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Abstract. We prove a quasi-independence result for level sets of a planar centered stationary Gaussian field with covariance
(x,y) = k(x —y), with only mild conditions on the regularity of . As a first application, we study percolation for nodal lines in the
spirit of (Publ. Math. Inst. Hautes Etudes Sci. 126 (2017) 131-176). In the said article, Beffara and Gayet rely on Tassion’s method
(Ann. Probab. 44 (2016) 3385-3398) to prove that, under some assumptions on x, most notably that x > 0 and k (x) = 0(|x|_325),
the nodal set satisfies a box-crossing property. The decay exponent was then lowered to 16 4 ¢ by Beliaev and Muirhead in (Comm.
Math. Phys. 359 (2018) 869-913). In the present work we lower this exponent to 4 + ¢ thanks to a new approach towards quasi-
independence for crossing events. This approach does not rely on quantitative discretization. Our quasi-independence result also
applies to events counting nodal components and we obtain a lower concentration result for the density of nodal components around
the Nazarov and Sodin constant from (Zh. Mat. Fiz. Anal. Geom. 12 (2016) 205-278).

Résumé. On démontre un résultat de quasi-indépendance pour les lignes de niveau de champs gaussiens planaires stationnaires
centrés de covariance (x,y) — k(x — y), sous de faibles conditions sur la régularité de x. On applique d’abord ce résultat a
I’étude de la percolation des lignes nodales dans I’esprit de (Publ. Math. Inst. Hautes Etudes Sci. 126 (2017) 131-176). Dans
ledit article, Beffara et Gayet s’appuyent sur la méthode de Tassion (Ann. Probab. 44 (2016) 3385-3398) pour démontrer que sous
certaines hypotheses sur «, notamment que « > 0 et x(x) = 0(jx|73%), I'ensemble nodal satisfait une propriété de croisement
de boites. L’exposant de décroissance a plus tard été réduit a 16 + ¢ par Beliaev et Muirhead dans (Comm. Math. Phys. 359
(2018) 869-913). Dans le présent article nous baissons cet exposant jusqu’a 4 4 ¢ grace a une nouvelle approche pour la quasi-
indépendance d’événements de croisement. Cette approche ne s’appuie pas sur une discrétisation quantitative. Notre résultat de
quasi-indépendance s’applique aussi a des événements de comptage de composantes nodales et nous obtenons un résultat de
concentration par en dessous de la densité de composantes nodales autour de la constante de Nazarov et Sodin de (Zh. Mat. Fiz.
Anal. Geom. 12 (2016) 205-278).
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1. Introduction

In this article, we prove a quasi-independence result for level lines of planar Gaussian fields and present two appli-
cations of this result. First, we use it to revisit and generalize the results by Gayet and Beffara [6] who initiated the
study of large scale connectivity properties for nodal lines and nodal domains of planar Gaussian fields. Second, we
apply it to the study of the concentration of the number of nodal lines around the Nazarov and Sodin constant (the
constant v of Theorem 1 of [27]). Let f be a planar centered Gaussian field. The covariance function of f is the
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function K : R? x R? — R defined by:
Vx,yeR?  K(x,y)=E[fx)fO)]

We assume that f is normalized so that for each x € R2, K (x, x) = Var(f(x)) = 1, that it is non-degenerate (i.e.
for any pairwise distinct xq, ..., x; € R2, (f(x1),..., f(xx)) is non-degenerate), and that it is a.s. continuous and
stationary. In particular, there exists a strictly positive definite continuous function « : R* — [—1, 1] such that « (0) = 1
and, foreach x,y € R2, K (x,y) =«(x — y). We will also refer to « as covariance function when there is no possible
ambiguity. For each p € R we call level set of f the random set N, := f~!(—p) and excursion set of f the random
setDp:=f ~1([=p, +00[).2 Let us first state our result regarding planar box-crossing properties.

Box crossing estimates for planar Gaussian fields. In [6], the authors give conditions under which such sets satisfy
a box-crossing property at p = 0. We say that random sets satisfy a box-crossing property if for any quad (i.e. a
topological rectangle with two opposite distinguished sides) Q there exists a positive constant ¢ such that for any
(potentially sufficiently large) scale s, there is a crossing of sQ between distinguished sides by the random set with
probability larger than c. The study of the case p = 0 is natural since this is the level at which duality arises, see for
instance Remark A.11 in our Appendix. The most important conditions asked in [6] were some symmetry conditions,
the fact that f is positively correlated (which means that the covariance function « takes only non-negative values) and
a sufficiently fast decay for « (x) as |x| does to 400, namely k (x) = O(|x|73%). In [8], Beliaev and Muirhead have
lowered the exponent 325 to any « > 16. In the present paper, we lower this exponent to any « > 4, thus obtaining the
following result:

Theorem 1.1. Assume that f is a non-degenerate, centered, normalized, continuous, stationary, positively correlated
planar Gaussian field that satisfies the symmetry assumption Condition 1.8 below. Assume also that k satisfies the
differentiability assumption Condition 1.10 below and that k(x) < C|x|™% for some C < 400 and o > 4. Let Q
be a quad, i.e. a simply connected bounded open subset of R* whose boundary 9Q is piecewise smooth boundary
with two distinguished disjoint segments on 0Q. Then, there exists ¢ = c¢(k, Q) > 0 such that for each s € 10, +00[,
the probability that there is a continuous path in Dy N sQ joining one distinguished side to the other is at least c.
Moreover, there exists sy < +00 such that the same result holds for Ny as long as s > sg.

Lowering the exponent « below 4, if at all possible, would require new ideas (see Remark 1.13). This result is the
analog of the Russo—Seymour—Welsh theorem for planar percolation from [34,35], see also Lemma 4 of Chapter 3
of [12], Theorem 11.70 and Equation (11.72) of [18] or Theorem 5.31 of [17]. For more about the links between
connectivity properties of nodal lines and domains and percolation, see [3,6,8—-10,22-24,33]. Box-crossing estimates
have previously been extended to some other dependent models, see [2,11,14,37] and also to some non-planar models,
see [5,30]. It seems also relevant to mention the recent work [7], in which the authors prove that the box-crossing
property is stable by perturbations for sufficiently decorrelated discrete Gaussian fields. In particular, they obtain
analogs of Theorem 1.1 for many discrete Gaussian fields that are not positively associated.

The result analogous to Theorem 1.1 in [6] is Theorem 4.9. In [8], this is Theorem 1.7. Note that our assumptions
about the differentiability and the non-degeneracy of k are different from those in [6] and [8]. Still, we see them
essentially as technical conditions, whereas the question of the optimal exponent o seems to be of much more interest.

While our proof differs from the one in [6,8] in some key steps, the initial idea is the same, i.e. the use of Tassion’s
general method to prove box-crossing estimates which goes back to [37]. Let us first be a little more precise about the
proof in [6,8]. The three main ingredients are: (i) a quantitative version of Tassion’s method (see Section 2 of [6]),
(i1) a quasi-independence result for finite dimensional Gaussian fields (see Theorem 4.3 of [6] and Proposition C.1
of [8]) and (iii) a quantitative approximation result (see Theorem 1.5 of [6] and Theorems 1.3 and 1.5 of [8]). Steps
(i) and (ii) imply a discrete version of a RSW theorem and step (iii) is then used to deduce a RSW theorem for the
continuous model. The most important contribution of [8] is an improvement of the approximation result. Another way
to prove the box-crossing property is to use prove a quasi-independence in the continuum and then apply Tassion’s
method (not necessarily in a quantitative way). This strategy was also suggested in [9], where Beliaev, Muirhead and
Wigman prove a box-crossing estimate for random Gaussian fields on the sphere and the torus. More precisely, they

2This convention, while it may seem counterintuitive, is convenient because it makes D), increasing both in f and in p. See [33].
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used analogs of steps (ii) and (iii) above to prove such a quasi-independence result, see their Proposition 3.4. In the
present work, we also prove a quasi-independence result in the continuum (see Theorem 1.12) and then apply Tassion’s
method. However, the way we prove such a quasi-independence result is very different from [9]. In particular, we do
not rely on any quantitative approximation result and we rather prove a quasi-independence result uniform in the
discretization mesh (see Proposition 3.4). Moreover, our techniques, together with the quantitative adaptation of [37]
presented in [6] yield a uniform discrete RSW-estimate without any constraints on the mesh (see Proposition B.2).
This result is quite handy when using discrete techniques to study continuous fields, see for instance [33]. The proof
of Theorem 1.1 is written in Section 4 by relying only on our Sections 2 and 3 (but not on Section 3.4) and on [37].
For other works relying on Tassion’s method for box crossing estimates, see [2,15].

Before stating our quasi-independence results, let us state our result regarding the concentration of the number of
nodal components of planar Gaussian fields.

A concentration from below around the Nazarov and Sodin constant for the number of nodal components. In [25],
Nazarov and Sodin prove that, if g is a random spherical harmonic of degree n on the 2-dimensional sphere and if
No(n) is the number of nodal components (i.e. connected components of the O-level set) of g, then there exists a
constant cns € ]0, +oo[ such that, for every ¢ > 0, there exists C = C(¢) < +o00 and ¢ = c(¢) > 0 such that for every
neN:

N
n

28:| < Cexp(—cn). (1.1

In other words, the number of nodal components divided by n* concentrates exponentially around a constant. In [27],
the same authors consider a much larger family of fields and obtain the much more general following result but without
concentration.

Theorem 1.2 (Theorem 1 of [27]). Assume that f is a normalized, continuous, stationary planar Gaussian field
which satisfies the spectral hypotheses Condition 1.11 below. Then, there exists a constant cNs = cNs (k) € 10, +o0[
such that, if No(s) is the number of connected components of the nodal set Ny contained in the box [—s /2, s /212, then
No(s)/s2 goes to cNs as s goes to +00 a.s. and in L.

Remark 1.3. Their result is actually more general: they obtain a result for families of Gaussian fields on manifolds
with translation-invariant local limits (see Section 1.2 of [27]).

Theorem 1.2 and the quasi-independence results of the present paper enable us to obtain a concentration result from
below of No(s)/s2 around cns:

Theorem 1.4. Assume that f is a normalized, continuous, stationary and non-degenerate planar Gaussian field which
satisfies the spectral hypotheses Condition 1.11 below and the differentiability assumption Condition 1.10 below.With
the same notations as Theorem 1.2, we have the following:

1. if there exists C < 400 and ¢ > 0 such that for every x € R? we have |k (x)| < C exp(—c|x|?), then for every ¢ > 0
there exists Co = Co(k, €) < +00 and cy = co(k, &) such that for each s € 10, +oo[:

N,
P[ °§” < NS — 8} < Coexp(—cos);
S

2. if there exists C < +o00 and a > 4 such that for every x € R* we have |k (x)| < C|x|™%, then for every 8 > 0 and
every ¢ > 0, there exists Co = Co(k, @, §, €) < +00 such that for each s € 10, +o0[:

N
P[ OES) <cNs — 8] < Cos*ot?.
S

An important example of a Gaussian field which satisfies the decorrelation hypothesis of Item 1 above is the
Bargmann—Fock field which is the analytic Gaussian field : R — R with covariance function (x, y) € (R?)?
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K(x —y)= exp(—% |x — y|?). In some sense, this field is the local limit of the Kostlan polynomials which are random
homogeneous polynomials on the sphere which arise naturally from real algebraic geometry, see for instance the
introduction of [6] or that of [9]. The analogue of Theorem 1.2 is known for these polynomials (see [27]), but the
concentration inequality (1.1) is not known (neither from below nor from above). There are however two relevant
results in this direction. The first, Corollary 1.10 of [21], proves that the probability that there are no components
in a prescribed region decays polynomially fast. The second, Theorem 1 of [16], deals with the other extreme and
proves that polynomials of degree d >> 1 whose number of nodal components is maximal up to a linear term in d are
exponentially rare in d. We hope that the proof of Theorem 1.4 can be adapted in order to get the lower concentration
part of (1.1) with n = v/d for Kostlan polynomials of degree d >> 1.

Remark 1.5. In [27], the authors obtain Theorem 1.2 in any dimension. We believe that our techniques could be
extended to higher dimensions (probably with additional technicalities).

Remark 1.6. As explained in the paragraph above about RSW results and as suggested in [9], another way of ob-
taining quasi-independence results for nodal lines of planar Gaussian fields is to use the quasi-independence results
for finite dimensional vectors and the quantitative discretization results, both from [6,8]. One could probably deduce
Theorem 1.4 from either [6] or [8], though with slightly different assumptions, and more to the point, with a weaker
Item 2 (more precisely, we believe that the exponent in the right hand side would be 16 — « + § instead.

Before stating our quasi-independence results, we list the conditions on the Gaussian fields under which we work
in this article.

Conditions on the planar Gaussian fields. We will assume that Condition 1.7 is true in all the present paper.
Then, Condition 1.8 will be useful to apply classical percolation arguments, Conditions 1.9 and 1.10 will be useful to
obtain quasi-independence results, and finally Conditon 1.11 is the assumptions by Nazarov and Sodin to obtain their
convergence result.

Condition 1.7. The field f is non-degenerate (i.e. for any pairwise distinct x, ..., x; € RZ, (f(x1), ..., f(xk)) is
non-degenerate), centered, normalized, continuous, and stationary. In particular, there exists a strictly positive definite
continuous function « : RZ — [—1, 1] such that Kx,y) =E[f(x)f(»)]=«x( —x)and «(0) = 1.

Condition 1.8 (Useful to apply percolation arguments). The field f is positively correlated, invariant by 7 -rotation,
and reflection through the horizontal axis.

Condition 1.9 (Useful to have quasi-independence. Depends on a parameter « > 0). There exists C < +o00 such
that for each x € R?, |k (x)| < C|x|~°.

Condition 1.10 (Technical conditions to have quasi-independence). The function « is C® and for each 8 € N? with
B1+p2<2, limy 00 8/3/(()6) =0.

Condition 1.11 (Condition from [27]). Let p be the spectral measure of f which exists by Bochner’s theorem
(see [27]). Then: (i) fRz |k|4p(dk) < 400, (ii) p has no atom, (iii) p is not supported on a linear hyperplane and
(iv) there exists a compactly supported signed measure © whose support is included in the support of p and a bounded
domain D C R? such that F(u) (the Fourier transform of 1) restricted to 8D is non-positive and there exists ug € D
such that F(u)(ugp) > 0.

Note that, in the case of the Bargmann—Fock field, the spectral measure is simply a standard Gaussian measure, so
this field satisfies Condition 1.11 (for the case (iv), see Appendix C of [27]). Moreover, f is not degenerate since the
Fourier transform of a continuous and integrable function : R — R which is not 0 is strictly positive definite, see
for instance Theorem 3 of Chapter 13 of [13] (which is the strictly positive definite version of the easy part of Bochner
theorem). Finally, the Bargmann—Fock field satisfies all the conditions above (and for every « > 0).

The quasi-independence result. Theorem 1.12 below is our quasi-independence result for level lines of planar Gaus-
sian fields. We first need a few more notations. Consider the following setup: let k1, k2 € Z~¢ and let (&) 1<i <k +k,



Quasi-independence for nodal lines 1683

be a collections of either rectangles of the from [a, b] x [c, d] for some a < b and ¢ < d or annuli of the form
x + [—a,al? \ ]-b, b[2 for some x € R? and a > b. We say that a rectangle is crossed from left to right above (resp.
below) —p if there is a continuous path in D), (resp. D;) included in this rectangle that joins its left side to its right
side. Of course, an analogous definition holds for top-bottom crossings. Moreover, we say that there is a circuit above
(resp. below) —p in an annulus if there is circuit included in D), (resp. DY) included in this annulus that separates
its inner boundary from its outer boundary. Furthermore, for each i € {1,..., k1 + k2}, we let N, (i) denote the num-
ber of connected components of the level set AV, which are included in &;. We write K1 = Uf‘lzl &,C= Ufi] &,

Ko = Ul;:i];il €j»and G = U?Sﬁul 9Ej.

Theorem 1.12. Let f be a Gaussian field satisfying Conditions 1.7 and 1.10 and consider the above setup. There
exist d = d(k) < +00 and C = C(k) < +00 such that we have the following: let p € R. Let A (resp. B) be an
event in the o -algebra generated by the crossings above —p and below — p of rectangles among the (£;)1<i<k, (resp.
(E))ky+1<j<k +k )» the circuits above — p and below — p in annuli among the (£;)1<i<k, (resp. (€ )k, +1<j<k;+k,) and
the variables N, (i) for i € {1, ..., ki} (resp. i € {ki +1,.... ki1 + ka}). Let n = sup,.cic, ye, Ik (x — y)|. If K1 and
K> are at distance greater than d, then:

IP[A N B] — P[AP[B]| < ——"

SN

Note that in Theorem 1.12 we can consider crossing of rectangles (and similarly circuit in annuli) by level lines.
Indeed, by Remark A.11, given a rectangle and for each p € R, a.s. there is a crossing of a rectangle included in ),
if and only if there is such a crossing above —p and a crossing below —p. The proof of Theorem 1.12 follows a
perturbative technique applied to a discrete approximaion of our model (see Section 2). To quantify the perturbation
we control certain “pivotal” events using geometric techniques and the Kac—Rice formula (see Section 3).

2
(1+1p1)* ]_[ Area(K;) + Length(C;) + k;).

Remark 1.13. If the perimeter of each of the rectangles and annuli of Theorem 1.12 is at most s, if ; and K, are at
distance more than s and if k (x) = O(|x|~%) then the right-hand-side of the estimates of Theorem 1.12 is:

ki+k Kk
0<s4‘°‘<1 4ot +¥)> = 0 (kikas*™),

N

uniformly in p as s — +oo with k1 and k» fixed. Here we see how our condition o > 4 from Theorems 1.1 and 1.4
appears: 4 equals 2 times the dimension. It seems that it would require new ideas to cross this value.

Remark 1.14. After the elaboration of this manuscript, the following works were brought to our attention:

e Piterbarg’s mixing inequality (see for instance Theorem 1.2 of [31]). This inequality is a more general version of
our Proposition 2.4 below. We have chosen to keep it in the main body of the proof because we interpret and present
it with a different point of view. See also Remark 2.5.

e An almost independence result from [26,28,29]. In Theorem 3.1 of [26] (see also Theorem 3.2 of [28] and Lemma 5
of [29]), the authors derive a quasi-independence result for Gaussian entire functions. The result states roughly that
a Gaussian entired function f, when restricted to a disjoint union of compact subsets of C not too large and far
enough from each other, can be realized as a sum of independent copies of itself on each compact subset and
a small perturbation. While the result is proved only for Gaussian entire functions, we believe it could apply to
general Gaussian fields with sufficient decorrelation and regularity properties. To deduce a result similar to our
Theorem 1.12 from Theorem 3.1 of [26], one would need to understand how a perturbation of the field affects the
events that we consider.

Remark 1.15. At least one of the terms Length(C;) and k; on the right-hand-side of the inequality in Theorem 1.12
must be present for the inequality to hold. Indeed, in their absence, we would have a quasi-independence result
uniform in the choice (and number) of rectangles involved in the events A and B as long as these rectangles stay
within prescribed sets Ky and K. Moreover the excursion set D, is measureable with respect to the o-algebra
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generated by the crossings of rectangles. Hence, we would have obtained the following result: let X1, 2 be two open
subsets of the plane far enough from each other, let p € R and let A (resp. B) be an event measurable with respect to
the excursion set D, N Ky (resp. D, N K3). Also, let n = SUPxekC,, yekos |k (x — y)| and assume that n < 1/2, then:

|P[A N B] — P[AIP[B]| < C'n Area(K;) Area(K). (1.2)

But this cannot be true in full generality. Indeed, let f be the Bargmann—Fock field®> described above, that is, the

analytic Gaussian field with covariance K (x,y) = ¢~ 2" Then it is easy to see that f satisfies Conditions 1.7
and 1.10 so Theorem 1.12 applies. For each s € ]0, +o0[, let A (resp. By) be the event that there is a continuous path
in A from 9[—s, 5] (resp. d[—3s, 3s]2) to 9[—4s, 4s]%. But f is analytic and N is a.s. smooth (see Lemma A.9)
so A, is measureable? with respect to Dy N [—2s, 25]%. On the other hand, B, is measureable with respect to Dy N
([—4s, 45)? \ ]-3s, 3s[2). But Aj implies By. Hence, if Equation (1.2) were valid, we would have

0(s4e—*‘2/2) =|P(A, N By) — P(A\)P(By)| = P(A,)P(BY).

But the Bargmann—Fock field satisfies the hypotheses of Theorem 1.1 so both A and B{ have probability bounded
from below as s — +00.

Extension of the above results. We believe that Theorem 1.12 above can be extended, in at least three directions.
First, intead of considering rectangles and square annuli, one could consider quads (i.e. topological rectangles) and
more general annuli. It seems that the treatment of the phenomena at the boundary will add new technical difficulties
and we believe that, if we considered quads with piecewise smooth boundaries, then we might have obtained the same
estimate as in Theorem 1.12 but with the following right hand side:

2
Cn 4 _ 2
———(1+1pl)e? | |(Area(l€i)+/ (1+|k|(t))dt+ki),
V1=1n? i=1 Ci

where drt is the length measure on the boundaries of the quads and |k| is the curvature (which is a Dirac mass at
non-smooth points).

A second extension would be an extension to higher dimensions. We believe that the techniques of the present
paper (except when we study the box-crossing property) are not restricted to the planar case. However, it seems that
an extension to higher dimensions would add technical difficulties in intermediate lemmas of Section 3.

A third extension would be to a larger class of events. It seems to be an interesting question to characterize a class
of events for which our methods from Sections 2 and 3 work.

Proof sketch. The proof of Theorem 1.12 relies on an abstract quasi-independence result for threshold events of
Gaussian vectors, namely Proposition 2.4. In this proposition, given a Gaussian vector X and two “threshold events”
{X € A} and {X € B} measureable with respect to disjoint sets of coordinates (e.g. discrete crossing events of disjoint
rectangles), we define a new Gaussian vector Y whose covariance is close to that of X such that {Y € A} and {Y € B}
are independent. Next, we create a path (X,), of Gaussian vectors with Xo = X and X| = Y and control the derivative
of P[X; € AN B] with respect to ¢ via “pivotal” events associated to A and B. The path method we have just sketched
is inspired by Slepian’s proof of the normal comparison inequality (see Lemma 1 of [36]). The only novelty so far is
the interpretation of the quantities which arise as probabilities of pivotal events.

Once this core result is established, in Section 3, we fix A and B as in° the statement of Theorem 1.12. Then,
we discretize K1 U I, and approximate A and B by some discrete events A%, B®. We then prove the estimate of
Theorem 1.12 for A* and B® with uniform bounds on & and let ¢ go to 0. This is the object of Proposition 3.4. In
order to prove the discrete inequality we first use Proposition 2.4 for X equal to f restricted to the discretization,

3For more information concerning the Bargmann—Fock field, we refer the reader to [6].

“4Indeed, a connected component of N is a deterministic function of any segment of this component by unique analytic continuation and by the
analytic implicit function theorem.

5 Actually, for simplicity, we begin with the case where A and B are crossing and circuit events. Once the proof is complete, we explain how to
deal with the general case in Section 3.4.
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with U = A® and V = B?. The right hand side is similar to the right hand side in Proposition 3.4. The key is then
to find good enough bounds for the probabilities of pivotal events. This is the object of Proposition 3.10, at least
for crossing events. The general case is dealt with in Section 3.4. Roughly speaking, if x is an interior point, to be
pivotal it must have four neighbors of alternating signs, so there is an e-approximate saddle point near x, which has
probability O(g?). If x is on the boundary (but not a corner), to be pivotal, it must have two neighbors with the same
sign separated by a third neighbor with the opposite sign, all three on the same side of a line passing through x. We
interpret this as a condition for the tangent of the nodal set at x to belong to an angle of size &, which has probability
O (¢). The proof of Proposition 3.10 is divided in two steps. The first is to show that pivotal events imply the existence
of zeros of certain fixed derivatives of f. The arguments are of geometric nature and are presented in Section 3.2.
The second part is to prove that these events are indeed exceptional using Kac—Rice type arguments. This is done in
Section 3.3.

Outline. In Section 2 we recall the key estimate needed to establish Theorem 1.12, namely Proposition 2.4. We
prove Theorem 1.12 (the quasi-independence thereorem for nodal lines) in Section 3. More precisely, in Sections 3.1,
3.2 and 3.3 we prove this theorem in the case where A and B are generated by crossing events and then in Section 3.4
we explain how to take into account the number of level lines components. In Section 4, we combine Theorem 1.12 (in
the case of crossings) with Tassion’s method (from [37]) to obtain Theorem 1.1. In Section 5, we use this theorem (in
the case of number of nodal components) to obtain Theorem 1.4 (concerning the lower concentration of the number
of nodal components). Finally, in Appendix A we recall classical results about Gaussian fields and in Appendix B we
prove a discrete box-crossing estimate uniform on the mesh, see Proposition B.2.

2. Quasi-independence for Gaussian vectors

In this section, we reinterpret a classical quasi-independence formula of Gaussian vectors, namely Proposition 2.4
below, which is at the heart of the proof of Theorem 1.12. We first need to introduce some notation.

Notation 2.1. For any subset U C R", write:

PiV,~(U):{(xl,...,x,,)eR”:Elyl,ygeR (x1,...,x,-_l,yl,xi+1,...,x,,)EU,}'

’ (xla"'axi7]5y25xi+l7"'7x}’l)¢U

Remark 2.2. Note that Piv; (U) is a subset of R” that does not depend on the ith coordinate. Hence, we will sometimes
see Piv; (U) as a subset of R"~! by forgetting the ith coordinate.

Remark 2.3. Forany U,V CR" and any i € {1, ..., n}, we have:
Piv; (U) = Piv; (U“) and Piv;(UNV)UPiv;(U U V) CPiv; (U) UPiv; (V).

Proposition 2.4. Let k1, ko € Z~g, let X be a non-degenerate centered Gaussian vector of dimension ki + k>, and
write X for the covariance matrix of X. Assume that, for each i € {1, ..., k1 +k2}, Xij; = 1. Moreover, let Y be a cen-
tered Gaussian vector of dimension ki + ky independent of X such that (Y;)1<i<k, has the same law as (X;)1<i<k,»
(Y ky+1<j<k +k, has the same law as (X )i +1<j<k +ky» and the vectors (Y;)1<i<k, and (Y )i, +1<j<k,+k, are in-
dependent. For all t € [0, 1], let X; = \/tX + /1 —tY. Furthermore, let 7 e Rkt 2 Jor U (resp. V) belong to the
sub-o -algebra ofB(Rlirkz) generated by the sets {x; > q;} foranyi € {1,...,k1} (resp. i € (k1 +1,..., k1 + k2}).
Then, we have:

IPIX e UNV]—P[X e UIP[X € V]|

1
< > |zi,»|f P[X; € Piv;(U) NPiv; (V) | X, (i) = gi, X:(j) = ¢;] dt
ie{l,...k1). 0
Jetki+1,k+ka)

1 ( q,-2+q,2»>
X ————exp|l —— ).

2 J1- %2 2
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Remark 2.5. Proposition 2.4 is a reinterpretation of a classical quasi-independence formula for Gaussian vectors
used in quantitative versions of Slepian’s Lemma (see [36] and Chapter 1 of [31], especially Theorem 1.1). The proof
presented here is very close to that of [31] except that we work in a level of generality more adapted to our purposes
and that we introduce the notion of pivotal events, which are central in the proof of Theorem 1.12. Later, we use this
definition to show that these probabilities are small for discrete approximations of crossing events.

Remark 2.6. The proof of Proposition 2.4 is an interpolation argument. The path X; defined in the statement is an
interpolation between X and Y. By construction of ¥, P[Y € U N V] =P[X € U]P[X € V] so the left hand side of
the inequality can be written as

1

d

—P[X; eUNV]dt
/Odt [X: ]

if you admit that the probability is differentiable. Now the first order of variation of this probability should correspond
to how likely the events X; € U and X, € V are to change when X, one perturbs one of the X;; and X; ; jointly, by a
bump that depends on the shift in the covariance, which here is ¥;; if i < k; < j and 0 otherwise. But this is precisely
what is expressed in the right hand side of the inequality.

Lemma 2.7. Fixn € Z-q, ¢ € R" and let U belong to the sub-o-algebra of B(R") generated by the sets {x; > q;}
forie{l,...,n}.Also, let ¢ be a function which belongs to the Schwartz space S(R™). Then, for eachi € {1, ..., n},
there exists a measurable function €; = €; (¢, U) : R"™! — {—1,0, 1} such that:

dg
/ a(x)dx :/V € (x1, -~-»xi—17xi+1,---,xn)(/?(xlv~--7xi—1,qnxi+l,--~,xn)l_[dxj-
U i Piv; (U) i

Proof. For each X = (X1, ..., Xi_1, Xi41,...,X%,) € R""! let U;(%) be the set of y € R such that (xp,...,xi_1,y,
Xi+1,-..,%xy) € U. By Fubini’s theorem:

| srwar=[ [ Fwaxas
Rr—1 U; (%) 8)(1

Now, note that, for each X, U; (X) equals either &, R, ]—00, g;[, or [g;, +00[. Moreover, if X ¢ Piv; (U), then U; (X)) =
Ror @. Let ¢;(X) be 1 if U; (X)) = ]—00, gi[, —1 if U; (¥) = [g;, +o0[, and O otherwise. By the fundamental theorem
of analysis:

/Rl/ —(x)dx,dx_/R 161'(56)(/3()61,~--,xi—1,qz’,xi+1,--~,)Cn)d)z
" t(-x) n-

2/ Gi(i)(p(xl,~-',xi7175]i’xi+17--~7xn)di-
Piv; (U)
Note that Fubini’s theorem and the fundamental theorem of analysis can be applied since ¢ € S(R"). ]

Proof of Proposition 2.4. Note that we have:

PIXeUNV]-PXeUIPIXeV]=PXeUNV]-P[YeUNYV]
=PX1eUNV]-PXoeUNYV].
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Hence, it is sufficient to prove that, for each ¢ € [0, 1], we have:
d P[X;eUNV]
dar !

< ) IZyIP[X: € Pivi(U) NPiv;(V) | X, (D) = gi» X: (j) = ¢;]
ie{l,....k1},
jelki+1,ki+ko}

2 2
1 a4t + 9
x 4exp<— ’ f). @.1)

21— % 2

Note that since X and Y are non-degenerate and independent, for every ¢ € [0, 1], X, is non-degenerate. Moreover,
X, has covariance X, defined as follows: %, ;; = X;; ifeither 1 <i, j <kjork;+1<i,j<ki+ky,and X, ;; =1%;;
otherwise. Let I' : S+ (R) x R" — R be® the map that associates to a matrix ¥ € S (R) and a point x € R" the
Gaussian density at x of a centered gaussian vector of covariance X. The function I' is C* and, for every 1 <i <
j<n,we have:’

ar 3T
= , (2.2)
321‘,]' Bxi ax]'
Hence, by using dominated convergence and the chain rule:
d d¥; i ad
—P[X,eUNV]= Y L [ (%, x)dx
dt 1<i<j<ki+k i Juav 9%
82
= Z Y / ['(Z,x)dx by .2). (2.3)
ie{l,...ki} unv 9% 9%;

jelki+1,ki+ka}

Since U depends only on the first ki coordinates and V' depends only on the k; last coordianates, we can apply
Lemma 2.7 first to (U, i iF(E;, -)) and then to (V, j, I'(¥;, -)). We obtain that:

’ BXj
aT
(El3x)d-x
unv 0x; 9x;
S/. F(El‘axl"‘9'xi717qivxl’+1’-"axjflaqj5xj+la-"7~xk1+k2) 1—[ dxl
Piv; (U)NPiv; (V) le{l,....k1+ka},
1¢{i.j}
=P[X, € Pv;(U) NPiv;(V) | X, (i) = gi, X (j) =4, G, J), 2.4

where y; (i, j) is the density of (X, (i), X;(j)) at (¢;, g;). Note that:

2, 2 2, 2
1 q; +4q; 1 q; +4q;
v, j) = —exP<— — ) < exp(— — ) (2.5
2t J1— (13;)2 20 =120/ " op 1 - 52 2
Here, in the first inequality, we used the fact that if A is a positive definite symmetric matrix, for any vector X,
(X, AX) > minsp(A)|| X ||2. If we combine (2.3), (2.4) and (2.5), we obtain (2.1) and we are done. U

n(n+1)
%Here S,;" T(R) is the set of positive definite symmetric matrices of size n, that we see as the corresponding open subset of R 2 =
{(Zi i<i<j<n}
TThis is a classical property of Gaussian densities which follows immediately by application of the Fourier transform, see for instance Equation (2.3)
of [4].
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Fig. 1. The face-centered square lattice (the vertices are the points of 72 and the centers of the squares of the 72 lattice).

3. Quasi-independence for planar Gaussian fields: The proof of Theorem 1.12

In this section, we prove Theorem 1.12. The steps of the proof are the following: we discretize our model, we apply
Proposition 2.4 to the discrete model, and then we estimate the probability of pivotal events that appear in the propo-
sition. We refer the reader to the introduction for a rough sketch of the proof. Let us now introduce the discretization
procedure (by following [6]).

We work with the face-centered square lattice (see Figure 1) that we denote by 7. We denote by 7°¢ this lattice
scaled by a factor ¢ and we denote by V? the vertex set of 7¢. Given a realization of our Gaussian field f, some p € R
and some ¢ > 0, the signs of the values of f + p on the sites of 7°¢ is a site percolation model on 7¢. It induces a
random coloring of the plane defined as follows: For each x € R?, if x € V* and f(x) > —p or if x belongs to an
edge of 7¢ whose two extremities yy, y satisfy f(y;) > —p and f(y2) > —p, then x is colored black. Otherwise,
x is colored white. In other words, we study a correlated site percolation model on T¢. We also need the following
definition.

Definition 3.1. Given ¢ > 0, an e-drawn rectangle is a rectangle of the form [a, b] x [c, d] where a < b and ¢ < d are
four integer multiples of €. An integer annulus is an annulus of the form x + [—a, al? \ ]-b, b[? where x € (SZ)2 and
a < b are two positive integer multiples of €.

The specific choice of the face-centered square lattice is not very important. We will essentially use the following
facts: (i) 7 is a triangulation, so we have nice duality arguments, see Remark 3.3 below, (ii) 7 is translation invariant,
(iii) any e-drawn rectangle and any e-annulus can be drawn by using the edges of 7, and (iv) 7 has nice symmetry
properties. Actually, we will use the point (iv) only in Section B, but the results of this latter section are not used in
the rest of the paper.

We start the proof of Theorem 1.12 by showing the result in the case where A and B are generated by crossing and
circuit events since the proof is a little less technical in this case. This first part of proof is written in Sections 3.1, 3.2
and 3.3. Note that this partial result is already sufficient to prove Theorem 1.1. We complete the proof of Theorem 1.12
by considering also the number of level lines components in Section 3.4.

3.1. The proof of Theorem 1.12 in the case of crossing and circuit events

In this subsection, we work only in the case of crossing and circuit events, we state Proposition 3.4, a discrete analog
of Theorem 1.12 with constants uniform in the mesh ¢, and we deduce Theorem 1.12 (in the case of crossing and
circuit events) from Proposition 3.4. The proof of Proposition 3.4 is written in Sections 3.2 and 3.3. Before stating
this proposition, we need a definition:

Definition 3.2. Let ¢ > 0, p € R, and consider the above discrete percolation model. Also, let £ be a rectangle and A
be an annulus. We say that there is a left-right e-crossing of £ above (resp. below) — p if there is a continuous black
(resp. white) path included in £ from the left side of £ to its right side. We define top-bottom e-crossings similarly. We
say that there is an e-circuit in A above (resp. below) — p if there is a continuous black (resp. white) path separating
the inner boundary of A from its outer boundary.
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Remark 3.3. We will use the following duality argument which follows from the fact that 7 is a triangulation and
that any e-drawn rectangle and any e-drawn annulus can be drawn by using edges of 7°¢ (see Definition 3.1). Let
e > 0, let £ be an e-drawn rectangle. Then, there is left-right crossing of £ above level p if and only if there is no
top-bottom crossing of £ below level p.

Proposition 3.4. Let f be a Gaussian field satisfying Conditions 1.7 and 1.10. There exists d = d (k) < +00 and C =
C (k) < 400 such that we have the following: Let p e R and ¢ € 10, 1]. Also, let k1, ky € Z~¢ and let (£;)1<i<k,+k, be
a collections of either e-drawn rectangles or e-drawn annuli. Let

ki ko k1+ky k1+ky
K=& a=. K= & a= U k.
i=l1 i=l1 Jj=ki+1 Jj=ki+1

Let A% (resp. Bf) be an event in the Boolean algebra generated by the left-right and top-bottom g-crossings above
—p and below —p of rectangles among the (&;); for 1 <i <ky (resp. (£;); for ki +1 < j < ki + k) and the &-
circuits above — p and below —p in annuli among the (£;); for 1 <i <kj (resp. (£;); for ki1 +1 < j <ki +k2). Let
N =8SUPyck, yek, IK(x = Y)|. If K1 and K5 are at distance greater than d, then:

2
|P[A® N B®] — P[A®]P[B?]| < %(1 +1pl)te [ [(Area(K:) + Length(C;) + k;).
- i=1

Note that the constant C in Proposition 3.4 does not depend on ¢. Let us first show how Theorem 1.12 follows from
Proposition 3.4 in the case where the events A and B are generated by crossing and circuit events. Also, here and in
all the rest of Section 3, we assume that each of the &;’s are rectangles. The proof adapts easily to the case where the
&i’s can also be annuli, but would be tedious to spell out.

Proof of Theorem 1.12: Part 1 of 2: The case of crossings. We assume that the events A and B are generated by
crossing and circuit events. Also, we assume that each &; is a rectangle since the proof with annuli is exactly the same.
First of all, using Lemma A.9 and reasoning by approximation,® it is enough to prove the result for rectangles whose
sides are integer multiples of some fixed n > 0. But this is a direct consequence of Proposition 3.4 with ¢, = n/k,
with the same family of rectangles, and by taking the limit as k goes to 4+-0c. Indeed, using Lemma A.9 once more,
it is easy to show that, if there is a (left-right, say) crossing of a rectangle above (resp. below) — p in the continuum
then a.s. there exists (a random) § > 0 such that this crossing belongs to a tube of width § included in D), (resp. Dj)).
Hence, such a crossing in the continuum implies the analogous crossing in the discrete as long as & < § and 14\ o
(resp. 1 g\ pex ) converges a.s. to 0 as k — +o0. If there is no left-right crossing of a rectangle above (resp. below) —p,
then (by Remark A.11) a.s. there is a top-bottom crossing below (resp. above) —p of this rectangle so 1 4e\ 4 (resp.
1 gex\ B) converges a.s. to 0 as k — +oo. Thus, we have shown Theorem 1.12 in the case where A and B are generated
by crossing (and circuit) events. (I

To prove Proposition 3.4, we are going to use Proposition 2.4. We first define a Gaussian vector X for each
t € [0, 1] in the spirit of the Gaussian vector X; from Proposition 2.4. Since we will apply intermediate lemmas to the
underlying continuous Gaussian fields, we first define a field f; for every ¢ € [0, 1] as follows:

Notation 3.5. Let f, (&)1<i<k,+ky» K1, K2, C1 and C; be as in Proposition 3.4. Let U1 and U, be disjoint neighbor-
hoods of K| and K5 respectively. Let g be a continuous Gaussian field indexed” by U/, Ul/> independent of f such that
g restricted to either of the Uf;’s has the same law as f restricted to {f; and such that g restricted to /] is independent

8Indeed, Lemma A.9 implies that crossing events for a given rectangle can be approximated by crossing events for approximations of this rectangle.
Since A and B are generated by a finite boolean algebra of crossings, they can be obtained by a finite number of intersections and unions of crossings.
Approximating each crossing and applying the same operations thus yields an approximation of A and B.

9The reason we extend g to open neighborhoods of K| and K5 is largely technical and can be ignored during first reading.
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of g restricted to Uy. For each t € [0, 1], let f; = +/t f + /1 — tg. Note that (since f is centered and non-degenerate)
for each ¢ € [0, 1], f; is a non-degenerate centered Gaussian field whose covariance function is:

Elfi(x) fiM]=«(x—y) ifx,yelyorx,yelh,
E[f,(x) f;(y)]=t«k(x —y) otherwise.

Also, foreach i € {1,2}, let Vi =K; N V*, and let X® (resp. X;) be f (resp. f;) restricted to Vi U V5.
We need one last notation before beginning the proof:

Notation 3.6. Given ¢, p, (&)1<i<k +k,» A° and B® as in Proposition 3.4, we write Vj and V5 as in Notation 3.5
and we write U® and V¢ for the corresponding Borelian subsets of RYIYY: ie. the elements of the Boolean algebra
generated by the sets {x; > —p} for any i € V{ U5 such that:

A*={X*eU®} and B°={X°eV°}].

Let us now start the proof of Proposition 3.4. By applying Proposition 2.4 to X¢ (which is centered, normalized
and non-degenerate since f is centered, normalized and non-degenerate), U¢ and V?, it is sufficient to prove that
there exists C = C (k) < 400 and d = d(x) < 400 such that, if 1 and K, are at distance greater than d then for each
t € [0, 1] we have:

> PX{ €Piv, (UF) NPivy (VE) | fi(x) = fi(y) = —p]

xeVy,
yevj
2
4 _ 2
<C(1+1pl)’e " [ [(Area(K:) + Length(C) + k). (3.1)
i=1

To prove (3.1), we need to find good enough bounds for the probabilities of pivotal events. This is the purpose
of Sections 3.2 and 3.3. The proof sketch provided in the introduction can be a useful guide to read the following
subsections. Remember also that we have assumed that all of the &;’s are rectangles.

3.2. Pivotal sites imply exceptional geometric events

In this subsection, we fix a point x on the e-lattice and explain how the fact that x is pivotal for the discretized event
U°® implies the cancellation of certain derivatives of the field. The results are combined in three lemmas that we state
together before proving them for future reference. Each proof is independent from the rest.

In the first lemma, we show that, roughly speaking, on the neighbors of a pivotal point x, the field must have
alternating signs relative to p.

Lemma 3.7. We use the same notations as in Notation 3.6 (remember in particular that K1 = qu:l & and C1 =
Uflzl 0&;). Let x € Vy, let 0® € Pivy(U?) C RY1YY2 and call black (resp. white) a vertex y € Vi UV; such that
@®(y) = —p (resp. @°(y) < —p). If the point x belongs to K1 \ Cy, then it has four neighbors x1, x3, x3, X4 in anti-
clockwise order around x and of alternating color. If the point x belongs to Cy and is the corner of none of the &;’s,
then x has three neighbors x1, x2, x3 in anti-clockwise order around x belonging to a common half-plane bounded by
a line through x and of alternating color.

In the last two lemmas, we explain how the information obtained in Lemma 3.7 implies the cancellation of certain
derivatives of the field on fixed segments. The arguments are entirely deterministic.

Lemma 3.8. Consider ¢ € c! (Rz) and x,x1,xp, X3 € R2. Assume that any two distinct vectors x — x; fori =1,2,3
do not point in the same direction and that the x; are numbered in anti-clockwise order around x. Assume that
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o We have p(x) =0, p(x1), ¢(x3) > 0 and ¢(x2) < 0.
e There is a closed half plane H such that x € 0H and x1,x2,x3 € H.

Then, there exists i € {1, 2,3} such that if | = [x, x;] has tangent vector v, d,¢ has a zero on .

Lemma 3.8 essentially states the following: If x is a point on the boundary of the rectangle such that ¢(x) = 0 and
such that, as one goes around x along a small half circle inside the rectangle, one encounters alternating color, then,
the tangent vector of the nodal line of ¢ containing x must take some specific values near x. We formalize this by
saying that restrictions of ¢ to certain small segments near x must have critical points.

Lemma 3.9. Consider ¢ € Cl(]Rz) and x,x1,Xx2,X3,X4 € R2. Assume that two vectors x — x; i =1,2,3,4 do not
point in the same direction and that the x;’s are numbered in anti-clockwise order around x. Assume also that:

We have ¢(x) =0, ¢(x1), ¢(x3) = 0 and ¢(x2), p(x4) <O0.

Let dy denote the diameter of {x, x1, ..., x4}. Then, there exist a finite set 0 of unit vectors and a constant Cy < +00
both depending only on the angles between the segments [x, x;]’s such that the following holds: There exist two
segments [y and I, with non-colinear unit tangent vectors vy, va € °U, of length at most Codo and both passing through
at least one of the points x, x1, ..., x4 such that 9, ¢ has a zero on Iy and 9,,¢ has a zero on I;.

Lemma 3.9 roughly says that if ¢ changes signs four times when going around x along a small circle, then it must
have an approximate saddle point at x. We formalize the notion of approximate saddle point by saying that there are
two non-colinear segments of length & on which the function ¢ has a vanishing derivative. In the proof we distinguish
several cases depending on the relative positions of the x;’s and the gradient of ¢ at x. This reduces the proof to a
planar euclidean geometry problem.

Proof of Lemma 3.7. By Remark 2.3 we may assume that there exists ig € {1, ..., k;} such that U? is the Borelian
subset of RV1YV2 which corresponds to the left-right crossing of &;,. If x ¢ &;, then Piv, (U?) is empty. If x € &, \ 9&;,
and w® € Pivy(U?), then there are two paths made of black vertices connecting x to left and right sides of &, and
two white paths made of white vertices connecting x to the top and bottom sides of &;,. These paths are necessarily
of alternating color around x, so in particular it has four neighbors of alternating color. This proves the first assertion.
Let x € C; N &, such that x is not a corner. If x ¢ d&;, then, as before, x must have four neighbors of alternating
color. But then among these, there must be three neighbors belonging to the same half-space bounded by x with the
properties required by the second assertion. On the other hand, if x € 9&;, then there must be a path of one color
starting at a neighbor of x and reaching the opposite side of the rectangle and two additional paths of the opposite
color connecting neighbors of x to each of the adjacent sides to the one containing x. But then, the three neighbors at
which these paths start are in the configuration announced by the second assertion. (I

Proof of Lemma 3.8. See Figure 2(a) for a snapshot of the proof. If Vg (x) = 0 then the result is trivial so assume that
Vo(x) # 0. Then, this gradient separates the plane into two closed half-spaces H; and H_ suchthatx e 0Hy =0H_,
Ve(x) is orthogonal to this boundary, and Vg (x) points toward H;. We distinguish between two cases: (i) There
exists ig € {1, 3} such that x;, € H_. In this case, let / = [x, x;,] with unit vector v. Then, d,¢(x) <0, ¢(x) =0 and
¢(x;y) > 0. Therefore, 9, f must vanish somewhere on /. (ii) The point x; belongs to H; (which happens if the case
(i) does not hold by the existence of the half-plane H and since the x;’s are in anti-clockwise order around x). In this
case, the same argument works with [ = [x, x»]. O

Proof of Lemma 3.9. See Figure 2(b) for an illustration of the proof. For each i € {1,2, 3,4}, let L; be the line
[x,x 4+ Co(x — x;)] for some Cy > 0 to be chosen laLer. If the anti-clockwise angle 6; between L;_; and L;y is less
than 7 (the indices should be read modulo 4), set L; := [x;_1, x;+1] and define Z,- to be the segment intersecting
the bisector of 6; orthogonally at x; and whose extremities belong to L;_; and L; 1. We fix Cyp large enough so that
whenever 6; is indeed less than 7, L; is long enough to intersect Zi. We will choose /; and I, among the L;’s, the
Zi ’s and the Zi ’s. The choice will follow by considering several distinct cases. In each case, the critical point will be
detected either by finding three consecutive points on the segment on which ¢ takes alternating signs, or by finding a
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Fig. 2. On the left: The proof of Lemma 3.8, more particularly the case (i) with i = 3. On the right: The proof of Lemma 3.9, more particularly
the case (ii).

point on the segment where ¢ vanishes and has, say, a positive derivative, and proving that ¢ takes a negative value
further along the segment. In both cases, the existence of the critical point follows by Rolle’s theorem.

As in the proof of Lemma 3.8, note that if Vo (x) = 0 then the result is trivial so assume that Vg (x) # 0. Then, this
gradient separates the plane into two closed half-spaces Hy and H_ such that x e 0 Hy = 0H_, V(x) is orthogonal
to this boundary, and Vg (x) points toward H, . Note that there are at least two consecutive points among the x;’s in
H_ or two consecutive points in H, such that they do not both belong to d H_ = 9 H;.. Without loss of generality,
assume that x1, x» € H_ and that they do not belong both to d H_. Then, along the segment L, ¢ starts at x with
value 0 and a non-positive derivative and ¢(x1) > 0. In particular, its derivative along this segment must vanish. We
now distinguish between two cases:

e Assume that there exists i € {2, 3,4} with x; € H_ such that, first, x; and x; are not both on d H_, and second,
f(x") >0 for some x” € L;. Then {l1, [} = {L1, L;} satisfies the required conditions (indeed, with the same argu-
ment as for L, the derivative of ¢ vanishes along L;).

e Otherwise, since ¢(x3) > 0, then on the one hand x3 necessarily belongs to H (possibly on its common boundary
with H_) and on the other hand ¢ is necessarily negative on L,. We distinguish between four subcases: (a) Assume
that x4 — x points in the direction opposite to x; — x and that there exists x’ € L3 such that ¢(x’) < 0. Then L3
is not colinear to L1 and {ly,l2} = {L1, L3} satisfies the required conditions. (b) Assume that x4 — x points in
the direction opposite to x; — x and that there is no x” € L3 such that ¢(x") < 0. Then, the anticlockwise angle
03 between by Ly and L4 is less than 7. Let x’ be the intersection of l~,3 with Lj3. Then, ¢(x4) <0, ¢(x2) <0
and ¢(x") > 0 since x’ € L3 so {I1, 1} = {L, Z3} satisfies the required conditions (in particular the two segments
are not colinear). (c) Assume now that x4 — x does not point in the opposite direction to x; — x and that either
x4 € Hy or x4 ¢ Hy and there is x’ € L4 such that ¢(x”) > 0 then, as before, one can consider {l1, 2} = {L, L4}.
(d) Assume finally that x4 — x does not point in the opposite direction to x; — x, that x4 ¢ Hy and that there is
no x’ € L4 such that ¢(x") > 0. Then, the anti-clockwise angle 0; between L4 and L is less than 7z and one can
consider {I1,b} ={L1, Zl}. Indeed, remember that ¢ is negative on Lj. Finally, Zl goes through xj at which ¢ is
non-negative, and ¢ is negative at both ends of L.

This completes the proof. (]
3.3. End of the proof of Proposition 3.4 via Kac—Rice estimates

In this subsection we use results from Section 3.2 and Kac—Rice estimates to prove Proposition 3.4. The only remain-
ing step is the following proposition:

Proposition 3.10. Let f be as in the statement of Proposition 3.4. We use Notations 3.5 and 3.6. There exist C| =
Ci(k) < 400,d; =di(k) < +00 and g9 = o(k) € 10, 1] such that, for all p e R and t € [0, 1], if ¢ € 10, g0] and if
x € Vi, y € V§ are such that |x — y| > d; then:
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If neither x ¢ Cy nor y ¢ C, then

P[X, € Piv, (UF) N Piv, (V) | X,(x) = X, (3) = —p] < C1 (1 + | pl)*e*.

If among x and y one does not belong to Cy U Cy and the other belongs to C1 U Cy but is the corner of none of the
E;’s then:

P[X, € Piv, (U) N Pivy (V) | X,(x) = X, (y) = —p] < C1 (1 + Ipl) .

If x and y both belong to C1 U C, but are the corner of none of the &;’s or if at least one of them does not belong to
C1 UC, then:

P[X; € Piv, (U®) NPiv, (VE) | X,(x) = X,(») =—p] < C1 (1 + Ipl) >

If x or y belongs to C1 U Cy but is the corner of none of the &;’s then:
P[X, € Piv, (U®) NPiv, (V?) | X:(x) = X:(y) = —p] < C1 (1 + I pl)e.
Let us first wrap up the proof of Propositon 3.4.

Proof of Proposition 3.4. Remember that it is enough to prove (3.1). First note that if ¢ € ]eg, 1] (where ¢ is as in
Propositon 3.10) then the result is easily obtained by bounding the probabilities by 1. Now, assume that ¢ € ]0, &o].
Then, by using Proposition 3.10, we obtain that for the O (¢ ~* Area(/C1) Area(/C2)) couples (x, y) such that x € ViI\Ci
and y € V5 \ C, the quantitity P[X; € Piv,(U®) N Pivy (V) | fi(x) = f;(y) = —p] is bounded by Ci(1 + Ipe’.
Consequently, the sum over of all of these couples (x, y) is bounded by O (¢~* Area(KC1) Area(C2)) (1 + | p)*. We
reason similarly by also including the points on the boundary (which corresponds to O (¢~! Length(C})) points x € C;
and O (¢! Length(C>)) points x € C;) and at the corners (which correspond to O (k1) points x € Vf and O (k>) points
yeVi). O

We now prove Proposition 3.10.

Proof of Proposition 3.10. We prove the first item since the proof of the others is the same (possibly by using
Lemma 3.8 instead if Lemma 3.9). Fix ¢ € [0, 1]. Throughout the proof, the bounds will be uniform with respect to .
By combining Lemmas 3.7 and 3.9, we obtain that there exist a finite set of unit vectors *J independent of everything
else, an absolute constant Cy < 400, and a finite set of 4-uples of segments £ = L(x, y, ¢) such that Card £ < Cy and
such that:

e Forevery (I1, [, l{ , lé) € L we have: The segments /1, /; have non-colinear unit vectors vy, vy € U, are of length at
most Cpe, and are at distance at most Cp from x. Moreover, the same holds for I/, lé near y and with non-colinear
unit vectors v}, vj € .

e The probability of the first item of Proposition 3.10 is no greater than the sum over all (I1,/2,1},15) € L of the
expectation of:

Card{(ar. a2, by, bo) €1y x I x I} x Iy : ¥i, j € {1,2}, 3y, fr(a;) = dy, f(b;) =0}.

To control this expectation, we wish to apply the Kac—Rice formula. In order to do so we introduce the following
notation. For each (a1, a2, by, by) €l x Iy x 1] x I, let

;= Pi(ar,a. by, ba) = (95, fi(@1). 83, fi(ar). 5, f(b1). 8], [ (b)),

“Ijl‘ = \I’[I(x’ )’) = (ft(x)v ft()’)),
TI = Tl(alsa27 bl»b2) = (avl ff(al)’ avsz(a2)’ av/l ff(bl)’ avéff(bZ))
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Since « satisfies Condition 1.10, then the covariance:

D} D,12>

D; = Dy(ay, az,b1,b2) = (th1 D

of (¥, Yy) converges as ¢ — 0 and |x — y| — 400, at a rate depending only on «, to the following covariance:

b= (% P5) = (2 %)
* — — 22 1>
D2 D2 0 D

where:
—02k(0) =0y, Dyyk(0) 0 0
o2 _ | 7%k © —32x(0) 0 0
* 0 0 —05(0) =0y Dy (0)
0 0 —0y1 3,1 (0) —ajéx (0)

Here we used Lemma A.1 and Remark A.2. Since v; and v (resp. v’1 and vé) are non-colinear, the vec-
tors (9, f(0), 0y, f(0)) and (8U; f(0), 81,/2 f(0)) are non-degenerate (see Remark A.3) so D, is non-degenerate.
Consequently, there exist Co = Cz(vi,v2, v}, V5, k) € 10,+00[, di = di(vy,v2,V],v},k) < +00 and g =
go(vi, v2, v}, V5, k) €10, 1] such that, if ¢ € 10, &0] and |x — y| > d then:

e the matrix D' is non-degenerate;

e the matrix D, = D??> — D?!(D}!')~! D}? is non-degenerate;
det(Dy) = €3

the coefficients of D, ! are no greater than C5.

In addition, « is of class C® so Theorem A.8 applies to the field Y, conditionned on ¥; = (—p, —p). Since condi-
tioning and differentiation ‘commute’ (see Remark A.7), we obtain that the aforementioned expectation is no greater
than:

dadb.

/ E[]_[?zl [(®)i(ar, a2, b1, b)| | Y (x, y) = (=p, —p), Yi(a1, a2, b1, by) =0]
hixb ] x (2m)2/det(D; (ay, az, by, b))

The denominator is uniformly bounded from below by the previous discussion. We claim that if ¢ < &g and |x — y| >
dy, the numerator is O((1 + |p)*). To prove this, notice first that D, is non-degenerate so Lemma A.6 applies.
Moreover, the variance of the entries of ®; depends only on «. All that remains is to bound its conditional mean.
Firstly, the covariances of the entries of ®; and those of (¥, Y;) are bounded!? by constants depending only on the
derivatives up to order three of x at 0. Moreover, D, ! has bounded coefficients so the conditional mean of d; is
O(|p|). Hence, by Lemma A.6, the numerator is O ((1 4 |p|)*). Finally, the integration domain has volume O (¢*). O

3.4. Completing the proof of Theorem 1.12

In this subsection we explain how to complete the proof of Theorem 1.12 to take into account events measureable with
respect to the number of level lines components inside the rectangles &;. In particular, this subsection is of no use for
the proof of the RSW estimate Theorem 1.1. The part of the proof of Theorem 1.12 detailed in Sections 3.2 and 3.3
hinges on the two following ideas: first, that the crossing events can be approximated by discrete events and second,
that the fact that a point x is pivotal for a crossing events implies certain exceptional conditions on its neighbors
whose probabilities are easy to control. To complete the proof of of Theorem 1.2, we justify that the discretization of
the additional events is valid in Lemma 3.14 which in turn relies on Lemma 3.12. Then, we prove that the additional

10]ndeed, this follows from Lemma A.1 and the fact that for any two L? random variables &1 and &, |E[£16,]] < %(E[Elz] + E[Szz]).
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pivotal events imply the cancellation of certain derivatives in Lemma 3.16 and Lemma 3.17. The rest of the proof
relies on results from Section 3.

Remark 3.11. Lemmas 3.12 and 3.14 below could be deduced from Proposition 6.1 of [8] and Theorem 1.5 of
[8] respectively. However, since we do not need to control the rate of convergence when ¢ — 0, we do not need a
quantitative discretization scheme so instead we present a simpler proof relying only on transversality arguments.

Lemma 3.12. Let £ C R? be a rectangle. Assume that the Gaussian field f satisfies Condition 1.7 and that k is C°.
Fix p € R. Then, a.s. there exists a (random) constant &y > 0 such that for a.e. ¢ < &gy, we have:

(i) T¢ and N, intersect transversally,
(ii) each edge of T® inside £ has at most two intersection points,
i) an o distinct intersection points of a common edge e are connecte a smooth path in inside the union
(iii) any two distinct int tion point, dg ted by th path in N, inside th
of the two faces adjacent to e,
(iv) for each connected component C of N, there exists an edge e of T¢ such that C intersects e exactly once and e
has no other intersection with the nodal set,
V) there is no edge of T¢ included in the boundary of E¢ that is intersected twice by N, where E¢ is (one of) the
8 ry y
largest rectangle whose sides are integer multiples of € such that £ C £.

Proof. By Lemma A.9, N, is a.s. smooth and intersects 9 transversally. Let w be a unit vector tangent to an edge
of the lattice. We apply Lemma A.10to T =&, g = (f, 0w f, Bg)f) and v = (0,0,0) (g has bounded density by
Remark A.3 and by stationarity). This shows that the set of points x € N, such that 7\, is tangent to w is a.s.
discrete. We then simply apply Lemma A.13 to C the union of connected components of N}, intersecting £ (who
are a.s. in finite number and a.s. do not intersect 0, possibly modifying them outside of £ to make C compact). This
establishes assertions (i), (ii) and (iii).

To show (iv), first take ¢ smaller than the distance between any two distinct connected components of /,, inter-
secting &£ so that each edge e can intersect at most one connected component. Assume that C intersects each edge an
even number of times. Then, it must stay in a union of a face and its three adjacent faces. If &2 is much smaller than
the area of the smallest connected component of £ \ V,, this cannot happen so (iv) is satisfied.

In order to show (v), use once again Lemma A.9 in order to obtain that \V,, intersects the boundary of £ transversally
and only finitely many times. This completes the proof. (]

In the arguments below, we will need to discretize level lines of the field. To this end, let us introduce some
notations.

Notation 3.13. Let ¢ > 0, p € R and (§;)1<j <k, +k,> K1, K2, C1, C2 and N, (i) be as in Theorem 1.12. Let V{ and V5
as in Notation 3.5. Color the plane as explained at the beginning of Section 3. Given such a coloring, each face has
either zero or two sides whose ends have opposite colors. If a face has two such sides, draw a segment joining the
middle of these two sides. This produces a collection of polygonal lines on the plane. We denote by N ,, the union of
these lines. For each i € {1, ..., k| + kz}, let £ be (one of) the largest rectangle whose sides are integer multiples of
e and such that £ C &;, let N f, (i) be the number of connected components of N ; contained in &£ . Let A be an event
in the o -algebra defined by events of the form {N,(i) =m} where i € {1,...,k1} and m € N. Let A® be the same
event as A but with the N, (i)’s replaced by the N ;(i )’s. There exists U¢ C RYIYV: (resp. V& C RWUV;) such that
A® = {X?® € U®}. Note that by construction, the events A and B belong to the Boolean algebra generated by events of
the form {N, (i) € S} where S C N.

Lemma 3.14. Assume that the Gaussian field f satsifies Condition 1.7 and that « is C®. We use Notation 3.13. Then,

limsupP[Vi € {1,..., ki +ka}, Np(i) = N, ()] = 1.

e—>0

Proof. We start with the following claim.
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Fig. 3. An alternative definition of N; (i) when the conclusion of Lemma 3.12 holds.

Claim 3.15. Foreachi € {l,..., k| + ka} a.s., for Lebesgue-a.e. small enough & > 0, N (i) = N[S, ).

Proof. Fixi € {l,..., k| + k2}. By points (i) to (iv) of Lemma 3.12, a.s., for a.e. ¢ > 0 small enough, Np intersects
d&; and T* transversally, each edge of 7¢ included in & is crossed at most twice and any two intersection points
of the same edge are connected by N, inside one of its adjacent faces. Also, each connected component of A/, must
intersect an edge which is crossed exactly once by ).

In particular, the following is an equivalent definition of N , (i) for a.e. & > 0 small enough: (i) Let F be a face of
the lattice with two sides e, e’ that are intersected by N}, exactly once and consider a path y included in F NN, that
connects e and ¢’. Then, replace y by a straight line as in Figure 3 (case 1). (i) Let F be a face of the lattice with
two sides e, ¢’ that are intersected by V,, exactly once, let ¢” the third edge adjacent to F and let F’ be the other face
adjacent to ¢”. Also, consider a path y included in (F U F") N\, that connects e and e’ and intersects e” twice. Then,
replace y by a straight line in Figure 3 (case 2).

One can see that, doing so, we redefine A ]f and this alternate definition shows that its connected components are
naturally in bijection with those of \V},,. Moreover, for all ¢ > 0 small enough, connected components of \/,, included
in & are also included in Ef so that Np(i) < N 157 (7). On the other hand, if a continuous connected component gives
rise to a discrete connected component included in £, it cannot cross edges of dE7 once. But it cannot cross them
twice either by point (v) of Lemma 3.12. As a result, N f, (@) < Np@). O

Let E(e) be the event that for alli € {1, ..., k1 +k2}, Np(i) = N;(i). Now, by Claim 3.15, for each § > 0 there

exists T = t(8) > 0 such that, with probability at least 1 — §, for Lebesgue-a.e. ¢ < t, E(¢) is satisfied. Moreover, t
can be chosen so that lims_. 7(§) = 0. In particular,

EI:/I 1z dk(s)] >1(1=9).
0

By Fubini’s theorem, we deduce that

/TP[E(e)]dk(e) >7(1-9).
0

In particular, there exists ¢ = () € ]0, 7(§)] such that P[E(¢)] > 1 — 24. Since this holds for any § > 0, the proof is
complete. ([l

Lemma 3.16. Use Notation 3.13 and, for each x € V5, let »® € Piv,(U?). Color the edges e = (x, y) of T¢ such that
w®(x), w*(y) = —p in black and color the rest of the plane in white. Then:

1. if x belongs to K1 \ Cy then either the neighbors of x are all of the same color or x has (at least) four neighbors
that have alternating color when listed in anti-clockwise order;
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2. if x belongs to Cy but is not a corner, then it has three neighbors of alternating color when listed in anti-clockwise
order.

Proof. By Remark 2.3, we may assume that A® = {Nf,(i) =m} forsomei e {l,...,ki}andm e N.Fixe > 0,x € V§
and fix a value of X¢. If the set of neighbors has exactly one black connected component and one white component,
then changing the color of x does not change N ; (7). Therefore x being pivotal for U¢ implies the two items. (I

The following lemma is a trivial application of Rolle’s theorem.

Lemma 3.17. Let ¢ € CL(R?). Fix x € R? and assume that ¢(x) =0. Then:

1. if there exist x1,x2 € R2? such that for each i € {1,2}, ¢(x;) <0 and such that x € |x1, x2[, then ¢|[x, x,] has a
critical point,

2. if there exist X1, X2, X3, X4 € R? such that for each i € {1,2,3,4}, ¢(x;) <0 and such that || = [x1, x3] and I, =
[x2, x4] intersect in their interior at x, then ¢|;, and ¢|;, have a critical point.

We now complete the proof of Theorem 1.12.

Proof of Theorem 1.12: Part 2 of 2: Allowing components as well as crossings. We use Notations 3.5 and 3.13.
According to Lemma 3.14

limsupP[Vi € {1, ..., ki +ka}, N,(i) = Nf,(i)] =

e—0

We take a subsequence (ex)x>1 along which the limsup is reached. Approximating crossings of the & by discrete
crossings of the El.g" we get limy_, yoo P[A% A A] = 0. Therefore, it is enough to show that for ¢ small enough

2
|P[A® N B®] — P[A®]P[B® 1+ 1pN)?* ]_[ (Area(KC;) + Length(C) + 1)

C

for some constant C = C(x) < +-00. Here, unlike in Proposition 3.4, A and B are events generated not only by cross-
ing and circuit events but also by the N, (i)’s. Nonetheless the proof is quite similar. Indeed, notice that Proposition 3.4
follows from Proposition 3.10 which in turn uses only the fact that for two points x, y to be pivotal, certain derivatives
of f; must vanish on certain deterministic segments. This is proved in Lemmas 3.7, 3.9 and 3.8. In our case, first,
we combine Lemma 3.7 with Lemma 3.16 using Remark 2.3. Then, we use Lemma 3.17 in addition to Lemmas 3.9
and 3.8. The rest of the proof of Proposition 3.4 applies as is. ]

4. Tassion’s RSW theory: The proof of Theorem 1.1

In this section, we prove Theorem 1.1 by relying on Sections 2 and 3 (but not on Section 3.4) and on [37]. Our proof
follows [37] so instead of writing the details of each proof, we point out the steps of the original proof that need to
be modified to work in our setting. We expect the reader to be familiar with [37] and suggest that this section be read
with said work at hand. Note that this simplifies the proof of [6] since we can directly apply Tassion’s method in the
continuum instead of applying it to different discretizations of the model at each scale. We first prove the following
weaker result:

Proposition 4.1. Let f be a Gaussian field satisfying Conditions 1.7, 1.8, 1.10 as well as Condition 1.9 for some
o > 4. Let p > 0. There exists ¢ = c(k, p) > 0 such that, for each s > 0, the probability that there is a left-right
crossing of [0, ps] x [0, s] in Dy is at least c.

Throughout the proof, in [37], Tassion uses symmetries of the model such as stationarity (which is satisfied here by
Condition 1.7), symmetries, and the FKG inequality (which are also valid here by Condition 1.8 and Lemma A.12).
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Fig. 4. The events H; (o, B) (left-hand-side) and X («) (right-hand-side). For every « € [0, s/2], we let ¢s () = P[H (0, @)] — P[H (e, 5/2)].

The final ingredient of the proof is a quasi-independence lemma, which we will state when needed. Otherwise, the
proof carries over with only minor changes due to the specificities of the model.

Proof of Proposition 4.1. Step 1: By Remark A.11, the probability that there is a left-right crossing of [—s, s]? is
1/2 for any s € ]0, +o0[. In particular, it is uniformly bounded from below by some constant co > 0, which is just
Equation (1) of [37]. In other words

Vs >0, P[Crosso(s,s)] > co. 4.1)

Step 2: Given s € ]0, +oo[ and «, 8 € [0, s/2] such that « < 8, we define the events H;(«, 8) and X;(«) as
follows (see Figure 4 above): The event H, (¢, B) is satisfied whenever there is a continuous path in [—s/2, s/ 212N Dy
connecting {—s/2} x [—s, s] to {s/2} x [«, B]. The event X;(«) is the event that there is a path y; in [—s/2, s/2]2 NDy
connecting {—s/2} x [—s/2, —a] to {—s/2} x [e, s /2], a path y» in [—s/2, s/2]2 N Dy connecting {s/2} x [—s/2, —«]
to {s/2} x [a, s/2] and a path in [—s/2, 5/2]*> N Dy connecting y; to y». As in [37], we define ¢ : [0, 5 /2] — [—1, 1]
as

s (@) = P[H,(0, )] — P[H, (@, 5/2)].

Then, Lemma 2.1 of [37], says that for each s € ]0, o0, there is «;s € [0, s/2] such that, for some ¢; > 0 independent
of s,

Va€[0,a5], P[X(@]=ci;  Vaela,s/2l, P[H0,0)] = co/4+P[H(a,5/2)]. 4.2)

To establish this inequality, Tassion uses the fact that ¢ is continuous and increasing and defines o using the preimage
of ¢, of a certain value. Here, the continuity of ¢, follows easily from the fact the f is a.s. continuous and that for
each x € R2, Var( f(x)) > 0. Moreover, the fact that ¢, is non-decreasing is immediate from its definition and this
is sufficient for us since the argument works if one replaces min{q&s_l(s/4), s/4} by sup{a €10, s/4[: ¢s (o) < co/4}.
The rest of the proof of Lemma 2.1 uses only symmetries, the FKG inequality and Equation (4.1) and works as is.

Step 3: For each 0 < r < s, let Circo(r, s) be the event that there is a circuit above level 0 in the annulus [—s, s]? \
1—r, r[ separating [—s, s]? from infinity. In Lemmas 2.2 and 3.1 of [37], Tassion shows that there exist constants
¢, c3 €10, 1] such that

Vs>2, oy <203 = P[Circo(s,2s)]>c2 (4.3)
and
Vs>1,t>4s, P[Circo(s,2s)]>c2anda; <s = P[Circo(t,21)] = c3. 4.4)

The proof of these two lemmas relies only on the FKG, symmetries and Equations 4.2 so it carries over to our setting.
Step 4: This is the step where Tassion uses a quasi-independence lemma. In our case, we will use the following
direct consequence of Theorem 1.12:
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Corollary 4.2. There exists a constant Co = Co(k) < 400 such that, for every integer N larger than 1, for every
s €[1,+ool, for every 1 <r; <--- <ry < 400 such that r, > r1 + s, and for every B which belongs to the Boolean
algebra generated by the events Circo(r;, 2r;),i =2, ..., N, we have:

|P[Circo(ry, 2r1) N B] — P[Circo(r1, 2r)) |P[B]| < CoNrys ™.

Using this corollary, we prove an analog of Lemma 3.2 of [37]. Let us first introduce some notation. Given cp as in
Step 1 and ¢ and c3 as in Step 3, let C; < 400 be such that (1 — cx)l€/2 < co/8 and let sgp < +00 be such that for
each s > s, f—;’ [logs(C1/2)] (Crs)*s™@ < co/8 (where Cy is as in Corollary 4.2). Then, we prove the following:

Lemma 4.3. Let s > sq such that P[Circo(s, 25)] > c2, then, there exists s’ € [4s, C1s] such that ag > s.

Proof. In the proof of his Lemma 3.2, Tassion uses FKG and the symmetry properties, as well as what we call
Equations 4.2 and 4.3. The only place where he uses a quasi-independence property is where he proves that, if
P[Circo(5's,2-5's)] = c3 forany i € {0, ..., [logs(C1/2)]} and if s > s, then:

]P’[Circo(s, Cls)] >1—co/4.
In what follows, we prove such a result and we refer to [37] for the rest of the proof. First note that:

Llogs(C1/2)]
Circo(s,C15) S | J  Circo(5's,2-5%).
i=0

Now, by Corollary 4.2 applied |logs(C1/2)] — 1 times:

[logs(C1/2)] , ¢
]P’|:< U Circo(S’s,Z-S’s)>:|

i=0

Llogs(C1/2)] _
=IP>|: N Circo(S’s,Z-Sis)Cj|

i=0
Llogs (C1/2)] _ ‘
< (1 —c3) x IP’[ (| Circo(5's.2- 5%)”} — Co|logs(C1/2) |(Cis)*s™

i=1

< (1 —cy)loss@/2) 4 @(Z(l - c3>f) |logs(C1/2) | (C1s)*s ™
j=0

C
< (1= )82 4 2l0gs(€1/2) | (Cr9)*s ™
c3
< cp/4,
where the last inequality follows from the definition of C; and the fact that s > sp. 0

Step 5: As explained in the proof of Lemma 3.3 of [37] and the final comment that follows it, Proposition 4.1 now
follows for s large enough from Equations (4.2) and (4.3) and Lemma 4.3 as well as standard gluing constructions
that use only the FKG inequality and from symmetries. By the FKG inequality!' Theorem A.4 applied to events of

TMore precisely, the events { f > 1 on B} can be approximated by increasing events depending on a finite sets of points, to which one can apply
the FKG inequality.
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the form {f > 1 on B translated by some vector}, we obtain that, for each s > 0, f takes only values larger than or
equal to 1 on [—s, s]> with positive probability. (]

We now prove Theorem 1.1.

Proof of Theorem 1.1. We prove the result for Aj. This is sufficient since Ay € Dy and since the result for Dy for s
less than some fixed constant can easily be proved as in the end of Proposition 4.1.

Let Q be a quad and note that there exist § = §(Q) > 0, n =n(Q), m = m(Q) € Z~¢ and two sequences (&;);'_,
and (5})7;] of 26 x § and § x 24 rectangles such that: (i) if each & (resp. £;) is crossed lengthwise then Q is
crossed and (ii) infer;t:l & vell, € |x — y| > §. For each s > 0, write A (resp. B;) for the event that each s&;

is crossed (resp. each s&’; is dual-crossed) lengthwise. By stationarity, 7 -rotation invariance and Remark A.11, the

crossing events of each of the rectangles above and below 0 are bounded from below by the constant ¢ = c(k,2) > 0
from Proposition 4.1. Consequently, by Lemma A.12, for each s > 0, P[A;] > ¢" and P[B,] > ¢™. But now, by
Theorem 1.12, there exists C = C (k) < +o0 such that, for each s > 0:

P[A; N Bs] > P[AIP[B,] — C(8s + 1)**nm.

Since, a > 4 we have C(8s + 1)*%nm —+> 0 so the left-hand-side is bounded from below by a positive constant
§—> 100

for s sufficiently large. But A; N By clearly implies the crossing of s Q by Np. (]

Now that we have established Theorem 1.1, we apply it to obtain two results which are well known in Bernoulli
percolation. Namely, the polynomial decay of the one-arm event: Proposition 4.5, and the absence of unbounded
clusters at criticality: Proposition 4.6. We are going to use the following notation:

Notation 4.4. If 0 < r < s < 400, we write A(r, s) = [—s, 51> \ 1—r, [ and we write Armg(r, 5) (resp. Armg (7, 5))
the event that there is a continuous path in Dy N A(r, s) (resp. in A(r, s) \ Dp) from the inner boundary of A(r, s) to
its outer boundary.

We start with the following result:

Proposition 4.5. Ler f be a Gaussian field that satisfying Conditions 1.7, 1.8, 1.10 as well as Condition 1.9 for some
o > 4. There exists C = C(k) < 400 and n = n(k) > 0 such that, for each 1 <r < s + 00:

P[Army(r, s)| =P[Arm{(r, )] < C(r/s)".

Proof. Remark A.11 and the fact that f is centered imply that P[Armq(r, s)] = ]P’[Armf)(r, s)]. So let us prove the
result only for Armj(r, s). First fix & € [1/2, 1] to be determined later. Foreachi € {0, ..., [logs (%)J }, let Circg (i)

denote the event that there is a circuit at level 0 in the annulus A(5 (rs)' =", 2 - 5/ (rs)!~"). Note that:

Logs (5]
Armj (r, s) C ﬂ Circo(i)°.
i=0
Next, note that by Theorem 1.1 and by the FKG inequality Lemma A.12, there exists ¢ = c(«x) € ]0, I[ such
that for each i € {0, ..., LlogS(%)J}, P[Circg(i)] > c¢. Next, use the quasi-independence result Theorem 1.12
LlogS(%)J times to obtain that, for some C’ = C’(x) < +o00 we have:

h

Llogs (=)
IP’|: N Circo(i)":|

i=0

Logs (5

h
<(l—-¢)x P|: m Circo(i)c:| — C’{logs(zj‘ﬁ)J(l +S4)(rs)—a(1—h)

i=1
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h h
1 s . S _ —
<(1- C)Logs(z"‘lfh s + C/<z :(1 - c)j> \}OgS(Z . rl—h>J(1 +S4)(rs> o
=0
h

h /
Llogs (- 1=7)! C s 4 —a(1—h)
<(1—o) T +7WS(W)J(1+S )rs) =7,

Since o > 4, we can find & sufficiently small to obtain what we want. [

From Proposition 4.5 we get the following analog of the celebrated theorem by Harris [19] (which states that, for
Bernoulli percolation on Z? with parameter 1/2, there is no infinite cluster). This result was also obtained by Alexan-
der in [3] for stationary ergodic planar fields satisfying an FKG-type inequality under some mild non-degeneracy
assumptions.

Proposition 4.6. With the same hypotheses as Proposition 4.5, a.s. every connected component of Dy is bounded.

Proof. By a union-bound and translation invariance, it is enough to prove that a.s. there is no unbounded component
of Dy which intersects [—1, 1], which is the case since by Proposition 4.5, P[Armg(1, 5)] goes to 0 as s goes to
~+00. ]

The natural question arising from this proposition is whether or not this remains true for D, with p > 0. This is the
object of [33] where we prove that, for the Bargmann—Fock field, there is a unique unbounded connected component
in D), as soon as p > 0, thus obtaining the analogue of Kesten’s famous theorem [20] (which states that the critical
point for Bernoulli percolation on Z? is 1/2).

5. Concentration from below of the number of nodal lines: The proof of Theorem 1.4

In this section, we prove Theorem 1.4 by using Theorem 1.2 and our quasi-independence result Theorem 1.12. The
idea of the proof is the following (see Figure 5). Let & > 0. We first tile the square [—s/2, s /2]* with (r/s)*> mesoscopic
squares of size r. Then, we use Theorem 1.2 and our quasi-independence result Theorem 1.12 to prove that the density
of r x r squares containing less than r2(cns — €) nodal components is asymptotically small. More precisely, we will
note that, if the number of such squares is greater than §(s/r)?, then there exist 8(s/r)?/8 such squares that are at
distance at least r from each other. By Theorem 1.12, this has probability P gg’) —cns < —&]P6/r /8 up to errors
involving terms of the form sup,.|, >, [« (x)|. The last step is an optimization on the choice of r.

Upper concentration on the other hand seems to require some control of the tail of the density of nodal components.
For the moment, it is not even known whether this density is L2. This type of information seems necessary for the
following reason. In Item (1) of Theorem 1.4, for instance, we consider exponential concentration of the density
of components. To this end we write the number of components as a sum of quasi-independent random variables.
But a direct consequence of Cramér’s theorem is that, if X, X», ... are i.i.d. L! positive random variables such that
E[e?X1] = +o0 for every 6 > 0, then (W)n does not have exponential concentration around its mean. Note
finally that to have an upper bound concentration, we need to take care of the mesoscopic components that intersect
several r x r squares. However, these do not add any difficulty. Indeed, by [27], if we write N’(r) for the number of
nodal components which intersect a r x r box (and are not just included) then Theorem 1.2 also holds for N’(r) (with
the same constant cng).

Proof of Theorem 1.4. Assume that f is a planar Gaussian field satisfying Conditions 1.7, 1.10 and 1.11. First note
that it is sufficient to prove the result for ¢ sufficiently small and fix ¢ € ]0, cns/2[. Let 1 < < s be such that s € rN
and tile the square [—s/2, s/2]* with (s/r)? r x r squares Si, ..., S(s/ry2- Throughout the proof, we take the liberty
of omitting floor functions. For each ¢ € [0, +oo[, write k; = sup{|k (x)] : |x| > ¢t}.
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Fig. 5. The components of A in [—s/2, 5/2]2. In light gray: the r x r squares in which the density of components is smaller than expected.
Combining Theorem 1.2 with Theorem 1.12, we prove that that with high probability there are not too many such squares. In dark gray, the r x r
squares in which the number of components is much greater than expected. Since we do not know whether or not the density of nodal component
has an heavy tail, it is very hard to control these exceptional squares.

By Theorem 1.2, for each i € ]0, 1/2[, there exist ro = ro(¢, h) < 400 such that, if r > rg, then:

No(r
P[ og ) < exs _8} <n (5.1)
r
We also assume that ry is sufficiently big so that «,, < 1/2 and we assume that r > ro. Forevery i € {1,..., (s/ r)2},
write Né for the number of connected components of Ny included in S; and note that, if Ngg” < c¢Ns — 2¢, then there
. N/ . .
exist (s/r)chs_a squares S; such that r—zo <cns—ée. Asaresult, if n =n(e) = % X chg—s , there exist n - (s/r)2 squares
. N/ . ..
S; at distance at least r from each other and such that r—f <cns —e. Let S;,,...,8;, ben-(s/ r)? pairwise distinct

squares among the (s/r)? squares at distance at least r from each other. In the following, we estimate the probability

'j
that for each j € {1,...,7n-(s/r)?}, I‘r’—g <cns —¢. Recall that h < 1/2 and that 0 < € < ¢nsg/2s0 0 <n < 1/8. By
Theorem 1.12 applied 7 - (s/r)*> — 1 times, by translation invariance and by (5.1):

Ny
P[Vj e{l.....n-(s/m?}, r—g < cNs —8}

<hx IP’|:Vj ef2.....n- (s/r)z}, 1;7_2 < NS —s} + O(Krrz(s2 +7- (s/r)2))

Ni.f
<hx ]P’|:Vj I= {2,...,17 . (s/r)2}, —(2) < CNS —8i| + O(Krrzsz)
r
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Sh"'(s/r) (Zh1> Ky r2s? — pres/n? + O(K r s2)

Jj=0

< PG ﬁO(m ) = 16 4 0(i6r%s?).

where the constants in the O’s depend only on . As a result:

No(s) (S/r)2 o
P[ (s)2 <c¢Ns _28i| < <77 . (s/r)2> (hn (s/r)? + O(Krrzsz))

(2hn)(s/r) + 0(2(a/r) P ) 5.2)

Let us first treat the case of Item 1 i.e. assume that there exists C < +o¢ and ¢ > O such that x, < C exp(—crz). Then,
the right hand side of (5.2) is

(2h")“"7" + 0 (exp((s /) log(2) — cr? + 410g(s)))-

Taking & = h(n) small enough and r = M /s for M = M (c) large enough, this quantity is exponentially small in s so
we are done.

Let us now treat the case of Item 2 i.e. assume that there exists C < +00 and « > 4 such that k, < Cr~%. Then,
the right hand side of (5.2) is

(Zh”)(‘/r)z n O(Z(s/r)?Szrz—a).

Fix 6 > 0. Choosing r = s/ /alog,(s) for a = a(§) > 0 small enough, the second term in the sum is O (s*—o19),
Having chosen a, we choose h = h(a, n) such that the first term is also 0(s4’°‘+‘3). Since this is true for any ¢ €
10, ens/2[ and any § > 0, we are done. O

Remark 5.1. Note that we have used Theorem 1.2 only to obtain (5.1). Hence, our lower concentration result The-

orem 1.4 holds if, instead of Condition 1.11 (which is the assumption to apply Theorem 1.2), we assume that there
exists a constant cng = ¢cns (k) € ]0, +o0ol such that, for each & > 0, P[% <cNs — €] goes to 0 as s goes to +00.

Appendix A: Classical tools
In this section we present classical or elementary results about Gaussian vectors and fields.
A.1. Classical results for Gaussian vectors and fields

Differentiating Gaussian fields. When one consider derivatives of Gaussian fields, it is important to have the following
in mind (see for instance Appendices A.3 and A.9 of [27]):

Lemma A.l. Let f be an a.s. continuous Gaussian field with covariance? K € CKTL IR x R™) and mean
w € CK(R™). Then, f is almost surely CX. Conversely, if a.s. f is C¥, then K € C**, u e C* and for every multi-
indices B,y e N2 suchthat B1 +---+ Bp <kand y1 + - -- + yn <k, we have:

Cov(d” f(x),8” F(3) =E[(8” f(x) — 9P u(0)) (87 f(») — 87 ()] = 8P9Y K (x, y).

Remark A.2. Lemma A.1 has the following consequence: if f satisfies Condition 1.7 and is a.s. C' then, for each
B € N? such that B + B is odd, 8%k (0) =0

12Here and below, ¢!l means that all partial derivatives of K which include at most / differentiations in the first variable and / differentiations in
the second variable exist and are continuous.
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Remark A.3. Another consequence of Lemma A.1 is that if f is a.s. C! and satisfies Condition 1.7 then for each
x € R? and for v, w non-colinear unit vectors, the Gaussian vector (9, f(x), 0y f(x)) is non-degenerate. Indeed,
if this was not the case, then we would obtain the existence of some non-zero vector u such that d, f would a.s.
vanish identically, which would contradict the fact that f is non-degenerate. Similarly, if f is a.s. C? and satisfies
Condition 1.7 then for each x € R? and each non-zero vector w € R2, (f(x), 0y f(x), 85) f(x)) is non-degenerate.
Indeed, 9y, f (x) is independent of the two other coordinate by Remark A.2 and if (f(x), 35) f(x)) were degenerate
then as above this would contradict the fact that f is non-degenerate.

A FKG inequality for Gaussian vectors. The following result by [32] says that positively correlated Gaussian
vectors satisfy positive association. This is a key result when one wants to use Russo—Seymour—Welsh type techniques.
We first need to introduce the following terminology: if I is some set and A € R/ then we say that A is increasing if
for every w € A and every o’ € R! such that (i) > w(i) for every i € I, we have o’ € A.

Theorem A.4 ([32]). Let (Xi)1<k<n be a Gaussian vector such that, for every k,1 € {1, ..., n}, E[XxX;] > 0. Then,
For every A, B C R" increasing Borel subsets:

P[X € AN B]>P[X € A]P[X € B].

This type of inequality is known as the Fortuyn—Kasteleyn—Ginibre (or FKG) inequality. Pitt’s result easily gener-
alizes to crossing and circuits events by approximation, one just needs to take care that the approximating events are
increasing, see Lemma A.12.

Some basic lemmas. The following lemma is useful to bound the expectation of the product of Gaussian variables.
The first lemma is known as the regression formula and is quite classical in the field.

Lemma A.5 (Proposition 1.2 of [4]). Let (X, Y) be an n + m-dimensional centered Gaussian vector with covariance

A B
B'" D)’

where A (resp. D) is the covariance of X (resp. Y). Assume Y is non-degenerate. Then, the law of X conditioned on
Y is that of a Gaussian vector with covariance A — BD™'B' and mean BD™'Y .

The next lemma is a simple application of the regression formula to the computation of conditional moments of
Gaussian vectors.

Lemma A.6. Let (X,Y) be a centered Gaussian vector in R" x R™ with covariance
A B
B' D)’
Assume that D is non-degenerate. Let 1 € R™. Then, there exists C = C(n) < 400 such that

E[]i[w

i=1

j— il [ _1 j "
o M:| : Cie{l,..‘,n{;r;?}?e{l,.‘.,m}(V Aii V | B Dy )

Proof. By the regression formula (Lemma A.5), X conditioned on ¥ = u has the law of a Gaussian vector Z with
covariance A = A — BD VB’ and mean i = BD~! 1. Note that BD~! B’ is symmetric semi-definite. Therefore,
its diagonal coefficients must be non-negative. Therefore, for each i € {1,...,n}, X,-i < A;;. Moreover, for each
iefl,...,n}, || <n® max; ke(l,....m) |BikD,:jluj|. The lemma then follows from the elementary observation that

.....

for each n > 1 there exists C = C(n) < +o00 such that for each Gaussian vector Z with covariance A and mean w,
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Remark A.7. From Lemmas A.5 and A.1 we deduce that if f is an a.s. continuous and non-degenerate Gaussian
field on R” with C¥+1-¥+1 covariance and C¥ mean and if x, ..., x; € R” are such that (f(x1), ..., f(xx)) is a non-
degenerate Gaussian vector, then, for each v € R” conditionally on (f(x1), ..., f(xx)) = v, f is a Gaussian field with
CkHLE+1 covariance and CF mean. Moreover, the covariance (resp. mean) of the derivatives of the conditional field
is equal to the covariance (resp. mean) of the derivatives of the field under the same conditioning.

A Kac—Rice formula. The following result is a Kac—Rice type formula, which is for instance a particular case of
Theorem 6.2 of [4] (together with Proposition 6.5 therein):

Theorem A.8. Let ¢ € 10, +oo[, let n € Z~q, and let @1, ..., D, denote n continuous Gaussian fields : [0,¢] — R
that are a.s. C% on 10, e[ and such that, for every s € [0, e]", ®(s) = (P1(s1), ..., P, (sy)) is non-degenerate. Then

E[Card{s € [0,¢]" : ®(s) =0} ]

equals:

n

/]0 . (P(S)E|:l_”d>;(si)| ‘CD(S) = 0} ds,

i=1

where @(s) is the density of ®(s) evaluated at 0.
A.2. Transversality of the level set and a non-quantitative discretization lemma

In this subsection, we state transversality results which are quite classical in the field and which are very helpful to
obtain some continuity results about crossing events. We also prove a non-quantitative discretization lemma useful to
justify discrete approximation of certain events.

Lemma A.9. Assume that f satisfies Condition 1.7 and that k is CO. Fix p € Rand fix (y (t))ie[0,1] @ smooth path in
the plane. Then:

1. As. f~ N ([—p, +o0]) =: D, and f~1(Q—o00, — pl) are two 2-dimensional smooth sub-manifolds of R with bound-
ary. Moreover, a.s. their boundaries are equal and are the whole set N.
2. A.s., N intersects y transversally.

To prove Lemma A.9, we can use the following lemma:

Lemma A.10 (See Lemma 11.2.10 of [1]). Let n € N. Let T be a compact subset of R" with Hausdorff dimension
keN. Let g = (gj)1<j<k+1 : R" — R be a Gaussian field that is a.s. C'. Assume also that g has a bounded
density on T. Then, for each v e R¥T1, ¢~ (v) N T is a.s. empty.

Proof of Lemma A.9. First note that the fact that « is C® implies that f is C? by Lemma A.1. To prove the first part of
the lemma, we fix R € ]0, +oo[ and p € R and apply Lemma A.10 to T = [—R, R]? (of Hausdorff dimension 2) and
g=(f,01f, 02f) with v = (—p,0,0). For every x, we have the following: (i) by Remark A.2, f(x) is independent of
(01 f(x), 02 f(x)) and (ii) by Remark A.3, (31 f (x), 02 f(x)) is non-degenerate. As a result, g(x) is non-degenerate.
Since g is stationary, this implies that g has bounded density. We obtain that a.s. f vanishes transversally on A/, N
[—R, R]2. By taking the intersection of such events for R =1, 2, ... we end the proof of the first statement. For the
second part of the statement, we apply Lemma A.10, this time for 7" = {y (¢)};¢[0,1] (of Hausdorff dimension 1) and
g®)=((foy)@),(foy) () withv = (—p,0). As before, for every ¢, g(¢) is non-degenerate. By continuity of the
covariances, this implies that g restricted to 7 has bounded density, so Lemma A.10 does apply. |

Remark A.11. The following can easily be deduced from Lemma A.9: Assume that f satisfies Condition 1.7 and that
k is C3. Fix p € R and let Q C R? be a quad (i.e. a region of the plane homeomorphic to a disk, with two distinguished
disjoint segments on its boundary). Then a.s. either all or none of the following events hold: (a) there is a continuous
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path included in D, N Q which joins one distinguished side of Q to the other, (b) there is such a continuous path in
f -1g- p, +00[), (c) there is no continuous path included in f “1(—00, — p]) N Q which joins one non-distinguished
side of Q to the other and (d) there is no such path in f~!(]J—oo, — p[). Similarly, if A is an annulus, then a.s. either
all of none of the following events hold: (a) there is a continuous path included in D, N A which separates the inner
boundary of A from its outer boundary, (b) there is such a path in f 11— p,+00o[), (c) there is no continuous path
in f~!(]—o0, —p]) N A which joins the inner boundary of A to its outer boundary and (d) there is no such path in
£ =00, =pD.

A consequence of these properties and of the fact that f is centered is that, if we assume furthermore that f is
invariant by 7 -rotation, then the probability that there is a left-right crossing at level 0 of the square [0, s]%is 1/2 for
any s € 0, +o0[.

The following lemma is a consequence of Lemma A.9 and of Theorem A.4 and is crucial in the proof of box-
crossing results.

Lemma A.12 (FKG). Let f be a Gaussian field on R? satisfying Condition 1.7 such that « is C°. Let p € R. Assume
that for each x € R?, k(x) > 0. Let A, B be obtained by taking as unions and intersections of a finite number of
crossings of quads and circuits in annuli above level —p. Then,

P[AN B] > P[A]P[B].

Proof. It suffices to approximate the events by increasing events that depend on f restricted a finitely many points
and using Theorem A.4. This can easily be done by considering the discrete model introduced in Section 3 and by
using Lemma A.9 to prove that the discrete crossing events indeed approximate the continuous crossing events (for a
similar argument, see the proof of Theorem 1.12 in Section 3.1). (]

The following lemma is useful to show that certain discrete approximations of events do converge a.s. to continuous
geometric events. In the lemma we refer to the face-centered square lattice defined before (see Figure 1). We use this
lemma only to study nodal components (see Section 3.4), but we do not need it in order to study crossing events.

Lemma A.13. Ler C € R?\ {0} be a compact smooth one-dimensional submanifold of R that intersects the axes
{0} x R and R x {0} transversally. Assume that there is a finite number of x € C such that T\C is colinear to an edge
of the face-centered square lattice. Then, for a.e. small enough ¢ > 0, we have:

1. the set C does not intersect the vertex set and intersects each edge of T¢ transversally;
2. each edge of T* is intersected at most twice and any two distinct intersection points of e are connected by a path
in C inside the union of the two faces adjacent to e.

Proof. By simple application of Sard’s theorem, the first property holds for a.e. £ > 0. We now take & > 0 such that
the first property holds and prove that the second property holds for ¢ > 0 small enough. We begin by defining some
constants depending on C that will determine how small the ¢’s need to be to satisfy the second property.

e Since there are a finite number of points x € C such that 7,C is colinear to an edge of the lattice, there exists ¢; > 0
such that any two such distinct points are at distance greater than 4cj.

e The distance between any two distinct components of C is bounded from below by a constant ¢; > 0.

e Each component of C is the image of some smooth embedding y : ' — R? with unit speed such that for each
distinct 5,7 € S1, |y (s) — y ()| = 1o distgi (s, t) (here and below, distg1 denotes the distance function on S, Let
IKlloo < 400 be the maximum of the curvature |k| on C and let ¢’ > 0 be such that for any two points x, y on
a common edge e and any point z outside of the union of the two faces adjacent to e, the unit vectors v and v;
pointing in the directions of z — x and y — z satisfy |v; — va| > ¢/. Let ¢3 = ¢’ Ao/ ||kl 0o € 10, +00].

We take ¢ < min(cy, ¢2, c3) and prove that the second property holds.

Fix e an edge of T°¢. Let us prove that any two intersection points on e must be connected by a smooth arc
inside the union F of the two faces adjacent to e. If e is intersected at least twice, say at x, y € e, then, x, y are at
distance less than ¢ so they must belong to the same component C. This component is parametrized by a smooth
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embedding y : ' — R? with unit speed so there are 5,7 € S', such that y(s) = x and y(¢) = s. By assumption,
&> |x —y| > Apdistgi (s, ). Assume that x and y are not connected by y inside the union F of the two faces adjacent
to e. Then, there exists r € S belonging to one of the shortest paths between z and 7 in S! such that y(r) =z ¢ F.
We denote by Js, ¢[ the open interval in S' containing r, and denote by ]s, r[ and ]r, 7[ the open sub-intervals with
extremities s and » and r and ¢ respectively. Let v; and v, be the unit tangent vectors pointing in the same directions as
z—x and y — x respectively. By construction, |v; — v2| > ¢’. By Rolle’s theorem, there exist u1 € ]s, r[ and u; € Ir, 1[
such that y’(u1) = vy and y’(u2) = v2. Moreover, by assumption, distgi (41, u2) < Aale. But this means that there
exists u3 € Juy, uz[ such that

IKlloo > [K(y w3))| = |y u3)] = roc'e™".

Consequently, ¢ > Aoc’/ | k|lcoc = ¢3 which contradicts our assumption. Therefore, x and y must be connected by a
smooth arc.

Now, by Rolle’s theorem, for any two distinct intersection points of e connected by a smooth arc inside F, there
must be a point x on this connecting arc such that 7,C is colinear to e. Thus, if e contains three distinct intersection
points, then there are two distinct points x, y € F such that T,C and T),C are colinear to e. But x, y € F so they must
be at distance at most 4& < 4¢; which contradicts the definition of ¢;. Hence, |C N e| < 2 and we are done. O

Appendix B: A uniform discrete RSW estimate

In this section, we prove a RSW result for the discrete models studied in [6]. As explained in Section 1, contrary to [6],
we do not use any discrete RSW estimate to deduce the continuous RSW estimate. However, a discrete RSW estimate
uniform in the mesh ¢ can be useful if one wants to apply tools from discrete percolation to our model. The results
of this section rely heavily on [6]. We also make a small correction in the arguments made therein. For these reasons,
this Appendix should be read as a companion text to [6]. We would like to stress the fact that the results presented
here are not used in the rest of the paper. We first introduce the following notations:

Notation B.1. Consider the discretized model introduced in the beginning of Section 3 and remember Definition 3.2.
If Q is a quad, write Crossg(Q) for the event that Q is e-crossed at level 0.

We have the following result.

Proposition B.2. Let f be a Gaussian field satisfying Conditions 1.7, 1.8, 1.10 as well as Condition 1.9 for some
o > 4. For every quad Q, there exist sy = so(k, Q) € 10, +o00[ and ¢ = c(k, Q) > 0 such that for each s € [sg, +0[
and each ¢ € 10, 1] we have:

P[Crossg(s Q)] >c.

Note that the constant ¢ above does not depend on €. As in the continuous case, the first result of this kind can be
found in [6] by combining Theorem 2.2 of [6] with their Section 4. The novelty here is that the result holds for any
o > 4 and without any constraint on (s, €). As in the proof of Theorem 1.1, we need a quasi-independence result to
prove Proposition B.2. We are going to use Proposition 3.4 where the quasi-independence estimate is uniform in ¢.

Proof of Proposition B.2. Asin Section 4, we follow Tassion’s strategy from [37]. However, since we need a constant
¢ which is uniform in ¢, it is more suitable to follow the quantitative version of Tassion’s method presented in Section 2
of [6].

Before going into the proof, let us warn the reader that in Section 4 we have used the notations from [37] while in
the present appendix we use the notations from [6]. In particular, the notation ¢ has two different meanings; we hope
that this will not confuse the reader.

We first assume that e ™! € Z_¢ so that our model is Z2-periodic. As noted in [6], by a simple duality argument
(which works since our lattice is a triangulation), we obtain that the probability that there is a left-right crossing of
[—s/2,5/2]> made of black edges of 7°¢ is 1/2 for any s € 2Z-¢. Hence we have the existence of some cg € 10, 1[
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such that the probability of this event is at least ¢ for any s € 27~ as assumed in Condition 3 of Definition 2.1 in [6].
We first prove the following lemma analogous to Lemma 2.7 of [6]. Our way to state this lemma is a little different
from [6] since we think that, for the proof of this lemma to be correct, one has to consider variants of the event (-, -)
as we do below. The reason why we need to make such a change is that the models are not continuous, which implies
that the function ¥; (which is defined in the proof) is not continuous, so the proof written in [37] does not work as is.
Let us stress that, once one has made this small correction, all the other results of [6] hold without any modification.

Lemma B.3. Forany s > 1, —s/2 <a < 8 <s/2, let Hs(a, B) (resp. 771 (o, B), 772(01, B)) be the event that there
is a path in [—s/2, s/2]* from the left side to {s/2} x [, B] (resp. to {s/2}x ], B], to {s/2} x [, B[) made of black
edges of T¢. Also, let Xs(«) be defined exactly as in [6,37] (see for instance Figure 2.2 of [6]). There exists a universal
polynomial Q1 € R[X], positive on 10, 1], such that for every s € 27, there exists os = o5 (¢, k) € [0, 5 /4] satisfying
the following properties:

(P1) P[A;(as)] = Q1(co). ~
P2) Ifag < s/4, then P[Hs(0, o5)] > co/4 + IP)[”HS1 (s, 8/2)].

Proof. For every « € [0, 5/2], write:

Ys (@) = Yy (ic, 8, @) = P[H(0, )| — P[H (e, 5/2)],

@) =¥l e, ) = P[H, 0, 0)] — P[H] (e, 5/2)],
and

o) =}k, e, @) = P[H}(0, @) ] — P[H, (@, 5/2)].
Note that:

Vo €[0,5/2[, lim ¢ (o)) =¥ (@);  Ya€l0,s/2], lim y() =97 ().

’ ’

a'>o o' <o

Now, if W(s/4) > co/4, then let g be the infimum over every o € [0, s /4] such that Vs (o) > co/4; otherwise let
o = s /4. Then, we have w (ot5) <cp/4 and, if a5 < 5/4, we have w (o) > cp/4. Thus, (P2) is satisfied. Concerning
(P1), similarly as in Lemma 2.1 of [37] we have:

co < 2P[H2(0, ay)] + 2P[Hy (s, 5/2)]
< AP[H (a5, 5/2)] + 207 (cts)
< 4P[Hs(ots, s/Z)] +co/2.

Finally, P[H (a5, s/2)] > co/8 thus as noted in [37], by a simple construction and by the FKG inequality we obtain
that P[X (as)] > co % (co/8)* . O

Next, Lemmas 2.8 and 2.9 of [6] apply readily. Now, define the universal funciton 7 as in (2.5) of [6] and define
the following function:

¢s = s (k, &) = sup|P[AN B] —

where the supremum is over any event A of the form Circ®(A) where A is an e-drawn annulus centered at 0 and
included in [—s, s]?, and any event B which is the intersection of at most log(s) events of the form Circ® (A) where
A is an g-drawn annulus centered at 0 and included in [—s log(s), s log(s)]2 \ ]-5s, 5s[2. Next, write:

§=5k, )= max{s € Z=o:5 = exp(ti(cp)) and ¢5 > %Q3(C0)},
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where Q3 is the universal positive function that comes from Lemma 2.9 of [6]. We have the following lemma anal-
ogous to Lemma 2.10 of [6], where for any 0 < r < s < +00, Circg (r, 5) denotes the event that there is an e-circuit
at level 0 in the annulus [—r, r]? \ ]-s, s[2, and where Q> is the universal positive function defined as in Lemma 2.8
of [6].

Lemma B.4. Foranys € Z~¢, s > §, ifIP[Circf)(s, 25)] > 02(co), then there exists s’ € [4s, t1(co)s] N Z~q such that
oy > S.

Proof. As noted in [6], since the rest of the proof is exactly the same as in [37], it is sufficient to prove that, if s > §,
then:

Llogs (1)) ' o
IE”[ N Circg(S’s,Z-S’s)‘:|<co/4. (B.1)

i=1

The proof is the same as in [6] since by our definition of §, if s > § and if ip € {1, ..., [logs(t1)] — 1}, we have:

[logs(z1)]
]P|: ﬂ CircS(AsiS,z.5iS0)C:|

i=ip
Llogs(z1)]

1 C . . co
= P[Clrcg(AsioS,z‘sfosV]P[ ﬂ Clrcg(Ay‘Y’z_s,-S)‘] + ¢ 05.
i=ig+1

Note that here the fact that (P2) in Lemma B.3 is written with ﬁ; (og, 5/2) instead of H (a, s/2) does not change the
proof at all. (]

Now, define y (v), t, = 1,(k, €) and s, = 5, (k, €) as in (2.8), (2.9) and (2.10) of [6] with § instead of s(2) i.e.:

y () =1+10g4,342,)3/2+v) > 1,
sy =max (8, [6/v] + 1),
ty = (3/2 4 v)s? Vg 7Y

Then, the proof of Lemma 2.11 of [6] applies readily with our definitions. Finally, as in the proof of Theorem 2.2
of [6], we obtain that for every v € ]0, 1/2[, there exists a universal positive continuous function P, defined on
[1, 400[%]0, 1[ such that, for every p > 1 and every s € Z- such that s > t,, the probability that there is a black path
in [0, ps] x [0, s] from the left side to the right side is at least P, (p, cp).

At this point, we want to have an upper bound on ¢, = 1, (¢) independent on ¢, i.e. we want to have an upper bound
§ = §(¢) and a lower bound on «y, (¢ (¢) that do not depend on ¢. To this purpose, first note that the functions Q»,
Q3 and P, are continuous functions of Q; and that, as explained in Lemma 4.6 of [6], there exists a = a(x) > 0 and
b = b(k) > 0 such that, if one replace the universal function Q; by the function a 0 that depends only on «, then
we have oy = o, (k, €) > b for every s. More precisely, we can choose any a € ]0, 1[ and b € ]0, 1/2[ so that, for
every s, the probability that f is positive both in the 4b x 4b box centered at (—s/2, 0) and the 4b x 4b box centered
at (s/2,0) is at least a. Such quantities exist since f is a.s. continuous and thanks to FKG. Secondly, note that, by
Proposition 3.4, ¢, is at most:

C log(s)(log(s)s)zszs*"‘

for some C = C (k) < +00. Hence (and since @ > 4) § is less than some finite constant M = M (k) does not depend
on ¢. Finally, ¢, is less than some finite constant that does not depend on &, and we have obtained Proposition B.2 for
¢~ ! € Z-¢ and when the quad is a rectangle [0, p] x [0, 1].
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To end the proof, first note one can easily extend the result to any quad by reasoning as in the proof of Theorem 1.1.
Finally, to extend the result to any ¢ € ]0, 1], fix such an ¢, let A € [1/2, 2] such that ()»8)’1 € Z~o and define the planar
Gaussian field f; : x — f(Ax) with covariance function (x, y) > «; (x — y). For any ¢’ > 0 and any quad Q, write

Cross‘g’)‘ (Q) for the event Crossg (Q) but with f; instead of f. Note that we have:

Crossy(Q) = Crossée‘)‘(Q).

Moreover, it is not difficult to see that, since A belongs to the compact subset of ]0, +oo[, [1/2, 2], one can find
constant a = a(k;), b = b(x)) and M = M (k;, co) as above that are uniform in A. This ends the proof. U

As in the continuous case, we can deduce that the one-arm event decreases polynomially fast. We first need a
notation.

Notation B.5. If 0 < r <5 < 400, we write A(r, s) = [—s, s]* \ ]—r, r[* and we write Arm{(r, s (resp. Armg* (r, 5))
for the event that there is an e-black path rom the inner boundary of A(r, s) to its outer boundary made of black edges
(resp. that lives in the white region of the plane) in the discrete percolation model of mesh ¢ defined in the beginning
of Section 3 with p =0.

Proposition B.6. Assume that f satisfies Conditions 1.7, 1.8, 1.10 as well as Condition 1.9 for some o > 4. There
exists C = C(k) < +o0 and n = n(k) > 0 such that, for each ¢ € 10, 1], for each s € [1, +oo[ and r € [1, s[:

P[Arm(r, s)|, P[Armg“ (r, )] < C(r/s)".

Proof. First note that, since f and — f have the same law, we have: 13

P[Arm{(r, s)] < P[Arm{*(r, s)].
So it is sufficient to prove the result for Armz’s(r, s). The proof is roughly the same as the proof of Proposition 4.5
except that we use Propositions B.2 and 3.4 instead of Theorem 1.1 and Theorem 1.12. The only difference is that
we have to consider only e-annuli, but that is not a problem. The constants do not depend on ¢ since the constants in
Propositions B.2 and 3.4 do not. U

As in the continuous case, the following is a direct consequence of Proposition B.6:

Proposition B.7. With the same hypotheses as Proposition B.6, for each € € 10, 1] a.s. there is no unbounded black
component in the discrete percolation model of mesh ¢ defined in the beginning of Section 3 with p = 0.
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