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Abstract. We consider self-loops and multiple edges in the configuration model as the size of the graph tends to infinity. The
interest in these random variables is due to the fact that the configuration model, conditioned on being simple, is a uniform random
graph with prescribed degrees. Simplicity corresponds to the absence of self-loops and multiple edges.

We show that the number of self-loops and multiple edges converges in distribution to two independent Poisson random vari-
ables when the second moment of the empirical degree distribution converges. We also provide estimations on the total variation
distance between the numbers of self-loops and multiple edges and their limits, as well as between the sum of these values and
the Poisson random variable to which this sum converges to. This revisits previous works of Bollobás, of Janson, of Wormald and
others. The error estimates also imply sharp asymptotics for the number of simple graphs with prescribed degrees.

The error estimates follow from an application of the Stein–Chen method for Poisson convergence, which is a novel method for
this problem. The asymptotic independence of self-loops and multiple edges follows from a Poisson version of the Cramér–Wold
device using thinning, which is of independent interest.

When the degree distribution has infinite second moment, our general results break down. We can, however, prove a central
limit theorem for the number of self-loops, and for the multiple edges between vertices of degrees much smaller than the square
root of the size of the graph. Our results and proofs easily extend to directed and bipartite configuration models.

Résumé. Nous considérons les boucles et les arêtes multiples dans le modèle de configuration lorsque la taille du graphe tend vers
l’infini. L’intérêt de ces variables aléatoires est dû au fait que le modèle de configuration, conditionné à la simplicité, est un graphe
aléatoire uniforme avec des degrés prescrits. La simplicité correspond à l’absence des boucles et des arêtes multiples.

Nous montrons que le nombre des boucles et des arêtes multiples converge en loi vers deux variables aléatoires indépendantes
qui suivent des lois de Poisson lorsque le moment d’ordre 2 de la loi empirique des degrés converge. Nous fournissons aussi des
estimations des distances de variation totale entre les nombres des boucles et des arêtes multiples et leurs limites, ainsi qu’entre la
somme de ces nombres et la variable aléatoire, qui suit une loi de Poisson, vers laquelle converge cette somme. Cela revisite les
œuvres précédentes de Bollobás comme de Janson, de Wormald, et d’autres. Les estimations d’erreur impliquent également une
asymptotique précise pour le nombre de graphes simples avec des degrés prescrits.

Les estimations d’erreur découlent d’une application de la méthode de Stein–Chen pour la convergence vers une loi de Poisson,
qui est une nouvelle méthode pour ce problème. L’indépendance asymptotique des boucles et des arêtes multiples suit à partir
d’une version Poisson du dispositif Cramér–Wold utilisant l’amincissement, qui est intéressant en lui-même.

Lorsque la loi des degrés a un moment d’ordre 2 infini, nos résultats généraux échouent. Nous pouvons, cependant, prouver un
théorème de la limite centrale pour le nombre des boucles, et pour les arêtes multiples entre sommets avec degrés beaucoup plus
petits que la racine carrée de la taille du graphe. Nos résultats et preuves peuvent facilement s’étendre aux modèles de configuration
orientés et bipartis.
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1. Introduction and motivation

1.1. Models and results

We consider the configuration model CMn(d), with degrees d = (di)i∈[n]. The configuration model (CM) is a random
graph with vertex set [n] := {1,2, . . . , n} and with prescribed degrees. Let d = (d1, d2, . . . , dn) be a given degree
sequence, i.e., a sequence of n positive integers. The total degree, denoted �n is

�n =
∑
i∈[n]

di, (1.1)

and is assumed to be even. The CM on n vertices with degree sequence d is constructed as follows: start with n

vertices and di half-edges adjacent to each vertex i ∈ [n]. The �n half-edges are matched in pairs in a uniformly
random manner to form the edges of the graph.

Algorithmically, the CM may be sampled as follows. Randomly choose a pair of half-edges, match the chosen
pair together to form an edge and remove the two half-edges. Continue until all half-edges are paired. We denote the
resulting graph on [n] by CMn(d), with corresponding edge set En. Although self-loops may occur due to the pairing
of half-edges that are incident to the same vertex, in many cases the number of self-loops is much smaller than the
total degree as n → ∞ (see e.g. [7,13]). The same applies to multiple edges. We say that CMn(d) is simple when it
has no self-loops nor multiple edges.

In this paper, we investigate limit laws for the number of self-loops and multiple edges. Specifically, we study the
random vector (Sn,Mn), which is defined as

Sn =
∑
i∈[n]

Xii, Mn =
∑

1≤i<j≤n

(
Xij

2

)
. (1.2)

Here, for i, j ∈ [n], Xij denotes the number of edges between vertices i and j . For clarity, note that we have

di = Xii +
∑
j∈[n]

Xij = 2Xii +
∑
j �=i

Xij . (1.3)

We note that Mn is not precisely equal to the number of multiple edges. This number instead may be written as

M̃n =
∑

1≤i<j≤n

(Xij − 1)+, (1.4)

where x+ = max{0, x}. However, Mn = 0 precisely when there are no self-loops, i.e., when M̃n = 0. Moreover, if
Xij = 2 then the pair i, j contributes 1 to Mn, so Mn = M̃n in the absence of triple edges between vertices.

Furthermore, we let λS
n and λM

n be the means of the random variables Sn and Mn, i.e.,

λS
n = E[Sn], λM

n = E[Mn]. (1.5)

We can compute that

λS
n =

∑
i∈[n] di(di − 1)

2(�n − 1)
, λM

n =
∑

1≤i<j≤n dj (dj − 1)di(di − 1)

2(�n − 1)(�n − 3)
. (1.6)

The calculation of λS
n follows since the probability of a connection between any two half-edges is 1/(�n − 1) and

there are
(
di

2

)
choices for the two half-edges that will form a self-loop incident to the vertex i. The calculation of λM

n

follows since the probability for any two half-edges incident to the vertex i to connect (in order) to any two half-edges
incident to the vertex j is 1/[(�n − 1)(�n − 3)]. Further, there are

(
di

2

)
choices for the two-half edges incident to i and(dj

2

)
choices for the two-half edges incident to j . Finally, there are two possible pairings of the two chosen half-edges

incident to i to the two chosen half-edges incident to j .
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Throughout the paper, we write f (n) = o(g(n)) as n → ∞ when g(n) > 0 and limn→∞ |f (n)|/g(n) = 0. We write
f (n) = O(g(n)) as n → ∞ when g(n) > 0 and lim supn→∞ |f (n)|/g(n) < ∞. Finally, we write f (n) = �(g(n)) as
n → ∞ when f (n) = O(g(n)) and g(n) = O(f (n)).

In many cases and using this notation, we will approximate

λS
n = (νn/2)

(
1 + O(1/n)

)
, λM

n = (
ν2
n/4

)(
1 + O(1/n)

) − χn, (1.7)

where

νn =
∑

i∈[n] di(di − 1)

�n

, χn =
∑

i∈[n][di(di − 1)]2

4(�n − 1)(�n − 3)
. (1.8)

For future purposes, we also define

μ(r)
n =

∑
i∈[n](di)r

�n

, (1.9)

where, for an integer m, we let (m)r = m(m − 1) · · · (m − r + 1) denote the r th factorial moment. (In particular,
νn = μ

(2)
n .) We write L(X) for the distribution of X, and we write (a ∨ b) to denote the maximum of a and b. Our

main result is the following Poisson approximation for the number of self-loops and multiple edges in the configuration
model under certain conditions on the degree sequence:

Theorem 1.1 (Poisson approximation of self-loops and cycles). For CMn(d), there exists a universal constant
C > 0 such that

∥∥L(Sn) − Po
(
λS

n

)∥∥
TV ≤ C

(νn/2 ∨ 1)

ν2
n

�n

, (1.10)

∥∥L(Mn) − Po
(
λM

n

)∥∥
TV ≤ C

(λM
n ∨ 1)

(μ
(3)
n )2 + ν4

n

�n

(1.11)

and

∥∥L(Sn + Mn) − Po
(
λS

n + λM
n

)∥∥
TV ≤ C

((λS
n + λM

n ) ∨ 1)

(μ
(3)
n )2 + ν4

n

�n

. (1.12)

In particular,

P
(
CMn(d) simple

) = P(Sn + Mn = 0) = e−λS
n−λM

n + r, where |rn| ≤ C

((λS
n + λM

n ) ∨ 1)

(μ
(3)
n )2 + ν4

n

�n

. (1.13)

Let us discuss some of the history of this problem. The configuration model was introduced by Bollobás in [6]
to count the number of regular graphs, and provides a very nice example of the probabilistic method (see also [2]).
Subsequently, the configuration model has been used successfully to analyze many properties of random regular
graphs. The number of simple graphs can be rather directly obtained from the probability of simplicity of CMn(d)

(see e.g., [22, Proposition 7.6]). The introduction of the configuration model was inspired by, and generalized the
results in, the work of Bender and Canfield [4]. See also Wormald [25] and McKay and Wormald [16] for previous
work. Before giving further historical comments about Theorem 1.1, we discuss its implications on the number of
simple graphs with a prescribed degree sequence:

Corollary 1.2 (Number of simple graphs with prescribed degrees). The number Nn(d) of simple graphs with
degrees d = (di)i∈[n] satisfies

Nn(d) = (
e−λS

n−λM
n + rn

) (�n − 1)!!∏
i∈[n] di ! where |rn| ≤ C

((λS
n + λM

n ) ∨ 1)

(μ
(3)
n )2 + ν4

n

�n

. (1.14)
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In particular, the number Nn(r) of r-regular graphs with n vertices satisfies, when rn is even,

Nn(r) = (
e−(r−1)/2−(r−1)2/4 + O(1/n)

) (rn − 1)!!
(r!)n . (1.15)

The proof of Corollary 1.2 follows directly from [22, Proposition 7.6], which implies that

P
(
CMn(d) simple

) = Nn(d)

∏
i∈[n] di !

(�n − 1)!! . (1.16)

Let us continue the discussion of the history of the configuration model and Theorem 1.1. The configuration model,
as well as uniform random graphs with a prescribed degree sequence, were studied in greater generality by Molloy
and Reed in [17] and [18], where they focus on the existence of a giant component. The Poisson approximation for
the number of self-loops and multiple edges was first employed by Bollobás [7] in the case of random regular graphs.
Janson [13] uses a Poisson approximation relying on the method of moments for the number of vertices having self-
loops and the pairs of vertices having multiple edges between them. He investigates the case where the second moment
of the degrees remains uniformly bounded, but not necessarily being uniformly integrable. In [14], Janson revisits the
problem for Sn and Mn in (1.2) and uses the method of moments as well on the boundary case where the maximal
degree is of order

√
n. Similar results were proved previously in earlier versions of [22]. Janson’s extension in [14] is

inspired by the wish to deal with multiple edges and self-loops for SIR epidemics on the configuration model in joint
work with Luczak and Windridge [15].

In contrast to the works above based on the moment method, we use a Poisson approximation with couplings
based on Stein’s method, which also allows us to give error estimates. This method was recently used by Holmgren
and Janson [11,12] to investigate the number of fringe trees in certain random trees. A major advantage is that Stein’s
method makes the approximation quantitative by giving explicit bounds on the error terms. Contrary to Janson [13,
14], our results do not allow for degrees that are of the order of

√
n.

1.2. Regularity and moment assumptions on vertex degrees

We next investigate special cases of Theorem 1.1, under stronger assumptions (on regularity and moments) on the
degree distribution.

Let us now describe our regularity assumptions on the degree sequence d as n → ∞. We denote the degree of a
uniformly chosen vertex V in [n] by Dn = dV . The random variable Dn has distribution function Fn given by

Fn(x) = 1

n

∑
j∈[n]

1{dj ≤x}, (1.17)

where 1A denotes the indicator of the event A. Our regularity condition is as follows:

Condition 1.3 (Regularity conditions for vertex degrees). The random variables Dn converge in distribution to
some random variable D, and E[Dn] → E[D] < ∞.

Remark 1.4 (Uniform integrability). Condition 1.3 implies that the sequence of random variables (Dn)n≥1 is uni-
formly integrable. Conversely, if the sequence (Dn)n≥1 is uniformly integrable, then every subsequence has a further
subsequence that converges in distribution, and Condition 1.3 can be used along that subsequence.

Define

ν = E[D(D − 1)]
E[D] . (1.18)

Under suitable assumptions on the second moment of Dn, we can deduce more precise information about Sn and Mn,
and in particular consider their joint distribution. Our main results in the finite-variance case are the following three
theorems:
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Theorem 1.5 (Poisson approximation of self-loops and cycles). For CMn(d), where d satisfies the Degree Regu-
larity Condition 1.3 and limn→∞ E[D2

n] = E[D2] < ∞, it holds that∥∥L(Sn,Mn) − Po(ν/2) ⊗ Po
(
ν2/4

)∥∥
TV → 0. (1.19)

To prove Theorem 1.5, we introduce a Cramér–Wold device for Poisson random variables, that guarantees the
independence of the limiting random variables (see Section 2.1), and that is of independent interest.

Our methods also yield some speed of convergence results:

Theorem 1.6 (Speed of convergence for self-loops and cycles under finite third moment). For CMn(d), where d
satisfies the Degree Regularity Condition 1.3 and limn→∞ E[D3

n] = E[D3] < ∞, it holds that

P(Sn = 0) = e−λS
n + O(1/n), P(Mn = 0) = e−λM

n + O(1/n), (1.20)

and

P(Sn = Mn = 0) = e−λS
n−λM

n + O(1/n). (1.21)

In particular,

P
(
CMn(d) simple

) = e−λS
n−λM

n + O(1/n). (1.22)

Furthermore, when also limn→∞ E[D4
n] = E[D4] < ∞, λS

n = νn/2 and λM
n = ν2

n/4 + O(1/n), so that (1.20)–(1.22)
hold with λS

n and λM
n replaced with νn/2 and ν2

n/4.

Theorem 1.7 (Speed of convergence for self-loops and cycles with infinite third moment). For CMn(d), where d
satisfies the Degree Regularity Condition 1.3 and limn→∞ E[D2

n] = E[D2] < ∞, it holds that

P(Sn = 0) = e−λS
n + O(1/n), P(Mn = 0) = e−λM

n + O
(
d2

max/n
)
, (1.23)

and

P(Sn = Mn = 0) = e−λS
n−λM

n + O
(
d2

max/n
)
. (1.24)

In particular,

P
(
CMn(d) simple

) = e−λS
n−λM

n + O
(
d2

max/n
)
. (1.25)

Let us relate the above result to the scale-free behavior as observed in many random graphs. We refer the reader
to [22, Chapter 1] for an extensive introduction to real-world networks and their power-law degree sequences. Let Fn

denote the empirical distribution function of the degree sequence, so that Fn(x) → F(x) for every x ∈ N when Degree
Regularity Condition 1.3 holds. Scale-free behavior is defined as follows:

Definition 1.8 (Scale-free random graphs). A configuration model with a degree sequence satisfying Degree
Regularity Condition 1.3 is called scale free with power-law exponent τ when its asymptotic degree distribution
F(x) = P(D ≤ x) satisfies that, as x → ∞,

1 − F(x) = x−(τ−1)+o(1). (1.26)

Often, we assume that the asymptotic degree distribution obeys a pure power law, in which case (1.26) is strength-
ened to [1 − F ](x) = cx−(τ−1)(1 + o(1)) for x large. Note that (1.26) allows for slowly-varying corrections that are
not important for our discussion. In a pure power-law setting, one can expect that [1 − Fn](x) ≈ cx−(τ−1) (unless x is
too large). Then, the number of vertices of degree at least x equals

n[1 − Fn](x) ≈ cnx−(τ−1). (1.27)
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This is �(1) precisely when x = �(n1/(τ−1)). Thus, one can expect that dmax = �(n1/(τ−1)), so that the error terms in
(1.23)–(1.25) are of order n(3−τ)/(τ−1), which is o(1) when τ > 3. In turn, τ > 3 corresponds to E[D2] < ∞, so that
we are in the finite-variance degree setting. However, note that the scale-free property in Definition 1.8 is an asymptotic
property, and it implies very little about the actual behavior of dmax, aside from the obvious statement that dmax → ∞
when (1.26) holds. Thus, in the literature often, and particularly in the infinite-variance case where τ ∈ (2,3), more
detailed assumptions are made on the empirical tail distribution of the degrees, such as the statement that (1.27) holds
with upper and lower bounds for appropriate ranges of x values. Particularly in the infinite-variance regime where
τ ∈ (2,3), the behavior can depend rather sensitively on the precise range when the approximation (1.27) holds.
See e.g., [23] where distances in the infinite-variance degree configuration model for τ ∈ (2,3) are found to depend
sensitively on the precise degree characteristics. Two canonical examples of degree distributions that satisfy (1.27)
for a large range of x values are (a) when the degrees are independent and identically distributed with tail distribution
function satisfying 1−F(x) = cx−(τ−1), or (b) when di = [1−F ]−1(i/n) where the tail distribution function satisfies
1 − F(x) = cx−(τ−1)(1 + o(1)) for x large. In these cases, (1.27) can be seen to hold for all x = o(n1/(τ−1)) and
dmax = �(n1/(τ−1)).

In our proof, a concrete bound is given of the error term in the Poisson approximation in Theorem 1.5 in terms of
the moments of Dn and n, of the form as in (1.10)–(1.13).

1.3. Infinite-variance degrees

In this section, we study the configuration model with infinite-variance degrees. We assume that νn → ∞, which
holds when Definition 1.8 holds with τ ∈ (2,3). When the degrees obey a power-law with exponent τ ∈ (2,3), we
will assume that

νn = O
(
n2/(τ−1)−1). (1.28)

The main example of this behaviour is a power-law degree distribution with exponent τ (recall the discussion below
Definition 1.8), for which often dmax = maxi∈[n] di = �(n1/(τ−1)) with τ ∈ (2,3). Note that νn ≥ d2

max/nE[Dn]. Our
main result under this assumption is the following central limit theorem for the number of self-loops:

Theorem 1.9 (CLT for self-loops in CMn(d) with infinite-variance degrees). For CMn(d), assume that d satisfies
the Degree Regularity Condition 1.3, while νn → ∞ as in (1.28). Then, for τ > 2,

Sn − νn/2√
νn/2

d−→ Z. (1.29)

Unfortunately, our proof does not apply to the multiple edges, since the number of multiple edges between vertices
of degree di � √

n grows too rapidly. In this case, we need to assume that the degrees satisfy that dmax = o(
√

n):

Theorem 1.10 (CLT for multiple edges in CMn(d) with infinite-variance degrees). Let dmax = o(
√

n) and νn →
∞. Then,

Mn − λM
n√

λM
n

d−→ Z, (1.30)

where Z is a standard normal random variable.

Alternatively, we could also count only the multiple edges between vertices of degree o(
√

n). Indeed, take mn =
o(

√
n) and define

M(l)
n =

∑
1≤i<j≤n

1{di ,dj ≤mn}Xij (Xij − 1)/2. (1.31)

Then, Theorem 1.10 also holds for M
(l)
n with λM

n replaced with E[M(l)
n ] for any mn = o(

√
n). Note that if there two

vertices of degree �(
√

n), then the expected number of edges between these two vertices is already of order 1, and the
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contribution just from these vertices will impact the Poisson approximation. It is possible that a more careful analysis
taking into account high-degree vertices separately will allow extending our results to graphs with such vertices. (The
same holds for self-loops with vertices of degree �(n).) We do not pursue this here.

1.4. Directed and bipartite configuration models

In this section, we discuss the directed and bipartite configuration model.
Self-loops and multiple edges in the directed configuration model. For a general description of the directed con-

figuration model we refer to Cooper and Frieze [9] and van der Hofstad [22, Section 7.8]. Fix d(in) = (d
(in)
i )i∈[n] and

d(out) = (d
(out)
i )i∈[n] to be sequences of in-degrees and out-degrees of the vertices i ∈ [n], respectively. For a graph

with in- and out-degree sequence d = (d(in),d(out)) to exist, we need to assume that

�̂n =
∑
i∈[n]

d
(in)
i =

∑
i∈[n]

d
(out)
i . (1.32)

The directed configuration model DCMn(d
(in),d(out)) is obtained by pairing each in-half-edge to a uniformly chosen

out-half-edge. Similarly as for the undirected case, we may investigate limit laws for the number of self-loops and
multiple edges (Ŝn, M̂n). Self-loops occur if an in-half-edge is paired to an out-half-edge incident to the same vertex.
Multiple edges occur between a pair of vertices, if two in-half-edges that are incident to one of the vertices are paired
to two out-half-edges that are incident to the other vertex. Note that we are not considering two edges with opposite
directions between two vertices as a pair of multiple-edges (since this phenomenon actually often happens in real-
world networks), but only pairs of edges with the same direction. Thus, we define

M̂n =
∑

1≤i<j≤n

[
X

(in)
ij

(
X

(in)
ij − 1

)
/2 + X

(out)
ij

(
X

(out)
ij − 1

)
/2

]

=
∑

i �=j,i,j∈[n]
X

(in)
ij

(
X

(in)
ij − 1

)
/2 =

∑
i �=j,i,j∈[n]

X
(out)
ij

(
X

(out)
ij − 1

)
/2, (1.33)

where X
(in)
ij are the number of edges between i and j that are directed from j to i and X

(out)
ij are the number of edges

between i and j that are directed from i to j , and the last equality follows by the symmetry X
(in)
ij = X

(out)
j i .

Let

λ̂S
n = E[Ŝn], λ̂M

n = E[M̂n]. (1.34)

By similar calculations as in the undirected case we get

λ̂S
n =

∑
i∈[n] d

(in)
i d

(out)
i

�̂n

, λ̂M
n =

∑
i �=j, i,j∈[n] d

(in)
i (d

(in)
i − 1)d

(out)
j (d

(out)
j − 1)

2�̂n(�̂n − 1)
. (1.35)

We also define

μ(r,in)
n =

∑
i∈[n](d

(in)
i )r

�̂n

, μ(r,out)
n =

∑
i∈[n](d

(out)
i )r

�̂n

. (1.36)

Then, our main result for the directed CM is as follows:

Theorem 1.11 (Poisson approximation of self-loops and multiple edges in directed CM). For DCMn(d
(in),d(out)),

there exists a universal constant C > 0 such that

∥∥L(Ŝn) − Po
(
λ̂S

n

)∥∥
TV ≤ C

(λ̂S
n ∨ 1)

(λ̂S
n)2

�̂n

, (1.37)
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∥∥L(M̂n) − Po
(
λ̂M

n

)∥∥
TV ≤ C

(λ̂M
n ∨ 1)

μ
(3,in)
n μ

(3,out)
n + (λ̂M

n )2

�̂n

(1.38)

and

∥∥L(Ŝn + M̂n) − Po
(
λ̂S

n + λ̂M
n

)∥∥
TV ≤ C

((λ̂S
n + λ̂M

n ) ∨ 1)

μ
(3,in)
n μ

(3,out)
n + (λ̂M

n )2

�̂n

. (1.39)

In particular,

P
(
DCMn

(
d(in),d(out)) simple

) = P(Ŝn + M̂n = 0) = e−λ̂S
n−λ̂M

n + r̂n,

where |r̂n| ≤ C

((λ̂S
n + λ̂M

n ) ∨ 1)

μ
(3,in)
n μ

(3,out)
n + (λ̂M

n )2

�̂n

. (1.40)

Multiple edges in the bipartite configuration model. We continue with a discussion of multiple edges in the bipartite
configuration model. For a general description of the bipartite configuration model we refer e.g. to Blanchet and
Stauffer [5] and Janson [14]. Let n(l) denote the number of vertices on the left side of the bipartite graph, and n(r)

the number of vertices on the right side of the bipartite graph. Fix d(l) = (d
(l)
i )i∈[n(l)] and d(r) = (d

(r)
j )j∈[n(r)] degrees

sequences for the two left and right parts, with

�̄n =
∑

i∈[n(l)]
d

(l)
i =

∑
j∈[n(r)]

d
(r)
j . (1.41)

The bipartite configuration model BCMn(d
(l),d(r)) is obtained by pairing each half-edge incident to one of the vertices

in n(l) to a uniformly chosen half-edge of those incident to the vertices in n(r). Thus, in this model there are obviously
no self-loops. However, there could exist multiple edges M̄n. Multiple edges occur between a pair of vertices (i, j)

when two half-edges incident to a vertex i ∈ [n(l)] are paired to two half-edges that are incident to a vertex j ∈ [n(r)].
To study the number of multiple edges, we define

M̄n =
∑

i∈[n(l)],j∈[n(r)]
X̄ij (X̄ij − 1)/2, (1.42)

where X̄ij denotes the number of edges between i and j . Let λ̄M
n = E[M̄n]. By similar calculations as for the standard

configuration model we get

λ̄M
n =

∑
i∈[n(l)],j∈[n(r)] d

(l)
i (d

(l)
i − 1)d

(r)
i (d

(r)
i − 1)

2�̄n(�̄n − 1)
. (1.43)

We also define

μ(k,l)
n =

∑
i∈[n(l)](d

(l)
i )k

�̄n

, μ(k,r)
n =

∑
j∈[n(r)](d

(r)
j )k

�̄n

. (1.44)

Then, our main result for the bipartite CM is as follows:

Theorem 1.12 (Poisson approximation of multiple edges in bipartite CM). For BCMn(d
(l),d(r)), there exists a

universal constant C > 0 such that

∥∥L(M̄n) − Po
(
λ̄M

n

)∥∥
TV ≤ C

(λ̄M
n ∨ 1)

μ
(3,l)
n μ

(3,r)
n + (λ̄M

n )2

�̄n

. (1.45)
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In particular,

P
(
BCMn

(
d(l),d(r)) simple

) = P(M̄n = 0) = e−λ̄M
n + r̄n, where |r̄n| ≤ C

(λ̄M
n ∨ 1)

μ
(3,l)
n μ

(3,r)
n + (λ̄M

n )2

�̄n

. (1.46)

Remark 1.13. For the directed configuration model DCMn(d
(in),d(out)) we can also prove results that correspond to

Theorems 1.5–1.10 for the undirected case. Similarly, for the bipartite configuration model BCMn(d
(l),d(r)), we can

prove results that correspond to Theorems 1.6, 1.7 and 1.10 (recalling that there are no self-loops in this model). We
leave these statements of the other results to the reader.

1.5. Discussion and open problems

In this section, we discuss our results and provide open problems.
Instead of investigating Sn and Mn as in (1.2), one could also investigate other random variables that imply sim-

plicity when the variable equals zero. An example would be to study M̃n in (1.4). Another natural example would
be

S(l)
n =

∑
i∈[n]

1{Xii≥1}, M(l)
n =

∑
1≤i<j≤n

1{Xij ≥2}, (1.47)

as Janson does in [13]. Both alternatives are of interest, since they all quantify different aspects of how many self-loops
and multiple edges there are, and might satisfy central limits theorems for infinite-variance degrees for different values
of the power-law exponent τ . However, application of Stein’s method to these random variables is more difficult. For
M

(l)
n , this is primarily due to the fact that the probability of {Xkl ≥ 2} conditionally on {Xij ≥ 2} is quite involved.

This effect is best seen in the conditions on dmax. Indeed, our results necessitate the fact that dmax = o(
√

n), since
often error terms are of the order d2

max/n (see e.g., (1.23) in Theorem 1.7). Janson [13] and [14] allows for settings
where dmax = �(

√
n). In particular, in [14], Janson proves a Poisson approximation for Sn + Mn as in (1.2) in the

regime where dmax = �(
√

n). In particular, Janson proves that the difference between the moments of Sn + Mn and
Ẑ, which is given in terms of Poisson random variables, is O(n−1/2) or O(dmax/n). Here,

Ẑ =
∑
i∈[n]

X̂i +
∑

1≤i<j≤n

(
X̂ij

2

)
, (1.48)

where X̂i is Poisson with mean νn/2, while X̂ij is Poisson with mean λij with

λij =
√

di(di − 1)dj (dj − 1)

�n

. (1.49)

Note that Ẑ is not quite a Poisson random variable. Thus, this result describes deviations from a Poisson random
variable in the regime where dmax = �(

√
n), and shows that the Poisson approximation attempted in our paper can

not be expected to hold in this regime.
We next discuss configuration models in the power-law setting where τ ∈ (2,3) in some more detail. As we see

in Theorems 1.9–1.10, the number of self-loops and multiple edges in this case tend to infinity in probability, so
that it is highly unlikely that there are none. This makes that the approach to obtain simple graphs by conditioning
the configuration model to be simple is no viable option. However, real-world networks with power-law degrees with
τ ∈ (2,3) are often observed, see e.g. the surveys in [1] and [19]. For example, Newman [20] proposes, amongst others,
the configuration model with power-law degrees as a model for real-world networks, while Newman, Strogatz and
Watts [21] investigate the graph distances of such models. There is ample evidence that practitioners do wish to obtain
simple graphs as a null-model for many real-world networks. There are many papers using the configuration model as
null-models for real-world networks. In the case of infinite-variance degrees, this gives rise to an enormous problem.
One possible solution to resolve this issue is to consider, instead, the erased configuration model, as suggested by
Britton, Deijfen and Martin-Löf [8]. In this erased model, self-loops are simply erased and multiple-edges merged
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to make the graph simple. While this does not produce a graph that has a uniform distribution over the space of
all simple graphs, this model is highly practical, and we see that we only remove a small proportion of the edges
so that the degree distribution is virtually unaltered (see e.g. [22, Chapter 7] for more details). This explains our
interest in configuration models with power-law degrees. Theorem 1.9–1.10 can thus be seen as quantifications of the
statement that we ‘do not remove many edges’. For example, Van der Hoorn and Litvak [24] investigate the number of
removed edges in the erased configuration model in the setting where the degrees are i.i.d. with distribution function
F satisfying [1 − F ](x) = cx−(τ−1) for some τ ∈ (2,3) (in fact, they even allow for extra slowly-varying functions,
but we refrain from discussing this generalization). The number of removed edges corresponds to

Rn = Sn +
∑

1≤i<j≤n

(
Xij − 1Xij ≥1

)
, (1.50)

which, for τ ∈ (2,3), is significantly smaller than Sn + Mn. Interestingly, the upper bound proved by van der Hoorn
and Litvak [24] is different for τ ∈ (5/2,3) compared to τ ∈ (2,5/2). It would be of interest to investigate whether
such a phase transition is an artifact of the proof, or whether it really is there.

Gao and Wormald [10] take a different approach. Indeed, they investigate the number of simple graphs in the power-
law case with τ ∈ (2,3). Under assumptions on μ

(r)
n , they investigate sharp asymptotics for P(CMn(d) simple). Let

Mr = �nμ
(r)
n , then [10, Theorem 1] assumes that M2 = o(M

9/8
1 ). [10, Theorem 2] assumes that the number of vertices

of degree i can be uniformly bounded by a constant times nk−1/τ for τ > 5/2, which, in particular, implies that
dmax = O(n1/τ ). The result that most closely relates to ours is [10, Theorem 3], where it is assumed that the number
of vertices i with degree di > x is bounded by Cnx−(τ−1), for some C > 0 and uniformly in x, where τ ∈ (1 +√

3,3)

(note that 1+√
3 ≈ 2.732). This is close to a scale-free upper bound, recall Definition 1.27. Gao and Wormald call the

latter setting a power-law distribution-bounded degree sequence. Mind that this setting allows for a maximal degree
dmax = �(n1/(τ−1)), which can be well above

√
n.

These results are highly interesting, and show in particular that P(Sn = Mn = 0) = e−(νn/2+ν2
n/4)(1+o(1)) while at

the same time giving an asymptotic expression of o(1) in the exponent in terms of μ
(r)
n with r = 1,2 and 3. These

can be used to compute the asymptotic number of simple graphs with the given degree sequence. The proofs rely on
switching methods, which have been used in the literature to study various settings in which the connection between
simple graphs and the configuration model cannot be used, such as in [16], where McKay and Wormald study the
number of regular graphs with degrees rn with rn → ∞ and rn = o(

√
n). Also Janson [13] relies on the switching

method.
The results by Gao and Wormald cannot be obtained from ours, since the event of simplicity is an extreme-value

event when τ ∈ (2,3) with vanishing probability, whereas we study weak limits with increasing means and variances.
On the other hand, the assumption that dmax = O(n1/τ ) = o(

√
n) with τ ∈ (2,3) implies that we obtain a CLT for

both the number of self-loops as well as the number of multiple edges by Theorem 1.10.
Instead of assuming that dmax = O(n1/τ ), we prefer to work with cases where

∑
i≥k ni = O(nk−1/(τ−1)), as in

the power-law distribution-bounded case of Gao and Wormald [10]. This preference is inspired by the fact that the
maximum of n i.i.d. random variables with tail distribution function 1 − F(x) = cx−(τ−1) is of order n1/(τ−1) rather
than n1/τ . Recall Definition 1.27 and the definition below it. In turn, a natural choice of deterministic power-law
degrees arises when we take the number nk of vertices of degree k to be equal to nk = 
nF(k)�−
nF(k − 1)�, where
again 1 − F(x) = cx−(τ−1) is a power-law distribution and also dmax = �(n1/(τ−1)).

Another interesting problem is to investigate whether the CLT for the number of multiple edges Mn can be ex-
tended to the full range τ ∈ (2,3) without the restriction that dmax = o(

√
n). Our current proof relies on a Poisson

approximation, which in particular can only be used when the mean and the variance of the asymptotic normal distri-
bution are comparable. We believe that this is false for some τ ∈ (2,3). It would be interesting to investigate whether
instead Stein’s method for normal asymptotic distributions can be applied. This open problem is also interesting for
other sums of indicators, for example for M̃n in (1.4) and for M

(l)
n in (1.47).

Organization. The remainder of this paper is organised as follows. In Section 2, we present the preliminaries used
in this paper, which include a novel Poisson Cramér-Wold device as well as bounds on Poisson approximations. In
Section 3, we present couplings of dependent indicators that will be crucial in applying the Stein-Chen method. In
Section 4, we present the proofs of our main results.
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2. Preliminaries

2.1. Poisson Cramér–Wold device

In this section, we show that convergence of two random variables to two independent Poisson variables follows when
we can prove convergence of sums of their thinned versions. This is to Poisson random variables, as the Cramér–Wold
device is for Normal variables. We start by explaining this method, which is of independent interest.

Let (X,Y ) be two integer-valued random variables. Fix p,q ∈ [0,1] and define

Xp = Bin(X,p), Yq = Bin(Y, q) (2.1)

to be two binomial random variables, independent conditioned on X,Y . Then, the Poisson Cramér–Wold device is the
following theorem:

Theorem 2.1 (Poisson Cramér–Wold device). Suppose that, for every p,q ∈ [0,1], Xp + Yq has a Poisson distri-
bution with mean pμX + qμY . Then (X,Y ) are two independent Poisson random variables with means μX and μY ,
respectively.

Proof. Let MX,Y (s, t) = E[esX+tY ] denote the joint moment generating function of a random vector (X,Y ) and
MX(t) = E[etX] the moment generating function of the random variable X. Recall that the moment generating func-
tion of a binomial random variable X with parameters n and p equals MX(t) = (pet + (1 −p))n and that of a Poisson
random variable Y with parameter λ equals MY (t) = eλ(et−1).

We know that MXp+Yq (t) = E[et (Xp+Yq)] = e(pμX+qμY )(et−1). We wish to show that MX,Y (t, s) =
eμX(et−1)+μY (es−1), and it suffices to prove this for s, t ≥ 0.

We rewrite the moment generating function of Xp + Yq as

MXp+Yq (t) = E
[
et (Xp+Yq)

] = E
[(

pet + (1 − p)
)X(

qet + (1 − q)
)Y ]

= MX,Y

(
log

(
pet + (1 − p)

)
, log

(
qet + (1 − q)

))
. (2.2)

Without loss of generality, we may assume that t ≥ s. We also assume that s ≥ 0. We take p = 1, so that log(pet +
(1 − p)) = t , and q such that log(qet + (1 − q)) = s. Solving gives q = (es − 1)/(et − 1) ∈ [0,1], since 0 ≤ s ≤ t .
Then we get that

MX,Y (t, s) = eμX(et−1)+qμY (et−1) = eμX(et−1)+μY (es−1), (2.3)

as required. We conclude that X and Y are independent Poisson variables with means μX and μY , respectively. �

Remark 2.2. The proof above only uses the assumption in the case p = 1 or q = 1 (according to whether t ≥ s or
t ≤ s). By analyticity, M(s, t) for s ≤ t determines M and the laws of X,Y completely, so we can even restrict to
p = 1.

Corollary 2.3 (Poisson Cramér–Wold device for convergence). Let (X(n), Y (n))n≥1 be non-negative integer random
variables. Suppose that, for every p,q ∈ [0,1], X

(n)
p + Y

(n)
q converges in distribution to a Poisson distribution with

mean pμX + qμY . Then (X(n), Y (n)) converges in distribution to a pair of independent Poisson random variables
with means μX and μY , respectively.

This could be proved directly using characteristic functions in a similar way as in Theorem 2.1 (where instead
moment generating functions were used). Instead, we deduce this from Theorem 2.1.

Proof. Taking p = 1 and q = 0 we find that X(n) is a tight sequence, and similarly so is Y (n), and thus there are
subsequences of (X(n), Y (n)) that converge in distribution. Let (X,Y ) be some subsequential limit. By Theorem 2.1
we find that (X,Y ) are independent Poisson variables as claimed. Since every subsequential limit has the same law,
the convergence is along the entire sequence. �
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2.2. Poisson approximation

We will make extensive use of Poisson approximations. For this, we rely on [3, Theorem 2.C], which we quote for
convenience. We start by introducing some notation. Let

W =
∑
α∈


Iα (2.4)

be a sum of (possibly dependent) indicator functions indexed by some set 
. Let (Jβα)β∈
\{α} be a collection of indi-
cator variables with the joint distribution of ((Iβ)β∈
 | Iα = 1), i.e., the conditional distribution of all other indicators
given that Iα = 1. Let pα = P(Iα = 1) and

λ =
∑
α∈


pα = E[W ]. (2.5)

Note that the while the joint distribution of the variables (Jβα) is specified, the coupling with the family (Iα) can be
chosen arbitrarily. Then we have the following Poisson approximation:

Theorem 2.4 (Poisson approximations [3]). With (Jβα)β∈
\{α} as above,

∥∥L(W),Po(λ)
∥∥

TV ≤ (
1 ∧ λ−1)(∑

α∈


p2
α +

∑
α∈


∑
β �=α

pαE
[|Iβ − Jβα|]). (2.6)

As these are indicator variables, we can compute that E[|Iβ − Jβα|] = P(Iβ �= Jβα). Our proof is based on finding
an efficient coupling of Iβ and Jαβ , i.e., one for which Jβα = Iβ holds with high probability.

3. Couplings for the number of self-loops and multiple edges in the CM

In this section, we investigate (Sn,Mn) as defined in (1.2). We will rely on Poisson approximations as in Theorem 2.4,
for which it is convenient to rewrite (Sn,Mn) as

Sn =
∑
i∈[n]

∑
1≤s<t≤di

Lst , Mn =
∑

1≤i<j≤n

∑
1≤s1<s2≤di

∑
1≤t1 �=t2≤dj

Ls1t1,s2t2 . (3.1)

Here Lst is the indicator that the half-edges s and t that are incident to the same vertex are paired to form a self-loop,
while Ls1t1,s2t2 is the indicator that s1t1 and s2t2 are paired together, where s1, s2 are incident to the same vertex, as
are t1, t2. Note that we may assume s1 < s2, but swapping t1, t2 will lead to different configurations, so their order is
not given.

We use the Poisson approximation in Theorem 2.4, jointly with the Poisson Cramér–Wold device in Theorem 2.1
and thus deal with

W =
∑
i∈[n]

∑
1≤s<t≤di

LstKst +
∑

1≤i<j≤n

∑
1≤s1<s2≤di

∑
1≤t1 �=t2≤dj

Ls1t1,s2t2Ks1t1,s2t2 , (3.2)

where (Kst ) are i.i.d. Bernoulli’s with probability p and (Ks1t1,s2t2) are i.i.d. Bernoulli’s with probability q . We need
to describe the law of the indicators conditioned on Iα = 1. Here α can be st or s1t1, s2t2 and Iα = LαKα . Note that
the Kα’s are completely independent of everything else, so they do not change the story. For simplicity, we will just
deal with Kα ≡ 1, though all computations below are valid for any set of K’s.

The success probabilities. We start by analyzing the “success” probabilities pα . For α corresponding to a self-loop,

pα = 1

�n − 1
where �n =

∑
i∈[n]

di. (3.3)
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For α corresponding to a pair of edges,

pα = 1

(�n − 1)(�n − 3)
. (3.4)

This gives us that

λ =
∑
i∈[n]

∑
1≤s≤t≤di

1

�n − 1
+

∑
1≤i<j≤n

∑
1≤s1≤s2≤di

∑
1≤t1 �=t2≤dj

1

(�n − 1)(�n − 3)

= 1

2(�n − 1)

∑
i∈[n]

di(di − 1) + 1

4(�n − 1)(�n − 3)

∑
i �=j∈[n]

di(di − 1)dj (dj − 1)

= [
νn/2 + ν2

n/4
](

1 + o(1)
)
. (3.5)

Further,

∑
α

p2
α =

[
νn

2�n

+ ν2
n

4�2
n

](
1 + o(1)

) = o(1) (3.6)

as long as dmax = o(n). This bounds the easier term
∑

p2
α on the right-hand side of (2.6). We now turn to the more in-

volved contribution in the right-hand side of (2.6), for which the task is to give a convenient and efficient description of
the distribution of (Jβα)β = ((Iβ)β∈
 | Iα = 1). This means that we need to study the distribution of Lα conditionally
on Lβ = 1. More precisely, below we define a coupling of the Lα and the conditioned Lα for each β .

Before describing the coupling in the different cases that can arise, we make the following observation. For some
pairs α,β it is the case that Lα = 1 and Lβ = 1 are incompatible. This happens whenever these events require the
same half-edge to be matched in two different ways. In that case, conditioning on Lα = 1 makes Lβ = 0. In all other
cases, it is easy to see that Lα and Lβ are positively correlated. For example, if both α,β are self-loop events, then
E[LαLβ ] = 1

(�n−1)(�n−3)
> 1

(�n−1)2 . Similar inequalities hold when one or both of the two are multiple edge events.
There are also pairs α,β which include a common matched pair, in which case the correlation is very strong. In light of
this positive correlation, for any compatible pair α,β , the conditioned Lβ stochastically dominates the unconditioned
Lβ . Our coupling realizes this stochastic domination: If α,β are compatible, then forcing Lα can only increase Lβ .

Since α and β can be of two distinct types, corresponding to self-loops and multiple edges, this gives rise to four
different cases. We start with the conditional law of Ls′t ′ conditionally on Lst = 1:

(a) Conditional law of Ls′t ′ conditionally on Lst = 1.

To create the conditional law of (Jβα), which is the same as the joint law of (Lβ) given Lα = 1 with α = st , we
start with CMn(d), giving us the unconditional law of (Lβ). When the half-edges s and t have been paired to one
another, we do nothing, because then Lst = 1 already. When Lst = 0, we break open the two edges containing s and
t respectively, pair s and t , and pair the two other half-edges that are now unpaired to each other. We refer to this as
rewiring to create α. It is clear that the resulting graph is CMn(d) conditioned on half-edges s, t being matched, and
thus produces the required distribution (Jβα), and also couples it with the unconditioned law (Lβ). We now compute
E[|Lβ − Jβα|] = P(Lβ �= Jβα) (and in this first case we assume that β = s′t ′ corresponds to a self-loop).

We note that Jβα = Lβ , unless the self-loop β is present and is destroyed, or the self-loop β is absent and is created.
We have two different cases depending on whether α and β are incident to two distinct vertices or they are incident to
the same vertex. We will now examine the contributions to each of these two cases.

Case (a1): The self-loops α and β are incident to the distinct vertices i and j : We start with the case where α = st

and β = s′t ′ are incident to two distinct vertices i and j . We first note that rewiring can never destroy the self-loop
β , since the half-edges s′ and t ′ that are incident to the vertex j can only be affected if before the rewiring they were
paired to the half-edges s and t that are incident to the vertex i. From this fact it also follows that β is created exactly
if before the rewiring, the half-edges s′ and t ′ in β are paired (in some order) to the half-edges s and t in α. This has
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Fig. 1. Rewiring the left configuration so as to create the self-loop with half-edges {s, t} results in creation of the edge {s′, t ′}. If a second edge
{s′

2, t ′2} is already present (not shown) then a multiple edge will be formed.

probability 2
(�n−1)(�n−3)

. Note that for two distinct vertices i and j , there are
(
di

2

)(dj

2

)
choices for the pair (s, t) incident

to i and the pair (s′, t ′) incident to j .
Case (a2): The self-loops α and β are incident to the same vertex i, and are disjoint: We now consider the case

where α = st and β = s′t ′ are incident to the same vertex i, and do not share any half-edge, so that {s, t}∩{s′, t ′} =∅.
As in case (a1), rewiring cannot destroy the self-loop s′t ′, and creates the self-loop s′t ′ precisely when s, t are paired
to {s′, t ′} in some order. This occurs with probability 2

(�n−1)(�n−3)
. Note that there are 6

(
di

4

)
choices for half-edges s, t

and half-edges s′, t ′ incident to the vertex i.
Case (a3): The self-loops α and β are incident to the same vertex i, and overlap: Consider finally the case of self

loops with {s, t} ∩ {s′, t ′} �= ∅. If s′t ′ is a self-loop before rewiring, it is destroyed by the rewiring. This occurs with
probability 1

(�n−1)
. Note that there are 6

(
di

3

)
choices for the pairs {s, t} and {s′, t ′} with an overlap.

Recall the notation (m)k = m(m− 1) · · · (m− k + 1). Using that pα = 1/(�n − 1), the total contribution from cases
(a1)–(a3) to the second sum in (2.6) is thus equal to

∑
i �=j∈[n]

(di)2(dj )2

4
· 2

(�n − 1)2(�n − 3)
+

∑
i∈[n]

(di)4

4
· 2

(�n − 1)2(�n − 3)
+

∑
i∈[n]

(di)3 · 1

(�n − 1)2

= O
(
ν2
n/�n

) + O
(
μ(3)

n /�n

)
, (3.7)

where the first sum corresponds to the total contribution for the case when α and β are incident to two distinct vertices
i and j , and the last two sums correspond to the total contribution for the case when α and β are incident to the same
vertex i.

(b) Conditional law of Ls′
1t

′
1,s

′
2t

′
2

conditionally on Lst = 1

Continuing our analysis of the above coupling, we now consider β = {s′
1t

′
1, s

′
2t

′
2} corresponding to a pair of parallel

edges. We have different cases depending on whether the half-edges in α and β are incident to three distinct vertices
or only two different vertices. We will now examine the contributions to each of these two cases.

Case (b1): The self-loop α and the multiple-edge β are incident to three vertices: We start with the case where
α = st is incident to a vertex i, and β = {s′

1t
′
1, s

′
2t

′
2} is incident to two other vertices, so that s′

1, s
′
2 are incident to

vertex j and the pair t ′1, t ′2 are incident to vertex k, with {i, j, k} all distinct. Note that (as in case (a1)), rewiring cannot
destroy the multiple edge β , since β is only affected if there is some half-edge in β that is paired to some half-edge
in α before the rewiring, in that case β could not have been present in CMn(d). However, rewiring can create the
multiple edge β . This occurs when before the rewiring either the edge s′

1t
′
1 or the edge s′

2t
′
2 already existed and the

half-edges s and t are paired to the two remaining half-edges from β; see Figure 1 for an illustration.
We thus have four symmetric cases: One of these cases is when s was paired to s′

1 and t to t ′1, while s′
2 was paired

to t ′2. Thus, the total probability for these four symmetric cases is 4
(�n−1)(�n−3)(�n−5)

. Note that there are
(
di

2

)
choices
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for the pair of half-edges (s, t) in the vertex i and then 2
(dj

2

)(
dk

2

)
to choose the multiple edge β = {s′

1t
′
1, s

′
2t

′
2} between

vertices j and k. When we sum over all vertices i, j and k, we could either assume that j < k or divide the total sum
by 2, since we can permute j and k. In total, using that pα = 1/(�n −1), the contribution from Case (b1) to the second
sum in (2.6) is

∑
i �=j �=k

(di)2(dj )2(dk)2

8
· 4

(�n − 1)2(�n − 3)(�n − 5)
= 6(di)2(dj )2(dk)2

2(�n − 1)2(�n − 3)(�n − 5)
. (3.8)

Here, the 6 in the first term comes from the possible orders of i, j, k.
Case (b2): The self-loop α and the multiple-edge β are incident to two vertices: We now consider the case when

α = st and β = {s′
1t

′
1, s

′
2t

′
2} are incident to only two distinct vertices. Specifically, we assume that both the half-edges

s, t and s′
1, s

′
2 are all incident to the vertex i, while the half-edges t ′1, t ′2 are incident to a different vertex j . This is split

into three sub-cases, depending on whether {s, t} and {s′
1, s

′
2} have zero, one, or two elements in common.

If {s′
1, s

′
2} ∩ {s, t} =∅ then we cannot destroy β since no half-edge in β could have been paired to s or t before the

rewiring. However, we can create β . This again occurs when before the rewiring either the edge s′
1t

′
1 or the edge s′

2t
′
2

already existed and the half-edges s and t are paired to the two remaining half-edges in β . The total probability for
these four symmetric cases is the same as in case (b1): 4

(�n−1)(�n−3)(�n−5)
. Note that there are 2

(
di

2

)(dj

2

)(
di−2

2

)
choices

for the multiple edge β incident to the vertices i and j and the self-loop α incident to vertex i.
If {s′

1, s
′
2} ∩ {s, t} �= ∅ then rewiring cannot create β , since one of the half-edges in β must be part of the self-loop

α after the rewiring. In case {s′
1, s

′
2, s, t} are three distinct half-edges so that s = s′

1 or s = s′
2, then we destroy β if β

existed before the rewiring (while the final half-edge t incident to vertex i was paired to an arbitrary half-edge). These
two symmetric cases thus have probability 2

(�n−1)(�n−3)
, and there are 2

(
di

2

)(dj

2

)
(di − 2) choices for the multiple edge

β incident to the vertices i and j and the remaining half-edge t in the self-loop α incident to vertex i.
Finally we consider the case when s = s′

1 and t = s′
2. Then we destroy β if β existed before the rewiring, which

occurs with probability 1
(�n−1)(�n−3)

. Note that there are 2
(
di

2

)(dj

2

)
choices for the multiple edge β incident to the

vertices i and j and then the self-loop α incident to vertex i is also decided from that choice.
In total, again using pα = 1/(�n − 1), the contribution from Cases (b1) and (b2) to the second sum in (2.6) is

∑
i<j<k∈[n]

6(di)2(dj )2(dk)2

2(�n − 1)2(�n − 3)(�n − 5)
+

∑
i �=j∈[n]

(di)4(dj )2

(�n − 1)2(�n − 3)(�n − 5)
+

∑
i �=j∈[n]

2(di)3(dj )2 + (di)2(dj )2

2(�n − 1)2(�n − 3)

= O
(
ν3
n/�n

) + O
(
μ(4)

n νn/�
2
n

) + O
(
μ(3)

n νn/�n

)
. (3.9)

Note that in this paper we do not consider the joint distribution of Sn and Mn when νn → ∞, so this term will only
be used for νn = O(1).

(c) Conditional law of Ls′t ′ conditionally on Ls1t1,s2t2 = 1

To deal with Case (c), we rely on symmetry that is present in our setting. The simple observation in the lemma below
is described in [3, p.25], but we prove it for completeness.

Lemma 3.1 (Symmetry). With the notation in Section 2.2,

pαE[Iβ − Jβα] = pβE[Iα − Jαβ ] = −Cov(Iα, Iβ).

Proof. We have that pαE[Iβ ] = pαpβ , and

pαE[Jβα] = P(Iα = Iβ = 1) = E[IαIβ ].

Thus, the difference is the covariance (multiplied by −1) and is invariant to swapping α and β . �
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In our setting, for compatible α and β the difference Iβ − Jβα is never positive, while for incompatible α,β it is
never negative. Thus,

pα

∣∣E[Iβ − Jβα]∣∣ = pαE
[|Iβ − Jβα|].

We conclude that pαE[|Iβ − Jβα|] is also invariant to swapping α and β . In particular the sum over self-loops α and
multiple edges β is the same as the sum over multiple edges α and self-loops β , and thus the contribution from Case
(c) is equal to the contribution from Case (b).

(d) Conditional law of Ls′
1t

′
1,s

′
2t

′
2

conditionally on Ls1t1,s2t2 = 1

We now turn our coupling to the case where α = {s1t1, s2t2} is a pair of parallel edges. We rewire CMn(d) to create
the coupled variables (Jβα), with the joint law of (Lβ) given Lα = 1. Start with CMn(d), giving us the unconditioned
(Lβ). If the pairs of half-edges (s1, t1) and (s2, t2) are already paired, then Ls1t1,s2t2 = 1 already, and there is nothing
to be done.

When Ls1t1,s2t2 = 0, we break open all the edges containing s1, s2, t1, t2. This leaves these and at most four addi-
tional half-edges unmatched. We then pair s1 to t1 and pair s2 to t2. The additional unmatched half-edges (of which
there are zero, two, or four) are paired randomly. This produces (Jβα) with the needed distribution, coupled with the
original (Lβ). We shall now estimate E[|Lβ − Jβα|]. We note that Jβα = Lβ , unless the multiple-edge β is present
and is destroyed, or the multiple-edge β is absent and is created. Note that we have several cases depending on how
the multiple-edges α and β intersect, and whether they are incident to two, three or four distinct vertices.

Case (d1): The multiple edges α and β are incident to four distinct vertices: We start with the case when α and
β are incident to four different vertices, α to i, j , and β to k, l. Note that in this case rewiring cannot destroy the
multiple-edge β , since if β existed then the half-edges in β could not have been paired to the half-edges in α before
the rewiring. However, rewiring can create β . This can happen in two different ways. In the first way, all half-edges in
α are paired to all half-edges in β , which just has the probability

P1 = 4!
(�n − 1)(�n − 3)(�n − 5)(�n − 7)

. (3.10)

The second way β can be created is if one of the edges of β was present before rewiring, while the remaining two
half-edges in β were paired to two-half-edges in α (the remaining two half-edges in α can be paired arbitrarily).

This has probability

P2 = 2 · 4 · 3

(�n − 1)(�n − 3)(�n − 5)
. (3.11)

Note that there are

4

(
di

2

)(
dj

2

)(
dk

2

)(
dl

2

)

ways to choose α = {s1t1, s2t2} incident to vertices i and j , and β = {s′
1t

′
1, s

′
2t

′
2} incident to vertices k and l. (Also note

that in both of the cases just described, after the rewiring we could possibly have created β , but in neither of the cases
it is certain that β has been created.) See Figure 2 for an illustration of these two possibilities for rewiring edges.

When we sum over all vertices i, j, k and l we have to divide the total sum by 4 similarly as we divided by 2 in the
previous Case (b) when there were three vertices that were incident to α and β .

Using that pα = 1
(�n−1)(�n−3)

, with a factor of 24 for permuting i, j, k, l, we find that the total contribution to the
second sum in (2.6) due to case (d1) is bounded by

24
∑

i<j<k<l∈[n]

(di)2(dj )2(dk)2(dl)2

16
pα(P1 + P2) = O

(
ν4
n/�n

)
. (3.12)

Case (d2): The multiple edges α and β are incident to three distinct vertices: We continue with the case when α and
β are incident to only three different vertices i, j and i, k. We can assume that s1, s2 and s′

1, s
′
2 are incident to vertex
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Fig. 2. In the left and centre configurations, rewiring to create the parallel edges {s1t1, s2t2} between the two left vertices will create (with positive
probability) the parallel edges {s′

1t ′1, s′
2t ′2} between the right vertices, as shown on the right. Other half-edges on the same vertices are not shown.

i, that t1, t2 are incident to j and t ′1, t ′2 are incident to k. There are sub-cases, according to the number of common
half-edges among α and β .

When {s1, s2} ∩ {s′
1, s

′
2} = ∅, we cannot destroy the multiple-edge β , since we have eight different half-edges in

α and β . In this case we can again create β if the half-edges are paired as described in the previous case i.e., with
probability P1 in (3.10) and probability P2 in (3.11) respectively (there is a possibility that β is created). Note that
there are

4

(
di

2

)(
di − 2

2

)(
dj

2

)(
dk

2

)

ways to choose α = {s1t1, s2t2} incident to vertices i and j and β = {s′
1t

′
1, s

′
2t

′
2} incident to vertices i and k. If {s1, s2}∩

{s′
1, s

′
2} �=∅, then we cannot create the multiple edge β incident to the vertices i and k since after the rewiring at least

one of the half-edges s′
1, s

′
2 in β is paired to a half-edge in α that is incident to the vertex j . However, when β

existed before the rewiring, it is destroyed by the same reason. Hence, we have two possibilities for this to happen
i.e., |{s1, s2} ∩ {s′

1, s
′
2}| is equal to 1 or 2. The multiple edge β exists with probability 1

(�n−1)(�n−3)
. Note that in the

case when α and β contain three distinct half-edges incident to i and two distinct half-edges incident to j and k,
respectively, we have

8

(
di

2

)
(di − 2)

(
dj

2

)(
dk

2

)

ways to choose α and β , whereas in the case when α and β contain two distinct half-edges incident to i, j and k,
respectively, we have

4

(
di

2

)(
dj

2

)(
dk

2

)

ways to choose α and β . Using that pα = 1
(�n−1)(�n−3)

, the total contribution to the second sum in (2.6) due to case
(d2) is thus bounded by

∑
i �=j �=k∈[n]

(di)4(dj )2(dk)2

4
pα(P1 + P2) +

∑
i �=j �=k∈[n]

2(di)3(dj )2(dk)2 + (di)2(dj )2(dk)2

(�n − 1)2(�n − 3)2

= O
(
μ(4)

n ν2
n/�2

n

) + O
(
μ(3)

n ν2
n/�n

) + O
(
ν3
n/�n

)
. (3.13)

Case (d3): The multiple edges α and β are compatible and incident to two vertices: We finally consider the case
when α and β are incident to two different vertices i and j . In this case rewiring can both create and destroy β when
forcing α. In the case when all the eight half-edges are distinct we can again not destroy β . As in case (d1) and (d2)
when there were eight distinct half-edges in α and β and as described above there were two different scenarios when
β could possibly be created, i.e., the first scenario has probability P1 in (3.10) and the second scenario has probability
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P2 in (3.11). Note that there are

4

(
di

2

)(
di − 2

2

)(
dj

2

)(
dj − 2

2

)
= (di)4(dj )4

4

ways to choose α and β incident to the vertices i and j . In this case, β is created with probability 1/3 (as there are
three ways of rewiring the loose half-edges).

There is one other case where β can be created by rewiring, namely when α and β share a common edge (e.g.
s′

1 = s1 and t ′1 = t1, while the remaining half-edges are all distinct. In that case, rewiring will create β precisely when
(s′

2, t
′
2) are joined prior to rewiring, which has probability 1/(�n − 1). The number of pairs α,β in this class is

(di)3(dj )3.

The total contribution from case (d3) is therefore

∑
i<j∈[n]

(di)4(dj )4

4
pα(P1 + P2) + (di)3(dj )3pα · 1

�n − 1
= O

((
μ(4)

n

)2
/�3

n

) + O
((

μ(3)
n

)2
/�n

)
. (3.14)

Case (d4): The multiple edges α and β are incompatible and incident to only two vertices: In all other configurations
of α and β involving only two vertices i, j , α and β cannot coexist, and so rewiring destroys β whenever it is present,
which occurs with probability pβ = 1

(�n−1)(�n−3)
.

This can occur in various ways: Using four half-edges from i and two or three from j (or the other way around), or
having some overlap in both i and j . Instead of carefully enumerating all the ways this can happen, let us just observe
that the number is dominated by O(d4

i d3
j + d3

i d4
j ), since at most three half-edges are chosen at one vertex and at most

four at the other. Since i, j may be swapped, the total contribution from this case is at most∑
i �=j∈[n]

Cd3
i d4

j pαpβ = O
(
μ(4)

n μ(3)
n /�2

n

)
. (3.15)

In total, the contribution due to case (d) is thus equal to

O
(
ν4
n/�n

) + O
(
μ(4)

n ν2
n/�2

n

) + O
(
μ(3)

n ν2
n/�n

) + O
(
ν3
n/�n

) + O
((

μ(3)
n

)2
/�n

) = O(1)
ν4
n + (μ

(3)
n )2

�n

. (3.16)

Here we use that ν2
nμ

(3)
n ≤ ν4

n + (μ
(3)
n )2 and νn = O(�n). Thus, we note that the largest contributions in case (d) are

due to one sum that appears in case (d1) and one sum that appears in case (d3), i.e.,

O(1)
∑

i �=j �=k �=l∈[n]

(di)2(dj )2(dk)2(dl)2

(�n − 1)2(�n − 3)2(�n − 5)
+ O(1)

∑
i �=j∈[n]

(di)3(dj )3

(�n − 1)2(�n − 3)2
= O(1)

ν4
n + (μ

(3)
n )2

�n

. (3.17)

4. Proofs of main theorems

4.1. Proofs for configuration model

Conclusion to the proof of Theorem 1.1. To conclude the proof of Theorem 1.1, we distinguish between the proofs of
(1.10), (1.11) and (1.12), and note that (1.13) is a direct consequence of (1.12). For each of these cases, we need to
sum up the corresponding contributions in the above cases (a)–(d).

To prove (1.10), we only need to consider the contribution due to case (a), which is O(ν2
n/�n). The contribution

due to
∑

α p2
α equals O(νn/�n) = O(ν2

n/�n), while λS
n = (νn/2)(1 + O(1/n)). Thus, Theorem 2.4 gives that

∥∥L(Sn) − Po
(
λS

n

)∥∥
TV ≤ O(1)

(νn/2 ∨ 1)

ν2
n

�n

, (4.1)
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which completes the proof of (1.10).
To prove (1.11), we only need to consider the contribution due to case (d), which is O((ν4

n + (μ
(3)
n )2)/�n). The

contribution due to
∑

α p2
α = λM

n /(�n − 1)(�n − 3) equals O(ν2
n/�2

n). Thus, Theorem 2.4 gives that

∥∥L(Mn) − Po
(
λM

n

)∥∥
TV ≤ O(1)

(λM
n ∨ 1)

ν4
n + (μ

(3)
n )2

�n

, (4.2)

which completes the proof of (1.11).
To prove (1.12), we need to consider the contribution due to cases (a)–(d), which is O((ν4

n + (μ
(3)
n )2)/�n). The

contribution due to
∑

α p2
α = λS

n/(�n − 1) + λM
n /(�n − 1)(�n − 3) equals O(νn/�n). Thus, Theorem 2.4 gives that

∥∥L(Sn + Mn) − Po
(
λS

n + λM
n

)∥∥
TV ≤ O(1)

((λS
n + λM

n ) ∨ 1)

ν4
n + (μ

(3)
n )2

�n

, (4.3)

which completes the proof of (1.12), and thus of Theorem 1.1.
Conclusion to the proof of Theorem 1.5. For Theorem 1.5, we use the Poisson approximation for W in (3.2),

and rely on Corollary 2.3. Since limn→∞ E[D2
n] = E[D2] < ∞, dmax = o(

√
n), so that (μ

(3)
n )2/�n ≤ d2

maxν
2
n/�n =

o(1). Thus, W
d−→ Wp , which has a Poisson distribution with parameter pν/2 + qν2/4, so that the assumptions in

Corollary 2.3 are satisfied. We conclude that (Sn,Mn)
d−→ (S,M), where S and M are independent Poisson variables

with parameters ν/2 and ν2/4 respectively. This implies that ‖L(Sn,Mn) − Po(ν/2) ⊗ Po(ν2/4)‖TV → 0, since for
integer-valued random vectors, the two notions of convergence are equivalent.

Conclusion to the proof of Theorems 1.6–1.7. For Theorem 1.6, we note that νn → ν and μ
(3)
n → μ(3) ≡

E[(D)3]/E[D] under the assumptions of Theorem 1.6. For Theorem 1.7, we note that νn → ν under the assump-
tions of Theorem 1.7, while μ

(3)
n ≤ dmaxνn.

Conclusion to the proof of Theorems 1.9–1.10. Theorem 1.9 follows from the fact that νn → ∞, so that the bound
in (1.10) is O(νn/�n). Since E[Dn] is bounded it follows from (1.28) that dmax ≤ Cn1/(τ−1) = o(n). Since νn ≤ dmax

and dmax = o(n) when E[Dn] → E[D], we obtain that ‖L(Sn) − Po(λS
n)‖TV = o(1). Since νn → ∞, by the CLT,

(Po(λS
n) − λS

n)/
√

λS
n

d−→ Z. Since λS
n = (νn/2)(1 + O(1/n)), this completes the proof.

The proof of Theorem 1.10 is similar, now using λM
n = �(ν2

n) → ∞, so that

O(1)

((λS
n + λM

n ) ∨ 1)

ν4
n + (μ

(3)
n )2

�n

≤ ν2
n + (μ

(3)
n /νn)

2

�n

≤ d2
max/�n = o(1), (4.4)

since we assume that dmax = o(
√

n).

4.2. Proofs for directed and bipartite configuration models

Conclusion to the proof of Theorem 1.11. The proof is very similar to the proof of Theorem 1.1. We again distinguish
between the proofs of (1.37), (1.38) and (1.39), and note that (1.40) is a direct consequence of (1.39). For each of
these cases, we again need to sum up the corresponding contributions (of the couplings) in the above cases (a)–(d),
but now for the directed configuration model DCMn(d

(in),d(out)) (instead of CMn(d)). Below, we abbreviate ν̂n = λ̂S
n ,

ξ̂n = λ̂M
n .

To prove (1.37), we only need to consider the contribution due to case (a), which now is O(ν̂2
n/�̂n). Again the main

contribution is when the self-loops α and β are incident to two distinct vertices i and j , and β is created. Note that
pα = 1/�̂n. The first sum in (3.7) (which was the main contribution in the undirected model) now corresponds to

∑
i �=j∈[n]

d
(in)
i d

(out)
i d

(in)
j d

(out)
j

�̂2
n(�̂n − 1)

= O
(
ν̂2
n/�̂n

)
.
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The contribution due to
∑

α p2
α equals O(ν̂n/�̂n) = O(ν̂2

n/�̂n), while λ̂S
n = ν̂n(1 + O(1/n)). Thus, Theorem 2.4

gives that

∥∥L(Ŝn) − Po
(
λ̂S

n

)∥∥
TV ≤ C

(λ̂S
n ∨ 1)

ν̂2
n

�̂n

, (4.5)

which completes the proof of (1.37).

To prove (1.38), we only need to consider the contribution due to case (d), which now is O(
μ

(3,in)
n μ

(3,out)
n +ξ̂2

n

�̂n
). Note

that pα = 1
�̂n(�̂n−1)

. The contribution due to
∑

α p2
α = λ̂M

n /�̂n(�̂n − 1) equals O(ξ̂n/�̂
2
n). There are two main contribu-

tions corresponding to the two main contributions in the undirected model. The first main contribution corresponds to
the case when α and β are incident to four different vertices, and β is created. Then the corresponding sum in (3.12)
is now

∑
i �=j �=k �=l∈[n]

O(
(d

(in)
i )2(d

(out)
j )2(d

(in)
k )2(d

(out)
l )2

�̂2
n(�̂n − 1)2(�̂n − 2)

= O

(
ξ̂2
n

�̂n

)
.

The second main contribution corresponds to the case when α and β are incident to two vertices i and j , and β is
created. Then the corresponding main contribution of the sum in (3.14) is now

∑
i �=j∈[n]

O

(
(d

(in)
i )3(d

(out)
j )3

�̂2
n(�̂n − 1)

)
= O

(
μ

(3,in)
n μ

(3,out)
n

�̂n

)
.

Thus, Theorem 2.4 gives that

∥∥L(M̂n) − Po
(
λ̂M

n

)∥∥
TV ≤ C

(λ̂M
n ∨ 1)

μ
(3,in)
n μ

(3,out)
n + ξ̂2

n

�̂n

, (4.6)

which completes the proof of (1.38).

To prove (1.39), we need to consider the contribution due to cases (a)–(d), which now is O(
μ

(3,in)
n μ

(3,out)
n +ξ̂2

n

�̂n
). The

contribution due to
∑

α p2
α = λ̂S

n/�̂n + λ̂M
n /�̂n(�̂n − 1) equals O(ν̂n/�̂n)+O(ξ̂n/�̂

2
n). Thus, Theorem 2.4 gives that

∥∥L(Ŝn + M̂n) − Po
(
λ̂S

n + λ̂M
n

)∥∥
TV ≤ C

((λ̂S
n + λ̂M

n ) ∨ 1)

μ
(3,in)
n μ

(3,out)
n + ξ̂2

n

�̂n

, (4.7)

which completes the proof of (1.39), and thus of Theorem 1.11.
Conclusion to the proof of Theorem 1.12. The proof is again very similar to the proof of Theorem 1.1 and that

of Theorem 1.11. However, there are no self-loops in the bipartite configuration model. Thus, we only need to con-
sider case (d) above (regarding the couplings for the multiple edges), but now for the bipartite configuration model
BCMn(d

(l),d(r)). Again there are two main contributions corresponding to the main contributions for the undirected
configuration model CMn(d).

Note that pα = 1
�̄n(�̄n−1)

. The corresponding sum in (3.12) is now

∑
i,k∈[n(l)],j,l∈[n(r)]

O(
(d

(l)
i )2(d

(r)
j )2(d

(l)
k )2(d

(r)
l )2

�̄2
n(�̄n − 1)2(�̄n − 2)

= O

(
(λ̄M

n )2

�̄n

)
.

The corresponding main contribution of the sum in (3.14) is now

∑
i∈[n(l)],j∈[n(r)]

O

(
(d

(l)
i )3(d

(r)
j )3

�̄2
n(�̄n − 1)

)
= O

(
μ

(3,l)
n μ

(3,r)
n

�̄n

)
.
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Thus, Theorem 2.4 gives that

∥∥L(M̄n) − Po
(
λ̄M

n

)∥∥
TV ≤ C

(λ̄M
n ∨ 1)

μ
(3,l)
n μ

(3,r)
n + (λ̄M

n )2

�̄n

, (4.8)

which completes the proof of (1.45), and thus of Theorem 1.12.
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