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Abstract. We study a kinetically constrained Ising process (KCIP) associated with a graph G and density parameter p; this process
is an interacting particle system with state space {0,1}G, the locations of the particles. The ‘constraint’ in the name of the process
refers to the rule that a vertex cannot change its state unless it has at least one neighbour in state ‘1’. The KCIP has been proposed
by statistical physicists as a model for the glass transition. In this note, we study the mixing time of a KCIP on the 2-dimensional
torus G = Z

2
L

in the low-density regime p = c
L2 for arbitrary 0 < c < ∞, extending our previous results for the analogous process

on the torus Z
d
L

in dimension d ≥ 3. Our general approach is similar, but the extension requires more delicate bounds on the
behaviour of the process at intermediate densities.

Résumé. Nous étudions un processus d’Ising avec contraintes cinétiques (PICC) associé à un graphe G et un paramètre de densité
p. Ce processus est un système de particules en interaction avec espace d’états � = {0,1}G, décrivant les positions des particules.
Les « contraintes » apparaissant dans le nom de ce processus réfèrent à la règle suivante: un sommet ne peut pas changer son état à
moins qu’il ait un voisin dans l’état « 1 ». Le PICC a été proposé par des physiciens comme un modèle pour la transition vitreuse.
Dans ce travail, nous analysons le temps de mélange d’un PICC sur le tore de dimension 2 G = Z

2
L

dans le régime de faible densité

p = c
L2 , où 0 < c < ∞. Ceci prolonge nos résultats au processus analogue sur le tore G = Z

d
L

, d ≥ 3. Notre approche générale est
similaire, mais cette extension requiert des bornes plus délicates sur le comportement du processus aux densités intermédiaires.

MSC: Primary 60J10; secondary 60J20
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1. Introduction

The kinetically constrained Ising process (KCIP) refers to a class of interacting particle systems introduced by physi-
cists in [13,14] to study the glass transition. These processes have also appeared outside of the computer science
literature (see the surveys [7,8] for examples). In this paper, we analyze one of the simplest and most-studied pro-
cesses introduced in [13,14], called the FA1f process. The FA1f process takes as parameters the underlying graph G

and the typical density 0 < p < 1 of 1’s at equilibrium. The mixing time τmix of this process at small density p = c
|G|

for fixed 0 < c < ∞ is the subject of a well-known conjecture of Aldous [1]:

τmix ≈ p−2τ
(G)
mix ,

where τ
(G)
mix is the mixing time of simple random walk on G. The conjecture is based on the heuristic that, near

equilibrium, the FA1f process at low temperature behaves much like a simple random walk on G with roughly p|G|
walkers, slowed down by a factor of p−3.
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In previous work [32], we studied Aldous’ conjecture in the case that the underlying graph is the torus Z
d
L in

dimension d ≥ 3. In that paper, we showed that Aldous’ conjecture does not quite hold for these examples: while the
heuristic is correct near equilibrium, the mixing time is governed by the much larger time it takes for the initial all-1’s
configuration to drift towards a more typical configuration with roughly c 1’s. As we show in [32] in the special case
of the torus in dimension d ≥ 3, this drift time can be related to the time it takes coalescing random walks on the same
underlying graph to coalesce. In this paper, we extend our previous work to the more difficult case of d = 2.

We recall the definition of the FA1f process on a general connected finite graph G = (V ,E) with density parameter
0 < p < 1. For a set S, we denote by Unif(S) the uniform distribution on S. Define a reversible Markov chain {Xt }t∈N
on the set of {0,1}-labellings of G by the following update procedure. At each time t ∈N, choose

vt ∼ Unif(V ),

pt ∼ Unif
([0,1]). (1.1)

If there exists u ∈ V such that (u, vt ) ∈ E and Xt [u] = 1, set Xt+1[vt ] = 1 if pt ≤ p and set Xt+1[vt ] = 0 if pt > p.
If no such u ∈ V exists, set Xt+1[vt ] = Xt [vt ]. In either case, set Xt+1[w] = Xt [w] for all w ∈ V \ {vt }.

Set |V | = n; for general points x ∈ {0,1,2, . . .}G, define |x| =∑v∈G 1x[v]�=0. Let π denote the stationary distribu-
tion of {Xt }t∈N. For y ∈ �, this stationary distribution is given by

π(y) = 1

ZKCIP
p|y|(1 − p)n−|y|1|y|>0, (1.2)

where ZKCIP = 1 − (1 −p)n is the normalizing constant. Thus π(y) is proportional to the Binomial(n,p) distribution
on the number of non-zero labels in y ∈ �, conditional on having at least one non-zero entry.

We give some standard notation. Denote by L(X) the distribution of a random variable X. Recall that for distribu-
tions μ, ν on a common measure space (�,A), the total variation distance between μ and ν is given by

‖μ − ν‖TV = sup
A∈A

(
μ(A) − ν(A)

)
.

The mixing profile for the KCIP Markov chain {Xt }t∈N on � with stationary distribution π is given by

τ(ε) = inf
{
t > 0 : sup

X1=x∈�

∥∥L(Xt ) − π
∥∥

TV < ε
}

for 0 < ε < 1. As usual, the mixing time is defined as τmix = τ( 1
4 ).

For a positive integer L ∈ N, let �(L,d) denote the d-dimensional torus with n = Ld points; this is a Cayley graph
with vertex set, generating set and edge set given by

V = Z
d
L,

Gen = {(1,0,0, . . . ,0), (0,1,0, . . . ,0), . . . , (0,0,0, . . . ,1)
}
,

E = {(u, v) ∈ V × V : u − v ∈ ±Gen
}
.

Set

n = ∣∣�(L,d)
∣∣= Ld.

In this paper, we study the KCIP on a sequence of graphs {�(L,d)}L∈N with density

p = pn = c

n
(1.3)

for some fixed constant 0 < c < ∞ and fixed dimension d = 2.
The following is our main result:
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Theorem 1 (Mixing of the constrained Ising process on the torus). Fix 0 < c < ∞ and let p = pn be as in (1.3).
Then the mixing time of the KCIP on �(L,2) satisfies

C1n
3 ≤ τmix ≤ C2n

3 log(n)14

for some constants C1, C2 that may depend on c but are independent of n.

Remark 1.1. We show in [32] that the mixing time on �(L,d) in dimension d ≥ 3 satisfies n3 � τmix � n3 log(n).
We conjecture that τmix ≈ n3 for d ≥ 3 and τmix ≈ n3 log(n) for d = 2.

For comparison, the mixing time of the simple random walk on G = �(L,d) is known to grow like τRW
mix ≈ n

2
d for

fixed d ∈N (see, e.g., Theorem 5.5 of [21]), while the worst-case expected hitting time of 0 is given by τhit ≈ n when
d ≥ 3 and τhit ≈ n log(n) when d = 2 (see, e.g., Theorem 4 of [34]).

In the statement of Theorem 1 and throughout the paper, we assume that the quantity 0 < c < ∞ is fixed; only
n = L2 grows. In particular, in Theorem 1 and all other calculations, bounds that are ‘uniform’ are implied to be
uniform only in n and other explicitly mentioned variables; they will generally not be uniform in c. Throughout the
paper, we will denote by C a generic constant, whose value may change from one occurrence to the next, but is
independent of n.

The main difficulty in extending the results of [32] to the case d = 2 stems from the fact that the mixing time of
simple random walk on the torus is very small compared to the size of the torus in dimensions d ≥ 3, while this is no
longer the case in dimension d = 2. As a consequence of this fact, the behaviour of the FA1f diverges substantially
from the behaviour of coalescing random walks long before all the walkers have coalesced (see [26,34]). Thus, in
dimension d = 2, we can no longer rely on comparing the KCIP directly to the coalescing process until the number of
particles is close to equilibrium, which was the main technique of [32]. Instead, we now need to analyze the behaviour
of the process when it is moderately far from equilibrium. Although we focus on the special case of the torus in
these papers, we believe that these behaviours are typical of the KCIP on rapidly-mixing and slowly-mixing graphs
respectively.

1.1. Related work

KCIP models have attracted a great deal of interest recently, including applications to combinatorics, computer sci-
ence, and other areas. The recent survey [15] discusses KCIPs throughout physics, while [7,8] have useful surveys
of places that the KCIP has appeared outside of the physics literature. The paper [3] studies the FA1f model in one
dimension. Recent mathematical progress has included new bounds on the mixing properties of KCIPs in various
regimes [4–8,20,23], and the very recent work [24] makes substantial progress towards a “universal” approach for
bounding relaxation times of kinetically-constrained processes. We also mention our recent related analysis [9] of
the square plaquette model; this is a more complicated stochastic process that is intended to have similar qualitative
behaviour to the FA1f model with more physically realistic dynamics.

1.2. General notation

We recall some standard notation that will be used throughout the paper. For sequences x = x(n), y = y(n) indexed by
N, we write y = O(x) for lim supn→∞

|y(n)|
|x(n)| ≤ C < ∞ and y = o(x) for lim supn→∞

|y(n)|
|x(n)| = 0. We write y = �(x)

if both y = O(x) and x = O(y). Finally, we also write y � x or x � y for y = O(x), and y ≈ x for y = �(x), during
calculations.

2. A roadmap for the proof

Our proof strategy builds on and improves the approach [32]. We recall some notation from that paper, give a sketch
of our proof of Theorem 1, and then explain where our refinements occur.

First, we note that there is an obvious bijection between the points of � = {0,1}G and the collection of sets
�̃ = {S ⊂ G}: map X ∈ �̃ to 1X ∈ �. We often use this bijection without explicit discusssion if there is no possibility
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of confusion. For example, if X,Y ∈ �, we would write X ∩ Y as shorthand for 1{u:X[u]=Y [u]=1} or |X| as shorthand
for
∑

u X[u].
For 1 ≤ k ≤ n

2 , let �k ⊂ � be configurations of k particles for which no two particles are adjacent, i.e.,

�k =
{
X ∈ {0,1}G :

∑
v∈V

X[v] = k,
∑

(u,v)∈E

X[u]X[v] = 0

}
. (2.1)

Also set �′ = � \⋃ n
2
k=1 �k . For each k ≤ n

2 , we will denote by τ
(k)
mix the mixing time of the trace of Xt on �k (see

Definition 4.1 of Section 4 for the precise definition of the trace of a Markov chain). We denote by τ
(≤k)
mix the mixing

time of the trace of Xt on
⋃

i≤k �i . Define the quantity

Occk(ε,N) = sup
x∈�

inf

{
T ≥ 1 : X1 = x,P

(
T∑

s=1

1Xs∈⋃i≤k �i
> N

)
> 1 − ε

}
.

For a fixed N and small ε, Occk(ε,N) denotes the first time at which the occupation measure of Xt in
⋃

i≤k �i

exceeds N with probability at least (1 − ε).
Our proof strategy for the upper bound in Theorem 1 entails the following steps:

Step 1. We show that for a universal constant r = r(c) depending only on the constant c from (1.3), and slowly-
growing sequence kmax = kmax(c, n) ≡ r(c) log(n),

τmix = O

(
τ

(≤kmax)
mix + Occkmax

(
1

8kmax
,Cτ

(≤kmax)
mix

))
.

This is an immediate consequence of Lemma 2.1 of [31].
Step 2. By a comparison argument using the simple exclusion process, we show that

τ
(k)
mix = O

(
n3 log(n)3) (2.2)

uniformly in 1 ≤ k ≤ kmax. See Lemma 4.2.
Step 3. By coupling the KCIP to a ‘colored’ version of the coalesence process over short time periods, we show that

the process

Vt =
∑
v∈V

Xt [v] (2.3)

satisfies the ‘drift condition’

E[Vt+εS(n) − Vt |Xt ] ≤ −δVt + C(n) (2.4)

for some characteristic time scale S(n) ≈ n3 and bias size C(n) ≈ log(n), and for fixed ε, δ > 0 independent
of n. See Theorem 3.1.

Step 4. By another comparison argument, we show that

τ
(≤kmax)
mix = O

(
max

1≤k≤kmax
τ

(k)
mix log(n)13

)
.

See Lemma 5.1.
Step 5. Conclude from Step 3 and Step 4 that Occk(

1
8kmax

,Cτ
(≤kmax)
mix ) = O(n3 log(n)13). See Proposition 6.1.

The result then follows immediately by combining the bounds in Steps 1, 4 and 5.
This is quite similar to the road map in [32]. The key difference occurs at Step 3. In [32], Inequality (2.4) was

proved directly when d ≥ 3 with S(n) = n3 and C(n) = C < ∞ constant. The analogous bound is false in dimension
d = 2 for small ε > 0, and we instead show that it holds for S(n) = n3 and C(n) = log(n) when d = 2. This change
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means that we require stronger bounds in several of the remaining stages of the proof. The version of Inequality (2.4)
in this paper establishes that Vt � log(n) with large probability after an initial burn-in period of length T � n3 log(n).
This is much weaker than the bound Vt � 1 obtained in [32], and so we now need the comparison bounds in Step 2
and Step 4 above to hold up to k ≈ log(n), rather than up to k ≈ 1.

3. Mixing at very high density: Drift condition for Vt

Recall the process Vt =∑v∈�(L,2) Xt [v] from Equation (2.3). In this section, we show roughly that Vt = O(log(n))

with high probability for any t � n3 log(n). The proof of this fact follows almost immediately from our proof of the
analogous fact in our previous paper [32], and so we state only the small adjustments that are required. As in [32], the
basic idea is to count “collisions” in a closely-related Markov chain called the coalescent process, then show that on
average Vt decreases at a rate similar to this “collision” rate.

Define Gt = (V (Gt ),E(Gt)) to be the induced subgraph of �(L,2) with vertices V (Gt) = {u ∈ �(L,2) : Xt [u] =
1}, and define

ConnComp(Gt ) = The number of connected components of Gt . (3.1)

Let Ft denote the σ -algebra generated by the random variables {Xs}s≤t . The key result in this section is a drift
condition on {Vt }t∈N, which follows almost immediately from bounds in [32]:

Theorem 3.1. There exists some constant 0 < ε0 = ε0(c) independent of n so that for all 0 < ε < ε0, there exist
constants CG = CG(ε, c) < ∞, α = α(ε, c) > 0 and N = N(ε, c) so that, for all n > N ,

E[Vεn3 |V1] ≤ (1 − α)V1 + CG log(n). (3.2)

Before giving the proof, we recall the definition of the coalescent process on a finite graph ([10,17]):

Definition 3.2 (Coalescent process). Fix a regular graph G = (V ,E) and parameters k ∈ N, q ∈ [0, 1
k
]. A coalescent

process on graph G with k initial particles and moving rate q is a Markov chain {Zs}s∈N on Gk . Let Os = {v ∈
G : ∃1 ≤ i ≤ k such that Zs[i] = v} be the occupied sites of Zs . To evolve Zs , we first choose us ∼ Unif([0,1]),
vs ∼ Unif([Os]) and us ∼ Unif({v ∈ G \ {vs} : (v, vs) ∈ E}) and set Is = {i : Zs[i] = vs}. If us ≤ q|Os |, then set
Zs+1[j ] = us for all j ∈ Is and set Zs+1[j ] = Zs[j ] for all j /∈ Is ; otherwise, set Zs+1[j ] = Zs[j ] for all j .

Proof of Theorem 3.1. Let {Zt }t∈N be a coalescent process on �(L,2) with V1 initial particles. Let Lt = |Ot | be the
number of occupied sites of Zt , so that L1 = V1. Inequality (4.1) of [34] states that there exists a constant 0 < C < ∞
so that, for all t ∈N,

E[Lt ] ≤ Cn
log(t)

t − 1

uniformly in the number L1 = V1 of initial particles. In particular, we have

E[Lεn] ≤ Cε log(n). (3.3)

Define the number of collisions by time s to be

Cs = ∣∣{1 ≤ u < s : ConnComp(Gu+1) < ConnComp(Gu)
}∣∣. (3.4)

We obtain a lower bound on the number of collisions by following exactly the argument given for a similar bound in
Lemma 6.15 of [32], making and propagating two minor changes:

(1) We replace Inequality (6.47) of [32] and all references to the associated Theorem 5 of [34] with our Inequality
(3.3) and references to Inequality (4.1) of [34].1

1Because of the different notation, Inequality (6.47) of [32] looks slightly different from our Inequality (3.3) at first glance. In the notation of [32],
our Inequality (3.3) would be written as E[∑i 1A(i)

2
] ≤ C log(n).
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(2) We replace the universal constant C first defined in Inequality (6.47) of [32] with C log(n).

For any fixed ε > 0, the resulting lower bound on the number of collisions is

E[Cεn3 ] ≥ αV1 − C log(n) (3.5)

for some constants 0 < α < 1, 0 ≤ C < ∞ that may depend on c and ε, but which do not depend on n.
Inequality (3.2) follows by an argument identical to the proof of Theorem 6.1 of [32], with one change: we replace

all references to Lemma 6.15 of [32] with references to our Inequality (3.5). The proof of Theorem 6.1 in [32] is fairly
long, so we include a basic sketch of the argument here. The main idea is to couple the KCIP to a coalescence process
in such a way that a positive percentage of collisions in the coalescence process occur shortly before a connected
component of the KCIP is removed; this allows us to connect the bound in (3.5) to the behaviour of the KCIP. The
proof itself is concerned with checking that the coupling is tight enough for this transfer of information, and also
checking that only a moderate number of new particles can be spawned by the KCIP over the relevant time interval. �

4. Mixing at moderate densities: Trace of KCIP on �k

In this section, we bound the mixing time of the trace of {Xt }t∈N onto the sets �k defined in Equation (2.1), for all
k = O(log(n)). We recall the definition of the trace of a Markov chain:

Definition 4.1 (Trace). Fix an irreducible Markov chain {Zt }t∈N on a finite state space �. For a fixed subset S ⊂ �,
set η(0) = 0 and for s ∈N, recursively define the sequences of times

η(s) = inf
{
t > η(s − 1) : Zt ∈ S

}
,

κ(s) = sup
{
u : η(u) ≤ s

}
.

(4.1)

The quantity κ can also be written as

κ(T ) =
T∑

t=1

1Zt∈S. (4.2)

Then the trace {Z(S)
t }t∈N of the Markov chain {Zt }t∈N onto the set S is given by

Z
(S)
t = Zη(t). (4.3)

Fix 1 ≤ k ≤ n
2 , and let Qn,k be the kernel of the trace of {Xt }t∈N on �k . Denote by τn,k the mixing time of Qn,k

and denote by 1 − β1(Qn,k) the spectral gap of Qn,k (see Equation (4.6) below for a definition of spectral gap). The
key result of this section is:

Lemma 4.2 (Mixing of restricted walks). Fix r ≥ 1. With notation as above, there exists a constant C = C(c, r) that
does not depend on n so that

τn,k ≤ Cn3 log(n)3,

1

1 − β1(Qn,k)
≤ Cn3 log(n)2

uniformly in 1 ≤ k ≤ r log(n) for all n > N(c, r) sufficiently large.

We will proceed by using comparison theory, a tool developed for comparing the mixing properties of a Markov
chain of interest to those of a similar and better-understood chain (see, e.g., [29] or [11] for an introduction to this
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method). We prove our estimates on Qn,k by comparing the log-Sobolev constants of a sequence of other well-studied
Markov chains. We outline this sequence of comparison bounds, with notation collected here for easy reference:

(1) Following [32], we will first compare Qn,k to a sped-up and restricted version of the simple exclusion process
(SE) on �(L,2), whose kernel is denoted QMH; see Section 4.4. The papers [10,17] give an introduction to the
simple exclusion process.

(2) We will next compare the modified version of the SE process with kernel QMH to a suitably modified Bernoulli–
Laplace diffusion process, whose kernel is denoted UMH

n,k . The original comparison paper [29] of Diaconis and
Saloff-Coste compares the usual SE process to the standard Bernoulli–Laplace diffusion process. We use an
argument very similar to that started in Section 3 of [29] and completed in Section 4.6 of [30]; see Section 4.3.

(3) We use direct computations and an argument from [33] to estimate the log-Sobolev constant of our modified
Bernoulli–Laplace diffusion process UMH

n,k . See Section 4.2.

We next recall the definitions of the simple exclusion process and the Bernoulli–Laplace diffusion process, which
form the basis of our kernels QMH and UMH

n,k :

Definition 4.3 (Simple exclusion process on �(L,2)). The simple exclusion process {Zt }t∈N is a Markov chain on
the finite state space

�SE
n,k ≡

{
Z ∈ {0,1}n :

∑
i

Z[i] = k

}
. (4.4)

To update Zt , choose two adjacent vertices ut , vt ∈ �(L,2) uniformly at random and set

Zt+1[ut ] = Zt [vt ],
Zt+1[vt ] = Zt [ut ]

and Zt+1[w] = Zt [w] for w /∈ {ut , vt }. We denote by QSE
n,k the associated transition kernel.

Definition 4.4 (Bernoulli–Laplace Diffusion Process). The Bernoulli–Laplace diffusion process {Zt }t∈N is a
Markov chain on the finite state space �SE

n,k given in Equation (4.4). To update Zt , sample

ut ∼ Unif
({

i : Zt [i] = 1
})

,

vt ∼ Unif
({

i : Zt [i] = 0
})

and set

Zt+1[ut ] = 0,

Zt+1[vt ] = 1,

Zt+1[w] = Zt [w], w /∈ {ut , vt }.

We denote by U ′
n,k the associated transition kernel and let Un,k = 1

2U ′
n,k + 1

2 Id.

4.1. Comparison of Markov chains using Dirichlet forms

Before proving the main result of this section, we recall some relevant results for comparing Dirichlet forms.

Definition 4.5 (Norms, forms and related functions). For a general Markov chain on a finite state space X with
kernel P and unique stationary distribution π , and any function f : X → R that is not identically 0, we respectively
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define the L2 norm, variance, Dirichlet form and entropy as:

‖f ‖2
2,π =

∑
x∈X

∣∣f (x)
∣∣2π(x),

Vπ (f ) = 1

2

∑
x,y∈X

∣∣f (x) − f (y)
∣∣2π(x)π(y),

EP (f,f ) = 1

2

∑
x,y∈X

∣∣f (x) − f (y)
∣∣2P(x, y)π(x),

Lπ(f ) =
∑
x∈X

∣∣f (x)
∣∣2 log

(
f (x)2

‖f ‖2
2,π

)
π(x).

(4.5)

Recall that the log-Sobolev constant and spectral gap of a Markov transition matrix P are given by

α(P ) = inf
f �=0

EP (f,f )

Lπ(f )
,

1 − β1(P ) = inf
f �=0

EP (f,f )

Vπ(f )
.

(4.6)

Let K , Q be the kernels of two 1
2 -lazy, aperiodic, irreducible, reversible Markov chains on a state space �. Assume

that K has unique stationary measure μ while Q has a unique stationary measure ν.

Definition 4.6 (Paths, flows). For each a, b ∈ � with K(x,y) > 0, we define a flow in � from a to b. To do so,
call a sequence of vertices γ = [a = v0,a,b, v1,a,b, . . . , vk[γ ],a,b = b] a path from a to b if Q(vi,a,b, vi+1,a,b) > 0 for
all 0 ≤ i < k[γ ]. Then let �a,b be the collection of all paths from a to b and let � =⋃a,b �a,b . Call a function
F : � �→ [0,1] a flow if

∑
γ∈�a,b

F [γ ] = 1 for all a, b. For a path γ ∈ �a,b , we will label its initial and final vertices
by i(γ ) = a, o(γ ) = b.

The purpose of these definitions is to provide a way to compare the functionals described in Equation (4.5). If

Lν(f ) ≤ CLLμ(f ),

EK(f,f ) ≤ CEEQ(f,f )

for all functions f : � �→ R, then the variational characterization of α given in formula (4.6) implies

α(Q) ≥ 1

CLCE
α(K). (4.7)

Using this notation, Theorem 2.1 of [29] may be restated as:

Theorem 2 (Comparison of Dirichlet forms for general chains). Fix notation as above and also fix a flow F . Then
for any function f : � �→R,

EK(f̂ , f̂ ) ≤ AEQ(f,f ),

where

A = sup
Q(q,r)>0

1

Q(q, r)ν(q)

∑
γ�(q,r)

F [γ ]k[γ ]K(i(γ ), o(γ )
)
μ
(
i(γ )

)
.

Lemma 2 of [33] may be restated as:
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Lemma 4.7 (Comparison of variance and log-Sobolev constants). Let μ, ν be measures on � and let C̃ =
supy∈�

ν(y)
μ(y)

. Then for any function f on �,

Vν(f ) ≤ C̃Vμ(f ),

Lν(f ) ≤ C̃Lμ(f ).

4.2. The log-Sobolev constant of a modified Dirichlet–Laplace diffusion processes

Let Un,k be as in Definition 4.4 and let UMH
n,k be the Metropolis-Hastings chain with proposal distribution Un,k and

target distribution the uniform distribution on �n,k ≡ �k ; that is, let

UMH
n,k (x, y) = Un,k(x, y)1x,y∈�n,k

for x �= y and UMH
n,k (x, x) = 1 −∑x �=y UMH

n,k (x, y). We define πMH to be the uniform distribution on �n,k and πSE to

be the uniform distribution on �SE
n,k . Let EU,SE and EU,MH be the Dirichlet forms associated with Un,k and UMH

n,k . The
main bound in this section is:

Lemma 4.8. Fix 0 < r < ∞. Let α(UMH
n,k ) and 1 − β1(U

MH
n,k ) be the log-Sobolev constant and spectral gap of UMH

n,k .
Then there exists some constant C = C(c, r) < ∞ that does not depend on n so that

α
(
UMH

n,k

)≥ C

n log(n)3
,

1 − β1
(
UMH

n,k

)≥ C

n log(n)2

uniformly in 1 ≤ k ≤ r log(n).

Before proving this, we recall an estimate of the log-Sobolev constant of the “perfect” transition kernel LMH
n,k on

�n,k , defined by

LMH
n,k (x, y) = 1

2|�n,k| + 1

2
1x=y.

We have:

Lemma 4.9 (Log-Sobolev constant of LMH
n,k ). Fix 0 < r < ∞. Let α(LMH

n,k ) and 1 − β1(L
MH
n,k ) be the log-Sobolev

constant and spectral gap of LMH
n,k . Then there exists some constant 0 < C = C(c, r) < ∞ that does not depend on n

so that

α
(
LMH

n,k

)≥ C

log(n)
,

1 − β1
(
LMH

n,k

)≥ C

uniformly in 1 ≤ k ≤ r log(n), for all n > N(r) sufficiently large.

Proof. This follows immediately from an application of Inequality (3.10) of [30] and the well-known fact that the
spectral gap of LMH

n,k is �(1). �

We are now ready to prove Lemma 4.8 by comparing UMH
n,k to LMH

n,k :

Proof of Lemma 4.8. We will apply Theorem 2. To do so, we need to define the relevant paths and flows on those
paths. We assume that n > 50k. Before giving a careful definition for our paths, we give some intuition behind their
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Fig. 1. The particles in X (respectively Y ) are shown in red (respectively blue). Note that moving any red particle to any blue particle will result in
a configuration that is not in �n,k , because the configuration will have two adjacent particles.

Fig. 2. The left-hand (respectively right-hand) side shows the X (respectively Y ) configuration from Figure 1. The middle display shows a “typical”
intermediate configuration Z. Note that the obvious paths from X to Z and from Z to Y do not exit �n,k .

construction. First, note that there is an obvious path between any pair X,Y ∈ �n,k : simply move particles in X to
particles in Y one at a time, in any order. Unfortunately, for some choices of X, Y , this obvious path will leave the
state space �n,k – see Figure 1.

To avoid this problem, we sample a random intermediate point Z at random; with high probability, the direct paths
from X to Z and from Z to Y will remain in �n,k and the additional steps will not have a large impact on the final
bound. Figure 2 shows the introduction of a random intermediate point for the bad pair of configurations in Figure 1.

Roughly speaking, since X ∪ Y ∪ Z ∈ �n,3k with very high probability under this construction, we will almost be
able to ignore the effects of the constraint that no two particles may be adjacent when doing the following calculations.

We now define the paths precisely:

Definition 4.10 (Flows for Bernoulli–Laplace diffusions). Fix X,Y ∈ �n,k . We sample a length-2 path from X to
Y by the following algorithm:

(1) Choose Z uniformly from the set

�X,Y =
{
Z ∈ �n,k :

∑
|u−v|≤1

(
X[u] + Y [u])Z[v] = 0

}

of configurations that have no particles next to either X or Y .
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(2) Let

{x1, . . . , xk} = {u : X[u] = 1
}
,

{y1, . . . , yk} = {u : Y [u] = 1
}
,

{z1, . . . , zk} = {u : Z[u] = 1
}

be the location of all particles in X, Y and Z respectively, ordered uniformly at random.
(3) Define a path P

X,Y
1 = (σ1, . . . , σk+1) from the set associated with X to the set associated with Z by

σi[j ] = xj , i ≤ j,

σi[j ] = zj , i > j.

Define a path P
X,Y
2 = (η1, . . . , ηk+1) from the set associated with Z to the set associated with Y by

ηi[j ] = zj , i ≤ j,

ηi[j ] = yj , i > j.

(4) Return the path P X,Y = (1σ1, . . . ,1σk+1,1η2, . . . ,1ηk+1) from X to Y .

Having defined the flows, we have implicitly defined the constant A in Theorem 2. We must now bound that
constant. Fix a pair of elements (Q,R) with UMH

n,k (Q,R) > 0 and Q �= R. By the definition of UMH
n,k , we must have

that |Q \ R| = |R \ Q| = 1. For X,Y ∈ �n,k , let P X,Y be a random path as given by Definition 4.10 and let F be the
associated flow. In order to bound the weight assigned to the edge (Q,R), we note that all paths have length at most
2k, and so

∑
X,Y∈�n,k

∑
γ∈�X,Y :(Q,R)∈γ

|γ |F [γ ] ≤ 2k
∑

X,Y∈�n,k

k∑
�=1

(
P
[
(Q,R) = (σ�, σ�+1)

]
+ P

[
(Q,R) = (η�, η�+1)

])
. (4.8)

We note that P
X,Y
1 and P

X,Y
2 are symmetric. Thus, to bound the weight (4.8) assigned to the edge (Q,R), it is

enough to bound P[(Q,R) = (σ�, σ�+1)] for all fixed 1 ≤ � ≤ k and X, Y . To do so, we note that it is possible to
sample from P

X,Y
1 using the following rejection-sampling algorithm:

(1) Choose Ẑ uniformly from the set {z ∈ {0,1}G :∑v∈G z[v] = k}.
(2) Let

{x1, . . . , xk} = {u : X[u] = 1
}
,

{y1, . . . , yk} = {u : Y [u] = 1
}
,

{ẑ1, . . . , ẑk} = {u : Ẑ[u] = 1
}

be the location of all particles in X, Y and Ẑ respectively, ordered uniformly at random.
(3) Define a path P

X,Y
1 = (σ1, . . . , σk+1) from the set associated with X to the set associated with Ẑ by

σi[j ] = xj , i ≤ j,

σi[j ] = ẑj , i > j.

Define the associated proposal path γ̂ = (1σ1 , . . . ,1σk+1,1η2, . . . ,1ηk+1).
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(4) If Ẑ ∈ �X,Y , say that we accept this path and return the path γ̂ . Otherwise, say that we reject this choice of Ẑ and
go back to step 1 of this algorithm.

Note that this algorithm makes sense even if X,Y are not in �n,k . We note that, for γ̂ as in step 3 of the algorithm,
we can compute exactly∑

X,Y⊂{0,1}G:|X|=|Y |=k

P
[
(Q,R) = (γ̂ [�], γ̂ [� + 1])]= ( n

k − 1

)
.

Furthermore, for X,Y ∈ �n,k , it is clear that

P[Ẑ is rejected] = O

(
k

n

)
= O

(
log(n)

n

)
= o(1).

Combining these two bounds, we have:∑
X,Y∈�n,k

P
[
(Q,R) = (σ�, σ�+1)

]≤ ( n

k − 1

)(
1 + o(1)

)
.

Combining this with Inequality (4.8), we have

∑
X,Y∈�n,k

∑
γ∈�X,Y :(Q,R)∈γ

|γ |F [γ ] ≤ 2k
nk−1

(k − 1)!
(
1 + o(1)

)
. (4.9)

Note that UMH
n,k and LMH

n,k have the same stationary distribution, and that

UMH
n,k (x, y)

LMH
n,k (x, y)

= nk−1

(k − 1)!
(
1 + o(1)

)
(4.10)

for any (x, y) for which UMH
n,k (x, y) �= 0. Combining Inequalities (4.9) and (4.10), we conclude that our choice of flow

yields a value of A in Theorem 2 that satisfies

A ≤ 4k2(1 + o(1)
)
.

The results follow immediately from applying Theorem 2 with this bound on A and the bound on the log-Sobolev
constant (respectively spectral gap) of LMH

n,k obtained in Lemma 4.9. �

4.3. Comparing modified Dirichlet–Laplace diffusion process to modified simple exclusion process

For n ∈ N and 1 ≤ k ≤ n
2 , we define the graphs GSE = (VSE,ESE) and GMH = (VMH,EMH) by

VSE = �SE
n,k,

VMH = �n,k,

ESE = {(u, v) ∈ VSE : QSE
n,k(u, v) > 0

}
,

EMH = ESE ∩ V 2
MH,

where �SE
n,k and QSE

n,k are given in Definition 4.3, and �n,k = �k is defined in Equation (2.1). Note that GMH is a
subgraph of GSE.

We then define QSE to be the kernel of the 1
2 -lazy simple random walk on GSE; this has stationary distribution πSE

that is uniform on VSE. We define πMH to be the uniform distribution on VMH and define QMH to be the Metropolis-
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Hastings kernel with proposal kernel QSE and stationary measure πMH. That is,

QMH(x, y) = QSE(x, y)1x,y∈VMH

for x �= y and QMH(x, x) = 1 −∑y �=x QMH(x, y).
The main bound of this section is:

Lemma 4.11. Fix 0 < r < ∞. Let α(QMH) and 1 − β1(QMH) be the log-Sobolev constant and spectral gap of QMH.
Then there exists some constant C = C(c, r) < ∞ that does not depend on n so that

α(QMH) ≥ C

n2 log(n)3
,

1 − β1(QMH) ≥ C

n2 log(n)2

uniformly in 1 ≤ k ≤ r log(n), for all n > N(r) sufficiently large.

Proof of Lemma 4.11. We will apply Theorem 2, comparing QMH to UMH
n,k . To do so, we need to define the relevant

paths and flows on those paths. The proof of this lemma will be similar in spirit to the proof of Lemma 4.8. In both
cases, we have the following intuition:

(1) there is an “obvious” direct path between pairs of points X, Y ;
(2) this “obvious” path will sometimes leave the state space �n,k of the Markov chain, and thus cannot legally be

used; and
(3) we resolve this problem by choosing intermediate points according to some distribution, and then showing that

the indirect path from X to Y that goes via these intermediate points will stay in �n,k with high probability.

Unfortunately, the details of this construction are more complicated in the present lemma, so we give an expanded
rough sketch of what goes wrong and how we avoid the main problems. In this sketch, we view X, Y as collections
of k particles which undergo simple random walk.

We note that if X �= Y satisfy UMH
n,k (X,Y ) > 0, then in fact X \ Y and Y \ X each contain only a single element,

which we denote x, y respectively. The obvious path from X to Y is to send x to y along a minimal-length path,
without moving any of the other particles in X and Y . Call a pair X, Y good if this path remains in �n,k . Since |X|,
|Y | are much smaller than n, the vast majority of choices of X, Y are good. Unfortunately, if e.g. the particles in X

or Y are very densely packed, there may be no way to send x to y without exiting �n,k or moving particles in X that
already agree with Y , as illustrated in Figure 3.

Considering other configurations similar to Figure 3, it is straightforward to check that the shortest path from X to
Y might involve moving at least

√
log(n) different particles in X. Thus, while most pairs X, Y are “good,” some pairs

are very bad. Moving these conflicting particles carelessly can result in very bad estimates.
To resolve this difficulty, we need to begin by moving X, Y to nearby positions X′, Y ′ that form a “good” pair.

To obtain a useful result, we have to make sure that these initial “sparsifying” moves don’t have a high congestion.
Since densely-packed configurations can be quite complicated, it is not obvious how to construct deterministic paths
with low congestion. Fortunately, there is a simple construction of random paths with small congestion: allow (X,Y )

to evolve according to any Markov chain whose marginal distributions have uniform distribution on �n,k ; reject the
resulting path if and only if the last points (X′, Y ′) are not “good” in the above sense. As long as this rejection
probability is small and the length of the path from X to X′ is not too long, we will essentially be able to ignore all
pairs that are not “good.” See Figure 4 for sample configurations X′, Y ′ related to the initial configurations X,Y in
Figure 3.

After constructing the random paths explicitly (see Definition 4.16), almost the entire proof of this lemma is
checking that the rejection probability described above is small (see Lemma 4.21). This entails checking that uniformly
chosen small perturbations of any configuration X are unlikely to be densely packed, and that the random walk in
Definition 4.16 mixes quickly enough that the endpoints of our random paths are very nearly uniformly chosen small
perturbations of their starting points. We now give our formal proof.
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Fig. 3. The particles that are common to X and Y are shown in black. The unique particle in X \Y (respectively Y \X) is shown in red (respectively
blue). Note that moving the red particle to the blue particle without exiting �n,k would require many other particles to move as well.

Fig. 4. The left-hand (respectively right-hand) side shows the X (respectively Y ) configuration from Figure 3. The middle displays show “typical”
intermediate configuration X′, Y ′ . Note that the unique minimal-length path from X′ to Y ′ does not exit �n,k .

Fix X,Y ∈ �n,k that satisfy UMH
n,k (X,Y ) > 0. If X = Y , we choose the obvious “length-0” path. This case cannot

contribute to the constant A appearing in Theorem 2, so we ignore it for the remainder of the proof. Otherwise, X �= Y

must be two configurations in �n,k that satisfy |{i : X[i] = 1} ∩ {i : Y [i] = 1}| = k − 1. Let x be the unique element
of {i : X[i] = 1} \ {i : Y [i] = 1} and let y be the unique element of {i : X[i] = 1} \ {i : Y [i] = 1}. As suggested above,
we will construct a random path from X to Y in two steps:

(1) We construct short paths from X and Y to random configurations X′ and Y ′ that are nearby but don’t have any
large clumps.

(2) We use a minimal-length path from X′ to Y ′.

More precisely, we write:

Definition 4.12 (Underlying paths on �(L,2)). Throughout the remainder of this proof, we denote by � =
{δx,y}x,y∈�(L,2) the collection of minimal-length paths between all pairs of points x, y ∈ �(L,2) that are described
in Example 5.3 of [29]. We do not need the details of this collections of paths for our analysis - just that they are
a fixed collection of minimal-length paths. These paths will be used to get between the intermediate vertices X′, Y ′
mentioned above.

We wish to find paths that escape clumped-up figurations while remaining in �n,k . This motivates the following
definition, which describes points that can easily “escape” any clump:
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Definition 4.13 (Sequence of open vertices). Fix 1X = 1{x1,...,xk} ∈ �n,k , a privileged point x′ ∈ �(L,2) and set C.
Say that a vertex xi ∈ X is open if there is a path from xi to the outside of C that doesn’t conflict with X ∪ {x′} \ {xi}
- that is, if there exists a sequence y1, . . . , y� ∈ �(L,2) with

(1) y1 = xi and y� /∈ C, and
(2) |yj+1 − yj | = 1 for all j ∈ {1,2, . . . , � − 1}, and
(3) minx∈X∪{x′}\{xi },1≤j≤� |x − yj | > 1.

With notation as above, we say that an ordering σ ∈ Sk is a sequence of open vertices if, for all i ∈ {1,2, . . . , k −1},
xσ [i] is open with respect to the configuration X \⋃j<i{xσ [j ]} and the same privileged points x′ and set C.

We are particularly interested in sets that cover all “clumps” in a configuration. For fixed odd integer m ∈ N and
point x ∈ �(L,2), we denote by C(x) = {u : ‖u − x‖∞ ≤ m−1

2 } the rectangle of side length exactly m centered at x.
By a small abuse of notation, for 1X ∈ �n,k we write C(X) =⋃x∈X C(x) and call this the size-m covering of X.
We show that these sets are always associated with at least one sequence of open vertices, and furthermore that any
configuration X that has many well-separated clumps will have many sequences of open vertices:

Lemma 4.14 (Existence of sequence of open vertices). Fix m,k ∈ N. For any n > N(k,m) ≡ 100k4m2 sufficiently
large and any set X = {x1, . . . , xk} with 1X ∈ �n,k , privileged point x′ ∈ �(L,2) with minx∈X |x − x′| > 1, and set
C = C(X), there is an associated sequence of open vertices σ .

Furthermore, define the graph G = (V ,E) with vertex set G = X and edge set E given by{
(u, v) ∈ E

} ⇔ {‖u − v‖1 ≤ 10
}
. (4.11)

Let A1, . . . ,A� be the connected components of this graph. Then any permutation σ ′ that preserves the same ordering
as σ on each connected component (that is, which satisfies σ |Aj

= σ ′|Aj
for all 1 ≤ j ≤ �) is also an open sequence.

Proof. In this proof, we view the torus �(L,2) as a subset of the nearest-neighbour graph on the plane lattice Z
2

using the obvious identification of points; this lets us talk about the “boundaries” of the torus in a natural way (e.g.
the “left-most boundary” of �(L,2) is the set {(1, y) : y ∈ {1,2, . . . ,L}}). By the translational invariance of the torus
�(L,2), we can WLOG shift our embedding of �(L,2) into Z

2 so that no element of X is within distance 2m of any
of the four boundaries of �(L,2), as long as n > 10mk is sufficiently large. We also note that, for n > 100k4m2, the
set C does not cover any full line in �(L,2).

We now prove the first claim by induction on k. For k = 1, it is clear that this holds for any n ≥ 1. Thus, it is
sufficient to check that there always exists at least vertex. Define

M+ = max
1≤i≤k

xi[1],

M− = min
1≤i≤k

xi[1],

z± ∈ {z ∈ {x1, . . . , xk} : z[1] = M±},
γ ±
j = (z±[1] ± (j − 1), z±[2]).

Note that γ + = {γ +
j }j≥1, γ − = {γ −

j }j≥1 define two horizontal paths - the first going straight right from the right-most
vertex, the second going straight left from the left-most vertex. We claim that at least one of these paths must satisfy
the requirement in the definition of an open vertex. To see this, note that by maximality of the starting point M+, γ +
will not go within distance 1 of any point in X \ γ + before hitting the right-most boundary of �(L,2). Similarly, γ −
will not go within distance 1 of any point of X \ γ − before hitting the left-most boundary of �(L,2).

Thus, both paths can only be “blocked” from hitting a boundary by the single privileged point x′. Since the paths
go in opposite directions, it is clear that at least one of them is moving away from x′ until it gets to the boundary of
�(L,2). Thus, we have shown that X always contains a vertex with an allowed path to the boundary of �(L,2). By
the assumption that no vertex of X is within m of the boundary of �(L,2), this means that X contains an open vertex.
This completes the inductive argument and thus the proof of the first claim in the lemma.
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To see the second claim, note that if x ∈ Aj is an open vertex for the configuration 1Aj
, it is in fact an open vertex

for the full configuration 1X . Thus, to check that σ is an open sequence, it is enough to check that the restriction of σ

to Aj is an open sequence for all j ∈ {1,2, . . . , �}. �

The following definition is useful for describing configurations that don’t contain any bad “clumps” or other types
of interference:

Definition 4.15 (Non-interfering locations). For configurations X,Y ⊂ �(L,2), set C ⊃ X,Y and points x, y ∈
�(L,2), we define the collection of non-interfering locations as

N (X,Y, x, y) =
{
u ∈ �(L,2) : min

v∈X∪Y∪Cc∪δx,y

|u − v| > 3
}
,

where δx,y is as in Definition 4.12.

We will now construct our first path segment. Our definition makes sense for any fixed r , all n > N(r) sufficiently
large (but not necessarily 1 ≤ n ≤ N(r) small), and all 1 ≤ k ≤ r log(n); this is enough for our purposes. We set
the notation used in the definition. Fix a parameter T ∈ N, write X = {x1, . . . , xk}, Y = {y1, . . . , yk} and assume
|X ∩ Y | = k − 1. Let p, q be the unique elements of X \ Y , Y \ X respectively, and assume WLOG that p = xk ,
q = yk . Let m = �10r4 log(n)4�, let C = C(X ∪ Y) be the associated covering of X ∪ Y , and choose σx uniformly at
random from amongst all sequences of open vertices associated with the set X ∩ Y , covering C, and privileged point
p; by Lemma 4.14, there is always at least one such sequence for all n > N(r) sufficiently large. Next, choose σy

uniformly at random from all sequences of open vertices associated with the set X ∩ Y , covering C, and privileged
point q with the additional property that yσy [i] ∈ C(xσx [i]) for all i.2

Definition 4.16 (First path segment: Removing clumps). We define a pair of measures F
X,Y
1 and F

Y,X
1 on paths

started from 1X and 1Y respectively. We will not construct these two marginal distributions individually; instead, we
define a joint distribution on paths (PX,PY ) with PX ∼ F

X,Y
1 and PY ∼ F

Y,X
1 . The following algorithm builds up its

paths over k − 1 distinct stages:

(1) Set X(1) = X \ {xσx [1]}, Y (1) = Y \ {yσy [1]}.
(2) For i ∈ {1,2, . . . , k − 1},

(a) Let {Z(i)
t }Tt=1, {Ẑ(i)

t }Tt=1 be Metropolis-Hastings chains, with proposal given by 1
2 -lazy simple random walk

on �(L,2) and target distributions being uniform on C(xσx [i])\{u : minv∈X(i) |u−v| ≤ 1} and C(xσx [i])\{u :
minv∈Y (i) |u − v| ≤ 1} respectively. 3 Let the initial points of these chains be Z

(i)
1 = xσx [i] and Ẑ

(i)
1 = yσy [i]

respectively. Couple these two chains so as to maximize P[Z(i)
T = Ẑ

(i)
T ].

(b) If Ẑ
(i)
T = Z

(i)
T ∈ N (X(i), Y (i),p, q), define the i’th part of the path by setting γX(i)′ = (X(i) ∪ Z

(i)
1 ,X(i) ∪

Z
(i)
2 , . . . ,X(i) ∪ Z

(i)
T ) and γY (i)′ = (Y (i) ∪ Ẑ

(i)
1 , Y (i) ∪ Ẑ

(i)
2 , . . . , Y (i) ∪ Ẑ

(i)
T ), letting X(i+1) = X(i) ∪ {Z(i)

T } \
{xσx [i+1]} and Y (i+1) = Y (i) ∪ {Ẑ(i)

T } \ {yσy [i+1]}, and letting γX(i), γY (i) be obtained by removing repeated
elements of γX(i)′, γY (i)′. Otherwise, say that step i failed and return to step (2.a).

(3) Return the paths (γX(1), γX(2), . . . , γX(k − 1)) and (γY (1), γY (2), . . . , γY (k − 1)).

We denote by X′ and Y ′ the random endpoints of these paths.

Definition 4.17 (Second path segment: Matching elements). We define a flow F
X,Y
2 . Fix X, Y satisfying |X| =

|Y | = k and |X ∩ Y | = k − 1. Let p, q be the unique elements of X \ Y and Y \ X. Let δp,q = (z1, . . . , zm) be as in
Definition 4.12. For 1 ≤ i ≤ m, define Zi = (X ∩ Y) ∪ {zi}. Define γX,Y = (1Z1, . . . ,1Zm). When every element of
γX,Y is an element of �n,k , F

X,Y
2 assigns weight 1 to γX,Y . Otherwise, we do not define F

X,Y
2 .

2To see that a pair σ (x) , σ (y) with this additional property exists, observe that for n large, the side-length m of the square C(xσx [i]) is much larger
than the largest possible size of a connected component of the graph defined in Equation (4.11). Thus the existence of such a sequence follows from
the second clause of Lemma 4.14.
3Note that both sets are based on C(xσx [i]); the second instance should not be replaced by C(yσy [i])
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Finally, we define a measure F on �X,Y by giving an algorithm for sampling from F :

Definition 4.18 (Full path). Fix a parameter T ∈N. To sample from F , run the following random algorithm:

(1) Sample paths PX ∼ F
X,Y
1 , PY ∼ F

Y,X
1 with endpoints X′, Y ′ according to the coupling in Definition 4.16.

(2) Sample a path PX′,Y ′ ∼ F
X′,Y ′
2 . When this path is not defined, say that the long path fails and return to Step (1).

(3) Return the random path (PX,PX′,Y ′ ,P †
Y ), where P

†
Y denotes reversing the order of a path.

Having defined the flows, we have implicitly defined the constant A in Theorem 2. We must now bound that
constant. To do so, we consider a fixed in EMH and bound the total weight of all paths that cross through the edge.
Since the constant A is defined as a sum over all flows, we can bound the contributions due to the first type of path
(see Definition 4.16) and the second type of path (see Definition 4.16) separately.

We begin by bounding the flow due to the first type of path. First, we show that with probability 1 − o(1), none of
the k−1 steps in the construction of F

X,Y
1 will fail, and also the long path obtained following the initial sampling from

F
X,Y
1 will not fail. Checking that, with overwhelming probability, none of the events fail will allow us to essentially

ignore the rejection steps when estimating the weight given to any edge, at the cost of a small multiplicative constant.
This substantially simplifies our analysis.

Lemma 4.19 (Local failures are rare). Following the notation of Definition 4.16, there exists N0 = N0(r) so that the
probability Pi that step i fails is bounded by

Pi ≤ 1

2(r log(n))1.5

for all T > 2 log(n)20 log(log(n)) and all n > N0 sufficiently large.

Proof. This relies on two estimates: first, showing that the random walk in Definition 4.16 mixes within T steps, and
second, showing that its stationary measure always places very high weight on states that don’t trigger failure.

Let {Zt }t≥1 = {Z(i)
t }t≥1 be as in stage i of Definition 4.16, and let D be the connected component of its state space,

C(Z1) \ {u : minv∈X(i) |u − v| ≤ 1}, that contains Z1. The critical estimate is the following mixing bound:

Proposition 4.20. The mixing time τmix of {Zt }t≥1 on D satisfies

τmix ≤ C1 log(n)16 log
(
log(n)

)
(4.12)

for some 0 < C1 = C1(r) < ∞.

Proof. We note that D ⊂ C(Z1), so

|D| ≤ ∣∣C(Z1)
∣∣= O

(
r8 log(n)8).

Furthermore, all non-zero transition probabilities for {Zt }t≥1 are at least 1
4 . By Theorem 1 of [2], we have

τmix ≤ 64|D|2(log
(|D|)+ log(4)

)= O
(
r16 log(n)16 log

(
r log(n)

))
. �

Having proved Proposition 4.20, we now continue with the proof of Lemma 4.19. Let the good set N =
N (X(i), Y (i),p, q) be as in stage i of Definition 4.16.

We recall that D is obtained from the square C(Z1) by removing O(|X∪Y |) points and then keeping the connected
component containing Z1. Since Z1 is an open vertex, the connected component containing Z1 must contain the entire
boundary of C(Z1). Thus, by the isoperimetric inequality for squares (see e.g. Theorem 1.2 of [16]), the set D must
be of size at least

|D| ≥ ∣∣C(Z1)
∣∣− O

(|X ∪ Y |2)= ⌈10r4 log(n)4⌉2 − O
(
r2 log(n)2)= ∣∣C(Z1)

∣∣(1 − O
(
r−6 log(n)−6)).
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Denoting by ∂A = {x ∈ A : miny /∈A |x − y| = 1} the boundary of a set A ⊂ �(L,2), we also have the trivial bound∣∣C(Z1) \N ∣∣= O
(∣∣∂C(Z1)

∣∣+ |X ∪ Y | + |δp,q |)
= O

(
r4 log(n)4 + r log(n) + r4 log(n)4)= O

(
r4 log(n)4).

Putting together these two displayed equations,

|N ∩D|
|D| ≥ |D| − |C(Z1) \N |

|D|

= 1 − O

(
1

r4 log(n)4

)
. (4.13)

Combining Inequalities (4.12) and (4.13), there exists some constant A = A(r) so that for T > A log(n)19 ×
log(log(n)) and n sufficiently large,

P[ZT ∈ N ] ≥ |N ∩D|
|D| − 2

(
2
−� T

τmix
�+1)

≥ 1 − O

(
1

(r log(n))1.5

)
,

completing the proof. �

The same argument (with easier estimates) bounds the probability of rejecting a full path:

Lemma 4.21 (Long paths rarely fail). Following the notation of Definition 4.18, for the constants T , r as in
Lemma 4.19, we have

P[the long path fails] = o(1)

as n goes to infinity.

Proof. Let X, Y and p, q and X′, Y ′ be as in Definition 4.18, and define N = N (X(k−1), Y (k−1), p, q). Using the
notation of Definition 4.18, we note that the path δp,q = (z1, . . . , zm) depends only on the two points p,q ∈ X�Y ,
not any further randomization. Furthermore, δp,q is a minimal-length path between p and q , and thus its intersection
|δp,q ∩ N ∩ C| with the roughly-square set C ∩ N is of size O(

√|N ∩ C|) = O(r4 log(n)4). Therefore, by the same
calculation used to obtain Inequality (4.13), we have

|δp,q ∩N ∩ C|
|N ∩ C| = o(1).

Combining this with Inequality (4.12) completes the proof. �

Next, we show that this implies the total weight given to any particular edge is small. The main idea is that it would
be possible to do an exact calculation of the weight given to any edge if the rejection probability were exactly 0; since
the rejection probability is close to 0, this exact computation gives a very good bound on the weight:

Lemma 4.22 (Contribution of first path type). Fix r > 0 and 1 ≤ k ≤ r log(n). Following the notation of Defini-
tion 4.16 and fixing T ≥ log(n)20 log(log(n)) so that Lemmas 4.19 and 4.21 apply, we have for all distinct A,B ∈ �n,k

satisfying QMH(A,B) > 0 that∑
X,Y :|X∩Y |=k−1

∑
γ∈�X,Y :(A,B)∈γ

F
X,Y
1 [γ ] ≤ 8nk2(T + 1)

for all n > N0(r) sufficiently large.
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Proof. Fix a configuration A ∈ �n,k , choose X ∼ Unif(�n,k) and then choose Y ∼ Unif({y ∈ �n,k : |X∩y| = k−1}),
and choose a random path γX = (γX(1), γX(2), . . . , γX(k − 1)) according to Definition 4.16. For 1 ≤ i ≤ k − 1, note
that we can write γX(i) = (X(i) ∪ Z

(i)
1 ,X(i) ∪ Z

(i)
2 , . . . ,X(i) ∪ Z

(i)
T ) as in that definition. Using this notation,

∑
X,Y :|X∩Y |=k−1

∑
γ∈�X,Y :(A,B)∈γ

F
X,Y
1 [γ ] ≤ n

(
n

k

) k−1∑
i=1

T∑
t=0

P
[
A = X(i) ∪ Z

(i)
t

]
. (4.14)

Thus, it is enough to bound the probabilities P[A = X(i) ∪ Z
(i)
t ] for all 1 ≤ i ≤ k − 1 and 0 ≤ t ≤ T . We begin by

bounding these probabilities in the special case i = 1. Noting that all particles in X are open with probability 1−o(1),
we have by the usual ‘birthday problem’ bound that4

P
[
X(1) = S

]≤ 2(
n

k−1

) (4.15)

for all S ∈ �n,k−1 and all n > N0(r) sufficiently large.
Next, we note that the following is a valid rejection-sampling algorithm for choosing xσx [1] conditional on X(1):

(1) Sample x̂ uniformly at random from among all elements of the largest connected component D1 of �(L,2)\X(1).
(2) Let p = p(x̂,X(1)) be the percentage of all sequences of open vertices for configuration X(1) ∪ {x̂} that begin

with x̂. Then accept x̂ with probability p; otherwise reject and go back to step (1).

Before analyzing the “corrected” choice of xσ [1] conditional on X(1), we analyze the “uncorrected” choice of x̂.
Sample x̂ (conditional on X(1)) uniformly at random from among all elements of the largest connected component D1

of �(L,2) \ X(1). Let {Ẑ(1)
t }t∈N be the Markov chain on D1 constructed as in Step (2.a) of Definition 4.16, started at

Ẑ
(1)
1 = x̂. Since x̂ was drawn from the stationary measure of {Ẑ(1)

t }t∈N, we have

P
[
Ẑ

(1)
t = z

]= 1

|D1| (4.16)

for all z ∈ D1 and all t ∈ N. By the above rejection-sampling algorithm for xσ [1] and the obvious bounds 1
k

≤ p ≤ 1,

this implies that the true path {Z(1)
t }t∈N that appears in Step (2.a) of Definition 4.16 satisfies

P
[
Z

(1)
t = z

]≤ k

|D1| (4.17)

for all z ∈ D1 and t ∈N. Combining Inequalities (4.15) and (4.17), with the bound (4.13) on |D1|, we conclude that

P
[
X(1) ∪ Z

(1)
t = S

]≤ 4k(
n
k

) (4.18)

for all S ∈ �n,k and all 0 ≤ t ≤ T , whenever n > N0(r) is sufficiently large.
Analogous bounds for 1 < i ≤ k − 1 will follow by Proposition 4.20. In particular, let Di be the largest connected

component of �(L,2) \ X(i). By Proposition 4.20 and the same argument giving Inequality (4.15), we have

P
[
X(i) = S

]≤ 2(
n

k−1

) + in−10 (4.19)

for all S ∈ �n,k−1, all 1 ≤ i ≤ k − 1 and all n > N0(r) sufficiently large. Similarly, by Proposition 4.20 and the same
argument giving Inequality (4.18), we have

P
[
X(i) ∪ Z

(i)
t = S

]≤ k

(
4(
n
k

) + 2in−10
)

(4.20)

for all S ∈ �n,k , all 1 ≤ i ≤ k − 1 and all n > N0(r) sufficiently large.

4See e.g. the survey [12] for exact calculations related to the birthday problem.
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Combining Inequalities (4.14) and (4.20) and applying Lemma 4.21 completes the proof of the lemma. �

The following bound on the contribution of the second path type follows immediately from Example 5.3 of [29]
and Lemmas 4.19 and 4.21:

Lemma 4.23 (Contribution of second path type). Fix r > 0 and 1 ≤ k ≤ r log(n). For X,Y ∈ �n,k satisfying
|X ∩ Y | = k − 1, let the random variables X′ = X′(X,Y ) and Y ′ = Y ′(X,Y ) be as in Definition 4.16. Following
the notation of Definition 4.17 and fixing T ≥ log(n)20 log(log(n)), we have for all distinct A,B ∈ �n,k satisfying
QMH(A,B) > 0 that∑

X,Y :|X∩Y |=k−1

∑
x′,y′∈�n,k

P
[(

X′, Y ′)= (x′, y′)|X,Y
] ∑

γ∈�x′,y′ :(A,B)∈γ

F
x′,y′
2 [γ ] ≤ 16n1.5

for all n > N0(r) sufficiently large.

Proof. Fix a configuration A ∈ �n,k and a pair X,Y ∈ �n,k satisfying |X ∩ Y | = k − 1. Let x = x(X,Y ) and y =
y(X,Y ) be the unique elements of X \ Y and Y \ X respectively. By Lemmas 4.19 and 4.21,

P
[(

X′, Y ′)= S|x(X,Y ), y(X,Y )
]≤ 4(

n
k

)2
for all S ⊂ �2

n,k and all n > N0(r) sufficiently large. In particular, the probability mass function of (X′, Y ′) conditional
on x(X,Y ) and y(X,Y ) is bounded by a constant factor times the probability mass function of the uniform distribution.

By the same calculation as in Example 5.3 of [29], this implies

P[A ∈ PX′,Y ′ ] ≤ 16
√

n(
n
k

)
for all n > N0(r) sufficiently large. The result follows immediately by the same bound as Inequality (4.14). �

Combining Lemmas 4.22 and 4.23, and noting that all paths have length at most k(T + 1) + 2
√

n, we have

A ≤
(

max
x,y,q,r:QMH(q,r)>0,x �=y

UMH
n,k (x, y)

QMH(q, r)

)
×
(

max
γ :F(γ )>0

|γ |
)

×
(

max
(q,r):QMH(q,r)>0

∑
γ�(q,r)

F [γ ]
)

≤
(

2

n

)
× (k(T + 1) + 2

√
n
)× (8nk2(T + 1) + 16n1.5)

for all n > N(c, r) sufficiently large.
Lemma 4.11 now follows immediately from an application of Theorem 2, with comparison provided by

Lemma 4.8. �

4.4. Comparison of modified simple exclusion process to KCIP

Let α(Qn,k),1 − β1(Qn,k) be the log-Sobolev constant and spectral gap of Qn,k , and let α(QMH) and 1 − β1(QMH)

be the log-Sobolev constant of QMH. As shown in Inequality (5.10) of [32], we have:

α(Qn,k) ≥ 1

4n
α(QMH),

1 − β1(Qn,k) ≥ 1

4n

(
1 − β1(QMH)

)
.

(4.21)
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4.5. Proof of Lemma 4.2

We put together the bounds obtained in Sections 4.2, 4.3 and 4.4:

Proof of Lemma 4.2. By Lemma 4.11 and Inequality (4.21), the log-Sobolev constant α(Qn,k) and spectral gap
1 − β1(Qn,k) of Qn,k satisfy

α(Qn,k) ≥ C

n3 log(n)3
,

1 − β1(Qn,k) ≥ C

n3 log(n)2

for some C = C(c, r) for all n > N(c, r) sufficiently large. Lemma 4.2 follows immediately from an application of
Inequality (3.3) of [30]. �

5. Mixing at moderate density: Main bounds

We set some notation for the remainder of this section. For fixed 1 ≤ k ≤ n, let {Yt }t∈N be the trace of {Xt }t∈N on⋃k
i=1 �n,i , let Pn,k be the transition kernel of {Yt }t∈N, and let τ

(≤k)
mix be the mixing time of Pn,k . The main result of

this section is:

Lemma 5.1 (Mixing at Moderate Density). Fix 0 < r < ∞. There exists a constant C = C(r, c) so that

τ
(≤k)
mix ≤ Cn3 log(n)13

uniformly in 1 ≤ k ≤ r log(n).

Our strategy is to use Theorem 1.1 of [22], along with some soft bounds, to ‘glue together’ the bounds on
{τ (k)

mix}1≤k≤r log(n) from Section 4. The basic idea of [22] (as well as recent related papers [19,31]) is that it is pos-
sible to bound the relaxation time of a Markov chain on a state space � decomposed as � =⋃m

i=1 �i by bounding
the relaxation times of certain “restricted” chains on �1, . . . ,�m and the relaxation time of a “projected” chain on
{1,2, . . . ,m} that measures the typical transition rates between �1, . . . ,�m near stationarity.

In our case, we will be able to easily compare our “projected” chain to biased random walk on the path {1,2, . . . , k−
1}. The bounds on the “restricted” chains will come from combining two pieces: the results in Section 4, and very soft
bounds on the transition rates between �n,k and �n,k±1. These latter bounds will be obtained by coupling the KCIP to
a simple exclusion process over short time intervals and using explicit calculations for the simple exclusion process.

Although explicitly giving these comparisons will require us to develop some additional notation, we emphasize
that the estimates in this section all come from fairly explicit calculations for well-studied Markov chains.

5.1. Review of results in [22]

Fix k ∈ N. Let P be the transition kernel of the KCIP {Xt }t∈N, and for 1 ≤ i ≤ k − 1, let Pi be the restriction of P to
�i ∪ �i+1, defined by:

Pi(x, y) =

⎧⎪⎨⎪⎩
P(x, y), x �= y, x, y ∈ �i ∪ �i+1,

1 −∑y∈�i∪�i+1
P(x, y), x = y,

0, otherwise.

Also define the kernel P̃ on the discrete set {1,2, . . . , k − 1} by

P̃ (i, j) = π((�i ∪ �i+1) ∩ (�j ∪ �j+1))

3π(�i ∪ �i+1)
, i �= j,
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P̃ (i, i) = 1 −
∑
j �=i

P̃ (i, j).

Theorem 1.1 of [22] implies:

Theorem 3. With notation as above,

1 − β1(Pn,k) ≥ 1

9

(
1 − β1(P̃ )

)
min

1≤i≤k−1

(
1 − β1(Pi)

)
.

In the remainder of this section, we bound the terms in Theorem 3.

5.2. Bounds on Pi and P̃

We obtain bounds on the spectral gaps of the kernels {Pi}k−1
i=1 and P̃ defined in Section 5.1.

5.2.1. Bound on P̃

We begin by bounding 1 − β1(P̃ ):

Lemma 5.2. Fix 0 < r < ∞. Then there exists C = C(r, c) so that

1 − β1(P̃ ) ≥ C

log(n)2

uniformly in 1 ≤ k ≤ r log(n).

Proof. We will first obtain bounds on the hitting times of certain large sets for a reversible Markov chain Zt evolving
according to P̃ . Then we use Theorem 1.1 of [28] (see also [25]) to obtain a mixing time estimate for P̃ from our
bound on its hitting times. Fortunately, P̃ is a birth-and-death chain, so explicit formulas for the relevant hitting times
are available.

We can assume without loss of generality that k = �r log(n)�. We begin by expanding our formula for P̃ . For
1 ≤ i < k, the usual ‘birthday problem’ bound gives5

P̃ (i, i + 1) = π(�i+1)

3π(�i ∪ �i+1)

= 1

3

|�i+1|( c
n
)i+1(1 − c

n
)n−i−1

|�i |( c
n
)i(1 − c

n
)n−i + |�i+1|( c

n
)i+1(1 − c

n
)n−i−1

= 1

3

c

i + 1 + c

(
1 + O

(
r2 log(n)2

n

))
.

Similarly, for 1 < i ≤ k,

P̃ (i, i − 1) = π(�i)

3π(�i ∪ �i+1)

= 1

3

|�i |( c
n
)i(1 − c

n
)n−i

|�i |( c
n
)i(1 − c

n
)n−i + |�i+1|( c

n
)i+1(1 − c

n
)n−i−1

= 1

3

i + 1

i + 1 + c

(
1 + O

(
r2 log(n)2

n

))
.

5See e.g. the survey [12] for exact calculations related to the birthday problem.
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Finally, for all 1 ≤ i ≤ k,

P̃ (i, i) = 1 − P̃ (i, i + 1) − P̃ (i, i − 1)

≥ 1

3

(
1 + O

(
r2 log(n)2

n

))
,

where by convention P̃ (1,0) = P̃ (k, k + 1) = 0. Similarly, the stationary distribution μ̃ of P̃ satisfies

μ̃(i) = 1

Z

(
n

i

)(
c

n

)i(
1 − c

n

)n−i(
1 + O

(
r2 log(n)2

n

))
,

Z =
k∑

j=1

(
n

i

)(
c

n

)i(
1 − c

n

)n−i(
1 + O

(
r2 log(n)2

n

))
.

Let m− = max(1, � c
4�), m+ = �4 max(1, c)�. For {Zt }t∈N a Markov chain with transition kernel P̃ , let

τ− = min
{
t ∈ N : Zt = m−},

τ+ = min
{
t ∈ N : Zt = m+}

be the first hitting times of m− and m+ respectively. By standard formulas (see e.g., [27]),

E
[
τ+|Z1 = 1

]− 1 =
m+−1∑
v=1

(
1

μ̃(v)P̃ (v, v + 1)

v∑
q=1

μ̃(q)

)

≤
(

1 + O

(
r2 log(n)2

n

))
1

3c

m+−1∑
v=1

(
v + 1 + c(

n
v

)
( c
n
)v

v∑
q=1

(
n

q

)(
c

n

)q
)

≤
(

1 + O

(
r2 log(n)2

n

))
1

3c

m+−1∑
v=1

v(v + 1 + c)

= O
((

m+)3)= O
(
k2). (5.1)

Using the same argument we can also obtain that

E
[
τ−|Z1 = k

]= O
(
k2). (5.2)

We also note that
∑m+

v=1 μ̃(v) > 0.501,
∑k

v=m− μ̃(v) > 0.501 for all n sufficiently large. Combining this fact with
Inequalities (5.1) and (5.2), Theorem 1.1 of [28] implies that the mixing time τ̃mix of P̃ satisfies

τ̃mix = O
(
k2).

Since the mixing time of a Markov chain bounds its relaxation time, this completes the proof. �

5.2.2. Bounds on Pi

Next, we will bound the spectral gap of Pi . This will follow from the bounds in Section 4 on the bounds of the trace
processes on �i and �i+1, combined with some very rough bounds on the transition time between �i and �i+1.
The remainder of this section is devoted to computing these rough bounds. Although we give additional details in the
proofs, the remainder of the arguments in Section 5.2 follow quickly from the following observations:

(1) It is straightforward to check that, whenever Xt ∈ �i contains two particles that are within distance 3 of each
other, the probability of moving from �i+1 to �i within O(n2) steps is bounded away from 0.
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(2) It is possible to couple the trace of {Xt }t∈N on �i to a (1 − 1
n
)-lazy version of the simple exclusion process

{Yt }t∈N with i particles so that, with high probability, Xt = Yt until the first time that any two particles of the
simple exclusion process get within distance 3. We call such a time a “near-collision time.”

(3) The rate of “near-collision times” associated with the simple exclusion process are very well-understood (see e.g.
[34] and [26]).

This means that we can bound the transition times between �i and �i+1 by translating existing results on near-
collision times of the simple exclusion process. The coupling mentioned in item (2) of the above sequence of obser-
vations is the obvious step-by-step maximal coupling, and so we do not give an explicit construction. Such an explicit
construction is available in Section 7 of [32].

To obtain the required bounds, we first need a bound on near-collisions for the simple exclusion process. For i ∈N,
let

H(i) =
{
X ∈ �i : min

u,v:X[u]X[v]=1
|u − v| >

√
n

log(n)0.25

}
be the collection of very well-spaced configurations in �i , and define

G(i) =
{
Y ∈ �i+1 : ∃X ∈ H, x ∈ �(L,2) s.t. Y = X ∪ {x}, min

u:X[u]=1
|u − x| = 2

}
(5.3)

to be the collection of all configurations in �i+1 consisting of a well-spaced configuration in �i with one additional
particle added near to an existing particle. We need the following bound on collision times for the simple exclusion
process:

Lemma 5.3 (Hitting from well-spaced configurations). Fix m ∈N and 1 ≤ i ≤ m. Let {St }t∈N be a simple exclusion
process started at a configuration S1 ∈ G(i) and let

τcoll = min
{
t > 0 : ∃u,v ∈ �(L,2) s.t. St [u] = St [v] = 1 and |u − v| = 1

}
(5.4)

be the first time that a collision occurs. Then there exists some δ = δ(m) > 0 so that

P

[
τcoll > δ

n2

log(n)

]
>

δ

log(n)
.

Proof. Let S = {u : S1[u] = 1} and let x1, x2 be two elements of S at distance exactly 2. Existing bounds on the first
collision time for the simple exclusion process work poorly if the initial configuration contains nearby vertices. To
avoid this problem, we relate the first collision time in {St }t∈N to the first collision time in three other processes which
avoid this technical difficulty.

Let S
(1)
1 = 1S\{x2}, let S

(2)
1 = 1S\{x1} and let S

(3)
1 = 1{x1,x2}. We let {S(1)

t }t∈N, {S(2)
t }t∈N and {S(3)

t }t∈N be simple
exclusion processes with these three starting points, coupled to {St }t∈N by choosing the same update sequence in
Definition 4.3. Let τ

(1)
coll, τ

(2)
coll and τ

(3)
coll be their associated collision times, given by the formula

τ
(�)
coll = min

{
t > 0 : ∃u,v ∈ �(L,2) s.t. S

(�)
t [u] = S

(�)
t [v] = 1 and |u − v| = 1

}
for � ∈ {1,2,3}. We note that, under this coupling of the four simple exclusion processes, any single particle in St

appears in at least one of S
(1)
t , S

(2)
t , S

(3)
t :

{
u : St [u] = 1

}=
3⋃

�=1

{
u : S(�)

t [u] = 1
}
.

Furthermore, any pair of particles in St appears in at least one of S
(1)
t , S

(2)
t , S

(3)
t :

{
(u, v) : St [u] = St [v] = 1

}=
3⋃

�=1

{
(u, v) : S(�)

t [u] = S
(�)
t [v] = 1

}
.
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Since τcoll and {τ (�)
coll}3

�=1 are determined by the positions of pairs of particles, this implies

τcoll = min
(
τ

(1)
coll, τ

(2)
coll, τ

(3)
coll

)
. (5.5)

Thus, to bound τcoll, it is enough to bound these other collision times. By Theorem 4 of [34], there exists some
δ1 = δ1(m) so that

P

[
τ

(1)
coll < δ1

n2

log(n)

]
<

1

log(n)2
,

P

[
τ

(2)
coll < δ1

n2

log(n)

]
<

1

log(n)2

(5.6)

uniformly in 1 ≤ i ≤ m. By Theorem 4.1 of [18], there exists some 0 < δ2,C < ∞ so that

P

[
τ

(3)
coll < δ2

n2

log(n)

]
< 1 − C

log(n)
. (5.7)

Combining Inequalities (5.6) and (5.7), there exists some δ = δ(m) and constant 0 < C < ∞ so that

P

[
min
(
τ 1

coll, τ
2
coll, τ

′
coll

)
<

δn2

log(n)

]
< 1 − C

log(n)
.

Combining this with Inequality (5.5) completes the proof. �

We now apply this bound to the KCIP.
For fixed i, let {Zt }t∈N be a Markov chain with kernel Pi , let τ (i) = τ (i)(1) = min{t ∈ N : Zt ∈ �i} and let τ (i+1) =

τ (i+1)(1) = min{t ∈N : Zt ∈ �i+1}. For j ∈ N, we define inductively

τ (i)(j + 1) = min
{
t > τ (i+1)(j) : Zt ∈ �i

}
,

τ (i+1)(j + 1) = min
{
t > τ (i)(j) : Zt ∈ �i+1

}
.

We then have the corollary:

Corollary 5.4 (Collision from well-spaced configurations). Fix m ∈ N and 1 ≤ i ≤ m. Let {Zt }t∈N be as above,
with initial configuration Z1 ∈ G(i). Then there exists some δ = δ(c,m) > 0 so that

P

[
τ (i) > δ

n3

log(n)

]
>

δ

log(n)
.

Proof. We consider a simple exclusion process {St }t∈N started at S1 = Z1. We let τcoll be as in Equation (5.4). By
analyzing the maximal coupling of St and Zt , it is straightforward to check that there exists some 0 < γ,ε0 < 1 so
that

P
[
τ (i) > γ εn3]≥ γP

[
τcoll > εn2] (5.8)

for all 0 < ε < ε0. Applying Lemma 5.3 completes the proof. Note that a detailed proof of Inequality (5.8) is given in
the first half of the proof of Lemma 7.4 of [32]. �

We are now ready to prove the first of our main bounds on transition times between �i and �i+1:

Lemma 5.5. Fix 0 < r < ∞. There exists some C1 = C1(c, r) so that

max
z∈�i∪�i+1

E
[
τ (i)
]≤ C1n

3 log(n) (5.9)
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uniformly in 1 ≤ i ≤ r log(n). There exists some C2 = C2(c, r) so that

max
z∈�i∪�i+1

E
[
τ (i+1)

]≤ C2n
3 (5.10)

uniformly in 1 ≤ i ≤ r log(n). There exists some C3 = C3(c, r) so that

min
z∈�i

P

[
τ (i+1) >

n3

C3 log(n)2

]
≥ C−1

3 . (5.11)

uniformly in 1 ≤ i ≤ r log(n).

Proof. We begin by proving Inequality (5.10). We will bound from below the probability that the original KCIP
{Xt }t∈N travels from �n,i to �n,i+1 via a specific sequence of events (see Equation (5.12)) that turn out to describe a
“typical” transition between these sets.

To simplify notation, we observe that we can simulate a step of the Markov chain {Zt }t∈N in terms of the KCIP
{Xt }t∈N with starting point X1 = Z1 according to the following rather inefficient rejection-sampling algorithm:

Definition 5.6 (Coupling of Trace and KCIP). With notation as above, the following is a valid coupling of the KCIP
and one step of its trace:

(1) Simulate {Xt }t∈N.
(2) Define η = min{s > 1 : Xs ∈⋃j �j }.
(3) If Xη ∈ �i ∪ �i+1, set Z2 = Xη. Otherwise, go back to step 1.

We now analyze this algorithm. Recall Gt and ConnComp(Gt ) introduced in the beginning of Section 3. Fix
X1 ∈ �i and define the events and random times

A = {∃v ∈ �(L,2) : X2 = X1 ∪ {v} and
∣∣{u : X1[u] = 1, |u − v| ≤ 1

}∣∣= 1
}
,

κ = inf{s > 2 : Xs �= Xs−1},
B = {|Xκ | > |X2|,ConnComp(Gκ) = ConnComp(G1)

}∩A, (5.12)

ζ = inf{s > κ : Xs �= Xs−1},
C = {Xζ ∈ �i+1} ∩A∩B.

By direct computation,

P[A] ≥ c

n2
,

E[1B|A] ≥ 1A

(
c

2n
− O

(
r log(n)

n2

))
,

E[1C |A,B] ≥ 1A∩B
(

1

4
− O

(
r log(n)

n

))
.

Combining these bounds, we have

P[Z1 ∈ �i+1] ≥ P[C] ≥ C

n3

for some C = C(r, c) > 0. This completes the proof of Inequality (5.10).
Inequality (5.9) is proved exactly as the first inequality in Lemma 7.6 of [32], with one small change: the single

reference to Theorem 5 of [34] should be replaced by a reference to Theorem 1.1 of [26]. Inequality (5.11) is exactly
Lemma 4.1 of [32]. �

Our second main bound on the transition probabilities is:
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Lemma 5.7. For fixed m ∈N, there exist constants C1 = C1(m, c), C2 = C2(m, c), C3 = C3(m, c) so that

min
z∈�i+1

P

[
τ (i)
(
C2 log(n)2)> n3

C1 log(n)3

]
≥ C3

log(n)

uniformly in 1 ≤ i ≤ m.

Proof. Let {Zt }t∈N be a Markov chain evolving according to Pi , with Z1 ∼ unif(�i). Define the measure μi on �i+1
by

μi(A) = P[Z2 ∈ A|Z1 ∈ �i+1].
Recall the definition of G(i) in Definition 5.3. We note that, by the usual ‘coupon collector’ problem6 and the ob-
servation that 1 − o(1) of the transitions in Pi correspond to adding a single particle in the underlying KCIP (see
Definition 5.6 for a precise coupling of Pi and the KCIP which makes this fact clear), we have

μi

(
G(i)

)= 1 − o(1).

Next, let {Yt }t∈N be a Markov chain evolving according to Pi with any initial state Y1 = z ∈ �i in �i . Combining
the hitting and occupation bounds of Lemma 5.5 with the bound on the mixing time τ

(i)
mix given in Lemma 4.2, for all

ε > 0 there exists a constant L = L(ε,m, c) so that

P
[
Yτ(i+1)(L log(n)2) ∈ G(i)

]≥ μi

(
G(i)

)− ε = 1 − ε − o(1). (5.13)

By Corollary 5.4, there exists some δ = δ(m, c) so that

P

[
τ (i)
(
L log(n)2 + 1

)− τ (i)
(
L log(n)2)> δ

n3

log(n)2

∣∣∣Yτ(i+1)(L log(n)2) ∈ G(i)

]
≥ δ

log(n)
.

Combining this with Inequality (5.13) completes the proof. �

We are ready to prove the main bound in this section:

Lemma 5.8. Fix 0 < r < ∞. Then there exists C = C(r, c) so that

1 − β1(Pi) ≥ C

n3 log(n)9

uniformly in 1 ≤ i ≤ r log(n).

Proof. The idea behind this proof is to bound the restriction Pi of the KCIP process to �i ∪ �i+1. Using Lemma 2.1
of [31], it is possible to get such a bound by “piecing together” individual bounds on the spectral gap of the trace of
the KCIP on �i and �i+1 by using bounds on the transition times between �i and �i+1.

For T ∈N, let Ni(T ) = |{0 ≤ t ≤ T : Zt ∈ �i}| and Ni+1(T ) = |{0 ≤ t ≤ T : Zt ∈ �i+1}|. By Lemmas 5.5 and 5.7,
for all M ∈N there exists some C = C(r, c,M) so that

P
[
Ni(T ) < Mn3 log(n)3]≤ 1

100
(5.14)

for all T > Cn3 log(n)5, uniformly in 1 ≤ i ≤ r log(n). The same lemmas imply that for all m,M ∈ N, there exists
some C = C(m,c,M) so that

P
[
Ni+1(T ) < Mn3 log(n)3]≤ 1

100
(5.15)

for all T > Cn3 log(n)9, uniformly in 1 ≤ i ≤ m.

6See e.g. the survey [12] for exact calculations related to the coupon collector problem.
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Let mmax = 100 max(1, c). We note that, for i ≥ mmax and all n > N0 sufficiently large, π(�i)
π(�i∪�i+1)

> 0.51.
Combining the occupation bound in Inequalities (5.14) and (5.15) with the mixing bound in Lemma 4.2, for all

0 < C < ∞ there exists M = M(C,c)

P
[
Ni(T ) > Cτn,i

]
> 0.99, 100mmax < i ≤ 2 log(n),

P
[{

Ni(T ) > Cτn,i

}∩ {Ni+1(T ) > Cτn,i+1
}]

> 0.99, 1 ≤ i ≤ 100mmax

for all T > Mn3 log(n)9. The result now immediately follows from Lemma 2.1 of [31] and the observation that

π(�i)

π(�i ∪ �i+1)
> 0.51

for all i > 100mmax. �

5.3. Proof of Lemma 5.1

Applying Theorem 3, with bounds on the individual spectral gaps given by Lemmas 5.2 and 5.8, there exists some
0 < C = C(r, c) < ∞ so that

1 − β1(Pn,r log(n)) ≥ C

n3 log(n)11
.

Applying the standard bound on the mixing time of a finite Markov chain in terms of its spectral gap (see e.g.
Theorem 12.3 of [21]) completes the proof of Lemma 5.1.

6. Proof of Theorem 1

Theorem 3 of [32] yields that, there exists some constant C = C(c) so that

τmix ≥ Cn3.

We now prove the upper bound on τmix. For fixed 0 < r < ∞ and T ∈N, define the occupation time

N(r,T ) =
∣∣∣∣∣
{

1 ≤ t ≤ T : Xt ∈
�r log(n)�⋃

i=1

�i

}∣∣∣∣∣.
We claim:

Proposition 6.1. With notation as above, there exists some r = rmax(c) < ∞ and C1 = C1(c, r), C2 = C2(c, r) so
that

P
[
N(r,T ) ≤ C1n

3 log(n)13]≤ 1

100
(6.1)

for all T > C2n
3 log(n)14.

Proof. Fix ε0 as in the statement of Theorem 3.1, let ε = 1
2ε0, and let α, CG and {Vt }t∈N be as in the statement of

Theorem 3.1. Fix r = 2
α
CG and define K = {x ∈ {0,1}�(L,2) :∑v∈�(L,2) x[v] ≤ r log(n)}. Let τstart = inf{t ∈ N : Xt ∈

K} and fix k ∈N. By Theorem 3.1,

E[Vkεn3 log(n)1τstart>kεn3 log(n)] ≤
(

1 − 1

2
α

)k

V1,
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and so by Markov’s inequality and the trivial bound that Vt ≤ n for all t ,

P
[
τstart > kεn3 log(n)

]≤ P[Vkεn3 1τstart>kεn3 > 1]

≤ n

(
1 − 1

2
α

)k

. (6.2)

Fix T ∈ N and constants 0 < C1,C2 < ∞. Let {Zi}i∈N be an i.i.d. sequence of random variables with geometric
distribution and mean 2

α
. By Inequality (6.2), the Markov property and Lemma 7.1 of [32],

P

[
C1n

3 log(n)14∑
t=1

1Xt∈K > C2n
3 log(n)13

]

≥ P

[
C1n

3 log(n)14∑
t=1

1Xt∈K > C2n
3 log(n)13|τstart < T

]
P[τstart < T ]

= P[τstart < T ]
T∑

s=1

P

[
C1n

3 log(n)14∑
t=s

1Xt∈K > C2n
3 log(n)13|τstart = s

]
P[τstart = s|τstart ≤ T ]

≥
(

1 − n

(
1 − 1

2
α

)� T

εn3 log(n)
�)

P

[
C1n

3 log(n)14∑
t=T

1Xt∈K > C2n
3 log(n)13|τstart ≤ T

]

≥
(

1 − n

(
1 − 1

2
α

)� T

εn3 log(n)
�)(

1 − ⌈εn3 log(n)
⌉
P

[
C2 log(n)13∑

j=1

Zj ≤ C1 log(n)14 − T

εn3 log(n)

])
. (6.3)

Choosing T = �C1
2 n3 log(n)14�, we have for C1 sufficiently large that

P

[
C2 log(n)13∑

j=1

Zj ≤ C1 log(n)14 − T

εn3 log(n)

]
= 1 − o

(
n−10)

by a standard concentration inequality for geometric random variables. Combining this with the calculation (6.3)
completes the proof. �

The upper bound on τmix now follows immediately from Lemma 2.1 of [31] as explained in Step 1 of Section 2,
with the bound on the occupation time given by Inequality (6.1) and the bound on the maximal mixing time given by
Theorem 5.1.
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