an improved lower tail bound for ‖(A + Z)u‖,
which beats the cardinality of the net |�1(m,ρ)| for m� (d/ logO(1) n)m0. Assuming d grows at an appropriate
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poly-logarithmic rate, we can iterate this argument along a sequence (mk,ρk) until mk � n/ log3 n as in (3.9). The
values ρk will degrade by a polynomial factor at each step, but this is acceptable for our purposes.

We mention that this iterative approach is similar to arguments from [29,65], and to a lesser extent [64,73]. How-
ever, those works concerned matrices with independent entries; consequently, our proofs of lower tail bounds for
‖(A+Z)u‖ with fixed u are substantially different, making use of coupled pairs (A, Ã) formed by applying random
switching operations, and relying heavily on the graph regularity properties from Section 2.

We prove Proposition 3.1 in Sections 4 and 5. In the remainder of this section we develop some useful lemmas
concerning flat and non-flat vectors.

3.2. Metric entropy of flat vectors

In this section we bound the metric entropy of the sets Flat0(m,ρ) – that is, we find efficient coverings of these sets
by Euclidean balls. The following is a standard fact on the existence of such coverings of controlled cardinality, and
is established by a well-known volumetric argument; see for instance [55], [29, Lemma 2.2].

Lemma 3.2. Let V ⊂ C
n be a subspace of (complex) dimension m, and let ρ ∈ (0,1). There exists a set �V (ρ) ⊂

V ∩ B
n with |�V (ρ)| = O(1/ρ)2m such that �V (ρ) is a ρ-net for V ∩ B

n – i.e. for every x ∈ V ∩ B
n there exists

y ∈�V (ρ) such that ‖x − y‖ ≤ ρ.

Using this we can show:

Lemma 3.3 (Metric entropy for flat vectors). Let 1 ≤ m ≤ n/10 and ρ ∈ (0,1). There exists �0 = �0(m,ρ) ⊂
Flat0(m,ρ) such that |�0| =O( n

mρ2 )m and �0 is a ρ-net for Flat0(m,ρ).

Proof. Note we may assume that ρ is smaller than any fixed constant. Consider an arbitrary element u ∈ Flat0(m,ρ).
We may write

u= v + λ1+w

for some v ∈ Sparse(m), λ ∈C and ‖w‖ ≤ ρ.
We begin by crudely bounding ‖v‖ and |λ|. Suppose v is supported on J ⊂ [n], |J | =m. By the triangle inequality,

‖v+ λ1‖ ≤ 1+ ρ, and by Pythagoras’s theorem

‖v + λ1J ‖2 + ‖λ1J c‖2 ≤ (1+ ρ)2. (3.10)

Ignoring the first term gives

|λ| ≤ (1+ ρ)

√
1

n−m
≤ 2√

n
(3.11)

by our bound on m and assuming ρ ≤ 1/2. Ignoring the second term in (3.10) and applying the triangle inequality and
(3.11) yields

‖v‖ ≤ 1+ ρ + ‖λ1J ‖ ≤ (1+ ρ)

(
1+

√
m

n−m

)
≤ 2. (3.12)

Denote v := 1
n

∑n
j=1 vj and similarly for w. Since u ∈ S

n−1
0 , we have

0= v + λ+w.

Rearranging and applying Cauchy–Schwarz gives

|v + λ| = |w| ≤ ρ/
√

n.
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Thus we may alternatively express

u= v − v1+ [
(v + λ)1+w

]
= v − v1+w′ (3.13)

with ‖w′‖ ≤ 2ρ.
In the remainder of the proof we will obtain a 3ρ-net for Flat0(m,ρ) from a ρ-net for the projection to 〈1〉⊥ of

Sparse(m)∩ 2Bn. Then we will show that we can rescale the resulting vectors to lie in Flat0(m,ρ) to obtain a 6ρ-net.
The result will then follow by replacing ρ with ρ/6.

By Lemma 3.2, for each J ⊂ [n] with |J | = m there is a ρ-net �J (ρ) for 2BJ of cardinality O(1/ρ)2m (by
dilating a ρ/2-net for BJ ). Taking the union of these nets over all choices of J ∈ ([n]

m

)
yields a ρ-net �(m,ρ) for

Sparse(m)∩ 2Bn of cardinality at most
(
n
m

)
O(1/ρ)2m =O(n/mρ2)m.

Let �′(m,ρ) denote the projection of �(m,ρ) to the subspace 〈1〉⊥. Since projection to a subspace can only
contract distances and cardinalities, �′(m,ρ) is a ρ-net for Proj〈1〉⊥(Sparse(m) ∩ 2Bn) and |�′(m,ρ)| ≤ |�(m,ρ)|.
Now by (3.13) and (3.12), any element u ∈ Flat0(m,ρ) is within distance 2ρ of an element of Proj〈1〉⊥(Sparse(m) ∩
2Bn), and hence is within distance 3ρ of an element of �′(m,ρ).

Finally, we rescale every element of �′(m,ρ) to be of unit length and denote the resulting set by �0(m,ρ). Note
that the rescaling leaves �0(m,ρ) ⊂ Proj〈1〉⊥(Sparse(m)). In particular, �0(m,ρ) ⊂ Flat0(m,ρ). Moreover, for any
u ∈ Flat0(m,ρ) and y ∈ �′(m,ρ) with ‖u − y‖ ≤ 3ρ, it follows that ‖y‖ ∈ [1 − 3ρ,1 + 3ρ], so by the triangle
inequality u is within distance 6ρ of y/‖y‖ ∈ �0(m,ρ). Thus, �0(m,ρ) is a 6ρ-net for Flat0(m,ρ) of cardinality
O(n/mρ2)m. The result now follows by replacing ρ with ρ/6. �

3.3. Anti-concentration properties of non-flat vectors

In this section we observe that the property of a unit vector u ∈ Sn−1 not lying in Flat(m,ρ) implies an anti-
concentration property for the empirical measure 1

n

∑n
i=1 δui

of its components. We then show that we can find a
large “bimodal” piece of the empirical measure for such a vector; specifically, we can find two well-separated subsets
of the plane that each capture a large portion of the total measure.

For v ∈C
n, λ ∈C and ρ > 0 we write

Ev(λ,ρ) :=
{
j ∈ [n] :

∣∣∣∣vj − λ√
n

∣∣∣∣ <
ρ√
n

}
(3.14)

and define the concentration function

Qv(ρ) := sup
λ∈C

1

n

∣∣Ev(λ,ρ)
∣∣ (3.15)

(as |Ev(λ,ρ)| takes values in the discrete set [n] the supremum is attained). We remark that Qv(ρ) is the classical
Lévy concentration function for the empirical measure 1

n

∑n
i=1 δvi

.

Lemma 3.4 (Anti-concentration for non-flat vectors). Let u ∈ S
n−1 \ Flat(m,ρ). Then Qu(ρ) < 1− m

n
.

Proof. If this were not the case then there would exist λ ∈ C such that |Eu(λ,ρ)| ≥ n−m. Then taking v = (u−
1√
n
λ1)Eu(λ,ρ)c we have that v ∈ Sparse(m), and

∥∥∥∥u− v − 1√
n
λ1

∥∥∥∥= ∥∥∥∥(
u− 1√

n
λ1

)
Eu(λ,ρ)

∥∥∥∥ < ρ

which implies u ∈ Flat(m,ρ), a contradiction. �
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Lemma 3.5 (Existence of a large bimodal component). Let u ∈ Sn−1 \Flat(m,ρ). There exist disjoint sets J1, J2 ⊂
[n] such that |J1| ≥m, |J2| � n−m and

|uj1 − uj2 | ≥
ρ

2
√

n
∀j1 ∈ J1, j2 ∈ J2. (3.16)

Moreover, there is a set J ′1 ⊂ J1 with |J ′1| �m such that for any 1≤ r ≤min(|J ′1|, |J2|),∣∣∣∣1

r

∑
j∈J ′′1

uj − 1

r

∑
j∈J ′′2

uj

∣∣∣∣≥ ρ

4
√

n
∀J ′′1 ∈

(
J ′1
r

)
, J ′′2 ∈

(
J2

r

)
. (3.17)

Remark 3.6. We will later apply the above lemma when studying random variables of the form Wu,π =∑m
j=1 ξj (uj − uπ(j)), where ξ = (ξ1, . . . , ξm) is a sequence of iid Bernoulli(1/2) variables and j �→ π(j) is a pairing

between 2m distinct elements of [n]. We will think of Wu,π as a random walk on C with steps uj − uπ(j), and use
(3.16) to argue that for certain u this walk takes many large steps and is thus unlikely to concentrate significantly in
any small ball. At some point we will also consider a random walk whose steps are differences between averages of
the components of u over sets of equal size, rather than differences between individual components, in which case we
will need (3.17).

Proof. We observe that for any ε > 0,

Qu(ε/2)≥ cQu(ε) (3.18)

for some universal constant c > 0. Indeed, letting λ ∈ C be such that Qu(ε) = 1
n
|Eu(λ, ε)|, we can cover the ball

{w ∈C : |w− λ|< ε} with O(1) balls of radius ε/2, and the claim follows from the pigeonhole principle.
Write qk =Qu(2−k) and consider the non-increasing sequence {qk}k∈Z. Since all components of v lie in the unit

disk we have qk = 1 for k <− 1
2 log2 n. Let

k0 =min{k : qk < 1−m/n}.
Then k0 ≥− 1

2 log2 n, and from Lemma 3.4 we have k0 ≤ �log2(1/ρ)�. From (3.18),

qk0+1 ≥ c2qk0−1 ≥ c2(1−m/n). (3.19)

Let λ0 ∈C such that qk0+1 = 1
n
|Eu(λ0,2−k0−1)|. We have∣∣Eu

(
λ0,2−k0

)∣∣≤ nqk0 < n−m.

Taking J1 =Eu(λ0,2−k0)c and J2 =Eu(λ0,2−k0−1) we have |J1| ≥m, |J2| ≥ c2(n−m), and for all j1 ∈ J1, j2 ∈ J2,

|uj1 − uj2 | ≥
2−k0−1

√
n

≥ ρ

2
√

n
,

and (3.16) follows.
For (3.17), let c0 > 0 be a sufficiently small constant, and divide the complement of the ball B(λ0/

√
n,2−k0/

√
n)⊂

C into �1/c0� congruent angular sectors. By the pigeonhole principle one of which must contain at least c0m of the
components of J1. Taking J ′1 to be the set of corresponding indices, we can take c0 smaller if necessary to ensure that
for some open halfspace H ⊂C,

dist
(
H, {uj : j ∈ J2}

)
, dist

(
Hc,

{
uj : j ∈ J ′1

})≥ ρ

8
√

n
.

(3.17) now follows from the above lower bounds, the convexity of H , and the triangle inequality. �
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4. Invertibility over very flat vectors

In this section we prove the following lemma, which already implies Proposition 3.1 for d � n/ log2 n, but is weaker
for smaller values of d .

Lemma 4.1 (Very flat vectors). Let 1 ≤ d ≤ n/2 and 1 ≤K ≤ nγ0 for some fixed γ0 ≥ 1/2. Recall the events (3.8)
with A ∈An,d drawn uniformly at random. For all 1≤m≤ cd/γ0 logn we have

P

(
EK

(
m,

c

K
√

m

))
=O

(
e−cd

)
, (4.1)

where c > 0 is an absolute constant.

Here the key graph regularity property will be the control on codegrees enjoyed by elements of the set Acodeg(i1, i2)

from (2.1). We need the following variant of a lemma of Rudelson and Vershynin (see [64, Lemma 2.2], [29,
Lemma 2.10]).

Lemma 4.2 (Tensorization of anti-concentration). Let ζ1, . . . , ζn be independent non-negative random variables.
Suppose that for some ε0,p0 > 0 and all j ∈ [n], P(ζj ≤ ε0) ≤ p0. There are c1,p1 ∈ (0,1) depending only on p0
such that

P

(
n∑

j=1

ζ 2
j ≤ c1ε

2
0n

)
≤ pn

1 . (4.2)

Proof of Lemma 4.1. Let m be as in the statement of the lemma and denote

ρ = c

K
√

m
.

First we consider an arbitrary fixed vector u ∈ Flat0(m,ρ). By definition, there exists λ ∈ C, v ∈ Sparse(m) and
w ∈ ρBn such that u= v + λ√

n
1+w. We note that

‖v +w‖ ≥ 1/2. (4.3)

Indeed, by the triangle inequality,

|λ| =
∥∥∥∥ λ√

n
1

∥∥∥∥≥ ‖u‖ − ‖v+w‖ = 1− ‖v+w‖. (4.4)

On the other hand by the assumption u ∈ S
n−1
0 and Cauchy–Schwarz,

|λ|√n=
∣∣∣∣∣

n∑
j=1

vj +wj

∣∣∣∣∣≤ ‖v+w‖√n

and so

|λ| ≤ ‖v +w‖.
Combined with (4.4) this gives (4.3).

Let J ⊂ [n] with |J | =m such that supp(v)⊂ J . From (4.3),

1

4
≤ ‖v +w‖2 ≤mmax

j∈J

∣∣∣∣uj − λ√
n

∣∣∣∣2

.
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It follows that there exists j1 ∈ J with∣∣∣∣uj1 −
λ√
n

∣∣∣∣≥ 1

2
√

m
. (4.5)

On the other hand, since
∑

j∈J c |wj |2 ≤ ‖w‖2 ≤ ρ2 it follows from the pigeonhole principle that there exists j2 ∈ J c

such that∣∣∣∣uj2 −
λ√
n

∣∣∣∣= |wj2 | ≤
ρ√

n−m
.

By the previous displays and the triangle inequality we have

|uj1 − uj2 | ≥
1

2
√

m
− ρ√

n−m
≥ 1

4
√

m
. (4.6)

Let A ∈ An,d be drawn uniformly at random. We form a coupled matrix Ã ∈ An,d as follows. Conditional on
A, we fix some arbitrary bijection π :NAT(j1) \NAT(j2)→NAT(j2) \NAT(j1) (if these sets are empty we simply
set Ã = A). We do this in some measurable fashion with respect to the sigma algebra generated by A. We let ξ =
(ξi)

n
i=1 ∈ {0,1}n be a sequence of iid Bernoulli(1/2) indicators, independent of A, and form Ã by replacing the

submatrix A(i,π(i))×(j1,j2) with

Ã(i,π(i))×(j1,j2) =
(

1 0
0 1

)
+ ξi

(−1 +1
+1 −1

)
(4.7)

for each i ∈NAT(j1) \NAT(j2).

We claim that Ã
d=A. It is clear that for any realization of the signs ξ the replacements (4.7) do not affect the row

and column sums, so Ã ∈An,d . Now note that A and Ã agree on all entries (i, j) /∈NAT(j1) NAT(j2)×{j1, j2}. Con-
ditional on any realization of the entries of A outside this set, from the constraints on row and column sums we have
that the remaining entries of A are determined by the set NAT(j1) \NAT(j2), and similarly the remaining entries of Ã

are determined by NÃT(j1) \NÃT(j2). NAT(j1) \NAT(j2) is uniformly distributed over subsets of NAT(j1) NAT(j2)

of cardinality |NAT(j1) NAT(j2)|/2. One then notes that for any fixed realization of ξ , the set NÃT(j1) NÃT(j2) is
also uniformly distributed over subsets of NAT(j1) NAT(j2) of the same cardinality. The claim then follows from the
independence of ξ from A.

Denote the rows of Ã+Z by R̃i . We have

R̃i · u=Ri · u+ ξi(uj2 − uj1). (4.8)

Recall the sets Acodeg(i1, i2)⊂An,d from Lemma 2.1. Since A
d= Ã we have

P

(∥∥(A+Z)u
∥∥≤ c

√
d

m

)

= P

(∥∥(Ã+Z)u
∥∥≤ c

√
d

m

)

≤ P
(
AT /∈Acodeg(j1, j2)

)+ P

(∥∥(Ã+Z)u
∥∥≤ c

√
d

m
,AT ∈Acodeg(j1, j2)

)

= P
(
AT /∈Acodeg(j1, j2)

)+EPξ

(∥∥(Ã+Z)u
∥∥≤ c

√
d

m

)
1
(
AT ∈Acodeg(j1, j2)

)
. (4.9)

For A such that AT ∈Acodeg(j1, j2) we have∣∣NAT(j1) \NAT(j2)
∣∣= d − ∣∣NAT(j1)∩NAT(j2)

∣∣≥ 3d/4.
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Now for any i ∈NAT(j1) \NAT(j2), from (4.6) and (4.8) we have

Pξi

(
|R̃i · u| ≤ c√

m

)
≤ 1

2
(4.10)

if c > 0 is a sufficiently small constant. From Lemma 4.2 it follows that

Pξ

( ∑
i∈N

AT (j1)\NAT (j2)

|R̃i · u|2 ≤ c′

m

∣∣NAT(j1) \NAT(j2)
∣∣)≤ e−c|N

AT (j1)\NAT (j2)|

so

Pξ

(∥∥(Ã+Z)u
∥∥≤ c

√
d

m

)
1
(
AT ∈Acodeg(j1, j2)

)
≤ Pξ

(
n∑

i=1

|R̃i · u|2 ≤ c2d

m

)
1
(∣∣NAT(j1) \NAT(j2)

∣∣≥ 3d/4
)

≤ Pξ

( ∑
i∈N

AT (j1)\NAT (j2)

|R̃i · u|2 ≤ c′

m

∣∣NAT(j1) \NAT(j2)
∣∣)1

(∣∣NAT(j1) \NAT(j2)
∣∣≥ 3d/4

)
≤ e−cd .

Combined with (4.9) and Lemma 2.1 (applied to AT, which is also uniform over An,d ) we conclude

sup
u∈Flat0(m,ρ)

P

(∥∥(A+Z)u
∥∥≤ c

√
d

m

)
=O

(
e−cd

)
. (4.11)

Let �0(m,ρ) ⊂ Flat0(m,ρ) be a ρ-net for Flat0(m,ρ) as in Lemma 3.3. On the event EK(m,ρ) we have ‖A+
Z‖〈1〉⊥ ≤K

√
d and ‖(A+Z)v‖ ≤ ρK

√
d for some v ∈ Flat0(m,ρ). Letting u ∈�0(m,ρ) such that ‖u− v‖ ≤ ρ, by

the triangle inequality,∥∥(A+Z)u
∥∥≤ ∥∥(A+Z)v

∥∥+ ∥∥(A+Z)(u− v)
∥∥

≤ ρK
√

d + ρ‖A+Z‖〈1〉⊥
≤ 2ρK

√
d.

Thus,

P
(
EK(m,ρ)

)≤ P
(∃u ∈�0(m,ρ) : ∥∥(A+Z)u

∥∥≤ 2ρK
√

d
)
.

By our choice of ρ (adjusting the constant c) we have 2ρK
√

d ≤ c
√

d/m. Thus, we can apply the union bound and
the estimate (4.11) to conclude

P
(
EK(m,ρ)

)�O

(
n

mρ2

)m

e−cd

≤ exp

(
m log

(
n

m

)
+ 2m

(
log

(
1

ρ

)
+O(1)

)
− cd

)
≤ exp

(
O(γ0m logn)− cd

)
≤ e−cd/2,

where we have substituted the assumed bound on m and the expression for ρ. The claim follows. �
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5. Incrementing control on structured vectors

In this section we upgrade the control on very flat vectors from Lemma 4.1 to obtain Proposition 3.1 by an iterative
argument. Note that this step is not necessary for large degrees n/ log2 n� d ≤ n/2. Whereas Lemma 4.1 was estab-
lished by restricting attention to A ∈Acodeg(i1, i2), i.e. restricting to the event that A has controlled codegrees, here
we will use the expansion property enjoyed by elements of Aexp(κ) (defined in (2.6)). As in the proof of Lemma 4.1
we will create a coupled matrix Ã using random switchings. This time the switchings will be applied across several
columns rather than just two. While similar in spirit to the coupling from the previous section, the coupling used here
requires some more care and notation to properly define.

5.1. Neighborhood switchings

Let i = {i, i′} ⊂ [n] and let J,J ′ ⊂ [n] be disjoint with |J | = |J ′|. Define a mapping

Switchi,J,J ′ :An,d →An,d

as follows. For A ∈ An,d such that J ⊂ NA(i) \NA(i′) and J ′ ⊂ NA(i′) \NA(i), let A′ = Switchi,J,J ′(A) be the
element of An,d that agrees with A on all entries (i0, j0) /∈ {i, i′} × J ∪ J ′, and such that

NA′(i)=
(
NA(i) \ J

)∪ J ′, NA′
(
i′
)= (

NA

(
i′
) \ J ′

)∪ J.

Similarly, if J ⊂NA(i′)\NA(i) and J ′ ⊂NA(i)\NA(i′), let A′ = Switchi,J,J ′(A) be the element of An,d that agrees
with A on all entries (i0, j0) /∈ i × J ∪ J ′, and such that

NA′(i)=
(
NA(i) \ J ′

)∪ J, NA′
(
i′
)= (

NA

(
i′
) \ J

)∪ J ′.

Otherwise set Switchi,J,J ′(A)= A. It is straightforward to verify that Switchi,J,J ′ is an involution on An,d . We say
that A is switchable at (i, J, J ′) if Switchi,J,J ′(A) �=A. See Figure 2.

For ξ ∈ {0,1} we interpret Switchξ

i,J,J ′ to mean Switchi,J,J ′ when ξ = 1 and the identity map when ξ = 0. We will
later need the following:

Lemma 5.1 (Stability of Aexp(κ) under switchings). Let κ ∈ (0,1) and A ∈Aexp(κ). Let {({il , i′l}, Jl, J
′
l )}kl=1 be a

sequence such that the 2k indices i1, i
′
1, . . . , ik, i

′
k ∈ [n] are all distinct, and for all 1≤ l ≤ k we have Jl ∩ J ′l =∅ and

|Jl | = |J ′l |. Let ξ ∈ {0,1}k and put

Ã= (◦l∈[k] Switchξl

{il ,i′l },Jl ,J
′
l

)
(A).

(One notes that the operations Switchξl

{il ,i′l },Jl ,J
′
l

with l ∈ [k] all commute since the sets {il , i′l}, l ∈ [k] are pairwise

disjoint, so that Ã is well defined.) Then Ã ∈Aexp(κ/2).

Fig. 2. Depiction of the effect of applying the switching operation Switch{i,i′},J,J ′ in the digraph associated to a matrix A that is switchable at
({i, i′}, J, J ′). Here we depict only (and all of) the directed edges from {i, i′} to J ∪ J ′; in particular, for the configuration on the left, say, it is
important that there are no edges from i to J ′ or from i′ to J .
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Proof. Fix an arbitrary set J ⊂ [n] with |J | ≤ n/2d . It suffices to show

∣∣NÃT(J )
∣∣≥ 1

2

∣∣NAT(J )
∣∣.

For any i ∈NAT(J ) \NÃT(J ) we must have i ∈ {il, i′l} for some l ∈ [k] such that ξl = 1. In the case that i = il , by
definition of the switching we must have i′l ∈ NÃT(J ), and similarly if i = i′l then il ∈ NÃT(J ). Since the indices
i1, i

′
1, . . . , ik, i

′
k are all distinct, we have∣∣NÃT(J )
∣∣≥ ∣∣NAT(J ) \NÃT(J )

∣∣≥ ∣∣NAT(J )
∣∣− ∣∣NÃT(J )

∣∣
and the result follows upon rearranging. �

5.2. Coupling construction

Let L,L′ ⊂ [n] be fixed nonempty disjoint sets. Denote

I = [�n/2
] and I ′ = [�n/2
 + 1,2�n/2
] (5.1)

and fix a bijection π : I → I ′. For distinct {i, i′} ⊂ [n] define

GL,L′
(
i, i′

)= {
A ∈An,d : LA

(
i′
)=∅,

∣∣L′A(
i′
) \NA(i)

∣∣≥ ∣∣LA(i)
∣∣≥ 1

}
(5.2)

(recall our notation (1.19)). For i ∈ I we abbreviate

G+(i) := GL,L′
(
i, π(i)

)
, G−(i) := GL,L′

(
π(i), i

)
.

Note G+(i)∩ G−(i)=∅. Denote

I+(A) := {
i ∈ I :A ∈ G+(i)

}
, (5.3)

I−(A) := {
i ∈ I :A ∈ G−(i)

}
. (5.4)

Let A ∈An,d . We define a deterministic sequence J (A)= {Ji(A)}i∈I+(A)∪I−(A) of subsets of L, and a sequence of
jointly independent random sets J ′(A)= {J ′i (A)}i∈I+(A)∪I−(A) in L′ as follows. For each i ∈ I+(A) we set Ji(A)=
LA(i) and draw

J ′i (A) ∈
(

L′A(π(i)) \NA(i)

|LA(i)|
)

(5.5)

uniformly at random. For each i ∈ I−(A) we set Ji(A)= LA(π(i)) and draw

J ′i (A) ∈
(

L′A(i) \NA(π(i))

|LA(π(i))|
)

(5.6)

uniformly at random. Note that |Ji(A)| = |J ′i (A)| for all i ∈ I+(A) ∪ I−(A). Let ξ = (ξi)i∈[n] ∈ {0,1}n be drawn
uniformly at random, independent of all other random variables. Now set

FL,L′(A)= FL,L′
(
A;J ′(A), ξ

)= (◦i∈I+(A)∪I−(A) Switchξi

{i,π(i)},Ji (A),J ′i (A)

)
(A). (5.7)

See Figure 3 for an illustration of the construction. We emphasize that FL,L′(A) is not determined by A, as it is also
a function of the random variables J ′(A) and ξ .

Lemma 5.2. With FL,L′(A) defined as above, if A ∈An,d is uniform random then FL,L′(A) ∈An,d is also uniform
random.
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Fig. 3. Depiction of the out-neighborhoods of vertices i, π(i) for the digraph corresponding to a matrix A ∈ G+(i) = GL,L′ (i,π(i)), where we
only depict the directed edges from {i, π(i)} to L ∪L′. Note that Ji = LA(i), the set of out-neighbors of i in L, while π(i) has no out-neighbors
in L. The set J ′

i
is a random subset of L′

A
(π(i)) \L′

A
(i)= L′ ∩ (NA(π(i)) \NA(i)) of size |Ji |. In the formation of the coupled matrix FL,L′ (A)

we apply Switch{i,π(i)},Ji ,J
′
i

(see Figure 2), or not, depending on the value of ξi ∈ {0,1}, and we do this independently for each i ∈ I+(A).

Proof. That FL,L′(A) ∈ An,d follows from the fact that the individual mappings Switchξi

{i,π(i)},Ji ,J
′
i

have range in

An,d . To show FL,L′(A) is uniformly distributed, by the joint independence of the indicator variables ξi and the sets
J ′i (A) conditional on A it suffices to consider only one switching operation. That is, fix i ∈ I and let

A� =
{

Switchξi

{i,π(i)},Ji (A),J ′i (A)
A ∈ G+(i)∪ G−(A),

A otherwise.
(5.8)

Furthermore, by the independence of ξi from all other variables we may fix ξi = 1 as the claim is immediate for ξi = 0.
Since i is fixed we will lighten notation by writing i′ = π(i), G± = G±(i), J = Ji , J ′ = J ′i .

Fix an arbitrary element A0 ∈An,d . Our aim is to show

P
(
A� =A0)= P

(
A=A0). (5.9)

Since A� =A when A /∈ G+ ∪ G−,

P
(
A� =A0)= P

(
A=A0,A /∈ G+ ∪ G−

)+ P
(
A� =A0|A ∈ G+

)
P
(
A ∈ G+

)
+ P

(
A� =A0|A ∈ G−

)
P
(
A ∈ G−

)
.

By symmetry we have P(A ∈ G+)= P(A ∈ G−). Thus, by subtracting a similar expression for P(A=A0), it suffices
to show

P
(
A� =A0 |A ∈ G+

)= P
(
A=A0 |A ∈ G−

)
, and (5.10)

P
(
A� =A0 |A ∈ G−

)= P
(
A=A0 |A ∈ G+

)
. (5.11)

Again by symmetry, it suffices to establish (5.10). Note that

A(i0, j0)=A�(i0, j0) ∀(i0, j0) /∈ {
i, i′

}×L∪L′. (5.12)

Thus, both sides of (5.10) are zero unless the event

E0 =
{
A(i0, j0)=A0(i0, j0) ∀(i0, j0) /∈ {

i, i′
}×L∪L′

}
holds. Our aim is now to show

P
(
A� =A0 |A ∈ G+,E0

)= P
(
A=A0 |A ∈ G−,E0

)
. (5.13)
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Now notice that due to the constraints on column sums for elements of An,d , restricting to the event E0 ∧ {A ∈ G+}
fixes all entries of A, A∗ except for those in {i, i′} ×L′0, where

L′0 := L′
A0(i) L′

A0

(
i′
)= L′A(i) L′A

(
i′
)= L′A�(i) L′A�

(
i′
)
,

and the same is true if we restrict to E0 ∧ {A ∈ G−}. Thus, it suffices to show

P
(
A�

(i,i′)×L′0
=A0

(i,i′)×L′0
|A ∈ G+,E0

)= P
(
A(i,i′)×L′0 =A0

(i,i′)×L′0
|A ∈ G−,E0

)
. (5.14)

Under the conditioning, the submatrix A(i,i′)×L′0 is determined by the random set L′′A := L′A(i) \ L′A(i′) ⊂ L′0, and

similarly A�
(i,i′)×L′0

is determined by L′′A� = L′A�(i) \L′A�(i
′)⊂ L′0. On the event E0 ∧ {A ∈ G−}, since A is uniformly

distributed, L′′A is uniformly distributed over subsets of L′0 of fixed size r := |L′′
A0 |. Thus, it suffices to show that on

E0 ∧ {A ∈ G+}, L′′A� is also uniformly distributed over subsets of L′0 of size r .
From the definition (5.5), on E0 ∧ {A ∈ G+} we have

L′′A� = L′′A ∪ J ′,

where, conditional on A, J ′ is drawn uniformly from subsets of L′A(i′)\L′A(i)= L′0 \L′′A of size |LA(i)| =: s, and we
note that s is fixed by the constraints on column sums. From the constraints on row sums we have |L′′A| = r − s. Also,
again by uniformity of A ∈An,d , L′′A is uniformly distributed over subsets of L′0 of size r− s. Thus, on E0∧{A ∈ G+},
L′′A� is generated by first selecting L′′A ⊂ L′0 of size r − s uniformly at random, and then adjoining a uniform random
set J ′ ⊂ L′0 \L′′A of size s. It follows that L′′A� is uniformly distributed over subsets of L′0 of size r , as desired. �

In Lemma 5.4 below we show that when A is drawn uniformly at random, with high probability the number
of random switchings |I+(A) ∪ I−(A)| that are applied to form FL,L′(A) is fairly large. To prove this we need a
consequence of concentration of measure for the symmetric group, which will also be used in the proof of Lemma 6.3.

Lemma 5.3. Let S, T be finite sets with m = |S| ≤ |T | and let σ : S → T be a uniform random injection. Let
T1, . . . , Tm ⊂ T be fixed subsets and set

Nσ =
∣∣{i ∈ S : σ(i) ∈ Ti

}∣∣.
We have ENσ = 1

|T |
∑

i∈S |Ti |, and for any δ > 0,

P
(|Nσ −ENσ | ≥ δENσ

)≤ 2 exp

(
− δ2

4+ 2δ
ENσ

)
. (5.15)

In particular, if T0 ⊂ T is fixed and U ⊂ T is a uniform random set of size m, then for any δ > 0,

P

(∣∣∣∣|U ∩ T0| − m|T0|
|T |

∣∣∣∣≥ δ
m|T0|
|T |

)
≤ 2 exp

(
− δ2

4+ 2δ

m|T0|
|T |

)
. (5.16)

Proof. Label the elements of S, T as S = {s1, . . . , sm}, T = {t1, . . . , tN }, and define an N ×N matrix M = (mij ) with

mij = 1
(
i ∈ [m], tj ∈ Ti

)
.

Letting τ : [N ]→ [N ] be a uniform random permutation, we have

Nσ
d=

N∑
i=1

miτ(i).

(5.15) now follows from a concentration bound for Hoeffding’s permutation statistic due to Chatterjee; see [27, Propo-

sition 1.1]. (5.16) is obtained by setting Ti ≡ T0 for all i ∈ S and noting that U
d=σ(S). �
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Lemma 5.4. Let κ ∈ (0,1), and assume

C

κ2
≤ d ≤ κn

C
(5.17)

for a sufficiently large constant C > 0. Let L,L′ ⊂ [n] be fixed disjoint sets satisfying

8

κ
≤ |L| ≤ n

16d
,

32n

κ2d
≤ ∣∣L′∣∣≤ n (5.18)

(note there exist such L, L′ if C is taken sufficiently large). Let A ∈An,d be uniform random, and recall the sets I ,
I+(A) introduced in (5.1), (5.3). We have

P
(∣∣I+(A)

∣∣≤ cκd|L|,A ∈Aexp(κ)
)� exp

(−cκd|L|) (5.19)

for a sufficiently small constant c > 0.

Proof. We will use Lemma 2.5 and the row-exchangeability of A.
Let r ≥ 1 to be chosen later, and denote

Ir (A)=N≤r

AT (L) \N≥|L′|/2
AT

(
L′

)
, I ′r (A; i)=N>r

AT

(
L′ \NA(i)

) \NAT(L)

(recall our notation from Lemma 2.5). Note that if i ∈ I is such that i ∈ Ir (A) and π(i) ∈ I ′r (A; i), then i ∈ I+(A).
Indeed, from π(i) ∈ I ′r (A; i) we have π(i) /∈NAT(L), i.e. LA(π(i))=∅, and∣∣L′A(

π(i)
) \NA(i)

∣∣ > r ≥ ∣∣LA(i)
∣∣≥ 1.

(So far we have not used the disjointness of Ir (A) from N≥|L′|/2
AT (L′); this will be needed below to obtain a lower

bound on the size of I ′r (A; i).) Thus, setting

I ∗r (A)= {
i ∈ I ∩ Ir(A) : π(i) ∈ I ′r (A; i)

}
it suffices to show

P
(∣∣I ∗r (A)

∣∣≤ cκd|L|,A ∈Aexp(κ)
)� exp

(−cκd|L|). (5.20)

For the remainder of the proof we restrict to the event {A ∈ Aexp(κ)}; note the rows of A are still exchangeable
under this restriction. First we use Lemma 2.5 to prove bounds on the sizes of Ir(A) and I ′r (A; i). From Lemma 2.5(1),
by our upper bound (5.18) on |L| and taking

r ≥ 2/κ (5.21)

we have∣∣N≤r

AT (L)
∣∣≥ κd|L|/2.

Furthermore, from

|L′|
2

∣∣N≥|L′|/2
AT

(
L′

)∣∣≤ eA

([n],L′)= d
∣∣L′∣∣

we have |N≥|L′|/2
AT (L′)| ≤ 2d . Then from the lower bound on |L| in (5.18) we conclude∣∣Ir (A)
∣∣≥ κd|L|/2− 2d ≥ κd|L|/4. (5.22)
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Now let i ∈ Ir(A). Since i /∈N≥|L′|/2
AT (L′) we have∣∣L′ \NA(i)

∣∣ >
∣∣L′∣∣/2.

Now from our assumption (5.18) it follows |L′| ≥ n/κd , so |L′ \NA(i)|> n/2κd . Thus, taking

r ≤ κd|L′|
8n

(5.23)

we have r ≤ κd|L′ \NA(i)|/4n, and we can apply Lemma 2.5(2) to obtain∣∣N>r
AT

(
L′ \NA(i)

)∣∣ > n/8.

Our lower bound on |L′| in (5.18) implies there exists a choice of r satisfying both (5.21) and (5.23). We henceforth
fix such a choice of r . Since |NAT(L)| ≤ d|L| ≤ n/16, we conclude∣∣I ′r (A; i)∣∣≥ n/16 ∀i ∈ Ir (A). (5.24)

Next we argue that

P

(∣∣Ir (A)∩ I
∣∣≤ 1

16
κd|L|

)
� exp

(−cκd|L|) (5.25)

(recall our restriction to the event {A ∈ Aexp(κ)}). Let us condition on the size of Ir (A). Note that the rows of A

are exchangeable under this conditioning and the restriction to {A ∈ Aexp(κ)}. Thus, Ir(A) is a uniform random
subset of [n] of fixed size at least κd|L|/4, and (5.25) follows from (5.16) (with δ = 1/4, say) and the fact that
|I | = �n/2
 ≥ n/4.

Now we may restrict to the event {|Ir(A)∩ I | ≥ 1
16κd|L|}. We condition on Ir(A)∩ I and write m= |Ir (A)∩ I |.

We will be done if we can show∣∣{i ∈ Ir (A)∩ I : π(i) ∈ I ′r (A; i)
}∣∣� κd|L| (5.26)

except with probability O(exp(−cκd|L|)). Under all of the conditioning we still have that the rows of A with indices
in (Ir (A)∩ I )c are exchangeable; thus,

P
(∣∣{i ∈ Ir(A)∩ I : π(i) ∈ I ′r (A; i)

}∣∣≤ cκd|L|)
= P

(∣∣{i ∈ Ir (A)∩ I : π(i) ∈ σ
(
I ′r (A; i)

)}∣∣≤ cκd|L|),
where σ is a uniform random permutation of (Ir (A)∩ I )c , independent of A under the conditioning. We condition on
A and proceed using only the randomness of σ . Note that the restriction of σ−1 ◦ π to Ir (A)∩ I is a uniform random
injection into (Ir (A)∩ I )c . We have

E
∣∣{i ∈ Ir (A)∩ I : π(i) ∈ σ

(
I ′r (A; i)

)}∣∣= 1

n−m

∑
i∈Ir (A)∩I

∣∣I ′r (A; i)∣∣�m,

where we used (5.24) and the fact that |Ir (A)| ≤ |NAT(L)| ≤ d|L| ≤ n/16. Applying Lemma 5.3 with S = Ir (A)∩ I ,
T = (Ir (A) ∩ I )c , Ti = I ′r (A; i), σ−1 ◦ π |Ir (A)∩I in place of σ , and δ = 1/2, say, we conclude (5.26) holds except
with probability

O
(
exp

(−c′m
))=O

(
exp

(−cκd|L|))
as desired. �
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5.3. Incrementing flatness

Now we use the coupled pair (A,FL,L′(A)) from Lemma 5.2 to boost the weak control on structured vectors in
Lemma 4.1 to the stronger control of Proposition 3.1. We do this by an iterative application of the following:

Lemma 5.5 (Incrementing flatness). There is a constant c0 > 0 such that the following holds. Fix γ0 ≥ 1/2 and let
1≤K ≤ nγ0 . Let κ ∈ (0,1) and assume 1/(c0κ)2 ≤ d ≤ c0κn. Let

e−γ0 log2 n ≤ ρ < 1,
1

c2
0κ
≤m≤ c0n

d
, (5.27)

and let ρ′, m′ satisfy

0 < ρ′ ≤
(

c0

Kn

)
ρ, m < m′ ≤

(
c0κd

γ0 log2 n

)
m. (5.28)

Let A ∈An,d be drawn uniformly at random, and recall the events (3.8). We have

P
(
EK

(
m′, ρ′

)∧ EK(m,ρ)c ∧ {
A ∈Aexp(κ)

})≤ exp(−c0κdm). (5.29)

We remark that at least one of the assumptions (5.27) and (5.28) on m, m′ is vacuous unless

γ0

c0κ
log2 n < d ≤ c3

0κn. (5.30)

As in the proof of Lemma 4.1 we will combine anti-concentration bounds for the images (A+ Z)u of fixed unit
vectors u with a union bound over a net for the possible choices of u. The main idea is that removal of the event
EK(m,ρ) lets us reduce consideration to u /∈ Flat(m,ρ), leading to improved anti-concentration, while restriction to
EK(m′, ρ′) lets us consider only u ∈ Flat0(m′, ρ′), leading to improved metric entropy.

Proof. Let c0 > 0 to be taken sufficiently small. Let m, m′, ρ, ρ′ be as in the statement of the lemma.
For fixed u ∈ S

n−1 and t > 0 define

C(u, t) := {
A0 ∈An,d :

∥∥(A0 +Z)u
∥∥≤ t

}
. (5.31)

We first use the couplings (A,FL,L′(A)) from Section 5.2 to show that

sup
u∈Sn−1\Flat(m,ρ)

P

(
A ∈ C

(
u, c0ρ

√
κdm

n

)
∩Aexp(κ)

)
� exp(−c0κdm) (5.32)

if c0 > 0 is taken sufficiently small. Fixing an arbitrary element u ∈ S
n−1 \ Flat(m,ρ), we can apply Lemma 3.5 to

obtain disjoint sets L,L′ ⊂ [n] with |L| �m and |L′| � n−m� n such that for any nonempty sets J ⊂ L, J ′ ⊂ L′
with |J | = |J ′|,∣∣∣∣∑

j∈J

uj −
∑
j∈J ′

uj

∣∣∣∣≥ ρ

4
√

n
. (5.33)

By deleting elements we may take |L| = �cm
 and |L′| = �cn
 for some constant c > 0.

Now let Ã= FL,L′(A) be as in (5.7). By Lemma 5.2 we have Ã
d=A, so

P

(
A ∈ C

(
u, c0ρ

√
κdm

n

)
∩Aexp(κ)

)
= P

(
Ã ∈ C

(
u, c0ρ

√
κdm

n

)
, Ã ∈Aexp(κ)

)
.
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From (5.7) and the fact that the switching mappings are their own inverses it follows that

A= (◦i∈I+(A)∪I−(A) Switchξi

{i,π(i)},Ji ,J
′
i

)
(Ã).

From Lemma 5.1 we deduce that {Ã ∈Aexp(κ)} ⊂ {A ∈Aexp(κ/2)}, so

P

(
A ∈ C

(
u, c0ρ

√
κdm

n

)
∩Aexp(κ)

)
≤ P

(
Ã ∈ C

(
u, c0ρ

√
κdm

n

)
,A ∈Aexp(κ/2)

)
.

For the right hand side, letting c′ > 0 a sufficiently small constant and applying the union bound,

P

(
Ã ∈ C

(
u, c0ρ

√
κdm

n

)
,A ∈Aexp(κ/2)

)

≤ P

(
Ã ∈ C

(
u, c0ρ

√
κdm

n

)
,
∣∣I+(A)

∣∣ > c′κdm

)
+ P

(
A ∈Aexp(κ/2),

∣∣I+(A)
∣∣≤ c′κdm

)
.

By our assumed bounds on d and m and taking c0, c′ sufficiently small we can apply Lemma 5.4 to bound the second
term above by O(exp(−c′κdm)). Thus, taking c0 ≤ c′, to obtain (5.32) it suffices to show

P

(
Ã ∈ C

(
u, c0ρ

√
κdm

n

)
,
∣∣I+(A)

∣∣ > c0κdm

)
� exp(−c0κdm). (5.34)

Condition on A satisfying |I+(A)|> c0κdm, and consider an arbitrary element i ∈ I+(A). Writing Ri , R̃i for the
ith rows of A+Z and Ã+Z, respectively, we have

R̃i =Ri + ξi

(∑
j∈J ′i

uj −
∑
j∈Ji

uj

)
.

From (5.33) it follows that

Pξi

(
|R̃i · u|< ρ

8
√

n

)
≤ 1/2. (5.35)

By independence of the components of ξ we can apply Lemma 4.2 to obtain that if c0 is sufficiently small,

Pξ

(∥∥(Ã+Z)u
∥∥≤ c0ρ

√
κdm

n

)
= Pξ

(
n∑

i=1

|R̃i · u|2 ≤ c2
0ρ

2κdm/n

)

≤ Pξ

( ∑
i∈I+(A)

|R̃i · u|2 ≤ c0ρ
2
∣∣I+(A)

∣∣/n

)

≤ 2−|I+(A)| ≤ e−c0κdm.

Undoing the conditioning on A we obtain (5.34), and hence (5.32).
By Lemma 3.3 we may fix a ρ′-net �0 =�0(m

′, ρ′)⊂ Flat0(m′, ρ′) for Flat0(m′, ρ′) with |�0| ≤O(n/m′ρ′2)m′ .
By definition, on the event EK(m′, ρ′) we have A ∈ C(u,ρ′K

√
d) for some u ∈ Flat0(m′, ρ′). Arguing as in the proof

of Lemma 4.1 it follows that A ∈ C(u′,2ρ′K
√

d) for some u′ ∈�0. Thus, by our assumption ρ′ < ρ/2,

P
(
EK

(
m′, ρ′

)∧ EK(m,ρ)c ∧ {
A ∈Aexp(κ)

})
≤

∑
u∈�0

P
(
EK(m,ρ)c ∧ {

A ∈ C
(
u,2ρ′K

√
d
)∩Aexp(κ)

})
≤

∑
u∈�0\Flat0(m,ρ)

P
(
A ∈ C

(
u,2ρ′K

√
d
)∩Aexp(κ)

)
. (5.36)
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Now by the assumed bound (5.28) on ρ′/ρ, we have 2ρ′K
√

d ≤ c0ρ
√

κdm/n for all n sufficiently large, and hence

C
(
u,2ρ′K

√
d
)⊂ C

(
u, c0ρ

√
κdm

n

)
for any u ∈ S

n−1. Next note that

�0 \ Flat0(m,ρ)⊂ S
n−1
0 ∩ Flat

(
m′, ρ′

)∩ Flat(m,ρ)c ⊂ S
n−1 \ Flat(m,ρ).

Thus, we can apply (5.32) to each summand in (5.36) to bound

P
(
EK

(
m′, ρ′

)∧ EK(m,ρ)c ∧ {
A ∈Aexp(κ)

})
� |�0| exp(−c0κdm)

≤O

(
n

m′ρ′2

)m′

exp(−c0κdm)

≤ exp
(
O

(
m′ log

(
n/ρ′

))− c0κdm
)

≤ exp
(
O

(
m′

(
log(Kn)+ log(1/ρ)

))− c0κdm
)

≤ exp(O
(
m′γ0 log2 n− c0κdm

)
≤ exp

(
−1

2
c0κdm

)
,

where in the fifth and final lines we applied the upper bounds (5.28), and in the sixth line the lower bound (5.27) on
ρ. The result follows by replacing c0 with 2c0. �

Proof of Proposition 3.1. We may and will assume throughout that n is sufficiently large depending on γ0. Since
Lemma 4.1 already implies Proposition 3.1 when d � n/ log2 n, we may assume

d ≤ n

log2 n
. (5.37)

In the sequel, we will frequently apply the observation that the events EK(m,ρ) are monotone increasing in the
parameters m and ρ.

For k ≥ 0 set

mk :=
(

c′d
γ0 log3 n

)k

, ρk := n−10γ0k, (5.38)

where c′ > 0 is a sufficiently small constant, and denote

Ek := EK(mk,ρk).

Note that the sequence mk is monotone increasing (if n is sufficiently large) by our assumption d ≥ log4 n. From
Lemma 4.1 and monotonicity,

P(E1)=O
(
e−cd

)
. (5.39)

Let k∗ ≥ 0 be the integer such that

mk∗ ≤ c0n

d
< mk∗+1, (5.40)

where the constant c0 is as in Lemma 5.5.
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Let us denote κ = c/ logn for a sufficiently small constant c > 0. By (5.37) we have d ≤ c0κn for all n sufficiently
large. Also by (5.37),

c0n

d
≥ c0 log2 n≥ 1

c2
0κ

for all n sufficiently large, so the range for m in (5.27) is nonempty. From the definitions of k∗ and mk we have

k∗ � logn

logd
. (5.41)

Let m′ > c0n/d to be specified later. By the union bound and monotonicity of EK(m,ρ) in m and ρ,

P
(
EK

(
m′, ρk∗+2

))≤ P
(
A /∈Aexp(κ)

)+ P(E1)+
k∗∑

k=1

P
(
Ek+1 ∧ Ec

k ∧
{
A ∈Aexp(κ)

})
+ P

(
EK

(
m′, ρk∗+2

)∧ Ec
k∗+1 ∧

{
A ∈Aexp(κ)

})
. (5.42)

From (5.41) and the assumed lower bound on d we have

ρk∗+1 = n−10γ0(k
∗+1) ≥ exp

(−γ0 log2 n
)

for all n sufficiently large. Thus, taking

m′ = c2
0cn

γ0 log3 n
= c0n

d
× c0κd

γ0 log2 n

we can apply Lemma 5.5 to bound

P
(
EK

(
m′, ρk∗+2

)∧ Ec
k∗+1 ∧

{
A ∈Aexp(κ)

})≤ exp
(−c2

0κn
)
.

From monotonicity of EK(m,ρ) in m and (5.40),

P

(
EK

(
m′, ρk∗+2

)∧ EK

(
c0n

d
,ρk∗+1

)c

∧ {
A ∈Aexp(κ)

})≤ exp
(−c2

0κn
)
. (5.43)

For each 1≤ k ≤ k∗, since ρk ≥ ρk∗+1 we can also apply Lemma 5.5 to bound

P
(
Ek+1 ∧ Ec

k ∧
{
A ∈Aexp(κ)

})≤ exp(−c0κdmk). (5.44)

Assembling the bounds (5.42), (5.39), (5.43), (5.44) and applying Lemma 2.3 we conclude

P
(
EK

(
m′, ρk∗+2

))� e−cd + e−cn/ logn +
k∗∑

k=1

exp(−c0κdmk)≤ e−cd/2.

Since ρk∗+2 = n−10γ0(k
∗+2) = n−O(γ0 logd n) by (5.41), the claim follows after adjusting c. �

6. Invertibility over non-flat vectors

In this section we conclude the proof of Theorem 1.7. Throughout this section A and Z are as in the theorem statement.
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6.1. An averaging argument

The aim of this subsection is to establish Lemma 6.2 below, which essentially reduces our task to bounding the
probability that the difference between two rows of A + Z has small inner product with a fixed unit vector. The
statement and proof were inspired by arguments in [50] for the invertibility problem, which in turn are an intricate
refinement of a basic averaging argument that goes back to Komlós in his work on the invertibility of random ±1
matrices with iid entries [46].

Definition 6.1 (Good overlap events). For i1, i2 ∈ [n], � ≥ 1 and ρ, t > 0 we define Oi1,i2(�, ρ, t) to be the event
that there exists u ∈ S

n−1
0 and disjoint sets L1,L2 ⊂NA(i1) NA(i2) such that the following hold:

(1) |L1| = |L2| = �,
(2) |uj1 − uj2 | ≥ ρ√

n
for all j1 ∈L1, j2 ∈ L2,

(3) ‖(A+Z)(i1,i2)u‖ ≤ t√
n

, and

(4) |(Ri1 +Ri2) · u| ≤ 2t√
n

.

Recall our notation A(i1,i2) for the matrix obtained by removing the rows with indices i1, i2, and write 〈A(i1,i2)〉 for the
sigma algebra it generates. Crucially, we note that Oi1,i2(�, ρ, t) is a 〈A(i1,i2)〉-measurable event. Indeed, conditioning
on A(i1,i2) fixes Ri1 +Ri2 and NA(i1) NA(i2) by the constraint on column sums.

For each pair of distinct indices i1, i2 ∈ [n] we choose a 〈A(i1,i2)〉-measurable random vector

u(i1,i2) ∈ S
n−1
0

and 〈A(i1,i2)〉-measurable sets

L1(i1, i2),L2(i1, i2)⊂NA(i1) NA(i2)

which, on the event Oi1,i2(τ, ρ, �), satisfy the properties (1)–(4) stated for u, L1, L2; off this event we define
u(i1,i2),L1(i1, i2), and L2(i1, i2) in some arbitrary (but 〈A(i1,i2)〉-measurable) fashion.

Informally, Oi1,i2(�, ρ, τ ) is the event that there is a unit vector which is “almost normal” to the span of the n− 1
vectors {Ri : i /∈ {i1, i2}} ∪ {Ri1 + Ri2}, and which also has “high variation” on NA(i1) NA(i2). The key property
of u(i1,i2),L1(i1, i2), and L2(i1, i2) is that they are fixed upon conditioning on A(i1,i2). We will eventually be able to
restrict to these events with parameters �≥ d/ logO(1) n and ρ, t ≥ n−O(
).

For m≥ 1 and ρ, t > 0 we define the good event

G(m,ρ, t)=
{
∀u,v ∈ Flat0(m,ρ),min

(∥∥(A+Z)u
∥∥,

∥∥(A+Z)∗v
∥∥)

>
t√
n

}
. (6.1)

Recall also the set Adisc(n0, δ)⊂An,d from (2.4).

Lemma 6.2 (Good overlap on average). Let 8/c1 ≤ d ≤ n/2 and 8n/d ≤m≤ c1n for a sufficiently small constant
c1 > 0, and put �= �md/(8n)
. Then for all ρ > 0 and 0 < t ≤ n−10 we have

P

(
G(m,ρ, t)∧

{
sn(A+Z)≤ t√

n
,A ∈Adisc

(
m

8
,

1

2

)})

≤ 2

mn

n∑
i1,i2=1

P

(
Oi1,i2(�, ρ/2, t)∧

{∣∣(Ri1 −Ri2) · u(i1,i2)
∣∣≤ 8t

ρ

})
. (6.2)

Proof. Suppose the event on the left hand side of (6.2) holds. Let u,v ∈ S
n−1 be the eigenvectors of (A+Z)∗(A+Z),

(A+Z)(A+Z)∗, respectively, associated to the eigenvalue sn(A+Z)2. By our hypotheses and (1.11) we have

(A+Z)∗(A+Z)1= (A+Z)(A+Z)∗1= |d + ζ |21.



The Circular Law for random regular digraphs 2141

Then since

sn(A+Z)≤ t√
n

< n−10 ≤ |d + ζ |,

it follows that u and 1 are associated to distinct eigenvalues of (A+Z)∗(A+Z) and hence u⊥ 1; we similarly have
v ⊥ 1. Thus, we have located u,v ∈ S

n−1
0 such that

∥∥(A+Z)u
∥∥,

∥∥(A+Z)∗v
∥∥≤ t√

n
.

Furthermore, by our restriction to G(m,ρ, t) we have that u,v ∈ S
n−1
0 \ Flat(m,ρ).

Our next step is to find a large set I∗(u, v) of pairs of row indices (i1, i2) for which Oi1,i2(�, ρ/2, t) holds, and for
which |vi1 − vi2 | is reasonably large. We begin with the former – that is, counting pairs of row indices that are “good”
for u. By Lemma 3.5 there are disjoint sets J1, J2 ⊂ [n] with |J1| ≥m, |J2| � n−m such that

|uj1 − uj2 | ≥
ρ

2
√

n
∀j1 ∈ J1, j2 ∈ J2. (6.3)

Let us take the constant c1 sufficiently small that |J2| ≥m. For α = 1,2 put

I 0
α(u)=

{
i ∈ [n] : ∣∣NA(i)∩ Jα

∣∣≤ 3d

2n
|Jα|

}
.

By our restriction to Adisc(m/8,1/2) we have |I 0
α(u)| ≥ n−m/8 for α = 1,2. Indeed, if this were not the case we

would have |I 0
α(u)c|> m/8, so

3d

2n

∣∣I 0
α(u)c

∣∣|Jα|> eA

(
I 0
α(u)c, Jα

)= ∑
i∈I 0

α (u)c

∣∣NA(i)∩ Jα

∣∣ >
3d

2n

∣∣I 0
α(u)c

∣∣|Jα|,

a contradiction. Now for α ∈ {1,2} and i1 ∈ [n] put

I 1
α(u; i1)=

{
i ∈ [n] \ {i1} :

∣∣NA(i)∩NA(i1)
c ∩ Jα

∣∣≥ d

2n

∣∣NA(i1)
c ∩ Jα

∣∣}.

For i1 ∈ I 0
α(u) we have

∣∣NA(i1)
c ∩ Jα

∣∣≥ (
1− 3d

2n

)
|Jα| ≥ m

4
,

where in the last inequality we applied our assumption d ≤ n/2. Thus, using our restriction to Adisc(m/8,1/2) and
arguing by contradiction as above, we find that |Iα(u; i1)| ≥ n−m/8 for α ∈ {1,2} and any i1 ∈ I 0

α(u). Setting

Iα(u)=
{
(i1, i2) ∈ [n]2 :

∣∣NA(i2)∩NA(i1)
c ∩ Jα

∣∣≥ md

8n

}
we have

∣∣Iα(u)
∣∣≥ ∑

i1∈I 0
α (u)

∣∣I 1
α(u; i1)

∣∣≥ (
n− m

8

)2

> n2 − mn

4
.

Setting I(u) := I1(u)∩ I2(u),∣∣I(u)c
∣∣≤ ∣∣I1(u)c

∣∣+ ∣∣I2(u)c
∣∣ < 2

mn

4
= mn

2
. (6.4)
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Now for each α = 1,2 and (i1, i2) ∈ I(u), since∣∣NA(i2)∩NA(i1)
c ∩ Jα

∣∣≥ md

8n
≥ �,

we may select a subset L′α(i1, i2) of cardinality �. We have that L′1(i1, i2), L′2(i1, i2) are disjoint subsets of
NA(i1) NA(i2) such that

|uj1 − uj2 | ≥
ρ

2
√

n
∀j1 ∈L′1(i1, i2), j2 ∈ L′2(i1, i2). (6.5)

Furthermore, for each (i1, i2) ∈ [n]2,∥∥(A+Z)(i1,i2)u
∥∥≤ ∥∥(A+Z)u

∥∥≤ t√
n

and ∣∣(Ri1 +Ri2) · u
∣∣≤ |Ri1 · u| + |Ri2 · u| ≤ 2

∥∥(A+Z)u
∥∥≤ 2t√

n
.

Thus, u,L′1(i1, i2), L′2(i1, i2) satisfy the conditions on u, L1, L2 in Definition 6.1, and it follows that Oi1,i2(�, ρ/2, t)

holds for each (i1, i2) ∈ I(u).
Now we count pairs of row indices that are “good” with respect to v. By Lemma 3.4 and the fact that v ∈ S

n−1 \
Flat(m,ρ) we have that for any i1 ∈ [n],∣∣Ev(vi1

√
n,ρ)c

∣∣= ∣∣∣∣{i ∈ [n] \ {i1} : |vi1 − vi | ≥ ρ√
n

}∣∣∣∣≥m. (6.6)

Setting

I∗(u, v) :=
{
(i1, i2) ∈ I(u) : |vi1 − vi2 | ≥

ρ√
n

}
(6.7)

from (6.6) and (6.4) we have∣∣I∗(u, v)
∣∣≥mn− mn

2
= mn

2
. (6.8)

Fix (i1, i2) ∈ I∗(u, v). By several applications of the fact that Oi1,i2(�, ρ/2, t) holds and the Cauchy–Schwarz
inequality,

t√
n
≥ ∥∥v∗(A+Z)

∥∥≥ ∣∣v∗(A+Z)u(i1,i2)
∣∣= ∣∣∣∣∣

n∑
i=1

viRi · u(i1,i2)

∣∣∣∣∣
≥ ∣∣(vi1Ri1 + vi2Ri2) · u(i1,i2)

∣∣− ∣∣∣∣ ∑
i∈[n]\{i1,i2}

viRi · u(i1,i2)

∣∣∣∣
≥ ∣∣(vi1Ri1 + vi2Ri2) · u(i1,i2)

∣∣− ∥∥(A+Z)(i1,i2)u(i1,i2)
∥∥

≥ ∣∣(vi1Ri1 + vi2Ri2) · u(i1,i2)
∣∣− t√

n

= 1

2

∣∣(vi1 + vi2)(Ri1 +Ri2) · u(i1,i2) + (vi1 − vi2)(Ri1 −Ri2) · u(i1,i2)
∣∣− t√

n

≥ 1

2

∣∣(vi1 − vi2)(Ri1 −Ri2) · u(i1,i2)
∣∣− ∣∣(Ri1 +Ri2) · u(i1,i2)

∣∣− t√
n
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≥ 1

2

∣∣(vi1 − vi2)(Ri1 −Ri2) · u(i1,i2)
∣∣− 3t√

n

≥ ρ

2
√

n

∣∣(Ri1 −Ri2) · u(i1,i2)
∣∣− 3t√

n
.

Rearranging we have

∣∣(Ri1 −Ri2) · u(i1,i2)
∣∣≤ 8t

ρ
.

In summary, we have shown that on the event

G(m,ρ, t)∧
{
sn(A+Z)≤ t√

n
,A ∈Adisc

(
m

8
,

1

2

)}
,

the event Oi1,i2(�, ρ/2, t)∧ {|(Ri1 −Ri2) · u(i1,i2)| ≤ 8t/ρ} holds for at least mn/2 pairs (i1, i2) ∈ [n]2 – that is,

mn

2
1G(m,ρ,t)1

(
sn(A+Z)≤ t√

n
,A ∈Adisc

(
m

8
,

1

2

))

≤
n∑

i1,i2=1

1Oi1,i2 (�,ρ/2,t)1

(∣∣(Ri1 −Ri2) · u(i1,i2)
∣∣≤ 8t

ρ

)
.

The bound (6.2) now follows by taking expectations on each side and rearranging. �

6.2. Anti-concentration for row-pair random walks

The aim of this subsection is to prove the following:

Lemma 6.3. Assume 1≤ d ≤ n/2. Let i1, i2 ∈ [n] distinct, and suppose the event Oi1,i2(�, ρ, t) holds for some �≥ 1,
ρ, t > 0. Then for all r ≥ 0,

P
(∣∣(Ri1 −Ri2) · u(i1,i2)

∣∣≤ r|A(i1,i2)
)� (

1+ r
√

n

ρ

)(
log(n/ρ)

�

)1/2

+ e−c�. (6.9)

We will need the following standard anti-concentration bound of Berry–Esséen-type; see for instance [29,
Lemma 2.7] (the condition there of κ-controlled second moment is easily verified to hold with κ = 1 for a Rademacher
variable).

Lemma 6.4 (Berry–Esséen-type small ball inequality). Let v ∈ C
n be a fixed nonzero vector and let ξ1, . . . , ξn be

iid Rademacher variables. Then for r ≥ 0,

sup
z∈C

P

(∣∣∣∣∣z+
n∑

j=1

ξj vj

∣∣∣∣∣≤ r

)
� r + ‖v‖∞

‖v‖ .

Proof of Lemma 6.3. By symmetry we may take (i1, i2) = (1,2). We condition on a realization of A(1,2) satisfy-
ing the event O1,2(�, ρ, t) for the remainder of the proof. For ease of notation we will write u, L1, L2 instead of
u(1,2),L1(1,2), L2(1,2). Note that conditioning on A(1,2) fixes u, L1, L2. Let r ≥ 0 be arbitrary. Our aim is to show

P
(∣∣(R1 −R2) · u

∣∣≤ r |A(1,2)
)� (

1+ r
√

n

ρ

)(
log(n/ρ)

�

)1/2

+ e−c�. (6.10)
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We now construct a coupled matrix Ã ∈An,d on an augmented probability space. Under the conditioning on A(1,2),
by the constraint on column sums the only remaining randomness is in the submatrix A(1,2)×NA(1) NA(2). We create
Ã by resampling a sequence of 2 × 2 submatrices of this submatrix uniformly and independently. Specifically, we
fix a bijection π : L1 → L2 in some arbitrary (but measurable) fashion under the conditioning on A(1,2), and let
ξ = (ξj )

n
j=1 be iid Rademacher variables independent of A. Conditional on A, for each j ∈L1 such that

A(1,2)×(j,π(j)) ∈
{(

1 0
0 1

)
,

(
0 1
1 0

)}
(6.11)

we put

Ã(1,2)×(j,π(j)) =
(

1 0
0 1

)
1(ξj =+1)+

(
0 1
1 0

)
1(ξj =−1);

if (6.11) does not hold then we set Ã(1,2)×(j,π(j)) = A(1,2)×(j,π(j)). Finally, we set Ã(i, j) = A(i, j) for all (i, j) /∈
{1,2} × L1 ∪ L2. Note that Ã(1,2)×NA(1) NA(2) is generated by first sampling A(1,2)×NA(1) NA(2) uniformly under
the conditioning on A(1,2), and then independently and uniformly resampling the 2× 2 submatrices A(1,2)×(j,π(j)). It

readily follows that Ã(1,2)×[n]
d=A(1,2)×[n] conditional on A(1,2). Denoting the first two rows of Ã+Z by R̃1, R̃2, by

replacing A with Ã in (6.10) it suffices to show

P
(∣∣(R̃1 − R̃2) · u

∣∣≤ r |A(1,2)
)� (

1+ r
√

n

ρ

)(
log(n/ρ)

�

)1/2

+ e−c�. (6.12)

Define

L′1 = L′1(A) := {j ∈L1 : (6.11) holds}. (6.13)

Using this set we can express the dot products R̃1 · u, R̃2 · u in a manner which exposes the dependence on the
Rademacher variables ξj :

R̃1 · u= z1(A)+
∑
j∈L′1

uj1(ξj =+1)+ uπ(j)1(ξj =−1),

R̃2 · u= z2(A)+
∑
j∈L′1

uπ(j)1(ξj =+1)+ uj1(ξj =−1),

where z1(A), z2(A) ∈C denote quantities that depend only on A. Subtracting we obtain

(R̃1 − R̃2) · u= z(A)+
∑
j∈L′1

(uj − uπ(j))1(ξj = 1)+ (uπ(j) − uj )1(ξj =−1)

= z(A)+
∑
j∈L′1

ξj ∂j (u), (6.14)

where ∂j (u) := uj − uπ(j) and z(A) depends only on A. Since π(j) ∈L2 for each j ∈L′1 ⊂ L1 we have

ρ√
n
≤ ∣∣∂j (u)

∣∣≤ 2 ∀j ∈ L′1. (6.15)

Our first task is to show that |L′1| � � with high probability in the randomness of the first two rows of A. The
conditioning on A(1,2) has fixed all entries but the submatrix A(1,2)×NA(1) NA(2), and has also fixed m := |NA(1) \
NA(2)|. Moreover, the submatrix A(1,2)×NA(1) NA(2) is determined by the set NA(1) \NA(2), which is uniformly
distributed over subsets of NA(1) NA(2) of size m. Define

L′′1 =NA(1)∩L1, L′′2 =NA(2)∩ π
(
L′′1

)⊂ L2. (6.16)
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We have |L′1| ≥ |L′′2|; indeed, L′′2 is the image under π of the elements of j ∈L1 for which the first alternative in (6.11)
holds. Now we obtain a high probability lower bound on |L′′2| by two applications of the bound (5.16) in Lemma 5.3.
Applying (5.16) with T =NA(1) NA(2), U =NA(1) \NA(2), T0 = L1 and δ = 1/2 (say) gives

P
(∣∣L′′1∣∣≥ �/4

)≥ 1− 2 exp(−c�). (6.17)

Next, conditional on L′′1 we can apply (5.16) again with T = (NA(1) NA(2)) \ L1, U = (NA(2) \ NA(1)) \ L1,
T0 = π(L′′1) and δ = 1/2. With these choices we have

|T | = 2m− �, |U | =m− (
�− ∣∣L′′1∣∣), |T0| =

∣∣L′′1∣∣
so on the event |L′′1| ≥ �/4,

|U ||T0|
|T | = m− �+ |L′′1|

2m− �

∣∣L′′1∣∣≥ max(m− �, �/4)

2m

�

4
� �

and we obtain

P
(∣∣L′′2∣∣≥ c�

)
1
(∣∣L′′1∣∣≥ �/4

)≥ P

(∣∣L′′2∣∣≥ 1

2

m− �+ |L′′1|
2m− �

∣∣L′′1∣∣)1
(∣∣L′′1∣∣≥ �/4

)
≥ 1− 2 exp(−c�)

for a sufficiently small constant c > 0. Combining this bound with (6.17) and the lower bound |L′1| ≥ |L′′2| we obtain

P
(∣∣L′1∣∣≥ c�

)= 1−O
(
e−c�

)
(6.18)

as desired. We henceforth condition on a realization of A satisfying |L′1| ≥ c�. Now it suffices to show

P
(∣∣(R̃1 − R̃2) · u

∣∣≤ r
)� (

1+ r
√

n

ρ

)(
log(n/ρ)

�

)1/2

. (6.19)

At this point the only randomness is in the Rademacher variables ξj .
Next we locate a large subset of L′1 on which the discrete derivatives ∂j (u) have roughly the same size. For k ≥−1

define L(k) = {j ∈ L′1 : 2−(k+1) < |∂j (u)| ≤ 2−k}. From (6.15) we have

L′1 ⊂
O(log(n/ρ))⋃

k=−1

L(k)

so by the pigeonhole principle we have

∣∣L∗∣∣ := ∣∣L(k)
∣∣� �

log(n/ρ)
(6.20)

for some k. Now define v ∈ C
n to have components vj = ∂j (u)1(j ∈ L∗). From (6.15) and the fact that the compo-

nents of v vary by a factor at most 2 on L∗ we have

|vj | ≥max

(
ρ√
n
,

1

2
‖v‖∞

)
∀j ∈L∗. (6.21)

From this we obtain

‖v‖ ≥ ρ√
n

∣∣L∗∣∣1/2 � ρ√
n

(
�

log(n/ρ)

)1/2

(6.22)
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and

‖v‖∞ ≤ 2‖v‖
|L∗|1/2

�
(

log(n/ρ)

�

)1/2

‖v‖. (6.23)

From the expression (6.14), we condition on the variables (ξj )j /∈L∗ and apply Lemma 6.4 to get

P(ξj )j∈L∗
(∣∣(R̃1 − R̃2) · u

∣∣≤ r
)≤ sup

z∈C
P

(∣∣∣∣z+ ∑
j∈L∗

ξj ∂j (u)

∣∣∣∣≤ r

)

= sup
z∈C

P

(∣∣∣∣∣z+
n∑

j=1

ξj vj

∣∣∣∣∣≤ r

)

� r

‖v‖ +
‖v‖∞
‖v‖

�
(

1+ r
√

n

ρ

)(
log(n/ρ)

�

)1/2

.

Undoing the conditioning on (ξj )j /∈L∗ gives (6.19) as desired. �

6.3. Conclusion of proof of Theorem 1.7

Fix γ ≥ 1 and let C1,
 > 0 to be chosen sufficiently large. We may and will assume that n is sufficiently large
depending on γ . We may also assume

d ≥ log2C1 n (6.24)

as the desired bound holds trivially otherwise.
From our hypotheses, (1.11) and the triangle inequality

‖A+Z‖〈1〉⊥ ≤ d + nγ ≤ 2nγ ≤ nγ+1

with probability 1. Thus, we may restrict to the event B(nγ+1/2). Set

m= cn

γ log3 n
(6.25)

for a sufficiently small constant c > 0. With this choice of m and the lower bound (6.24), taking C1 sufficiently large
(C1 ≥ 4 will do), we can apply Lemma 2.2 to bound

P

(
A /∈Adisc

(
m

8
,

1

2

))
≤ nO(1)e−cd . (6.26)

Furthermore, recalling the events (6.1), by applying Proposition 3.1 to A + Z and (A + Z)∗ and taking the union
bound we have

P
(
G
(
m,n−
0, n−
+1/2))≥ 1− 2e−cd (6.27)

for some 
0 � γ logd n, as long as

n−
 < n−
0nγ+1/2
√

d.

We assume henceforth that 
 ≥ 
0, so that (6.27) holds.
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In view of (6.24) and (6.25) we can apply Lemma 6.2 (taking 
 ≥ 10.5, and recalling C1 ≥ 4) followed by
Lemma 6.3 to bound

P

(
G
(
m,n−
0, n−
+1/2)∧ {

sn(A+Z)≤ n−
,A ∈Adisc
(

m

8
,

1

2

)})

≤ 2

mn

n∑
i1,i2=1

P

(
Oi1,i2

(
md

8n
,

1

2
n−
0, n−
+1/2

)

∧ {∣∣(Ri1 −Ri2) · u(i1,i2)
∣∣≤ 8n−
+
0+1/2})

� n

m

(
1+ n−
+2
0+1)( n

md

)1/2

(
0 + 1/2)1/2 log1/2 n+ n

m
e−cmd/n

�γ

1√
d

(
n

m

)3/2(
1+ n−
+2
0+1) logn+ n

m
e−cmd/n.

Taking


 = 2
0 + 1� γ logd n (6.28)

and substituting the bounds (6.26), (6.27) and our choice (6.25) for m, we conclude

P
(
sn(A+Z)≤ n−


)�γ

log5.5 n√
d

+ nO(1)e−cd + (
log3 n

)
e−cd/(γ log3 n)� log5.5 n√

d
.

The proof of Theorem 1.7 is complete.

7. Proof of Theorem 1.2: Reduction to asymptotics for singular value distributions

We turn now to the proof of Theorem 1.2. We begin by recalling a lemma concerning the logarithmic potential,
which allows us to convert the question of convergence of the ESDs μĀn

to questions about empirical singular value
distributions. For a Borel probability measure μ over C integrating log | · | in a neighborhood of infinity, the logarithmic
potential Uμ :C→ (−∞,∞] is defined

Uμ(z) := −
∫
C

log |λ− z|dμ(λ). (7.1)

Recall from (1.16) our notation νM for the empirical singular value distribution of a matrix M . The following is taken
from [20, Lemma 4.3] (see also [74, Theorem 1.20]).

Lemma 7.1. For each n≥ 1 let Mn be a random n× n matrix with complex entries. Suppose that for a.e. z ∈C,

(1) there exists a probability measure νz on R+ such that νMn−z → νz in probability;
(2) the measures νMn−z uniformly integrate the function s �→ log(s) in probability, i.e. for every ε > 0 there exists

T <∞ such that

sup
n≥1

P

(∫
{| log(s)|>T }

∣∣log(s)
∣∣dνMn−z(s) > ε

)
≤ ε. (7.2)

Then μMn converges in probability to the unique probability measure μ on C satisfying

Uμ(z)=−
∫ ∞

0
log(s) dνz(s) (7.3)

for all z ∈C.



2148 N. Cook

(We note that [20] uses the weak topology on the space of measures – defined in terms of bounded continuous test
functions – rather than the vague topology used in this article. However, under the uniform integrability assumption
(7.2) the assumption (1) above is equivalent to weak convergence in probability.)

We introduce the centered and rescaled matrix

Yn = 1√
p(1− p)

(
An − p11T)=√nĀn −

√
p

1− p
11T, (7.4)

where we recall our notation p = d/n. The following two propositions, along with Corollary 1.9, are the main ingre-
dients for establishing the conditions (1) and (2) in Lemma 7.1, and hence for proving Theorem 1.2. The proofs are
deferred to later sections.

Proposition 7.2 (Weak convergence of singular value distributions). Assume log4 n ≤ d ≤ n/2. For each z ∈ C

there exists a probability measure νz on R+ such that ν 1√
n
Yn−z

→ νz in probability. Moreover, the family {νz}z∈C
satisfies the relation (7.3) with μ= μcirc.

Proposition 7.3 (Anti-concentration of the spectrum). Assume log4 n ≤ d ≤ n/2. There are absolute constants
C,c > 0 such that with probability 1−O(e−n), for all η ∈ (0,1],

ν 1√
n
Yn−z

([0, η])≤ C
(
η+ d−1/48). (7.5)

Remark 7.4. From the existence of the weak limit νz provided by Proposition 7.2 we obtain ν 1√
n
Yn−z

(I )=Oz(|I |)+
o(1) for any fixed interval I ⊂ R+. Proposition 7.3 gives a quantitative improvement of this bound for intervals
near zero, providing nontrivial estimates down to the “mesoscopic scale” η∼ d−1/48. Recently there have been major
advances establishing quantitative versions of the Kesten–McKay [14] and semicircle [15] laws for undirected random
regular graphs of (large) fixed degree or growing degree, proving that these limiting laws are a good approximation
for the finite n ESDs on intervals I at the near-optimal scale |I | ∼ nε−1. In particular, we expect that the arguments in
[15] could be used to obtain a similar local law for ν 1√

n
Yn−z

.

Now we conclude the proof of Theorem 1.2 on Propositions 7.2 and 7.3. We let C0 > 0 to be taken sufficiently
large. For the duration of the proof we abbreviate

νn,z := νĀn−z.

For any z ∈ C, 1√
n
Yn − z and Ān − z differ by a matrix of rank one. By a standard eigenvalue interlacing bound it

follows that their singular value distributions are close in Kolmogorov distance, specifically:

sup
η∈R

∣∣νn,z

([0, η])− ν 1√
n
Yn−z

([0, η])∣∣≤ 1/n. (7.6)

By Lemma 7.1, the above estimate and Proposition 7.2, it suffices to show the measures νn,z uniformly integrate the
logarithm function, i.e. for every ε > 0 there exists T = T (ε, z) <∞ such that

sup
n≥1

P

(∫
{| log(s)|>T }

∣∣log(s)
∣∣dνn,z(s) > ε

)
≤ ε. (7.7)

First we address the singularity of log at infinity. We claim that for any ε > 0 and z ∈C there exists T ′ = T ′(ε, z) >

0 such that∫ ∞

eT ′
log(s) dνn,z(s)≤ ε/2 (7.8)
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almost surely for all n≥ 1. Indeed, note that for any fixed z ∈C,∫ ∞

0
s2 dνn,z(s)= 1

n
tr

(
1√

d(1− d/n)
An − z In

)∗( 1√
d(1− d/n)

An − z In

)

= 1

n

n∑
i,j=1

∣∣∣∣ 1√
d(1− d/n)

aij − zδij

∣∣∣∣2

≤ 2

n

n∑
i,j=1

aij

d(1− d/n)
+ |z|2δij

≤
(

4

nd

n∑
i,j=1

aij

)
+ 2|z|2

� 1+ |z|2,
with probability one, where in the fourth line we used our assumption d ≤ n/2 (see Remark 1.5), and in the final line
we used that

∑n
i,j=1 aij = dn for any element A = (aij ) ∈ An,d . Thus, with probability one, for all T ′ sufficiently

large and for all n,∫ ∞

eT ′
log(s) dνn,z(s)≤ T ′e−2T ′

∫ ∞

eT ′
s2 dνn,z(s)�z T ′e−2T ′

and we can take T ′ sufficiently large to obtain (7.8).
It remains to control the contribution of small singular values, i.e. to show that for some T = T (ε, z)≥ T ′,

sup
n≥1

P

(∫ e−T

0

∣∣log(s)
∣∣dνn,z(s) > ε/2

)
≤ ε. (7.9)

By Corollary 1.9 and taking C0 ≥ C′1, there exists 
 = o(logn) such that

P

(
sn

(
1√

d(1− d/n)
An − z

)
≤ n−


)
= o(1). (7.10)

Thus, it suffices to show

sup
n≥1

P

(∫ e−T

n−


∣∣log(s)
∣∣dνn,z(s) > ε/2

)
≤ ε/2. (7.11)

(While the term o(1) in (7.10) may not be smaller than ε/2 for small values of n, we can take T larger, if necessary,
in (7.11) to make the left hand side equal to zero unless n is sufficiently large.) Now since

sup
s∈[n−
,e−T ]

∣∣log(s)
∣∣≤ 
 logn= o

(
log2 n

)
,

from (7.6) we have∣∣∣∣∫ e−T

n−


∣∣log(s)
∣∣dνn,z(s)−

∫ e−T

n−


∣∣∣∣ log(s)
∣∣dν 1√

n
Yn−z

(s)
∣∣= o

(
log2 n

n

)
= o(1)

so again enlarging T depending on ε if necessary, it suffices to show

sup
n≥1

P

(∫ e−T

n−


∣∣log(s)
∣∣dν 1√

n
Yn−z

(s) > ε/4

)
≤ ε/2. (7.12)
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From the pointwise bound

∣∣log(s)
∣∣� ∞∑

m=0

1[0,2−m](s), s ∈ [0,1]

and Fubini’s theorem, we have∫ e−T

n−


∣∣log(s)
∣∣dν 1√

n
Yn−z

(s)�
∞∑

m=0

ν 1√
n
Yn−z

([
n−
, e−T ∧ 2−m

])

=
O(
 logn)∑

m=0

ν 1√
n
Yn−z

([
n−
, e−T ∧ 2−m

])

≤
O(
 logn)∑

m=0

ν 1√
n
Yn−z

([
0, e−T ∧ 2−m

])
.

Now by Proposition 7.3 (and assuming C0 ≥ 4), except with probability O(e−n), for all m≥ 0,

ν 1√
n
Yn−z

([
0, e−T ∧ 2−m

])� e−T ∧ 2−m + d−1/48.

Summing these bounds over m, we have that on this event,∫ e−T

n−


∣∣log(s)
∣∣dν 1√

n
Yn−z

(s)� e−T + d−1/48
 logn� e−T + o
(
d−1/48 log2 n

)
.

Assuming C0 ≥ 96 (in addition to our previous assumptions on C0), we have that except with probability O(e−n),∫ e−T

n−


∣∣log(s)
∣∣dν 1√

n
Yn−z

(s)� e−T + o(1). (7.13)

We can now take T sufficiently large depending on ε to make the right hand side smaller than ε/4 for all n sufficiently
large, giving

sup
n≥n0(ε)

P

(∫ e−T

n−


∣∣log(s)
∣∣dν 1√

n
Yn−z

(s) > ε/4

)
� e−n.

The right hand side is smaller than ε/2 for all sufficiently large n. We take T larger if necessary to make the integral
zero for all other values of n, which yields (7.12). Finally, taking T ≥ T ′(ε, z) completes proof of Theorem 1.2 on
Propositions 7.2 and 7.3.

The remainder of the paper is organized as follows. In Section 8.1 we recall the approach to studying empirical
singular value distributions via Hermitization and the resolvent method. In Section 8.2 we introduce two iid models
to be compared with Yn – a Bernoulli matrix Xn and a Gaussian matrix Gn – and state lemmas giving quantitative
comparisons between the singular value distributions of Yn and Xn, and between Xn and Gn. In the remainder of
Section 8 we use these comparison lemmas to prove Propositions 7.2 and 7.3. The comparison lemmas are proved
in Section 9. In the Appendix we prove a bound on the local density of small singular values for perturbed Gaussian
matrices.

8. The comparison strategy

8.1. Hermitization and the Stieljes transform

To prove Propositions 7.2 and 7.3 we will use a popular linearization trick and Stieltjes transform techniques, which
we now briefly outline; see [20] for additional background and motivation.
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For an n× n matrix M and z ∈C we define the 2n× 2n matrix

Hz(M) :=
(

0 1√
n
M − z In

1√
n
M∗ − z In 0

)
(8.1)

which we refer to as the (shifted and rescaled) Hermitization of M . It is routine to verify that the 2n eigenvalues of
Hz(M) (counted with multiplicity) are the signed singular values ±s1(

1√
n
M − z), . . . ,±sn(

1√
n
M − z). Consequently,

the ESD μHz(M) is the symmetrization of the empirical singular value distribution ν 1√
n
M−z

, i.e.

μHz(M) = 1

2

(
ν 1√

n
M−z

(·)+ ν 1√
n
M−z

(−·)). (8.2)

Thus, to prove weak convergence and anti-concentration for the measures ν 1√
n
Yn−z

, it will suffice to study the ESDs

μHz(M). The key advantage of considering the ESDs of Hz(M) over ( 1√
n
M − z In)∗( 1√

n
M − z In) is that Hz(M) is a

linear function of M .
We denote the resolvent of Hz(M) at w ∈C+ by

Rz,w(M) := (
Hz(M)−w I2n

)−1 (8.3)

and its normalized trace

gz,w(M) := 1

2n
tr Rz,w(M). (8.4)

We will frequently apply the bound

∥∥Rz,w(M)
∥∥≤ 1

"w
(8.5)

which is immediate from (8.3) as "w is a lower bound on the distance from w to the spectrum of Hz(M) in the
complex plane.

Denote the Stieltjes transform of a probability measure μ on R by

mμ :C+ →C+, mμ(w)=
∫
R

dμ(x)

x −w
. (8.6)

If H is an n× n Hermitian matrix with real eigenvalues λ1, . . . , λn, the Stietjes transform of its empirical spectral
distribution is given by

mμH
(w)= 1

n

n∑
i=1

1

λi −w
= 1

n
tr(H −w)−1. (8.7)

In particular,

gz,w(M)=mμHz(M)
(w). (8.8)

The Stieltjes transforms w �→ gz,w(Yn) will be a key tool in the proofs of Propositions 7.2 and 7.3. Indeed, it is a
standard fact in random matrix theory that weak convergence of the ESDs μHz(Yn) follows from pointwise convergence
of their Stieltjes transforms. Furthermore, a key advantage of considering Stieltjes transforms over moments is that
the former provide good quantitative control of ESDs of Hermitian matrices at short scales, which will be key for
obtaining Proposition 7.3. For more discussion of the Stieltjes transform method in Hermitian random matrix theory
we refer to the books [7,68] and the review article [16].
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8.2. Comparison with Gaussian and Bernoulli ensembles

For each n≥ 1 we let Gn denote an n× n matrix with iid standard real Gaussian entries. We also let Bn = (b
(n)
ij ) be

an n× n matrix with independent Bernoulli(p)-distributed 0–1 entries, and set

Xn = 1√
p(1− p)

(
Bn − p1n1T

n

)
, (8.9)

where we recall p := d/n ≤ 1/2. We denote the entries of Xn by ξ
(n)
ij . As with An, Yn we will often suppress the

dependence on n and write G, X, ξij . Note that the variables ξij are iid centered variables with unit variance. We
further note that for any q > 2 we have the moment bound

E|ξij |q ≤
(

1− p

p

)(q−2)/2

E|ξij |2 ≤
(

1

p

)(q−2)/2

=
(

n

d

)(q−2)/2

. (8.10)

The following two lemmas give quantitative comparisons between the ESDs of Hz(Y ) and Hz(X), and of Hz(X)

and Hz(G). The proofs are deferred to Sections 9.1 and 9.2.

Lemma 8.1 (Comparison with iid Bernoulli). Let z ∈ C and let f : R→ R be an L-Lipschitz function supported
on a compact interval I ⊂ R. Let X, Y be n× n matrices as in (8.9), (7.4), respectively. Assume log4 n ≤ d ≤ n/2.
For any ε > 0,

P

(∣∣∣∣∫
R

f dμHz(Y )−E
∫
R

f dμHz(X)

∣∣∣∣≥ ε

)
≤ |I |

ε
exp

(
O

(
d2/3n logn

)− cndε4

L2|I |2
)

(8.11)

for some constant c > 0.

Lemma 8.2 (From iid Bernoulli to iid Gaussian). Let z ∈C and w ∈C+. We have∣∣Egz,w(X)−Egz,w(G)
∣∣� 1

d1/2("w)4

(
1+ 1

(n"w)2

)
, (8.12)

where the implied constant is absolute.

In the remainder of this section we use the above lemmas to establish Propositions 7.2 and 7.3.

8.3. Proof of Proposition 7.2

Our starting point is the following, which gives the desired limiting behavior for the Gaussian matrices Gn in place
of Yn. We will then use Lemmas 8.1 and 8.2 to transfer this limiting property to Yn.

Lemma 8.3 (Convergence of singular value distributions, Gaussian case). For each z ∈C there exists a probability
measure νz on R+ such that ν 1√

n
Gn−z

→ νz in probability and in expectation. Moreover, the family {νz}z∈C satisfies

the relation (7.3) with μ= μcirc.

Proof. The existence of the measures νz follows as a special case of a result of Dozier and Silverstein [33] (which
allows more general entry distributions and more general shifts than −z In). See [60, Lemma 3] for the verification
that (7.3) holds with μ= μcirc. �

Proof of Proposition 7.2. By Lemma 8.3 it suffices to show ν 1√
n
Yn−z

− Eν 1√
n
Gn−z

converges in probability to the

zero measure, i.e. to show that for any f ∈Cc(R) and any ε > 0,

P

(∣∣∣∣∫
R

f dν 1√
n
Yn−z

−E

∫
R

f dν 1√
n
Gn−z

∣∣∣∣≥ ε

)
= o(1), (8.13)
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where here and in the remainder of the proof we implicitly allow quantities o(1) to tend to zero at a rate depending on
f and ε.

Fix f ∈ Cc(R) and ε > 0. From Lemma 8.2 and our assumption that d grows to infinity with n it follows that

E

∫
R

f dν 1√
n
Gn−z

= E

∫
R

f dν 1√
n
Xn−z

+ o(1)

(see for instance [7, Theorem 2.4.4]). Thus, it suffices to show

P

(∣∣∣∣∫
R

f dν 1√
n
Yn−z

−E

∫
R

f dν 1√
n
Xn−z

∣∣∣∣≥ ε

)
= o(1). (8.14)

There exists a compactly supported Lipschitz function fε with support and Lipschitz constant depending only on f

and ε such that ‖f − fε‖∞ ≤ ε/4. Now it suffices to show

P

(∣∣∣∣∫
R

fε dν 1√
n
Yn−z

−E

∫
R

fε dν 1√
n
Xn−z

∣∣∣∣≥ ε/2

)
= o(1). (8.15)

But the above is immediate from Lemma 8.1 and our assumption d ≥ log4 n. �

8.4. Proof of Proposition 7.3

As in the proof of Proposition 7.2, our starting point is a result for Gaussian matrices. The proof is deferred to
Appendix A.

Lemma 8.4. There are constants C,c > 0 such that the following holds. Let 1 ≤ k ≤ n and let M ∈Mn(C) be a
deterministic matrix. Except with probability O(n2e−ck), for all k ≤ j ≤ n− 1 we have sn−j (

1√
n
G+M)≥ cj/n.

Remark 8.5. We will apply the lemma with k = √n, but we note that it gives a nontrivial result down to much
smaller scales: namely, with high probability, all but the smallest k singular values are within a constant of their
expected values, as long as k grows faster than logn.

Proof of Proposition 7.3. It will be more convenient to work with μHz(Y ), the symmetrized probability measure for
ν 1√

n
Y−z

(see Section 8.1). Thus, it suffices to show that with probability 1−O(e−n), for all η ∈ (0,1],

μHz(Y )

([−η,η])� η+ d−1/48. (8.16)

First we show there is a constant C such that for any fixed η ∈ (d−1/48,1],
P
(
μHz(Y )

([−η,η])≤C
(
η+ d−1/48))= 1−O

(
ηe−n

)
. (8.17)

Fix η ∈ (d−1/48,1] and denote I = [−η,η]. Let fη be the piece-wise linear η−1-Lipschitz function which is
equal to 1 on [−η,η] and zero outside of (−2η,2η). We have 1I ≤ fη pointwise, and by Lemma 8.1 (taking
ε = C′d−1/12 log1/4 n for a sufficiently large constant C′ > 0),

μHz(Y )(I )≤
∫

fη dμHz(Y ) ≤ E

∫
fη dμHz(X) +O

(
d−1/12 log1/4 n

)
except with probability O(η exp(−cd2/3n logn)) = O(ηe−n) (adjusting the constant c to absorb the prefactor
d1/12/ log1/4 n). The error term on the right hand side above is O(d−1/48) by our assumption on d . Now to obtain
(8.17) it suffices to show

E

∫
fη dμHz(X)� η+ d−1/48. (8.18)
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From the pointwise bound

1

5η
1[−2η,2η](x)≤ η

x2 + η2
=" 1

x − iη
, x ∈R

together with Lemma 8.2 we have

E

∫
fη dμHz(X) ≤ E

∫
1[−2η,2η] dμHz(X)

≤ 5ηE"gz,iη(X)

≤ 5ηE"gz,iη(G)+O

(
1

η4
√

d

(
1+ 1

(nη)2

))
(8.19)

≤ 5ηE"gz,iη(G)+O

(
1

η4
√

d

)
, (8.20)

where in the last line we used the assumption η ≥ d−1/48 ≥ n−1 to bound (nη)−1 =O(1). Now we use Lemma 8.4 to
bound the first term. First, by Fubini’s theorem,

"gz,iη(G)=
∫
R

η

x2 + η2
dμHz(G)(x)

=
∫ 1/η

0

∫
R

1{y≤ η

x2+η2 }(x, y) dμHz(G)(x) dy

=
∫ 1/η

0
μHz(G)

([−√
η
(
y−1 − η

)
,

√
η
(
y−1 − η

)])
dy

= 1

n

∫ 1/η

0

∣∣∣∣{j ∈ [n] : sn−j

(
1√
n
G− z

)
≤

√
η
(
y−1 − η

)}∣∣∣∣dy. (8.21)

Let constants C, c be as in Lemma 8.4, let k ≥ 1 to be chosen later, and let Gk denote the event that sn−j (
1√
n
G− z)≥

cj/n for all k ≤ j ≤ n− 1. On Gk the integrand in (8.21) is bounded by

k +O
(
n

√
η
(
y−1 − η

))
.

Inserting this estimate in (8.21), we have

"gz,iη(G)1Gk
� k

ηn
+

∫ 1/η

0

√
η
(
y−1 − η

)
dy

= k

ηn
+

∫ 1/η

0

∫ ∞

0
1{y≤ η

x2+η2 }(x, y) dx dy

= k

ηn
+

∫ ∞

0

η

x2 + η2
dx

=O

(
1+ k

ηn

)
.

From the deterministic bound "gz,iη(G)≤ 1/η and Lemma 8.4 (taking M =−z In) we conclude

E"gz,iη(G)� 1+ k

ηn
+ 1

η
P
(
Gc

k

)≤ 1+ k

ηn
+ 1

η
n2e−ck. (8.22)
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Substituting into (8.20) yields

E

∫
fη dμHz(X)� η+ k

n
+ n2e−ck + 1

η4
√

d
.

Taking k =√n, by our assumption on η the last three terms are of lower order, which yields (8.18) and hence (8.17).
(By optimizing η to balance the first and last terms above, one sees that we actually showed the stronger bound
E

∫
fη dμHz(X)� η+ d−1/10.)

Now consider the events

Bm(t)= {
μHz(Y )

([−2−m,2−m
])

> t
}
, m ∈N≥0, t ∈R+ (8.23)

and put

B =
∨
m≥0

Bm

(
2C

(
2−m + d−1/48)).

Denoting m∗ = � 1
48 log2 d
, from the union bound,

P(B)≤
m∗∑

m=0

P
(
Bm

(
2C

(
2−m + d−1/48)))+ P

( ∨
m>m∗

Bm

(
2C

(
2−m + d−1/48)))

≤
m∗∑

m=0

P
(
Bm

(
2C

(
2−m + d−1/48)))+ P

(
Bm∗+1

(
2Cd−1/48))

≤
m∗+1∑
m=0

P
(
Bm

(
C

(
2−m + d−1/48))),

where in the second and third lines we used that the events Bm(t) are monotone in the parameter t . Applying (8.17),

P(B)� e−n

∞∑
m=0

2−m� e−n.

Fix η ∈ (0,1] arbitrarily and suppose B does not hold. Let m be the integer such that 2−(m+1) < η ≤ 2−m. We have

μHz(Y )

([−η,η])≤ μHz(Y )

([−2−m,2−m
])≤ C

(
2−m + d−1/48)≤ 2C

(
η+ d−1/48).

The result follows after adjusting the constant C. �

9. Proofs of comparison lemmas

9.1. Proof of Lemma 8.1

Recall that the matrix B = Bn has iid Bernoulli(p) entries, with p = d/n. Here we follow a strategy that was used
by Tran, Vu and Wang in [75] to prove a local semicircle law for adjacency matrices of random (undirected) regular
graphs of growing degree. The idea is to use sharp concentration estimates for linear eigenvalue statistics of Hermitian
random matrices together with a lower bound on the the probability that the iid Bernoulli matrix Bn lies in An,d . For
the former we have the next lemma, which is easily obtained from the arguments of Guionnet and Zeitouni in [40]:

Lemma 9.1 (Concentration of linear statistics). Let H = (hij )
n
i,j=1 be a Hermitian random matrix with entries on

and above the diagonal jointly independent and uniformly bounded by K/
√

n for some K <∞. Let f : R→ R be
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an L-Lipschitz function supported on a compact interval |I | ⊂ R, and let H0 be an arbitrary n × n deterministic
Hermitian matrix. For any ε > 0,

P

(∣∣∣∣∫
R

f dμH+H0 −E

∫
R

f dμH+H0

∣∣∣∣≥ ε

)
≤ (

C|I |/ε) exp

(
− cn2ε4

K2L2|I |2
)

(9.1)

for some constants C,c > 0.

Proof. The case H0 = 0 follows directly from [40, Theorem 1.3(a)]. The general case follows from a slight modifi-
cation of the proof in [40] – see [28, Lemma 3.2]. �

The following is established in Appendix B, following an argument of Shamir and Upfal for undirected d-regular
graphs [66].

Lemma 9.2. Assume log4 n≤ d ≤ n/2. Then

P(B ∈An,d)≥ exp
(−O

(
d2/3n logn

))
.

Remark 9.3. The more accurate asymptotic

P(B ∈An,d)= (
1+ o(1)

)√
2πd(n− d) exp

(
−n log

(
2πd(n− d)

n

))
(9.2)

was established for the range d = o(
√

n) by McKay and Wang [52] and min(d,n− d)� n/ logn by Canfield and
McKay [24]. For the proof of Theorem 1.2 it is only important that we have a bound of the form P(B ∈ An,d) ≥
exp(−o(nd)).

In Appendix B we actually prove a slightly stronger version of Lemma B.1 allowing d to grow as slowly as
log1+ε n.

Proof of Lemma 8.1. Recall that A denotes a uniform random element of An,d , and B denotes an n× n matrix with
independent Bernoulli(p) entries, where p = d/n. For fixed B0 ∈ {0,1}n×n we denote

M(B0) := 1√
p(1− p)

(
B0 − p1n1T

n

)
. (9.3)

In this notation we have X =M(B) and Y =M(A) (see (8.9), (7.4)). For f ∈ Cc(R), z ∈ C and ε > 0 we denote the
corresponding “bad set” of 0–1 matrices

B(f, z, ε) :=
{
B0 ∈ {0,1}n×n :

∣∣∣∣∫
R

f dμHz(M(B0)) −E

∫
R

f dμHz(M(B))

∣∣∣∣≥ ε

}
. (9.4)

Our aim is to show that for any L-Lipschitz function f :R→R supported on a compact interval I and any ε > 0,

P
(
A ∈ B(f, z, ε)

)� |I |
ε

exp

(
O

(
nd1/2)− cndε4

L2|I |2
)

. (9.5)

Fix such f and ε. We can apply Lemma 9.1 (with n replaced by 2n), taking Hz(X) for H ,
( 0 z

z 0

)⊗ In for H0, and
K = 1/

√
p to obtain

P
(
B ∈ B(f, z, ε)

)� |I |
ε

exp

(
−cn2pε4

L2|I |2
)
= |I |

ε
exp

(
− cndε4

L2|I |2
)

. (9.6)
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Now notice that conditional on the event {B ∈An,d}, B is uniformly distributed over An,d . Thus,

P
(
A ∈ B(f, z, ε)

)= P
(
B ∈ B(f, z, ε) | B ∈An,d

)
= P(B ∈ B(f, z, ε)∩An,d)

P(B ∈An,d)

≤ P(B ∈ B(f, z, ε))

P(B ∈An,d)
,

and (9.5) follows from (9.6) and Lemma B.1. �

9.2. Proof of Lemma 8.2

Here we make use of the Lindeberg replacement strategy, which was introduced to random matrix theory by Chatterjee
[25,26], who used it to prove the semicircle law for random symmetric matrices with exchangeable entries above the
diagonal. It has since become a widely used tool in universality theory for random matrices, most notably with its use
by Tao, Vu and others to establish universality of local eigenvalue statistics for various models; see e.g. [35,69,70] and
references therein.

In particular we will apply the following invariance principle:

Theorem 9.4 (cf. [25, Theorem 1.1 and Corollary 1.2]). Let X and W be independent random vectors in R
N with

independent components having finite third moment and satisfying EXi = EWi and EX2
i = EW 2

i for 1 ≤ i ≤ N .
Denote

γ3 =max
i∈[n]max

{
E|Xi |3,E|Wi |3

}
. (9.7)

Let f ∈ C3(RN →R), and denote

λ3(f )= sup
x∈RN

max
r∈{1,2,3}

max
i∈[n]

∣∣∂r
i f (x)

∣∣3/r
. (9.8)

Write U = f (X), V = f (W), and let h ∈ C3(R→R). Then∣∣Eh(U)−Eh(V )
∣∣�h γ3λ3(f )N. (9.9)

With Theorem 9.4 in hand, the proof of Lemma 8.2 boils down to estimating the partial derivatives of the resolvent
Rz,w(M) from (8.3), viewed as a function of M . The proof is similar an argument that was sketched in the appendix
of [74], and subsequently applied in the sparse setting by Wood [77], and to matrices with exchangeable entries
by Adamczak, Chafaï and Wolff in [2] (who used a more general invariance principle from [26] for exchangeable
sequences).

Here we will follow similar lines to the above-mentioned works; the only difference is that we will need to quantify
errors in order to obtain the bound in Proposition 7.3. The aforementioned works all obtained estimates like Proposi-
tion 7.3 by a different geometric argument, also introduced in [74]. Adapting that argument to the setting of random
regular digraphs appears to be of comparable difficulty to the proof of Theorem 1.7 due to the dependencies among
entries. Instead, we have opted to make our comparisons in Lemmas 8.1 and 8.2 quantitative, and apply the geometric
argument from [74] in the simpler Gaussian setting (see the proof of Lemma 8.4).

Proof of Lemma 8.2. Fix z ∈C and w ∈C+. For any differentiable matrix-valued function t �→H(t) ∈R
2n×2n with

t ∈R, putting R(t)= (H(t)−w I2n)
−1, we have

d

dt
R =−R

dH

dt
R. (9.10)
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Indeed, this can be obtained as a limiting form of the resolvent identity (H1 − w I)−1 − (H2 − w I)−1 = −(H1 −
w I)−1(H1 − H2)(H1 − w I)−1 for arbitrary Hermitian matrices H1, H2. Now let H(M) = Hz(M) and R(M) =
Rz,w(M) be as in (8.1), (8.3). By iterating (9.10) (with H viewed as a function of a given scalar entry of M) we
obtain the following formulas for the partial derivatives of R with respect to entries α1, α2, α3 ∈ [n]2 of M :

∂α1 R=R(∂α1 H)R, (9.11)

∂α2∂α1 R=
∑

σ∈Sym(2)

R(∂ασ(1)
H)R(∂ασ(2)

H)R, (9.12)

∂α3∂α2∂α1 R=
∑

σ∈Sym(3)

R(∂ασ(1)
H)R(∂ασ(2)

H)R(∂ασ(3)
H)R, (9.13)

where the sums in (9.12), (9.13) run over the symmetric group on two and three labels, respectively. (Here we have
used the fact that ∂α1∂α2 H= 0 for any α1, α2 as H is a linear function of M .) Now if α = (i, j) we have

∂αH= 1√
n
(Ei,j+n +Ej+n,i), (9.14)

where Ei,j is the 2n× 2n matrix with entries (Ei,j )k,l = δi=kδj=l . In particular,

max
α∈[n]2

‖∂αH‖HS =O
(
n−1/2). (9.15)

Combining (9.11), (9.14) and the definition of g(M)= gz,w(M) we obtain for any α = (i, j) ∈ [n]2,

∂αg =− 1

2n3/2
tr R(Ei,j+n +Ej+n,i)R=− 1

2n3/2
tr(Ei,j+n +Ej+n,i)R2.

Since each of Ei,j+n, Ej+n,i have one nonzero entry with value 1, we obtain we have |∂αg| ≤ ‖R‖2/n3/2, and from
(8.5) we conclude

max
α∈[n]2

sup
M∈Rn×n

∣∣∂αg(M)
∣∣≤ 1

n3/2("w)2
. (9.16)

We turn to the second order partial derivatives of g. By repeated application of the inequalities∣∣tr(AB)
∣∣≤ ‖A‖HS‖B‖HS, ‖AB‖HS ≤ ‖A‖‖B‖HS (9.17)

we can bound

|∂α2∂α1g| ≤
1

2n

∑
σ∈Sym(2)

∣∣tr R(∂ασ(1)
H)R(∂ασ(2)

H)R
∣∣

= 1

2n

∑
σ∈Sym(2)

∣∣tr(∂ασ(1)
H)R(∂ασ(2)

H)R2
∣∣

≤ 1

2n

∑
σ∈Sym(2)

‖∂ασ(1)
H‖HS

∥∥R(∂ασ(2)
H)R2

∥∥
HS

≤ 1

2n

∑
σ∈Sym(2)

‖∂ασ(1)
H‖HS‖∂ασ(2)

H‖HS‖R‖3

� 1

n2
‖R‖3,
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where in the final line we used (9.15). Applying (8.5) we conclude

max
α1,α2∈[n]2

sup
M∈Rn×n

∣∣∂α1∂α2g(M)
∣∣� 1

n2("w)3
. (9.18)

By similar steps applied to the trace of the identity (9.13) (cyclically permuting the trace, repeated application of
(9.17), and the bounds (9.15) and (8.5)) one obtains

max
α1,α2,α3∈[n]2

sup
M∈Rn×n

∣∣∂α1∂α2∂α3g(M)
∣∣� 1

n5/2("w)4
. (9.19)

Since ∂α commutes with $(·) the above estimates give (with notation as in Theorem 9.4)

λ3($gz,w)� 1

n9/2("w)6
+ 1

n3("w)9/2
+ 1

n5/2("w)4

=O

(
1

n5/2("w)4

)(
1

(n"w)2
+ 1

(n"w)1/2
+ 1

)
.

Now we apply Theorem 9.4 with $gz,w in place of f , n2 in place of N (identifying R
n×n with Rn2

), and matrices X,
G in place of the vectors X, W . From (8.10) we have

γ3 � (n/d)1/2.

Taking h to simply be the identity mapping, (9.9) gives∣∣E$gz,w(X)−E$gz,w(G)
∣∣

�
(

n

d

)1/2

×
(

1

n5/2("w)4

)(
1+ 1

(n"w)1/2
+ 1

(n"w)2

)
× n2

� 1

d1/2("w)4

(
1+ 1

(n"w)2

)
.

One obtains the same bound for the imaginary parts by the same lines. �

Appendix A: Proof of Lemma 8.4

In this appendix we establish the estimate of Lemma 8.4 for the local density of small singular values of a perturbed
real Gaussian matrix. The argument is a (by now standard) application of an approach introduced in [74]. In fact,
a weaker version of the lemma (but still sufficient for our purposes) follows directly from [74, Lemma 6.7], which
applies to any matrix with iid standardized entries with finite second moment. However, the argument is simpler in
the Gaussian case and gives a stronger bound, so we include the proof below.

Fix M ∈Mn(C) and denote G̃ = G + √nM . By the union bound it suffices to show that for some constants
C,c > 0,

P
(
sn−k(G̃)≤ ck/

√
n
)=O

(
ne−ck

)
(A.1)

for all 1≤ k ≤ n− 1. Fix such a k; since the desired bound is trivial for small values of k we may assume k is larger
than any fixed constant. Let Ri denote the ith row of G̃. Put m= n− �k/2�, and for each i ∈ [m] set

Vi = span
(
Rj : j ∈ [m] \ {i}

)
.
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We claim

sn−k(G̃)�
√

k

n
min
i∈[m]dist(Ri,Vi). (A.2)

Indeed, letting G̃′ be the m× n matrix obtained by removing the last �k/2
 rows from G̃, by the Cauchy interlacing
law we have

sn−k(G̃)≥ sn−k

(
G̃′

)
. (A.3)

On the other hand, from the inverse second moment identity (cf. [74, Lemma A.4]) we have

m∑
i=1

si
(
G̃′

)−2 =
m∑

i=1

dist(Ri,Vi)
−2.

Thus,

n max
i∈[m]dist(Ri,Vi)

−2 ≥
m∑

i=1

si
(
G̃′

)−2 ≥
m∑

i=n−k

si
(
M ′)−2 ≥ k

2
sn−k

(
G̃′

)−2

and (A.2) now follows from (A.3) and rearranging. By the union bound, to obtain (A.1) it suffices to show that for
each fixed i ∈ [m],

P
(
dist(Ri,Vi)≤ c

√
k
)≤ e−ck (A.4)

for a sufficiently small (adjusted) constant c > 0.
Fix i ∈ [m]. For the remainder of the proof we condition on the rows {Rj : j ∈ [m] \ {i}}, which fixes the sub-

space Vi . Now let V ′i = span(Vi,ERi) (since G is centered, ERi is just the ith row of
√

nM). Writing Gi =Ri −ERi

for the ith row of G, we have dist(Gi,V
′
i )≤ dist(Ri,Vi), so it suffices to show

P
(
dist

(
Gi,V

′
i

)≤ c
√

k
)≤ e−ck (A.5)

for a suitable constant c > 0. Also,

dimV ′i ≤ dimVi + 1≤m, (A.6)

where here and in the following we mean dimension over C. By rotational symmetry of the distribution of Gi we may
assume V ′i is spanned by the last dimV ′i standard basis vectors in C

n. Then we have

dist
(
Gi,V

′
i

)2 =
n−dimV ′i∑

j=1

G2
ij . (A.7)

In particular,

Edist
(
Gi,V

′
i

)2 = n− dimV ′i ≥ n−m≥ k/2. (A.8)

(A.5) now follows from a standard concentration inequality for Gaussian measure (see for instance [48]).

Appendix B: Proof of Lemma B.1

In this appendix we establish the following:
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Lemma B.1. Fix α ∈ (0,1/2) and ε > 0, and let (logn)
1

1−2α
+ε ≤ d ≤ n/2. Set p = d/n and let B ∈ {0,1}n×n have

iid Bernoulli(p) entries. With An,d as in (1.3), there is a constant C > 0 such that

P(B ∈An,d)≥ exp
(−Cn lognmax

{√
d logn,d2/3, d1−α

})
for all n sufficiently large depending on ε.

Lemma B.1 follows from the above by setting α = 1/3 and ε = 1.
To prove Lemma B.1 we follow an argument of Shamir and Upfal from [66], who established estimates on the

probability that an (undirected) Erdős–Rényi graph is a d-regular graph. The heart of the proof is to show that with
high probability, the matrix B contains a d-regular factor of slightly smaller density. Recall that a d-regular factor
in B = (bij ) is an element B ′ = (b′ij ) ∈An,d such that bij = 0⇒ b′ij = 0 (usually this terminology is applied to the
associated graphs/digraphs rather than adjacency matrices).

Lemma B.2. Let n≥ 1, p ∈ (0,1), and let B ∈ {0,1}n have iid Bernoulli(p) entries. Let

1

2
≥ δ ≥C max

[(
logn

pn

)1/2

,
1

(pn)1/3

]
(B.1)

for a sufficiently large constant C > 0, and put d = (1− δ)pn (we assume δ is such that d is an integer, and n and
p are such that the range for δ is nonempty). Then B contains a d-regular factor except with probability at most
exp(−cδ2pn) for some constant c > 0.

In the proof of Lemma B.2 we will write

e(S,T ) :=
∑

i∈S,j∈T

B(i, j)

for S,T ⊂ [n] (as in (1.21) but suppressing the subscript B). For i ∈ [n], T ⊂ [n] we write

degT (i) := ∣∣NB(i)∩ T
∣∣,

where NB(i) is as in (1.18). We will apply the following consequence of the Ore–Ryser theorem [59]:

Proposition B.3. Let B ∈ {0,1}n×n and let d ∈ [n]. Then B contains a d-regular factor B ′ if and only if

∀T ⊂ [n], XT :=
n∑

i=1

min
(
d,degT (i)

)≥ d|T |. (B.2)

B.1. Proof of Lemma B.2

We let the constant C > 0 to be taken sufficiently large over the course of the proof. To T ⊂ [n], associate the set of
heavy vertices

HT :=
{
i ∈ [n] : degT (i)≥ d

}
. (B.3)

We have

XT = d|HT | + e
(
Hc

T ,T
)
. (B.4)

Thus, we see the inequality in (B.2) automatically holds for T ⊂ [n] such that |HT | ≥ |T |, so it suffices to show

P
(∃T ⊂ [n] : |HT | ≤ |T |,XT < d|T |)≤ exp

(−cδ2pn
)
. (B.5)
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First we will control the event that XT < d|T | for some T of size less than (1 − δ/2)n. By the union bound and
exchangeability of the rows and columns of B ,

P
(∃T ⊂ [n] : |HT | ≤ |T | ≤ (1− δ/2)n,XT < d|T |)
≤

∑
T⊂[n]:

|T |≤(1−δ/2)n

∑
H⊂[n]:
|H |≤|T |

P
(
e
(
Hc,T

)
< d

(|T | − |H |))

≤
∑

t≤(1−δ/2)n

∑
h≤t

(
n

t

)(
n

h

)
P
(
e
([n− h], [t]) < d(t − h)

)
.

Now since

d(t − h)= (1− δ)pn(t − h)

= (1− δ)p(n− h)t − (1− δ)ph(n− t)

≤ (1− δ)p(n− h)t

= (1− δ)Ee
([n− h], [t]),

we can use Bernstein’s inequality to bound

P
(
e
([n− h], [t]) < d(t − h)

)≤ P
(
e
([n− h], [t]) < (1− δ)Ee

([n− h], [t]))
≤ exp

(−cδ2p(n− h)t
)

for some constant c > 0. Thus,

P
(∃T : |HT | ≤ |T | ≤ (1− δ/2)n,XT < d|T |)≤ ∑

t≤(1−δ/2)n

∑
h≤t

(
n

t

)(
n

h

)
exp

(−cδ2p(n− h)t
)
.

For t ≤ n/2 we can bound

∑
h≤t

(
n

t

)(
n

h

)
exp

(−cδ2p(n− h)t
)≤ nt exp

(
−1

2
cδ2pnt

)∑
h≤t

nh

≤ n2t+1 exp

(
−1

2
cδ2pnt

)
≤ exp

(
−1

4
cδ2pnt

)
,

where we have applied the first lower bound in (B.1), taking C sufficiently large. For n/2≤ t ≤ (1− δ/2)n we have

∑
h≤t

(
n

t

)(
n

h

)
exp

(−cδ2p(n− h)t
)≤ 10n exp

(
−1

2
cδ2p(n− t)n

)

≤ exp

(
−1

4
cδ2pn(n− t)

)
,

where we have lower bounded n− t ≥ δn/2 and applied the second lower bound in (B.1) (taking C larger, if neces-
sary). Summing these bounds gives

P
(∃T : |HT | ≤ |T | ≤ (1− δ/2)n,XT < d|T |)≤ exp

(−c′δ2pn
)
. (B.6)
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It remains to bound the probability that XT < d|T | for some T of size |T | ≥ (1− δ/2)n. For T ⊂ [n] define the set
of light vertices

LT :=
{
i ∈ [n] : degT (i)≤ (1− δ/2)p|T |}.

For fixed T and i, since EdegT (i)= p|T |, from Bernstein’s inequality we have

P(i ∈ LT )≤ exp
(−cδ2p|T |).

Thus, for any �≥ 1 we have

P
(|LT | ≥ �

)≤ n�
P
([�] ⊆ LT

)≤ exp
(
�
(
logn− cδ2p|T |)).

Thus, taking C larger if necessary, and if |T | ≥ n/2, say, then

P
(|LT | ≥ �

)≤ exp
(−(c/2)δ2p|T |�).

By the union bound, for each 1≤m≤ n/2,

P

(
∃T ∈

( [n]
n−m

)
: |LT | ≥ �

)
≤ nm exp

(−(c/2)δ2p(n−m)�
)

≤ nm exp
(−(c/4)δ2pn�

)
≤ exp

(−c′δ2pn�
)

if

�= �∗(m) := Cm logn

δ2pn
. (B.7)

By another union bound over the choices of m (and adjusting the constants C, c′) we conclude that except with
probability at most exp(−c′δ2pn),

∀1≤m≤ n/2,∀T ∈
( [n]

n−m

)
, |LT | ≤ �∗(m). (B.8)

We may restrict to this event. Now consider T ⊂ [n] with |T | = n−m for some m≤ δn/2. We have

XT ≥
∑
i /∈LT

min
(
d,degT (i)

)≥ (
n− �∗(m)

)
min

(
d, (1− δ/2)p(n−m)

)
. (B.9)

Note that under (B.1) we have m≤ �∗(m). Also, since m≤ δn/2 we have

(1− δ/2)p(n−m)≥ (1− δ)pn= d.

Hence, the right hand side of (B.9) is bounded below by d(n−m)= d|T |, as desired. Thus, we have shown that

P
(∃T ⊂ [n] : n(1− δ/2)≤ |T | ≤ n,XT < d|T |)≤ exp

(−c′δ2pn
)

which together with (B.6) completes the proof.

Remark B.4. The second lower bound in (B.1) could likely be improved, or removed entirely, by separately control-
ling XT for sets T of “intermediate” size. However, we do not pursue such an improvement as it not necessary for the
purposes of this work.
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B.2. Proof of Lemma B.1

Set δ equal the lower bound in (B.1), let p′ such that d = (1− δ)p′n, and let B ′ ∈ {0,1}n×n have iid Bernoulli(p′)
entries.

Let α ∈ (0,1/2). From Bernstein’s inequality, the probability that a given row or column of B ′ has support of size
differing from p′n by at least d1−α is at most 2 exp(−cd1−2α) for some constant c > 0. By the union bound we have
that all rows and columns have supports of size p′n+O(d1−α) with probability at least 1/2, say, for all n sufficiently
large depending on ε. By Lemma B.2, B ′ contains a d-regular factor with probability at least 3/4. Denoting the
intersection of these events by G, we have P(G)≥ 1/4.

Identifying G with a subset of {0,1}n×n, we see that every element of G can be obtained by taking an appropriate
element of An,d and adding at most

m := δp′n+ d1−α �√
d logn+ d2/3 + d1−α (B.10)

entries to each row and column. Thus, letting B(B,m) ⊂ {0,1}n×n denote the set of matrices that can be obtained
from B ∈ {0,1}n×n by adding at most m entries to each row and column, we have

1/4≤ P
(
B ′ ∈ G

)≤ ∑
B∈An,d

P
(
B ′ ∈ B(B,m)

)
.

Since p′ ≤ 1/2 and each element of B(B,m) has at least nd nonzero entries,

P
(
B ′ ∈ B(B,m)

)≤ (
n

m

)2n(
p′

)nd(
1− p′

)n2−nd

which yields the estimate

|An,d | ≥ 1

4

(
n

m

)−2n(
p′

)−nd(
1− p′

)−(n2−nd)
. (B.11)

Now let B be as in Lemma B.1. We first note that

P(B ∈An,d)≥ P
(
B ′ ∈An,d

)
. (B.12)

This is easily seen from the following:

P(B ∈An,d)

P(B ′ ∈An,d)
=

(
p

p′

)nd(
1− p

1− p′

)n2−nd

= exp
(
n2DKL

(
μp||μp′

))
,

where μq is the Bernoulli(q) measure on {0,1} and DKL(μp||μp′) is the Kullback–Leibler divergence from μp′ to
μp . Since the latter is strictly positive for p �= p′, (B.12) follows. Combining (B.12), (B.11) and (B.10), we conclude

P(B ∈An,d)≥ P
(
B ′ ∈An,d

)
= |An,d |

(
p′

)nd(
1− p′

)n2−nd

≥ 1

4

(
n

m

)−2n

≥ 1

4
exp(−2nm logn)

≥ exp
(−O

(
n logn

(√
d logn+ d2/3 + d1−α

)))
as desired.
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