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Abstract. We study a branching Brownian motion Z with a generic branching law, evolving in R
d , where a field of Poissonian

traps is present. Each trap is a ball with constant radius. The traps are hard in the sense that the process is killed instantly once
it enters the trap field. We focus on two cases of Poissonian fields, a uniform field and a radially decaying field, and consider an
annealed environment. Using classical results on the convergence of the speed of branching Brownian motion, we establish precise
annealed results on the population size of Z, given that it avoids the trap field, while staying alive up to time t . The results are
stated so that each gives an ‘optimal survival strategy’ for Z. As corollaries of the results concerning the population size, we prove
several other optimal survival strategies concerning the range of Z, and the size and position of clearings in R

d . We also prove a
result about the hitting time of a single trap by a branching system (Lemma 1), which may be useful in a completely generic setting
too.

Inter alia, we answer some open problems raised in (Markov Process. Related Fields 9 (2003) 363–389).

Résumé. Nous étudions un mouvement brownien branchant Z ayant une loi de branchement générique et évoluant dans Rd , où se
trouve un champ de pièges poissonniens. Chaque piège est constitué d’une boule de rayon constant. Les pièges sont durs, au sens
où le processus est tué instantanément dès qu’il pénètre dans l’un des pièges. Nous nous concentrons sur deux cas particuliers de
champs poissonniens, un champ uniforme et un champ décroissant radialement, et nous considérons un environnement annealed.
En utilisant des résultats classiques sur la convergence de la vitesse du mouvement brownien branchant, nous établissons des
résultats annealed précis sur la taille de la population décrite par Z, conditionnellement à ce qu’il évite l’ensemble des pièges et
reste en vie jusqu’au temps t . Les résultats sont formulés de sorte que chacun d’entre eux donne une ‘stratégie optimale de survie’
pour Z. En corollaires de ces résultats, nous démontrons l’optimalité de plusieurs autres stratégies concernant le support de Z

jusqu’au temps t et la taille et la position de clairières dans Rd . Nous démontrons également un résultat sur le temps d’atteinte d’un
seul piège par un système branchant (Lemme 1), qui pourra aussi être utile dans un cadre totalement générique.

Au passage, nous apportons une réponse à plusieurs questions ouvertes formulées dans (Markov Process. Related Fields 9
(2003) 363–389).
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1. Introduction

Branching Brownian motion (BBM) in Poissonian trap fields has been studied recently in [6,9,10,16,17]. The most
classical problem on this model is the large time asymptotics of the survival probability of the BBM, where one
defines survival up to time t to be the event that none of the particles of the BBM has hit the trap field until that time.
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Another classical problem is that of the optimal survival strategies: How must have the system behaved (what strategy
must it have followed) given that it has avoided the traps up to time t? In this work, we study the optimal survival for
a BBM that evolves in R

d , where a Poissonian trap field is present. Our focus is on the population size. Conditioned
on survival among traps, we expect the system to suppress branching and produce fewer particles than it otherwise
would (had it not been conditioned on survival). Here, we quantify how much the branching would be suppressed.
Investigation of this problem leads us to proving an important lemma of independent interest, which provides an upper
bound that is valid for large t on the survival probability of a BBM in a large class of random (or deterministic) trap
fields, not restricted to Poissonian fields.

Next, we describe the two sources of randomness.
1. Branching Brownian motion: Let Z = (Z(t))t≥0 be a d-dimensional BBM with initial distribution δ0, branching

rate β > 0, and offspring distribution (pk)k∈N0 , where t represents time. The process starts with a single particle at
the origin, which performs a Brownian motion in R

d for a random time which is distributed exponentially with con-
stant parameter β . Then, the particle dies and simultaneously gives birth to a random number of particles distributed
according to the offspring distribution (pk)k∈N0 , where pk ≥ 0 for each k ∈ N0 and

∑∞
k=0 pk = 1. Similarly, each

offspring particle repeats the same procedure independently of all others and the parent, starting from the position of
her parent. In this way, one obtains a measure-valued Markov process Z = (Z(t))t≥0, where for each t ≥ 0, Z(t) can
be viewed as a particle configuration on R

d . By assumption, Z(0) = δ0. Define the process |Z| = (|Z(t)|)t≥0, where
|Z(t)| represents the population size of Z at time t . The number of particles in generation n of |Z| is denoted by N(n)

and the process N = (N(n))n∈N0 is a Galton-Watson process. The initial particle present at t = 0 constitutes the 0th
generation, the offspring of the initial particle constitute the 1st generation, and so forth. We denote the extinction time
of the process |Z| by τ , which is formally defined as τ = inf{t ≥ 0 : |Z(t)| = 0}, where we set inf∅ = ∞. We then de-
note the event of extinction of the process |Z| by E , and formally write E = {τ < ∞}. We use the term non-extinction
for the event Ec. In this work, P and E denote respectively the probability law and corresponding expectation for the
BBM. Finally, for t ≥ 0, let

R(t) :=
⋃

s∈[0,t]
supp

(
Z(s)

)
be the range of Z up to time t .

2. Trap field: The branching Brownian motion is assumed to live in R
d , to which a ‘random trap field’ is attached.

That is, besides the process Z, on some additional space (�,P) (with expectation E), we also consider a d-dimensional
Poisson random measure �, with mean measure ν. We assume that ν is boundedly finite, that is, ν(B) is finite for
each bounded Borel set B of Rd . By a ‘trap’ associated to a trap point at x ∈ R

d , we mean a closed ball of fixed radius
r > 0 centered at x; by a (random) ‘trap field,’ we mean the set

K :=
⋃

xi∈supp(�)

B̄(xi, r),

where B̄(x, r) denotes the closed ball centered at x ∈ R
d with radius r . By a ‘clearing,’ we mean a region in R

d that
is free of traps, that is disjoint from K .

Definition 1 (Survival). We define T := inf{t ≥ 0 : R(t) ∩ K �= ∅} to be the ‘first trapping time’ of the BBM. By
‘survival up to time t > 0,’ we mean the event St := {T > t} ∩ Ec, which, in case of p0 = 0, reduces of course to
{T > t}. This event is contained in the event that neither the internal branching mechanism nor the trap field has killed
the process by t ; thus, survival is a subset of non-extinction, according to our terminology. Conditioning Z on St can
be achieved in two steps: consider first the process Z conditioned on non-extinction for all times, and then condition
this new immortal process on trap-avoiding up to t .

Let dx denote the Lebesgue measure. In this paper, we consider two types of Poissonian trap fields: a uniform field
where dν/dx = v, v > 0, and a trap field where the intensity is radially decaying as

dν

dx
∼ l

|x|d−1
, |x| → ∞, l > 0. (1)
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The reason the decay rate given in (1) is the ‘interesting’ one is that it is in fact the ‘borderline’ one. This is
explained in Theorem 1.3 in [10], which describes the optimal survival strategy, as it depends on the ‘fine tuning
constant’ � (we use l instead of � in the present paper). Namely, it was shown that

– In the low intensity regime � < �cr, the system clears a ball of radius
√

2βt from traps, and until time t stays inside
this ball and branches at rate β .

– In the high intensity regime � > �cr:
d = 1: The system clears an o(t)-ball (i.e., a ball with radius greater than r but of lower order than t as t → ∞),

and until time t suppresses the branching (i.e., produces a polynomial number of particles) and stays inside
this ball.

d ≥ 2: The system clears a ball of radius
√

2β(1 − η∗)t around a point at distance c∗t from the origin, suppresses
the branching until time η∗t , and during the remaining time (1 − η∗)t branches at rate β .

(The constant 0 ≤ η∗ ≤ 1 appears as one of the minimizers of a certain relevant variational problem, which is given
in (6).)

(See Theorem 1.3 in [10] for the precise statements.1)
Hence, the decay considered is indeed the ‘borderline’ one, where the behavior of the system depends only on

the constant �, and exhibits a change of behavior at the crossover. If one considers a larger (smaller) decay order,
the optimal strategy will simply follow the one exhibited when the decay is as in (1) and � > �cr (� < �cr); although
if the decay order is very large, then η∗ = 1 (complete suppression of branching) may occur even for d ≥ 2, while
0 < η∗ < 1 is always the case in the high intensity regime studied in [10].

Let P denote the annealed law, i.e., P := P ⊗ P. In this paper, the probability measure of interest is P(· | St), the
annealed probability conditioned on survival up to t . As explained above, the conditioning can be achieved in two
steps: first considering an immortal process (Z conditioned on never becoming extinct) and then conditioning on the
event that this immortal process avoids traps up to t .

Definition 2 (Optimal survival strategy). By an (annealed) ‘optimal survival strategy,’ we mean a collection of
events {At }t>0 indexed by time, such that

lim
t→∞ P(At | St) = 1.

We look for optimal survival strategies concerning the population size mainly.
The problem of trap-avoiding asymptotics for BBM among Poissonian traps has been first studied by Engländer in

[6], where a uniform field was considered in d ≥ 2. Then, in search for an extension to the case d = 1, Engländer and
den Hollander [10] studied the more interesting case where the trap intensity was radially decaying as given in (1). In
both [6] and [10], the main result was the exponential asymptotic decay rate of the annealed survival probability as
t → ∞, and the branching was taken to be strictly dyadic, i.e., p2 = 1. In addition, in [10], optimal survival strategies
of the type we consider here were proved (see Theorem 1.3(i)–(iv) therein). Part of the work in this paper could be
regarded as a refinement and generalization of the corresponding work in [10].

In [6], optimal survival strategies were not studied. In Theorem 1, we consider a uniform field in R
d , d ≥ 2, as

in [6], and prove that conditioned on survival up to time t , for any 0 < ε̂ < 1, with overwhelming probability, there
is only 1 particle present at time t (1 − ε̂) as t → ∞, which means complete suppression of branching occurs with
overwhelming probability. In Theorem 1.3(iii) in [10], where the setting was that of the radially decaying trap intensity
in (1), it was shown that conditioned on survival up to time t , the population size at time (η∗ − ε̂)t is at most td� for
large t with overwhelming probability. (The constant η∗ appears as one of the minimizers in (6).) Here, we improve
this bound to just a single particle in Theorem 2.

When the BBM is supercritical and p0 > 0, we have to take into account that extinction for the underlying Galton-
Watson process has positive probability, and hence condition the process on non-extinction. In this case, the particles
are grouped into those with infinite or finite line of descent, so-called ‘skeleton’ and ‘doomed’ particles, respectively,
and in this way a ‘skeleton decomposition’ is performed to analyze the problem. In [16] and [15], the work in [6]

1It does not include another, intuitively plausible ingredient though, namely, that in the last case a particle is moved to distance c∗t (into the
clearing) from the origin in time η∗t .
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was extended to a BBM with a general offspring distribution, where the possibility of p0 > 0 was allowed. Likewise
in [17], a general offspring distribution is considered for the BBM, and the work in [10] on the radially decaying
trap field is extended to cover the case p0 > 0. Here we allow for p0 > 0, and extend Theorem 1 and Theorem 2
to Theorem 3 and Theorem 4, respectively, to obtain optimal survival strategies on the population size of both the
skeleton and doomed particles.

In the final section, we use our optimal survival results on the population size to prove several others of different
types in the same spirit as in [10, Thm. 1.3], concerning the range of the BBM, and the size and position of trap-free
regions (i.e., clearings) in R

d .
We refer the reader to [8] for a survey on the topic of BBM among Poissonian traps, and to [9,12] for various related

problems. Analogous questions in the discrete setting could also be asked, where the continuum R
d is replaced by the

integer lattice Z
d , and the BBM is replaced by the branching random walk. In [3], a random walk among a randomly

moving field of traps on Z
d was studied, and it was shown that conditioned on survival up to time t , the random walk

is sub-diffusive. In the discrete setting, we note that the survival asymptotics of the random walk was studied earlier
in [5] for both the annealed and quenched cases.

We conclude this section with an often used terminology and the outline of the paper.

Definition 3 (SES). A generic function g : R+ →R is called super-exponentially small (SES) if limt→∞ logg(t)/t =
−∞.

Outline: The rest of the paper is organized as follows. In Section 2, we state the main results. Section 3 is devoted
to the central lemma of this work, on which the main results are built. This lemma is a general result that applies
to a much broader class of trap fields on R

d than the ones considered in this work. In Section 4, we give the proofs
of the main results. In Section 5, we state and prove a lemma of independent interest about the decomposition of a
supercritical continuous-time branching process, which is used in the subsequent section to generalize the main results
to the case p0 > 0. In Section 6, we extend the main results to the case p0 > 0. The first six sections study the optimal
survival strategies on the population size of the branching system. Finally, in Section 7, we provide optimal survival
results on the range of the branching system, and the size and position of the clearings in R

d , as corollaries of the
results on population size.

2. Results

Our main results will be stated so that each gives an optimal survival strategy. Let us now introduce further notation
in order to state the results. Let f be the probability generating function (p.g.f.) of the offspring distribution and μ be
the mean number of offspring:

f (s) :=
∞∑

j=0

pj s
j ; μ :=

∞∑
j=0

jpj ,

and define

m := μ − 1.

Note the significance of m: it is the net average growth per particle since by assumption a particle dies at the moment
it gives birth to offspring.

Throughout this work, we assume that μ < ∞, and without loss of generality that p1 = 0 (as nonzero p1 can be
absorbed into the branching rate β). Also, from the elementary theory of branching processes (see for example [1,2]),
recall the fact that P(E) = 1 ⇔ μ ≤ 1. Processes for which μ > 1 are called supercritical. It is clear that if p0 = 0,
then P(E) = 0.

The following two theorems constitute the main results of this paper. They both give the population size of the
branching system given survival among traps, and hence quantify how much branching is suppressed under survival.
The setting in the first theorem is a uniform trap field, whereas the second one is concerned with a radially decaying
field. Lemma 1 in Section 3 is central to the proof of both theorems. One should keep in mind that without the
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conditioning on survival, the expected population size of a ‘free’ BBM at time t is exp[βmt] for t ≥ 0. Moreover, by
a well known limit theorem, limt→∞ |Z(t)|e−βmt exists almost surely (see for example [2, Thm. III.7.1]).

As before, dx denotes the Lebesgue measure.

Theorem 1 (Survival in a uniform field; d ≥ 2). Let p0 = 0. Suppose that dν/dx = v, v > 0. Then for d ≥ 2 and
0 < ε̂ < 1,

lim
t→∞ P

(∣∣Z(
(1 − ε̂)t

)∣∣ = 1 | St
) = 1.

Remark. Theorem 1 says that for large t , conditioned on survival up to time t , with overwhelming probability, the
population size at the earlier time (1 − ε̂)t is 1. In other words, with overwhelming probability the population doesn’t
grow at all up to time (1 − ε̂)t ; branching is completely suppressed. We stress that this is not an almost sure pathwise
statement, so there could be realizations where the population grows.

The following theorem has the setting of a trap field where the intensity is radially decaying as in (1):

dν

dx
∼ l

|x|d−1
, |x| → ∞, l > 0.

In this case, as emphasized in the introduction, there is a critical intensity lcr at which the switching of regime occurs.
The survival strategy of the system depends on whether l is above or below this critical intensity, and in particular for
l > lcr, the system suppresses the branching until time η∗t , where η∗ is one of the minimizers in (6). For a definition
of and a formula for lcr, and for details on η∗, we refer the reader to [17, Thm. 2] and its proof. Here, we only note
that 0 < η∗ < 1 when d ≥ 2, and η∗ = 1 when d = 1. Also, it is clear that when d = 1, the trap intensity in (1) gives a
uniform field as a special case, hence covering the missing case of d = 1 in Theorem 1.

The next result answers some of the open problems raised in Section 1.3 in [10].

Theorem 2 (Survival in a radially decaying field; d ≥ 1). Let p0 = 0. Suppose that dν/dx exists, is continuous on
R

d , and satisfies (1). Let lcr be the constant in the critical trap intensity. Then, in the high-intensity regime l > lcr, for
d ≥ 1 and 0 < ε̂ < η∗,

lim
t→∞ P

(∣∣Z((
η∗ − ε̂

)
t
)∣∣ = 1 | St

) = 1.

Remark. (i) It is easy to see, that on the other hand,

lim
t→∞ P

(∣∣Z((
η∗ + ε̂

)
t
)∣∣ = 1 | St

) = 0.

(Here we assume that d ≥ 2, as η∗ = 1 for d = 1, and then the claim follows from the time-homogeneous branching
Markov property.)

Intuitively, suppressing the branching up to η∗t already gives the probabilistic cost that (together with the other
costs) results in the known total cost. If the branching were also suppressed for an additional ε̂t time, then the total
cost would be higher than what is derived. The computation is that, as t → ∞,

P
(∣∣Z((

η∗ + ε̂
)
t
)∣∣ = 1 | St

) = P({|Z((η∗ + ε̂)t)| = 1} ∩ St)

P(St)

= P
({∣∣Z((

η∗ + ε̂
)
t
)∣∣ = 1

} ∩ St
)
eI (l,f,β,d)t (1+o(1)),

where I (l, f,β, d) is the rate function in (5), given by (6), and so it is enough to check that

t

(
−I (l, f,β, d) − 1

t
log P

({∣∣Z((
η∗ + ε̂

)
t
)∣∣ = 1

} ∩ St
)) → ∞.
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And indeed,

lim inf
t→∞ (−1/t) log P

({∣∣Z((
η∗ + ε̂

)
t
)∣∣ = 1

} ∩ St
)
> I (l, f,β, d). (2)

To see why (2) is true, the reader should skip forward to the proof of Theorem 2, and consider the estimate (35)
there. For P({|Z((η∗ + ε̂)t)| = 1} ∩ St), we get a very similar estimate, but now the summation in (35) starts at
i = (η∗ + ε̂)n�, which cannot be optimal for survival, since the unique minimizer for η in (37) is η∗. This verifies
(2).

(ii) Optimal survival strategies about the population size arise when the branching is suppressed for at least part
of the time interval in question in order to realize the event of survival. Therefore, the strategy in the theorem above
applies only when l > lcr, where the branching is suppressed in the time interval [0, η∗t]. When l < lcr, the system
undergoes ‘free’ branching.

For the two types of Poissonian fields that we consider here, the following asymptotics for the annealed trap-
avoiding probabilities have been derived in [15] and [17], respectively. Define α := 1 − f ′(q), where q := P(E).
When p0 = 0, it is clear that P(E) = 0 so that the conditioning on Ec is redundant, and since p1 = 0 by assumption,
α = 1.

Theorem A (Survival asymptotics in a uniform field; d ≥ 2; [15]). Let μ > 1. Suppose that dν/dx = v, v > 0.
Then, for d ≥ 2,

lim
t→∞

1

t
log P

(
T > t | Ec

) = −βα. (3)

Theorem B (Survival asymptotics in a radially decaying field; d ≥ 1; [17]). Let μ > 1. Suppose that dν/dx exists,
is continuous on R

d , and satisfies (1). For r, b ≥ 0, define

gd(r, b) =
∫

B(0,r)

dx

|x + be|d−1
, (4)

where e = (1,0, . . . ,0) is the unit vector in the direction of the first coordinate. Then, for d ≥ 1,

lim
t→∞

1

t
log P

(
T > t | Ec

) = −I (l, f,β, d), (5)

where

I (l, f,β, d) = min
η∈[0,1],c∈[0,

√
2β]

{
βαη + c2

2η
+ lgd

(√
2βm(1 − η), c

)}
. (6)

(For η = 0, c = 0, set c2/2η = 0, and for η = 0, c > 0, set c2/2η = ∞.)

3. A trap in a subcritical ball

In this section, we state and prove the central lemma of this work, on which the main results are built. The following
lemma is of independent interest, because it applies to a much more general class of trap fields (random or determin-
istic) on R

d as opposed to only Poissonian fields.

Lemma 1 (Survival among traps in a subcritical ball). Let p0 = 0 = p1. Let 0 < ε < 1 and define ρt = √
2βm(1 −

ε)t . Suppose that supp(�) ∩ B̄(0, ρt ) �= ∅. Then, the probability that the BBM avoids the trap field up to time t

satisfies the following asymptotical bound:

lim sup
t→∞

1

t
logP(St) ≤ −βε

(√
m2 + m − m

)
.
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Remark. We call B(0, ρt ), where ρt = ρt (ε), a subcritical ball since the ‘speed’ of a BBM is equal to
√

2βm, and
for any 0 < ε < 1, a BBM that starts with a single particle at the origin will escape this ball with a probability tending
to one as t → ∞ (see [13,14]).

Proof. The strategy is to divide the time interval [0, t] into two pieces: [0, δt] and [δt, t], and then to condition on the
number of particles and the radius of the range at time δt . Here, 0 < δ < 1 is a number, which will later depend on ε.

Let At be the event that Z avoids the trap field in the time interval [0, t], and let p(t) := P(At ). For an upper
bound on p(t), we may suppose2 that B̄(0, ρt ) contains precisely 1 point from supp(�), which is on the boundary of
B̄(0, ρt ).

For 0 < δ′ < δ and δ′′ > 0, let Bt be the event that at least eβδ′t� particles are produced in the time interval [0, δt]
and Ct be the event that the BBM remains inside B(0, (δ + δ′′)t

√
2βm) throughout [0, δt]. Use the estimate

P(A) ≤ P(A | B ∩ C) + P
(
Bc

) + P
(
Cc

)
to obtain

p(t) ≤ P(At | Bt ∩ Ct) + P
(
Bc

t

) + P
(
Cc

t

)
. (7)

Let p3(t) := P(Bc
t ) and N(t) := |Z(t)|. From [11], for strictly dyadic branching (denote this process by Ñ ), we

have

P
(
Ñ(t) > k

) = (
1 − e−βt

)k for k = 0,1,2, . . . . (8)

Then, for nonnegative k, by convexity of the function g given by x �→ xk on [0,∞), for any t ,

P
(
Ñ(δt) ≤ k

) = 1 − (
1 − e−βδt

)k ≤ ke−βδt for k = 0,1,2, . . . . (9)

Indeed, taking x1 = 1 and x2 = 1 − e−βδt , by convexity of g, we obtain (g(x1)− g(x2))/(x1 − x2) ≤ g′(x1) = k, from
which (9) follows. Setting k = eδ′βt�, and comparing a BBM having p0 = p1 = 0 (which holds by hypothesis) with
a strictly dyadic BBM, we have for all t > 0,

p3(t) ≤ exp
[−(

δ − δ′)βt + o(t)
]
. (10)

Let p4(t) := P(Cc
t ). Define M(t) := inf{r ≥ 0 : R(t) ⊆ B(0, r)} to be the radius of the minimal ball containing the

range of the BBM up to time t . Observe that

p4(t) = P

(
M(δt) >

√
2βm

(
1 + δ′′

δ

)
δt

)
. (11)

We now find an upper bound for p4(t). Let Nt denote the set of particles that are alive at t and for 1 ≤ u ≤ |Nt |, Xu(t)

denote the position of particle u at time t . Then, using the union bound, for γ > 0,

P
(
M(t) > γ t

) = P
(
∃u ∈ Nt : sup

0≤s≤t

∣∣Xu(s)
∣∣ > γ t

)
≤ E

[
N(t)

]
P0

(
sup

0≤s≤t

∣∣B(s)
∣∣ > γ t

)
, (12)

where B = (B(t))t≥0 represents standard Brownian motion starting at the origin, with probability P0. It is a standard
result that E[N(t)] = exp(βmt) (see for example [11, Section 8.11]). Moreover, we know from [17, Lemma 5] that

2By Brownian scaling, changing the distance of the trap is equivalent to speeding up or slowing down time.
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P0(sup0≤s≤t |B(s)| > γ t) = exp[−γ 2t/2 + o(t)]. Then, by choosing γ = √
2βm(1 + δ′′

δ
) and replacing t by δt in

(12), it follows from (11) and (12) that

p4(t) ≤ exp

[
−βmδt

(
δ′′2

δ2
+ 2

δ′′

δ

)
+ o(t)

]
. (13)

Now let p2(t) := P(At | Bt ∩ Ct). Note that conditioned on the event Bt ∩ Ct , there are at least eβδ′t� particles
within the ball B(0, (δ + δ′′)t

√
2βm) at time δt , each of which is at most at a distance√

2βmt
(
1 − ε + δ + δ′′) =: r(t)

away from the trap point. (Recall that ρt = √
2βm(1 − ε)t .) Focus on one such particle. The probability that the sub-

BBM emerging from this particle avoids the trap in the remaining time (1 − δ)t is at most the sum of the probability
that it remains in its r(t)-ball (call this p5(t)) and the probability that it avoids the trap given that it escapes its r(t)-ball
(call this p6(t)). By the r(t)-ball, we mean the ball with radius r(t) that is centered at the position of the particle at
time δt . Hence, by the Markov property and independence of particles, we have

p2(t) ≤ [
p5(t) + p6(t)

]eδ′βt �
. (14)

Consider p5(t). Choose δ > 0 and δ′′ > 0 so that 1 − ε + δ + δ′′ < 1 − δ, which is equivalent to

2δ + δ′′ < ε. (15)

Then, [7, Prop. 5] implies3 that there exists a constant c = c(ε,β,m) > 0 such that

p5(t) ≤ e−ct for all large t . (16)

Now consider p6(t). For a lower bound on the probability that the sub-BBM hits the trap within the remaining time
(1 − δ)t conditional on exiting the r(t)-ball, we consider a single Brownian particle and look for the probability that
this particle hits the trap, which is contained in the r(t)-ball, conditional on exiting the r(t)-ball. Since the particle is
conditioned to exit the r(t)-ball by time (1 − δ)t , by that time it must also exit the r̂(t)-ball, where r̂(t) is the distance
between the starting point of the sub-BBM and the center of the trap. Therefore, since the Brownian exit distribution
out of a ball centered at the starting point has rotational invariance (even under the conditioning), by comparing the
surface area of the r̂(t)-ball that intersects the trap to the total surface area of the r̂(t)-ball, and since r̂(t) ≤ r(t) for
each t > 0, we obtain

p6(t) ≤ 1 − γr,d

r(t)d−1
for all t > 0, (17)

where γr,d is a constant that depends on the dimension d and the trap radius r .
From (14)–(17), it is clear that there exists a constant c = c(ε, r, d,β,m) > 0 such that for all large t , we have

p2(t) ≤
(

1 − γr,d/2

r(t)d−1

)eδ′βt �
≤ [

exp(−ct)
]eδ′βt �/td

, (18)

which is super-exponentially small (SES) in t . Note that we have used the estimate 1+x ≤ ex in the second inequality
above, and that the factor 1/2 in the numerator in the second expression makes up for p5(t).

Now, putting everything together, from (7), (10), (13) and (18), we have

p(t) ≤ exp
[−(

δ − δ′)βt + o(t)
] + exp

[
−βmδt

(
δ′′2

δ2
+ 2

δ′′

δ

)
+ o(t)

]
+ g(t),

3In [7] the branching was strictly dyadic but the proof can be adapted easily to our more general setting.
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subject to the constraint 2δ + δ′′ < ε for some function g that is SES in t , i.e., (1/t) logg(t) → −∞ as t → ∞. In the
equation above, g(t) comes from (18). First, let δ′ → 0 to obtain

lim sup
t→∞

1

t
logp(t) ≤ −βδ min

{
1,m

(
δ′′2

δ2
+ 2

δ′′

δ

)}
. (19)

Next, find the sharpest bound on p(t) by optimizing over the parameters δ and δ′′, respecting the condition (15).
It is clear from (19) that we need to maximize

f
(
δ, δ′′) := min

{
δ,mδ

(
δ′′2

δ2
+ 2

δ′′

δ

)}
subject to 2δ + δ′′ < ε.

Let δ′′ = δ/k, k > 0 so that f (δ, δ′′) = f (δ, k) = min{δ,mδ( 1
k2 + 2

k
)}, and the constraint becomes δ < εk/(2k + 1).

In order to maximize f , we solve

1 = m

(
1

k2
+ 2

k

)
for positive k. This gives k = m+√

m2 + m as the optimal value for k, and the constraint becomes δ < ε(
√

m2 + m−
m). By letting δ → ε(

√
m2 + m − m), it follows from (19) that

lim sup
t→∞

1

t
logp(t) ≤ −βε

(√
m2 + m − m

)
.

Indeed, by choosing k differently, one obtains a weaker bound for p(t). If k > m + √
m2 + m, then 1 > m( 1

k2 +
2
k
) so that f (δ, k) = mδ( 1

k2 + 2
k
). In view of δ < εk/(2k + 1), we then have p(t) ≤ exp[−βtε m

k
+ o(t)], where

m/k < m/(m + √
m2 + m). Similarly, if k < m + √

m2 + m, then 1 < m( 1
k2 + 2

k
) so that f (δ, k) = δ, and we have

p(t) ≤ exp[−βtε k
2k+1 + o(t)], where k/(2k + 1) < m/(m + √

m2 + m). �

Remark. Intuitively, what we are using in the proof of Lemma 1 is that there are exponentially many particles at the
frontier of a BBM instead of just one particle. In our proof, this appears as the factor eβδ′t� in (18). Even though the
BBM on average has eβmt particles at time t , and the ones on the frontier (meaning the ones that have escaped out of
B(0,

√
2βmt(1 − ε))) are not “too many,” they are not “too few” either, there are still exponentially many (eβδ′t�) on

the frontier.

Remark. Lemma 1 enables us to easily conclude the following: Let 0 < ε < 1 and ρt := √
2βm(1 − ε)t . Let �

denote any Poisson random measure on R
d with mean measure ν such that the probability that B(0, ρt ) is trap-free is

exponentially small in t . (For example, any ν that yields P(B(0, r) is trap-free) ≤ e−cr for all r > 0 for some c > 0.)
Then, for all large t , the annealed probability that the system avoids the trap field up to time t is at least exponentially
small in t , that is,

P(St) ≤ e−kt

for some constant k > 0 that possibly depends on ε, β , m and ν. Indeed, one easily obtains this result by conditioning
on the event that B(0, ρt ) is trap-free, and applying Lemma 1 on its complement.

4. Proof of main theorems

We now give the proof of the main theorems: Theorem 1 and Theorem 2. The central ingredient in both proofs is
Lemma 1. We give a bootstrap argument in each proof. Namely, in the proof of Theorem 1, we first show that for a
given ε̂ > 0, with overwhelming probability under St, there is at most k(̂ε) particles present at time (1 − ε̂)t , where
k doesn’t depend on time. Then, using this, we show that there is actually just one particle present. In the proof of
Theorem 2, the same strategy is followed with the only difference being the replacement of k(̂ε) by t�.

Next, we summarize the argument we will use, before turning to the proof of Theorem 1.
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A general ‘bootstrap argument’

Let {At }t>0 and {Bt }t>0 be two families of events. Furthermore, let Et ⊂ At , t > 0. We are going to apply the general
argument that, since

P(Bt | St)

P (At | St)
= P(Bt )

P (At )

P (St | Bt)

P (St | At)
≤ P(Bt )

P (Et )

P (St | Bt)

P (St | Et)
,

it follows that if

lim
t→∞

P(St | Bt)

P (St | Et)
= 0,

P (Bt )
P (Et )

remains bounded from above and limt→∞ P(At | St) = 1, then limt→∞ P(Bt | St) = 0. In other words, in this
situation, if we know that {At }t>0 is an optimal strategy for St, then so is {At ∩ Bc

t }t>0.
This enables a ‘bootstrap’ argument, namely, one first checks that {At }t>0 is an optimal strategy, and then strength-

ens the argument by replacing {At }t>0 with {At ∩ Bc
t }t>0.

Proof of Theorem 1. Fix 0 < ε̂ < 1. Let Kt := {|Z((1 − ε̂)t)| ≤ (√2 + 1)/̂ε�}. We first show that

lim
t→∞ P(Kt | St) = 1. (20)

By (3), noting that α = 1 when p0 = 0, it is enough to verify that

lim sup
t→∞

1

t
log P

(
Kc

t ∩ St
)
< −β. (21)

Split the time interval [0, t] into two pieces: [0, (1 − ε̂)t] and [(1 − ε̂)t, t]. For 0 < ε < 1, let ρ̂t = (1 − ε)
√

2βm̂εt ,
which is (1 − ε) times the radius of the ‘typical ball’ for the remaining time ε̂t . Define At to be the event that among
the particles alive at time (1 − ε̂)t , there is at least one such that the ball with radius ρ̂t centered around it is trap-free.
Estimate

P
(
Kc

t ∩ St
) ≤ P(At ) + P

(
Kc

t ∩ St | Ac
t

)
. (22)

By the definition of the Poisson random measure, and using the union bound, having a uniform intensity yields that
for t > 0, P(At ) ≤ u(t) exp[−ctd ], where

u(t) := E
∣∣Z(

(1 − ε̂)t
)∣∣ = exp

[
βm(1 − ε̂)t

]
,

and c = c(ε, ε̂, d,β,m) > 0 is some constant. Since d ≥ 2 by assumption, it follows that the first term on the right-
hand side of (22) is SES in t . By Lemma 1, the second term on the right-hand side of (22) is at most

exp
[−(⌊

(
√

2 + 1)/̂ε
⌋ + 1

)
βε

(√
m2 + m − m

)̂
εt + o(t)

]
.

Since m ≥ 1, observe that
√

2 − 1 ≤ √
m2 + m − m. Finally, use (22) and let ε → 1 to obtain (21), which completes

the proof of (20). (Note that the ε̂ appearing in the statement of the theorem is different from the ε appearing in the
definition of ρ̂t .)

Next, using (20), we reduce the bound on the number of particles to 1. Namely, we show that

lim
t→∞ P

(∣∣Z(
(1 − ε̂)t

)∣∣ = 1 | St
) = 1.

This is done by using the ‘bootstrap argument’ (explained at the beginning of this section) with the following
casting. Define

Ft,i := {∣∣Z(
(1 − ε̂)t

)∣∣ = i
}
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for 1 ≤ i ≤ (√2 + 1)/̂ε�. Now let At := {|Z((1 − ε̂)t)| ≤ (√2 + 1)/̂ε�}, Bt = Bt,k := Ft,k with some 2 ≤ k ≤
(√2 + 1)/̂ε� fixed, and Et := Ft,1. We first note that

0 < lim inf
t→∞

P(Bt )

P (Et )
≤ lim sup

t→∞
P(Bt )

P (Et )
≤ k ≤ ⌊

(
√

2 + 1)/̂ε
⌋
, k ≥ 2, (23)

and so, in particular, P(Bt )
P (Et )

remains bounded from above, as required. Now (23) is clearly true for a Yule process

(corresponding to p2 = 1), as we have the explicit formula for the distribution of |Z(t)| as P(|Z(t)| = k) = e−βt (1 −
e−βt )k−1 for t > 0 and k ≥ 1. For a general supercritical process with p0 = p1 = 0, (23) follows by (9) and comparison
with a Yule process.

Next, we have to show that (suppressing the time dependence in the notation for F )

lim
t→∞

P(St | F2)

P(St | F1)
= 0, (24)

as required in the bootstrap argument. For this we need to define the ‘branching Brownian sausage.’ For 0 ≤ t1 ≤ t2,
let

R(t1, t2) :=
t2⋃

s=t1

supp
(
Z(s)

)
,

that is R(t1, t2) is the (accumulated) support of Z on [t1, t2]. For t ≥ 0 and r > 0, let us call

Zr[t1,t2] :=
⋃

x∈R(t1,t2)

B̄(x, r) (25)

the branching Brownian sausage corresponding to the branching Brownian motion Z. This notion is useful since
Fubini’s theorem implies that

P(St) = E
[
e
−vvol(Zr[0,t])

]
, (26)

where v > 0 is the uniform intensity of the Poisson random measure �, and vol denotes volume (Lebesgue measure).
Let F be an event concerning the BBM only (i.e. F ∈ σ(Z(s);0 ≤ s ≤ t)). Using that P(F ) = P(F), it follows

easily that (26) remains valid if we condition both sides on F . Choosing F = F1 and using the shorthand ut := (1− ε̂)t ,
if Wr

t denotes the classical Wiener sausage with radius r up to time t with expectation Ê, then

P(St | F1) = E
[
e
−vvol(Zr[0,t]) | F1

]
≥ E

[
e
−{vvol(Zr[0,ut ])+vvol(Zr[ut ,t])} | F1

]
= E

[
e
−vvol(Zr[0,ut ]) | F1

] · E[
e
−vvol(Zr[ut ,t]) | F1

]
= Ê

[
e−vvol(Wr

ut
)
]
E

[
e
−vvol(Zr[ut ,t]) | F1

]
. (27)

In passing to the last line of (27), we have used the Markov property of Z at time ut , along with the translation
invariance of the sausages, which together imply that the random variables vol(Zr[0,ut ]) and vol(Zr[ut ,t]) are condi-
tionally independent, given |Z(ut )|. (Note that for an inhomogeneous Poisson random measure with mean measure
ν, this reasoning would break down.4) The first factor on the right-hand side of (27) is equal to P(SBM

t ), where we
write SBM

t to denote the event of survival for a single Brownian particle, which in the case of a uniform field decays
sub-exponentially fast5 by the well-known result of Donsker and Varadhan [4].

4The random variables ν(Zr[0,ut ]) and ν(Zr[ut ,t]) would be dependent, even conditionally on |Z(ut )|.
5The decay is exp[−ctd/(d+2)(1 + o(1))] as t → ∞, a.k.a. ‘stretched exponential decay.’
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For 0 ≤ t1 ≤ t2, let

S[t1,t2] := {
R(t1, t2) ∩ K =∅

}
denote the event of trap-avoiding over [t1, t2]. Then the second factor on the right-hand side of (27) is equal to

P(S[ut,t] | F1)

so that from (27) it follows that

P(St | F2)

P(St | F1)
≤ eo(t) P(S[ut,t] | F2)

P(S[ut,t] | F1)
, (28)

where eo(t) is written for the first term on the right-hand side of (27).
To show (24), now it suffices to show that there exists c > 0 such that for all large t

P(S[ut,t] | F2)

P(S[ut,t] | F1)
≤ e−ct . (29)

To this end, let Yx
t = Yx

t (ω) be the probability of survival up to t for a BBM that starts with a single particle at x.
(Here ω represents a realization of the trap field.) By the Cauchy-Schwarz inequality and spatial homogeneity, for any
x, y ∈R

d ,

E
[
Yx

t Y
y
t

] ≤
√
E

[(
Yx

t

)2]
E

[(
Y

y
t

)2] = E
[(

Y 0
t

)2]
. (30)

Now let pt = Y 0
t . Since t − ut = ε̂t , to verify (29), it is enough to show that E[p2

ε̂t ]/E[p̂εt ] ≤ e−ct for some c for all
large t .

For simplicity, suppose that the remaining time is t instead of ε̂t (write t in place of ε̂t and use a different c). Let
ε > 0 and ρt := (1 − ε)

√
2βmt be a subcritical radius. Denote

�t := {
ω ∈ � | supp

(
�(ω)

) ∩ B̄(0, ρt ) �=∅
}
.

Then for all large t ,

E
[
p2

t

] ≤E
[
p2

t 1�t

] + P
(
�c

t

) ≤ e−ct
E[pt1�t ] + e−ctd ≤ e−ct

E[pt ] + e−ctd , (31)

where all constants are denoted generically, as before, by c, and Lemma 1 is used in passing to the second inequality:
write p2

t = ptpt and on �t , bound the second pt from above by e−ct , according to Lemma 1. Now, since d ≥ 2, we
have for all large t ,

E[p2
t ]

E[pt ] ≤ e−ct + e−ctd

E[pt ] → 0 as t → ∞, (32)

since we know from (3) that for a BBM with p0 = p1 = 0 in d ≥ 2, we have E[pt ] = exp[−βt + o(t)]. This proves
(29), completing the proof of (24). Since the presence of more particles reduces the probability of survival, it follows
from (24) that

lim
t→∞

P(St | Fi)

P(St | F1)
= 0

for any i ≥ 2 as well. Then, by the ‘general bootstrap argument’ and (23), for each fixed 2 ≤ i ≤ (√2 + 1)/̂ε�, we
have

lim
t→∞P

(∣∣Z(
(1 − ε̂)t

)∣∣ = i | St
) = 0.
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To finish the proof, apply the union bound over 2 ≤ i ≤ (√2 + 1)/̂ε�. This completes the bootstrap argument and
shows that (20) can be improved to

lim
t→∞ P

(∣∣Z(
(1 − ε̂)t

)∣∣ = 1 | St
) = 1. �

Proof of Theorem 2. Fix 0 < ε̂ < η∗. Let Kt = K
f,̂ε
t := {|Z((η∗ − ε̂)t)| ≤ f (t)} for a function f : R+ → [1,∞)

such that limt→∞ f (t) = ∞. We first show that for any such function,

lim
t→∞ P(Kt | St) = 1. (33)

To show (33), in view of (5), it suffices to show that

lim sup
t→∞

1

t
log P

(
Kc

t ∩ St
)
< −I (l, f,β, d). (34)

Obviously, we may (and will) assume that limt→∞ f (t)
tn

= 0 for some n ∈N.
We follow an argument similar to the one in Section 3.2 in [10]. For t ≥ 0, let

ηt := sup
{
η ∈ [0,1] : ∣∣Z(ηt)

∣∣ ≤ f (t)
} ≥ 0,

and notice that

Kc
t = {

ηt ≤ η∗ − ε̂
};

{ηt > x} = {∣∣Z(xt)
∣∣ ≤ f (t)

}
and {ηt < x} ⊆ {∣∣Z(xt)

∣∣ > f (t)
}
, for x ∈ (0,1).

Introducing the conditional probabilities

P(i,n)
t (·) = P

(
· | i

n
≤ ηt <

i + 1

n

)
, i = 0,1, . . . , n − 1,

we have that, for every n ∈ {1,2,3, . . .},

P
(
Kc

t ∩ St
)

≤
�(η∗−̂ε)n�−1∑

i=0

P
(

St ∩
{

i

n
≤ ηt <

i + 1

n

})
+ P

(
St ∩

{
ηt = η∗ − ε̂

})

≤
[(η∗−̂ε)n�−1∑

i=0

exp

[
−β

i

n
t + o(t)

]
P(i,n)

t (St) + exp
[−β

(
η∗ − ε̂

)
t + o(t)

]
P
(
St | ηt = η∗ − ε̂

)
, (35)

where we have used (9) with k = f (t) to control P(i/n ≤ ηt < (i + 1)/n) in passing to the second inequality.
Concerning the last term on the right-hand side of (35), note that either {ηt = η∗ − ε̂} is a zero event and we can
omit the last term, or it is a positive event, and then we condition on it. Therefore, in the first case the argument is
even simpler than what follows, as the last term simply vanishes. Consider the particles alive at time t (i + 1)/n (resp.
(η∗ − ε̂)t), and the balls with radius6

ρ
(i,n)
t := (1 − ε)

√
2βm

(
1 − i + 1

n

)
t, resp. ρ∗

t := (1 − ε)
√

2βm
(
1 − η∗ + ε̂

)
t

6I.e. a ball of subcritical radius for the remaining time.
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around them, and finally, let TF(i,n)
t (resp. TFt ) be the number of trap-free7 balls among these. Define the events

A
(i,n)
t := {

TF(i,n)
t ≥ 1 ∨ (∣∣Z(

t (i + 1)/n
)∣∣ − f (t)

)}; At := {
TFt ≥ 1 ∨ (∣∣Z((

η∗ − ε̂
)
t
)∣∣ − f (t)

)}
.

(So on [A(i,n)
t ]c ∩ {|Z(t (i + 1)/n)| > f (t)} ⊇ [A(i,n)

t ]c ∩ {ηt < (i + 1)/n}, there are more than f (t) balls receiving at
least one point from �, while on [A(i,n)

t ]c ∩ {|Z(t (i + 1)/n)| ≤ f (t)} = [A(i,n)
t ]c ∩ {ηt > (i + 1)/n}, none of the balls

are trap-free.) Use the trivial estimate

P(i,n)
t (St) ≤ P(i,n)

t

(
A

(i,n)
t

) + P(i,n)
t

(
St |

[
A

(i,n)
t

]c)
, (36)

and a similar estimate for P(St | ηt = η∗ − ε̂). Letting η = i/n, it is shown in the proof of [17, Thm. 1] that

exp

[
−β

i

n
t + o(t)

]
P(i,n)

t

(
A

(i,n)
t

)
≤ exp

[
− min

η∈[0,(η∗−̂ε)],c∈[0,
√

2β]

{
βη + c2

2η
+ lgd

(√
2βm(1 − η), c

)}
t + o(t)

]
(37)

(with a similar bound for P(At )). Heuristically, the second and third terms of the function to be minimized on the
right-hand side of (37) arise as follows. If A

(i,n)
t occurs, then there is at least one particle at time ηt positioned at

some distance ct away from the origin, with the ρ
(i,n)
t -ball centered at it trap-free. The probabilistic cost of moving a

Brownian particle to a distance of ct away from the origin over a time of ηt is exp[−c2/(2η)t + o(t)], which gives the
second term. The probabilistic cost of clearing from traps a ball with radius ρ

(i,n)
t centered at a point ct away from the

origin is exp[−lgd(
√

2βm(1−η), c)t +o(t)] by (1), and this gives the third term. Optimization over c is performed to
catch the lowest cost on an exponential scale. We know from [17, Thm. 2] that (η∗, c∗) is the unique pair of minimizers
for the variational problem in (6), whereas the parameter η on the right-hand side of (37) is bounded away from η∗.
Therefore, putting (36) and (37) together with (35), to obtain (34), it suffices to show that P(i,n)

t (St | [A(i,n)
t ]c) and

P(St | [At ]c) are SES, that is, that

lim
t→∞

1

t
log P(i,n)

t

(
St |

[
A

(i,n)
t

]c) = −∞ and lim
t→∞

1

t
log P

(
St | [At ]c

) = −∞ (38)

for i = 0,1,2, . . . , �(η∗ − ε̂)n� − 1 for some large enough n.
We now verify the first statement in (38); the second could be verified similarly. Let pi,n(t) be the probability that

a BBM, which starts its life at time i+1
n

t with a single particle at a point x ∈ R
d , and whose ρ

(i,n)
t -ball (centered

at x) receives a point from supp(�), avoids the trap field in the time interval [ i+1
n

t, t]. It is enough to show that
[pi,n(t)]f (t)� is SES in t for i = 0,1,2, . . . , �(η∗ − ε̂)n� − 1. We may drop the floor function and work with f (t)

directly. Furthermore, we may work with the entire interval [0, t] instead of [ i+1
n

t, t]. (It is enough to consider [0, t]
instead of the smaller interval [ i+1

n
t, t] as this will not affect the final probabilistic cost being SES in t . In more

detail, we show that for all large t , p−1,n(t) is bounded from above by e−κt for some κ > 0. If we consider the
smaller interval [ i+1

n
t, t], then pi,n(t) will be bounded by e−κ ′t , where κ ′ = κ(1 − (i + 1)/n), which is still positive

since it is at least κ(1 − η∗) for large enough n.) Now let p(t) := p−1,n(t) and ρt := ρ
(−1,n)
t . Note that since we are

conditioning only on the event that the ρt -ball around the particle contains a point from supp(�), we may suppose
that x = 0, that is, our problem becomes the trap-avoiding probability of a BBM, starting with a single particle at the
origin, presuming that B̄(0, ρt )∩ supp(�) �=∅. Now, by Lemma 1, p(t) is at least exponentially small in t , and since
by assumption, limt→∞ f (t) = ∞, it follows that

lim
t→

1

t
log

(
p(t)

)f (t) = −∞.

7In the weak sense that they do not receive points from �.
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Recall that under P(i,n)
t , there are more than f (t) particles at time (i + 1)/n. When conditioning on [A(i,n)

t ]c, there
are at least f (t) particles whose ρ

(i,n)
t -balls around them are not trap-free, which is why we raise p(t) to the power

f (t).) This completes the proof of (33).
Note: For the second part of the bootstrap argument, we could have used [10, Thm. 1.3(iii)], which is the same

as (33) with f (t) = td+ε , but for the sake of completeness, we decided to include the proof of (33) with a general f

satisfying limt→∞ f (t) = ∞.
Next, following a similar strategy as in the proof of Theorem 1, we reduce the number of particles to one, i.e., we

show that

lim
t→∞ P

(∣∣Z(
(1 − ε̂)t

)∣∣ = 1 | St
) = 1.

We consider the cases d = 1 and d ≥ 2 separately, since for d ≥ 2, the trap field is not spatially homogeneous due to
(1), whereas for d = 1, it is. In what follows, we use the notation from the proof of Theorem 1.

The case d = 1 and l > lcr.

If d = 1, then (30) holds. In view of this, we first show that E[p2
t ] = o(E[pt ]) as t → ∞. Let ε > 0 and ρt :=

(1 − ε)
√

2βmt be a subcritical radius. Then, the same calculation as in (31) yields that for all large t ,

E
[
p2

t

] ≤ e−ct
E[pt ] + exp

[−2l(1 − ε)
√

2βmt
]
,

where l is the constant in the trap intensity. Now, since l > lcr, we put l − lcr =: δ > 0. From [17], we know that, when
d = 1, the variational problem in (6) exhibits a crossover at lcr = 1

2

√
β/(2m). Therefore, we choose ε small enough

(0 < ε < min{1/2, δ
√

2βm} will suffice) so that

2l(1 − ε)
√

2βm = 2(δ + lcr)(1 − ε)
√

2βm

= 2δ(1 − ε)
√

2βm + β(1 − ε) > β.

When d = 1 and l > lcr, for a BBM with p0 = p1 = 0, we know from [17, Thm. 2.2] that (6) becomes I = β , meaning
that E[pt ] = exp[−βt + o(t)]. Therefore,

E[p2
t ]

E[pt ] ≤ e−ct + exp[−2l(1 − ε)
√

2βmt]
E[pt ] → 0 as t → ∞,

where the convergence of the ratio E[p2
t ]

E[pt ] to 0 is at least exponentially fast in t . Hence, we conclude that for all large t ,
we have

E[p2
t ]

E[pt ] ≤ e−kt (39)

for some k > 0. Now let f (t) = t�. Then, (33) gives:

lim
t→∞ P

(∣∣Z(
(1 − ε̂)t

)∣∣ ≤ t� | St
) = 1. (40)

Next, by (9) and comparison with a Yule process, we see that for any s > 0 and t > 1

P(|Z(s)| ≤ t�)
P (|Z(s)| = 1)

≤ t�. (41)

Finally, in view of the bootstrap argument given at the beginning of this section, we write

P(2 ≤ |Z((1 − ε̂)t)| ≤ t� | St)

P(|Z((1 − ε̂)t)| = 1 | St)
= P(St | 2 ≤ |Z((1 − ε̂)t)| ≤ t�)

P(St | |Z((1 − ε̂)t)| = 1)
· P(2 ≤ |Z((1 − ε̂)t)| ≤ t�)

P (|Z((1 − ε̂)t)| = 1)

≤ P(St | |Z((1 − ε̂)t)| = 2)

P(St | |Z((1 − ε̂)t)| = 1)
· P(|Z((1 − ε̂)t)| ≤ t�)

P (|Z((1 − ε̂)t)| = 1)
(42)
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and it then follows from (39), (41), and the proof of Theorem 1 that (40) can be improved to

lim
t→∞ P

(∣∣Z(
(1 − ε̂)t

)∣∣ = 1 | St
) = 1.

The case d ≥ 2 and l > lcr.

When d ≥ 2, the trap intensity is no longer uniform; instead, it is radially decaying. Therefore, (27) and (30) do not
hold, and so we are going to follow a different approach. Once we have the first part of the ‘bootstrap,’ that is, (33)
with f (t) = t�, we continue as follows. Throughout this proof, we use c to denote a generic positive constant whose
value may change from line to line.

Let k ≥ 2, and for fixed 0 < ε̂ < η∗, let ut := (η∗ − ε̂)t . Using the ‘general bootstrap argument,’ we want to show
that

P(St | |Z(ut )| = k)

P(St | |Z(ut )| = 1)

tends to zero as t → ∞, exponentially fast. For an upper bound on P(St | |Z(ut )| = k), we may take k = 2, since more
particles would give a smaller probability of survival. Note that

P
(∣∣Z(ut )

∣∣ = 2
)
/P

(∣∣Z(ut )
∣∣ = 1

)
remains bounded between two positive constants. Therefore, it suffices to show that

lim
t→∞ ect P(St ∩ {|Z(ut )| = 2})

P(St ∩ {|Z(ut )| = 1}) = 0, (43)

with some c > 0. The bootstrap argument does not require the exponential pre-factor in (43), and only requires that
the quotient on the left-hand side converges to zero (since the function f in the definition of the event Kt can be as
slowly growing as we like, making the union bound always work), but in fact we are even going to show that it is
exponentially small.

To do so, on the event {|Z(ut )| = 2}, let us pick randomly (independently from everything else) the ‘nice’ offspring
at the first splitting time. This time must be less than or equal to ut , and for an upper bound on P(St ∩ {|Z(ut )| = 2}),
we may and do assume that the splitting occurs at ut . (Indeed, if the first splitting occurs at an earlier time than
ut , say at t̃ , then there would be more than one particle in the system over the period [t̃ , ut ], which would decrease
P(St ∩ {|Z(ut )| = 2}), and it would be even simpler to show (43).) Let us call the other offspring ‘ugly,’ and call
the branch emanating from the nice (ugly) particle concatenated with the single Brownian path over [0, ut ] the ‘first
branch’ (‘the second branch’). Let S1

t and S2
t denote respectively the events that the first branch resp. the second

branch survives up to time t .
Let X = (Xs)s≥0 represent a standard Brownian path starting at the origin. The position where the splitting occurs

will be denoted by X̂t , and again, we may and will pretend that it is distributed as Xut . Let ρ∗
t := √

2βm(1−ε)(t −ut )

and define the event

�̂t := {
supp(�) ∩ B̄

(
X̂t , ρ

∗
t

) �=∅
}
.

Then,

P
(
St ∩

{∣∣Z(ut )
∣∣ = 2

}) = P
(
St ∩ �̂t ∩ {∣∣Z(ut )

∣∣ = 2
}) + P

(
St ∩ �̂c

t ∩ {∣∣Z(ut )
∣∣ = 2

})
= P

(
S1

t ∩ S2
t ∩ �̂t ∩ {∣∣Z(ut )

∣∣ = 2
}) + P

(
S1

t ∩ S2
t ∩ �̂c

t ∩ {∣∣Z(ut )
∣∣ = 2

})
≤ P

(
S2

t ∩ �̂t | S1
t ∩ {∣∣Z(ut )

∣∣ = 2
})

P
(
S1

t ∩ {∣∣Z(ut )
∣∣ = 2

}) + P
(
�̂c

t ∩ {∣∣Z(ut )
∣∣ = 2

})
≤ e−ctP

(
S1

t ∩ {∣∣Z(ut )
∣∣ = 2

}) + P
(
�̂c

t

)
P

(∣∣Z(ut )
∣∣ = 2

)
(44)

for all large t . In passing to the last inequality, we have used the branching Markov property at time ut and Lemma 1,
which together imply that even under the conditioning,

P
(
S2

t ∩ �̂t | S1
t ∩ {∣∣Z(ut )

∣∣ = 2
}) ≤ e−ct
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for some c > 0 for all large t . Moreover, by Fubini’s theorem,

P
(
�̂c

t

) = E
[
P
(
�̂c

t

)]
.

Let |x| denote the Euclidean norm of a point x ∈ R
d . By conditioning X̂t on the events { i−1

n

√
2βt ≤ |X̂t | ≤ i

n

√
2βt}

for i = 1,2, . . . , n and on {|X̂t | >
√

2βt}, and following an argument similar to the proof of the upper bound of
Theorem 1 in [17], it is not hard to show that

E
[
P
(
�̂c

t

)]
= exp

[
− min

x∈[0,
√

2β]

{
x2

2(η∗ − ε̂)
+ lgd

(
ρ∗

t /t, x
)}

t + o(t)

]
+ exp

[
− β

η∗ − ε̂
t + o(t)

]
, (45)

where [17, Lemma 5] was used to control the probabilistic cost of linear Brownian displacements. Also, (9) implies
that

P
(∣∣Z(ut )

∣∣ = 2
) ≤ exp[−βut ] = exp

[−β
(
η∗ − ε̂

)
t
]
. (46)

To prove (43), in view of (44), we need to show that there exists a constant c > 0 such that for all large t ,

P(S1
t ∩ {|Z(ut )| = 2})

P(St ∩ {|Z(ut )| = 1}) ≤ c (47)

and

P(�̂c
t )P (|Z(ut )| = 2)

P(St ∩ {|Z(ut )| = 1}) ≤ e−ct . (48)

Note that

P(S1
t ∩ {|Z(ut )| = 2})

P(St ∩ {|Z(ut )| = 1}) = P(S1
t | |Z(ut )| = 2)

P(St | |Z(ut )| = 1)

P (|Z(ut )| = 2)

P (|Z(ut )| = 1)
,

where on the right-hand side, the first quotient is one, and the second quotient remains bounded, which proves (47).
To prove (48), consider the following survival strategy, which is shown to be optimal in [10] and [17], and can be

used to obtain a lower bound for P(St ∩ {|Z(ut )| = 1}) as well. (This means that for large t , the events St ∩ {|Z(ut )| =
1} and St have the same probabilistic cost on a logarithmic scale.)

1. Suppress the branching of the BBM up to time η∗t ;
2. move the single particle to a distance of c∗t + o(t) from the origin in the time interval [0, η∗t];
3. make the ball B(c∗te,

√
2βm(1 − η∗)t + δt) trap-free, where δ > 0 and e is the unit vector in the direction of the

position vector of the single particle at time η∗t ;
4. let the BBM branch freely in the remaining time interval [η∗t, t] inside this ball.

(For details regarding this type of survival strategy, please see [17, Section 5.1].) Finally, let δ → 0 to obtain

P
(
St ∩

{∣∣Z(ut )
∣∣ = 1

}) ≥ exp

[
−

{
βη∗ + (c∗)2

2η∗ + lgd

(√
2βm

(
1 − η∗), c∗)}t + o(t)

]
.

Since the factor exp[−β(η∗ − ε̂)t] does not depend on the minimizing parameter in (45), by (45) and (46), the state-
ment under (48) will follow if we show that

min
x∈[0,

√
2β]

{
β
(
η∗ − ε̂

) + x2

2(η∗ − ε̂)
+ lgd

(√
2βm

(
1 − η∗ + ε̂

)
, x

)}

> βη∗ + (c∗)2

2η∗ + lgd

(√
2βm

(
1 − η∗), c∗) (49)
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and

β

η∗ − ε̂
+ β

(
η∗ − ε̂

)
> βη∗ + (c∗)2

2η∗ + lgd

(√
2βm

(
1 − η∗), c∗). (50)

(Above, in writing the function gd from (45), we have used that ρ∗
t = √

2βm(1 − ε)(1 − η∗ + ε̂)t and then let ε → 0.)
Now (49) follows, because we know from [17, Thm. 2] that the pair (η∗, c∗) is the unique pair of minimizers for the
variational problem

min
η∈[0,1],c∈[0,

√
2β]

{
βη + c2

2η
+ lgd

(√
2βm(1 − η), c

)}
. (51)

Indeed, on the left-hand side of (49), the function in (51) is evaluated at (η, c) = (η∗ − ε̂, x) for some x ∈ [0,
√

2β],
and (49) then follows by the uniqueness of minimizers. Similarly, (50) follows since the expression on its left-hand
side is bounded from below by β (recall that η∗ < 1) and the value of the expression on its right-hand side becomes
β if we replace (η∗, c∗) by (1,0). This shows (43). To complete the proof, use (42) with Z((1 − ε̂)t) replaced by
Z((η∗ − ε̂)t), (41), and (43). �

Remark. (i) As we have noted in the proof of Theorem 1, for a ‘free’ BBM, the probabilistic cost of having 1 particle
and at most k particles are asymptotically similar up to a constant as t → ∞. What Theorem 1 and Theorem 2 say is
that, for the trap fields considered here, for large t , whenever the system has to suppress branching in order to survive
from traps up to t , with overwhelming probability, it must do so completely up to time (1 − ε̂)t (resp. (η∗ − ε̂)t).
Furthermore, the proofs reveal that having even 2 particles instead of 1 at (1 − ε̂)t (resp. (η∗ − ε̂)t) is exponentially
unlikely in t . This shows that conditioning a BBM on survival among traps has a drastic effect on its population size.

(ii) The proofs of Theorem 1 and Theorem 2 reveal something stronger than the statement of the theorems; namely,
that conditional on survival up to time t , the probability of the respective complement events {|Z((1 − ε̂)t)| > 1} and
{|Z((η∗ − ε̂)t)| > 1} converge to zero exponentially fast in t .

5. Particle production along a skeletal line

Theorem 1 and Theorem 2 are stated for p0 = 0. In Section 6, they will be extended to the case where p0 > 0
(see Theorem 3 and Theorem 4), which yields a positive probability of extinction for the BBM. In this case, we
condition the BBM on non-extinction for meaningful results on optimal survival strategies. A detailed treatment of
a BBM conditioned on non-extinction is given in [17] (see in particular Lemma 4 and Proposition 2 therein). Here,
in preparation for Section 6, we briefly mention the development needed, followed by the statement and proof of
Lemma 2. Conditioned on the event of non-extinction (denoted by Ec), recall that the BBM has the following two-
type decomposition:(

Z(t)
)
t≥0 = (

Z1(t),Z2(t)
)
t≥0,

where Z1 is the process consisting of the ‘skeleton’ particles, and Z2 is the one consisting of the ‘doomed’ particles.
Skeleton particles are those with infinite lines of descent, whereas the doomed particles have finite lines of descent.
We refer to the totality of all skeleton particles as the ‘skeleton’ so that the tree of |Z| conditioned on non-extinction
can be described as an infinite skeleton decorated with infinitely many finite ‘bushes’ composed of doomed particles.

The process Z1 = (Z1(t))t≥0 is itself a BBM, with the same offspring mean μ as the original process Z, branching
rate βα, and p∗

0 = p∗
1 = 0 where we use (p∗

k )k∈N0 for the offspring distribution of Z1. (Recall that α := 1 − f ′(q),
where q := P(E), and f is the p.g.f. of the offspring distribution of Z.) The process Z2 = (Z2(t))t≥0 is not a BBM,
but it is formed by a collection of BBMs in the following sense: each time a doomed particle is born from a skeleton
particle, it initiates an independent subcritical BBM, whose mean offspring number is less than one. It is clear that
conditioning Z on Ec is equivalent to the initial condition (|Z1(0)|, |Z2(0)|) = (1,0).

By a ‘skeletal ancestral line up to time t ,’ we mean the continuous trajectory traversed up to time t by a skeleton
particle present at time t , concatenated with the trajectories of all its ancestors including the one traversed by the
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initial particle. We use the term ‘skeletal line’ in short to mean a skeletal ancestral line up to time t . We say that a
doomed particle is produced by a skeletal line if the most recent skeleton ancestor of the doomed particle is a part of
this skeletal line. Note that by this definition, a doomed particle may be produced by more than one skeletal line, but it
has to be produced by at least one skeletal line. The following lemma gives an upper bound on the number of doomed
particles, all alive at the present time, which are produced by a given single skeletal line.

Lemma 2 (Very few doomed particles). Let log(0)(t) := t and log(n)(t) := log(log(. . . (log t) . . .)) for n ∈ N be the
logarithm function iterated n times. Then, for any n ∈ N0, for a fixed skeletal line, the probability that this line has
produced more than log(n)(t) doomed particles in [0, t], which are all alive at time t , goes to zero at least at the rate
1/ log(n)(t) as t → ∞.

Remark. Note that in particular Lemma 2 implies that

lim
t→∞P

(∣∣Z2(t)
∣∣ > log(n)(t) | ∣∣Z1(t)

∣∣ = 1
) = 0

since the event in the condition implies that there is exactly one skeletal ancestral line for all 0 ≤ s ≤ t .

In order to prove Lemma 2, we first present two preparatory propositions. The first provides an upper bound on the
non-extinction probability of a subcritical BBM up to time t , and follows from the trivial estimate P(|Z(t)| > 0) ≤
E[|Z(t)|]; the second follows directly from a standard Poissonian tail bound.

Proposition 1. Let Z be a subcritical BBM with rate β > 0 and offspring p.g.f. f , and |Z| be the associated total-
mass process. Let μ = f ′(1) be the mean number of offspring so that m := μ − 1 < 0. Then, for any t ≥ 0,

P
(∣∣Z(t)

∣∣ > 0
) ≤ eβmt .

Remark. For precise results on P(|Z(t)| > 0), please see [1, Thm. 2.4].

Proposition 2 (Tail estimate). Let Y be a Poisson random variable with parameter λ. Then for x > λ,

P(Y ≥ x) ≤ e−kλ,

where k = k(x/λ) is a positive number.

Proof. Let z := λ
x

∈ (0,1). By the standard Poissonian tail estimate,

logP(Y ≥ x) ≤ log

[
e−λ(eλ)x

xx

]
= λ

(
−1 + x

1 + logλ

λ
− x logx/λ

)
= −λk(z),

where

k(z) := 1 − z−1(1 + log z) > 1 − z−1z = 0,

as z > 1 + log z. �

Proof of Lemma 2. We prove the statement by an inductive argument as follows. Fix a single skeletal ancestral line.
In this proof, by a doomed particle born ‘directly’ along this skeletal line, we refer to a doomed particle whose direct
ancestor is a skeleton particle of this line and by a ‘doomed subtree,’ we refer to a subtree that is initiated by a doomed
particle born directly along this fixed skeletal line. Let μ∗ be the mean number of offspring for a doomed particle,
define m∗ = μ∗ − 1, and let E1 be the event that the doomed subtrees created in the interval I1 := [0, t − 4

β|m∗| log t]
do not all go extinct by time t (recall that μ∗ < 1 for a doomed particle which implies m∗ < 0) and let P1 := P(E1).
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Let F1 be the event that at most 2βt occurrences of branching occur along the skeletal line in the time interval I1.
Estimate

P1 ≤ P
(
Fc

1

) + P(E1 | F1). (52)

By Proposition 2, since the number of occurrences of branching up to time t along a single skeletal line is a Poisson
process with mean βt , we have

P
(
Fc

1

) ≤ e−k1(1)t , (53)

where k1(1) > 0 is a constant that depends on β . Now focus on P(E1 | F1). Let G1 be the event that at most t3

doomed subtrees are born in the interval I1. Estimate

P(E1 | F1) ≤ P
(
Gc

1 | F1
) + P(E1 | G1,F1). (54)

Let ρ be the expected number of doomed offspring for a skeleton particle. (From [17], we know that ρ = [f ′(1) −
f ′(q)]q/(1−q), where q is the probability of extinction for Z.) The first term on the right-hand side of (54) is bounded
from above by the probability that at least one skeletal branching among 2βt many gives at least t3/(2βt) = t2/(2β)

doomed offspring, which, by the union bound and Markov inequality, is bounded from above to yield

P
(
Gc

1 | F1
) ≤ 2βt

ρ

t2/(2β)
= k2(1)/t, (55)

where k2(1) is a constant that depends on β and f . The second term on the right-hand side of (54) is bounded from
above by the probability that the doomed subtrees created in the interval I1, of which there are at most t3 many, do
not all go extinct by t , which, by the union bound and Proposition 1 (recall that each doomed subtree is a subcritical
BBM), is bounded from above to yield

P(E1 | G1,F1) ≤ t3 exp

(
βm∗ −4

βm∗ log t

)
= 1/t. (56)

Putting the pieces together, from (52)–(56), we obtain

P1 ≤ e−k1(1)t + k2(1)/t + 1/t, (57)

which implies that the doomed subtrees created in I1 = [0, t − 4
β|m∗| log t] all go extinct by time t with a probability

tending to 1 as t → ∞.
We now extend the argument above to the doomed subtrees created in the interval In := [t − 4

β|m∗| log(n−1) t, t −
4

β|m∗| log(n) t] for n ≥ 2. For n ≥ 2, let En be the event that the doomed subtrees created in the interval In do not all

go extinct by time t and let Pn := P(En). Let Fn be the event that at most 2β 4
β|m∗| log(n−1) t = (8/|m∗|) log(n−1) t

occurrences of branching occur along the skeletal line in the time interval In. Estimate

Pn ≤ P
(
Fc

n

) + P(En | Fn). (58)

By Proposition 2, since the number of occurrences of branching in In along a single skeletal line is a Poisson process
with mean at most (4/|m∗|) log(n−1) t , we have

P
(
Fc

n

) ≤
{

1/tk1(2), n = 2,

1/(log(n−2) t)k1(n), n ≥ 3,
(59)

where k1(n) > 0 is a constant that depends on β . Now focus on P(En | Fn). Let Gn be the event that at most
(log(n−1) t)3 doomed subtrees are born in the interval In. Estimate

P(En | Fn) ≤ P
(
Gc

n | Fn

) + P(En | Gn ∩ Fn). (60)
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The first term on the right-hand side of (60) is bounded from above by the probability that at least one skeletal
branching among (8/|m∗|) log(n−1) t many gives at least (log(n−1) t)3/((8/|m∗|) log(n−1) t) = (|m∗|/8)(log(n−1) t)2

doomed offspring, which, by the union bound and Markov inequality, is bounded from above to yield

P
(
Gc

n | Fn

) ≤ (
8/

∣∣m∗∣∣) log(n−1) t
ρ

(|m∗|/8)(log(n−1) t)2
= k2(n)/

(
log(n−1) t

)
, (61)

where k2(n) is a constant that depends on f . The second term on the right-hand side of (60) is bounded from above
by the probability that the doomed subtrees created in the interval In, of which there are at most (log(n−1) t)3 many,
do not all go extinct by t , which, by the union bound and Proposition 1, is bounded from above to yield

P(En | Gn ∩ Fn) ≤ (
log(n−1) t

)3 exp

(
βm∗ −4

βm∗ log(n) t

)
= 1/

(
log(n−1) t

)
. (62)

Then, from (58)–(62), we obtain

Pn ≤
{

1/tk1(2) + k2(2)/ log t + 1/ log t, n = 2,

1/(log(n−2) t)k1(n) + k2(n)/ log(n−1) t + 1/ log(n−1) t, n ≥ 3.
(63)

This implies that the doomed subtrees produced by the skeletal line in In have all gone extinct by time t with a prob-
ability tending to 1 as t → ∞. We recall that I1 := [0, t − 4

β|m∗| log t] and In = [t − 4
β|m∗| log(n−1) t, t − 4

β|m∗| log(n) t]
for n ≥ 2 to conclude the following: for any n ≥ 1, as t → ∞,

P
(
doomed subtrees born in

[
0, t − log(n) t

]
have all gone extinct by time t

) → 1. (64)

The convergence in (64) can easily be seen from (57) and (63) to be at least at the rate 1/t for n = 1, and 1/(log(n−1) t)

for n ≥ 2. In view of (64), since each doomed particle that is produced by the skeletal line is a member of a doomed
subtree, each doomed particle present at time t is a member of a doomed subtree that is created in the interval
[t − log(n+1) t, t] with probability tending to 1 as t → ∞. The result follows by applying similar bounds as above on
the total progeny generated by the doomed subtrees produced along the skeletal line in the interval [t − log(n+1) t, t];
one just needs to multiply ρ by the expected total progeny of a doomed subtree, which is finite as well. �

6. Extension to the case p0 > 0

In this section, Theorem 1 and Theorem 2 are extended to the case p0 > 0, where the probability of extinction
for the BBM is positive. We condition the BBM on non-extinction Ec for meaningful results on optimal survival
strategies. Recall that Z has the offspring p.g.f. f , where f (s) = ∑∞

j=0 pks
k for s ∈ [0,1]. Suppose that p0 > 0

and μ = f ′(1) > 1. Let Z = (Z1,Z2) be the decomposition of Z into skeleton and doomed particles. Define α :=
1 − f ′(q), which is the factor by which the branching rate is reduced for the skeleton, giving an effective branching
rate of βα. It is easy to see that if p0 > 0 and μ > 1, then 0 < α < 1 (see [17, Lemma 4]).

Theorem 3 (Survival in a uniform field; d ≥ 2 and p0 > 0). Let p0 > 0 and μ > 1. Suppose that dν/dx = v, v > 0.
Then, for d ≥ 2, 0 < ε̂ < 1 and any n ∈N,

lim
t→∞ P

(∣∣Z1((1 − ε̂)t
)∣∣ = 1 | St

) = 1, (65)

lim
t→∞ P

(∣∣Z2((1 − ε̂)t
)∣∣ ≤ log(n) t | St

) = 1. (66)

Proof. Let (p∗
k )k∈N0 be the offspring probabilities for Z1, i.e., the skeleton process. Then, (65) follows from Theo-

rem 1, since p∗
0 = 0, and one can adjust the branching rate of the skeleton (from β to βα) in order to make p∗

1 = 0.
To prove (66), let ε̂ > 0, fix n ∈N, and define the events indexed by t as

Kt := {∣∣Z1((1 − ε̂)t
)∣∣ = 1

}
, Lt := {∣∣Z2((1 − ε̂)t

)∣∣ ≤ log(n) t
}
.
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Estimate

P
(
Lc

t | St
) ≤ P

(
Lc

t | St ∩ Kt

) + P
(
Kc

t | St
)
. (67)

Note that the second term on the right-hand side of (67) tends to zero by (65). Now consider the first term. Using the
shorthand t∗ := (1 − ε̂)t , we need to show that

lim
t→∞ P

(∣∣Z2(t∗)∣∣ > log(n) t | St ∩ Kt

) = 0.

Note that the event in the conditioning is the same as the event

{T > t} ∩ {∣∣Z1(t∗)∣∣ = 1
}

since the presence of a skeleton particle at any time implies non-extinction (recall that a skeleton particle by definition
has an infinite line of descent.) Therefore, in the presence of the event Kt , the event St boils down to {T > t}. Now
it is not difficult to see that dropping {T > t} in the condition makes the event {|Z2(t∗)| > log(n)(t)} more likely (the
random variable Z2(t∗) becomes stochastically larger) since conditioning on trap-avoiding tends to reduce the number
of particles. Then, the first term on the right-hand side of (67) can be estimated from above by

P
(∣∣Z2(t∗)∣∣ > log(n)(t) | ∣∣Z1(t∗)∣∣ = 1

)
.

In the condition above, there is exactly one skeleton particle at time t∗, which implies that there is exactly one skeletal
ancestral line up to that time. Hence, Lemma 2 (see the remark that follows it) gives (66). �

The proof of the following theorem is identical to that of the former; one only needs to replace (1−ε)t by (η∗ −ε)t

in the theorem statement and its proof.

Theorem 4 (Survival in a radially decaying field; d ≥ 1 and p0 > 0). Let p0 > 0 and μ > 1. Let the trap intensity
be radially decaying as in Theorem 2. For n ∈ N let log(n) t be defined as before. Then for d ≥ 1, l > lcr, 0 < ε̂ < η∗
and any n ∈N,

lim
t→∞ P

(∣∣Z1((η∗ − ε̂
)
t
)∣∣ = 1 | St

) = 1,

lim
t→∞ P

(∣∣Z2((η∗ − ε̂
)
t
)∣∣ ≤ log(n) t | St

) = 1.

7. Corollaries: Different types of optimal survival strategies

In this section, using our results on the optimal survival strategies regarding the population size, namely Theorem 3
and Theorem 4, we prove optimal survival results regarding the range of the BBM, and the size and position of the
clearings in R

d as corollaries. Our proofs are in the same spirit as the ones for [10, Thm. 1.3(i)–(iv)]. We emphasize
that our results concerning the population size were all about suppressing the branching given survival among traps
up to time t . Hence, the corollaries below arise in cases where there is some suppression of branching. For instance,
when the trap intensity is uniform and d = 1, in the case l < lcr, the system does not need to suppress branching in
order to avoid traps; hence this case is not studied below. Recall that R = (R(t))t≥0 is the range process for the BBM.

Corollary 1 (d = 1). Let the trap intensity be uniform. If Z is supercritical, then for d = 1, l > lcr and ε > 0,

lim
t→∞ P

(
R(t) ⊆ B(0, εt) | St

) = 1, (68)

lim
t→∞ P

(
B(0, εt) ∩ K �=∅ | St

) = 1. (69)
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Note: Regarding (69), at the first sight, it may seem counterintuitive that trap avoidance implies the presence (and
not the lack) of traps anywhere. However, for example in the p0 = 0 case, the correct intuition is as follows: by
Theorem 2, given survival, the system only produces a single particle with overwhelming probability, and this single
particle will most likely be close to the origin. Therefore, creating clearings further away from the origin would result
in an unnecessary probabilistic cost.

Proof. We prove the two displayed formulas separately.
(a) Proof of (68): Let ε > 0 be fixed and let |Z(t)| = (|Z1(t)|, |Z2(t))| be the decomposition of the total progeny

for the BBM up to time t for t ≥ 0. Let Z = (Z1,Z2) be the decomposition of Z as before. From [17, Thm. 2.2], we
know that η∗ = 1 when d = 1. Let 0 < ε′ < 1 and δ > 0, which both will depend on ε later. Define the events indexed
by t as

Lt := {∣∣Z2((1 − ε′)t)∣∣ ≤ eδt
}
, Kt := {∣∣Z1((1 − ε′)t)∣∣ = 1

}
,

and

Ft := {
R(t) ⊆ B(0, εt)

}
.

It is enough to show that

lim sup
t→∞

1

t
log P

(
Fc

t ∩ St
)
< −I,

where I = βα (see [15, Thm. 1]). Estimate

P
(
Fc

t ∩ St
) ≤ P

(
Fc

t ∩Lt ∩ Kt

) + P
(
Kc

t ∩ St
) + P

(
Lc

t ∩ Kt

)
. (70)

The second term on the right-hand side of (70) is lower order than exp[−I t] on an exponential scale as t → ∞ by the
proof of Theorem 1. The third term can be written as P(Lc

t | Kt)P (Kt ). Similarly to the argument leading to (8)–(10),
one can show that P(Kt) = exp[−βαt + o(t)] since the effective branching rate for the skeleton is βα. Now consider
P(Lc

t | Kt). Conditioned on Kt , since there is only one skeleton particle present at time (1 − ε′)t and the expected
number of occurrences of branching along its skeletal line is β(1 − ε′)t up to time (1 − ε′)t , we have

E
[∣∣Z2((1 − ε′)t)∣∣ | Kt

] = κβ
(
1 − ε′)t,

where κ > 0 is the product of the expected total progeny of a doomed subtree and the expected doomed offspring of
a skeleton particle, which are both finite and don’t depend on t . Then, Markov inequality implies that P(Lc

t | Kt) ≤
exp[−δt + o(t)] so that P(Lc

t | Kt)P (Kt ) is lower order than exp[−I t] on an exponential scale. It remains to show
that

lim sup
t→∞

1

t
logP

(
Fc

t ∩Lt ∩ Kt

)
< −I.

Define the following events:

F 1
t := {

R
((

1 − ε′)t) ⊆ B(0, εt/2)
}
,

F 2
t := {

each sub-BBM emanating from one of the ‘parent’ particles at time
(
1 − ε′)t

is contained in an εt/2-ball around the position of the parent particle
}
.

It is clear that F 1
t ∩ F 2

t ⊆ Ft . Therefore, using de Morgan’s law, followed by the union bound, it suffices to show the
following two inequalities:

lim sup
t→∞

1

t
logP

((
F 1

t

)c ∩Lt ∩ Kt

)
< −I, (71)

lim sup
t→∞

1

t
logP

((
F 2

t

)c ∩Lt ∩ Kt

)
< −I. (72)
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On the event (F 1
t )c ∩Lt ∩Kt , the following probabilistic costs arise: The system has only 1 skeleton particle through-

out the time interval [0, (1 − ε′)t], which has probability exp[−βα(1 − ε′)t]. Also, at least one Brownian path must
go outside B(0, εt/2) for some s ∈ [0, (1 − ε′)t], which has probability at most exp[−ε2/[8(1 − ε′)t] + δt + o(t)] by
[17, Lemma 5] and the union bound since on the event Lt ∩Kt , there are at most exp[δt +o(t)] particles in the system
at all times in the period [0, (1 − ε′)t]. Therefore, by independence of branching and motion mechanisms, we obtain

lim sup
t→∞

1

t
logP

((
F 1

t

)c ∩Lt ∩ Kt

) ≤ −βα
(
1 − ε′) − ε2

8(1 − ε′)
+ δ.

Then, since I = βα when d = 1, l > lcr; to prove (71), it suffices to choose ε′ > 0 such that the inequality

βα
(
1 − ε′) + ε2

8(1 − ε′)
> βα + δ (73)

is satisfied.
Now consider the event (F 2

t )c ∩ Lt ∩ Kt . On the event (F 2
t )c , at least one sub-BBM emanating from one of the

‘parent’ particles at time (1 − ε′)t must escape its εt/2-ball around the position of the parent particle. Fix one such
sub-BBM. By the proof of Proposition 1 in [17], an argument similar to the one leading to (13) shows that if

ε/2 > 2ε′√2βm, (74)

then the probability that this sub-BBM exits a εt/2-ball around the position of the parent particle in the remaining
time ε′t is at most exp[−3βmε′t + o(t)]. Since Lt ∩Kt implies the existence of at most exp[δt + o(t)] many particles
at time (1 − ε′)t , this introduces a factor of at most δt to the exponent in the latter estimate. Again, by independence
of branching and motion, we obtain

lim sup
t→∞

1

t
logP

((
F 2

t

)c ∩Lt ∩ Kt

) ≤ −βα
(
1 − ε′) − 3βmε′ + δ < −βα,

provided that δ is small enough, where the last inequality follows since 3m > α. (Recall that the BBM is supercritical,
which means m > 1, whereas α ≤ 1.) Finally, to satisfy (73) and (74), and hence to complete the proof of (68), choose
δ small enough and ε′ = min{ε2/(8βα), ε/(4

√
2βm)}.

(b) Proof of (69): Let 0 < ε′ < ε, and define the events indexed by t as

Dt := {
R(t) ⊆ B

(
0, ε′t

)}
, G1

t := {
B(0, εt) ∩ K �=∅

}
, G2

t := {
B

(
0, ε′t + r

) ∩ K �=∅
}
.

(Recall that r is the constant trap radius.) It is clear that (G1
t )

c ⊂ (G2
t )

c, and by the definition of Poisson random
measure, the probabilities of (G2

t )
c and (G1

t )
c differ by ε − ε′ on an exponential scale. Estimate

P
((

G1
t

)c ∩ St
) ≤ P

((
G1

t

)c ∩ Dt

) + P
(
St ∩ Dc

t

)
. (75)

The second term on the right-hand side of (75) is lower order than exp[−I t] on an exponential scale as t → ∞,
since it was shown previously that each term on the right-hand side of (70) is such. The first term has the following
asymptotics:

lim sup
t→∞

1

t
log P

((
G1

t

)c ∩ Dt

) = lim sup
t→∞

1

t
log

[
P
(
G1

t

)c
P (Dt )

]
< lim sup

t→∞
1

t
log

[
P
(
G2

t

)c
P (Dt )

]
= lim sup

t→∞
1

t
log P

((
G2

t

)c ∩ Dt

) ≤ −I,

where the first inequality follows from the fact that the probabilities of (G2
t )

c and (G1
t )

c differ by ε − ε′ on an
exponential scale, and the last inequality follows since (G2

t )
c ∩ Dt ⊆ St. This completes the proof of (69). �
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Corollary 2 (d ≥ 2). Let the trap intensity be uniform. If Z is supercritical, then for d ≥ 2 and ε > 0,

lim
t→∞ P

(
R(t) ⊆ B(0, εt) | St

) = 1, (76)

lim
t→∞ P

(
B

(
0, εt1/d

) ∩ K �=∅ | St
) = 1. (77)

Proof. For the proof of (76), refer to the proof of Corollary 1.
To prove (77), let 0 < ε′ < ε, and define the events indexed by t as

Dt := {
R(t) ⊆ B

(
0, ε′t

)}
, At := {

B
(
0, εt1/d

) ∩ K �=∅
}
.

Estimate

P
(
Ac

t ∩ St
) ≤ P

(
Ac

t ∩ Dt

) + P
(
St ∩ Dc

t

) =: I + II. (78)

Now, II = o(P(St)) as t → ∞ by (76). By the independence of the BBM and the Poisson random measure,

I = P
(
Ac

t

)
P(Dt) ≤ exp

(−vωdεd t
)

exp
[−(

βα − √
βα/(2m)ε′)t + o(t)

]
, (79)

where ωd is the volume of the d-dimensional unit ball and v > 0 is the constant trap intensity. In passing to the second
equality of (79), we have used the definition of Poisson random measure and a more general version of [7, Prop. 5],
which can be stated as:

Proposition 3. For a BBM with branching rate β > 0 and p0 = 0 = p1, and for 0 < a <
√

2βm,

lim sup
t→∞

1

t
logP

(
R(t) ⊆ B(0, at)

) ≤ −β +
√

β

2m
a.

The proof of [7, Prop. 5] can easily be adapted to prove the proposition above. Recall that the process Z1, which is
generated by the skeleton, has the same offspring mean as the original process Z, and that βα is the branching rate for
the skeleton, where 0 < α ≤ 1 if the BBM is supercritical. We have applied Proposition 3 to the skeleton only for an
upper bound on P(Dt) since the presence of doomed particles can only decrease P(Dt). Finally, since I = βα when
d ≥ 2 (see [15, Thm. 1]), to complete the proof, choose ε′ > 0 sufficiently small to satisfy the inequality

vωdεd + βα − √
βα/(2m)ε′ > βα,

that is,

ε′ < vωdεd

√
βα/(2m)

,

and then I in (78) also satisfies I = o(P(St)) as t → ∞. �
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