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Abstract. Reflected diffusions in convex polyhedral domains arise in a variety of applications, including interacting particle sys-
tems, queueing networks, biochemical reaction networks and mathematical finance. Under suitable conditions on the data, we
establish pathwise differentiability of such a reflected diffusion with respect to its defining parameters – namely, its initial condi-
tion, drift and diffusion coefficients, and (oblique) directions of reflection along the boundary of the domain. We characterize the
right-continuous regularization of a pathwise derivative of the reflected diffusion as the pathwise unique solution to a constrained
linear stochastic differential equation with jumps whose drift and diffusion coefficients, domain and directions of reflection depend
on the state of the reflected diffusion. Previous work in the multidimensional context has been largely restricted to the study of
differentiability of stochastic flows for (normally) reflected Brownian motions. A key difficulty is to identify a suitable lineariza-
tion of the dynamics of the local time process, especially in the presence of a non-smooth boundary. We take a new approach
that uses properties of directional derivatives of the associated extended Skorokhod map, and their characterization in terms of the
so-called derivative problem. The proof involves establishing certain path properties of the reflected diffusion at nonsmooth parts
of the boundary of the polyhedral domain, which may be independent interest, and proving that pathwise derivatives of reflected
diffusions can be characterized in terms of directional derivatives of the extended Skorokhod map. As a corollary, we obtain a prob-
abilistic representation for derivatives of expectations of functionals of reflected diffusions, which is useful for sensitivity analysis
of reflected diffusions.

Résumé. Les diffusions réfléchies dans les domaines polyhédriques convexes apparaissent dans diverses applications, notamment
les systèmes de particules, les réseaux de files d’attente, les réseaux de réaction biochimique et la finance mathématique. Dans
des conditions appropriées sur les données, nous établissons la différentiabilité selon la trajectoire d’une telle diffusion réfléchie
par rapport à ses paramètres de définition, tel que sa condition initiale, ses coefficients de dérive et de diffusion et ses directions
(obliques) de réflexion le long des limites du domaine. Nous caractérisons la régularisation continue droite d’une dérivée selon la
trajectorie de la diffusion réfléchie comme solution unique à une équation différentielle stochastique linéaire contrainte avec sauts
dont les coefficients de dérive et de diffusion, le domaine et les directions de réflexion dépendent de l’état de la diffusion réfléchie.
Les travaux antérieurs dans le contexte multidimensionnel ont été en grande partie limités à l’étude de la différentiabilité des flux
stochastiques des mouvements browniens (normalement) réfléchis. Une difficulté essentielle consiste à identifier une linéarisation
appropriée de la dynamique du processus de temps local, en particulier en présence d’une frontière non lisse. Nous adoptons une
nouvelle approche qui utilise les propriétés des dérivées directionnelles de l’application de Skorokhod étendue associée et leur
caractérisation en termes d’une problème dérivé. La preuve implique l’établissement de certaines propriétés des trajectoires de la
diffusion réfléchie aux frontieres non lisses du domaine polyhédral, qui peut être un resultat d’intérêt indépendant, et de démontrer
que les dérivées selon la trajectorie des diffusions réfléchies peuvent être caractérisées en termes de dérivées directionnelles de
l’application de Skorokhod étendu. En corollaire, nous obtenons une représentation probabiliste pour les dérivées des valeurs
d’attendues des fonctionnelles de diffusions réfléchies, ce qui est utile pour l’analyse de sensibilité des diffusions réfléchies.
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1. Introduction

1.1. Overview

Reflected diffusions in convex polyhedral domains arise in a variety of contexts, including in the study of interact-
ing particle systems [7,36,39], rank-based diffusion models in mathematical finance [3,15] and “heavy traffic” limits
of stochastic networks [8,24,27,30–32]. A reflected diffusion with given drift and diffusion coefficients in a convex
polyhedral domain with oblique reflection along the boundary is a continuous Markov process that, roughly speaking,
behaves like a diffusion (with the same drift and diffusion coefficients) in the interior of the domain and is constrained
to remain in the closure of the domain by a “constraining” process that acts only when the reflected diffusion is at the
boundary of the domain and only in specified directions that are constant along each boundary face of the polyhedral
domain. Given the convex polyhedral domain, such a reflected diffusion is completely characterized by certain param-
eters – namely, its initial condition, drift and diffusion coefficients, and directions of reflection (along the boundary).
The aim of this paper is to establish pathwise differentiability of the reflected diffusion with respect to all its defin-
ing parameters and provide a tractable characterization of the associated pathwise derivatives. Our work is motivated
by both theoretical and applied perspectives. Pathwise differentiability with respect to the initial condition is closely
related to differentiability of the transition semigroup and stochastic flows of reflected diffusions. Additionally, in
applications, pathwise derivatives are useful for characterizing sensitivities of expectations of functionals of reflected
diffusions with respect to key model parameters, and this often entails simultaneous estimation of derivatives with
respect to the drift and diffusion coefficients, as well as the directions of reflection. This motivates the development
of a common framework within which to treat perturbations with respect to all defining parameters of a reflected
diffusion.

In the unconstrained setting, the study of pathwise derivatives of a diffusion with respect to parameters that de-
scribe the diffusion is a classical topic in stochastic analysis (see, e.g., [19] and references therein), and has found a
variety of applications, including in the estimation of so-called “Greeks” in math finance (see, e.g., [22, Chapter 2]).
Under general conditions on the drift and diffusion coefficients, it is well known that the pathwise derivative of an
unconstrained diffusion is the unique solution to a linear stochastic differential equation (SDE) whose coefficients are
modulated by the state of the diffusion (see, e.g., [26]).

In the constrained setting of reflected diffusions, pathwise derivatives are more complicated and no longer have
continuous (or even right-continuous) paths. The analysis of pathwise differentiability is challenging due to the singu-
lar behavior of the constraining process or local time on the boundary of the domain, and additional challenges arise
when the boundary is not smooth and reflection directions are multivalued at nonsmooth points of the boundary. In
general, one would expect the derivative to satisfy a linearized version of the constrained SDE (2.3) for the reflected
diffusion. However, it is a priori not even clear how to formally linearize the constrained SDE due to the presence of
the constraining term and nonsmooth boundary. Furthermore, even when such an equation has been identified, addi-
tional challenges arise in establishing existence and uniqueness of solutions to this stochastic equation and showing
that it indeed characterizes the pathwise derivative of the original equation. These tasks are further complicated in the
presence of state-dependent drift and diffusion coefficients. We introduce a novel framework for analyzing pathwise
derivatives of constrained processes, which in particular allows us to identify a suitable linearization. For a large class
of reflected diffusions in convex polyhedral domains, our main result, Theorem 3.13, shows that (the right-continuous
regularization of) a pathwise derivative can be characterized in terms of a so-called derivative process, which is shown
to be the pathwise unique solution to a constrained linear SDE with jumps whose drift and diffusion coefficients, do-
main and directions of reflection are modulated by the state of the reflected diffusion. Our characterization can thus be
viewed as the analog, in the constrained setting, of the classical characterization of pathwise derivatives of diffusions.

We introduce a new approach that uses the extended Skorokhod reflection problem (ESP) introduced in [29] and
the characterization of directional derivatives of the related extended Skorokhod map (ESM) obtained in [21]. The
ESP provides an axiomatic framework with which to constrain a continuous deterministic path to the closure of
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a domain via a “regulator” function that acts in specified directions when the constrained path is at the boundary
of the domain (see Definition 2.3 below). The mapping that takes the unconstrained path to the constrained path is
referred to as the ESM. Under the ESP approach, the reflected diffusion is represented as the image of an unconstrained
stochastic process under the ESM. For the class of domains and directions of reflection we consider, the corresponding
ESM is Lipschitz continuous on path space, and (under standard regularity assumptions on the drift and diffusion
coefficients) we show that pathwise derivatives of the reflected diffusion exist and can be characterized in terms of
directional derivatives of the ESM (see Proposition 6.5 below). For a general class of ESMs in convex polyhedral
domains, it was shown in [21] that directional derivatives exist along any continuous (deterministic) path whose
constrained version satisfies a certain “boundary jitter” property (see Definition 3.1 below), and their right-continuous
regularizations can be uniquely characterized as solutions to a so-called derivative problem (see Definition 5.1 below).
For a smaller class of ESMs that satisfy a certain monotonicity property and admit a semi-explicit representation in
terms of coupled one-dimensional Skorokhod maps, a characterization of directional derivatives along all continuous
paths was previously obtained in [25]. However, this characterization lacks linearity properties satisfied by solutions
to the derivative problem that yield a more tractable characterization of the pathwise derivative.

To establish pathwise differentiability of a reflected diffusion, we follow three main steps. First, in Section 4, we
prove that under a nondegeneracy condition the reflected diffusions we consider almost surely satisfy the boundary
jitter property, a result that may be of independent interest. The boundary jitter property (specifically conditions 3 and
4) describes the sample path behavior of a reflected diffusion immediately prior to hitting the nonsmooth parts of the
boundary, and immediately after time zero if the reflected diffusion starts on the nonsmooth parts of the boundary.
The proof of this property relies on uniform hitting time estimates, scaling properties of reflected diffusions, a change
of measure and a weak convergence argument. We use this property to show that directional derivatives of the ESM
evaluated at an associated unconstrained process exist almost surely. In the second step, carried out in Section 5,
we introduce the formal linearization of the original constrained SDE, which is expressed in terms of the so-called
derivative problem introduced in [21], and show that it admits a pathwise unique solution, which we refer to as
the derivative process along the reflected diffusion. Finally, in Section 6, we use stochastic estimates to show that
pathwise derivatives can be expressed in terms of directional derivatives of the ESM, and characterize the right-
continuous regularizations of the pathwise derivatives in terms of the corresponding derivative process along the
reflected diffusion.

In summary, for a reflected diffusion in a large class of convex polyhedral domains, the main contributions of this
work are as follows:

• Verification of the boundary jitter property (Section 3.1 and Section 4).
• Definition and analysis of the derivative process along the reflected diffusion (Section 3.2 and Section 5).
• Existence of pathwise derivatives and their characterization via the derivative process (Section 3.3 and Section 6).

Our work appears to be the first to establish pathwise differentiability of reflected diffusions with state-dependent
diffusion coefficients in nonsmooth domains, and also the first to consider perturbations of reflected diffusions with
respect to diffusion coefficients and directions of reflection.

1.2. Prior results

There are relatively few results on pathwise derivatives of obliquely reflected diffusions in convex polyhedral domains.
Two exceptions include the works of Andres [1] and Dieker and Gao [12]. The work [1] characterizes derivatives of
flows of an obliquely reflected diffusion with identity diffusion coefficient in a polyhedral domain, but only up until
the first time the reflected diffusion hits the nonsmooth part of the boundary. This avoids the difficulties that arise at the
nonsmooth parts of the boundary, and essentially reduces the problem to studying differentiability of flows of obliquely
reflected diffusions with identity diffusion coefficient in a half space. On the other hand, the work [12] considers the
same class of ESMs in the nonnegative orthant studied in [25], and characterizes sensitivities of associated obliquely
reflected diffusions to perturbations of the drift in the direction −1, the vector with negative one in each component.

In addition to these works, the following authors considered certain pathwise derivatives of normally reflected
diffusions: Deuschel and Zambotti [11] characterized derivatives of stochastic flows for normally reflected diffusions
with identity diffusion coefficient in the orthant; Burdzy [6] characterized derivatives of stochastic flows for normally
reflected Brownian motions in smooth domains; Andres [2] generalized the results of [6] to allow state-dependent
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drifts; Pilipenko (see [28] and references therein) investigated derivatives of stochastic flows for normally reflected
diffusions in the half space; and Bossy, Cissé and Talay [4] obtained an explicit representation for the derivatives
of a one-dimensional reflected diffusion in a bounded interval. Lastly, Costantini, Gobet and El Karoui [10] studied
boundary sensitivities of normally reflected diffusions in a time-dependent domain.

1.3. Outline of the paper

In Section 2, we define a family of coupled reflected diffusions indexed by parameters that determine their initial
conditions, drift and diffusion coefficients, and directions of reflection. In Section 3, we present our main results.
As explained prior to the summary of our main results above, Sections 4–6 are devoted to proving our main results.
Appendices A–C contain the proofs of some auxiliary results.

1.4. Notation

We now collect some notation that will be used throughout this work. We let N= {1,2, . . .} denote the set of positive
integers. Given J ∈ N, we use RJ+ to denote the closed nonnegative orthant in J -dimensional Euclidean space RJ .
When J = 1, we suppress J and write R for (−∞,∞) and R+ for [0,∞). We let Q denote the subset of rational
numbers in R. For a subset A ⊂ R, we let infA and supA denote the infimum and supremum, respectively, of A.
We use the convention that the infimum and supremum of the empty set are respectively defined to be ∞ and −∞.
For a column vector x ∈ RJ , let xj denote the j th component of x. We write 〈·, ·〉 and | · | for the usual Euclidean
inner product and Euclidean norm, respectively, on RJ . We let SJ−1 .= {x ∈ RJ : |x| = 1} denote the unit sphere
in RJ centered at the origin. For J,K ∈ N, let RJ×K denote the set of real-valued matrices with J rows and K
columns. We write MT ∈ RK×J for the transpose of a matrix M ∈ RJ×K . Given normed vector spaces (X ,‖ · ‖X )
and (Y,‖ · ‖Y ), we let Lin(X ,Y) denote the space of linear operators mapping X to Y . For T ∈ Lin(X ,Y), we write
the arguments of T in square brackets to emphasize that T is linear; that is, we write T [x]. For a bounded linear
operator T ∈ Lin(X ,Y), we write ‖T ‖ to denote the operator norm of T ; that is, ‖T ‖ .= sup{‖T [x]‖Y : ‖x‖X = 1}.

Given a subset E ⊆RJ , we let B(E) denote the Borel subsets of E. We let

cone(E)
.=

{
K∑
k=1

rkxk :K ∈N, xk ∈E, rk ≥ 0

}
,

denote the convex cone generated by E, and let span(E) denote the set of all possible finite linear combinations
of vectors in E, with the convention that cone(∅) and span(∅) are equal to {0}. We let E⊥ denote the orthogonal
complement of span(E) in RJ . We let Dlim(E) denote the space of functions on [0,∞) taking values in E that have
finite left limits at every t > 0 and finite right limits at every t ≥ 0. We let Dl,r(E) denote the subset of functions in
Dlim(E) that are either left-continuous or right-continuous at every t > 0. We let Dr(E) denote the subset of right-
continuous functions in Dl,r(E) and refer to functions in Dr(E) as right-continuous with finite left limits, or RCLL
for short. We let C(E) denote the subset of continuous functions in Dr(E). Given a subset A ⊆ E, we use CA(E)

to denote the subset of continuous functions f ∈ C(E) with f (0) ∈ A. We equip Dlim(E) and its subsets with the
topology of uniform convergence on compact intervals in [0,∞). For f ∈ Dl,r(E) and t ∈ [0,∞), define

‖f ‖t .= sup
s∈[0,t]

∣∣f (s)∣∣<∞.

For f ∈Dl,r(E), we let f (t−) .= lims↑t f (s) for all t > 0 and f (t+) .= lims↓t f (s) for all t ≥ 0.
Throughout this paper we fix a filtered probability space (�,F, {Ft },P) satisfying the usual conditions; that

is, (�,F,P) is a complete probability space, F0 contains all P-null sets in F and the filtration {Ft } is right-
continuous. We write E to denote expectation under P. By a K-dimensional {Ft }-Brownian motion W = {Wt =
(W 1

t , . . . ,W
K
t )
T , t ≥ 0} on (�,F,P), we mean that (W 1, . . . ,WK) are independent and, for each 1 ≤ k ≤ K ,

{Wk
t ,Ft , t ≥ 0} is a continuous martingale with quadratic variation [Wk]t = t for t ≥ 0 that starts at the origin.

We let Cp <∞, for p ≥ 2, denote the universal constants in the Burkholder-Davis-Gundy (BDG) inequalities (see,
e.g., [33, Chapter IV, Theorem 42.1]).

We abbreviate “almost surely” as “a.s.” and “infinitely often” as “i.o.”.
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2. A parameterized family of reflected diffusions

In this section we introduce a family of coupled reflected diffusions in a convex polyhedral domain and describe their
relation to the ESP.

2.1. Description of the polyhedral domain

Let G be a nonempty convex polyhedron in RJ equal to the intersection of a finite number of closed half spaces in
RJ ; that is,

G
.=

⋂
i=1,...,N

{
x ∈ RJ : 〈x,ni〉 ≥ ci

}
, (2.1)

for some positive integer N ∈ N, unit vectors ni ∈ SJ−1 and constants ci ∈ R, for i = 1, . . . ,N . We assume the
representation for G given in (2.1) is minimal in the sense that the intersection of half spaces {x ∈ RJ : 〈x,ni〉 ≥ ci}
over i in any strict subset of {1, . . . ,N} is not equal to G. For each i = 1, . . . ,N , we let Fi

.= {x ∈ ∂G : 〈x,ni〉 = ci}
denote the ith face. For notational convenience, we let I .= {1, . . . ,N}, and for x ∈G, we write I(x) .= {i ∈ I : x ∈ Fi}
to denote the (possibly empty) set of indices associated with the faces that intersect at x. Given a subset I ⊆ I , we let
|I | denote the cardinality of the set I . For each x ∈ ∂G, we let

n(x)
.= cone

({
ni, i ∈ I(x)

})
denote the cone of inward normals to the polyhedron G at x. For notational convenience, we extend the definition of
n(x) to all of G by setting n(x)

.= {0} for x ∈G◦.

2.2. Introduction of parameters and definition of a reflected diffusion

Let M ∈ N and let the parameter set U be an open subset of RM . For each i ∈ I , fix a continuously differentiable
mapping

di :U �→RJ

satisfying 〈di(α), ni〉 > 0 for all α ∈ U . For a given parameter α ∈ U , di(α) denotes the associated direction of
reflection along the face Fi . Since the directions of reflection can always be renormalized (while also preserving the
continuous differentiability in α of the normalized mapping), we assume without loss of generality that 〈di(α), ni〉 = 1
for all α ∈ U . For α ∈ U and x ∈ ∂G, we let d(α, x) denote the cone generated by the admissible directions of
reflection at x; that is,

d(α, x)
.= cone

({
di(α), i ∈ I(x)

})
. (2.2)

For convenience, we extend the definition of d(α, ·) to all of G by setting d(α, x)
.= {0} for x ∈G◦. Fix continuously

differentiable functions

b :U ×G �→RJ , σ :U ×G �→ RJ×K,

and denote their respective Jacobians by b′ :U ×G �→ Lin(RM ×RJ ,RJ ) and σ ′ :U ×G �→ Lin(RM ×RJ ,RJ×K).
For each α ∈ U , b(α, ·) and a(α, ·) .= σ(α, ·)σ T (α, ·), respectively, denote the drift and diffusion coefficients of the
reflected diffusion associated with the parameter α.

Definition 2.1. Given α ∈ U , {(di(α), ni, ci), i ∈ I}, b(α, ·), σ(α, ·), x ∈ G and a K-dimensional {Ft }-Brownian
motion on (�,F,P), a reflected diffusion associated with the parameter α, initial condition x and driving Brownian
motion W is a J -dimensional continuous {Ft }-adapted process Zα,x = {Zα,xt , t ≥ 0} such that a.s. for all t ≥ 0,
Z
α,x
t ∈G and

Z
α,x
t = x +

∫ t

0
b
(
α,Zα,xs

)
ds +

∫ t

0
σ
(
α,Zα,xs

)
dWs + Yα,xt , (2.3)
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where Yα,x = {Yα,xt , t ≥ 0} is a J -dimensional continuous {Ft }-adapted process that a.s. satisfies Yα,x0 = 0 and, for
all 0 ≤ s < t <∞,

Y
α,x
t − Yα,xs ∈ cone

[ ⋃
u∈(s,t]

d
(
α,Zα,xu

)]
. (2.4)

We refer to Yα,x as the constraining process associated with Zα,x .

Conditions under which a pathwise unique reflected diffusion exists are specified in Proposition 2.16 below.

Remark 2.2. In [29, Theorem 4.3] it was shown that a.s. Yα,x has finite total variation on compact subsets of the
stochastic interval [0, τα,x0 ), where τα,x0 is the first hitting time of the set

Vα .= ∂G \ {
x ∈ ∂G : ∃ n ∈ n(x) such that 〈n,d〉> 0,∀ d ∈ d(α, x) \ {0}}. (2.5)

(The set Vα has a different definition in [29, equation (2.15)]; however, an examination of the proof of [29, Theo-
rem 4.3] reveals that the result holds with Vα defined as in (2.5).) Consequently, when Vα is empty, a.s. the total
variation of Yα,x on [0, t], denoted |Yα,x |(t), is finite for all t <∞ and, as shown in [17, Lemma 2.7], there exists a
measurable function ξα,x : (�× [0,∞),F ⊗B([0,∞))) �→ (RJ ,B(RJ )) such that a.s. for all 0 ≤ s < t <∞,

Y
α,x
t − Yα,xs =

∫
[s,t]
ξα,xu d

∣∣Yα,x ∣∣(u),
and ξα,xu ∈ d(α,Zα,xu ) for d|Yα,x |-almost every u≥ 0.

2.3. The extended Skorokhod reflection problem

In this section we state the ESP (for continuous paths) and recall conditions under which the associated ESM is well
defined. The ESP was introduced in [29] as a pathwise method for constructing reflected diffusions. It is a gener-
alization of the Skorokhod problem that allows for a constraining term that potentially has unbounded variation on
compact intervals. Even when the constraining term is of bounded variation on compact intervals, the ESP formulation
is often more convenient since the associated ESM has desirable properties such as a closed graph. In particular, the
ESP formulation more naturally leads to the identification of a suitable linearized version that characterizes pathwise
derivatives of constrained processes (see the similarity between the definition of the ESP and that of the derivative
problem given in Definition 5.1).

Definition 2.3. Let α ∈ U . Given f ∈ CG(R
J ), (h, g) ∈ C(G)×C(RJ ) solves the ESP {(di(α), ni, ci), i ∈ I} for f

if h(0)= f (0), and if for all t ≥ 0 the following properties hold:

1. h(t)= f (t)+ g(t);
2. for every s ∈ [0, t),

g(t)− g(s) ∈ cone

[ ⋃
u∈(s,t]

d
(
α,h(u)

)]
.

If there exists a unique solution (h, g) to the ESP {(di(α), ni, ci), i ∈ I} for f , we write h= �̄α(f ) and refer to �̄α

as the ESM associated with the ESP {(di(α), ni, ci), i ∈ I}.

Remark 2.4. Given α ∈ U , x ∈ G and a reflected diffusion Zα,x as in Definition 2.1, define the J -dimensional
continuous {Ft }-adapted process Xα,x = {Xα,xt , t ≥ 0} by

X
α,x
t

.= x +
∫ t

0
b
(
α,Zα,xs

)
ds +

∫ t

0
σ
(
α,Zα,xs

)
dWs, t ≥ 0. (2.6)
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Then by the properties stated in Definition 2.1 and the statement of the ESP in Definition 2.3, a.s. (Zα,x, Y α,x) is a
solution to the ESP {(di(α), ni, ci), i ∈ I} for Xα,x .

We now provide geometric conditions on the data {(di(α), ni, ci), i ∈ I} under which the ESM is well defined on
CG(R

J ). The first condition, Assumption 2.5 below, was introduced in [13, Assumption 2.1] and ensures the ESM is
Lipschitz continuous on its domain of definition.

Assumption 2.5. For each α ∈U there exists δα > 0 and a compact, convex, symmetric set Bα in RJ with 0 ∈ (Bα)◦
such that for i ∈ I ,{

z ∈ ∂Bα∣∣〈z,ni〉∣∣< δα
}

⇒ 〈
ν, di(α)

〉 = 0 for all ν ∈ νBα (z), (2.7)

where νBα (z) denotes the set of inward normals to the set Bα at z; that is,

νBα (z)
.= {
ν ∈ SJ−1 : 〈ν, y − z〉 ≥ 0 for all y ∈ Bα}.

Proposition 2.6. Suppose Assumption 2.5 holds. For each α ∈ U there exists κ�̄(α) <∞ such that if (h1, g1) is a
solution to the ESP for f1 ∈ CG(R

J ) and (h2, g2) is a solution to the ESP for f2 ∈ CG(R
J ), then for all t <∞,

‖h1 − h2‖t + ‖g1 − g2‖t ≤ κ�̄(α)‖f1 − f2‖t .

Proof. This follows from [29, Theorem 3.3] and property 1 of Definition 2.3. �

The next condition requires that for each α ∈ U there is a projection mapping from RJ to G satisfying certain
geometric conditions related to the associated directions of reflection.

Assumption 2.7. For each α ∈U there is a function πα :RJ �→G satisfying πα(x)= x for all x ∈G and πα(x)−x ∈
d(α,πα(x)) for all x /∈G.

See [21, Section 2.3] and references therein for examples of broad classes of ESPs that satisfy Assumptions 2.5
and 2.7.

Proposition 2.8. Suppose Assumptions 2.5 and 2.7 hold. Then for each α ∈U and f ∈CG(R
J ), there exists a unique

solution (h, g) to the ESP {(di(α), ni, ci), i ∈ I} for f . In particular, for each α ∈ U the ESM �̄α is well defined on
CG(R

J ).

Proof. The proposition follows from Proposition 2.6 and [29, Lemma 2.6]. �

Remark 2.9. Under Assumptions 2.5 and 2.7, for each α ∈ U , the function πα : RJ �→ G is continuous (see the
discussion in [13, Section 5.3]).

2.4. The reflection matrix

Define R :U �→RJ×N by

R(α)
.= (
d1(α) · · · dN(α)

)
,

and let R′ : U �→ Lin(RM,RJ×N) denote the Jacobian of R, which is well defined since di(·) are continuously dif-
ferentiable. For each α ∈ U , we refer to R(α) as the reflection matrix associated with α. Under the following linear
independence assumption on the directions of reflection, given a solution (h, g) to the ESP, there is a unique decom-
position of a constraining path g into an N -dimensional path that describes its action along each face.
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Condition 2.10. For α ∈U and x ∈ ∂G, {di(α), i ∈ I(x)} is a set of linearly independent vectors.

Lemma 2.11. Suppose Condition 2.10 holds. Let α ∈ U . Given a solution (h, g) to the ESP {(di(α), ni, ci), i ∈ I}
for f ∈ CG(R

J ), there exists a unique function  ∈ C(RN+) such that g = R and for each i ∈ I , i(0) = 0, i is
nondecreasing and i can only increase when h lies in face Fi ; that is,∫ ∞

0
1{h(s)/∈Fi } di(s)= 0. (2.8)

Consequently, g has finite variation on compact time intervals.
Furthermore, given α̃ ∈ U , (h,R(̃α)) is the solution to the ESP {(di (̃α), ni, ci), i ∈ I} for f̃

.= f + (R(α) −
R(̃α)).

Moreover, there exists κ(α) <∞ such that if, for k = 1,2, (hk, gk) is the solution to the ESP {(di(α), ni, ci), i ∈ I}
for fk ∈CG and k is as above, but with hk , gk and k in place of h, g and , then for all t <∞,

‖1 − 2‖t ≤ κ(α)‖g1 − g2‖t , (2.9)

and, in addition, κ(·) can be chosen so that it is bounded on compact subsets of U .

When N = J and there exists x ∈G such that
⋂
i=1,...,J Fi = {x} (e.g., if G = RJ+), Condition 2.10 implies that

R(α) is invertible and upon setting 
.= (R(α))−1g it is readily verified that the first statement of the lemma follows

from condition 2 of Definition 2.3. The proof of Lemma 2.11 in full generality is given in Appendix A.

Remark 2.12. Suppose Condition 2.10 holds. Then according to Remark 2.4 and Lemma 2.11, given a reflected
diffusion Zα,x with associated constraining process Yα,x , there is a unique N -dimensional continuous {Ft }-adapted
process Lα,x = {Lα,xt , t ≥ 0} such that a.s. Yα,x = R(α)Lα,x , Lα,x0 = 0 and for each i ∈ I , the ith component Lα,x,i

is nondecreasing and can only increase when Zα,x lies in face Fi . In particular, Yα,x has finite variation on compact
time intervals, so by (2.3), Zα,x is a semimartingale.

We impose the following assumption to ensure that when the directions of reflection are nonconstant in α ∈U , then
there is a unique decomposition of the constraining process into its action along each face, in the sense of Lemma 2.11.

Assumption 2.13. At least one of the following holds:

• Condition 2.10 and there exists κR <∞ such that ‖R′(α)‖ ≤ κR for all α ∈U .
• R(α) is constant in α ∈U .

Remark 2.14. Suppose Assumption 2.13 holds. Given α ∈ U , x ∈ G, a reflection diffusion Zα,x with associated
constraining process Yα,x , and β ∈ RM , for conciseness in the statements of proofs and theorems, with some abuse of
notation we interpret the J -dimensional continuous process {R′(α)[β]Lα,xt , t ≥ 0} as follows:

• If Condition 2.10 holds, then Lα,x denotes the N -dimensional continuous process described in Remark 2.12.
• On the other hand, if Condition 2.10 does not hold, then R(α) is constant in α ∈ U and we interpret

{R′(α)[β]Lα,xt , t ≥ 0} to be identically zero (even though the process Lα,x may not be well defined).

2.5. Existence and uniqueness of reflected diffusions

In this section we recall a well known result that guarantees strong existence and pathwise uniqueness of reflected
diffusions.

Assumption 2.15. There exists κb,σ <∞ such that ‖b′(α, x)‖ + ‖σ ′(α, x)‖ ≤ κb,σ for all α ∈U and x ∈G.
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Proposition 2.16 ([29, Theorem 4.3]). Given {(di(·), ni, ci), i ∈ I}, b(·, ·) and σ(·, ·), suppose Assumptions 2.5, 2.7
and 2.15 hold. Then for each α ∈ U , x ∈G and K-dimensional {Ft }-Brownian motion on (�,F,P), there exists a
reflected diffusion Zα,x associated with the parameter α, initial condition x and driving Brownian motion W , and
Zα,x is a strong Markov process. Furthermore, if Z̃α,x is another reflected diffusion associated with the parameter
α, initial condition x and driving Brownian motion W , then a.s. Zα,x = Z̃α,x . In other words, pathwise uniqueness
holds.

We close this section by showing there exists a modification of the family of reflected diffusions that is continuous
in its various parameters. Given Zα,x recall the definition of Xα,x in (2.6).

Lemma 2.17. Given {(di(·), ni, ci), i ∈ I}, b(·, ·) and σ(·, ·), suppose Assumptions 2.5, 2.7, 2.13 and 2.15 hold. Then
for each p ≥ 2, t <∞ and compact subsets V ⊂U andK ⊂G, there exist constants C†,C‡, C̃†, C̃‡ <∞, depending
only on p, t , V and K , such that for all (α, x), (̃α, x̃) ∈ V ×K ,

E
[∥∥Zα,x −Zα̃,̃x∥∥p

t

] ≤ C†|α − α̃|p +C‡|x − x̃|p, (2.10)

E
[∥∥Xα,x −Xα̃,̃x∥∥p

t

] ≤ C̃†|α − α̃|p + C̃‡|x − x̃|p. (2.11)

The proof of Lemma 2.17 is given in Appendix B.

Proposition 2.18. Given {(di(·), ni, ci), i ∈ I}, b(·, ·) and σ(·, ·), suppose Assumptions 2.5, 2.7, 2.13 and 2.15 hold.
Then there is a modification of the random field {Zα,xt , α ∈ U,x ∈ G, t ≥ 0} such that for each ω ∈ �, (α, x, t) �→
Z
α,x
t (ω) is continuous as a function from U ×G× [0,∞) to G.

Proof. Since for each α ∈ U and x ∈ G, Zα,x takes values in C(RJ ), it suffices to show there is a modification of
Zα,x such that for each ω ∈ �, (α, x) �→ Zα,x(ω) is continuous as a mapping from U ×G to C(RJ ). This follows
from Kolmogorov’s continuity criterion on random fields (see, e.g., [19, Theorem 1.4.1]) and Lemma 2.17. �

3. Main results

In Section 3.1 we introduce the boundary jitter property and show that a reflected diffusion satisfies this property under
a uniform ellipticity condition on the diffusion coefficient. In Section 3.2 we introduce the derivative process along a
reflected diffusion and establish pathwise uniqueness. In Section 3.3 we present our main result on the existence of
pathwise derivatives of a reflected diffusion and their characterization via a derivative process.

Throughout the remainder of this work we assume the coefficients b(·, ·) and σ(·, ·) satisfy Assumption 2.15 and
the data {(di(·), ni, ci), i ∈ I} satisfies Assumptions 2.5, 2.7 and 2.13, and only state additional assumptions made,
where required. We fix a K-dimensional {Ft }-Brownian motion on (�,F,P) and for each α ∈ U and x ∈G, we let
Zα,x denote the pathwise unique reflected diffusion associated with the parameter α, initial condition x and driving
Brownian motion W . According to Proposition 2.18, there is a continuous modification of the field {Zα,xt , α ∈ U,x ∈
G, t ≥ 0}. We work with this continuous modification. LetXα,x denote the process defined in (2.6), Yα,x

.=Xα,x−Zα,x
so that (Zα,x, Y α,x) is the solution to the ESP {(di(α), ni, ci), i ∈ I} forXα,x , and, for β ∈RM , let {R′(α)[β]Lα,xt , t ≥
0} denote the process described in Remark 2.14.

3.1. Boundary jitter property

In this section we state the boundary jitter property, which was first introduced in [21]. Let

N .= {
x ∈ ∂G : ∣∣I(x)∣∣ ≥ 2

}
(3.1)

denote the nonsmooth part of the boundary ∂G, and

S .= ∂G \N = {
x ∈ ∂G : ∣∣I(x)∣∣ = 1

}
(3.2)

denote the smooth part of the boundary ∂G.



1448 D. Lipshutz and K. Ramanan

Definition 3.1. We say that (h, g) ∈ C(G)×C(RJ ) satisfies the boundary jitter property if the following conditions
hold:

1. If t ≥ 0 is such that h(t) ∈ S , then for all t1 < t < t2, g is nonconstant on (t1 ∨ 0, t2).
2. The path h does not spend positive Lebesgue time in N ; that is,∫ ∞

0
1N

(
h(t)

)
dt = 0.

3. If h(t) ∈ N for some t > 0, then for each i ∈ I(h(t)) and every δ ∈ (0, t), there exists s ∈ (t − δ, t) such that
I(h(s))= {i}.

4. If h(0) ∈N , then for each i ∈ I(h(0)) and every δ > 0, there exists s ∈ (0, δ) such that I(h(s))= {i}.

Condition 3 of the jitter property states that if a path hits a point in the nonsmooth part of the boundary at some
time t > 0, then it must hit the relative interior of all the adjoining faces infinitely often in any interval just prior to t ,
whereas condition 4 is a time-reversed version of condition 3 that states that a path starting at a point in N must hit
all adjoining faces infinitely often in any interval just after time t = 0.

Under the following uniform ellipticity condition on the diffusion coefficient, we show that a reflected diffusion
along with its constraining process satisfies the boundary jitter property.

Assumption 3.2. For each α ∈U there exists λ(α) > 0 such that for all x ∈G,

yT a(α, x)y ≥ λ(α)|y|2, y ∈RJ .

Theorem 3.3. Under Assumption 3.2, for each α ∈ U and x ∈G a.s. (Zα,x, Y α,x) satisfies the boundary jitter prop-
erty.

Remark 3.4. The proof of Theorem 3.3 does not require that Assumption 2.13 hold, but does require that the other
standing assumptions stated at the beginning of Section 3 hold.

The proof of Theorem 3.3 is given in Section 4.

3.2. Derivative process

We now introduce a derivative process along a reflected diffusion. To define its domain, we set, for each x ∈ ∂G,

Hx
.=

⋂
i∈I(x)

{
y ∈RJ : 〈y,ni〉 = 0

}
. (3.3)

For x ∈ G◦, set Hx
.= RJ . Given x ∈ ∂G, perturbations of x in directions that lie in Hx remain in the same subset

of faces that x lies in; that is, if y ∈ Hx , then I(x + εy) = I(x) for all ε > 0 sufficiently small. As shown in Theo-
rem 3.13, it suffices to consider only such perturbations. For the following, given α ∈ U , x ∈G and β ∈ RM , recall
the interpretation of the J -dimensional process {R′(α)[β]Lα,xt , t ≥ 0} given in Remark 2.14.

Definition 3.5. Let α ∈ U and x ∈ G. A derivative process along Zα,x is an {Ft }-adapted RCLL process J α,x =
{J α,xt , t ≥ 0} taking values in Lin(RM ×Hx,RJ ) that a.s. satisfies for all t ≥ 0 and (β, y) ∈ RM ×Hx , J α,xt [β,y] ∈
HZα,xt

and

J α,xt [β,y] = y +
∫ t

0
b′(α,Zα,xs )[

β,J α,xs [β,y]]ds +
∫ t

0
σ ′(α,Zα,xs )[

β,J α,xs [β,y]]dWs
+R′(α)[β]Lα,xt +Kα,xt [β,y], (3.4)
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where Kα,x = {Kα,xt , t ≥ 0} is an {Ft }-adapted RCLL process taking values in Lin(RM ×Hx,RJ ) such that a.s. for
all (β, y) ∈RM ×Hx , Kα,x0 [β,y] = 0 and for all 0 ≤ s < t <∞,

Kα,xt [β,y] −Kα,xs [β,y] ∈ span

[ ⋃
u∈(s,t]

d
(
α,Zα,xu

)]
. (3.5)

As mentioned in the introduction, a derivative process satisfies a constrained linear SDE with jumps of the form
(3.4) whose drift and diffusion coefficients, domain and directions of reflection all depend on the state of the reflected
diffusion. To understand its dynamics, note that on time intervals when Zα,x lies in the interior of the domain, the
last two terms in (3.4) are constant and hence, J α,x[β,y] evolves (continuously) according to a linear SDE, whose
coefficients are modulated by the process Zα,x . At any time t > 0 when Zα,xt hits the boundary ∂G, the conditions
J α,xt [β,y] ∈ HZα,xt and (3.5) ensure that J α,xt [β,y] is the image of J α,xt− [β,y] under a certain linear “derivative
projection” operator Lα

Z
α,x
t

that depends only on the faces (and the associated directions of reflection) on which Zα,xt
lies (see Lemma 3.11 below).

We close this section with conditions ensuring pathwise uniqueness of a derivative process. Existence of derivative
processes will follow from Theorem 3.13.

Theorem 3.6. Let α ∈U and x ∈G. Suppose J α,x and J̃ α,x are derivative processes along Zα,x . Then a.s. J α,x =
J̃ α,x . In other words, pathwise uniqueness holds.

The proof of Theorem 3.6 is deferred to Section 5.

3.3. Pathwise derivatives

The main result of this section is Theorem 3.13, which characterizes pathwise derivatives of reflected diffusions. First,
we introduce an additional regularity assumption. Recall that we use ‖ · ‖ to denote the operator norm.

Assumption 3.7. There exists κ ′ <∞ and γ ∈ (0,1] such that for all α,β ∈U and x, y ∈G,∥∥b′(α, x)− b′(β, y)
∥∥ + ∥∥σ ′(α, x)− σ ′(β, y)

∥∥ + ∥∥R′(α)−R′(β)
∥∥ ≤ κ ′∣∣(α, x)− (β, y)∣∣γ . (3.6)

Given x ∈ ∂G, define

Gx
.=

⋂
i∈I(x)

{
y ∈RJ : 〈y,ni〉 ≥ 0

}
, (3.7)

and for x ∈ G◦, set Gx
.= RJ . Then Gx describes the local structure of the polyhedron G at x and denotes the

directions in which we allow the initial condition x to be perturbed. In particular, since U is an open set and due to
(2.1) and (3.7), given α ∈U , x ∈G, β ∈RM and y ∈Gx , there exists ε0(α, x,β, y) > 0 sufficiently small such that

α+ εβ ∈U, x + εy ∈G, for all 0< ε < ε0(α, x,β, y). (3.8)

For such ε > 0 sufficiently small, define the continuous process ∂εβ,yZ
α,x = {∂εβ,yZα,xt , t ≥ 0} by

∂εβ,yZ
α,x
t

.= Z
α+εβ,x+εy
t −Zα,xt

ε
, t ≥ 0. (3.9)

In Theorem 3.13 below, we characterize a.s. limits of (3.9) as ε ↓ 0. First, we have the following bound on the moments
of ∂εβ,yZ

α,x .

Lemma 3.8. Given α ∈ U , x ∈ G, β ∈ RM and y ∈ Gx , let ε0
.= ε0(α, x,β, y) > 0 be sufficiently small such that

(3.8) holds. Then for each p ≥ 2 and t <∞,

sup
{
E

[∥∥∂εβ,yZα,x∥∥pt ] : 0< ε < ε0
}
<∞. (3.10)
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Consequently,

lim
C→∞ sup

{
E

[∥∥∂εβ,yZα,x∥∥t1{‖∂εβ,yZα,x‖t≥C}
] : 0< ε < ε0

} = 0. (3.11)

Proof. Define the compact sets V
.= {α + εβ,0 ≤ ε ≤ ε0} and K

.= {x + εy,0 ≤ ε ≤ ε0}. The moment bound (3.10)
then follows from Lemma 2.17 with α̃ = α + εβ and x̃ = x + εy, and the uniform integrability shown in (3.11) is an
immediate consequence of (3.10). �

In order to establish existence of pathwise derivatives of reflected diffusions, we require that the reflected diffusion
not hit a certain subset of the boundary of the domain. For α ∈U , define

Wα .= {
x ∈ N : span

(
d(α, x)∪Hx

) �=RJ
}
, (3.12)

and

τα,x
.= inf

{
t ≥ 0 : Zα,xt ∈ Wα

}
. (3.13)

In general, directional derivatives of the ESM �̄α may not exist at times that the constrained path lies in Wα and so
we require that a.s. τα,x = ∞. This is not too stringent a requirement since, as the next lemma shows, under a mild
linear independence condition on the directions of reflection, the set Wα is empty.

Lemma 3.9 ([21, Lemma 8.2]). Suppose Condition 2.10 holds. Then Wα is empty for all α ∈U .

Remark 3.10. Even when Wα is not empty, there are cases where a.s. τα,x = ∞. For instance, consider a reflected
Brownian motion in a two-dimensional wedge with vertex at the origin and equal directions of reflection along both
faces of the wedge (this corresponds to the setting in [35] with θ1 + θ2 + π = ξ ). In this case Wα = {0}. However,
according to [35, Theorem 2.2], if the reflected Brownian motion does not start at the origin, then a.s. τα,x = ∞.

In the next lemma, we recall the definition of a so-called derivative projection operator introduced in [21] to
characterize directional derivatives of the ESM.

Lemma 3.11 ([21, Lemma 8.3]). Given α ∈ U and x ∈G \Wα , there exists a unique mapping Lαx : RJ �→Hx that
satisfies Lαx (y)− y ∈ span[d(α, x)] for all y ∈RJ . Furthermore, Lαx is a linear map.

Remark 3.12. Let α ∈U . By the uniqueness of the mapping Lαx , we have Lαx [y] = y for all y ∈Hx . When x ∈G◦, it
follows that Hx =RJ and Lαx reduces to the identity operator on RJ .

We can now state our main result.

Theorem 3.13. Suppose Assumption 3.7 holds. Let α ∈ U and x ∈ G \ Wα . Suppose that a.s. τα,x = ∞ and
(Zα,x, Y α,x) satisfies the boundary jitter property. Then there exists a pathwise unique derivative process J α,x along
Zα,x and for all β ∈ RM and y ∈Gx , a.s. the following hold:

(i) The pathwise derivative of Zα,x in the direction (β, y), defined for t ≥ 0 by

∂β,yZ
α,x
t

.= lim
ε↓0

Z
α+εβ,x+εy
t −Zα,xt

ε
, (3.14)

exists.
(ii) The pathwise derivative ∂β,yZα,x = {∂β,yZα,xt , t ≥ 0} takes values in Dl,r(R

J ) and is continuous at times t > 0
when Zα,xt ∈G◦ ∪N .
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(iii) The right-continuous regularization of the pathwise derivative ∂β,yZα,x is equal to the derivative process J α,x
evaluated in the direction (β,Lαx [y]); that is,

lim
s↓t ∂β,yZ

α,x
s = J α,xt

[
β,Lαx [y]

]
, t ≥ 0. (3.15)

Remark 3.14. The derivative projection operator Lαx in part (iii) of Theorem 3.13 serves to map y ∈Gx , the direction
in which x is perturbed, to Hx (the domain of J α,x[β, ·]). The presence of Lαx in part (iii) can be interpreted as stating
that any perturbation to the initial condition x in a direction that lies in Gx \Hx is instantly projected to the linear
subspace Hx along a direction that lies in span[d(α, x)].

The proof of Theorem 3.13 is given in Section 6. When combined with Theorem 3.3 and Lemma 3.9, we have the
following corollary.

Corollary 3.15. Suppose Condition 2.10 and Assumptions 3.2 and 3.7 hold. Let α ∈ U and x ∈G. Then there exists
a pathwise unique derivative process and for all β ∈RM and y ∈Gx , a.s. (i), (ii) and (iii) of Theorem 3.13 hold.

Let ζ1 : G �→ R and ζ2 : G �→ R be continuously differentiable functions with bounded first partial derivatives
and denote their respective Jacobians by ζ ′

1 : G �→ Lin(RJ ,R) and ζ ′
2 : G �→ Lin(RJ ,R). Let t > 0 and define � :

U ×G �→R by

�(α,x)
.= E

[∫ t

0
ζ1

(
Zα,xs

)
ds + ζ2

(
Z
α,x
t

)]
, (α, x) ∈U ×G (3.16)

Such quantities arise in applications and it is of interest in sensitivity analysis to compute the Jacobian of �(α,x).
The following corollary provides a stochastic representation for the Jacobian of �(α,x).

Corollary 3.16. Let α ∈ U and x ∈ G◦. Suppose Condition 2.10 and Assumptions 3.2 and 3.7 hold. Then � is
differentiable at (α, x) and its Jacobian at (α, x), denoted �′(α, x), satisfies

�′(α, x)= E

[∫ t

0
ζ ′

1

(
Zα,xs

)[
J α,xs

]
ds + ζ ′

2

(
Z
α,x
t

)[
J α,xt

]]
. (3.17)

Proof. Fix (α, x) ∈U ×G◦. Given β ∈RM and y ∈ RJ , by (3.16), the Lipschitz continuity of ζ1 and ζ2, the uniform
integrability shown in Lemma 3.8 and part (i) of Theorem 3.13, we have

lim
ε→0

�(α + εβ, x + εy)−�(α,x)
ε

= E

[∫ t

0
ζ ′

1

(
Zα,xs

)[∇β,yZα,xs ]
ds + ζ ′

2

(
Z
α,x
t

)[∇β,yZα,xt ]]
.

Then, due to parts (ii) and (iii) of Theorem 3.13 and the facts that P(Zα,xt ∈ G◦) = 1 (see Lemma 4.13 below),
∂β,yZ

α,x is continuous at t if Zα,xt ∈G◦ and Lαx is equal to the identity operator when x ∈G◦ (see Remark 3.12), we
have

lim
ε→0

�(α + εβ, x + εy)−�(α,x)
ε

= E

[∫ t

0
ζ ′

1

(
Zα,xs

)[
J α,xs [β,y]]ds + ζ ′

2

(
Z
α,x
t

)[
J α,xt [β,y]]].

Since β ∈ RM and y ∈ RJ were arbitrary and the right-hand side of the last display is linear in (β, y), this concludes
the proof of the corollary. �

The representation (3.17) suggests pathwise methods for estimating �′(α, x), which we develop in subsequent
work [20]. Pathwise estimators (also referred to as infinitesimal perturbation analysis estimators) are usually preferable
when available (see, e.g., the discussion at the end of [14, Chapter 7]). For instance, they have smaller bias than finite
difference estimators. In addition, likelihood ratio estimators, which rely on a change of measure argument (see, e.g.,
[38]), only apply to perturbations of the drift because perturbations to the initial condition, diffusion coefficient or
directions of reflection typically do not preserve absolute continuity of the law of the perturbed process with respect
to the law of the unperturbed process.
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4. Verification of the boundary jitter property

In this section we prove Theorem 3.3, which provides conditions under which a reflected diffusion, along with its
constraining process, satisfies the boundary jitter property stated in Definition 3.1. As explained in Section 4.1, the
first two conditions of the boundary jitter property can be deduced in a fairly straightforward manner from existing
results. On the other hand, the verifications of the last two conditions of the boundary jitter property, which are carried
out in Section 4.3, are considerably more complicated. Our proof of this property in this more general setting relies
on some uniform hitting time estimates, Lipschitz continuity of ESMs associated with certain reduced versions of the
original ESP, and weak convergence arguments that are established in Section 4.2.

Throughout this section we fix α ∈U . For convenience, we suppress the “α” dependence and write Zx , Yx and Xx

in place of Zα,x , Yα,x and Xα,x , respectively.

4.1. Verifications of conditions 1 and 2

We first prove condition 1 of the boundary jitter property in the case b(α, ·)≡ 0. In the proof of Theorem 3.3 below,
we use a change of measure argument to show that condition 1 holds for general Lipschitz continuous drifts.

Lemma 4.1. Suppose Assumption 3.2 holds and b(α, ·)≡ 0. Let x ∈G. Almost surely, if t ≥ 0 is such that Zxt ∈ ∂G,
then for all t1, t2 ∈ R satisfying t1 < t < t2, Yx is nonconstant on (t1 ∨ 0, t2). In other words, a.s. (Zx,Y x) satisfies
condition 1 of the boundary jitter property.

Proof. Consider the events

Ax0
.=

⋂
t2∈Q∩(0,∞)

{
Yx is nonconstant on (0, t2)

}
, (4.1)

and

Ax
.=

⋂
t1∈Q∩(0,∞)

⋂
t2∈Q∩(t1,∞)

{
Yx is nonconstant on (t1, t2)

} ∪ {
Zxt ∈G◦ for t1 < t < t2

}
.

Then we need to show that P(Ax0)= 1 for all x ∈ ∂G and P(Ax)= 1 for all x ∈G.
Suppose x ∈ ∂G. Let i ∈ I(x) and t2 ∈ Q∩ (0,∞). By (2.3), (2.6) and because Yx0 = 0 and Zxt ∈G for all t ≥ 0,{

Yx is constant on (0, t2)
} = {〈

Xxt − x,ni
〉 = 〈

Zxt − x,ni
〉 ≥ 0 for 0< t < t2

}
. (4.2)

By (2.6), the fact that b(α, ·) ≡ 0 and Assumption 3.2, {〈Xt − x,ni〉, t ≥ 0} is a one-dimensional continuous local
martingale starting at zero with quadratic variation

[〈
Xx − x,ni

〉]
t

.=
∫ t

0
nTi a

(
α,Zxs

)
ni ds ≥ λ(α)t, t ≥ 0. (4.3)

Therefore, by [33, Chapter IV, Theorem 34.1], there is a (one-dimensional) Brownian motion B = {Bt , t ≥ 0} such
that 〈Xxt − x,ni〉 = B[〈Xx,ni 〉]t for t ≥ 0. Thus, by (4.2) and (4.3),

P
(
Yx is constant on (0, t2)

) ≤ P
(
Bt ≥ 0 for 0< t < λ(α)t2

) = 0, (4.4)

where the final equality is a well known property of Brownian motion. Together, (4.1) and (4.4) imply P(Ax0)= 1.
Now suppose x ∈G. Fix t1 ∈Q∩ (0,∞) and t2 ∈Q∩ (t1,∞). Define the {Ft }-stopping time ρ

.= inf{t > t1 :Zxt ∈
∂G}. Note that {ρ ≥ t2} = {Zxs ∈G◦ for t1 < t < t2}, so we are left to consider the event {t1 ≤ ρ < t2}. By the strong
Markov property, {Yxρ+t − Yxρ , t ≥ 0} conditioned on {ρ ∈ [t1, t2),Zxρ = y} is equal in distribution to Yy . Since, as
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shown above, P(Ay0)= 1 for all y ∈ ∂G, we have, for t3 ∈ Q∩ (0,∞),

P
(
Yxρ+· is nonconstant on (0, t3)|t1 ≤ ρ < t2

)
=

∫
∂G

P
(
Yy is nonconstant on (0, t3)

)
P
(
Zxρ ∈ dy|t1 ≤ ρ < t2

) = 1.

Since the above holds for every t3 ∈ Q∩ (0,∞), P(Ax)= 1, which completes the proof. �

Lemma 4.2. Suppose Assumption 3.2 holds. Let x ∈G. Then

P

(∫ ∞

0
1∂G

(
Zxs

)
ds = 0

)
= 1. (4.5)

In particular, a.s. Zx satisfies condition 2 of the boundary jitter property.

Proof. Due to the definition of G given in (2.1) as the intersection of finitely many half spaces, it is clear that Vα
defined in (2.5) is the union of finitely many closed disconnected sets. Then by Proposition 2.16 and [17, Theorem 2],
the law of the processZx induced on C(G) (equipped with its σ -algebra of Borel subsets) is a solution to the associated
submartingale problem starting at x (see [17, Definition 2.9]). The lemma then follows from [17, Proposition 2.12].

�

4.2. Uniform hitting time estimates

Before verifying conditions 3 and 4 of the boundary jitter property, we establish estimates on certain hitting times. We
first consider the case that the drift satisfies b(α, ·)≡ 0, which is assumed throughout this section. To handle the case
of general drift coefficients, we can then use a change of measure argument (see the proof of Theorem 3.3 below).

Since conditions 3 and 4 of the boundary jitter property hold automatically when N , the nonsmooth part of the
boundary ∂G, is empty, we assume N is nonempty. Set I

.= {I(y) : y ∈ N }. For I ∈ I, define the nonempty set

FI
.=

⋂
i∈I
Fi, (4.6)

where recall that Fi = {x ∈ ∂G : 〈x,ni〉 = ci} for i ∈ I . Let dist(·, ·) denote the usual Euclidean metric on RJ , and
given x ∈ RJ ,A⊂RJ , let dist(x,A)

.= infy∈A dist(x, y). Define the {Ft }-stopping times

θxi
.= inf

{
t > 0 :Zxt ∈ Fi

}
, (4.7)

σxI
.= inf

{
t > 0 : dist

(
Zxt ,FI

) ≤ dist(x,FI )/2
}
, (4.8)

τxI
.= inf

{
t > 0 : dist

(
Zxt ,FI

) ≥ 2 dist(x,FI )
}
. (4.9)

For r > 0 define

SI (r)
.= {
y ∈G : dist(y,FI )= r

}
. (4.10)

Define the decreasing sequence {rk}k∈N in (0,∞) by

rk
.= 2−k, k ∈ N. (4.11)

SinceG is convex with nonempty interior, SI (r) is nonempty for all r > 0 sufficiently small. Without loss of generality
we assume SI (rk) is nonempty for all k ∈ N.

The following is the main hitting time estimate of this section.
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Proposition 4.3. Suppose Assumption 3.2 holds. Let I ∈ I and x̄ ∈ FI . Suppose {xk}k∈N is a sequence in G satisfying

xk ∈ SI (rk), k ∈N, and lim
k→∞xk = x̄. (4.12)

Then for each i ∈ I ,

lim inf
k→∞ P

(
θ
xk
i < σ

xk
I

)
> 0, (4.13)

lim inf
k→∞ P

(
θ
xk
i < τ

xk
I

)
> 0. (4.14)

The remainder of this section is devoted to the proof of Proposition 4.3. Fix I ∈ I, x̄ ∈ FI and a sequence {xk}k∈N
in G satisfying (4.12). Let i ∈ I . For x ∈G, define the {Ft }-stopping time

ρxI
.= inf

{
t > 0 :Zxt ∈

⋃
j∈I\I

Fj

}
(4.15)

to be the first time Zx lies in a face that does not contain x̄. For each k ∈N, consider the scaled processes defined by

Wk
t
.=
Wr2

k t

rk
, (4.16)

Zkt
.=
Z
xk

r2
k t∧ρ

xk
I

− x̄
rk

, (4.17)

Xkt
.=
X
xk

r2
k t∧ρ

xk
I

− x̄
rk

, (4.18)

Y kt
.=
Y
xk

r2
k t∧ρ

xk
I

rk
, (4.19)

for t ≥ 0.

Remark 4.4. For each k ∈N, it follows from Definition 2.3, (4.17)–(4.19) and a straightforward verification argument
that a.s. (Zk,Y k) is a solution to the ESP {(di(α), ni,0), i ∈ I } for Xk .

Let Fkt
.= Fr2

k t
for t ≥ 0. Clearly, the processes Wk , Zk , Xk and Y k are {Fkt }-adapted. Define the {Fkt }-stopping

times

θki
.= inf

{
t > 0 : 〈Zkt , ni 〉 = 0

}
, (4.20)

σkI
.= inf

{
t > 0 : dist

(
Zkt ,FI

) ≤ 1/2
}
, (4.21)

τ kI
.= inf

{
t > 0 : dist

(
Zkt ,FI

) ≥ 2
}
. (4.22)

Due to (4.7), (4.8), (4.9), (4.17), the fact that x̄ ∈ FI , and the fact that dist(xk,FI )= rk by (4.12) and (4.10), we have

θ
xk
i = r2

k θ
k
i , σ

xk
I = r2

k σ
k
I , τ

xk
I = r2

k τ
k
I . (4.23)

In the following remark, we sketch the proof of Proposition 4.3 in a simple case where the argument is relatively.

Remark 4.5. Suppose the diffusion coefficient is constant (i.e., σ(α, ·)≡ σ(α) so Zx is a reflected Brownian motion),
G is a convex cone with vertex at the origin (i.e., FI = {0}), I = I (so x̄ = 0) and there exists x0 ∈ SI (1) such that
xk = rkx0 for k ∈N. For k ∈N, by (4.17), the facts that Zxk takes values in the convex cone G, (4.16) and (4.19), it is
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readily verified that (Zk,Y k) is a solution to the ESP {(di(α), ni,0), i ∈ I)} for Xk = x0 + σ(α)Wk . It follows from

(4.16) and Brownian scaling that Xk
d= X1 for all k ∈ N. This, along with the measurability of �̄α and the fact that

Zk = �̄(Xk) for all k ∈N, implies Zk
d=Z1 for all k ∈ N. Thus, by (4.20)–(4.23), we have

P
(
θ
xk
i < σ

xk
I

) = P
(
θki < σ

k
I

) = P
(
θ1
i < σ

1
I

)
,

P
(
θ
xk
i < τ

xk
I

) = P
(
θki < τ

i
I

) = P
(
θ1
i < τ

1
I

)
.

The estimates (4.13) and (4.14) then follow once we show the probabilities on the right-hand side of the above display
are positive, which follows from the nondegeneracy of the diffusion coefficient stated in Assumption 3.2. Since the
argument is similar to the one carried out in the proof of Proposition 4.3 below, we omit the details here. The proof for
the case when x̄ lies on another face FI , I � I , is more complicated, even when the diffusion coefficient is constant.

The proof of Proposition 4.3 in the general setting of state-dependence covariance is considerably more involved.
We first state the following helpful lemmas.

Lemma 4.6 ([18, Lemma 2.1]). For each x ∈G, there is an open neighborhood Vx of x in RJ such that

I(y)⊆ I(x) for all y ∈ Vx ∩G. (4.24)

Recall the definition of ρxI in (4.15).

Lemma 4.7. Almost surely, the mapping x �→ ρxI from G to R+ is lower semicontinuous.

Proof. Fix ω ∈ �. Let x ∈ G and {x}∈N be a sequence in G such that x → x as → ∞. If ρxI (ω) = 0, then
lim inf→∞ ρxI (ω) ≥ ρxI (ω). On the other hand, if ρxI (ω) > 0, let t < ρxI (ω). By (4.15), the fact that

⋃
j∈I\I Fj is

a closed set and the continuity of x �→ Zx(ω) (Proposition 2.18), lim inf→∞ ρxI (ω) > t . Since this holds for all
t < ρxI (ω), we have lim inf→∞ ρxI (ω)≥ ρxI (ω), which completes the proof. �

Lemma 4.8. Almost surely, 1
r2
k

ρ
xk
I → ∞ as k→ ∞.

Proof. Due to (4.10)–(4.12) and Lemma 4.6, there exists k0 ∈ N such that xk ∈ B
.= {y ∈ G : |y − x̄| ≤ rk0} for all

k ≥ k0, and I(x)⊆ I(x̄)= I for all x ∈ B. Thus, for each x ∈ B, (4.15) and the continuity of Zx imply that a.s.

ρxI > χ
x .= inf

{
t > 0 :Zx /∈ B

} ≥ 0. (4.25)

Then due to Lemma 4.7 and the compactness of B, a.s. inf{ρxI : x ∈ B} > 0. Therefore, for each  ∈ N, there exists
δ > 0 such that P(inf{ρxI : x ∈ B} ≤ δ)≤ 2−. Let C <∞. For each  ∈ N choose k ≥ k−1 such that r2

k ≤ δ/C for
all k ≥ k. Then

∞∑
=1

P

(
inf

{
1

r2
k

ρ
xk
I : k ≥ k

}
≤ C

)
≤

∞∑
=1

P
(
inf

{
ρxI : x ∈ B

} ≤ δ
) ≤

∞∑
=1

2− <∞,

so by the Borel–Cantelli lemma,

P

(
lim inf
k→∞

1

r2
k

ρ
xk
I ≤ C

)
= P

(
inf

{
1

r2
k

ρ
xk
I : k ≥ k

}
≤ C i.o. in  ∈ N

)
= 0.

Since C <∞ was arbitrary, the conclusion of the lemma follows. �

In the following remark we observe that there exists a simple equivalence between (Zk,Xk,Y k) and another triplet
of processes that will be easier to work with.
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Remark 4.9. For k ∈N, using Brownian scaling, we can define a Brownian motion Ŵ k = {Ŵ k
t , t ≥ 0} by

Ŵ k
t
.= rkWt/r2

k
, t ≥ 0. (4.26)

Let F̂kt
.= Ft/r2

k
for t ≥ 0 so that Ŵ k is {F̂kt }-adapted. Let Ẑk,xk denote the reflected diffusion in G with initial

condition xk , coefficients b(α, ·)≡ 0 and σ(α, ·), and driving Brownian motion Ŵ k (whose existence and uniqueness
is guaranteed by Proposition 2.16) and define the process X̂k,xk as in (2.6), but with X̂k,xk , xk , Ẑk,xk and Ŵ k in place
of Xα,x , x, Zα,x and W , respectively, set Ŷ k,xk

.= Ẑk,xk − X̂k,xk and let ρxkI be the {Ft }-stopping time defined in
(4.15), but with xk in place of x. Since pathwise uniqueness implies uniqueness in law, we have(

Ẑk,xk , X̂k,xk , Ŷ k,xk , ρ̂
k,xk
I

) d= (
Zxk ,Xxk , Y xk , ρ

xk
I

)
, (4.27)

where
d= indicates equality in distribution and ρ̂k,xkI is the {Fkt }-stopping time defined as in (4.15), but with ρ̂k,xkI and

Ẑk,xk in place of ρxI and Zx , respectively. For each k ∈ N, define the scaled (and shifted) processes (Z̃k, X̃k, Ỹ k) as

in (4.17)–(4.19), but with Z̃k , X̃k , Ỹ k , Ẑk,xk , X̂k,xk , Ŷ k,xk and ρ̂k,xkI in place of Zk , Xk , Y k , Zxk , Xxk , Yxk and ρxkI ,
respectively. Then by (4.27), it follows that(

Z̃k, X̃k, Ỹ k
) d= (

Zk,Xk,Y k
)
. (4.28)

In addition, by the definitions above, (2.6), (4.18), (4.17) and (4.26), for k ∈ N and t ≥ 0,

X̃kt = xk − x̄
rk

+ 1

rk

∫ r2
k t∧ρ̂

k,xk
I

0
σ
(
α, Ẑk,xks

)
dŴ k

s

= xk − x̄
rk

+
∫ t∧ 1

r2
k

ρ̂
k,xk
I

0
σ
(
α, x̄ + rkZ̃ks

)
dWs, (4.29)

where the final equality holds by (4.26), (4.17) and the time-change theorem for stochastic integrals (see, e.g., [33,
Chapter IV, Proposition 30.10]).

Lemma 4.10. For each t <∞, r2
kE[‖Z̃k‖2

t ] → 0 as k→ ∞.

Proof. Let t <∞. By (4.29), the BDG inequalities, Tonelli’s theorem and the Lipschitz continuity of σ(α, ·) implied
by Assumption 2.15,

E
[∥∥X̃k∥∥2

t

] ≤ 2

∣∣∣∣xk − x̄
rk

∣∣∣∣2

+ 2C2

∫ t

0
E

[∥∥σ (
α, x̄ + rkZ̃ks

)∥∥2]
ds

≤ 2

∣∣∣∣xk − x̄
rk

∣∣∣∣2

+ 4C2
∥∥σ(α, x̄)∥∥2

t + 4C2r
2
k κ

2
b,σ

∫ t

0
E

[∥∥Z̃k∥∥2
s

]
ds.

By (4.28) and Remark 4.4, Z̃k = �̄α(X̃k), and so the Lipschitz continuity of �̄α stated in Proposition 2.6 implies
E[‖Z̃k‖2

t ] ≤ (κ�̄(α))2E[‖X̃k‖2
t ]. Combining this with the last display and applying Grownwall’s inequality yields

E
[∥∥Z̃k∥∥2

t

] ≤ 2
(
κ�̄(α)

)2
(∣∣∣∣xk − x̄

rk

∣∣∣∣2

+ 2C2
∥∥σ(α, x̄)∥∥2

t

)
exp

(
4C2r

2
k

(
κ�̄(α)κb,σ

)2
t
)
.

The lemma then follows from (4.11) and (4.12). �

Let

�I :RJ �→ span
({ni, i ∈ I })
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denote the orthogonal projection operator with respect to the usual Euclidean inner product 〈·, ·〉. Since span({ni, i ∈
I }) is the orthogonal complement of {y − x̄ : y ∈ FI },∣∣�I [x − x̄]∣∣ = dist(x,FI ), x ∈G. (4.30)

Define the convex cone Gx̄ as in (3.7), but with x̄ in place of x, so that Gx̄ is the domain of the ESP {(di(α), ni,0),
i ∈ I }.

Lemma 4.11. The data {(di(·), ni,0), i ∈ I } satisfies Assumptions 2.5 and 2.7. Hence, given α ∈ U and f ∈
CGx̄ (R

J ), there is a unique solution (h, g) to the ESP {(di(α), ni,0), i ∈ I } for f . Furthermore, there exists
κI (α) <∞ such that given fj ∈CGx̄ (R

J ) and the solution (hj , gj ) to the ESP {(di(α), ni,0), i ∈ I } for fj , j = 1,2,
we have for t <∞,∥∥�I [h1] −�I [h2]

∥∥
t
+ ∥∥�I [g1] −�I [g2]

∥∥
t
≤ κI (α)

∥∥�I [f1] −�I [f2]
∥∥
t
. (4.31)

The proof of Lemma 4.11 is given in Appendix C.

Proof of Proposition 4.3. By (4.12) and (4.10), for each k ∈ N,

1

rk

∣∣�I [xk − x̄]∣∣ = 1

rk
dist(xk,FI )= 1. (4.32)

Therefore, by possibly taking a subsequence, also denoted {xk}k∈N, there exists x∗ ∈Gx̄ ∩ span({ni, i ∈ I }) such that
|x∗| = 1 and

lim
k→∞

1

rk
�I [xk − x̄] =�I [x∗] = x∗. (4.33)

Define

X∗
t
.= x∗ + σ(α, x̄)Wt , t ≥ 0. (4.34)

Let (Z∗, Y ∗) denote the solution to the ESP {(di(α), ni,0), i ∈ I } for X∗, which is well defined by Lemma 4.11. Let
t <∞. By (4.29), (4.34), the fact that �I is a contraction operator, the BDG inequalities and the Lipschitz continuity
of σ(α, ·),

E
[∥∥�I [X̃k −X∗]∥∥2

t

] ≤ 3

∣∣∣∣ 1

rk
�I [xk − x̄] − x∗

∣∣∣∣2

+ 3E

[
sup

0≤s≤t

∣∣∣∣∫ s∧ 1
r2
k

ρ̂kI

0

(
σ
(
α, x̄ + rkZ̃ku

) − σ(α, x̄))dWu∣∣∣∣2]
+ 3E

[
sup

0≤s≤t
∣∣σ(α, x̄)(Ws −W

s∧ 1
r2
k

ρ̂kI
)
∣∣2

]
≤ 3

∣∣∣∣ 1

rk
�I [xk − x̄] − x∗

∣∣∣∣2

+ 3C2κ
2
b,σ tr

2
kE

[∥∥Z̃k∥∥2
t

]
+ 3C2

∥∥σ(α, x̄)∥∥2
(
t −E

[
t ∧ 1

r2
k

ρ̂kI

])
.

The last display, along with (4.33), Lemma 4.10, (4.27) and Lemma 4.8, implies

lim
k→∞E

[∥∥�I [X̃k −X∗]∥∥2
t

] = 0. (4.35)
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Let i ∈ I and F x̄i
.= {x ∈Gx̄ : 〈x,ni〉 = 0} denote the ith face of the cone Gx̄ . Define

E .=
{
x ∈Gx̄ : ∣∣�I [x]∣∣ ≥ 3

4

}
. (4.36)

Since Gx̄ is a convex cone, it follows that E is a connected set and E ∩F x̄i is nonempty. In addition, since |�I [x∗]| =
|x∗| = 1, we have x∗ ∈ E . Therefore, we can define a continuous path f : [0, t] �→RJ such that

(a) f (0)= x∗,
(b) f (s) ∈ E for all s ∈ (0, t/2),
(c) f (t/2) lies in the relative interior of F x̄i , and
(d) f (s)− f (t/2)= −(s − t/2)di(α) for all s ∈ [t/2, t].
Let (h, g) denote the solution to the ESP {(di(α), ni,0), i ∈ I } for f on [0, t], whose existence and uniqueness is
guaranteed by Lemma 4.11. It is readily verified that the solution (h, g) satisfies(

h(s), g(s)
) = (

f (s),0
)
, s ∈ [0, t/2], (4.37)(

h(s), g(s)
) = (

f (t/2), (s − t/2)di(α)
)
, s ∈ [t/2, t]. (4.38)

Thus, by (4.37), (4.38), the continuity of f and the fact that E is closed, h(s) ∈ E for all s ∈ [0, t]. Define w : [0, t] �→
RK by

w(s)= σT (α, x̄)a−1(α, x̄)
(
f (s)− x∗

)
, s ∈ [0, t],

where we recall a(α, x̄)
.= σ(α, x̄)σ T (α, x̄) is invertible due to Assumption 3.2. Then

f (s)= x∗ + σ(α, x̄)w(s), s ∈ [0, t].
Therefore, (4.34) and the last display imply∥∥X∗ − f ∥∥

t
≤ ∥∥σ(α, x̄)∥∥‖W −w‖t . (4.39)

Now, note that�I [di(α)] �= 0 holds because i ∈ I and 〈di(α), ni〉 = 1. Together with (c), this implies that there exists

0< ε <
1

4
min

{
1,

∣∣�I [di(α)]∣∣t} (4.40)

such that〈
f (t/2), nj

〉
> ε, j ∈ I \ {i}. (4.41)

We now consider some implications of ‖�I [Zk] − �I [h]‖t < ε and ‖�I [Y k] − �I [g]‖t < ε. The first set of
implications, which are explained below, are as follows:∥∥�I [Zk] −�I [h]

∥∥
t
< ε ⇒ ∣∣〈Zks − h(s), nj

〉∣∣< ε, j ∈ I, s ∈ [0, t]
⇒ 〈

Zks , nj
〉 ≥ 〈

f (t/2), nj
〉 − ε, j ∈ I, s ∈ [t/2, t]

⇒ 〈
Zks , nj

〉
> 0, j ∈ I \ {i}, s ∈ [t/2, t]. (4.42)

The first implication holds because �I is linear and self-adjoint, �I [nj ] = nj for all j ∈ I and {nj , j ∈ I } are unit
vectors. The second implication follows from (4.38), and the final implication holds due to (4.41). The next set of
implications are as follows:∥∥�I [Zk] −�I [h]

∥∥
t
< ε ⇒ ∣∣�I [Zks ]∣∣> 1

2
, s ∈ [0, t]

⇒ σkI > t. (4.43)
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The first implication is due to the fact that h(s) ∈ E for all s ∈ [0, t], (4.36) and (4.40). In turn, this proves the second
implication due to the definition of σkI in (4.21). The third set of implications are as follows:∥∥�I [Y k] −�I [g]

∥∥
t
< ε ⇒ ∣∣�I [Y k(t/2)]∣∣< ε, and

∣∣�I [Y k(t)]∣∣> t
2

∣∣�I [di(α)]∣∣ − ε

⇒ Y k is nonconstant on [t/2, t]. (4.44)

The first implication follows from (4.37) and (4.38), and the second implication is due to (4.40). Combining the
implications (4.42)–(4.44), we obtain the final set of implications:∥∥�I [Xk] −�I [f ]∥∥

t
<

ε

κI (α)
⇒ ∥∥�I [Zk] −�I [h]

∥∥
t
< ε,

∥∥�I [Y k] −�I [g]
∥∥
t
< ε

⇒ θki < σ
k
I , ∀ k ≥ k0, (4.45)

where κI (α) is the constant in (4.31). The first implication follows from Lemma 4.11 and because (Zk,Y k) is a
solution to the ESP {(di(α), ni,0), i ∈ I } for Xk by Remark 4.4 and (h, g) is a solution to the same ESP for f by
construction. The second implication uses (4.44), (4.42) and the fact that Y k can only increase when Zk lies on the
boundary ∂Gx̄ to conclude that θki ≤ t , which along with (4.43) yields θki < σ

k
I .

Now, by (4.20), (4.21), (4.45), (4.28), the fact that �I is a linear contraction operator, (4.39), the relations
‖σ(α, x̄)‖> 0 (due to Assumption 3.2) and P(A∩B)≥ P(A)−P(Bc) for A,B ∈ F , and Chebyshev’s inequality, we
have

P
(
θki < σ

k
I

) ≥ P

(∥∥�I [Xk] −�I [f ]∥∥
t
<

ε

κI (α)

)
≥ P

(∥∥�I [X̃k] −�I
[
X∗]∥∥

t
<

ε

2κI (α)
,

∥∥X∗ − f ∥∥
t
<

ε

2κI (α)

)
≥ P

(∥∥�I [X̃k] −�I
[
X∗]∥∥

t
<

ε

2κI (α)
, ‖W −w‖t < ε

2κI (α)‖σ(α, x̄)‖
)

≥ P

(
‖W −w‖t < ε

2κI (α)‖σ(α, x̄)‖
)

− P

(∥∥�I [X̃k] −�I
[
X∗]∥∥

t
≥ ε

2κI (α)

)
≥ P

(
‖W −w‖t < ε

2κI (α)‖σ(α, x̄)‖
)

− 4(κI (α))2

ε2
E

[∥∥�I [X̃k] −�I
[
X∗]∥∥2

t

]
.

Taking limits as k→ ∞ in the last display and using (4.35) yields

lim inf
k→∞ P

(
θki < σ

k
I

) ≥ P

(
‖W −w‖t < ε

2κI (α)‖σ(α, x̄)‖
)
> 0,

where the final inequality is due to the fact thatK-dimensional Wiener measure assigns positive measure to nonempty
(relatively) open subsets of {v ∈C(RK) : v(0)= 0} (see, e.g., [34, Lemma 3.1]). This proves (4.13).

The proof of (4.14) follows an argument analogous to the one used to prove (4.13). The main difference is to define
E .= {x ∈Gx̄ : |�I [x]| ≤ 5

4 |�I [x∗]|} and to use τ kI in place of σkI . To avoid repetition, we omit the details. �

4.3. Verifications of conditions 3 and 4

We first verify conditions 3 and 4 of the boundary jitter property when the drift coefficient satisfies b(α, ·) ≡ 0. In
the proof of Theorem 3.3 below, we use a change of measure argument to verify the conditions for general Lipschitz
continuous drift coefficients.

Given x ∈G, s ≥ 0, i ∈ I , I ∈ I and C <∞, define the {Ft }-stopping times

θ
s,x
i

.= inf
{
t > s :Zxt ∈ Fi

}
, (4.46)
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θ
s,x
I

.= inf
{
t > s :Zxt ∈ FI

}
, (4.47)

ρ
s,x
I

.= inf

{
t > s : Zxt ∈

⋃
j∈I\I

Fj

}
, (4.48)

ξ
s,x
C

.= inf
{
t > s : ∣∣Zxt ∣∣ ≥ C}

. (4.49)

When s = 0 we omit the “s” superscript and write θxi , θxI , ρxI and ξxC for θ0,x
i , θ0,x

I , ρ0,x
I and ξ0,x

C , respectively. Note
that the definitions of θxi and ρxI here coincide with the ones given in (4.7) and (4.15), respectively.

Lemma 4.12. Suppose Assumption 3.2 holds. Let I ∈ I, T <∞ and C <∞. For each i ∈ I there exists ε ∈ (0,1)
and k0 ∈ N such that for each k ≥ k0,

P
(
θxi ∧ ρxI ∧ ξxC ∧ T < σxI

) ≥ ε for all x ∈ SI (rk), (4.50)

P
(
θxi ∧ ρxI ∧ ξxC ∧ T < τxI

) ≥ ε for all x ∈ SI (rk). (4.51)

Proof. Let i ∈ I . We first prove (4.50). For a proof by contradiction, suppose there is a sequence {xk}k∈N in G such
that xk ∈ SI (rk) and |xk|<C for each k ∈N, and

lim
k→∞P

(
θ
xk
i ∧ ρxkI ∧ ξxkC ∧ T < σxkI

) = 0. (4.52)

Since |xk| ≤ C and dist(xk,FI ) = rk for all k ∈ N due to (4.10), by possibly taking a subsequence {k}∈N, we can
assume there exists x̄ ∈ FI such that xk → x̄ as → ∞. Then by (4.13),

lim inf
→∞ P

(
θ
xk
i ∧ ρxkI ∧ ξxkC ∧ T < σxkI

) ≥ lim inf
→∞ P

(
θ
xk
i < σ

xk
I

)
> 0,

which contradicts (4.52). With this contradiction thus obtained, it follows that there exist ε ∈ (0,1) and k0 ∈ N such
that for each k ≥ k0, (4.50) holds. The proof of (4.51) is exactly analogous to the proof of (4.50), except it uses τxkI ,
τ kI and (4.14) in place of σxkI , σkI and (4.13), respectively, so we omit the details. �

Lemma 4.13. Suppose Assumption 3.2 holds. Then P(Zxt ∈G◦)= 1 for all t > 0.

Proof. The proof of Lemma 4.13 relies on Assumption 3.2 and (4.5). Note that (4.5) only implies that P(Zxt ∈G◦)= 1
for almost every t > 0. Since it can be established in a manner exactly analogous to the proof of [5, equation (A.4)],
which establishes the claim when the set Vα defined in (2.5) is empty, we omit the details. �

Lemma 4.14. Suppose Assumption 3.2 holds, b(α, ·)≡ 0 and T <∞. Then for each x ∈G a.s. Zx satisfies condition
3 of the boundary jitter property on [0, T ].

Proof. Let x ∈G and T <∞. Due to Definition 3.1, the upper semicontinuity of I(·) (Lemma 4.6) and the continuity
of Zx , we have{

Zx satisfies condition 3 of the boundary jitter property on [0, T ]}
=

⋂
I∈I

⋂
i∈I

⋂
s∈Q∩(0,T )

{
θ
s,x
i ∧ T < θs,xI

}
.

We claim that⋂
I∈I

⋂
i∈I

⋂
s∈Q∩(0,T )

{
θ
s,x
i ∧ T < θs,xI

} =
⋂
I∈I

⋂
i∈I

⋂
s∈Q∩(0,T )

{
θ
s,x
i ∧ ρs,xI ∧ T < θs,xI

}
. (4.53)
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The left-hand side of (4.53) is clearly contained in the right-hand side. Thus, to prove the claim it suffices to show that
for any given I ∈ I, i ∈ I and s ∈ Q∩ (0, T ),⋂

r∈Q∩(0,T )

{
θ
r,x
i ∧ ρr,xI ∧ T < θr,xI

} ⊆ {
θ
s,x
i ∧ T < θs,xI

}
,

or equivalently,{
θ
s,x
i ∧ T ≥ θs,xI

} ⊆
⋃

r∈Q∩(0,T )

{
θ
r,x
i ∧ ρr,xI ∧ T ≥ θr,xI

}
. (4.54)

Fix I ∈ I, i ∈ I , s ∈Q∩ (0, T ) and ω ∈ {θs,xi ∧ T ≥ θs,xI }. If θs,xI (ω)= s, then ω ∈ {θs,xi ∧ ρs,xI ∧ T ≥ θs,xI }, so (4.54)
holds. Suppose θs,xI (ω) > s. By the upper semicontinuity of I(·), the continuity of Zx and the definition of θs,xI in
(4.47), there exists r ∈ (s, θs,xI (ω))∩Q such that I(Zxu)⊆ I for all u ∈ [r, θs,xI (ω)]. Thus, by the definition of ρr,xI in
(4.48), ω ∈ {θr,xi ∧ ρr,xI ∧ T ≥ θr,xI }. This proves (4.54) and so the claim (4.53) holds.

To show the event in (4.53) has probability 1, it clearly suffices to show that P(θs,xi ∧ρs,xI ∧T < θs,xI )= 1 for each
I ∈ I, i ∈ I and s ∈ Q∩ (0, T ). Fix I ∈ I, i ∈ I and s ∈ Q∩ (0, T ). Using the Markov property of Zx and Lemma 4.13,
we have

P
(
θ
s,x
i ∧ ρs,xI ∧ T < θs,xI

) =
∫
G◦

P
(
θ
y
i ∧ ρyI ∧ T < θyI

)
P
(
Zxs ∈ dy). (4.55)

Hence, we are left to show that P(θyi ∧ ρyI ∧ T < θyI )= 1 for all y ∈G◦. Since a.s. ξxC → ∞ as C→ ∞, it is enough
to show that for all y ∈G◦ and C <∞,

P
(
θ
y
i ∧ ρyI ∧ ξyC ∧ T < θyI

) = 1. (4.56)

Fix y ∈G◦ and C <∞. Let {rk}k∈N be the decreasing sequence defined in (4.11) and let ε ∈ (0,1) and k0 ∈ N be
such that (4.50) holds for all k ≥ k0. For k ≥ k0 and z ∈G, let σ zI (rk)

.= inf{t > 0 : dist(Zzt ,FI )≤ rk}. The definition
of σxI in (4.8) implies that for each k ∈ N, σ zI (rk+1)= σzI for all z ∈ SI (rk). Then by the continuity of the sample paths
of Zy , the strong Markov property of Zy and (4.50),

P
(
θ
y
I ≤ θyi ∧ ρyI ∧ ξyC ∧ T ) = P

(
σ
y
I (rk)≤ θyi ∧ ρyI ∧ ξyC ∧ T for all k ≥ 1

)
≤ lim
k→∞

k∏
j=1

sup
z∈SI (rj )

P
(
σzI ≤ θzi ∧ ρzI ∧ ξzC ∧ T )

≤ lim
k→∞(1 − ε)k,

which is equal to zero. This proves (4.56) holds. �

Lemma 4.15. Suppose Assumption 3.2 holds and b(α, ·) ≡ 0. Then for each x ∈G, a.s. Zx satisfies condition 4 of
the boundary jitter property.

Proof. If x /∈ N condition 4 holds trivially by Definition 3.1. Fix x ∈ N and let i ∈ I(x). Set I
.= I(x). Let {rk}k∈N

in (0,∞), k0 ∈N and ε ∈ (0,1) be such that (4.51) holds for all k ≥ k0. For k ≥ k0 and y ∈G, let τyI (rk)
.= inf{t > 0 :

dist(Zyt ,FI )≥ rk}. Then by (4.9), τyI (rk−1)= τyI for y ∈ SI (rk). Let T <∞. By the continuity of the sample paths of
Zx , the strong Markov property of Zx and (4.51), for each k† ≥ k0,

P
(
τxI (rk†)≤ θxi ∧ ρxI ∧ ξxC ∧ T ) = P

(
τxI (rk)≤ θxi ∧ ρxI ∧ ξxC ∧ T for all k ≥ k†)

≤ lim
K→∞

K∏
k=k†+1

sup
y∈SI (rk)

P
(
τ
y
I ≤ θyi ∧ ρyI ∧ ξyC ∧ T )

≤ lim
K→∞(1 − ε)K−k†

.
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Upon sending C → ∞ and T → ∞, this proves P(θxi ∧ ρxI < τxI (rk) ∀ k ≥ k0) = 1. Since a.s. Zx spends zero
Lebesgue time on the boundary by Lemma 4.2, it follows that a.s. for every δ > 0, there exists t ∈ (0, δ) such that
dist(Zxt ,FI ) > 0. In particular, this implies that a.s. τxI (r) ↓ 0 as r ↓ 0. Consequently, P(θxi ∧ ρxI = 0) = 1. By the
upper semicontinuity of I(·) (Lemma 4.6) and the continuity of Zx , a.s. ρxI > 0. Thus, P(θxi ∧ ρxI = 0)= 1 implies
that P(θxi = 0) = 1. Since i ∈ I(x) was arbitrary and I(x) is a finite set, we have P(θxi = 0 ∀ i ∈ I(x)) = 1. Along
with Lemma 4.14, this implies the set{

Zx satisfies condition 3 of the boundary jitter property
} ∩ {

θxi = 0 ∀ i ∈ I(x)
}
, (4.57)

has P-measure one. Let ω belong to the set (4.57). Let i ∈ I(x) and δ > 0. Since θxi (ω) = 0 there exists t ∈ (0, δ)
such that Zxt (ω) ∈ Fi . If Zxt (ω) ∈ S , then I(Zxt (ω))= {i}. On the other hand, if Zxt (ω) ∈ N , then condition 3 of the
boundary jitter property implies there exists s ∈ (0, t) such that I(Zxs (ω))= {i}. Since this holds for all i ∈ I(x) and
δ > 0, Zx(ω) satisfies condition 4 of the boundary jitter property. �

Proof of Theorem 3.3. Condition 2 of the boundary jitter property follow immediately from Lemma 4.2. When
b(α, ·)≡ 0, conditions 1, 3 and 4 follow from Lemmas 4.1, 4.14 and 4.15, respectively. To see that conditions 1, 3 and
4 hold under general Lipschitz continuous drift coefficients, we use a change of measure argument. Since the filtration
{Ft } is right-continuous, we see that{

Zx satisfies condition 4 of the boundary jitter property
} ∈ F0. (4.58)

In addition, it is readily verified that for T <∞,{
Zx satisfies conditions 1 and 3 of the boundary jitter property for all t ∈ [0, T ]} ∈FT , (4.59)

and Zx a.s. satisfies conditions 1 and 3 of the boundary jitter property if and only if for each T <∞, the event
in (4.59) has P-measure one. Let T <∞. Observe that the uniform ellipticity of a(α, ·) .= σ(α, ·)σ T (α, ·) stated in
Assumption 3.2 ensures that a−1(α, ·) exists, and define

Ŵt
.=Wt −

∫ t

0
σT

(
α,Zxs

)
a−1(α,Zxs )b(α,Zxs )ds, t ∈ [0, T ].

By a standard argument using the Lipschitz continuity of b(α, ·) and Girsanov’s transformation (see, e.g., the proof of
[16, Theorem 4.1]), there is a probability measure P̃ on (�,FT ) equivalent to P such that under P̃, {Ŵt , t ∈ [0, T ]} is
a Brownian motion on (�,FT , P̃). Substituting Ŵ into (2.3), we see that

Zxt = x +
∫ t

0
σ
(
α,Zxs

)
dŴs + Yxt , t ∈ [0, T ].

By Lemmas 4.14 and 4.15 and because P̃ and P are equivalent on (�,FT ), the events (4.58) and (4.59) have P-
measure one. Since this holds for all T <∞, the proof is complete. �

5. The derivative process

In this section we prove Theorem 3.6, which establishes pathwise uniqueness of a derivative process along the reflected
diffusion Zα,x . In Section 5.1, we describe the relationship between the derivative process and an associated deter-
ministic problem, called the derivative problem. In Section 5.2 we prove pathwise uniqueness and provide conditions
for strong existence of the derivative process.

5.1. The derivative problem

The derivative problem was first introduced in [21, Definition 3.4] as an axiomatic framework for characterizing
directional derivatives of the ESM.



Pathwise differentiability of reflected diffusions 1463

Definition 5.1. Let α ∈ U . Suppose (h, g) is a solution to the ESP {(di(α), ni, ci), i ∈ I} for f ∈ CG(R
J ). Let

ψ ∈Dr(R
J ). Then (φ, η) ∈ Dr(R

J )×Dr(R
J ) is a solution to the derivative problem (associated with {(di(α), ni, ci)})

along h for ψ if η(0) ∈ span[d(α,h(0))] and if for all t ≥ 0, the following conditions hold:

1. φ(t)=ψ(t)+ η(t);
2. φ(t) ∈Hh(t);
3. for all s ∈ [0, t),

η(t)− η(s) ∈ span

[ ⋃
u∈(s,t]

d
(
α,h(u)

)]
.

If there exists a unique solution (φ, η) to the derivative problem along h for ψ , we write φ =�αh[ψ] and refer to �αh
as the derivative map along with h.

The derivative problem can be viewed as a linearization of the ESP along a given solution (h, g) of the ESP
(compare Definition 5.1 with Definition 2.3).

Remark 5.2. Given α ∈ U , x ∈G and a derivative process J α,x along Zα,x , let Hα,x = {Hα,xt , t ≥ 0} be the contin-
uous {Ft }-adapted process taking values in Lin(RM ×Hx,RJ ) defined, for all t ≥ 0 and (β, y) ∈ RM ×Hx , by

Hα,xt [β,y] = y +
∫ t

0
b′(α,Zα,xs )[

β,J α,xs [β,y]]ds +
∫ t

0
σ ′(α,Zα,xs )[

β,J α,xs [β,y]]dWs
+R′(α)[β]Lα,xt , (5.1)

where {R′(α)[β]Lα,xt , t ≥ 0} is the process defined in Remark 2.14. Then by the properties stated in Definition 3.5
and the statement of the derivative problem in Definition 5.1, a.s. for all (β, y) ∈ RM ×Hx , (J α,x[β,y],Kα,x[β,y])
is a solution to the derivative problem along Zα,x for Hα,x[β,y].

The next lemma states that the derivative map is linear (on its domain of definition).

Lemma 5.3 ([21, Lemma 5.1]). Suppose (φ1, η1) solves the DP along h for ψ1 ∈ Dr and (φ2, η2) solves the DP
along h for ψ2 ∈Dr. Then for all α,β ∈ R, (αφ1 + βφ2, αη1 + βη2) solves the DP along h for αψ1 + βψ2.

The following Lipschitz continuity property of the derivative map was established in [21].

Proposition 5.4 ([21, Theorem 5.4]). Let α ∈U . There exists κ�(α) <∞ such that if (h, g) is a solution to the ESP
{(di(α), ni, ci), i ∈ I} for f , (φ1, η1) is a solution to the derivative problem along h for ψ1 ∈ C(RJ ), and (φ2, η2) is
a solution to the derivative problem along h for ψ2 ∈ C(RJ ), then for all t <∞,

‖φ1 − φ2‖t ≤ κ�(α)‖ψ1 −ψ2‖t . (5.2)

Note that the Lipschitz constant in (5.2) depends only on α ∈U , and not on h ∈CG(R
J ).

5.2. Pathwise uniqueness of the derivative process

Proof of Theorem 3.6. Let (β, y) ∈RM ×Hx . According to Remark 5.2,

J α,x[β,y] =�αZα,x
[
Hα,x[β,y]] and J̃ α,x[β,y] =�αZα,x

[
H̃α,x[β,y]], (5.3)

where Hα,x is defined as in (5.1) and H̃α,x is defined analogously, but with J̃ α,x and H̃α,x in place of J α,x and Hα,x ,
respectively. By (5.1), the Cauchy–Schwarz inequality, the BDG inequalities, the bounds on ‖b′(α, x)‖ and ‖σ ′(α, x)‖
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stated in Assumption 2.15 and Tonelli’s theorem, we have, for t ≥ 0,

E
[∥∥Hα,x[β,y] − H̃α,x[β,y]∥∥2

t

] ≤ 2E

[
sup
s∈[0,t]

∣∣∣∣∫ s

0
b′(α,Zα,xu )[

0,J α,x[β,y] − J̃ α,x[β,y]]du∣∣∣∣2]

+ 2E

[
sup
s∈[0,t]

∣∣∣∣∫ s

0
σ ′(α,Zα,xu )[

0,J α,x[β,y] − J̃ α,x[β,y]]dWu∣∣∣∣2]

≤ 2κ2
b,σ (t +C2)

∫ t

0
E

[∥∥J α,x[β,y] − J̃ α,x[β,y]∥∥2
s

]
ds.

Using (5.3), the Lipschitz continuity of the derivative map shown in Proposition 5.4 and applying Gronwall’s inequal-
ity, we obtain,

E
[∥∥J α,x[β,y] − J̃ α,x[β,y]∥∥2

t

] = 0.

Since t ≥ 0 and (β, y) ∈RM ×Hx were arbitrary, and both J α,x and J̃ α,x are linear functions of (β, y) ∈RM ×Hx ,
this proves that a.s. J α,x = J̃ α,x . �

6. Pathwise differentiability of reflected diffusions

In Section 6.1 we recall the definition and characterization of a directional derivative of the ESM �̄α from [21].
In Sections 6.2 and 6.3 we use properties of these directional derivatives to characterize pathwise derivatives of a
reflected diffusion in terms of derivative processes.

6.1. Directional derivatives of the ESM

Fix α ∈ U . Recall the definition of the ESP {(di(α), ni, ci), i ∈ I} given in Definition 2.3. By Proposition 2.8, the
associated ESM �̄α is well defined on CG(R

J ). We now introduce the notion of a directional derivative of �̄α . For
f ∈ CG(R

J ), ψ ∈C(RJ ) and ε > 0, define ∇εψ �̄(f ) ∈C(RJ ) by

∇εψ �̄α(f ) .=
�̄α(f + εψ)− �̄α(f )

ε
. (6.1)

Definition 6.1. Given f ∈ CG(R
J ) and ψ ∈ C(RJ ), the directional derivative of �̄α evaluated at f in the direction

ψ is a function ∇ψ�̄α(f ) from [0,∞) into RJ defined as the pointwise limit

∇ψ�̄α(f )(t) .= lim
ε↓0

∇εψ �̄α(f )(t), t ≥ 0. (6.2)

Proposition 6.2 ([21, Proposition 2.17]). Given f ∈ CG(R
J ) and ψ ∈ C(RJ ) such that ∇ψ�̄α(f ) exists, suppose

{ψε}ε>0 is a family in C(RJ ) such that ψε →ψ in C(RJ ) as ε ↓ 0. Then

lim
ε↓0

∇εψε �̄α(f )(t)= ∇ψ�̄α(f )(t), t ≥ 0.

Proposition 6.3. Given f ∈CG(R
J ) and ψ, ψ̃ ∈ C(RJ ), suppose ∇ψ�̄α(f ) and ∇ψ̃ �̄α(f ) exist. Then for all t <∞,∥∥∇ψ�̄(f )− ∇ψ̃ �̄(f )

∥∥
t
≤ κ�̄(α)‖ψ − ψ̃‖t . (6.3)

Proof. Let t <∞ and s ∈ [0, t]. By (6.2) and the Lipschitz continuity of the ESM stated in Proposition 2.6,∣∣∇ψ�̄α(f )(s)− ∇ψ̃ �̄α(f )(s)
∣∣ = lim

ε↓0
ε−1

∣∣�̄α(f + εψ)(s)− �̄α(f + εψ̃)(s)∣∣ ≤ κ�̄(α)‖ψ − ψ̃‖s .

Taking suprema over s ∈ [0, t] of both sides of the last display yields (6.3). �
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The notion of directional derivatives of the one-dimensional Skorokhod map was first introduced in [23] (see
also [37, Corollary 9.5.1] and [25, Theorem 3.2]) to prove a diffusion approximation of a time-inhomogeneous queue.
Directional derivatives of ESMs in the orthant with reflection matrices that are M-matrices were subsequently studied
in [25]. The result in [25] covers a large class of ESPs of interest, including those arising in rank-based models [3,15]
and interacting particle systems [7,36,39], but does not include many others arising in applications, such as multiclass
feedforward queueing networks (see, e.g., [9]). In [21] directional derivatives of a much broader class of ESMs in
polyhedral domains were characterized when the solution to the ESM satisfies the boundary jitter property. We now
recall the main result in [21]. Recall the derivative map introduced in Definition 5.1, and the set Wα defined in (3.12).

Proposition 6.4 ([21, Theorem 3.11]). Given f ∈ CG, let (h, g) denote the solution to the ESP for f . Suppose
h(t) /∈ Wα for all t ≥ 0 and (h, g) satisfies the boundary jitter property (Definition 3.1). Then for all ψ ∈ C(RJ ),
∇ψ�̄α(f ) exists, lies in Dl,r(R

J ) and �αh[ψ] is equal to the right-continuous regularization of ∇ψ�̄α(f ); that is,
�αh[ψ](t) = ∇ψ�̄α(f )(t+) for all t ≥ 0. In addition, ∇ψ�̄α(f )(·) is continuous at times t > 0 for which h(t) ∈
G◦ ∪N .

6.2. Proof of Theorem 3.13

We first show that whenever the directional derivative of the ESM evaluated at almost every sample path ofXα,x exists,
pathwise derivatives of reflected diffusions a.s. exist and can be characterized in terms of the directional derivative of
the ESM. This result may be useful in cases when the boundary jitter property does not hold (e.g., when the diffusion
coefficient is degenerate) but the directional derivative of the ESM still exists (e.g., for the class considered in [25]).
Recall the definition of ∂β,yZα,x given in (3.14).

Proposition 6.5. Suppose Assumption 3.7 holds. Let α ∈ U , x ∈ G and suppose a.s. ∇ψ�̄(Xα,x) exists for all ψ ∈
C(RJ ) and takes values in Dlim(R

J ). Then for each (β, y) ∈ RM ×Gx , a.s. ∂β,yZα,x exists and is characterized as
the unique {Ft }-adapted process that satisfies ∂β,yZα,x = ∇�(β,y)�̄(Xα,x), where �(β,y) satisfies, for all t ≥ 0,

�t(β, y)= y +
∫ t

0
b′(α,Zα,xs )[

β, ∂β,yZ
α,x
s

]
ds +

∫ t

0
σ ′(α,Zα,xs )[

β, ∂β,yZ
α,x
s

]
dWs

+R′(α)[β]Lα,xt , (6.4)

and {R′(α)[β]Lα,xt , t ≥ 0} is the process described in Remark 2.14.

Remark 6.6. Since functions in Dlim(R
J ) are Lebesgue measurable and ∂β,yZα,x is {Ft }-adapted, the Lebesgue-

Stieltjes and Itô integrals in (6.4) are well defined.

The proof of Proposition 6.5 is given in Section 6.3.

Proof of Theorem 3.13. By assumption, a.s. τα,x = ∞ and (Zα,x, Y α,x) satisfies the boundary jitter property. Thus,
by Proposition 6.4, a.s. for all ψ ∈C(RJ ),

(a) ∇ψ�̄α(Xα,x) exists and lies in Dl,r(R
J ),

(b) ∇ψ�̄α(Xα,x)(t+)=�αZα,x [ψ](t) for all t ≥ 0.
(c) ∇ψ�̄α(Xα,x)(·) is continuous at times t > 0 for which Zα,xt ∈G◦ ∪N .

Therefore, by Proposition 6.5, for each (β, y) ∈RM ×Gx , a.s.

(d) ∂β,yZα,x exists,
(e) ∂β,yZα,x = ∇�(β,y)�̄(Xα,x), where �(β,y) is defined in (6.23).

Consequently, by (e), (a) and (b), for each (β, y) ∈ RM ×Gx , a.s.

(f) ∂β,yZα,x lies in Dl,r(R
J )

(g) lims↓t ∂β,yZα,xs =�αZα,x [�(β,y)](t) for all t ≥ 0.
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Thus, by (c)–(f), parts (i) and (ii) of Theorem 3.13 hold. We are left to prove that there exists a pathwise unique
derivative process J α,x along Zα,x and part (iii) holds.

For each (β, y) ∈ RM ×Gx , set �(β,y)
.=�αZα,x [�(β,y)] so by (g) a.s. �t(β, y) is the right-continuous regular-

ization of ∂β,yZα,x . By the definition of the derivative problem in Definition 5.1, (6.4) and the fact that �(β,y) is the
right continuous regularization of ∂β,yZα,x , �(β,y) a.s. satisfies, for all t ≥ 0,

�t(β, y)= y +
∫ t

0
b′(α,Zα,xs )[

β,�s(β, y)
]
ds +

∫ t

0
σ ′(α,Zα,xs )[

β,�s(β, y)
]
dWs

+R′(α)[β]Lα,xt +�t(β, y), (6.5)

where�(β,y)= {�t(β, y), t ≥ 0} is a J -dimensional RCLL process a.s. satisfying�0(β, y) ∈ span[d(α, x)] and for
all 0 ≤ s ≤ t <∞,

�t(β, y)−�s(β, y) ∈ span

[ ⋃
u∈(s,t]

d
(
α,Zα,xu

)]
. (6.6)

Define ỹ
.= y +�0(β, y) and �̃t (β, y)

.= �t(β, y) −�0(β, y) for all t ≥ 0. Observe that ỹ = �0(β, y) ∈ Hx and
ỹ−y =�0(β, y) ∈ span[d(α, x)]. Thus, by the uniqueness of the derivative projection operator shown in Lemma 3.11,
it holds that ỹ = Lαx [y]. Therefore, using (6.5), we see that �(β,y) satisfies, for all t ≥ 0,

�t(β, y)= Lαx [y] +
∫ t

0
b′(α,Zα,xs )[

β,�s(β, y)
]
ds +

∫ t

0
σ ′(α,Zα,xs )[

β,�s(β, y)
]
dWs

+R′(α)[β]Lα,xt + �̃t (β, y), (6.7)

where, by the definition of �̃(β, y) and (6.6), �̃t (β, y) a.s. satisfies �̃0(β, y)= 0 and for all 0 ≤ s ≤ t <∞,

�̃t (β, y)− �̃s(β, y) ∈ span

[ ⋃
u∈(s,t]

d
(
α,Zα,xu

)]
. (6.8)

Let {(βk, yk)}k=1,...,m denote an orthonormal basis of RM × Hx . Since the basis is a finite set, a.s. �(βk, yk)
satisfies (6.7) for each k = 1, . . . ,m. Define J α,x[βk, yk] .=�(βk, yk) for each k = 1, . . . ,m, and linearly extend the
definition of J α,x[·, ·] to all of RM × Hx . Due to the linearity of (6.7) and the fact Lαx [yk] = yk for k = 1, . . . ,m,
it follows that a.s. J α,x[β,y] satisfies (3.4) for all (β, y) ∈ RM × Hx . Thus, J α,x is a derivative process along
Zα,x , which is pathwise unique by Theorem 3.6. Moreover, it follows from (6.7) that for any (β, y) ∈ RM ×Gx , a.s.
�(β,y)= J α,x[β,Lαx [y]]. This proves the remaining part (iii) of Theorem 3.13. �

6.3. Proof of Proposition 6.5

Given α ∈ U , x ∈ G, β ∈ RM and y ∈ Gx , let ε0(α, x,β, y) > 0 be such that (3.8) holds. Recall the definition of
∂εβ,yZ

α,x given in (3.9), note that

Zα+εβ,x+εy =Zα,x + ε∂εβ,yZα,x (6.9)

and define the J -dimensional continuous process �ε(β, y)= {�εt (β, y), t ≥ 0}, for t ≥ 0, by

�εt (β, y)
.= y +

∫ t

0

b(α + εβ,Zα,xs + ε∂εβ,yZα,xs )− b(α,Zα,xs )

ε
ds

+
∫ t

0

σ(α + εβ,Zα,xs + ε∂εβ,yZα,xs )− σ(α,Zα,xs )

ε
dWs

+ R(α + εβ)−R(α)
ε

L
α+εβ,x+εy
t , (6.10)
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where, analogous to Remark 2.14, the last term is interpreted as follows (recall that Assumption 2.13 holds):

1. If Condition 2.10 holds, then Lα+εβ,x+εy = {Lα+εβ,x+εyt , t ≥ 0} is the N -dimensional process described in Re-
mark 2.12.

2. Otherwise, R(α) is constant in α ∈ U and we interpret the process to be identically zero (even if the process
Lα+εβ,x+εy is not well defined).

Lemma 6.7. Given α ∈U , x ∈G, β ∈RM and y ∈Gx , let ε0(α, x,β, y) > 0 be as in (3.8). For 0< ε < ε0(α, x,β, y),
define �ε(β, y) as in (6.10). Then a.s.

Zα+εβ,x+εy = �̄α(Xα,x + ε�ε(β, y)). (6.11)

Consequently, a.s.

∂εβ,yZ
α,x = �̄α(Xα,x + ε�ε(β, y))− �̄α(Xα,x)

ε
. (6.12)

Furthermore, if Condition 2.10 holds, then a.s., for all t <∞,∥∥Lα+εβ,x+εy −Lα,x∥∥
t
≤ εκ(α)κ�̄(α)

∥∥�ε(β, y)∥∥
t
, (6.13)

and ∥∥Lα+εβ,x+εy∥∥
t
≤ κ(α)κ�̄(α)

(∥∥Xα,x − x∥∥
t
+ ε∥∥�ε(β, y)∥∥

t

)
. (6.14)

Proof. Suppose (6.11) holds. Then (6.12) follows from (3.9), (6.11) and the fact that a.s. Zα,x = �̄α(Xα,x) by Re-
mark 2.4. We now show that (6.11) holds. According to Remark 2.4,

Zα+εβ,x+εy = �̄α+εβ(Xα+εβ,x+εy), (6.15)

and by (2.6) and (6.10),

Xα+εβ,x+εy =Xα,x + ε�ε(β, y)+ (
R(α)−R(α + εβ))Lα+εβ,x+εy, (6.16)

where the final term is taken to be zero if Condition 2.10 does not hold. Suppose Condition 2.10 does not hold. Then
Assumption 2.13 implies the directions of reflection {di(·), i ∈ I} are constant, so �̄α+εβ = �̄α and by convention, the
final term on the right-hand side of (6.16) is identically zero. Thus, (6.11) follows from (6.15) and (6.16). On the other
hand, suppose Condition 2.10 holds. Then Lα,x and Lα+εβ,x+εy are well defined, Yα,x =R(α)Lα,x and Yα+εβ,x+εy =
R(α + εβ)Lα+εβ,x+εy . In view of Lemma 2.11 (with α + εβ , α, Zα+εβ,x+εy and Lα+εβ,x+εy in place of α, α̃, h and
, respectively) and (6.16), we see that (Zα+εβ,x+εy, Ỹ α+εβ,x+εy) is the solution to the ESP {(di(α), ni, ci), i ∈ I} for
Xα,x + ε�ε(β, y), where Ỹ α+εβ,x+εy .=R(α)Lα+εβ,x+εy . Thus, (6.11) holds.

In addition, under the assumption Condition 2.10 holds, by (2.9), the Lipschitz continuity of the ESM �̄α (Propo-
sition 2.6) and (6.11), we see that a.s., for all t <∞,∥∥Lα+εβ,x+εy −Lα,x∥∥

t
≤ κ(α)

∥∥Ỹ α+εβ,x+εy − Yα,x∥∥
t
≤ εκ(α)κ�̄(α)

∥∥�ε(β, y)∥∥
t
,

and ∥∥Lα+εβ,x+εy∥∥
t
≤ κ(α)

∥∥Ỹ α+εβ,x+εy∥∥
t
≤ κ(α)κ�̄(α)

(∥∥Xα − x∥∥
t
+ ε∥∥�ε(β, y)∥∥

t

)
,

where the last display also uses the fact that (h(·), g(·))≡ (x,0) is the solution to the ESP {(di(α), ni, ci), i ∈ I} for
f (·)≡ x. This proves that (6.13) and (6.14) hold. �

Given α ∈U , x ∈G, β ∈ RM and y ∈Gx , let ε0(α, x,β, y) be as in (3.8). Set

κ(α, x,β, y)
.= sup

{
κ�̄(α), κb,σ , κR, κ(α + εβ) : 0 ≤ ε ≤ ε0(α, x,β, y)

}
, (6.17)
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and

ε∗(α, x,β, y)
.= min

{
ε0(α, x,β, y),

1

4(κ(α, x,β, y))3|β|
}
> 0. (6.18)

Since κ(·) is bounded on compact subsets of U by Lemma 2.11, it follows that κ(α, x,β, y) <∞.

Lemma 6.8. Let V ⊂U and K ⊂G be compact subsets. Then for all p ≥ 2 and t <∞,

sup
{
E

[∥∥Xα,x − x∥∥p
t

] : α ∈ V,x ∈K}
<∞. (6.19)

Proof. The fact that E[‖Xα,x − x‖pt ]<∞ for fixed α ∈ U and x ∈G follows from a standard argument using (2.6),
Hölder’s inequality, the BDG inequalities, Tonelli’s theorem, Assumption 2.15, the facts that Zα,x = �̄α(Xα,x) and
h= �̄α(f ) where h(·)= f (·)≡ x, the Lipschitz continuity of the ESM �̄α and Gronwall’s inequality. The uniform
bound (6.19) then follows from (2.11). �

Lemma 6.9. Let α ∈U , x ∈G, β ∈RM and y ∈Gx . Then for all p ≥ 2 and t <∞,

sup
{
E

[∥∥�ε(β, y)∥∥p
t

] : 0< ε < ε∗(α, x,β, y)
}
<∞. (6.20)

Proof. For brevity, we set κ
.= κ(α, x,β, y) and ε∗

.= ε∗(α, x,β, y). Let p ≥ 2. Choose 0< ε < ε∗ so that (3.8) holds.
By (6.10) and (2.6), for all t ≥ 0,

∣∣�εt (β, y)∣∣p ≤ 2p−1
∣∣∣∣Xα+εβ,x+εyt −Xα,xt

ε

∣∣∣∣p + 2p−1
∣∣∣∣R(α + εβ)−R(α)

ε

∣∣∣∣p∣∣Lα+εβ,x+εyt

∣∣p. (6.21)

According to Assumption 2.13, the second term on the right-hand side of (6.21) is equal to zero if Condition 2.10
does not hold. On the other hand, if Condition 2.10 does hold, then (6.14) holds. By (6.14) and (2.11) of Lemma 2.17,
we have

E
[∥∥�ε(β, y)∥∥p

t

] ≤ 2p−1C̃†|y|p + 2p−1C̃‡|β|p + 4p−1κ3p|β|pE[∥∥Xα,x − x∥∥p
t

]
+ εp4p−1κ3p|β|pE[∥∥�ε(β, y)∥∥p

t

]
. (6.22)

Rearranging, we obtain, for all t ≥ 0,

E
[∥∥�ε(β, y)∥∥p

t

] ≤ 2p−1C̃†|y|p + 2p−1C̃‡|β|p + 4p−1κ3p|β|pE[‖Xα,x − x‖pt ]
1 − εp∗ 4p−1κ3p|β|p ,

where (6.18) ensures εp∗ 4p−1κ3p|β|p < 1 and E[‖Xα,x − x‖pt ] is finite by Lemma 6.8. Since the right-hand side of
the last display does not depend on 0< ε < ε∗, this completes the proof. �

Lemma 6.10. Suppose Assumption 3.7 holds. Let α ∈ U , x ∈ G and suppose a.s. ∇ψ�̄α(Xα,x) exists for all ψ ∈
C(RJ ) and takes values in Dlim(R

J ). Then for all (β, y) ∈ RM × Gx , there exists a unique J -dimensional {Ft }-
adapted process �(β,y)= {�t(β, y), t ≥ 0} such that a.s. �(β,y) takes values in Dlim(R

J ) and satisfies �(β,y)=
∇�(β,y)�̄α(Xα,x), where �(β,y) is a J -dimensional continuous {Ft }-adapted process that satisfies, for all t ≥ 0,

�t(β, y)= y +
∫ t

0
b′(α,Zα,xs )[

β,�s(β, y)
]
ds +

∫ t

0
σ ′(α,Zα,xs )[

β,�s(β, y)
]
dWs

+R′(α)[β]Lα,xt , (6.23)

where {R′(α)[β]Lα,xt , t ≥ 0} is the process defined in Remark 2.14. Moreover, for all (β, y) ∈ RM ×Gx , p ≥ 2 and
t <∞,

E
[∥∥�(β,y)∥∥p

t

]
<∞ (6.24)
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and

lim
ε↓0

E
[∥∥�ε(β, y)−�(β,y)∥∥2

t

] = 0, (6.25)

where �ε(β, y) is defined as in (6.10).

Remark 6.11. Since functions in Dlim(R
J ) are Lebesgue measurable and �(β,y) is {Ft }-adapted, both the

Lebesgue-Stieltjes and Itô integrals in (6.23) are well defined.

Proof. Let (β, y) ∈ RM × Gx and set κ
.= max{κ(α, x,β, y), κ ′}, where κ(α, x,β, y) and κ ′ are the constants in

(6.17) and Assumption 3.7, respectively. We first show uniqueness. Suppose there are two such process �(β,y)
and �̃(β, y). Using (6.23) and standard estimates involving the Cauchy–Schwartz inequality, the BDG inequalities,
Tonelli’s theorem and Assumption 2.15, we have, for t ≥ 0,

E
[∥∥�(β,y)− �̃(β, y)∥∥2

t

] ≤ 2(t +C2)κ
2
∫ t

0
E

[∥∥�(β,y)− �̃(β, y)∥∥2
s

]
ds.

The Lipschitz continuity of the function ψ �→ ∇ψ�̄α(Xα,x) shown in Proposition 6.3 along with an application of
Gronwall’s inequality implies that a.s. (�(β, y),�(β, y))= (�̃(β, y), �̃(β, y)).

The proof of existence of the process �(β,y) follows a standard Picard iteration argument. Set �0 .= 0 and recur-
sively define, for t ≥ 0,

�kt
.= y +

∫ t

0
b′(α,Zα,xs )[

β,�k−1
s

]
ds +

∫ t

0
σ ′(α,Zα,xs )[

β,�k−1
s

]
dWs +R′(α)[β]Lα,xt , (6.26)

and set �k
.= ∇�k �̄(Xα,x), where the integrals are well defined because �k takes values in Dlim(R

J ) and is {Ft }-
adapted because �k is {Ft }-adapted and the function ψ �→ ∇ψ�̄α(Xα,x) is Lipschitz continuous. Using (6.26) and
standard estimates as above, we obtain,

E
[∥∥�1

∥∥2
t

] ≤ 4|y|2 + 4(t +C2)κ
2|β|2 + 4E

[∥∥R′(α)[β]Lα,x∥∥2
t

]
, t ≥ 0, (6.27)

and for each k ∈ N, again using standard estimates along with the Lipschitz continuity of the function ψ �→
∇ψ�̄α(Xα,x),

E
[∥∥�k+1 −�k∥∥2

t

] ≤ 2(t +C2)κ
4
∫ t

0
E

[∥∥�k −�k−1
∥∥2
s

]
ds, t ≥ 0.

Iterating the last display yields, for each k ∈N,

E
[∥∥�k+1 −�k∥∥2

t

] ≤ (2(t +C2)κ
4)k

k!
∫ t

0
E

[∥∥�1
∥∥2
s

]
ds. (6.28)

The first two terms on the right-hand side of (6.27) are clearly finite. If Condition 2.10 does not hold, then by As-
sumption 2.13, the last term is defined to be zero (see Remark 2.14). On the other hand, if Condition 2.10 holds, then
let Lα,x be the N -dimensional process introduced in Remark 2.12. Then by the fact that (h, g)≡ (x,0) is the solution
to the ESP {(di(α), ni, ci)} for f ≡ x, (2.9), Proposition 2.6, (6.17) and Lemma 6.8, for p ≥ 1,

E
[∥∥R′(α)[β]Lα,x∥∥p

t

] ≤ κ3p|β|pE[∥∥Xα,x − x∥∥p
t

]
<∞. (6.29)

Thus, E[‖�1‖2
t ] <∞, which along with (6.28), implies {E[‖�k+1 − �k‖2

t ]}k∈N is a Cauchy sequence. Then by a
standard argument using Chebyshev’s inequality and the Borel–Cantelli lemma, there must exist a continuous process
� such that a.s.�k converges to� in C(RJ ) as k→ ∞. Due to the relation�k

.= ∇�k �̄(Xα,x) and the Lipschitz con-
tinuity of ψ �→ ∇ψ�̄(Xα,x) shown in Proposition 6.3, a.s. �k converges to � uniformly on compact time intervals as
k→ ∞. Hence, by (6.26) and the continuity of ψ �→ ∇ψ�̄(Xα,x), we see that � satisfies (6.23) and�= ∇��̄(Xα,x).
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Next, we show (6.24) holds. By (6.23), Hölder’s inequality, the BDG inequalities, Tonelli’s theorem, Assump-
tion 2.15, the fact that �(β,y) = ∇�(β,y)�̄(Xα,x), the Lipschitz continuity of ψ �→ ∇ψ�̄(Xα,x) shown in Proposi-
tion 6.3, (6.17) and (6.29), for all t ≥ 0,

E
[∥∥�(β,y)∥∥p

t

] ≤ 4p−1|y|p + 4p−1E

[
sup

0≤s≤t

∣∣∣∣∫ s

0
b′(α,Zα,xu )[

β,�u(β, y)
]
du

∣∣∣∣p]

+ 4p−1E

[
sup

0≤s≤t

∣∣∣∣∫ s

0
σ ′(α,Zα,xu )[

β,�u(β, y)
]
dWu

∣∣∣∣p]
+ 4p−1κ3p|β|pE[∥∥Xα,x − x∥∥p

t

]
≤ 4p−1|y|p + 8p−1(tp−1 +Cp

)|β|pt + 4p−1κ3p|β|pE[∥∥Xα,x − x∥∥p
t

]
+ 8p−1(tp−1 +Cp

)
κ2p

∫ t

0
E

[∥∥�(β,y)∥∥p
s

]
ds.

Then by Gronwall’s inequality and (6.29), (6.24) holds.
Lastly, we prove (6.25). Recall that by Assumption 3.7, b′, σ ′ and R′ are γ -Hölder continuous. Let 0 < ε <

ε∗(α, x,β, y). By (6.10) and (6.23), for t ≥ 0,

E
[∥∥�ε(β, y)−�(β,y)∥∥2

t

] ≤ 3E

[
sup
s∈[0,t]

∣∣∣∣∫ s

0
 (b)u du

∣∣∣∣2]
+ 3E

[
sup
s∈[0,t]

∣∣∣∣∫ s

0
 (σ)u dWu

∣∣∣∣2]
+ 3E

[∥∥ (R)∥∥2
t

]
, (6.30)

where, for s ≥ 0,

 (b)s
.= b(α + εβ,Zα,xs + ε∂εβ,yZα,xs )− b(α,Zα,xs )

ε
− b′(α,Zα,xs )[

β,�s(β, y)
]
, (6.31)

 (σ)s
.= σ(α + εβ,Zα,xs + ε∂εβ,yZα,xs )− σ(α,Zα,xs )

ε
− σ ′(α,Zα,xs )[

β,�s(β, y)
]
, (6.32)

 (R)s
.= R(α + εβ)−R(α)

ε
L
α+εβ,x+εy
s −R′(α)[β]Lα,xs . (6.33)

For f = b,σ , by (6.31) and (6.32),

 
(f )
s = f (α + εβ,Zα,xs + ε∂εβ,yZα,xs )− f (α + εβ,Zα,xs + ε�s(β, y))

ε

+
∫ 1

0

{
f ′(α + vεβ,Zα,xs + vε�s(β, y)

) − f ′(α,Zα,xs )}[
β,�s(β, y)

]
dv.

By the last display, the Lipschitz continuity of b and σ implied by Assumption 2.15, Jensen’s inequality, the γ -Hölder
continuity of b′ and σ ′, the fact that�(β,y)= ∇�(β,y)�̄α(Xα,x), the Lipschitz continuity of ψ �→ ∇ψ�̄α(Xα,x) stated
in Proposition 6.3, and (6.17),∣∣ (f )s ∣∣2 ≤ 2κ2

∣∣∂εβ,yZα,xs −�s(β, y)
∣∣2 + 2κ2ε2γ |β|2+2γ + 2κ4+2γ ε2γ

∥∥�(β,y)∥∥2+2γ
s

. (6.34)

By the Cauchy–Schwarz inequality, the BDG inequalities, Tonelli’s theorem and (6.34),

E

[
sup
s∈[0,t]

∣∣∣∣∫ s

0
 (b)u du

∣∣∣∣2]
+E

[
sup
s∈[0,t]

∣∣∣∣∫ s

0
 (σ)u dWu

∣∣∣∣2]

≤ t
∫ t

0
E

[∣∣ (b)s ∣∣2]
ds +C2

∫ t

0
E

[∣∣ (σ)s ∣∣2]
ds
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≤ 2(t +C2)κ
2
∫ t

0
E

[∣∣∂εβ,yZα,xs −�s(β, y)
∣∣2]
ds

+ 2t (t +C2)κ
2ε2γ |β|2+2γ + 2t (t +C2)κ

4+2γ ε2γE
[∥∥�(β,y)∥∥2+2γ

t

]
. (6.35)

By (6.33),

 (R)s = R(α + εβ)−R(α)
ε

(
L
α+εβ,x+εy
s −Lα,xs

) +
∫ 1

0

{
R′(α + vεβ)−R′(α)

}[β]Lα,xs dv. (6.36)

We have the following inequalities which are explained below:

∣∣ (R)s ∣∣2 ≤ 2

∣∣∣∣R(α + εβ)−R(α)
ε

∣∣∣∣2∣∣Lα+εβ,x+εys −Lα,xs
∣∣2

+ 2

∣∣∣∣∫ 1

0

{
R′(α + vεβ)−R′(α)

}[β]dv
∣∣∣∣2∣∣Lα,xs ∣∣2

≤ 2κ6|β|2ε2(1 + 2|β|2γ ε2γ )∥∥�ε(β, y)∥∥2
s
+ 4κ6ε2γ |β|2+2γ

∥∥Xα,x − x∥∥2
s
.

The first inequality is due to (6.36). The second inequality follows from the Lipschitz continuity of R(·) (which holds
by Assumption 2.13), (6.13), the γ -Hölder continuity of R′(·), (6.17) and the fact that a.s. |Lα,xs |2 ≤ 2κ4(‖Xα,x −
x‖2
s + ε2‖�ε(β, y)‖2

s ) by (6.13)–(6.14). Taking the expectation of the supremum over s ∈ [0, t], we obtain

E
[∥∥ (R)∥∥2

t

] ≤ 2κ6|β|2ε2(1 + 2|β|2γ ε2γ )E[∥∥�ε(β, y)∥∥2
t

] + 4κ6ε2γ |β|2+2γE
[∥∥Xα,x − x∥∥2

t

]
. (6.37)

Substituting (6.35) and (6.37) into (6.30) yields

E
[∥∥�ε(β, y)−�(β,y)∥∥2

t

] ≤ 6(t +C2)κ
2
∫ t

0
E

[∣∣∂εβ,yZα,xs −�s(β, y)
∣∣2]
ds

+ 6ε2γ t (t +C2)κ
2|β|2+2γ

+ 6ε2γ t (t +C2)κ
4+2γE

[∥∥�t(β, y)∥∥2+2γ
t

]
+ 6ε2κ6|β|2(1 + 2|β|2γ ε2γ )E[∥∥�ε(β, y)∥∥2

t

]
+ 12ε2γ κ6|β|2+2γE

[∥∥Xα,x − x∥∥2
t

]
. (6.38)

By (6.12), the fact that�(β,y)= ∇�(β,y)�̄α(Xα,x), the triangle inequality, (6.1), the Lipschitz continuity of the ESM
�̄α , for s ≥ 0,∣∣∂εβ,yZα,xs −�s(β, y)

∣∣2 ≤ 2
∣∣∇ε�ε(β,y)�̄α(Xα,x)(s)− ∇ε�(β,y)�̄α

(
Xα,x

)
(s)

∣∣2

+ 2
∣∣∇ε�(β,y)�̄α(Xα,x)(s)− ∇�(β,y)�̄α

(
Xα,x

)
(s)

∣∣2

≤ 2κ2
∥∥�ε(β, y)−�(β,y)∥∥2

s

+ 2
∣∣∇ε�(β,y)�̄α(Xα,x)(s)− ∇�(β,y)�̄α

(
Xα,x

)
(s)

∣∣2
. (6.39)

Therefore, upon substituting (6.39) into (6.38), we obtain for all t ≥ 0,

E
[∥∥�ε(β, y)−�(β,y)∥∥2

t

] ≤Ct(ε)+ 12(t +C2)κ
4
∫ t

0
E

[∥∥�ε(β, y)−�(β,y)∥∥2
s

]
ds,
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where

Ct(ε)
.= 12(t +C2)κ

2
∫ t

0
E

[∣∣∇ε�(β,y)�̄α(Xα,x)(s)− ∇�(β,y)�̄α
(
Xα,x

)
(s)

∣∣2]
ds

+ 6ε2γ t (t +C2)κ
2|β|2+2γ + 6ε2γ t (t +C2)κ

4+2γE
[∥∥�t(β, y)∥∥2+2γ

t

]
+ 6ε2κ6|β|2(1 + 2|β|2γ ε2γ )E[∥∥�ε(β, y)∥∥2

t

] + 12ε2γ κ6|β|2+2γE
[∥∥Xα,x − x∥∥2

t

]
. (6.40)

Gronwall’s inequality then implies

E
[∥∥�ε(β, y)−�(β,y)∥∥2

t

] ≤Ct(ε) exp
(
12(t +C2)κ

4t
)
.

Let t <∞. Once we demonstrate that Ct(ε)→ 0 as ε ↓ 0, the proof of the lemma will be complete. Due to (6.24),
Lemmas 6.9 and 6.8, the last four terms on the right-hand side of (6.40) converge to zero as ε ↓ 0. We are left to show
that

lim
ε↓0

∫ t

0
E

[∣∣∇ε�(β,y)�̄α(Xα,x)(s)− ∇�(β,y)�̄α
(
Xα,x

)
(s)

∣∣2]
ds = 0. (6.41)

By (6.1), the Lipschitz continuity of the ESM �̄α , Proposition 6.3 and the fact that ∇ψ�̄(f )≡ 0 when ψ ≡ 0,∣∣∇ε�(β,y)�̄α(Xα,x)(t)− ∇�(β,y)�̄α
(
Xα,x

)
(t)

∣∣2 ≤ 4κ2
∥∥�(β,y)∥∥2

t
. (6.42)

Together with (6.24), (6.2) and the dominated convergence theorem, this implies (6.41). �

Proof of Proposition 6.5. Let (β, y) ∈ RM ×Gx and (�(β, y),�(β, y)) be as in Lemma 6.10. By (3.14), Lemma 6.7
and Proposition 6.2, a.s. ∂β,yZα,x = ∇�(β,y)�̄α(Xα,x). Then according to Lemma 6.10, a.s. ∂β,yZα,x =�(β,y). Thus,
(6.23) implies (6.4) holds. �

Appendix A: Proof of Lemma 2.11

Proof of Lemma 2.11. Under Condition 2.10, the set Vα defined in (2.5) of Remark 2.2 is clearly empty. It then
follows from part 3 of [29, Theorem 1.1] that (h, g) is a solution to the Skorokhod problem {(di(α), ni, ci), i ∈ I}
for f (see [29, Definition 1.1]). Therefore, by [29, Definition 1.1], there exists a Lebesgue measurable function
ξ : [0,∞) �→ SJ−1 such that ξ(t) ∈ d(α,h(t)) for d|g|-almost every t ≥ 0 and

g(t)=
∫
(0,t]

ξ(s) d|g|(s). (A.1)

By (2.2) and Condition 2.10, given x ∈G, there is a unique continuous function ζI(x) : d(α, x) �→ RN+ such that for
all y ∈ d(α, x),

y =
∑
i∈I(x)

ζ iI(x)(y)di(α) and ζ iI(x)(y)= 0 for all i /∈ I(x). (A.2)

For the d|g|-almost every t ≥ 0 such that ξ(t) ∈ d(α,h(t)), define χ(t)
.= ζI(h(t))(ξ(t)). Since ξ is Lebesgue mea-

surable, I(·) is upper semicontinuous (Lemma 4.6), h(·) is continuous and ζI(x)(·) is continuous for each x ∈G, it
follows that χ is also Lebesgue measurable. For each i ∈ I , define

i(t)
.=

∫
(0,t]

χi(s) d|g|(s)=
∫
(0,t]

1{i∈I(h(s))}χi(s) d|g|(s), (A.3)
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where the second equality follows because χi(s) = ζ iI(h(s))(ξ(s)) = 0 if i /∈ I(h(s)). Since χ takes values in RN+ ,
(A.3) implies that for each i ∈ I , i is nondecreasing and (2.8) holds. By (A.1)–(A.3), for all t ∈ [0,∞),

g(t)=
∑
i∈I

(∫
(0,t]

χi(s) d|g|(s)
)
di(α)=R(α)(t).

Together with the linear independence condition in Condition 2.10, this implies that  is uniquely defined and there
exists a positive constant κ(α) <∞ such that if, for k = 1,2, (hk, gk) is the solution to the ESP {(di(α), ni, ci), i ∈ I}
for fk ∈ CG and k is as above, but with hk, gk and k in place of h,g and , then for all t <∞, ‖1 − 2‖t ≤
κ(α)‖g1 − g2‖t . The continuity of R(·) implies that κ(·) can be chosen to be bounded on compact subsets of U ,
which proves the last assertion of the lemma.

To prove the second statement of the lemma, let α̃ ∈U . By Definition 2.3, the fact that g =R(α) and the definition
of f̃ , we have h = f + R(α) = f̃ + R(̃α). Since f takes values in G and for each i ∈ I , i starts at zero, is
nondecreasing and can only increase when h lies in face Fi , it follows that (h,R(̃α)) is a solution to the ESP
{(di (̃α), ni, ci), i ∈ I} for f̃ . �

Appendix B: Proof of Lemma 2.17

Proof of Lemma 2.17. Fix p ≥ 2, t < ∞ and compact subsets V ⊂ U and K ⊂ G. Let α0 ∈ V and set κ
.=

sup{κb,σ , κR, κ(α), κ�̄(α0) : α ∈ V }, where κ <∞ follows because κ(·) is bounded on compact subsets of U by
Lemma 2.11. Let (α, x), (̃α, x̃) ∈ V ×K and define Xα,x as in (2.6) and Xα̃,̃x as in (2.6), but with α̃ and x̃ in place of
α and x, respectively. Then by (2.6), Hölder’s inequality, the BDG inequalities, the Lipschitz continuity of b(·, ·) and
σ(·, ·) that follows from Assumption 2.15 and Tonelli’s theorem,

E
[∥∥Xα,x −Xα̃,̃x∥∥p

t

] ≤ 3p−1|x − x̃|p

+ 3p−1(tp−1 +Cp
)
κp

∫ t

0
E

[
sup

0≤u≤s

∣∣(α − α̃,Zα,xu −Zα̃,̃xu
)∣∣p]ds

≤ 3p−1|x − x̃|p + 3p−1(tp−1 +Cp
)
κpt |α − α̃|p

+ 3p−1(tp−1 +Cp
)
κp

∫ t

0
E

[∥∥Zα,x −Zα̃,̃x∥∥p
s

]
ds. (B.1)

We consider two cases.

Case 1: Suppose Condition 2.10 holds. By Lemma 2.11,

Zα,x = �̄α0
(
Xα,x + (

R(α)−R(α0)
)
Lα,x

)
,

Zα̃,̃x = �̄α0
(
Xα̃,̃x + (

R(̃α)−R(α0)
)
Lα̃,̃x

)
.

Therefore, by Proposition 2.6, (2.9) and the fact that (h, g)≡ (x,0) is a solution to the ESP {(di(α), ni, ci), i ∈ I} for
f ≡ x,∥∥Zα,x −Zα̃,̃x∥∥

t
≤ κ∥∥Xα,x −Xα̃,̃x∥∥

t
+ κ∣∣R(α)−R(̃α)∣∣∥∥Lα,x∥∥

t
+ κ∣∣R(̃α)−R(α0)

∣∣∥∥Lα,x −Lα̃,̃x∥∥
t

≤ κ∥∥Xα,x −Xα̃,̃x∥∥
t
+ κ4|α − α̃|∥∥Xα,x − x∥∥

t
+ κ4 |̃α − α0|

∥∥Xα,x −Xα̃,̃x∥∥
t

≤ κ(1 + κ3 |̃α − α0|
)∥∥Xα,x −Xα̃,̃x∥∥

t
+ κ4|α − α̃|∥∥Xα,x − x∥∥

t
.

Case 2: Suppose Condition 2.10 does not hold, so by Assumption 2.13, R(α) is constant in α ∈U . Then according to
Remark 2.4, Zα,x = �̄α0(Xα,x) and Zα̃,̃x = �̄α0(Xα̃,̃x), so by Proposition 2.6, for all t ≥ 0,∥∥Zα,x −Zα̃,̃x∥∥

t
≤ κ∥∥Xα,x −Xα̃,̃x∥∥

t
.
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In either case, by (B.1),

E
[∥∥Xα,x −Xα̃,̃x∥∥p

t

] ≤ 3p−1|x − x̃|p + 3p−1(tp−1 +Cp
)
κpt |α − α̃|p

+ 6p−1(tp−1 +Cp
)
κ5p|α − α̃|ptE[∥∥Xα,x − x∥∥p

t

]
+ 6p−1(tp−1 +Cp

)
κ2p(1 + κ3 |̃α − α0|

)p ∫ t

0
E

[∥∥Xα,x −Xα̃,̃x∥∥p
s

]
ds.

An application of Gronwall’s inequality yields (2.11) with

C̃† .= sup
{
3p−1(tp−1 +Cp

)
κp

(
t + 2p−1κ4ptE

[∥∥Xα,x − x∥∥p
t

]) : α̃ ∈ V,x ∈K}
× sup

{
exp

(
6p−1(tp−1 +Cp

)
κ2p(1 + κ3 |̃α − α0|

)p
t
) : α̃ ∈ V }

,

C̃‡ .= sup
{
3p−1 exp

(
6p−1(tp−1 +Cp

)
κ2p(1 + κ3 |̃α − α0|

)p
t
) : α̃ ∈ V }

.

Here |̃α − α0| is uniformly bounded over α̃ ∈ V since V is compact, and E[‖Xα,x − x‖pt ] is uniformly bounded over
α ∈ V and x ∈K by Lemma 6.8. It then follows from (2.11) and the bounds shown in Cases 1 and 2 above that (2.10)
holds with

C† .= sup
{
2p−1(κ(1 + κ3 |̃α − α0|

))p
C̃† + 2p−1κ4pE

[∥∥Xα,x − x∥∥p
t

] : α̃ ∈ V,x ∈K}
,

C‡ .= sup
{
2p−1(κ(1 + κ3 |̃α − α0|

))p
C̃‡ : α̃ ∈ V }

,

where we have again used Lemma 6.8 and the fact that |̃α − α| is uniformly bounded for α ∈ V . �

Appendix C: Proof of Lemma 4.11

Proof of Lemma 4.11. Since {(di(·), ni, ci), i ∈ I} satisfies Assumption 2.5, for each α ∈ U there is a set Bα such
that (2.7) holds for all i ∈ I , and thus, for all i ∈ I . Therefore, {(di(·), ni,0), i ∈ I } satisfies Assumption 2.5. In
order to show that the data {(di(·), ni, ci)i ∈ I} satisfies Assumption 2.7, we first need some definitions. Define the
set-valued function I (·) on Gx̄ by

I (y)
.= {
i ∈ I : 〈y,ni〉 = 0

}
, y ∈Gx̄, (C.1)

and define the set-valued function dI (·, ·) on U ×Gx̄ by

dI (α, y)
.= cone

[{
di(α), i ∈ I (y)

}]
, α ∈U, y ∈Gx̄. (C.2)

In other words, I (·) and dI (·, ·) are defined analogously to I(·) and d(·, ·), respectively, but with the data
{(di(·), ni,0), i ∈ I } instead of {(di(·), ni, ci), i ∈ I}. Now, according to Assumption 2.7 and Remark 2.9, for each
α ∈U there is a continuous map πα : RJ �→G such that πα(x)= x for all x ∈G and πα(x)− x ∈ d(α,πα(x)) for all
x /∈G. By the upper semicontinuity of I(·) (Lemma 4.6), the continuity of πα and because πα(x̄)= x̄, there exists a
neighborhood Vx̄ of x̄ such that I(πα(x))⊆ I(πα(x̄))= I (and thus, πα(x) ∈Gx̄ ) for all x ∈ Vx̄ . We now define a
map παI :RJ �→Gx̄ . For y ∈Gx̄ , set παI (y)= y. For y /∈Gx̄ , choose δ > 0 such that x̄ + δy ∈ Vx̄ and define

παI (y)
.= δ−1(πα(x̄ + δy)− x̄). (C.3)

Since πα(x̄ + δy) ∈Gx̄ , x̄ ∈ FI , and by (C.1), we have πα(x̄ + δy)− x̄ ∈Gx̄ and

I
(
πα(x̄ + δy)) = {

i ∈ I : 〈πα(x̄ + δy), ni
〉 = ci}

= {
i ∈ I : 〈πα(x̄ + δy)− x̄, ni

〉 = 0
}

= I(πα(x̄ + δy)− x̄).
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Since Gx̄ is a cone with vertex at the origin, it follows that δ−1(πα(x̄ + δy)− x̄) ∈Gx̄ and

I
(
πα(x̄ + δy)) = I(δ−1(πα(x̄ + δy)− x̄)). (C.4)

Thus, by (C.2), (C.4) and (2.2),

dI
(
α, δ−1(πα(x̄ + δy)− x̄)) = cone

[{
di(α), i ∈ I

(
πα(x̄ + δy))}] = d(α,πα(x̄ + δy)). (C.5)

Then, by (C.3), the facts that {(di(·), ni, ci), i ∈ I} satisfies Assumption 2.7 and d(α, x) is a cone for all x ∈G, and
(C.5), we have

παI (y)− y = δ−1(πα(x̄ + δy)− (x̄ + δy)) ∈ d(α,πα(x̄ + δy)) = dI
(
α,πα(x̄ + δy)− x̄).

Since this holds for all α ∈ U and y ∈Gx̄ , {(di(·), ni,0), i ∈ I } satisfies Assumption 2.7. The existence of a unique
solution (h, g) to the ESP {(di(α), ni,0), i ∈ I } for f ∈ CGx̄ (R

J ) then follows from Proposition 2.8. The bound (4.31)
follows from [21, Lemma 9.8]. �
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