
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2019, Vol. 55, No. 4, 1815–1849
https://doi.org/10.1214/18-AIHP935
© Association des Publications de l’Institut Henri Poincaré, 2019

Regular Dirichlet extensions of one-dimensional
Brownian motion1

Liping Lia and Jiangang Yingb

aRCSDS, HCMS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190 China.
E-mail: liliping@amss.ac.cn

bFudan University, Shanghai, 200433 China. E-mail: jgying@fudan.edu.cn

Received 20 April 2017; revised 7 May 2018; accepted 20 September 2018

Abstract. The regular Dirichlet extension is the dual concept of regular Dirichlet subspace. The main purpose of this paper is to
characterize all the regular Dirichlet extensions of one-dimensional Brownian motion and to explore their structures. It is shown
that every regular Dirichlet extension of one-dimensional Brownian motion may essentially decomposed into at most countable
disjoint invariant intervals and an E-polar set relative to this regular Dirichlet extension. On each invariant interval the regular
Dirichlet extension is characterized uniquely by a scale function in a given class. To explore the structure of regular Dirichlet
extension we apply the idea introduced in (Ann. Probab. 45 (2017) 857–872), we formulate the trace Dirichlet forms and attain the
darning process associated with the restriction to each invariant interval of the orthogonal complement of H 1

e (R) in the extended
Dirichlet space of the regular Dirichlet extension. As a result, we find an answer to a long-standing problem whether a pure jump
Dirichlet form has proper regular Dirichlet subspaces.

Résumé. L’extension régulière de Dirichlet est la notion duale de celle de sous-espace de Dirichlet régulier. Le but principal de cet
article est de caractériser toutes les extensions régulières de Dirichlet du mouvement brownien unidimensionnel et d’explorer leurs
structures. On montre que chaque extension régulière du mouvement brownien unidimensionnel de Dirichlet peut essentiellement
se décomposer en intervalles invariants disjoints au plus dénombrables et en un ensemble E-polaire relatif à cette extension régulière
de Dirichlet. Sur chaque intervalle invariant, l’extension régulière de Dirichlet est caractérisée de manière unique par une fonction
d’échelle dans une classe donnée. Pour explorer la structure de l’extension régulière de Dirichlet, on applique l’idée introduite
dans (Ann. Probab. 45 (2017) 857–872), on formule les formes de Dirichlet de trace et atteint le processus de reprise associé à
la restriction à chaque intervalle invariant du complément orthogonal de H 1

e (R) dans l’espace de Dirichlet étendu de l’extension
régulière de Dirichlet. En conséquence, nous trouvons une réponse à un problème de longue date, à savoir si une forme pure de
Dirichlet avec sauts comporte des sous-espaces propres de Dirichlet réguliers.

MSC: Primary 31C25; 60J55; secondary 60J60
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1. Introduction

A Dirichlet form is a closed symmetric form with Markovian property on L2(E,m) space, where E is a nice topo-
logical space and m is a fully supported Radon measure on E. Due to a series of important works by M. Fukushima
and M. L. Silverstein in 1970’, it is now well known that every regular Dirichlet form is associated with a symmetric
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Markov process. (The notions and terminologies in the theory of Dirichlet forms are referred to [1] and [7].) This link
provides an analytic approach to study the Markov processes and their related notions. For example, the Beurling–
Deny formula of Dirichlet form gives insight to the behaviours of trajectories of associated Markov process, and the
so-called local property of Dirichlet form implies the continuity of trajectories, in other words, the associated Markov
process is a diffusion process. In this paper, we shall focus on Dirichlet forms on L2(R). A fundamental and im-
portant example is ( 1

2 D,H 1(R)), where H 1(R) is the 1-Sobolev space and D is the Dirichlet integral, i.e., for any
u,v ∈ H 1(R),

D(u, v) =
∫
R

u′(x)v′(x) dx.

It is a regular Dirichlet form associated with the one-dimensional Brownian motion, which is denoted by B = (Bt )t≥0
hereafter.

The notion of regular Dirichlet subspace (or simply regular subspace) was first raised by the second author and
his co-authors in [3]. Roughly speaking, it is a subspace of a Dirichlet space, but also a regular Dirichlet form on
the same state space. In what follows, we shall introduce the dual notion, the so-called regular Dirichlet extension, of
regular Dirichlet subspace. Note tacitly when we say a regular Dirichlet subspace or extension of a symmetric Markov
process, it means a regular Dirichlet subspace or extension of its associated Dirichlet form. The formal definition of
regular Dirichlet extension, as well as that of regular Dirichlet subspace, is as follows.

Definition 1.1. Let E be a locally compact separable metric space and m a fully supported Radon measure on E.
Given two regular Dirichlet forms (E1,F1) and (E2,F2) on L2(E,m), (E2,F2) is said to be a regular Dirichlet
extension (or simply regular extension) of (E1,F1) if

F1 ⊂F2, E2(u, v) = E1(u, v), ∀u,v ∈F1. (1.1)

It is called a proper one provided F1 �= F2. Conversely, (E1,F1) is called a regular Dirichlet subspace (or simply
regular subspace) of (E2,F2).

Let us review some results about regular subspaces of one-dimensional Brownian motion before moving on to our
main purpose, its regular extensions. Recall that an irreducible diffusion process ((Xt )t≥0,Px) on R, (also ‘regular’
in the terminology of [17, (45.2)]), i.e.,

Px(σy < ∞) > 0, ∀x, y ∈R,

where σy the first hitting time of {y}, can be characterized by a scale function (i.e. a strictly increasing and continuous
function), a speed measure and a killing measure (cf. [9]) completely. Since one-dimensional Brownian motion is
irreducible, it follows from Proposition 2.2(3) that any regular Dirichlet subspace is also irreducible, so that the
characterization of regular Dirichlet subspaces of one-dimensional Brownian motion has been completed in [3]. It
turns out that any regular Dirichlet subspace (E1,F1) of ( 1

2 D,H 1(R)) corresponds to an irreducible diffusion process
on R with a scale function s in the following class,

S(R) = {
s :R→ R|s is strictly increasing and absolutely continuous,s′ = 0 or 1

}
. (1.2)

In other words, (E1,F1) could be written as

F1 = {
u ∈ L2(R) : u 
 s, du/ds ∈ L2(R, ds)

}
,

E1(u, v) = 1

2

∫
R

du

ds

dv

ds
ds, u, v ∈ F1,

(1.3)

where the notation u 
 s means that u is absolutely continuous with respect to s. A further study on structure of
regular subspaces was performed in a recent paper [14]. It is evident that any scale function s in (1.2) could induce a
measure-dense set (i.e., for any a < b, m((a, b) ∩ Gs) > 0)

Gs := {
x : s′(x) = 1

}
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and vice versa. The main result of [14] states that (E1,F1) and one-dimensional Brownian motion differ only on
the nowhere dense set Gc

s, and the difference is characterized by their trace. Though this study is named as ‘the
structure of regular Dirichlet subspaces’, it also manifests the links between the diffusion associated with (E1,F1)

and one-dimensional Brownian motion.
Similarly, we are interested in the following problems related to regular extensions for a given Dirichlet form:

(Q.1) whether the proper regular Dirichlet extensions exist;
(Q.2) if exist, how to characterize all of them; and
(Q.3) how to describe their structure.

As mentioned above, we are also interested in the connection between their associated Markov processes.
However, these problems look trivial for one-dimensional Brownian motion because we thought at first that its

regular Dirichlet extensions should be irreducible. An irreducible one-dimensional diffusion must be symmetric with
respect to the speed measure and its Dirichlet form has representation given in [4, Theorem 3.1]. As an analogue of
regular subspaces, we then conclude by applying [4, Theorem 4.1] that an (irreducible) regular Dirichlet form is a
regular extension of one-dimensional Brownian motion, if and only if the scale function of its associated diffusion is
singular, or precisely speaking, belongs to the following class:

T(R) :=
{
t : R→ R|t is strictly increasing and continuous, dx 
 dt,

dx

dt
= 1 or 0, dt-a.e.

}

= {
t :R→ R|s := t−1 ∈ S(R)

}
(cf. [3, Theorem 4.1]), (1.4)

where t−1 is the inverse function of t. We tacitly use this superscript to stand for the inverse function of a suitable
function unless otherwise specified. Note that T(R) �= {t= s−1|s ∈ S(R)}, since the range s(R) of s may be a proper
subset of R (such as the example at the end of [3]). At least we have proper examples, such as Example 3.1, for the
problem (Q.1).

Looking at the definition, it is appropriate to call a function in S(R)/T(R) a shrink/stretch (of natural scale function)
respectively, and then it seems perfect that a regular Dirichlet subspace/extension is equivalent to a shrink/stretch.
However we realized that the statement above was far from the truth when we found the following example of regular
Dirichlet extension for Brownian motion which is not irreducible. This example was a surprise for us indeed and
initiated this article.

Example 1.1. Let a linear diffusion process X on R, having Lebesgue measure as speed measure, consist of two
irreducible parts: a reflected Brownian motion on I1 := (−∞,0] and a linear diffusion on I2 := (0,∞) with scale
function t2 where the range of t is R (i.e. t(0+) := limx↓0 t(x) = −∞,t(∞) := limx↑∞ t(x) = ∞) and t satisfies
that dx 
 dt and dx/dt= 0 or 1. Referring to [4], the Dirichlet form of X on L2(R) is given by

F = {
f ∈ L2(R) : f |I1 ∈ H 1(I1), f |I2 ∈ H 1(I2, dt)

}
,

E(f,f ) = 1

2

∫
I1

(
df

dx

)2

dx + 1

2

∫
I2

(
df

dt

)2

dt,
(1.6)

2A concrete example of such t. Consider the standard Cantor function c with c(x) = 0 for any x ≤ 0 and c(x) = 1 for any x ≥ 1. It induces a
singular probability measure λc (with respect to the Lebesgue measure) supported in [0,1]. For each n ≥ 1, the image measure of λc , denoted by
λn
c , under the map

[0,1] →
[

1

2n
,

1

2n−1

]
, x �→ x + 1

2n
(1.5)

is another singular probability measure supported in [ 1
2n , 1

2n−1 ]. Set

t(x) := x +
∑
n≥1

∫ x

1
dλn

c , x ∈ I2 = (0,∞).

It is easy to find that t is a scale function on I2 such that dx 
 dt and dx/dt= 0 or 1, dt-a.e. Moreover, t(0+) = −∞,t(∞) = ∞.
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where H 1(I2, dt) = {f ∈ L2(I2) : f 
 t, df/dt ∈ L2(I2;dt)}. It is easy to check that (E,F) is a Dirichlet extension
of ( 1

2 D,H 1(R)). We need only to verify that it is regular, or precisely F ∩Cc(R) is dense in F . It amounts to prove that
for a function f on R with f |I1 ∈ C∞

c (I1) and f |I2 ∈ H 1(I2, dt)∩Cc(I2), and any ε > 0, there exists fε ∈ F ∩Cc(R)

such that

E1(f − fε, f − fε) < 2ε.

We would like to spend a few lines to explain the proof because the idea inspires this paper. For simplicity we
assume that f (0) = 1. We may let ε small enough such that f (ε) = 0. Since t(0+) = −∞, we may have ε′ ∈ (0, ε)

so that t(ε) − t(ε′) > 2/ε. Define ϕ ∈ C(R)

ϕ(x) :=

⎧⎪⎨
⎪⎩

1, x ≤ t (ε′);
t(ε)−x

t(ε)−t(ε′) , x ∈ (t(ε′),t(ε)),

0, x ≥ t(ε),

and

fε := f · 1R\(0,ε] + ϕ ◦ t · 1(0,ε].

Then fε ∈ Cc(R), fε − f = ϕ ◦ t and

E1(ϕ ◦ t, ϕ ◦ t) =
∫ ε

0

(
ϕ ◦ t(x)

)2
dx + 1

2

∫ ε

0

(
dϕ ◦ t

dt

)2

dt≤ ε + 1

2

∫ t(ε)

t(ε′)

(
ϕ′(x)

)2
dx ≤ 2ε.

This example tells that a regular extension comes from at least two aspects: stretch and split of scale function.
The first aspect is what we mentioned above, but the second is new and leads to violence of irreducibility, so that we
shall turn to the general theory of one-dimensional diffusions in classical textbooks [8] and [9] for help. The principal
result phrased in Section 3 gives a complete characterization for regular extensions of one-dimensional Brownian
motion and makes the rough observation above rigorous. More precisely, it turns out that every regular Dirichlet
extension of one-dimensional Brownian motion has at most countable intervals as irreducible components and on
each interval, the regular Dirichlet extension is determined uniquely by a scale function in the class (3.2). Heuristically
speaking, the real line is split into at most countable components by impenetrable ‘walls’ (in Example 1.1, ‘0+’ is
such a ‘wall’ in the sense that X reflects at 0 from left side and cannot reach 0 from right side) and an irreducible
diffusion lives on each interval according to a stretched scale function. After having characterization theorem, we
are interested in taking the structure of regular extensions into account. This contributes to a deeper understanding
of associated diffusion processes. The idea of the approach stems from [14]. Needless to say, a difference appears
now due to the presence of impenetrable ‘walls’. Nevertheless, we could still apply the trace and darning transforms
by considering each component separately. The eventual result shows that on each invariant interval, the regular
extension is identified with Brownian motion outside an (almost) nowhere dense set, on which their ‘shadows’ differ
significantly. In Example 1.1, the positive component of X, i.e. the diffusion process with scale function t on (0,∞),
has F := ⋃

n≥1 Kn, where Kn is the image of standard Cantor set under the map (1.5) for each n ≥ 1, as this (almost)
nowhere dense set. That is to say, X is nothing but the one-dimensional Brownian motion on Fc, but their traces on
F behave significantly different as we shall characterize in Theorem 5.1. There is also a sense in which formulating
the traces of regular extension and one-dimensional Brownian motion together on the sum of such (almost) nowhere
dense sets of all the components sheds light on more links and differences between them. A typical example is based
on Example 3.5, whose associated diffusion process X consists of a countable set of separate reflected Brownian
motions. This process is identified with one-dimensional Brownian motion outside the standard Cantor set K . We
shall conclude in Corollary 5.1 that the traces of X and B share the same form but have different Dirichlet spaces.
Particularly, the former one is not irreducible, while the latter one is irreducible.

At a heuristic level, we could interpret one-dimensional Brownian motion and its regular extensions (as well as
subspaces) by means of electric networks. We may view a diffusion on R as a random motion on a ‘continuum’
electric network, and the measure induced by scale function plays the role of resistance, which reflects the ability
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of material to resist the motion. As we know, one-dimensional Brownian motion is on the natural scale, i.e. the
induced measure is translation invariant. This indicates that its related ‘continuum’ electronic network consists of
normal material with constant resistance everywhere. A regular subspace has a scale function s in (1.2) as mentioned
earlier. As a consequence, the principal part, i.e. Gs := {x : s′(x) = 1}, of R consists of normal material, and the
remainder, being (almost) nowhere dense, is superconductive (i.e. of zero resistance). In the case of regular extension,
the principal part consists also of normal material, and the remainder, which is also (almost) nowhere dense, has two
kinds of singular materials. One is insulator like the impenetrable ‘wall’ 0+ in Example 1.1, which splits the line (as
well as the diffusion), and another has singular but finite resistance like {x > 0 : dx/dt= 0} in Example 1.1, which
stretches the constant resistance. Intuitively, while moving like Brownian motion on the normal material, the diffusion
associated with the regular subspace places super-conductance on a small subset of R and flies like lights over it, and
conversely, the one associated with the regular extension is split by insulators and moves hard on the material with
stretched resistance.

This paper is organized as follows. In Section 2, we summarize some basic properties concerning regular Dirichlet
extensions in the general setting. Particularly, a regular Dirichlet extension of one-dimensional Brownian motion
must be strongly local and recurrent. Thus the associated Hunt process is a conservative diffusion process on R. In
Section 3, we treat the problem (Q.2) for one-dimensional Brownian motion. The main theorem, i.e. Theorem 3.1,
characterizes all the regular Dirichlet extensions of one-dimensional Brownian motion. Several examples of proper
regular Dirichlet extensions are presented in Section 3.3. In Section 4 and Section 5, we consider the problem (Q.3)
for one-dimensional Brownian motion and describe the structures of regular Dirichlet extensions via the trace method
introduced in [14]. We attain the expression of the orthogonal complement G of H 1

e (R) in Fe in Theorem 4.2 and
the regular representation of the restriction of G on each invariant interval via the darning method in Theorem 4.3.
The darning process turns out to be a Brownian motion being time changed by a Radon smooth measure. The trace
formulae of regular Dirichlet extension and the one-dimensional Brownian motion are formulated in Theorem 5.1. In
Corollary 5.1, a special case of Theorem 5.1 is emphasized, in which the trace Dirichlet forms of one-dimensional
Brownian motion and its regular Dirichlet extension are both pure-jump type and have the same jumping measure but
different Dirichlet spaces. The essential differences between them are illustrated in Corollary 5.3.

Notations and terminologies

Let us put some often used notations here for handy reference, though we may restate their definitions when they
appear.

For a < b, 〈a, b〉 is an interval where a or b may or may not be contained 〈a, b〉. Notations m, dx and | · | stand
for the Lebesgue measure on R throughout the paper if no confusion caused. The restrictions of a measure μ and a
function f on I are denoted by μ|I and f |I respectively. The notation ‘:=’ is read as ‘to be defined as’.

For a scale function t (i.e. a continuous and strictly increasing function) on some interval I , dt represents its
associated Lebesgue-Stieltjes measure on I and t−1 stands for its inverse function. Set t(I ) := {t(x) : x ∈ I }. For
two measures μ and ν, μ 
 ν means μ is absolutely continuous with respect to ν. Given a scale function t on I and
another function f on I , f 
 t means f = g ◦ t for some absolutely continuous function g and df

dt := g′ ◦ t. Given
an interval I , the classes Cc(I), C1

c (I ) and C∞
c (I ) denote the spaces of all continuous functions on I with compact

support, all continuously differentiable functions with compact support and all infinitely differentiable functions with
compact support, respectively.

For a Markov process X = (Xt )t≥0 associated with a Dirichlet form (E,F) on L2(E,m), (Pt )t≥0 represents its
probability transition semigroup, i.e. Ptf (x) := Exf (Xt ) for any t ≥ 0, f ∈ bB(E) and x ∈ E, where bB(E) is all
bounded Borel measurable functions on E. The semigroup (Tt )t≥0 is a strongly continuous contraction semigroup
on L2(E,m) associated with (E,F). If A is an invariant set of X (see Section 3.1), then the restriction of (E,F) to
A is denoted by (EA,FA) and the restriction of X to A is denoted by XA. If U is an open subset of E, then the
part Dirichlet form of (E,F) on U is denoted by (EU ,FU) and the part process of X on U is denoted by XU . All
terminologies about Dirichlet forms are standard and we refer them to [1,7].

2. Basic properties of regular Dirichlet extensions

In this section, we summarize several basic properties of regular Dirichlet extensions or subspaces, which are con-
tained in [10–13,15,18]. We always fix two regular Dirichlet forms (E1,F1) and (E2,F2) on L2(E,m) and assume
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that (E1,F1) is a regular Dirichlet subspace of (E2,F2), equivalently (E2,F2) is a regular Dirichlet extension of
(E1,F1).

The first theorem is taken from [12], and it characterizes Beurling–Deny decompositions of regular Dirichlet sub-
spaces or extensions.

Theorem 2.1 (Theorem 2.1, [12]). Let (J1, k1) and (J2, k2) be the jumping and killing measures in the Beurling–
Deny decompositions of (E1,F1) and (E2,F2) respectively. Then J1 = J2 and k1 = k2.

As a corollary of this result, if one of (E1,F1) and (E2,F2) is strongly local or local, then the other one has to
be strongly local or local. Particularly, both regular Dirichlet subspaces and extensions of ( 1

2 D,H 1(R)) must be a
strongly local Dirichlet form.

The following proposition describes the quasi notions of (E1,F1) and (E2,F2). Its proof is obvious from the fact
Cap1(A) ≥ Cap2(A) for any appropriate set A, where Cap1 and Cap2 are the 1-Capacities of (E1,F1) and (E2,F2)

respectively.

Proposition 2.1 (Remark 1.1, [12]). The following assertions hold.

(1) An E1-polar set is E2-polar.
(2) An E1-nest is also an E2-nest.
(3) An E1-quasi continuous function is also E2-quasi continuous.

Another proposition states the relation of their global properties.

Proposition 2.2 (Remark 3.5, [13]). The following assertions hold.

(1) If a Dirichlet form is transient, then its regular Dirichlet subspace is also transient.
(2) If a Dirichlet form is recurrent, then its regular Dirichlet extension is also recurrent.
(3) If a Dirichlet form is strongly local and irreducible, then its regular Dirichlet subspace is also irreducible.

Proof. The first and second assertions are the direct corollaries of [7, Theorem 1.6.4]. The third assertion follows
from Proposition 2.1(3) and [7, Theorem 4.6.4]. �

The following characterization via the extended Dirichlet spaces is very simple but sometimes very useful.

Proposition 2.3. Let F1
e and F2

e be the extended Dirichlet spaces of (E1,F1) and (E2,F2) respectively. Then
(E1,F1) is a regular Dirichlet subspace of (E2,F2) if and only if

F1
e ⊂F2

e , E2(f, g) = E1(f, g), f, g ∈F1
e .

Furthermore, if (E1,F1) is a proper one in addition, F1
e �=F2

e .

The next proposition will be frequently used in Section 3.2.4. The proof is direct from the definition of part Dirichlet
form (cf. [7, Section 4.4]).

Proposition 2.4. Let U be an open subset of E. The part Dirichlet forms of (E1,F1) and (E2,F2) on U are denoted
by (E1

U ,F1
U) and (E2

U ,F2
U). Then (E1

U ,F1
U) is a regular Dirichlet subspace of (E2

U ,F2
U).

3. Representation of regular Dirichlet extensions

3.1. Main result

The existence problem (Q.1) for the one-dimensional Brownian motion is already answered in the next paragraph
after this problem in Section 1. Indeed, the one-dimensional Brownian motion has proper regular Dirichlet extensions
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such as those with the scale functions in the class (1.4). Particularly, they are all irreducible. In this section, we shall
treat the second problem (Q.2).

Before presenting the main theorem, we need to do some preparatory works. Let (E,F) be a regular Dirichlet form
on L2(E,m) associated with a symmetric Hunt process X. A Borel subset A ⊂ E is called an invariant set of (Xt )t≥0
provided for any x ∈ A,

Px(Xt ∈ A,∀t) = 1.

Clearly, the restriction denoted by XA or (XA
t )t≥0 of X to A is still a Hunt process and symmetric with respect to

m|A. Its associated Dirichlet form on L2(A,m|A) is (see [1, Section 2.1])

FA := {f |A : f ∈F}, EA(f |A,g|A) := E(1Af,1Ag), f, g ∈F .

We call (EA,FA) the restriction of the Dirichlet form (E,F) to the invariant set A.
Another preparatory work is to introduce a few classes of scale functions. Let a < b and I = 〈a, b〉 be an interval

such that a or b may or may not be in I . In other words, I = (a, b), (a, b], [a, b) or [a, b]. Particularly, a or b may be

infinity if a or b /∈ I . The interior of I is denoted by
◦
I := (a, b). A scale function t on I is a strictly increasing and

continuous function on I . Thus we can always define its limit at boundary

t(a) := lim
x↓a

t(x) ≥ −∞,
(

resp. t(b) := lim
x↑b

t(x) ≤ ∞
)

no matter a (resp. b) belongs to I or not. Denote all the scale functions t on I satisfying

dx 
 dt,
dx

dt
= 0 or 1, dt-a.e.

by T(I ) (see (1.4)). A subset of T(I ) is defined as

T∞(I ) := {
t ∈ T(I )|t(a) = −∞ iff a /∈ I,t(b) = ∞ iff b /∈ I

}
, (3.1)

where ‘iff’ stands for ‘if and only if’.

Remark 3.1. Note that in any case the class T∞(I ) of scale functions is not empty. For example let us treat the case
I = [a, b) with b < ∞. The other cases can be treated similarly. By [3, Theorem 4.1], we need only to find a scale
function

s : [0,∞) → [a, b)

such that ds
 dx,s′ = 0 or 1. Then t := s−1 ∈ T∞(I ).
Take a measure-dense subset G ⊂ [0,∞). For example, assume {qn : n ≥ 1} is the total of positive rational numbers

and let

G :=
{⋃

n≥1

B

(
qn,

1

2n

)}
∩ [0,∞),

where B(x, r) := {y : |y − x| < r}. Clearly, the Lebesgue measure of G is positive, i.e. |G| > 0. Set k := |G|/|b − a|
and G′ := {x : kx ∈ G}. Note that G′ is still measure-dense. In fact, take any open interval (c, d) ⊂ I , we have

∣∣G′ ∩ (c, d)
∣∣ = 1

k

∣∣G ∩ (kc, kd)
∣∣ > 0.

Let

s(x) :=
∫ x

0
1G′(y) dy + a, x ≥ 0.
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Then s is strictly increasing and absolutely continuous, s′ = 1G′ , s(0) = a and

s(∞) =
∫ ∞

0
1G′(y) dy + a = 1

k
· |G| + a = b.

Remark 3.2. Similar to [3, Theorem 4.1], we may also deduce that any scale function t ∈ T∞(I ) can be written as

t(x) = x + c(x)

for a non-decreasing singular continuous function c on I .

Note that the scale functions of an irreducible diffusion process are not unique and may differ by a constant if its
speed measure is fixed. To avoid this uncertainty, we make the following restriction on T∞(I ):

T0∞(I ) := {
t ∈ T∞(I ) : t(e) = 0

}
, (3.2)

where e is a fixed point in (a, b): e := (a + b)/2 if a > −∞, b < ∞; e := b − 1 if a = −∞, b < ∞; e := a + 1 if
a > −∞, b = ∞ and e := 0 if a = −∞, b = ∞. The choice of e is not essential.

Now we are in a position to state the main result of this section.

Theorem 3.1. The Dirichlet form (E,F) is a regular Dirichlet extension of ( 1
2 D,H 1(R)) on L2(R) if and only if

there exist a set of at most countable disjoint intervals {In = 〈an, bn〉 : n ≥ 1}, satisfying that (
⋃

n≥1 In)
c has Lebesgue

measure zero, and a scale function tn ∈ T0∞(In) for each n ≥ 1 such that

F =
{
f ∈ L2(R) : f |In ∈Fn,

∑
n≥1

En(f |In , f |In) < ∞
}
,

E(f, g) =
∑
n≥1

En(f |In , g|In), f, g ∈ F,

(3.3)

where for each n ≥ 1, (En,Fn) is expressed as

Fn =
{
f ∈ L2(In) : f 
 tn,

∫
In

(
df

dtn

)2

dtn < ∞
}
,

En(f, g) = 1

2

∫
In

df

dtn

dg

dtn

dtn, f, g ∈ Fn.

(3.4)

Moreover, the intervals {In : n ≥ 1} and scale functions {tn ∈ T0∞(In) : n ≥ 1} are uniquely determined, if the differ-
ence of order is ignored.

Remark 3.3. Denote the associated Hunt process of (E,F) by X = (Xt )t≥0. Set G := ⋃
n≥1

◦
In and F := Gc . Note

that G is an open set. We would like to make a few remarks for the theorem above.

(1) Though the intervals are mutually disjoint, they may have common endpoints. For example, In = (an, bn] and
Im = (am, bm) with bn = am.

(2) Let �̃pr := {an : an ∈ In} and �̃pl := {bn : bn ∈ In}. Further set �̃r := F \ �̃pl and �̃l := F \ �̃pr . Note that
neither �̃l nor �̃r is necessarily closed. For example, let K be the standard Cantor set in [0,1] and set⋃

n

In := Kc ∪ (−∞,0] ∪ [1,∞)
.

Then �̃r = K \ {0} and �̃l = K \ {1}. Neither of them is closed. Nevertheless, �̃l (resp. �̃r ) is closed from the right
(resp. left), i.e. if xn ∈ �̃l (resp. �̃r ) and xn ↓ x (resp. xn ↑ x), then x ∈ �̃l (resp. �̃r ). This fact can be proved as
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follows. Assume that xn ∈ �̃l and xn ↓ x. Clearly x /∈ G since G is open. If x ∈ �̃pr , then there exists an interval In

such that In = [x, bn) or [x, bn] with x < bn. Note that (x, bn) ⊂ G. This leads to a contradiction with xn ↓ x and
xn ∈ �̃l .

It is also worth noting that �̃pr , �̃pl , �̃r , �̃l coincide with the classes of right shunt points, left shunt points, right
singular points and left singular points of X as defined in Definition 3.1 respectively. Moreover, G and F are identified
with the classes of regular points and singular points of X.

(3) For each n, In is an invariant set of X and XIn is an irreducible and recurrent diffusion process with the scale
function tn, the speed measure m|In and no killing inside (cf. [1, Theorem 2.2.11]. In other words,

Px

(
X

In
t = y,∃t > 0

) = 1, ∀x, y ∈ In.

Furthermore, if an ∈ In, then XIn is reflected at the left endpoint an. If an /∈ In, then XIn never reaches it in finite time
(cf. [8] and [1, Example 3.5.7]). This also implies that any single point subset {x} ⊂ In is not an m-polar set relative
to X.

(4) The set �̃l ∩�̃r = (
⋃

n≥1 In)
c is an m-polar set relative to X. Indeed, m(�̃r ∩�̃l) = 0, and for any x /∈ �̃r ∩�̃l ,

there exists an interval In such that x ∈ In. Since In is an invariant set of X, we can conclude

Px(σ�̃r∩�̃l
< ∞) = 0.

Note that any regular Dirichlet form corresponds to a Hunt process uniquely up to an m-polar set. The most convenient
way to treat the part of X on �̃r ∩ �̃l is to enforce the process X starting from a point x ∈ �̃r ∩ �̃l to stay at x forever.

(5) The fact that (
⋃

n≥1 In)
c has Lebesgue measure zero implies that it is nowhere dense.

Corollary 3.1. An irreducible regular Dirichlet form (E,F) on L2(R) is a regular Dirichlet extension of ( 1
2 D,H 1(R))

if and only if there exists a unique scale function t ∈ T0∞(R) such that

F =
{
f ∈ L2(R) : f 
 t,

∫
R

(
df

dt

)2

dt< ∞
}
,

E(f, g) = 1

2

∫
R

df

dt

dg

dt
dt, f, g ∈ F .

3.2. Proof of Theorem 3.1

The proof of Theorem 3.1 will be divided into several parts. We note here that the last assertion about the uniqueness
is obvious from Remark 3.3(3). We shall prove necessity first and then sufficiency. To prove the necessity, we need to
review one-dimensional or linear diffusions.

3.2.1. Classification of points for linear diffusions
In this part, we recall some results on the classification of points for linear diffusion. For those results which may be
known to experts but not on standard references [8, Section 5] and [9, Section 3], we will give a proof.

Let X = (Xt ) be a diffusion process on R, i.e. a strong Markov process with continuous paths. Without loss of
generality, we always assume that X is conservative, in other words, the lifetime ζ of X is infinite Px -a.s. for any
x ∈ R. Now fix a point x ∈R. Note that

e± := Px(σx± = 0) = 0 or 1

by Blumenthal’s 0-1 law, where σx+ := inf{t > 0 : Xt > x}, σx− := inf{t > 0 : Xt < x}.

Definition 3.1. A point x ∈R is called

(1) regular, denoted by x ∈ �2, if e+ = e− = 1;
(2) singular, if e+e− = 0;
(3) left singular, denoted by x ∈ �l , if e+ = 0; right singular, denoted by x ∈ �r , if e− = 0;
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(4) left shunt, denoted by x ∈ �pl , if e+ = 0, e− = 1; right shunt, denoted by x ∈ �pr , if e− = 0, e+ = 1;
(5) a trap, denoted by x ∈ �t , if e+ = e− = 0.

The sets �2, �l , �r , �pl , �pr and �t stand for the subsets of R containing all the regular points, left singular points,
right singular points, left shunt points, right shunt points and traps of X respectively. The set of all singular points is
�l ∪ �r .

Clearly, �2 = (�r ∪ �l)
c, �pr ∩ �l = ∅, �pl ∩ �r = ∅ and �r ∩ �l = �t . The following facts will be very

useful in proving Theorem 3.1.

Lemma 3.1.

(1) Assume a < b < c. Then

Pa(σc < ∞) = Pa(σb < ∞)Pb(σc < ∞),

Pc(σa < ∞) = Pc(σb < ∞)Pb(σa < ∞).

(2) A point b ∈ �r (resp. b ∈ �l) if and only if Pb(Xt ≥ b,∀t) = 1 (resp. Pb(Xt ≤ b,∀t) = 1). Thus b ∈ �t if and
only if Pb(Xt = b,∀t) = 1.

(3) Fix b ∈ �r (resp. b ∈ �l). Then for any a > b (resp. a < b),

Pa(Xt ≥ b,∀t) = 1,
(
resp. Pa(Xt ≤ b,∀t) = 1

)
.

(4) Fix b ∈ �pr (resp. b ∈ �pl). Then there exists a point a > b (resp. a < b) such that

Pb(σa < ∞) > 0.

(5) The left singular set �l is closed from the right, i.e. if xn ∈ �l and xn ↓ x, x ∈ �l . The right singular set �r is
closed from the left, i.e. if xn ∈ �r and xn ↑ x, x ∈ �r .

(6) The regular set �2 is open. Thus the singular set �r ∪ �l is closed.
(7) If each point in an open interval (a, b) is regular, i.e. (a, b) ⊂ �2, then for any x, y ∈ (a, b),

Px(σy < ∞)Py(σx < ∞) > 0.

Proof. For the first fact, since in the sense of Pa-a.s., σc > σb , it follows that σc = σb + σc ◦ θσb
where (θt ) are the

shift operators of X, i.e. Xt+s = Xt ◦ θs for any t, s ≥ 0. By the strong Markovian property of X, we have

Pa(σc < ∞) = Pa(σb < ∞, σc ◦ θσb
< ∞)

= Pa

(
σb < ∞,PXσb

(σc < ∞)
)

= Pa(σb < ∞)Pb(σc < ∞).

Another assertion can be deduced similarly.
For the second fact, we need only to remark that

Px(σx± = 0) = Px(σx± < ∞)

for any x ∈R (cf. [9, Section 3.3, 10a)]).
For the third fact, fix b ∈ �r and a > b. For any point y < b, it follows from (2) that

Pb(σy < ∞) = Pb(Xt = y,∃t) = 0.

Thus from (1) we may deduce that Pa(σy < ∞) = 0 for any y < b. Take a sequence yn ↑ b. Then Pa(σyn < ∞) = 0
implies

Pa

(⋃
t

{Xt ≤ yn}
)

= 0.
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Hence

0 = Pa

(⋃
n

⋃
t

{Xt ≤ yn}
)

= Pa

(⋃
t

{Xt < b}
)

= Pa

({Xt ≥ b,∀t}c)
.

Another assertion is similar.
For the forth fact, fix b ∈ �pr . Suppose that for any y > b,

Pb(σy < ∞) = Pb

(⋃
t

{Xt ≥ y}
)

= 0.

Take a sequence yn ↓ b and then

0 = Pb

(⋃
n

⋃
t

{Xt ≥ yn}
)

= Pb

(⋃
t

{Xt > b}
)

.

This implies Pb(Xt ≤ b,∀t) = 1 and thus b ∈ �l by (2), which contradicts with �pr ∩ �l =∅.
The fifth and sixth facts can be found in [9, Section 3.4].
For the final fact, note that for any regular point ξ , there exist two points c, d close enough to ξ such that c < ξ < d

and Pc(σd < ∞)Pd(σc < ∞) > 0 (cf. [9, Section 3.4]). Now fix a regular interval (a, b) ⊂ �2 and assume that
x, y ∈ (a, b), x < y and Px(σy < ∞) = 0. Set

Ax := {
z > x : Px(σz < ∞) = 0

}
.

Clearly, y ∈ Ax . Moreover, if z ∈ Ax and z′ > z then z′ ∈ Ax . Let w := infAx . If w = x, then Px(σx+ < ∞) = 0 and
x ∈ �l , which contradicts with x ∈ �2. If w > x, note that w ∈ (a, b) is a regular point. It follows that there exist two
points w1, w2 with x < w1 < w < w2 < y such that

Pw1(σw2 < ∞)Pw2(σw1 < ∞) > 0.

Since w1 /∈ Ax and w2 ∈ Ax , we have Px(σw1 < ∞) > 0 and Px(σw2 < ∞) = 0. However, from (1) we can deduce
that

Px(σw2 < ∞) = Px(σw1 < ∞)Pw1(σw2 < ∞) > 0,

which leads to a contradiction. That completes the proof. �

Intuitively, a left (resp. right) singular point looks like a ‘wall’ to the left (resp. right), and no trajectory can run
through it from its left (resp. right) side to the right (resp. left). The left (resp. right) shunt point means more: the
trajectories starting from this point must enter its left (resp. right) side in finite time.

We need to point out X possibly admits a left or right shunt interval (a, b), i.e. (a, b) ⊂ �pr or �pl . For example,
let Xt = X0 + t . Then �pr = R. This example also indicates that for a right shunt point b, there may exist another
point a < b such that the trajectory starting from a can run through b to its right side. We shall see in the next part
that these behaviors are not allowed under the symmetry assumption.

3.2.2. Linear diffusion under the symmetry
In this part, we further assume that X is symmetric with respect to the Lebesgue (or any fully supported Radon)
measure m on R. In other words, the semigroup (Pt )t≥0 of X satisfies

(Ptf, g)m = (f,Ptg)m, f, g ∈ B+(R), t ≥ 0, (3.5)

where (f, g)m and B+(R) stand for the inner product of L2(R,m) and the set of all the non-negative Borel measurable
functions on R, respectively.
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Lemma 3.2. Fix a right (resp. left) singular point b ∈ �r (resp. �l). Under the symmetry, for any a < b (resp. a > b),
it holds that

Pa(σb < ∞) = 0.

Particularly, under the symmetry if b ∈ �t then for any a �= b,

Pa(σb < ∞) = 0.

Proof. We first consider b ∈ �pr . The case of b ∈ �pl is similar. It follows from Lemma 3.1(2, 3) that for any x ≥ b,

Px(Xt ≥ b,∀t) = 1.

Set f (x) := 1(−∞,b)(x), g(x) := 1[b,∞)(x). Since for any x ≥ b,

Ptf (x) = Px(Xt < b) = 0,

the left side of (3.5) equals 0. Thus for m-a.e. x ∈ (−∞, b),

0 = Ptg(x) = Px(Xt ≥ b). (3.6)

It follows that for m-a.e. x < b, (3.6) holds for any t ∈ Q∩ (0,∞), where Q is the set of all rational numbers. Take a
point x < b such that (3.6) holds for any t ∈Q∩ (0,∞). We have

Px

( ⋃
t∈Q,t>0

{Xt ≥ b}
)

= 0.

It follows that

Px

( ⋂
t∈Q,t>0

{Xt < b}
)

= Px

({ ⋃
t∈Q,t>0

{Xt ≥ b}
}c)

= 1.

Since X is continuous, we may conclude that

Px

(⋂
t

{Xt ≤ b}
)

= 1. (3.7)

As a result,

Px(σy < ∞) = 0 (3.8)

for any y > b. Note that m has full support and thus we may take a sequence xn ↑ b such that (3.8) holds for x = xn.
For any z < xn, it follows from Lemma 3.2(1) that Pz(σy < ∞) = 0 for any y > b. Hence Pz(σy < ∞) = 0 for any
z < b < y. Therefore, from Lemma 3.1(1) and (4), we assert that Px(σb < ∞) = 0 for any x < b.

Now assume that b ∈ �t . Let f = 1{b}. Clearly, the right side of (3.5) equals 0 for any g ∈ B+(R). By the symmetry,
Ptf (x) = 0 for m-a.e. x ∈ R. On the other hand, for any x �= b,

Ptf (x) = Ex

(
f (Xt ); t ≥ σb

) = Px(t ≥ σb).

This implies for m-a.e. x ∈R with x �= b,

Px(σb ≤ n) = 0, ∀n ∈N.

Thus Px(σb < ∞) = 0 for m-a.e. x ∈ R with x �= b. By the similar arguments as above, we can conclude that Pa(σb <

∞) = 0 for any a �= b. �

The following lemma implies that the diffusion X is non-decreasing (resp. non-increasing) in the right (resp. left)
singular interval. However, if X is symmetric, then any point in a right or left singular interval must be a trap.
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Lemma 3.3.

(1) If an open interval (a, b) ⊂ �r (resp. �l), then for any x ∈ (a, b),

Px(Xt ≥ Xs,∀s < t ≤ σb) = 1(
resp. Px(Xt ≤ Xs,∀s < t ≤ σa) = 1

)
.

(2) Under the symmetry, if (a, b) ⊂ �r (resp. �l), then (a, b) ⊂ �t .

Proof. We first prove (1) and only consider the case (a, b) ⊂ �r . Since any point x ∈ (a, b) is right singular, we have

Px(Xt ≥ X0,∀t) = 1

by Lemma 3.1(2). From the Markovian property of X, we can deduce that for fixed s < t ,

Px(Xt < Xs, s < t ≤ σb) = Px

({Xt−s < X0} ◦ θs, t − s ≤ σb ◦ θs, s < σb

)
= Px

(
PXs (Xt−s < X0, t − s ≤ σb); s < σb

)
= 0.

The last equality above follows from the fact that, Px -a.s. on {s < σb}, Xs ∈ (a, b). It is then clear that

Px

( ⋃
s<t≤σb,s,t∈Q

{Xt < Xs}
)

= 0.

Thus

1 = Px

( ⋂
s<t≤σb,s,t∈Q

{Xt ≥ Xs}
)

= Px

( ⋂
s<t≤σb

{Xt ≥ Xs}
)

.

For the second assertion (2), fix x ∈ (a, b) ⊂ �r . Take another point w in (a, b) such that x < w. Mimicking the
proof of (3.7), we deduce that

Px(σw+ < ∞) = 0.

Take a sequence wn ↓ x and we then have

0 = Px

(⋃
n

⋃
t

{Xt > wn}
)

= Px

(⋃
t

{Xt > x}
)

.

Thus

Px(Xt ≤ x,∀t) = 1.

It follows from Lemma 3.1(2) that x ∈ �l and then x ∈ �r ∩ �l = �t . It concludes that (a, b) ⊂ �t . �

3.2.3. A merging theorem
Before proving Theorem 3.1, we need a result to merge a sequence of Dirichlet forms into a new one. Because it holds
in general and may have independent interest, we state it as a theorem.
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Theorem 3.2. Let E := ⋃
n≥1 En with {En : n ≥ 1} disjoint be a measurable space and m a σ -finite measure on it.

Denote the restriction of m to En by mn. Assume that (En,Fn) is a Dirichlet form on L2(En,mn). Then

F :=
{
f ∈ L2(E,m) : f |En ∈Fn,

∑
n≥1

En(f |En, fEn) < ∞
}
,

E(f, g) :=
∑
n≥1

En(f |En, f |En), f, g ∈F
(3.9)

is a Dirichlet form on L2(E,m).

Proof. Let (T n
t ) be the semigroup of (En,Fn) on L2(En,mn). For any f ∈ L2(E,m), t ≥ 0, define

(Ttf )|En(x) :=
∑
n≥1

T n
t (f |En)(x), n ≥ 1. (3.10)

Set f n := f |En for convenience. We assert that (Tt ) is a strongly continuous and symmetric contraction semi-
group on L2(E,m). The semigroup property is clear from those of {(T n

t ) : n ≥ 1}. For the contraction property,
fix f ∈ L2(E,m). The L2-norm of L2(En,mn),L

2(E,m) are denoted by ‖ · ‖En , ‖ · ‖E for short. Note that
‖f ‖2

E = ∑
n≥1 ‖f n‖2

En
. Then we have

‖Ttf ‖E =
∑
n≥1

∥∥T n
t f n

∥∥2
En

≤
∑
n≥1

∥∥f n
∥∥2

En
= ‖f ‖2

E.

To prove strong continuity, we fix f ∈ L2(E,m) and ε > 0, and take an integer n large enough such that∑
k>n ‖f k‖2

Ek
< ε/4. By the strong continuity of {(T k

t ) : 1 ≤ k ≤ n}, we may take tε > 0 such that for any t < tε ,

∥∥T k
t f k − f k

∥∥2
Ek

<
ε

2k
, 1 ≤ k ≤ n.

Then we have for any t < tε ,

‖Ttf − f ‖2
E =

∑
1≤k≤n

∥∥T k
t f k − f k

∥∥2
Ek

+
∑
k>n

∥∥T k
t f k − f k

∥∥2
Ek

<
∑

1≤k≤n

ε

2k
+ 4

∑
k>n

∥∥f k
∥∥2

Ek
< 2ε.

Therefore, (Tt ) corresponds uniquely to a closed form (E ′,F ′) on L2(E,m). Precisely,

F ′ =
{
f ∈ L2(E,m) :↑ lim

t↓0

1

t
(f − Ttf,f )m < ∞

}
,

E ′(f,f ) = lim
t↓0

1

t
(f − Ttf,f )m, f ∈ F ′.

Note that the limit above is an increasing limit as t ↓ 0. On the other hand,

lim
t↓0

1

t
(f − Ttf,f )m = lim

t↓0

∑
n≥1

1

t

(
f n − T n

t f n, f n
)
mn

=
∑
n≥1

lim
t↓0

1

t

(
f n − T n

t f n, f n
)
mn

.

Thus f ∈F ′ if and only if f n ∈Fn and
∑

n≥1 En(f n, f n) < ∞. In other words,(
E ′,F ′) = (E,F).

The Markovian property of (E,F) may be deduced as follows. Let ϕ be a normal contraction on R and f ∈ F . Note
that (ϕ ◦ f )|En = ϕ(f |En) ∈Fn and

En
(
ϕ(f |En),ϕ(f |En)

) ≤ En(f |En, f |En)
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since (En,Fn) satisfies the Markovian property. Hence ϕ ◦ f ∈ F and E(ϕ ◦ f,ϕ ◦ f ) ≤ E(f,f ). That completes the
proof. �

Note that the semigroup of (E,F) in Theorem 3.2 is characterized by (3.10). From this fact, we have the following
corollary.

Corollary 3.2. Let (E,F) be a Dirichlet form on L2(E,m) associated with a symmetric Markov process X. Suppose
that {En : n ≥ 1} is a sequence of disjoint invariant sets of X and

E =
⋃
n≥1

En m-a.e.

Denote (En,Fn) := (EEn,FEn). Then (E,F) can be expressed as (3.9).

3.2.4. Proof of necessity
In this part, we prove the necessity of Theorem 3.1. Note that m stands for the Lebesgue measure on R in this part.
Let (E,F) be a regular Dirichlet extension of ( 1

2 D,H 1(R)) on L2(R) associated with a Hunt process X. It follows
from Theorem 2.1 and Proposition 2.2(2) that (E,F) is strongly local and recurrent. Without loss of generality, by [7,
Theorem 4.5.1 (3)], we may assume that X is a recurrent (hence conservative, see [7, Lemma 1.6.5]) diffusion process
on R.

We use the same notations as Section 3.2.1 to denote the classes of points for X. Let

G := �2

be the set of regular points and which is open by Lemma 3.1(6). Thus G may be written as a union of countable
disjoint open intervals:

G =
⋃
n≥1

(an, bn). (3.11)

We assert F := Gc is nowhere dense, and the shunt point must be an endpoint of some interval in (3.11).

Lemma 3.4. The singular set F = �r ∪ �l is nowhere dense. Furthermore,

F \ {an, bn : n ≥ 1} ⊂ �t .

Proof. We first prove �r has empty interior. Assume that (a, b) ⊂ �r , it follows from Lemma 3.3 that
(a, b) ⊂ �t . The part Dirichlet forms of ( 1

2 D,H 1(R)) and (E,F) on (a, b) are denoted by ( 1
2 D(a,b),H

1
0 ((a, b))) and

(E(a,b),F(a,b)). Clearly, ( 1
2 D(a,b),H

1
0 ((a, b))) is still a regular Dirichlet subspace of (E(a,b),F(a,b)) by Proposition 2.4.

However, since X stays at the starting point in (a, b) forever (cf. Lemma 3.1(2)), it follows that E(a,b)(f, f ) = 0 for
any f ∈ C∞

c ((a, b)) ⊂ H 1
0 ((a, b)) ⊂F(a,b), whereas

1

2
D(a,b)(f, f ) = 1

2

∫ b

a

f ′(x)2 dx.

This leads to a contradiction. Thus �r has empty interior. Similarly, �l also has empty interior.
Suppose that (a, b) ⊂ F = �r ∪�l . We also assert that (a, b) ⊂ �t , which leads to the same contradiction. In fact,

it is enough to check that (a, b) ∩ �pr = ∅. Suppose that x ∈ �pr ∩ (a, b). Since �r has empty interior, we have
for any n large enough, (x, x + 1/n) must contain a point in �pl . Then we can take a sequence xn ↓ x in �pl . By
Lemma 3.1(5), x ∈ �l , which contradicts to x ∈ �pr . Therefore, any point in (a, b) must be a trap.

For the second assertion, fix any point x ∈ F \{an, bn : n ≥ 1}. Suppose that x ∈ �pr . Since F is nowhere dense and
x is not an endpoint of some (an, bn), there exists a subsequence of intervals (ank

, bnk
) in (3.11) such that ank

, bnk
↓

x as k ↑ ∞. Note that the left singular set �l is closed from the right and x ∈ �pr . Hence for k large enough,
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ank
, bnk

∈ �pr . By Lemma 3.1(4), there exists a point y > x such that Px(σy < ∞) > 0. Take k large enough with
x < ank

< y and ank
∈ �pr . Particularly,

Px(σank
< ∞) ≥ Px(σy < ∞) > 0.

However, Lemma 3.2 implies Px(σank
< ∞) = 0 since ank

∈ �pr . This leads to a contradiction, and we conclude that
x /∈ �pr . The same reasoning shows x /∈ �pl . Hence x ∈ �t . That completes the proof. �

Now we deal with X on an interval (an, bn) of (3.11) with its endpoints. For convenience, we get rid of the subscript
n and write (an, bn) as (a, b). Since (a, b) is a regular interval, it follows from Lemma 3.1(7) that

Px(σy < ∞)Py(σx < ∞) > 0, ∀x, y ∈ (a, b).

Thus Px(σb < ∞) = 0 (resp. Px(σa < ∞) = 0) for some x ∈ (a, b) if and only if it holds for any x ∈ (a, b).
Consider the right endpoint b. If b = ∞, take the part process of X on (a,∞). It is an irreducible minimal diffusion

process on (a,∞) (cf. [1, Example 3.5.7]). Denote its scale function by t. The Brownian motion on (a,∞) (a is
the absorbing boundary) is its regular Dirichlet subspace. Thus from [4, Theorem 4.1], we know that t(∞) = ∞.
Particularly, ∞ is not approachable and Px(Xt < ∞,∀t) = 1 for any x ∈ (a,∞). Hereafter assume b < ∞. It has the
following cases.

(1) b ∈ �r . By Lemma 3.2, for any x < b, Px(σb < ∞) = 0.
(2) b ∈ �pl . There are two cases.

(2i) For some (equivalently, all) x ∈ (a, b), Px(σb < ∞) > 0. By Lemma 3.1(4), we also have Pb(σx < ∞) > 0
for any x ∈ (a, b). Furthermore, Px(Xt ≤ b,∀t) = 1 for any x ∈ (a, b] by Lemma 3.1(2, 3).

(2ii) For some (equivalently, all) x ∈ (a, b), Px(σb < ∞) = 0.

We can also classify another endpoint a as above. When b (or a) is in the case (2i), we add b (or a) to (a, b) and
attain a new interval 〈a, b〉. Clearly, 〈a, b〉 is an invariant set of X in the sense that

Px

(
Xt ∈ 〈a, b〉,∀t

) = 1, ∀x ∈ 〈a, b〉.

Moreover, X〈a,b〉 is an irreducible diffusion process with no killing inside on 〈a, b〉 in the sense that

Px(σy < ∞) = 0, x, y ∈ 〈a, b〉.
Then X〈a,b〉 is characterized by a scale function t and the speed measure m|〈a,b〉. Note that b ∈ 〈a, b〉 if and only if
Px(σb < ∞) > 0. In other words, b is approachable in finite time. From [1, (3.5.13)], we can deduce that b ∈ 〈a, b〉 if
and only if t(b) < ∞. Similarly we have a ∈ 〈a, b〉 if and only if t(a) > −∞. On the other hand, the part process of
X〈a,b〉 on (a, b) is a minimal diffusion with the scale function t. Clearly, ( 1

2 D(a,b),H
1
0 ((a, b))) is its regular Dirichlet

subspace. By using [4, Theorem 4.1] again, we have

dx 
 dt,
dx

dt
= 0 or 1, dt-a.e.

Therefore, after adjusting the value of t up to a constant, we can conclude that t ∈ T0∞(〈a, b〉). The associated
Dirichlet form of X〈a,b〉 is expressed as (3.4) by [4, Theorem 3.1].

When we treat any interval (an, bn) in (3.11), we obtain an invariant set In := 〈an, bn〉 of X and X〈an,bn〉 is an
irreducible diffusion process on In with a unique scale function tn ∈ T0∞(〈an, bn〉) and the speed measure m|〈an,bn〉.
Finally any two intervals are disjoint. In fact suppose two intervals 〈an, bn〉, 〈am,bm〉 (bn ≤ am) have common point.
Then am = bn ∈ 〈an, bn〉 ∩ 〈am,bm〉. However bn ∈ 〈an, bn〉 implies bn ∈ �pl and am ∈ 〈am,bm〉 implies am ∈ �pr ,
which contradicts the fact that �pr ∩ �pl =∅.

Note that any x ∈ F \ {an, bn} is a trap by Lemma 3.4. This implies Ttf (x) = f (x) for any f ∈ L2(R) and m-a.e.
x ∈ F \ {an, bn}. Thus from Theorem 3.2 and Corollary 3.2, we can deduce that (E,F) is expressed as (3.3).

Finally, we assert m(F) = 0. Then the proof of the necessity of Theorem 3.1 is complete.
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Lemma 3.5. m(F) = 0.

Proof. Note that for an absolutely continuous function f ∈ Fn,

En(f,f ) = 1

2

∫ bn

an

(
df

dtn

)2

dtn = 1

2

∫ bn

an

(
df

dx

)2(
dx

dtn

)2

dtn = 1

2

∫ bn

an

(
df

dx

)2

dx. (3.12)

Since C∞
c (R) ⊂ H 1(R) ⊂F , we have for any f ∈ C∞

c (R),

E(f,f ) = 1

2

∑
n≥1

∫ bn

an

(
df

dx

)2

dx = 1

2

∫
G

(
df

dx

)2

dx.

On the other hand,

E(f,f ) = 1

2
D(f,f ) = 1

2

∫
R

(
df

dx

)2

dx.

It follows that

∫
F

(
df

dx

)2

dx = 0, ∀f ∈ C∞
c (R).

This implies m(F) = 0. �

3.2.5. Proof of sufficiency
In this part, we shall prove the sufficiency of Theorem 3.1. Note that (E,F) given by (3.3), with invariant intervals
{In : n ≥ 1} and scale function tn ∈ T0∞(In), is a Dirichlet form on L2(R) by Theorem 3.2. For convenience, an
endpoint of In which is included in In is called a closed endpoint, and otherwise an open endpoint. For any function
f ∈ C∞

c (R), it follows from tn ∈ T0∞(In) and (3.12) that f |In 
 tn and

En(f |In , f |In) = 1

2

∫
In

f ′(x)2 dx.

Thus from m(F) = 0, we can deduce that

E(f,f ) = 1

2

∑
n≥1

∫
In

f ′(x)2 dx = 1

2

∫
R

f ′(x)2 dx = 1

2
D(f,f ).

This implies

H 1(R) ⊂F, E(f,f ) = 1

2
D(f,f ), f ∈ H 1(R).

Finally, we need only to prove the Dirichlet form (E,F) given by (3.3) is regular on L2(R).

Lemma 3.6. The Dirichlet form (E,F) given by (3.3) is regular on L2(R).

Proof. Clearly, C∞
c (R) ⊂ F ∩ Cc(R). So F ∩ Cc(R) is dense in Cc(R) with the uniform norm. It suffices to prove

F ∩ Cc(R) is dense in F with the norm ‖ · ‖E1 .
We first note that (En,Fn) is regular on L2(In). Set Cn := Fn ∩ Cc(In). Define the following class

C := {
f ∈ F : f n ∈ Cn

}
,
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where f n := f |In . Then C is dense in F with the norm ‖ · ‖E1 . In fact, fix f ∈F and ε > 0. For each n, take a function
gn ∈ Cn such that ‖f n − gn‖2

En
1

< ε/2n. Let g be the function: g|In = gn, g = 0 outside
⋃

n≥1 In. Clearly g ∈ F and

hence g ∈ C. Furthermore,

E1(f − g,f − g) =
∑
n≥1

En
1

(
f n − gn,f

n − gn

)
< ε.

Therefore, we need only to prove F ∩ Cc(R) is dense in C with the norm ‖ · ‖E1 .
Fix f ∈ C and a constant ε > 0. There exists an integer n large enough such that

∑
k>n Ek

1 (f k, f k) < ε. Let
g := f · 1⋃n

k=1〈ak,bk〉. Then g ∈ C ⊂ F and

E1(f − g,f − g) =
∑
k>n

Ek
1

(
f k, f k

)
< ε.

We need now to find a function in F ∩ Cc(R) which is E1-close enough to g.
Note that g is continuous on 〈ak, bk〉. The discontinuous points of g are those closed endpoints of {Ik : 1 ≤ k ≤ n}.

Particularly, the discontinuous points of g are finite. Take such a discontinuous point c of g. Without loss of generality,
assume that c is the right endpoint of some interval 〈ak, bk〉 with bk ∈ 〈ak, bk〉. Set h := g(c). There are two different
situations.

(1) For any β > 0, there exists an open endpoint of {In : n ≥ 1} in [c, c+β), i.e., c is a limit point of open endpoints
of {In : n ≥ 1}.

(1a) Let us start from a simple case where c is an open endpoint of some Ik′ , which is essentially the same as the
example given in introduction.

In this case c = ak′ /∈ 〈ak′ , bk′ 〉 and tk′(c) = −∞. Since gk′ := g|(ak′ ,bk′ 〉 ∈ Cc((ak′ , bk′ 〉), we can take d ∈ (ak′ , bk′)
such that g = 0 on (c, d]. We shall construct a continuous function ϕ = ϕε

c on [c, d] (set ϕ(x) = 0 if x /∈ [c, d]) such
that

ϕ(c) = h, ϕ(d) = 0, ϕ ∈F , E1(ϕ,ϕ) <
ε

2n
. (3.13)

Obviously g + ϕ will be continuous at c and its E1-distance to g is small.
Take a constant δ > c such that h2 ·(δ−c) < ε/4n. Let δ̃ := tk′(δ) > −∞. Take another constant δ̃′ < δ̃−(8h2n)/ε

and let δ′ := t−1
k′ (δ̃′). Clearly there exists a C1-function φ on [δ̃′, δ̃] such that

0 ≤ φ ≤ h, φ
(
δ̃′) = h, φ(δ̃) = 0,

∣∣φ′∣∣ ≤ 2h

δ̃ − δ̃′ .

Define

ϕ(x) :=

⎧⎪⎨
⎪⎩

h, x ∈ [c, δ′],
φ(tk′(x)), x ∈ [δ′, δ],
0, x > δ.

Clearly, ϕ is continuous on [c, d] and ϕ ∈F . Furthermore,

E1(ϕ,ϕ) = 1

2

∫ δ

δ′

(
dϕ

dtk′

)2

dtk′ +
∫ δ

c

ϕc(x)2 dx

= 1

2

∫ δ̃

δ̃′

(
φ′(x)

)2
dx +

∫ δ

c

ϕ(x)2 dx

≤ 1

2

4h2

δ̃ − δ̃′ + h2 · (δ − c)

<
ε

2n
.
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Fig. 1. Compensate function ϕ.

Therefore, ϕ satisfies (3.13). See Figure 1.
(1b) c is a limit point of open endpoints of {In : n ≥ 1}.
We see that the main reason that ϕ above can be constructed is that there is a non-closed interval Ik close to c,

because in this case it follows from g|Ik
∈ Cc(Ik) that g vanishes on an interval contained in Ik . More precisely we

can take a non-closed interval 〈aq, bq〉, where bq is an open endpoint, such that

bq − c < ε/
(
4nh2)

and g = 0 on (c, bq ]. Similarly to the first case, we can also construct a continuous function ϕ = ϕε
c on [c, bq ] (ϕ := 0

outside [c, bq ]) such that

ϕ(c) = h, ϕ(bq) = 0, ϕ ∈F, E1(ϕ,ϕ) <
ε

2n
.

(2) For some β > 0, the endpoints of {In : n ≥ 1} located between c and c + β are all closed.
Let β be small enough so that g = 0 on (c, c + β] and

β <
ε

2nh2
.

Denote the intervals of {〈ak, bk〉 : k > n} in (c, c + β) by {[aqj
, bqj

] : j ≥ 1}. Note that they are disjoint and dense in
[c, c + β]. Hence

⋃
j [aqj

, bqj
] is a Cantor-type set. We may construct a Cantor-type function φ on [c, c + β] (for its

existence, see Remark 3.4), such that φ is decreasing and continuous, φ(c) = 1, φ(c + β) = 0 and φ is a constant on
each interval [aqj

, bqj
]. Define ϕ = ϕε

c (x) := h · φ(x) for x ∈ [c, c + β] and vanishes elsewhere. Clearly, ϕ ∈ F and

E1(ϕ,ϕ) =
∫

ϕ(x)2 dx < ε/(2n).

Thus ϕ satisfies (3.13) if d is replaced by c + β .

From the above discussions, we can always construct a compensate function ϕε
c which depends on discontinuous

point c of g and ε. The construction above may guarantee that for any c �= c′, ϕε
c and ϕε

c′ have disjoint supports. Define

fε := g +
∑

c

ϕε
c ,

where c in the sum takes all possible discontinuous points of g. The number of the terms in this sum is less than 2n.
One may easily check that fε ∈F ∩ Cc(R). Therefore

E1(fε − g,fε − g) = E1

(∑
c

ϕε
c ,

∑
c

ϕε
c

)
=

∑
c

E1
(
ϕε

c , ϕ
ε
c

) ≤ 2n · ε

2n
= ε.

That completes the proof. �

Remark 3.4. In this remark, we give a Cantor-type function φ on [c, c +β] which is used in the proof of Lemma 3.6,
though it may be found in some textbook. Without loss of generality, assume that [c, c + β] = [0,1], {In = [an, bn] :
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n ≥ 1} are disjoint closed intervals in (0,1) and

m

(
[0,1]

∖ ⋃
n≥1

In

)
= 0.

The continuous function φ on [0,1] is desired to satisfy φ(0) = 1, φ(1) = 0 and φ is a constant on each In.
Rearrange the positive integers as the following way:

K1 := {k1 := 1},
K2 := {

k2,1 := min{n : an < ak1}, k2,2 := min{n : an > ak1}
}
,

Assume that the sets K1, . . . ,Km−1 have been defined. Then

(0,1) \
⋃{

In : n ∈
m−1⋃
j=1

Kj

}

is separated into 2m−1 disjoint and connected open intervals. Let km,i be the smallest integer n of In in the ith interval
from left to right for 1 ≤ i ≤ 2m−1. Define inductively Km = {km,i : 1 ≤ i ≤ 2m−1}. Clearly

akm,1 < akm,2 < · · · < ak
m,2m−1 ,

and N= ⋃
m≥1 Km. Define the function φ as follows: φ(0) := 1, φ(1) := 0 and for any m ≥ 1,1 ≤ j ≤ 2m−1,

φ(x) := 2m−1 − j

2m−1
, ∀x ∈ Ikm,j

.

One may prove that φ can be extended to a decreasing and continuous function on [0,1] similar to the standard Cantor
function on [0,1].

3.3. More examples of extension

In this section, we give several examples for the regular Dirichlet extensions of one-dimensional Brownian motion.
Recall that the regular Dirichlet extension (E,F) is characterized by {In : n ≥ 1} and {tn ∈ T0∞(In) : n ≥ 1} in
Theorem 3.1. It is evident that the extension (E,F) is same as Brownian motion if and only if only invariant interval
is R and the scale function t(x) = x.

Example 3.1. Let I1 = R and t1(x) = x + c(x), where c(x) is the standard Cantor function on [0,1] and we set
c(x) := 0 for x ≤ 0 and c(x) := 1 for x ≥ 1. Then the corresponding regular Dirichlet extension is irreducible.

Example 3.2. Let I1 := (−∞,0) and I2 := (0,∞). Take t1 ∈ T0∞(I1) and t2 ∈ T0∞(I2). Then I1 and I2 are two
invariant sets of X. The single point set {0} is an m-polar set relative to X. Formally, we may assume 0 is a trap of X,
i.e. P0(Xt = 0,∀t) = 1.

Example 3.3. Let I1 := (−∞,−1], I2 := [1,∞), I2k+1 := (− 1
k
,− 1

k+1 ] and I2k+2 := [ 1
k+1 , 1

k
) for any k ≥ 1. Take

tn ∈ T0∞(In) for each n. Then {0} is an m-polar set relative to X and any other single point set is not m-polar.

Example 3.4. Let I1 := (−∞,0], I2 = (1,∞), and In := ( 1
n−1 , 1

n−2 ) for any n ≥ 3. Take tn ∈ T0∞(In) for each n.

Then { 1
k

: k ≥ 1} is an m-polar set relative to X.
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Example 3.5. Let K be the standard Cantor set in [0,1]. Set U := Kc and write U as a union of disjoint open
intervals:

U =
⋃
n≥1

(an, bn),

where (a1, b1) = (−∞,0), (a2, b2) = (1,∞). Let I1 := (−∞,0], I2 := [1,∞), In := [an, bn] for any n ≥ 3. For each
n, let tn(x) = x on In. Then the associated diffusion process X of this regular Dirichlet extension is a reflected
Brownian motion on each interval In. Moreover,

K \ {an, bn : n ≥ 1}

is m-polar.

4. Structures of regular Dirichlet extensions: Orthogonal complements and darning processes

In [14], the structures of regular Dirichlet subspaces for one-dimensional Brownian motion were investigated by
using the trace method and a darning transform. As we have seen, ‘trace method’ could efficiently trace the different
behavior of regular subspace from Brownian motion. In this section, we shall apply the same approach to investigate
the behavior of regular Dirichlet extensions of one-dimensional Brownian motion. The Dirichlet form (E,F) always
stands for a proper regular Dirichlet extension of ( 1

2 D,H 1(R)) on L2(R), which is characterized by Theorem 3.1.

4.1. Orthogonal complement of Brownian motion

Let us characterize the orthogonal complement of one-dimensional Brownian motion in extension space. We need
first to formulate extended Dirichlet space. The extended Dirichlet space of ( 1

2 D,H 1(R)) is

H 1
e (R) := {

f : f is absolutely continuous and f ′ ∈ L2(R)
}
.

The extended Dirichlet space of (En,Fn) given by (3.4) is expressed as (cf. [1, Theorem 2.2.11])

Fn
e =

{
f on In : f 
 tn,

∫
In

(
df

dtn

)2

dtn < ∞
}
. (4.1)

We formulate the extended Dirichlet space of the regular Dirichlet extension (3.3) in the following theorem.

Theorem 4.1. The extended Dirichlet space of (E,F) given by (3.3) is

Fe =
{
f : |f | < ∞ m-a.e. on R, f |In ∈Fn

e ,
∑
n≥1

En(f |In , f |In) < ∞
}
. (4.2)

Proof. Take an arbitrary f ∈ Fe. Clearly, |f | < ∞ m-a.e. on R. By the definition of extended Dirichlet space (cf. [1,
Definition 1.1.4]), there exists an E -Cauchy sequence {fl} ⊂ F such that liml→∞ fl = f m-a.e. on R. Particularly,
for each n, {fl |In} ⊂Fn is En-Cauchy and liml→∞ fl |In = f |In m|In -a.e. on In. This implies f |In ∈Fn

e and

En(f |In , f |In) = lim
l→∞En(fl |In , fl |In).

On the other hand, since {fl} is E -Cauchy, we may take an integer M large enough such that for any l > M ,

E(fM − fl, fM − fl) < 1.
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Then we have∑
n≥1

En(f |In , f |In) =
∑
n≥1

lim
l→∞En(fl |In , fl |In)

≤ lim inf
l→∞

∑
n≥1

En(fl |In , fl |In)

= lim inf
l→∞ E(fl, fl)

≤ lim inf
l→∞ 2

(
E(fl − fM,fl − fM) + E(fM,fM)

)
≤ 2

(
1 + E(fM,fM)

)
< ∞.

This indicates f is in the right side of (4.2).
On the contrary, let f be a function in the right side of (4.2). Since f |In ∈ Fn

e , we may take an En-Cauchy sequence
{gn

l : l ≥ 1} ⊂Fn such that gn
l → f |In m-a.e. as l → ∞. Particularly,

lim
l→∞En

(
gn

l − f |In , g
n
l − f |In

) = 0.

Thus for each positive integer k, there are two integers lnk and Nk such that

En
(
gn

lnk
− f |In , g

n
lnk

− f |In

)
<

1

k
· 1

2n
,

∑
n>Nk

En(f |In , f |In) <
1

k
.

Without loss of generality, we may assume lnk , Nk ↑ ∞ as k → ∞. Define a function hk m-a.e. on R: hk|In := gn
lnk

for any 1 ≤ n ≤ Nk and hk := 0 elsewhere. Clearly, hk ∈ L2(R) and hk converges to f m-a.e. as k → ∞. Note that
gn

lnk
∈Fn and

Nk∑
n=1

En
(
gn

lnk
, gn

lnk

) ≤ 2
Nk∑
n=1

(
En

(
gn

lnk
− f |In , g

n
lnk

− f |In

) + En(f |In , f |In)
)

< 2
∑
n≥1

1

k
· 1

2n
+ 2

∑
n≥1

En(f |In , f |In)

< ∞.

This implies hk ∈ F . Finally, we show that {hk : k ≥ 1} is E -Cauchy in F . In fact, for any ε > 0, take an integer K

satisfying 8/K < ε. Then for any k, k′ > K , we have

E(hk − hk′ , hk − hk′)

≤ 2
(
E(hk − f,hk − f ) + E(hk′ − f,hk′ − f )

)

≤ 2

(
Nk∑
n=1

En
(
gn

lnk
− f |In , g

n
lnk

− f |In

) +
∑

n>Nk

En(f |In , f |In)

)

+ 2

( Nk′∑
n=1

En
(
gn

ln
k′ − f |In , g

n
ln
k′ − f |In

) +
∑

n>Nk′
En(f |In , f |In)

)
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≤ 4
∑
n≥1

1

K
· 1

2n
+ 4

K

< ε.

That completes the proof. �

The purpose of the next part is to formulate the orthogonal complement of H 1
e (R) in Fe in (E,F). For each n ≥ 1,

denote

Un :=
{
x ∈ In : dx

dtn

(x) = 1

}
,

Wn := In \ Un.

(4.3)

Then Un, Wn are defined in the sense of dtn-a.e. Since the natural scale is strictly increasing and continuous, it
follows that Un is measurable dense in In in the sense that

dtn

(
Un ∩ (c, d)

)
> 0, ∀(c, d) ⊂ In.

Particularly,

m|In = 1Un dtn, dtn(Un) = m(Un) = |bn − an|, m(Wn) = 0.

Define

G := {
f ∈Fe : E(f, g) = 0,∀g ∈ H 1

e (R)
}
. (4.4)

We write Fe = H 1
e (R) ⊕ G or G =Fe � H 1

e (R).

Theorem 4.2. The orthogonal complement G of H 1
e (R) in Fe is expressed as

G =
{
f ∈ Fe : df |In

dtn

= 0, dtn-a.e. on Un for any n ≥ 1

}
. (4.5)

Furthermore, any f ∈ Fe can be decomposed into

f = f1 + f2, f1 ∈ H 1
e (R), f2 ∈ G. (4.6)

This decomposition is unique up to a constant. In other words, H 1
e (R) ∩ G only contains the constant functions.

Proof. We first prove the expression (4.5) of G. Fix a function f in the right side of (4.5) and take another function g

in H 1
e (R). We have

E(f, g) =
∑
n≥1

En(f |In , g|In) = 1

2

∑
n≥1

∫
In

df |In

dtn

(x)g′(x)1Un(x) dtn(x) = 0.

It follows that f ∈ G. On the contrary, take an arbitrary function f ∈ G. Note that In = 〈an, bn〉. Any function in
C∞

c ((an, bn)) is treated as a function on R and clearly C∞
c ((an, bn)) ⊂ H 1

e (R). From (4.4), we have

E(f, g) = 0, ∀g ∈ C∞
c

(
(an, bn)

)
.

It follows that∫ bn

an

(
df |In

dtn

(x)1Un(x)

)
g′(x) dx = 0, ∀g ∈ C∞

c

(
(an, bn)

)
.
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Fig. 2. The function h.

This implies that df |In/dtn · 1Un is a constant a.e. on (an, bn), or equivalently df |In/dtn is constant dtn-a.e. on Un.
Denote this constant by cn. Take two integers m, n so that an < am. Define a function h on R:

h(x) := (x − an)1In(x) + |In| · 1[bn,am](x) +
[
|In| − |In|

|Im| · (x − am)

]
· 1[am,bm](x)

(see Figure 2). Clearly, h ∈ H 1
e (R). Hence we have

0 = E(f,h)

= 1

2

(∫
In

df |In

dtn

(x)h′(x)1Un(x) dtn(x) +
∫

Im

df |Im

dtm

(x)h′(x)1Um(x) dtm(x)

)

= 1

2

(
cn

∫
In

h′(x) dx + cm

∫
Im

h′(x) dx

)

= bn − an

2
· (cn − cm).

It follows that cn = c for some constant c and any n ≥ 1. On the other hand, the fact f ∈Fe implies

E(f,f ) < ∞.

However,

E(f,f ) =
∑
n≥1

En(f |In , f |In) ≥ c2

2

∑
n≥1

∫
In

1Un(x) dtn(x) = c2

2
m(R).

Therefore, c = 0 and f is in the right side of (4.5).
Next, we prove the decomposition (4.6). Fix a function f ∈Fe. We decompose f |In for any n ≥ 1 as

f |In = gn
1 + gn

2 ,

where gn
1 ∈ H 1

e (R) is supported on In and gn
1 (an) = 0 (resp. gn

1 (bn) = 0) if an > −∞ (resp. bn < ∞), dgn
2/dtn is a

constant dtn-a.e. on Un. In fact, let en be a fixed point in (an, bn). If (an, bn) = (−∞,∞), set

gn
1 (x) :=

∫ x

en

df

dtn

(x)1Un(x) dtn(x),

gn
2 (x) := f |In(x) − gn

1 (x) =
∫ x

en

df

dtn

(x)1Wn(x) dtn(x) + f (en)
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for any x ∈ In. If an is finite but bn = ∞ (the case an = −∞ and bn < ∞ is similar), set

gn
1 (x) :=

∫ x

en

df

dtn

(x)1Un(x) dtn(x) + C,

gn
2 (x) := f |In(x) − gn

1 (x) =
∫ x

en

df

dtn

(x)1Wn(x) dtn(x) + f (en) − C

for any x ∈ In, where

C :=
∫ en

an

df

dtn

(x)1Un(x) dtn(x).

Note that

|C| ≤
(∫ en

an

(
df

dtn

(x)

)2

dtn(x)

)1/2

· |en − an|1/2 < ∞

and gn
1 (an) = 0. When In is not finite, let Cn

1 := 0. If an and bn are both finite, then

M :=
∫

In

df

dtn

(x)1Un(x) dtn(x)

is finite. Set Cn
1 := M/(bn − an) and

Cn
2 :=

∫ en

an

(
df

dtn

(x) − Cn
1

)
1Un(x) dtn(x).

Clearly, Cn
2 is also finite. Define

gn
1 (x) :=

∫ x

en

(
df

dtn

(y) − Cn
1

)
1Un(y) dtn(y) + Cn

2 ,

gn
2 (x) := f |In(x) − gn

1 (x).

It is easily seen that limx↓an gn
1 (x) = limx↑bn gn

1 (x) = 0. For all three cases above, we may easily deduce that gn
1 ∈

H 1
e (R) and dgn

2/dtn = Cn
1 dtn-a.e. on Un. Then we define a function f0 on R as follows: f0(x) := gn

1 (x) for any
x ∈ In and n ≥ 1 and f0(x) := 0 elsewhere. It follows that f0 ∈ H 1

e (R). Next define h|In := Cn
1 for any n ≥ 1. Since

∫
R

h2(x) dx =
∑
n≥1

(
M

bn − an

)2

· (bn − an) ≤
∑
n≥1

∫
In

(
df

dtn

)2

dtn < ∞,

we conclude that h ∈ L2(R) is locally integrable. Let

f1(x) := f0(x) +
∫ x

0
h(y)dy, x ∈R,

f2 := f − f1.

Then we have f1 ∈ H 1
e (R) and thus f2 ∈ Fe. On the other hand,

df2|In

dtn

= df |In

dtn

− df0|In

dtn

− Cn
1 = dgn

2

dtn

− Cn
1 = 0,

dtn-a.e. on Un. Hence f2 ∈ G by (4.5).
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Finally, assume that f ∈ H 1
e (R) ∩ G. It follows from (4.4) that

0 = E(f,f ) =
∑
n≥1

En(f |In , f |In).

This implies that En(f |In , f |In) = 0. Since f |In ∈ Fn
e and (En,Fn) is irreducible, we conclude from [1, Theo-

rem 5.2.16] that f |In is a constant on In. Then we have f ′ = 0 on
⋃

n≥1 In and hence m-a.e. on R. Therefore, f

is a constant on R. That completes the proof. �

Remark 4.1. One may feel that the decomposition (4.6) is obvious by applying the orthogonal decomposition the-
orem in Hilbert space. However, though the terminology ‘orthogonal complement’ is used here, we should notice
that (E,Fe) is not a Hilbert space. For f ∈ Fe with E(f,f ) = 0, f may not be necessarily a constant. Hence the
decomposition (4.6) can not be deduced simply from the orthogonal decomposition of Hilbert space.

Example 4.1. In this example, let us consider the regular Dirichlet extension (E,F) stated in Example 3.5. Note that
the associated diffusion process X is a reflected Brownian motion on each interval In and Un = In. Then the extended
Dirichlet space of (E,F) is expressed as

Fe =
{
f : f is absolutely continuous on each interval In and

∑
n≥1

∫
In

f ′(x)2 dx < ∞
}
.

Moreover,

G =Fe � H 1
e (R) = {f : f is a constant on each interval In}.

The orthogonal complement G contains continuous functions as well as discontinuous functions. For example, the
Cantor-type function introduced in Remark 3.4 belongs to G.

4.2. Darning processes

Though the orthogonal complement is not a Dirichlet space, it is in wide sense. We shall give its regular representation
in this section so that its structure is shown clearly. Recall the definitions of Un and Wn in (4.3). From now on, we
impose the following assumptions on Un:

(H1) Un has (and is taken as) a dtn-a.e. open version;
(H2) for any x ∈ Wn ∩ (an, bn) and ε > 0, dtn((x − ε, x + ε) ∩ Wn) > 0.

The first assumption is not always right and the second one is not essential as we remarked in [14, Section 1]. In fact,
if (H1) is satisfied, we can always find an open dtn-version of Un that satisfies (H2), see also [14, Section 1]. Write

Un =
⋃
m≥1

(
an
m,bn

m

)
(4.7)

as a union of disjoint open intervals and set

U :=
⋃
n≥1

Un =
⋃
n≥1

⋃
m≥1

(
an
m,bn

m

)
,

K := Uc.

Remark 4.2. We need to give some explanation for the structures of Un and K . Now we only consider the right
endpoint bn of In (the case of the left endpoint an is similar). We first note that bn /∈ Un if bn ∈ In, since Un is
assumed to be open in R. If bn ∈ In, then it may happen that bn = bn

m for some integer m in (4.7). For instance, in
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Example 3.5, we have Un = ◦
In = (an, bn). If bn /∈ In and bn < ∞, then Wn is not trivial and dtn(Wn) = ∞. This

follows from tn(bn) = ∞ and dtn(Un ∩ (en, bn)) = m((en, bn)) < ∞. Particularly, for any ε > 0,

Wn ∩ (bn − ε, bn) �=∅.

In other words, it will not happen that bn = bn
m for some integer m in (4.7). If bn = ∞, then Wn may be trivial as in

Example 3.5, i.e. W2 = {1}. Also possibly as in [14, Remark 3.2], Wn is not trivial in the sense that for any L > an,

Wn ∩ (L,∞) �=∅.

Finally we note that

K =
(⋃

n≥1

Wn

)
∪

(⋃
n≥1

In

)c

,

where (
⋃

n≥1 In)
c is an m-polar set relative to X by Theorem 3.1. Since m(Wn) = 0 and m((

⋃
n≥1 In)

c) = 0, we
obtain m(K) = 0.

The darning method introduced in [14, Section 3.2] may also be applied to investigate the behavior of (E,G), where
G is the orthogonal complement (4.5) of H 1

e (R) in Fe. Let

Gn := G|In =
{
f ∈Fn

e : df

dtn

= 0, dtn-a.e. on Un

}
,

En(f,f ) = EIn(f, f ) = 1

2

∫
In

(
df

dtn

)2

dtn, f ∈ Gn,

where Fn
e is given by (4.1). Further denote

Gn
0 := Gn ∩ L2(In) =

{
f ∈Fn : df

dtn

= 0, dtn-a.e. on Un

}
.

Note that Un is open and expressed as (4.7). Thus the function f ∈ Gn is a constant on [an
m,bn

m] for any integer
m ≥ 1. We need to exclude the case dtn(Wn) = 0, which gives us a trivial darning process. Thus we would make the
following assumption in this section:

(H3) dtn(Wn) > 0.

Define r−
n := inf{x : x ∈ Wn}, r+

n := sup{x : x ∈ Wn} and

Jn := 〈
r−
n , r+

n

〉
,

where r−
n ∈ Jn (resp. r+

n ∈ Jn) if and only if an ∈ In (resp. bn ∈ In). Note that if bn (resp. an) is finite, then r+
n = bn

(resp. r−
n = an) by Remark 4.2. If bn = ∞ (resp. an = −∞), then r+

n (resp. r−
n ) may be finite and meanwhile f = 0

on [r+
n ,∞) (resp. (−∞, r−

n ]) for any f ∈ Gn
0 . Thus (En,Gn

0 ) on L2(In) can be identified with the one on L2(Jn). Then
we have the following lemma. The proof is similar to [14, Lemma 3.2] and we omit it.

Lemma 4.1. The quadratic form (En,Gn
0 ) is a Dirichlet form on L2(Jn) in the wide sense, i.e. it satisfies all conditions

of Dirichlet form except for the denseness of Gn
0 in L2(Jn).

As stated in [14, Section 3.2], (Jn,m|Jn,Gn
0 ,En) is a D-space that named by Fukushima in [5]. We introduced the

darning method to find the regular representations of the D-spaces we explored in [14]. In what follows, we shall
describe the road map to attain the regular representation of (Jn,m|Jn,Gn

0 ,En) via the darning method, but omit most
details of the proof, since it is indeed similar to [14].
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Recall that en is a fixed point in (an, bn). We introduce the following transform on Jn that collapses each open
component (an

m, bn
m) with its endpoints of Un into a new point:

jn(x) :=
∫ x

en

1Wn(y) dtn(y), x ∈ Jn.

If an ∈ In (resp. bn ∈ In), then r−
n = an and r−∗

n := jn(r
−
n ) > −∞ (resp. r+

n = bn and r+∗
n := jn(r

+
n ) < ∞). If an /∈ In

and an > −∞ (resp. bn /∈ In and bn < ∞), then r−
n = an and r−∗

n = −∞ (resp. r+
n = bn and r+∗

n = ∞). If an = −∞
(resp. bn = ∞), then r−∗

n (resp. r+∗
n ) may be finite or infinite. Denote

J ∗
n := 〈

r−∗
n , r+∗

n

〉
,

where r−∗
n ∈ J ∗

n (resp. r+∗
n ∈ J ∗

n ) if and only if an ∈ In (resp. bn ∈ In). Clearly, jn(Jn) = J ∗
n , jn is non-decreasing,

and jn(x) = jn(y) if and only if x, y ∈ [an
m,bn

m] for some integer m. The assumption (H3) guarantees that J ∗
n is a

nontrivial interval.
We further introduce the image measure of m|Jn relative to jn on J ∗

n :

m∗
n := m|Jn ◦ j−1

n .

Note that m∗
n is a Radon measure on J ∗

n . Moreover, when r−∗
n ∈ J ∗

n (resp. r+∗
n ∈ J ∗

n ), it probably holds m∗
n({r−∗

n }) > 0
(resp. m∗

n({r+∗
n }) > 0). This situation only happens when an (resp. bn) is the left (resp. right) endpoint of (an

m, bn
m) for

some integer m.
Since f ∈ Gn

0 is a constant on [an
m,bn

m] for any m ≥ 1, this function determines a unique function f̂ on J ∗
n through

a darning method:

f̂ ◦ jn = f.

For any function f ∈ Gn
0 ⊂ Fn, it may be written as f = g ◦ tn for some absolutely continuous function g with∫

tn(In)
g′(x)2 dx < ∞. Particularly, g is a constant on [tn(a

n
m),tn(b

n
m)]. Then g determines a unique function ĝ on

J ∗
n via ĝ ◦ j ′

n = g, where

j ′
n : tn(Jn) → J ∗

n , x �→
∫ x

tn(en)

1tn(Wn)(y) dy.

Clearly, f̂ = ĝ. Hence

En(f,f ) = 1

2

∫
In

(
df

dtn

)2

dtn = 1

2

∫
tn(In)

g′(x)2 dx = 1

2

∫
J ∗
n

ĝ′(x)2 dx = 1

2

∫
J ∗
n

f̂ ′(x)2 dx.

On the other hand, when r−∗
n /∈ J ∗

n but r−∗
n > −∞ (resp. r+∗

n /∈ J ∗
n but r+∗

n < −∞), En(f,f ) < ∞ implies f̂ (r−∗
n ) :=

limx↓r−∗
n

f̂ (x) (resp. f̂ (r+∗
n ) := limx↑r+∗

n
f̂ (x)) exists. We assert that f̂ (r−∗

n ) = 0 (resp. f̂ (r+∗
n ) = 0). We only treat

the left endpoint r−∗
n . Note that r−∗

n /∈ J ∗
n and r−∗

n > −∞ indicate an = −∞. If r−
n > −∞, we pointed out f = 0 on

(−∞, r−
n ] and thus f̂ (r−∗

n ) = 0. If r−
n = −∞, if follows that f (−∞) := limx↓−∞ f (x) exists, whereas f ∈ L2(In).

Hence it holds f (−∞) = 0, which implies f̂ (r−∗
n ) = 0. Therefore, we are lead to define the quadratic form on

L2(J ∗
n ,m∗

n):

Gn∗
0 := {

f̂ : f ∈ Gn
0

}
,

En∗(f̂ , ĝ) := 1

2

∫
J ∗
n

f̂ ′(x)ĝ′(x) dx, f̂ , ĝ ∈ Gn∗
0 .

(4.8)

The following theorem is an analogue of [14, Theorem 3.2].
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Theorem 4.3. The quadratic form (En∗,Gn∗
0 ) defined by (4.8) can be expressed as

Gn∗
0 = H 1

0,e

(
J ∗

n

) ∩ L2(
J ∗

n ,m∗
n

)
,

En∗(f̂ , ĝ) := 1

2

∫
J ∗
n

f̂ ′(x)ĝ′(x) dx, f̂ , ĝ ∈ Gn∗
0 ,

where

H 1
0,e

(
J ∗

n

) = {
f̂ ∈ H 1

e

(
J ∗

n

) : f̂ (
r±∗
n

) = 0 whenever r±∗
n /∈ J ∗

n and
∣∣r±∗

n

∣∣ < ∞}
.

Furthermore, a regular representation of D-space (Jn,m|Jn,Gn
0 ,En) can be realized by the regular local Dirichlet

form (En∗,Gn∗
0 ) on L2(J ∗

n ,m∗
n). Its associated diffusion process Xn∗ is a Brownian motion B∗ on J ∗

n being time
changed by its positive continuous additive functional with the Revuz measure m∗

n, where B∗ reflects at the finite
endpoints r±∗

n ∈ J ∗
n and absorbs at the finite endpoints r±∗

n /∈ J ∗
n .

At the finite endpoints r±∗
n ∈ J ∗

n , Xn∗ is said to be slowly reflecting if m∗
n({r±∗

n }) > 0 and instantaneously reflecting
if m∗

n({r±∗
n }) = 0 by [16, Chapter VII (3.11)]. The former case occurs if and only if an (resp. bn) is finite and an (resp.

bn) is the left (resp. right) endpoint of (an
m, bn

m) for some integer m. At this time, Xn∗ is also called a diffusion with
sojourn in [6].

We end this section with two examples of darning processes.

Example 4.2. We first consider the regular Dirichlet extension of one-dimensional Brownian motion in Example 3.1.
Note that it is irreducible and thus only has one invariant interval I1 =R. Hereafter, we get rid of the subscript ‘1’ for
convenience and write I = R. Moreover, U = Kc,W = K , where K is the standard Cantor set in [0,1]. Clearly, U

and W satisfy (H1), (H2) and (H3). Recall that t(x) = x + c(x), where c is the standard Cantor function and

G0 =
{
f ∈ F : df

dt
= 0, dt-a.e. on U

}
,

E(f,f ) = 1

2

∫
R

(
df

dt

)2

dt, f ∈ G0,

where F = {f ∈ L2(R) : f 
 t,E(f,f ) < ∞}. Clearly, for any f ∈ G0, f = 0 on (−∞,0] and [1,∞).
Since I is open, we have

J = (0,1).

Take the fixed point e = 0, and the darning transform j is

j (x) =
∫ x

0
1K(y)dt(y) =

∫ x

0
1K(y)dc(y) = c(x), x ∈ (0,1).

Then J ∗ = j (J ) = (0,1) and m∗ = m|(0,1) ◦ j−1 is a fully supported Radon measure on J ∗ with m∗(J ∗) = m(J ) = 1.
Note that the single point set of J ∗ may be of positive m∗-measure. For example, m∗({1/2}) = m([1/3,2/3]) = 1/3.
Furthermore,

G∗
0 = H 1

0,e

(
(0,1)

) ∩ L2(
(0,1),m∗)

,

E∗(f, g) = 1

2

∫ 1

0
f ′(x)g′(x) dx, f, g ∈ G∗

0 ,

where H 1
0,e((0,1)) = {f ∈ H 1

e ((0,1)) : f (0) = f (1) = 0}. The associated darning process is a time-changed absorb-
ing Brownian motion by m∗ on (0,1).
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Example 4.3. In this example, we show a darning process with sojourn at the boundary. Let (E,F) be a regular
Dirichlet extension of one-dimensional Brownian motion:

I1 = (−∞,−1), I2 = [−1,∞)

and t2(x) = x + c(x), where c(x) is still the standard Cantor function with c(x) := 0 for x ≤ 0 and c(x) := 1 for
x ≥ 1.

We only consider the restriction to I2 of the orthogonal complement G. Let K be the standard Cantor set in [0,1].
Then

U2 = (−1,0) ∪ ([0,1] \ K
) ∪ (1,∞), W2 = {−1} ∪ K.

Clearly, U2 and W2 satisfy (H1), (H2) and (H3). Since −1 ∈ I2, we have

J2 = [−1,1).

Take the fixed point e2 = 0 and the darning transform is

j2(x) =
∫ x

0
1K(y)dt2(y) =

∫ x

0
1K(y)dc(y), x ∈ [−1,1).

Thus J ∗
2 = j2(J2) = [0,1) and m∗

2 = m|[−1,1) ◦ j−1
2 is a fully supported Radon measure on [0,1). Particularly,

m∗
2({0}) = m([−1,0]) = 1. Furthermore,

G2∗
0 = H 1

0,e

([0,1
)
) ∩ L2([0,1),m∗

2

)
,

E2∗(f, g) = 1

2

∫ 1

0
f ′(x)g′(x) dx, f, g ∈ G2∗

0 ,

where H 1
0,e([0,1)) = {f ∈ H 1

e ([0,1)) : f (1) = 0}. The associated darning process X2∗ is a Brownian motion B∗ on

[0,1) being time-changed by m∗, where B∗ reflects at 0 and absorbs at 1. Since m∗
2({0}) = 1 > 0, X2∗ is a diffusion

process with sojourn and slowly reflecting at 0.

5. Structures of regular Dirichlet extensions: Trace Dirichlet forms

In previous section we discuss the orthogonal complement G of one-dimensional Brownian motion in extension space
(E,Fe). In this section we shall only impose (H1) and (H2) of Section 4.2 and discuss the orthogonal complement of
the part Dirichlet form of (E,F) on the open set U , or intuitively the biggest Brownian motion contained in (E,F).
The later complement is called the trace of (E,F) on Uc, which may be orthogonally decomposed into the former
complement G and the trace of Brownian motion on Uc . The trace will show us the structure of extension in another
approach.

The following lemma is similar to [14, Lemma 2.2], which indicates that X is a Brownian motion before leaving
the open set U .

Lemma 5.1. Let ( 1
2 DU ,H 1

0 (U)) and (EU ,FU) be the part Dirichlet forms of ( 1
2 D,H 1(R)) and (E,F) on U respec-

tively. Then it holds that (EU ,FU) = ( 1
2 DU ,H 1

0 (U)).

Proof. Note that H 1
0 (U) ⊂FU and EU(f,f ) = 1

2 DU(f,f ) for any f ∈ H 1
0 (U) by Proposition 2.4. Thus it suffices to

prove FU ⊂ H 1
0 (U). Note that tn is a natural scale (i.e. tn(x) = x + c for some constant c) on (an

m, bn
m). This implies

any function f ∈ FU is absolutely continuous on (an
m, bn

m) and f (an
m) = f (bn

m) = 0. It follows from (3.3) that

∑
n,m≥1

∫
(an

m,bn
m)

f ′(x)2 dx < ∞.

Then we can conclude that f is absolutely continuous on R and hence f ∈ H 1
0 (U). �
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We now turn to the trace Dirichlet forms of (E,F) and ( 1
2 D,H 1(R)) on K . To do that, we have to find a smooth

measure supported on K . For each n, dtn is a Radon measure on In but not necessarily finite. Nevertheless, we can
always take a finite measure dt′

n equivalent to dtn if In is finite. For example,

dt′
n =

∑
k≥1

Cn

2k · dtn([an + 1/k, bn − 1/k]) · dtn|[an+1/k,bn−1/k],

where Cn is some positive constant and we make the convention 0/0 = 0. Particularly, we may choose Cn so that
dt′

n(In) = bn − an. If In is infinite, i.e. In = 〈an,∞), (−∞, bn〉 or R, we write dt′
n := dtn. Define a measure

μ :=
∑
n≥1

dt′
n|Wn +

∑
n≥1

(bn − an) · (δan · 1{an∈In} + δbn · 1{bn∈In}), (5.1)

where Wn = In \ Un and δan is the Dirac measure at an. It can be seen from the following lemma that μ might be a
suitable choice.

Lemma 5.2. The measure μ given by (5.1) is a Radon smooth measure with the topological support K relative to
( 1

2 D,H 1(R)) and (E,F) respectively. Hence the quasi support of μ relative to ( 1
2 D,H 1(R)) is K . Furthermore, the

quasi support of μ relative to (E,F) can be taken as a finely closed q.e. version K .

Proof. Clearly, μ is a Radon measure on R. Since the m-polar set relative to ( 1
2 D,H 1(R)) must be the empty set, it

follows that μ is smooth relative to ( 1
2 D,H 1(R)). It is also smooth relative to (E,F) since the m-polar sets relative to

(E,F) must be the subsets of (
⋃

n≥1 In)
c and clearly μ((

⋃
n≥1 In)

c) = 0.
Next, we prove the topological support of μ is K . Note that K is closed and μ(Kc) = μ(U) = 0. If K ′ is another

closed set and μ(K ′c) = 0, we assert that K ⊂ K ′. Suppose that x ∈ K \ K ′. Then (x − ε, x + ε) ∩ K ′ = ∅ for some
constant ε > 0. If x ∈ Wn ∩ (an, bn) for some n, then it follows from (H2) that μ((x − ε, x + ε)) ≥ μ((x − ε, x + ε)∩
Wn) > 0, which contradicts the fact μ(K ′c) = 0. Otherwise (x − ε, x] must contain a part with an endpoint of some
interval In. When this endpoint belongs to In, clearly μ((x − ε, x]) > 0. When this endpoint does not belong to In,
we have dtn(In ∩ (x − ε, x]) = ∞ whereas dtn(Un ∩ (x − ε, x]) ≤ ε. This implies dt′

n|Wn((x − ε, x]) > 0 and thus
μ((x − ε, x + ε)) > 0, which also contradicts the fact μ(K ′c) = 0.

Since the fine topology relative to the one-dimensional Brownian motion is the same as the usual topology, we
conclude that the quasi-support of μ relative to ( 1

2 D,H 1(R)) is also K . For the last assertion, we need only to prove
[1, Theorem 3.3.5 (b)] for F = K . If u ∈ F and u = 0 q.e. on K , then u(x) = 0 for any x ∈ ⋃

n≥1 Wn. This implies
u = 0 μ-a.e. On the contrary, let u ∈ F and u = 0 μ-a.e. We assert that u(x) = 0 for any x ∈ In ∩ K = Wn, which
implies u = 0 q.e. on K . In fact, assume u(x) �= 0 for some x ∈ Wn. Since u = 0 μ-a.e., x is not the endpoint
of In. Note that u|In is continuous. Thus u(y) �= 0 for any y ∈ (x − ε, x + ε) with some constant ε > 0. However,
μ((x − ε, x + ε)) > 0 by (H2), which contradicts the fact u = 0 μ-a.e. That completes the proof. �

Remark 5.1. From Lemma 5.2 and [1, Lemma 5.2.9 (iii)], we know that any Radon smooth measure μ′, for example
μ given by (5.1), with the quasi support K relative to (E,F) or ( 1

2 D,H 1(R)) always has the topological support K .
The trace Dirichlet form induced by μ′ is a regular Dirichlet form on L2(K,μ′) as asserted by [1, Corollary 5.2.10].
The choice of μ′ is not essential in the sense of [1, Theorem 5.2.15].

Trace Dirichlet form on some appropriate set F characterizes the ‘trace’ of the associated Markov process left
on F . Precisely, given a symmetric Markov process Y with the regular Dirichlet form (EY ,FY ) on the state space E

and F ⊂ E a closed subset with the positive capacity, let ν be a Radon smooth measure on E with the same topological
and quasi support F and σY

F be the hitting time of F relative to Y . Set for any f ∈FY
e ,

HY
F f (x) := Exf (YσY

F
), x ∈ E.

Then

F̌Y := {
ϕ ∈ L2(F, ν) : ϕ = f ν-a.e. on F for some f ∈FY

e

}
,

ĚY (ϕ,ϕ) := EY
(
HY

F f,HY
F f

)
, ϕ ∈ F̌Y ,ϕ = f ν-a.e. on F,f ∈Fe
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is called the trace Dirichlet form of (EY ,FY ) induced by ν. It is a regular Dirichlet form on L2(F, ν) as in Remark 5.1.
We refer the details of trace Dirichlet forms and their Feller measures to [2], [1, Section 5.5] and [14].

Denote the trace Dirichlet forms of ( 1
2 D,H 1(R)) and (E,F) induced by the measure μ, given by (5.1), by

( 1
2 Ď, Ȟ 1) and (Ě, F̌), respectively. They are both regular and recurrent (cf. [1, Theorem 5.2.5]) Dirichlet forms on

L2(K,μ). The associated Hunt processes are denoted by B̌ = (B̌t )t≥0 and X̌ = (X̌t )t≥0. Their extended Dirichlet
spaces are naturally denoted by Ȟ 1

e and F̌e. We have (cf. [1, Theorem 5.2.15])

Ȟ 1
e = H 1

e (R)|K = {
f |K : f ∈ H 1

e (R)
}
,

F̌e =Fe|K = {f |K : f ∈Fe}.
Recall that Un, Wn are defined by (4.3) and Un is expressed as (4.7). We now state the main result in this section,
which is similar to [14, Theorem 2.1] in the sense that they both give an example that a pure jump Dirichlet form is a
proper regular Dirichlet subspace of a Dirichlet form with strongly local part.

Theorem 5.1. Let ( 1
2 Ď, Ȟ 1) and (Ě, F̌) be given above. Then ( 1

2 Ď, Ȟ 1) is a proper regular Dirichlet subspace of

(Ě, F̌), i.e.

Ȟ 1 ⊂ F̌, Ě(ϕ,ϕ) = 1

2
Ď(ϕ,ϕ), ϕ ∈ Ȟ 1.

Furthermore for any ϕ ∈ F̌e =Fe|K ,

Ě(ϕ,ϕ) = 1

2

∑
n≥1

∫
Wn

(
dϕ

dtn

)2

dtn + 1

2

∑
n≥1

∑
m≥1

(ϕ(an
m) − ϕ(bn

m))2

|an
m − bn

m| , (5.2)

and for any ϕ ∈ Ȟ 1
e = H 1

e (R)|K ,

1

2
Ď(ϕ,ϕ) = 1

2

∑
n≥1

∑
m≥1

(ϕ(an
m) − ϕ(bn

m))2

|an
m − bn

m| . (5.3)

Proof. The first assertion is similar to [14, Theorem 2.1 (1)] by the above Lemma 5.1. The trace formula (5.3) of
one-dimensional Brownian motion on K can be formulated as in the proof of [14, Theorem 2.1 (2)] and we further
remark that m(K) = 0.

Now we prove the trace formula (5.2). Note that the trace Dirichlet form (Ě, F̌) corresponds to a time-changed
Markov process X̌ of X. Precisely, let (At )t≥0 be the associated positive continuous additive functional of μ relative
to X and τt be its right continuous inverse, i.e. τt := inf{s > 0 : As > t} for any t ≥ 0. Then

X̌t = Xτt , t ≥ 0.

On the other hand, a subset F ⊂ K is Ě -polar if and only if F is E -polar as a subset of R (cf. [1, Theorem 5.2.8]). This
implies that (

⋃
n≥1 In)

c is an Ě -polar set. Since for each n, In is an invariant set of X, it follows that In ∩ K = Wn is

an invariant set of X̌ in the sense that

PX̌
x (X̌t ∈ Wn,∀t) = 1, x ∈ Wn,

where PX̌
x is the probability measure of X̌ starting from x. Particularly, (ĚWn, F̌Wn) is the trace Dirichlet form of

(EIn ,F In) induced by μ|Wn . It suffices to prove that for any ϕ ∈ F In
e |Wn ,

ĚWn(ϕ,ϕ) = 1

2

∫
Wn

(
dϕ

dtn

)2

dtn + 1

2

∑
m≥1

(ϕ(an
m) − ϕ(bn

m))2

|an
m − bn

m| , (5.4)
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since the trace formula (5.2) may then be attained from Corollary 3.2. Indeed, note that for any f ∈ F In
e , the energy

measure (cf. [1, (4.3.8)]) of f is equal to

μ〈f 〉 =
(

df

dtn

)2

dtn,

which can be formulated by an approach similar to [14, (2.2)]. The Feller measure corresponding to the Dirichlet
form (ĚWn, F̌Wn) is deduced by the same idea as in the proof of [14, Theorem 2.1] since XIn is a Brownian motion
before leaving Un by Lemma 5.1. Therefore we obtain (5.4) which is similar to [14, Theorem 2.1]. That completes
the proof. �

Although the main ideas to prove the above theorem come from [14, Theorem 2.1], we still need to point out
the different significance of Theorem 5.1. In [14, Theorem 2.1], the state space F of the trace Dirichlet forms must
be of positive Lebesgue measure to guarantee that the associated regular Dirichlet subspace (E (s),F (s)) of the one-
dimensional Brownian motion is a proper subspace. This fact causes that the strong local part of one of the trace
Dirichlet forms in [14, Theorem 2.1] never disappears. When coming back to the above theorem, we find that the
strongly local part may disappear in some special situation (i.e. Wn is of zero dtn-measure) and then an interesting
phenomena shows up.

Corollary 5.1. Let ( 1
2 Ď, Ȟ 1) and (Ě, F̌) be given in Theorem 5.1. Assume that dtn(Wn) = 0, in other words, In

is closed and tn is the natural scale function on In, for each n ≥ 1. Then ( 1
2 Ď, Ȟ 1) is a proper regular Dirichlet

subspace of (Ě, F̌) on L2(K,μ). Furthermore, for any ϕ ∈ F̌e,

Ě(ϕ,ϕ) = 1

2

∑
n≥1

(ϕ(an) − ϕ(bn))
2

|an − bn| , (5.5)

and for any ϕ ∈ Ȟ 1
e ,

1

2
Ď(ϕ,ϕ) = 1

2

∑
n≥1

(ϕ(an) − ϕ(bn))
2

|an − bn| . (5.6)

The proof of Corollary 5.1 is trivial by Theorem 5.1. Note that if (E,F) is such a regular Dirichlet extension in this
corollary, then its associated diffusion process is a reflected Brownian motion on each closed interval In. An example
is given in Example 3.5, in which K is the standard Cantor set in [0,1].

The above corollary partially answers a problem in which we have been interested and studied for years. We know
from Theorem 2.1 that if (E1,F1) is a regular Dirichlet subspace of (E2,F2), then the jumping and killing measures
in their Beurling–Deny decompositions are the same. Moreover, given a regular Dirichlet form, its killing part and
‘big jump’ part do not play a role in producing a proper regular Dirichlet subspace as described in [12, Section 2.2.3]
and [15] respectively. For a strongly local Dirichlet form, many examples including [3,4,13] hint that it should always
have proper regular Dirichlet subspaces. However we have not found any result to illustrate how the ‘small jump’ part
plays a role when concerning the regular Dirichlet subspaces. For the first time Corollary 5.1 gives us an example that
a pure jump Dirichlet form has a proper regular Dirichlet subspace. This encourages us to keep going in this direction.

On the other hand, the jumps of a Hunt process are described by its Lévy system denoted by (N,H) in [19],
where N(x,dy) is a kernel on the state space and H is a positive continuous additive functional. We know that
all Lévy systems of a symmetric Hunt process are equivalent in the sense that if (N ′,H ′) is another Lévy system,
then N(x,dy)μH (dx) = N ′(x, dy)μH ′(dx), where μH and μH ′ are the Revuz measures of H and H ′ respectively.
Therefore, Corollary 5.1 also conduces to the following.

Corollary 5.2. There exist two different symmetric pure jump Hunt processes that have the equivalent Lévy systems.

The following corollary gives us an intuitive understanding of the differences between the two regular Dirichlet
forms in Corollary 5.1.
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Corollary 5.3. Let ( 1
2 Ď, Ȟ 1) and (Ě, F̌) be the regular Dirichlet forms on L2(K,μ) in Corollary 5.1. Then the

following assertions hold.

(1) ( 1
2 Ď, Ȟ 1) is irreducible and for any x, y ∈ K ,

PB̌
x (σy < ∞) > 0, (5.7)

where PB̌
x is the probability measure of B̌ starting from x and σy is the first hitting time of {y} relative to B̌ .

(2) (Ě, F̌) is not irreducible. For each n such that an and bn are finite, {an, bn} is an invariant set of (Ě, F̌) and
the associated Hunt process X̌ only jumps between an and bn. Furthermore, K \ {an, bn : an > −∞, bn < ∞, n ≥ 1}
is Ě -polar.

Proof. The second assertion is obvious from the proof of Theorem 5.1. We only prove (1). Note that ( 1
2 Ď, Ȟ 1) is

recurrent by [1, Theorem 5.2.5]. Let ϕ = f |K ∈ Ȟ 1
e such that Ď(ϕ,ϕ) = 0. It follows that

D
(
HB

Kf,HB
Kf

) = 0.

Thus HB
Kf ≡ C for some constant C and ϕ = f |K = HB

Kf |K ≡ C. From [1, Theorem 5.2.16] we obtain that ( 1
2 Ď, Ȟ 1)

is irreducible. On the other hand, [1, Theorem 5.2.8] implies the 1
2 Ď-polar set must be the empty set. Thus (5.7) follows

from [1, Theorem 3.5.6 (1)]. �

Corollary 5.3 shows us some interesting behavior of a Markov process associated with a Dirichlet form. Since the
Feller measures in (5.5) and (5.6) are supported on{

(an, bn), (bn, an) : an > −∞, bn < ∞, n ≥ 1
}
,

it seems that the Markov processes B̌ and X̌ only jump between an and bn. Actually X̌ does jump this way. However,
the trace B̌ of Brownian motion will hit any point in K with positive probability. In other words, the motions of B̌

happen at where its potential energy is zero. These motions are not reflected in the energy form (i.e. Dirichlet form)
but in its Dirichlet space. Recall that Ȟ 1

e is the restriction of H 1
e (R) to K which are composed all by continuous

functions, whereas F̌e is the restriction of Fe to K which is much bigger and contains many discontinuous functions.
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