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Abstract. We study how small a local set of the continuum Gaussian free field (GFF) in dimension d has to be to ensure that this
set is thin, which loosely speaking means that it captures no GFF mass on itself, in other words, that the field restricted to it is zero.
We provide a criterion on the size of the local set for this to happen, and on the other hand, we show that this criterion is sharp by
constructing small local sets that are not thin.

Résumé. Nous étudions à quel point un ensemble local du champ libre Gaussien (GFF) en dimension d doit être petit pour être sûr
que l’ensemble est fin, ce qui signifie informellement que le GFF ne place pas de masse sur l’ensemble, i.e., que le champ restreint
a l’ensemble vaut zéro. Nous donnons des critères portant sur la taille de l’ensemble local qui impliquent cette propriété, et par
ailleurs nous montrons que ce critère est optimal en construisant des ensembles locaux petits qui ne sont pas fins.
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1. Introduction

The Gaussian Free Field (GFF) is the natural analogue of Brownian motion when the time-set is replaced by a
d-dimensional open domain D. The GFF is a fundamental object in probability and statistical physics. In two di-
mensions, its geometry is closely related to many other key objects such as Stochastic Loewner Evolutions [10,17,
23], conformal loop ensembles [7,15], Liouville quantum gravity [2,5,11], quantum Loewner evolutions [16,18] and
Brownian loop soups [4,13,14,21]; note that the relation to loop soups is in fact not restricted to the two-dimensional
GFF.

Unlike Brownian motion, when d ≥ 2, the GFF is not a continuous function; it can only be defined as a random
generalised function from D into R. However, the GFF has many properties analogue to those of the Brownian motion.
In particular, it has a spatial Markov property. The spatial Markov property of the GFF states that for any deterministic
closed set A the distribution of the GFF in D\A is equal to the sum of the harmonic extension of the values of the
GFF on ∂A, and an independent GFF in D \ A. Just as in the one-dimensional case, this Markov property can be
upgraded into a strong Markov property, where the above decomposition holds also for some random sets A. Such
multivariate Markov properties were first studied in the 70s and 80s [22], and recently reinterpreted and applied in
the two-dimensional imaginary geometry framework [17,23]. These sets, called local sets in [17,23], play roughly the
same role, in the higher-dimensional setting, as stopping times; more precisely, the local set A is the analogue of the
interval [0, τ ] when τ is a one-dimensional stopping time. The notion of local sets makes sense and is natural for the
GFF in any dimension, even if so far it has only been used when d = 2.
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One way to formally describe local sets is to say that there exists a coupling (�,A,�A) where � is a GFF in D, A

is a random closed set and �A is a random field with the following properties:

• Conditionally on (A,�A), the distribution of � − �A is a GFF in D \ A.
• For every deterministic open set O , on the event where O and A are disjoint, the restriction of �A to O is a

harmonic function in O . More precisely, there exists a random harmonic function hA in D\A such that for all
smooth function f , (�A,f ) = ∫

D\A hA(x)f (x) dx on the event where the support of f is contained in D\A.

The field �A can be understood as being equal to the field � “within A” and to the harmonic extension hA of the
values of the field on ∂A in D\A.

In the present paper, we investigate how small a local set has to be (in terms of its fractal dimension) to ensure,
loosely speaking, that � restricted to A is equal to 0, in other words, that “�A = hA”. We call a local set satisfying this
property a thin local set. As the GFF is not a function, the precise definition of thin local sets is not straight-forward,
and it is discussed in what follows.

1.1. Definition of thin local sets

Let us start with a particular case. Assume that the harmonic function hA is a.s. integrable on D\A1, being thin means
that for any compactly supported smooth function f , (�A,f ) is almost surely equal to

∫
D\A hA(z)f (z) dz, even when

the support of f intersects A.
One of the main questions of this paper is to find a good definition of a thin local set when hA oscillates in the

boundary. By this, we mean the case when the function hA is not integrable on D \ A. This framework should be
thought of as the generic case as hA tends to oscillate wildly when it approaches A. This is especially true in higher
dimensions where this is already the case when A is a deterministic non-polar set.

There are many possible definitions for thin local sets, and we will discuss them in the last section of the paper. At
this point and for the rest of the paper until Section 5, we will fix a definition based on dyadic approximations.

Suppose that D is a fixed bounded open domain in R
d for d ≥ 2. For any n ≥ 0, say that s is an open dyadic

hyper-cube of side-length 2−n (or just 2−n dyadic hypercubes) if it is a translate of (0,2−n)d by some element in
(2−n

Z)d . We call Sn the set of all non-empty intersections of open 2−n-dyadic hypercubes with D and Tn the set of
faces of elements of Sn. If A is a closed set, we define An to be the closure of the union of all elements of Sn ∪ Tn

intersecting A.
Let us note that for any closed set A, An decreases to A and that for all n ∈ N, An can take only finitely many

values. This allows us to define, for each smooth function in D, the random variable (�A,f 1D\An). Indeed, one can
simultaneously define (�A,f 1u) for any possible value u of D\An, and then see that (�A,f 1D\An) is a.s. equal to∑

n(�A,f 1u)1{D\An=u}.

Definition 1.1 (Thin local set). A local set A is a thin local set if for any smooth bounded function f in D, the
sequence of random variables (�A,f 1D\An) converges in probability to (�A,f ) as n → ∞.

The intuition behind this definition is that the limit of this sequence of random variables should be thought of as a
way to make sense of (�A,f 1D\A), which then has to be the same as (�A,f ).

We leave it as an exercise to check that in the particular case of local sets where hA is integrable, this definition
is equivalent to the fact that a.s. (�A,f ) = ∫

D\A hA(z)f (z) dz. To do this, first one has to check that for all possible

values of u of D\An, (�A,f 1u) is a.s. equal to
∫
u
hA(z)f (z) dz.

Finally, let us note that the choice of working with dyadic approximations is somewhat arbitrary and the question
whether changing this choice would change the definition is in fact open. Additionally, even though the examples of
non-thin local sets that we will describe in Section 3 are tailor-made for this particular approximation; it is easy to
adapt them to many other analogous choices. We will comment further on this in Section 5.

1this for instance happens for the bounded-type thin local sets studied in [7] where hA is bounded
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1.2. Results

The results of this paper quantify how small may non-thin local set be. For instance, a deterministic set is a thin
local set if and only it has zero Lebesgue measure. However, as we shall see, when d ≥ 2 there exist many (random)
non-thin local sets that have zero Lebesgue measure. In some sense, this is because the GFF values can be explored
in a way that captures large values of the GFF while keeping the explored set local and relatively small.

Let us briefly present our main results first when d ≥ 3 and then d = 2.

Proposition 1.2. Let d ≥ 3 and � be a GFF in D ⊆R
d , then:

(1)d If A is a local set of a d-dimensional GFF and a.s. has upper Minkowski dimension strictly smaller than max{1+
(d/2), d − 2}, then it is thin.

(2)d There exist local sets of the GFF such that with positive probability their upper Minkowski dimension is equal to
max{1 + (d/2), d − 1} that are not thin local sets.

The two different upper bounds in (1)d have very different nature. The term 1 + (d/2) comes from the fact that,
because of the nature of the singularity of the d-dimensional Green’s function, the variance of the integral of the
GFF over an ε-ball is of order ε−(d−2). On the other hand, the term d − 2 is related to the dimension of polar sets in
dimension d .

Note that the numbers of (1)d and (2)d match for d = 3,4. In other words, the dimensions 5/2 and 3 play an
important role in the size oflocal sets of the GFF in dimensions d = 3 and d = 4 respectively. Furthermore we believe
that they should match for any d ≥ 3. Thus, the threshold (d/2) + 1 would then be valid up to d = 6, and for d ≥ 6, it
should be d − 2.

In fact, (1)d and (2)d also hold in the two-dimensional case. However, the second statement is rather void as
1 + (d/2) = 2, and to prove it one could just take A to be the entire domain D, which is clearly not thin. We derive
the following more refined result when d = 2:

Proposition 1.3. Let � be a GFF in D ⊆R
d , then:

(1)2 If A is a local set of the two-dimensional GFF such that the expected value of the area of the ε-neighbourhood
of A decays like o(| log ε|−1/2| log | log ε||−1/2), then it is a thin local set.

(2)2 There exist local sets of the two-dimensional GFF for which the expected value of the area of their ε-
neighbourhood decays like O(| log ε|−1/2) and that are not thin local sets.

As we see, in dimension d = 2 there is a logarithmic term that appears. This is of no surprise, as the variance of
the average GFF over an ε-ball is of order | log ε|. It is important to remark that a result of the type of (2)2 has also
appeared in [3], where the authors show that the constructed local set has a non-trivial Minkowski measure with gauge
r �→ r2| log(r)|−1/2.

As explained before proofs of statements of the type (1)d (i.e. “when the local set is small enough, then it is
necessarily thin”) are based on two ideas. For the upper bound 1 + (d/2), we use a first moment computation to show
that very high values of the GFF are so sparse that they do not give mass. This allows us to assume that ε-averages of
the GFF are bounded by a certain deterministic function of ε. For the upper bound d − 2, we show that thin local sets
which are polar do not give information about the GFF and thus they are thin (see Lemma 2.1).

It is somewhat more challenging to prove (2)d , i.e. to construct well-chosen “fairly small” local sets and to prove
that they are not thin. This is arguably the main contribution of the present paper. It is worthwhile noticing that in
two-dimensions, it is possible to use the nested version of the Miller–Sheffield GFF-CLE4 coupling to construct such
a small yet non-thin local set [3], but when d ≥ 3 other ideas are needed. Our strategy consists in relating a particular
exploration of the GFF with a branching Brownian motion. This idea is reminiscent of the one that was for instance
used in the two-dimensional case in [8] to study the maximum of the discrete GFF. The constructed set may also be
interpreted as a local set approximation of perfect thick points (in the sense of [12], Section 3.2). Note that the main
difficulty of this part is that the sets we study need to remain thin.

The structure of the paper is the following: first, we briefly recall some fundamental properties of the continuous
GFF and its local sets. Then, we construct examples of local sets that prove the statements (2)d . After that, we prove
the statements (1)d and conclude with some comments about the definitions of thin local sets.
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2. Preliminaries

2.1. GFF and scaling

Introductions and basic results about the GFF can be found in [1,6,23,25,26]. While the presentations in those ref-
erences is in the two-dimensional setting, they can be extended without any difficulty to higher dimensions. Let us
briefly remind some basic facts.

Throughout this paper, we use the function φd defined on R
d \ {0} by φd(x) = (1/2π) × log(1/‖x‖) when d = 2

and by φd(x) = 1/(cd‖x‖d−2) when d ≥ 3, where cd denote the d − 1-dimensional surface area of the unit sphere in
R

d .
Suppose that D is d-dimensional open domain with non-polar boundary (this boundary can be empty if d ≥ 3), and

consider the Green’s function with Dirichlet boundary condition in D to be the unique function from D ×D \ {(x, x) :
x ∈ D} to R+ that is harmonic in both variables, and such that for all given x in D, GD(x, y) → 0 as y → ∂D and
GD(x, y) ∼ φd(x − y) as y → x. Recall that when D ⊂ D̃, then GD(x, y) ≤ G

D̃
(x, y).

We can then define the space H−1(D) of functions on D, such that
∫∫

D×D

f (x)GD(x, y)f (y)dxdy < ∞.

The GFF in D with zero boundary conditions is defined to be the centered Gaussian process ((�,f ), f ∈ H−1(D))

with covariance function

E
[
(�,f )(�,g)

] =
∫∫

D×D

f (x)GD(x, y)g(y)dxdy.

It is well-known that this process exists, and that it is possible to find a version of the GFF such that almost surely,
for all ε > 0, � can be viewed as an element of the Sobolev space H1/2−d/4−ε . Here, H1/2−d/4−ε is the dual under
the L2 product of the Sobolev space Hd/4−1/2+ε (see for instance Section 2.3 of [25]).

The definition of the GFF immediately implies its scaling properties. If we define the domain z0 + rD := {z0 + rz :
z ∈ D}, then

Gz0+rD(z0 + rx, z0 + ry) = r2−dGD(x, y) (2.1)

(in two dimensions, a stronger result holds, as the Green’s function is conformally invariant), which yields the corre-
sponding scaling properties for the GFF.

2.2. Local sets

We first very briefly review the definitions of local sets and some of their properties that are relevant for our purposes.
This presentation is based in Section 1.3 of [1]

Denote the family of all closed subsets of D by C(D). Let � be a GFF in D and C ∈ C(D). One can decompose
� into the sum of two independent processes �C and �C where almost surely, �C restricted to D \ C is a harmonic
function, and where �C is a GFF in D\C. This property is usually referred to as the spatial Markov property of
the GFF. One can note that �C and �C are Gaussian processes that are also generalised functions, with respective
covariance given by the Green’s functions GD − GD\C and GD\C .

Let (FC)C∈C(D) be a complete outside-continuous filtration indexed by C(D). That is to say, C �→ FC is non-
decreasing, the σ -fields FC are all complete with respect to the probability measure that we are working with, and for
any decreasing sequence (Cn), one has F (∩Cn) = ∩F (Cn). We say that the GFF � is adapted with respect to this
filtration if, for all C, �C is FC -measurable while �C is independent of FC . We also say that a random set A is a local
set in the filtration (FC) if for all C ∈ C(D), the event {A ⊆ C} is in FC . The filtration generated by a GFF � (or the
“natural filtration” of �) is the smallest one for which each �C is FC -measurable.

Let us list a couple of simple facts about local sets, whose properties are immediate consequences of the definition
(see Section 1.3 of [1]):
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(a) If A and B are local with respect to the filtration (FC), then A ∪ B is also local.
(b) If (An) is a family of local sets with respect to the filtration (FC), then

⋂
n(

⋃
m≥n Am) is also a local in the same

filtration.
(c) If A is a local set and � is a GFF adapted to F·, then there exists a process �A, such that it is a.s. harmonic in

D\A, and that conditionally on (A,�A), �A := � − �A is a GFF in D\A.

In the literature, having a coupling (A,�) satisfying (c) is usually used as the definition of local sets (see for instance
[23]). This property is equivalent to the existence of a filtration under which A is a local set, and � is a GFF. This can
be done by defining FC = σ(�C,A1A⊆C, {A ⊆ C}) and using Lemma 3.9 of [23] to see this satisfies the definitions.
The definition it of local via filtration will be handy to show that the examples that we construct are indeed local sets.

Note that we can represent the restriction of �A to D\A as a harmonic function hA in D\A. In other words,
there exists a harmonic function hA in the random domain D \ A such that for all smooth function f , (�A,f ) =∫

hA(z)f (z) dz on the event where the support of f is contained in D\A.
Additionally, it holds that when A and B are local sets, a.s. for all z such that the connected component of D\A

containing z is equal to the connected component of D\B containing z we have that hA(z) = hB(z) (see Proposi-
tion 1.3.29 of [1] or [26]).

Let us already point out that local sets have to be big enough to provide any information about the GFF.

Lemma 2.1. Let � be a GFF on a domain D and A a local set. Then, �A = 0 almost surely if only if A is almost
surely polar for Brownian motion on D.

Proof. Note that A is polar if and only if GD = GD\A. Then for all smooth function f with bounded support,

E
[
(�A,f )2] = E

[
(�,f )2] −E

[(
�A,f

)2]
.

Given that GD\A ≤ GD , we see that A is polar if and only if the right hand side is equal to 0 for all such f . �

Recall that Kakutani’s Theorem (Theorem 8.2 in [19]) states that one can check whether a set is polar by studying
the decay oo the volume of small neighbourhoods of A. In particular, when d ≥ 3, any local set with Minkowski
dimension smaller than d − 2 is polar for the BM, and it is, therefore, a local set with �A = 0.

2.3. A simple bound for Gaussian random variables

To finish the preliminaries we show a simple Gaussian inequality wish will be used in the proof of statements of the
type (1)d .

Lemma 2.2. There exists an absolute constant W such that for any centred Gaussian vector (X,Y ) and for all A with
P(A) ≤ 1

8 we have that

E[XY1A] ≤ W max
{
Var(Y ),Var(x)

}
P(A) log

∣∣P(A)
∣∣. (2.2)

Proof. Using the fact that 2ab ≤ a2 +b2, we can restrict ourselves to the case where X = Y , and by scaling it suffices
to consider the case where X is a standard normal variable. Now, take r > 0 such that P(|X| > r) = P(A) and note
that E[X2(1|X|>r − 1A)] ≥ 0. Thus,

E
[
X21A

] ≤ 1√
2π

∫ ∞

r

x2e
−x2

2 ≤ re
−r2

2 .

Now, we just need to estimate the value of re− r2
2 . To do this we use that for any s > 2√

2π
, (see [9]):

2√
2π

s

s2 + 1
e− s2

2 ≤ P
(|X| > s

) ≤ e− s2
2 .
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From the first inequality we get that

re− r2
2 ≤

√
π√
2
P
(|X| > r

)(
r2 + 1

)
,

but from the second inequality we get that r ≤ √
2| log(P(X > r))|. From where we conclude. �

3. Examples of “small” non-thin local sets

In the present section, we prove the statements (2)d : We construct and describe the main features of a particular local
set of the d-dimensional GFF in d ≥ 2, which is not thin, yet rather small.

3.1. An example using CLE4 in two dimensions

Before we construct our actual examples, let us quickly describe how it is possible to use the coupling of the two-
dimensional GFF with the conformal loop ensemble CLE4 to construct a local set which implies the statement (2)2.
Because such a relationship is only known in dimension 2, this construction can not be generalised to higher di-
mensions. However, it helps understanding some features of the example presented in the next subsection. Since this
CLE4-based construction is not used in our main proofs, we choose here not to give a complete review of the Miller–
Sheffield coupling of the CLE4 with the GFF in two dimensions, and we refer the reader to [7] for background and
details.

Let � be a GFF in a simply connected domain D. Recall that (see [7,15]) it is possible to define deterministically
from � a local set A1 of Minkowski dimension 15/8 (see [20,24]) such that the harmonic function hA1 (that we denote
by h1) is constant and equal to ±2λ = ±√

π/2 in each connected component of D \ A1.2 This set A1 has the law of
a CLE4 carpet, and the coupling just described is usually called the natural coupling of CLE4 with the GFF.

Furthermore, as explained in [7], this local set is thin (in the present case, the definition of thin is the one given in
the introduction because h1 is integrable) and conditionally on A1, the sign of h1 is chosen to be + or − independently
in each connected component of D \ A1.

Now, we define inductively an increasing family An of local sets. Suppose that for a given n ∈ N, we have defined
a certain thin local set An such that hn is constant in each connected component of D \ An and takes values in
{−2kλ : −1 ≤ k ∈ Z}. We then define An+1 and hn+1 as follows:

• In the connected components of D \ An where hn = 2λ we do nothing: these connected components are still in
D \ An+1 and hn+1 = 2λ there.

• In the other connected components, O , of D \ An, we construct the CLE4 associated to the GFF �An restricted
to O . The connected components of D \ An+1 ∩ O are defined to be the complement of this CLE4, and the values
of the harmonic function are hn+1 = hn ± 2λ.

We finally define our local set A to be the closure of
⋃

n An.
As A is the closure of the union of local sets, A is also a local set. Furthermore, note that for every for every x ∈ D,

(2λ)−1hAn(x) is a simple random walk stopped at Nx ,the first time it hits 1. Because for every x ∈ D a.s. Nx < ∞,
we have that the Lebesgue measure of A is 0. Using the techniques of Proposition 20 of [7] or Proposition 4.6 of [3]
one could further show that A satisfies (2)2.

We can also see that hA is equal to 2λ in each of the connected components of the complement of A. To do this it
suffices to take a dense set (xn)n∈N, and note that a.s. hA(xn) = hANxn

(xn) = 2λ.
Since hA = 2λ, the set A can not be thin. Indeed, for any smooth non-negative test function f , the integral∫

D\A hA(z)f (z) dz would be almost surely non-negative, and it can therefore not be the same random variable as

(�,f ) − (�A,f ) (unless f = 0).
To finish this example, let us mention that we know much more about the size of A. In [3] it is shown that A has

non trivial Minkowski content of gauge r �→ r2/
√| log(r)|, and that this Minkowski content is exactly the difference

between (hA,1) and (�A,1).

2The constant 2λ is called the height-gap of the GFF and it depends on the normalisation of the Green’s function, and therefore of the GFF.
Sometimes, other normalizations are used in the literature: If GD(x,y) ∼ c log(1/|x − y|) as x → y, then λ should be taken to be (π/2) × √

c.
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3.2. Another example in two dimensions

In the present subsection, we first describe another local set A of the two-dimensional GFF that has a simple gen-
eralisation when d ≥ 3. One main feature is reminiscent of the previous case: we discover the GFF in a self-similar
fashion and explore the GFF until its mean value in the dyadic square that we are currently looking at is likely to be
positive in some sense that we will make precise. The main difference with the previous case is that we explore using
boundaries of dyadic squares instead of a nested CLE4, as the CLE technology is not available in higher dimensions.

Notation
Choose the domain D to be the unit square (0,1)2. As we are going to use nested dyadic squares, it is useful to
introduce the following notation. We define S∅ to be equal to D, and when u is a finite sequence of n elements of
{1, . . . ,4}, then Su1, . . . , Su4 are the four open dyadic subsquares of side-length 2−n−1 of Su. We can, for instance,
choose to associate the four indices respectively to the NW, NE, SW, SE subsquares. Thanks to this notation, we can
associate to each square a point in the tree

⋃
n{1,2,3,4}n, and a genealogy.

Let us also define for each dyadic square Su, the random variable γn(S
u) := (�Tn,1Su), where Tn is the union of

elements in Tn. This is the conditional expectation of (�,1Su) in Su, when one observes the GFF outside (i.e. on the
boundary) of the ancestor of Su with height n if n ≤ |u| (the height of u), or the boundary of the children of u with
height n if n > |u|. It can also be viewed as (�,μu) where μu

n is a well-chosen measure supported on the boundary of
the squares associated with Su with height n.

We are going to discover progressively and simultaneously the GFF along the four segments from (1/2,0), (1,1/2),
(1/2,1) and (0,1/2) to the middle point (1/2,1/2) (see the first image of figure Figure 1). When we have finished,
then the unit square is divided into the four squares S1, . . . , S4 of side-length 1/2. During this discovery, we can
choose a modification of the conditional expectation of the random variable (�,1), given the discovered values of the
GFF in the discovered segments, so that it evolves like a continuous martingale. Thus, we can parametrise time in a
way such that this conditional expectation has the law of a Brownian motion3 B = B∅ stopped at a time T .

Let us note that the given change of time is not random. To prove this take a deterministic way symmetrically
growing the segments l(t). The weak Markov property implies that for any t ≥ 0, (�,1) is the sum of (�l(t),1) and
(�l(t),1). Also, let us note that (�,1) and (�l(t),1) are a centred Gaussian with variance

∫∫
D×D

GD(x, y) dx dy

and
∫∫

D×D
GD\l(t)(x, y) dx dy) respectively. Furthermore, as �l(t) is independent of �l(t), we have that (�l(t),1)

is distributed as a centred Gaussian random variable with variance σt = ∫∫
D×D

(GD(x, y) − GD\l(t)(x, y)) dx dy.
Thus, it suffices to take l(t) such that σt = t . Let us note that this discussion also implies that T is equal to∫∫

D×D
(GD(x, y) − GD\T1(x, y)) dx dy.

Definition of A

If B hits 1 before time T , we define A1 to be equal to the union of these four segments at the end-time T of this
exploration, so that U1 := S∅ \ A1 = S1 ∪ · · · ∪ S4. If not we take A1 = D. Note that E[(�,1) | supt≤T Bt ≥ 1] = 1.

If the Brownian motion has not reached 1 before time T , we continue exploring, and we do this independently
and simultaneously in all four squares S1, . . . , S4 using the GFF �A1

in each of them (note that �A1
consists of four

independent GFFs in the four squares). In each of these squares, we grow four boundary segments towards the center
of the square, and we study the conditional expectation of 4(�A1

,1Sj ) (the mean of the mass of �A1
in Sj ) given what

one has discovered. By self-similarity, each of these four quantities evolve like four independent Brownian motions
B1, . . . ,B4 up to time T .

Now, in order to define A2 we have two cases: if A1 �= D, then A2 = A1. If not, we look, for each Si , at whether
the BM Wi := B(t ∧ T ) + Bi(t − T )1{t≥T } hits level 1 before time 2T or not. A2 is made by the closed union of all
the squares of size 2−1 where this BM did not hit the level 1 before time 2T , with the boundaries of all the squares of
the same size where this event happen (see Figure 1). In other words, for each n ≥ 1:

• The sets An and ∂An are local sets made out of the union of 2−n dyadic segments with elements of Sn, and An is
such that (An)n = An. We say that a square s ∈ Sn is still active (meaning that we will continue exploring inside

3One could show that B is continuous even though it is not needed in the paper. To do this one may use the fact that the trace of the field in a line

can be seen as a distribution in H
−1 (see Section 4.3.2 of [10])
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Fig. 1. First two steps in the construction of A. In the left pictures we represent the Brownian motion associated to each point. In the right figure,
the grey areas represents An .

it) when s ∈ An. Furthermore, active squares also come equipped with a Brownian motion Ws stopped at time T n.
We call Kn the set of active squares in Sn and Vn the set of connected components of D\An, i.e., the inactive
components. Note that Vn ⊆ ⋃n

k=1 Sn.
• In order to construct An+1 and to continue W , we proceed as follows: The components that were not active at

step n remain inactive. For s ∈ Kn, continuously grow the middle lines as done in the first step. Now, define for
0 ≤ t ≤ n(T + 1) and s+ any direct descendent of s, Ws+

(t) := Ws(t ∧ nT ) + Bs(t − nT )1{t≥nT }, where Bs is the
BM associated with the change of the conditional expectation of 2n(�An

,1s) given the increasing procedure in s.
We keep active those squares s+ where its associated BM did not hit 1 before time (n + 1)T , and we make s+
inactive (i.e. s+ ∈ Vm for m ≥ n + 1) if its associated BM hit 1 before time (n + 1)T . We define An+1 as the closed
union of all the active squares at time (n + 1) with the boundary of the inactive squares. We can also see it as An

minus the squares s+ that became inactive in this step.

Note that An is non-increasing and that the family Vn is non-decreasing. We define A to be the intersection of all
An. The complement of A is then just the union of the squares that stop being active at some point, more precisely,
D\A is the disjoint union of the squares in

⋃
n Vn. Thus, we have that An = An. Note that for a given dyadic square

s, on the even that s ∈ Vn, the harmonic function hA coincides with the harmonic function hD\Tn on s (where Tn the
union of all boundaries of 2−n-dyadic squares) and that (�A,1s) = γn(s).
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The set A is not large
It follows from the construction that the probability that a given dyadic square s of side-length 2−n is still active at step
n is equal to the probability that a one-dimensional Brownian motion did not hit 1 before time nT . This probability
decays like a constant times 1/

√
n as n → ∞. From this, it follows readily that the size of A is indeed of the type

required for (2)2.

Proposition 3.1. The expected value of the area of the ε-neighbourhood of A decays almost surely like O(| log ε|−1/2).

Proof. Indeed, if Nn = Nn(A) denotes the number of closed 2−n dyadic squares that intersect A, then

E[Nn] =
∑
s∈Sn

E[1{s⊆An}] + C

n−1∑
j=1

∑
s∈Sj

2n−j
E[1{s⊆Aj \Aj+1}]

≤ 4n
P(BM does not hit 1 before T n) + C2n

n−1∑
j=1

j−3/22−j ≤ C
4n

√
n

(mind that in Nn, we have also to count the squares that intersect the boundaries of squares that have stopped being
active, which explains the sum in j ). �

A first moment estimate
Note that to define the set A, we have in fact associated a Branching Brownian motion (BBM) W to each GFF,
where each BM splits into 4 independently evolving BM at each time which is a multiple of T . However, it should
be emphasised that for a given dyadic square s of side-length 2−n, the value of the corresponding Brownian motion
at time nT is not equal to the expected mean height of the GFF in s given the exploration up to the n-th generation.
Indeed, this mean height has a higher value when s is towards the centre of D than when it is near its boundary. This
phenomenon is not mirrored by the Branching Brownian motion description. However, a key observation is that this
difference is averaged out when summing over all squares. For instance, it is easy to check by induction on n that

∑
s∈Sn

γn(s) =
∑
s∈Sn

4−nWs(nT ),

where Ws denotes the Brownian motion that follows the branch of the BBM corresponding to s.
The variant of this result that is useful for us is the following.

Lemma 3.2.

E
[
(�A,1D\An)

] = E

[∑
s∈Vn

Area(s)

]
.

The right-hand side is equal to the probability that a Brownian motion started from 0 hits 1 before time nT , which
converges to 1. This shows already that (�A,1D\An) can not converge in L1 to (�A,1), which is a symmetric random
variable with mean 0.

Proof. Note that D\An = ⋃
s∈Vn

s and that at time n, �∂An = �A in all elements of Vn and �∂An = �Tn in all of those
in Kn. This implies that E[(�A,1D\An)] = −E[∑s∈Kn

γn(s)]. Then, it is enough to prove that

E

[ ∑
s∈Kn

γn(s)

]
= 4−n

E

[ ∑
s∈Kn

Ws

]
= −E

[∑
s∈Vn

Area(s)

]
.

The second equality just follows from the optional stopping theorem. For the first equality we have to work harder.
Take m ≤ n ∈ N and fix s′ ∈ Sm, we have that for all s ∈ Sn with ancestor s′, Ws((m + 1)T ) − Ws(mT ) is equal to
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4m(γm+1(s
′) − γm(s′)) and that E[1{s∈Kn} | �Tm+1 ] does not depend on s. Now, let us show that the increment of the

harmonic function for s ∈ Kn at level m can be computed using the Brownian motion,
∑

s∈Sn:s′≤s

E
[
(γm+1 − γm)(s)1{s∈Kn}

] =
∑

s∈Sn:s′≤s

E
[
(γm+1 − γm)(s)E[1{s∈Kn} | �Tm+1 ]

]

= 4m−n
E

[
(γm+1 − γm)

(
s′)

E[1{s∈Kn} | �Tm+1 ]
]

= 4−n
∑

s∈Sn:s′≤s

E
[(

Ws
(
(m + 1)T

) − Ws(mT )
)
1{s∈Kn}

]
.

We conclude by writing a
∑

s∈Kn
γn(s) as a telescopic sum. �

This set A is not thin
Our goal is now to derive the following fact, which combined with Proposition 3.1 proves the statement (2)2:

Proposition 3.3. The local set A is not thin.

This is a direct consequence of the following claim:

Claim 3.4. The sequence of random variables (�A,1D\An) is bounded in L2.

Indeed, if (�A,1D\An) would converge in probability towards (�,1), then it would converge also in L1, and we
have seen in the previous paragraph that this can not be the case.

Deriving Claim 3.4 requires some care. We have to bound covariances of the increments of the integral of the
harmonic function in two squares, s and s′, at each step of the process. To do that, we separate the increments
according to whether or not they come from the conditional expected value of Tm with m bigger or equal, p, the
height of s ∧ s′, the last common ancestor of s and s′. We realise that if we condition according to the values of the
GFF in Tp many terms become constant and allow us to go the increments of level p, instead of n.

Proof of the claim. As in the beginning of Lemma 3.2, (�A,1D\An) = (�A,1) + ∑
s∈Kn

γn(s). Given that
Var(�A,1) ≤ Var(�,1) it is just enough to bound

E

[ ∑
s,s′∈Kn

γn(s)γn

(
s′)].

We do this by writing γn(s) and γn(s
′) as the sum of the increments at each iteration step. Things are a little bit messier

than for the first moment because one has more terms to evaluate. For s, s′ ∈ Sn, we will have to consider the common
ancestor w = s ∧ s′. In the following lines, we first fix p ≥ 2 and w a 2−p-daydic square.

For any m,o ≥ p conditionally on �Tp , (γm+1 −γm)(s)1{s∈Kn} and (γo+1 −γo)(s
′)1{s∈Kn} are independent. Hence,

∑
p≤m,o<n

∑
s,s′∈Sn

s∧s′=w

E
[
(γm+1 − γm)(s)(γo+1 − γo)

(
s′)1{s,s′∈Kn}

]

=
∑

p≤m,o<n

∑
s,s′∈Sn

s∧s′=w

E
[
E

[
(γm+1 − γm)(s)1{s∈Kn} | �Tp

]
E

[
(γo+1 − γo)

(
s′)1{s′∈Kn} | �Tp

]]

=
∑

s,s′∈Sn

s∧s′=w

8−n
E

[
E

[(
Ws(nT ) − Ws(pT )

)
1{s∈Kn} | �Tp

]
E

[(
Ws′

(nt) − Ws′
(pt)

)
1{s′∈Kn} | �Tp

]]

≤
∑

s,s′∈Sn

s∧s′=w

8−n
E

[(
Ws(pT ) + 1

)21{w∈Kp}
] ≤ C8−p√

p,
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where for the third equality we used the same technique as in Lemma 3.2 and for the fourth and fifth we just use the
optional stopping theorem for the BM B and for B2

t − t .
It is also true that P(u ∈ Kn | Tp) is constant for all u with ancestor w and that conditionally on �Tp , {s ∈ Kn} is

independent of {s′ ∈ Kn}. This allows us to compute the following second term

∑
0≤m,o<p

∑
s,s′∈Sn

s∧s=w

E
[
(γm+1 − γm)(s)(γo+1 − γo)

(
s′)1{s,s′∈Kn}

]

=
∑

0≤m,o<p

∑
s,s′∈Sn

s∧s=w

E
[
(γm+1 − γm)(s)P[1{s∈Kn} | �Tp ](γo+1 − γo)

(
s′)

P[1{s′∈Kn} | �Tp ]]

= E
[
γp(w)21{w∈Kp}

] ≤ C8−p√
p log(p),

where in the last step we have used (2.2) and the fact that the variance of γp(w) is bounded by that of (�,1w).
For the remaining term we need to bound the cross-product and using similar remarks as before we have that

∑
0≤m<p≤o<n

∑
s,s′∈Sn

s∧s=w

E
[
(γm+1 − γm)(s)(γo+1 − γo)

(
s′)1{s,s′∈Kn}

]

=
∑

0≤m<p≤o<n

∑
s,s′∈Sn

s∧s=w

E
[
(γm+1 − γm)(s)P[1{s∈Kn} | �Tp ]E[

(γo+1 − γo)
(
s′)1{s′∈Kn} | �Tp

]]

= −E
[
γp(w)

(−Ww(pT ) + 1
)
c
(
Ww(pT ),n − p

)
1{w∈Kp}

] ≤ C8−p√
p log(p),

where c(x,m) is the probability than a BM hits height x + 1 before time mT .
Summing all the previous terms up, we get that

E

[ ∑
s,s′∈Kn

γn(s)γn

(
s′)] ≤ C′ + C

∞∑
p=2

4−p√
p log(p) < ∞.

�

3.3. The example in higher dimensions

We now explain how to adapt the previous example to the higher-dimensional setting. The only slight is that in the
two-dimensional case, we used the scale invariance of the GFF, while we will now use the scaling relation (2.1).

To adapt our example, let us define D = S∅ := (0,1)d . We use the d-dimensional dyadic hypercubes denoted now
by Su where u are finite sequences in {1, . . . ,2d}. When � is a GFF in D, we are now going to discover its values on
all simultaneously growing all the (d − 1)-dimensional mid-hyperplanes. Then, the iterative construction proceeds in
almost the same way, but with a notable difference. Due to the different scaling behaviour of the GFF, if the evolution
of the conditional mean height during the first iteration evolves like a Brownian motion up to some time T , then the
evolution during the second iteration is that of a Brownian motion during time T × 2d−2, and so on. In other words,
the intervals between the branching times of the branching Brownian motion will grow exponentially, and the n-th
branching time will be Tn = T (2(d−2)n − 1)/(2d−2 − 1) instead of nT .

Other than that, nothing in the previous discussion changes. Lemma 3.2 together with Claim 3.4 become readily:

Lemma 3.5. For this A we have that E[(�A,1D\An)] = E[∑s∈Vn
Volume(s)] and the second moment of (�A,1D\An)

is uniformly bounded.

Just as in the 2-dimensional case, this then implies that A is not thin.
To upper bound the Minkowski dimension, the only difference is that the probability that a given dyadic hypercube

of side-length 2−n is active at the n-th iteration is now the probability that a Brownian motion does not hit level 1
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before time Tn, which leads to the estimate on the size of A as in (2)d . Indeed, if Nn denotes the number of closed
dyadic hypercubes that intersect A,

E[Nn] ≤ C

n∑
j=1

∑
s∈Sj

2(n−j)(d−1)
E[1{s⊆Aj }] = C2n(d−1)

n∑
j=1

2j
P(BM hits 1 after time Tn)

≤ C2n(d−1)

n∑
j=1

2(−d/2+2)j ≤ C2max{d−1,d/2+1}n.

Thus, thanks the Markov inequality

P
[
Nn ≥ 2(max{d−1,d/2+1}+ε)n

] ≤ C2−εn,

and thanks to the Borel–Cantelli Lemma, we can conclude that the upper Minkowski dimension of A is almost surely
bounded by max{d − 1, d/2 + 1}.

We conclude that (2)d holds for any d ≥ 3.

Proposition 3.6 ((2)d ). This local set A is not thin, and its upper Minkowski dimension is almost surely not larger
than max{d − 1, d/2 + 1}.

4. Small sets are thin (proof of (1)d )

Let us briefly note that the definition of thin sets can be extended to non-local sets: we say that a set A is thin if for all

f smooth bounded function in D we have that (�,f 1An)
P→ 0 as n → ∞. This definition is useful because a.s.

∑
s∈Sn:s�D\An

(�,f 1s) = (�,f 1An), (4.1)

so that it is sufficient to bound the value of the GFF in hyper-cubes of size 2−n.
The following proposition links both definitions.

Lemma 4.1. Let � be a GFF on D and A a local set. A is thin in this last sense if only if A is a thin local set.

Proof. It is enough to see that for all f smooth and bounded function:

(�,f 1An) − (
(�A,f ) − (�A,f 1D\An)

) = (
�A,f 1An

) P→ 0 as n → ∞. �

This shows for instance that any deterministic closed set A with zero Lebesgue measure is a thin local set. Indeed,
if ‖f ‖∞ < 1, by dominated convergence,

E
[
(�,f 1An)

2] =
∫∫

An×An

f (x)GD(x, y)f (y)dydx → 0

as n → ∞.

4.1. The case d ≥ 3

Now, we want to show that for any set with Minkowski dimension smaller than 1 + (d/2) satisfies (4.1). To do this,
let us see how big are the values which actually “give mass” to the GFF.



On thin local sets of the Gaussian free field 1809

Lemma 4.2. Let d ≥ 3 and � be a GFF in D ⊆ Rd . Then, there exists a deterministic constant Cd such that for any
bounded function f with ‖f ‖∞ ≤ 1,

E

[∑
s∈Sn

∣∣(�,f 1s)
∣∣1{|(�,f 1s )|≥Cd

√
n2−(d/2+1)n}

]
→ 0 (4.2)

where Cd is a deterministic constant.

Proof. To begin, let us recall that there exists an absolute constant C̄d such that for any s ∈ Sn and any bounded
‖f ‖∞ ≤ 1,

∫∫
s×s

f (x)G(x, y)f (y) dx dy ≤ C̄d2−(d+2)n. (4.3)

By an exact computation we have that, if we define Kd := C2
d/(2C̄2

d), then

∑
s∈Sn

E
[∣∣(�,f 1s)

∣∣1{|(�,f 1s )|≥Cd

√
n2−(d/2+1)n}

] ≤ 2nd2−(d/2+1)ne−Kdn → 0,

when Kd > log(2) · (d/2 − 1). �

We can now use the lemma to prove (1)d .

Proposition 4.3 ((1)d ). Let D ⊆ R
d be an open set, � a GFF in D and A a local set of �. If the upper Minkowski

dimension of A is almost surely strictly smaller than max{d − 2, d/2 + 1}, then A is a thin local set.

Proof. Let us first note that if the upper Minkowski dimension δ(A) of A is strictly smaller than d − 2, then A is
polar, so that Lemma 2.1 implies that �A = 0, and thus A is a thin local set.

The following argument will in fact not use the fact that A is a local set. Note that WLOG we can take ‖f ‖∞ ≤ 1.
Let us now define Mn := Mn(A) as the amount of open dyadic squares of size 2−n that intersect A. Then, by studying
whether the integral of the field on each square is smaller than Cd

√
n2−(d/2+1)n, we have that P(|(�,f 1An)| ≥ ε) is

smaller than or equal to

P

(∑
s∈Sn

∣∣(�,f 1s)
∣∣1{|(�,f 1s )|≥Cd

√
n2−(d/2+1)n} ≥ ε

)
+ P

(
Mn2−(d/2+1)n

√
nCd ≥ ε

)
. (4.4)

The first term converges to 0 as n → ∞ thanks to Lemma 4.2. Also, as n → ∞ the second term converges to 0. To
see this, note that Mn ≤ Nn, the amount of closed dyadic squares that intersect A. This implies that the second term
is smaller than or equal to P(Nn ≥ εCd2(d/2+1)n

√
n). This term converges to 0 because the Minkowski dimension of

A is smaller than 1 + (d/2). �

Remark 1. Let us note that the proof of Proposition 4.3 can be improved in the case where d is either 3, 4 or 5. In
this case, if Nn(A)2−(d/2+1)n

√
nCd converges to 0 in probability, then A is thin.

Note that with this proposition and its proof we can get some other basic properties of thin sets.

Corollary 4.4. Let D ⊆R
d be an open set, � a GFF on D and A, B thin local sets. If the upper Minkowski dimension

of A is strictly smaller than d/2 + 1, then:

(1) A ∪ B is also a thin local set.
(2) If hA is integrable (i.e., such that

∫
D\A |hA| < ∞) and B has zero Lebesgue measure, then a.s. B\A is thin for

�A := � − �A.
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Proof.

(1) Note that for any bounded smooth function f :

∣∣(�,1(A∪B)n)
∣∣ ≤ ∣∣(�,f 1Bn)

∣∣ + ∣∣(�,f 1An\Bn))
∣∣ P→ 0, as n → ∞,

where the second term goes to 0 because it can be written as a sum over elements of Sn and the amount of terms in
that sum is smaller than the cardinal {s ∈ Sn : s ⊆ An}. Thus, one can bound the probability of it being bigger than
ε > 0 by the analogue of (4.4). The same argument used in the proof of Proposition 4.3 shows the convergence
to 0.

(2) Let f be a bounded function and note that the fact that because hA is integrable and B has 0 measure∫
D\A hA(x)1(B\A)nf (x)dx goes to 0. Additionally (�,f 1(B\A)n) because of the same reason as in the proof

of (1). �

In future work, we plan to prove that when the upper Minkowski dimension of A is smaller than d/2 + 1, then hA

is integrable on D\A, which will allow to relax a little bit the conditions in this last corollary.
Note that this does not answer the question whether the fact that B is thin implies that its Lebesgue measure is 0.

Remark that such statements are non-trivial, due for instance to the fact that we cannot exclude at this point, the fact
that there exist thin local sets, with non-thin local subsets.

4.2. The case d = 2

This case is similar to general dimension, so we just remark where the differences lie.
We need a lemma analogue to Lemma 4.2.

Lemma 4.5. Let d ≥ 2 and � be a GFF in a bounded domain D ⊆ R
2. Then for any bounded function f such that

‖f ‖∞ ≤ 1,

E

[∑
s∈Sn

∣∣(�,f 1s)
∣∣1{|(�,f 1s )|≥C

√
log(n)

√
n2−2n}

]
→ 0 (4.5)

where C is a deterministic constant.

Proof. We just need to note that for any bounded D ⊆R
2, there exists a constant C̄ such that:

∫∫
s×s

f (x)G(x, y)f (y) dx dy ≤ C̄2−4n logn. (4.6)

Thus, similarly to Lemma 4.2

∑
s∈Sn

E
[∣∣(�,f 1s)

∣∣1{|(�,f 1s )|≥Cd

√
n2−(d/2+1)n}

] ≤ 22n
√

n2−2ne−K log(n) → 0,

when K > 1/2. �

Now, we can conclude (1)2 using the same reasoning as Proposition 4.3

Proposition 4.6 ((1)2). Let D ⊆ C be a bounded open set, � a GFF on D and A local set. If there exists δ > 0 such
that

E[Nn] = o

(
4n√

n log(n)

)

as n → ∞, then A is a thin local set.
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Remark 2. Let us note that there is also an equivalent of Corollary 4.4 when d = 2. In this case we just need that A

and B are thin local sets and that E[Nn(A)] is o(4n/
√

n log(n)).

5. Some comments about the definitions of thin local sets

Let us now make some somewhat abstract comments about the definition of local sets. One general strategy used to
define local sets is to use some deterministic “enlargements” of the random sets A (see for instance [26]). To the best
of our knowledge, only dyadic-type enlargements have been used in earlier works, but this is a somewhat arbitrary
choice. For our purposes here, it seems natural to consider also other possible deterministic enlargements – indeed,
this a priori choice could be important, given that some property may hold for one approximation scheme, and not for
the other.

Let us describe one possible class of discrete approximation schemes (DAS), for which the proofs of the present
paper can be adapted rather directly.

Discrete aproximation schemes

Define a pre-DAS for a domain D ⊆R
d to be a sequence (An)n≥0 of families of closed sets An = (Bn,Cn) for which

there exists some (large) constant C ∈ R such that the following holds for any n ∈N:

(1) For any two distinct c and c′ in Cn, the Lebesgue measure of c ∩ c′ is zero.
(2) For any c in Cn the diameter of c is upper bounded by C2−n and its volume is lower bounded by 2−nd/C.
(3) Leb(

⋃
b∈Bn

b) = 0. And for all E ⊆R
d compact, the cardinal of the elements of Bn that intersect E is finite.

For a fixed pre-DAS An, take Bn := ⋃
b∈Bn

b, the set of all points covered by elements of B. For all closed set
A ⊆ D̄, define A{A}n as the set of all elements of Cn that have a non empty intersection with A\Bn and take A[A]n
the union of all sets in A{A}n with all the set in Bn that have non-empty intersection with A. More formally,

A{A}n := {
c ∈ Cn : c ∩ A\Bn �=∅

}
,

A[A]n :=
⋃

c∈{A}n
c ∪

⋃
b∈Bn,

b∩A�=∅

b.

We then say that a pre-DAS An is a DAS if for all closed set A ⊆ D̄, A[A]n ↘ A.
In this context, we understand A[A]n as an approximation of A using a union of elements in Bn and Cn. It should

be understood that the elements of Cn are the only ones “giving mass” to A[A]n. A{A}n represents all the set in Cn

that where used to construct A[A]n.
Dyadic hyper-cubes provide an example of DAS – more precisely, when Cn are the closed dyadic hypercubes of

side-length 2−n intersected with D and Bn is empty. This is our canonical DAS and it is such that for all closed sets
A the cardinal of A{A}n is Nn.

Let us remark that condition (2) implies that if A is bounded |A{A}n| ≤ CNn and that there exists an absolute
constant Cd such that for any c ∈ Cn there exists Cd such that (4.3) or (4.6) holds.

The generalised thin local sets

We are now ready to give an alternative definition of thin local sets. This definition coincides with that of [26] in
the particular case when hA is integrable on D \ A (so that working with DAS is not necessary). It is also similar to
Lemma 3.10 [17], where they ask � to be a.s. determined by the restriction of � to D\A. On the other hand, the first
example presented in Section 3 is non-thin, but it is proven in [3] that � is a function of the restriction of � to D\A.
This is because A is measurable of this restriction and �A is a measurable function of A.

Definition 5.1 (Generalised thin local sets). Let � be a Gaussian free field on a domain D and A ⊆ D a local set.
We say that A is a generalised thin local sets if for all f smooth and with bounded support in R

d (C∞
0 (Rd)) and for

all DAS An, the sequence (�A,f 1D\A[A]n) converges in probability to (�A,f ) when n → ∞.
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Note that (�A,f 1D\A[A]n) is always well defined thanks to the fact that when the supp(f ) is compact, A[A]n can
take only finitely many values. Also, as we have said before, if

∫
D\A |hA| < ∞, then the limit of (�A,f 1D\A[A]n) is

a.s. equal to
∫
D\A f (z)hA(z) and this limit does not depend on the chosen DAS. The DAS framework is relevant in

the case where the integral of |hA| on D \ A diverges.
Additionally, when

∫
D\A |hA| < ∞ it is actually enough to check the criteria for functions f in C∞

0 (D), because

when we approximate one function in C∞
0 (Rd) restricted to D by one in C∞

0 (D) both the left and right term of the
definition converge to what they should.

Let us briefly note that the definition of thin sets can be extended to non-local sets: We say that a set A is thin if for
all f ∈ C∞

0 (Rd) and for all DAS A·
∑

c∈A{A}n
(�,f 1c) = (�,f 1A[A]n)

P→ 0, as n → ∞.

it is easy to see that an analogue of Lemma 4.1 also holds in this setup. This, together with the estimates (4.3) and
(4.6) allow us to prove two facts:

• When a deterministic set A has 0 Lebesgue measure it is generalised thin.
• If the hypothesis of Proposition 4.3 or 4.6 hold, then the set A is generalised thin.

Additionally, note that when a set is a generalised thin local set, then it is thin. This implies that the sets A defined
in Section 3 are not thin local sets.

Let us remark that there are non-local random sets that are thin for one approximation scheme but not for another.
Because in this paper we are mostly interested in local sets, we will only sketch the proof of this fact for d = 4. Let us
see that one can find non-thin sets that live in a deterministic hyperplane of dimension 3. This implies that the given
DAS actually does matter as one can always use a Bn whose union contains this hyperplane. We construct this set by
iteratively dividing a fix hyperplane using dyadic hypercubes, and only keeping those on which the integral of the GFF
is bigger than δ2−(d/2−1)n = δ2−n. If we call this constructed set A, we can use a first and second moment estimate to
show that if δ is small enough, there is a probability bounded away from 0 that Nn(A) ≥ 3−n23n. It is now clear that
the set A is not thin when using only the dyadic hypercubes, as when we are on the event {Nn(A) ≥ 3−n23n}:

∑
c∈A{A}n

(�,f 1c) ≥ δ2−nNn(A) ≥
(

4

3

)n

→ ∞.

We will finish by stating two open question. We still don’t know whether the fact that a local set is thin for one
particular approximation scheme implies it is a generalised thin local set. In particular, we are not able to show that
the set A defined in Section 3 is not thin for the approximation using dyadic hyper-cubes. Another open question is
whether the union two (generalised) thin local sets is always a (generalised) thin local set. On the other hand, it is true
that for all the important applications that have arisen at this point in time, this fact has only been needed when at least
one of the sets is small enough.
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