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Abstract. We investigate so-called generalized Mandelbrot cascades at the freezing (critical) temperature. It is known that, after a
proper rescaling, a sequence of multiplicative cascades converges weakly to some continuous random measure. Our main question
is how the limiting measure μ fluctuates. For any given point x, denoting by Bn(x) the ball of radius 2−n centered around x, we
present optimal lower and upper estimates of μ(Bn(x)) as n → ∞.

Résumé. Nous étudions les cascades de Mandelbrot généralisées à la température (critique) de freezing. Il est connu qu’après
une mise à l’échelle appropriée, une telle suite de cascades multiplicatives converge faiblement vers une certaine mesure aléatoire
continue. La question est alors de savoir à quel point la mesure limite μ fluctue. Pour tout point x donné, et en notant Bn(x) la
boule de rayon 2−n centrée en x, nous présentons des bornes supérieures et inférieures optimales pour μ(Bn(x)) lorsque n → ∞.
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1. Introduction

1.1. Mandelbrot cascades1

In the seventies Mandelbrot [28,29] proposed a model of random multiplicative cascade measures, to simulate the
energy dissipation in intermittent turbulence. Mandelbrot cascades exhibited a number of fractal and statistical features
observed experimentally in a turbulence flow. Up to now, through various applications, this model found its way
into a wide range of scientific fields from financial mathematics [14] to quantum gravity and disordered systems in
mathematical physics [3]. Mathematically, a multiplicative cascade, is a measure-valued stochastic process and was
first rigorously described by Kahane and Peyrière [24]. They presented a complete proof of results announced by
Mandelbrot, answering e.g. the questions of non-degeneracy, existence of moments and local properties. Since then
multiplicative cascades become a subject of study for numerous mathematicians, see e.g. [5,6,16,20,26].

One of the simplest examples of multiplicative cascades can be expressed as a sequence of random measures on
the unit interval I = [0,1). They depend on two parameters: a real number β > 0 (inverse temperature parameter) and
a real valued random variable ξ (fluctuations). For convenience, we assume that ξ is normalized, i.e.

Eeξ = 1

2
and E

[
ξeξ

] = 0. (1.1)
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To define the cascade measures, consider an infinite dyadic Ulam–Harris tree denoted by T2 = ⋃
n≥0{0,1}n and attach

to every edge, connecting x with xk (x ∈ T2, k ∈ {0,1}), a random weight ξk(x), being an independent copy of ξ . Let
V (x) be the total weight of the branch from the root to x obtained by adding weights of the edges along this path.
Define the measure μβ,n on the unit interval I as an absolutely continuous with respect to the Lebesgue measure with
Radon–Nikodym derivative constant on the set Ix , such that the measure of set Ix is equal to

μβ,n(Ix) = e−βV (x),

where by Ix we denote the dyadic interval coded by x = (x1, . . . , xn) ∈ T2 such that |x| = n, i.e. Ix =
[∑n

k=1 xk2−k,
∑n

k=1 xk2−k + 2−n).
After a normalization by proper a deterministic sequence, say cβ,n, one obtains measures cβ,nμβ,n converging

towards a finite nonzero random measure μβ on I . Essentially, due to self-similarity of the model, asymptotic behavior
of μβ,n boils down to the asymptotic behavior of its total mass, i.e.

Zβ,n = μβ,n(I ) =
∑
|x|=n

e−βV (x).

Derrida and Spohn [19] explained that behavior of the cascade depends mainly on the parameter β and that there
is a phase transition in the behavior of the limiting measure. Under (1.1) the critical value of parameter β is 1. For
β < 1 (high temperature) and β = 1 (freezing temperature) the limiting measure μβ is continuous, although singular
with respect to the Lebesgue measure, whereas for β > 1 (low temperature) is purely atomic. In the continuous case
one of the fundamental problems is description of local behavior of the measure μβ , e.g. fluctuations of μβ , which is
the main problem considered in this paper. More precisely we aim to find optimal, deterministic functions φ1 and φ2
such that for μβ -almost all x ∈ I and for sufficiently large n we have almost surely (a.s.)

φ1(n) ≤ μβ

(
Bn(x)

) ≤ φ2(n),

where Bn(x) is the dyadic set of length 2−n containing x.

1.2. The subcritical case

If β < 1 we say that the system is in the subcritical case or high temperature case. In this setting, result of Kahane and
Peyrière [24] ensures that under some mild integrability assumptions

(EZβ,n)
−1Zβ,n → Zβ a.s.

where Zβ is a.s. positive and finite. Therefore one may infer, that for any fixed x ∈ T2, as n → ∞

(EZβ,n)
−1μβ,n(Ix) → μβ(Ix) a.s.

the details are given in Section 2. Local fluctuations of μβ were described by Liu [26], who proved that for any ε > 0
for μβ -almost any x ∈ I and for sufficiently large n

e−(a+ε)n ≤ μβ

(
Bn(x)

) ≤ e−(a−ε)n,

for some constants a > 0 depending on β and ξ . Liu [26] proved this estimates for generalized model, defined in
Section 2.

1.3. The critical case

Whenever β = 1, we say that the system is in the critical case, or in the freezing temperature. This is the main case
considered in this article. The situation is more involved than in the subcritical case since in the latter, the limit Zβ

emerged as that of the positive martingale (EZβ,n)
−1Zβ,n. Thus the proper choice of normalizing cβ,n was natural.
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It turns out that in the critical case, this limit vanishes, showing that a different scaling is needed in order to obtain
a nontrivial limit. The solution to this problem was recently delivered by Aïdékon and Shi [2] yielding

√
nZ1,n → Z1 in probability

with a.s. finite and positive Z1. This convergence cannot be improved to a.s. convergence, since lim supn→∞
√

nZ1,n =
∞ a.s. as is also proved in [2]. From the convergence in probability however, we obtain that, as n → ∞

√
nμ1,n(Ix) → μ1(Ix) in probability.

Barral et al. [4] proved that μ1 is atomless and considered the problem of fluctuations. Under an additional assumption
that ξ is Gaussian, it was proved that for certain c > 0 and arbitrary k > 0, with probability one for μ1-almost any
x ∈ I , for sufficiently large n

e−c
√

n logn ≤ μ1
(
Bn(x)

) ≤ e−k logn.

As the main results of this article shows, these bounds are not optimal and can be improved to the estimates of the
form

e−d
√

n log logn ≤ μ1
(
Bn(x)

) ≤ e−√
nL(n),

for some slowly varying function L with L(n) → 0 as n → ∞. Moreover these estimates are valid for general,
not necessary Gaussian, random variable ξ . Our results show also that these bounds are precise and give a detailed
description of the lower and upper time–space envelope of logμ1(Bn(x)). Roughly speaking, we will show that it
satisfies the same bounds as the sequence e−V (xn), where xn is a vertex of nth generation chosen at random in a way
that will allow us to describe the behavior of V (xn). For details see the discussion in Section 2.

1.4. The supercritical case

Situation when β > 1 is referred to as the supercritical case or “glassy” low temperature phase. In this case, the
asymptotic behavior of Zβ,n is determined by the minima of V (x) for |x| = n. Using the work of Aïdékon [1], giving
the weak convergence of min|x|=n V (x) − 3/2 logn, Madaule [27] was able to prove that, as n → ∞

n
3β
2 Zβ,n → Zβ in distribution.

Whence we may infer that for β > 1

n
3β
2 μβ,n(Ix) → μβ(Ix) in distribution.

However, as mentioned before, the limiting measure μβ is purely atomic, see Barral et al. [7].

1.5. Liouville quantum gravity and Liouville Brownian motion

Finally, let us also mention that there is a natural counterpart of the measures μβ in a continuous setting. Roughly
speaking, these are random measures on a given domain D in Rd with the following formal definition

μγ = eγX(x)−γ 2/2E[X(x)2]σ(dx),

where X is a centered Gaussian random field with the property that Cov(X(x),X(y)) = − log‖x − y‖ + O(1), as
‖x − y‖ → 0 and σ is a given Radon measure. Since X cannot be defined pointwise even the existence of such a
measure is far from being trivial (cf. [9,25]). In the particular case, when X is a Gaussian free field with appropriate
boundary condition these measures are important objects in theoretical physic because of the connections with the
theory of Liouville quantum gravity. It is also worth to point out that Liouville quantum gravity is conjecturally
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related to discrete and continuum random surfaces. Roughly speaking, it appears as the scaling limit of a large class
of statistical physical models (see for instance [31] for further details and references therein).

Recently, Berestycki [8] and independently Garban, Rhodes and Vargas [22,31] have constructed a diffusion on D,
called Liouville Brownian motion, that has μ as a stationary measure. This process is conjectured to be the scaling
limit of random walk on large planar maps. Finally, let as also mention the relationship between Liouville Brownian
motion and the decay of the measure μ: if pt (x, y) is its transition probability then it is believed that

pt (x, y)∼e−μ(B(x,|x−y|))/t

t
as |x − y| → 0.

See [31] for further discussion and details.

2. Generalized Mandelbrot cascades and main results

2.1. Generalized Mandelbrot cascades

The main aim of this article is to study asymptotic properties of the limiting measure. Since only the values of the
measure are of interest to us, we can regard the cascades as measures on some abstract space. This leads to so-called
generalized Mandelbrot cascades defined in the next few paragraphs.

Consider a one-dimensional, discrete-time branching random walk governed by a point process �. We start with
single particle placed at the origin of the real line. At time n = 1 this particle dies while giving birth to a random num-
ber of particles which will now form the first generation. Their position with respect to the birth place is determined
by the point process �. At time n = 2 each particle of the first generation, independently from the rest, dies while
giving birth to the particles from the second generation. Their positions, with respect to the birth place are determined
by the same distribution �. The system goes on according to this rules. Obviously the number of particles in each
generation forms a Galton–Watson process. We denote the corresponding random tree rooted at ∅ by T ⊆U, where

U =
⋃
k≥0

Nk.

We write |x| = n if x ∈ Nn, that is if x is a particle at nth generation. We denote the positions of particles of the
nth generation as (V (x)||x| = n), and the whole process as (V (x)|x ∈ T). This process is usually referred to as a
branching random walk. For any vertices x, y ∈ T, by �x, y� we denote the shortest path connecting x and y. We can
partially order T by letting x ≥ y if y ∈ �∅, x�, that is if y is an ancestor of x. Let x ∧ y = inf{x, y} be the oldest
common ancestor of x and y. For x ∈ T we introduce the set of children of x by

C(x) = {
y ≥ x||y| = |x| + 1

}
and the set of siblings of x by

	(x) = {
y||y| = |x|, |x ∧ y| = |x| − 1

}
.

Finally, xi denotes the vertex in �∅, x� such that |xi | = i. The branching random walk gives rise to a random measure
on the boundary of T, i.e.

∂T = {ξ ∈ I|ξn ∈ T, n ∈N},
where I = NN. For ξ ∈ I denote the truncation ξn = ξ|{1,...,n} and write ξ > x for x ∈ T whenever ξn = x for some
n ∈ N. Notice that ∂T forms an ultrametric space with

B(x) = {ξ ∈ ∂T|ξ > x}, x ∈ T

as its topological basis. This corresponds to the choice of dc(x, y) = c−|x∧y| with c > 1 as a metric on ∂T in which
B(x) is a ball of radius c−|x|.
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Observe that in a very special case � = δξ0 + δξ1 , where ξ0 and ξ1 are i.i.d. and satisfy (1.1) the model reduces to
the Mandelbrot cascade defined in the Introduction. Indeed, every particle has exactly two children, i.e. T = T2 and
the intervals Ix ⊆ I correspond to the balls B(x) ⊆ ∂T. However, below we work in full generality, when the number
of children, the corresponding tree T and its boundary ∂T are random.

2.2. Assumptions and basic properties

In this paper we work under a standard assumption that the branching random walk is in the so-called boundary (or
critical) case, that is

E

[ ∑
|x|=1

e−V (x)

]
= 1 and E

[ ∑
|x|=1

V (x)e−V (x)

]
= 0 (2.1)

which boils down to (1.1) if each particle has exactly two children. Throughout the paper we use the convention that∑
∅

= 0. We need also some additional integrability assumptions, that is

σ 2 = E

[ ∑
|x|=1

V (x)2e−V (x)

]
< ∞ (2.2)

as well as for some p > 2,

E
[
L

(
log+ L

)p]
< ∞, (2.3)

where L = ∑
|x|=1(1 +V +(x))e−V (x). Most of the discussions in this paper become trivial if the system dies out, that

is if T is finite. For example, by our definition ∂T = ∅ for finite T. Whence we assume that the underlying Galton–
Watson process is supercritical, i.e. E[∑|x|=1 1] > 1, so that the system survives with positive probability. Notice that
this also implies the branching random walk is not reduced to a classical random walk, more precisely that the number
of offspring #� is bigger than 1 with positive probability. To avoid the need of considering the degenerate case we
introduce the conditional probability

P∗[·] = P[·|nonextinction].
Our main results will be formulated in terms of the measure P∗. We will now focus on the definition of the measures
μn and μ starting with defining the total mass of the former via

μn(∂T) =
∑
|x|=n

e−V (x).

It can be easily shown, that thanks to the first condition in (2.1) this sequence forms a nonnegative, mean one mar-
tingale with respect to Fn = σ(V (x)||x| ≤ n) (called the additive martingale), and whence is convergent a.s. It turns
out that our second assumption in (2.1) implies that the corresponding limit is 0 (see for example Biggins [11]).
Nevertheless Aïdékon and Shi [2] proved that, under hypotheses (2.1), (2.2) and (2.3), we have the convergence

√
nμn(∂T) → μ(∂T) in probability. (2.4)

Moreover, P∗[μ(∂T) > 0] = 1. This result holds true and was proven under slightly weaker assumptions than (2.3).
Since our main result requires (2.3), we will continue to invoke other results with slightly stronger conditions for
readers convenience.

Similarly, to define μn(B(y)) for y ∈ T, just truncate the additive martingale to the subtree of all branches contain-
ing y, that is

μn

(
B(y)

) =
∑

|x|=n,x>y

e−V (x) = e−V (y)
∑

|x|=n,x>y

e−(V (x)−V (y))
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and by another appeal to (2.4) we infer that, as n → ∞
√

n
∑

|x|=n,x>y

e−(V (x)−V (y)) → Wy in probability

for some nonnegative Wy . Whence, by defining μ(B(y)) as the limit in probability of
√

nμn(B(y)), we get

μ
(
B(y)

) = e−V (y)Wy.

It can be easily verified that almost surely

μ(∂T) =
∑
|x|=1

e−V (x)Wx.

Analogously, for any y ∈ T and n > |y|

Wy =
∑

|x|=n,x>y

e−(V (x)−V (y))Wx.

Note that this means exactly that

μ

( ⋃
|x|=n,x>y

B(x)

)
= μ

(
B(y)

) =
∑

|x|=n,x>y

μ
(
B(x)

)
since B(y) = ⋃

|x|=n,x>y B(x). By the extension theorem μ can be uniquely extended to a measure on ∂T.

2.3. Main results

For functions f,g : N → R we write f (n) ≤i.o. g(n) if f (n) ≤ g(n) for infinitely many n and f (n) ≤a.a. g(n) if
f (n) ≤ g(n) for all but finitely many n. We want to find deterministic functions φ1, φ2 : N→ R such that

φ1(n) ≤a.a. μ
(
B(ξn)

) ≤a.a. φ2(n)

P∗-almost surely for μ-almost all ξ ∈ ∂T.
Our first result describes the upper time–space envelope of μ(B(ξn)).

Theorem 2.1. Assume (2.1), (2.2) and (2.3). Let ψ ∈ C1(R+) be decreasing such that t1/2−δψ(t) is eventually in-
creasing to +∞ for some δ > 1

p
. Then P∗-almost surely for μ-almost all ξ ∈ ∂T

μ
(
B(ξn)

) ≤a.a. e
−√

nψ(n), if
∫ ∞ ψ(t)

t
dt < ∞

and

μ
(
B(ξn)

) ≥i.o. e
−√

nψ(n), if
∫ ∞ ψ(t)

t
dt = ∞.

Note that this result gives necessary and sufficient conditions for μ(B(ξn)) ≤a.a. e−√
nψ(n) allowing to describe

the upper time–space envelope of μ(B(ξn)) with arbitrarily small gap. In order to illustrate this, define the functions
ψk,ψ

(ε)
k : N→ R for k ∈ N and ε > 0 by

ψk(t) =
[

k∏
i=1

log(i)(t)

]−1

, ψ
(ε)
k (t) = ψk(t) logk(t)

−ε,
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where log(i)(t) stands for the ith iterate of log(t). We can deduce from Theorem 2.1 that

e−√
nψk(n) ≤i.o. μ

(
B(ξn)

) ≤a.a. e
−√

nψ
(ε)
k (n).

Since the same inequalities would hold if ψ
(ε)
k or ψk was multiplied by an arbitrary positive constant, we deduce that

lim inf
n→∞

− log(μ(B(ξn)))√
nψ

(ε)
k (n)

= ∞ and lim inf
n→∞

− log(μ(B(ξn)))√
nψk(n)

= 0

P∗-almost surely for μ-almost all ξ . In particular for any k ∈ N one has

lim inf
n→∞

log(− log(μ(B(ξn)))) − 1
2 logn + ∑k

j=2 log(j)(n)

log(k+1)(n)
= −1.

Our second result describes the lower time–space envelope.

Theorem 2.2. Assume (2.1), (2.2), (2.3) and E[∑|x|=1 |V (x)|3+εe−V (x)] < ∞ for some ε > 0. Then for any δ > 0,
P∗-almost surely for μ-almost all ξ ∈ ∂T,

μ
(
B(ξn)

) ≥a.a. e
−(1+δ)

√
2σ 2n log logn,

where σ 2 is given by (2.2) and

μ
(
B(ξn)

) ≤i.o. e
−(1−δ)

√
2σ 2n log logn.

From the above one gets instantly that

lim sup
n→∞

− log(μ(B(ξn)))√
2σ 2n log logn

= 1 a.s.

2.4. Discussion of the results

The problem of describing local fluctuations of the Mandelbrot cascades in the critical case was previously investigated
by Barral et al. [4]. They considered the case when T is the binary tree T2 and the branching random walk is generated
by the Gaussian distribution and proved that for any ε > 0 and any k ∈N

exp
{−(1 + ε)

√
2 log(2)n logn

} ≤i.o. μ
(
B(ξn)

) ≤a.a. exp{−k logn}
and

exp
{−√

6 log(2)
√

n(logn + (1/3 + ε) log logn
} ≤a.a. μ

(
B(ξn)

)
P∗-almost surely for μ-almost all ξ ∈ ∂T. Notice that the bounds appearing in the first part of this result, have different
asymptotic. Thus, this result does not give a detailed information about the upper time–space envelope of μ(B(ξn)).

To prove Theorems 2.1 and 2.2 we use the spinal decomposition and the change of measure, based on the work
of Biggins, Kyprianou [12], used for example by Aïdékon, Shi [2]. After the change of measure, along every spine
{wn} (i.e. a random element of ∂T), in the new probability space, V (wn) behaves as a random walk conditioned to
stay positive and its fluctuations were studied by Hambly et al. [23]. This result provides description of time–space
envelopes with arbitrary small error.

The details are given in Sections 3–6. First, in Section 3, we recall some basic properties of the random walk
conditioned to stay positive. In Section 4 we describe the change of the probability space and finally in Sections 5 and
6 we give complete proof of our results.
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3. One-dimensional random walk

In this section we introduce a one-dimensional random walk associated with the branching random walk defined
above. Next we define a random walk conditioned to stay above some level −α for α ≥ 0 and formulate its funda-
mental properties concerning fluctuations of its paths. Those results will play a crucial role in our arguments.

3.1. An associated one-dimensional random walk

Assumption (2.1) allows us to introduce a random walk {Sn} with the distribution of increments given by

E
[
f (S1)

] = E

[ ∑
|x|=1

f
(
V (x)

)
e−V (x)

]
,

for any measurable f : R → [0,∞). Then, since the increments S2 − S1, S3 − S2, . . . are independent copies of S1,
one can easily show, that for any n ∈ N and measurable g : Rn →R we have

E
[
g(S1, S2, . . . , Sn)

] = E

[ ∑
|x|=n

g
(
V (x1),V (x2), . . . , V (xn)

)
e−V (x)

]
.

Note that by (2.1)

E[S1] = E

[ ∑
|x|=1

V (x)e−V (x)

]
= 0

and thus the random walk {Sn} is centered and by (2.2) has a finite variance

E
[
S2

1

] = E

[ ∑
|x|=1

V (x)2e−V (x)

]
= σ 2 < ∞.

3.2. A conditioned random walk

It turns out that in our considerations an important role will be played not by the random walk {Sn}, but by its
trajectories conditioned to stay above −α for some α ≥ 0. Bertoin and Doney [10] showed that for each k ∈ N,
A ∈ σ(Sj , j ≤ k) the limiting probabilities

lim
n→∞P[A|τα > n],

where τα = inf{k ≥ 1 : Sk < −α}, are well defined and nontrivial. Their result is a discrete analogue of the relationship
between the Brownian motion and the Bessel-3 process. It turns out that the conditioned random walk forms a Markov
chain. Here we sketch the arguments leading to a description of its transition probability.

Since the random walk {Sn} is centered, τ+ = inf{k ≥ 1 : Sk ≥ 0} is finite a.s. If we put

R(u) = E

[
τ+−1∑
j=0

1{Sj ≥−u}

]
, (3.1)

we see that by the duality lemma, R is the renewal function associated with the entrance to (−∞,0) by the walk S.
That is, R can be written in the following fashion

R(u) =
∑
k≥0

P[Hk ≥ −u]
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for u ≥ 0, where H0 > H1 > H2 > · · · are strictly descending ladder heights of {Sn}, Hk = Sτ−
k

with τ−
0 = 0 and

τ−
k+1 = min{j ≥ τ−

k |Sj < Hk} for k ≥ 0. One can show that E[S2
1 ] < ∞ and E[S1] = 0 ensure E[|H1|] < ∞ (see e.g.

Feller [21], Theorem XVIII.5.1).
As a consequence of (3.1), by conditioning on S1, one gets the following identity

R(u) = E
[
R(S1 + u)1{S1≥−u}

]
for u ≥ 0. (3.2)

Thus 1{τα>n}R(Sn + α) is a martingale. The corresponding h-transform defines a Markov chain such that for any
measurable subset A of Rk

P↑
α

[
(S1, . . . , Sk) ∈ A

] = 1

R(α)
E

[
1{(S1,...,Sk)∈A}∩{τα>k}R(Sk + α)

]
. (3.3)

Then the transition probability of this Markov chain is given by

P ↑
α (x, dy) = 1{y≥−α}

R(y + α)

R(x + α)
P (S1 + x ∈ dy), x ≥ −α.

The random process {Sn} under the probability measure P↑
α is called the random walk conditioned to stay in [−α,∞).

3.3. Some properties of the renewal function R

Here we collect some properties of the function R, following from the renewal theorem, that will be needed in next
sections. The renewal theorem (see e.g. Feller [21]) distinguishes between two cases, when the random walk {Sn} is
nonarithmetic (i.e. it is not contained in any set of the form aZ for positive a) and when it is arithmetic. In the first
case the renewal theorem says that for every h > 0 the limit

lim
u→∞R(u + h) − R(u) = h/E|H1|

exists and is finite. If the random walk is arithmetic, then the same limit exists but only for h and u being multiplies
of a:

lim
n→∞R(na + h) − R(na) = h/E|H1|.

Below we treat both cases simultaneously since we need just some simple consequences of the results stated above.
In both cases the following limit exists

c0 = lim
u→∞

R(u)

u
. (3.4)

Whence there are constants c2 > c1 > 0 such that for any u ≥ 0

c1(1 + u) ≤ R(u) ≤ c2(1 + u). (3.5)

Moreover, there is a constant c3 > 0 such that for every u,x > 0

R(u + x) − R(u) ≤ c3(1 + x). (3.6)

3.4. Some properties of the conditioned random walk

Here we describe some properties of trajectories of the Markov chain ({Sn},P↑
α) that will be needed in the proofs of our

main results. Analogously to the Bessel-3 process, paths of the conditioned random walk stays in ‘some neighborhood’
of n1/2. The precise description of its fluctuations was provided by Hambly et al. [23] and is stated in the next two
lemmas.
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Lemma 3.1 (Law of the iterated logarithm). Suppose that for some δ > 0, E|S1|3+δ < ∞. Then

lim sup
n→∞

Sn√
2nσ 2 log logn

= 1 P↑
α a.s.

Lemma 3.2 (Lower space–time envelope). Suppose that E[S2
1 ] < ∞ and ψ is a function on (0,∞) such that ψ(t) ↓

0 and
√

tψ(t) ↑ ∞ as t ↑ ∞. Then

lim inf
n→∞

Sn√
nψ(n)

= ∞ or 0 P↑
α a.s.

accordingly as∫ ∞ ψ(t)

t
dt < ∞ or = ∞.

We will need also two further auxiliary lemmas reflecting the fact that trajectories of the conditioned random walk
goes to +∞. The first lemma is due to Biggins [13].

Lemma 3.3. Fix y ≥ x ≥ −α. Then

P↑
α

[
min
n≥1

Sn > x|S0 = y
]

= R(y − x)

R(α + y)
.

The next lemma seems to be standard, however since we don’t know any reference we provide a complete proof of
it.

Lemma 3.4. For fixed x > 0 there is c4 such that

P↑
α

[
min
k≥n

Sk ≤ x
]

≤ c4 logn√
n

, n > 1.

Proof. In the proof we need the local limit theorem for conditioned random walks due to Caravenna [18]. In our
settings this result implies that for fixed h > 0 there is c5 such that

sup
r≥−α

P↑
α[r ≤ Sn ≤ r + h] ≤ c5√

n
, (3.7)

for any n ≥ 1. We write

P↑
α

[
min
k≥n

Sk ≤ x
]

≤ P↑
α[Sn ≤ 2x] + P↑

α

[
min
k≥n

Sk ≤ x;Sn > nx
]
+ P↑

α

[
min
k≥n

Sk ≤ x;2x < Sn ≤ nx
]
. (3.8)

Thus we have to bound three expressions. The first term, by (3.7), can be bounded in the following fashion:

P↑
α[Sn ≤ 2x] ≤ c5(2x + α)

h
√

n
.
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For the second one we use Lemma 3.3, inequality (3.6) and the lower bound in (3.5)

P↑
α

[
min
k≥n

Sk ≤ x;Sn > nx
]

=
∫ ∞

nx

P↑
α

[
min
k≥n

Sk ≤ x|Sn = y
]
P↑

α[Sn ∈ dy]

=
∫ ∞

nx

(
1 − P↑

α

[
min
k≥n

Sk > x|Sn = y
])

P↑
α[Sn ∈ dy]

=
∫ ∞

nx

(
1 − R(y − x)

R(α + y)

)
P↑

α[Sn ∈ dy]

=
∫ ∞

nx

R(α + y) − R(y − x)

R(α + y)
P↑

α[Sn ∈ dy]

≤ c3

c1

∫ ∞

nx

1 + α + x

1 + α + y
P↑

α[Sn ∈ dy]

≤ c3

c1

1 + α + x

1 + α + nx
P↑

α[Sn > nx]

≤ c6

n
,

for some c6. To estimate the last term in (3.8) we apply, successively, Lemma 3.3, (3.6), the lower bound in (3.5) and
(3.7)

P↑
α

[
min
k≥n

Sk ≤ x;2x < Sn ≤ nx
]

=
∫ nx

2x

P↑
α

[
min
k≥n

Sk ≤ x|Sn = y
]
P↑

α[Sn ∈ dy]

=
∫ nx

2x

(
1 − P↑

α

[
min
k≥n

Sk > x|Sn = y
])

P↑
α[Sn ∈ dy]

=
∫ nx

2x

R(α + y) − R(y − x)

R(α + y)
P↑

α[Sn ∈ dy]

≤ c3

c1

∫ nx

2x

1 + α + x

1 + α + y
P↑

α[Sn ∈ dy]

≤ c3

c1

∑
0≤i≤xn/h

1 + α + x

1 + α + 2x + ih
P↑

α

[
2x + ih ≤ Sn ≤ 2x + (i + 1)h

]
≤ c7(1 + log(n))√

n
.

This completes the proof. �

4. Derivative martingale and change of probabilities

4.1. Derivative martingale

To study local properties of the random measure μ it is convenient to express it in terms of another fundamental
martingale associated with the branching random walk, namely of the derivative martingale. It is defined as

Dn =
∑
|x|=n

V (x)e−V (x).

Our assumption (2.1) ensures that this formula defines a centered martingale, i.e. EDn = 0 for all n ∈N. Convergence
of the derivative martingale was studied by Biggins and Kyprianou [12], who proved that under assumptions (2.1),
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(2.2) and (2.3)

Dn → D, P∗ a.s.

and D > 0, P∗ a.s. Aïdékon and Shi [2] were able to relate D with the limit of the additive martingale, that is μ(∂T)

(see (2.4)) and proved that

μ(∂T) =
(

2

πσ 2

)1/2

D, P∗ a.s.

Similarly, starting the derivative martingale from any vertex x ∈ T, that is considering

Dx,n =
∑

|y|=|x|+n
y>x

(
V (y) − V (x)

)
e−(V (y)−V (x)),

gives a.s. limit Dx = limn→∞ Dx,n. Since Wx = c8Dx we get

μ
(
B(x)

) = c8e
−V (x)Dx, P∗ a.s, (4.1)

where c8 = ( 2
πσ 2 )1/2.

4.2. Change of probabilities

Our argument for Theorems 2.1 and 2.2 require a change of the probability space. This is a standard approach in the
theory of branching random walks. An appropriate change of the probability measure reduces the main problem to a
question expressed in terms of a random walk on the real line. We would like to use the fact that {Dn} is a martingale
and apply the Doob h-transform. Unfortunately the derivative martingale is not positive. To overcome this difficulty
we follow the approach based on the truncated argument presented in Biggins, Kyprianou [12] and Aïdékon, Shi [2].
For any vertex x ∈ T put

V (x) = min
y∈�∅,x�

V (y).

Define the truncated martingale as

D(α)
n =

∑
|x|=n

R
(
V (x) + α

)
e−V (x)1{V (x)≥−α}, (4.2)

where R is given by (3.1). Because of (2.1) and (3.4), we expect that for large values of α, D
(α)
n should be comparable

with Dn. In next sections we describe how these martingales are related with each other in terms of the cascade
measures.

Assuming (2.1), Biggins and Kyprianou [12] proved that for any α ≥ 0, {D(α)
n } is a nonnegative martingale with

E[D(α)
n ] = R(α). Using this fact we can define a probability measure P(α) via

P(α)|Fn
= D

(α)
n

R(α)
· P|Fn

that is for any A ∈ Fn,

P(α)[A] = E

[
1A

D
(α)
n

R(α)

]
. (4.3)

Giving rigorous arguments requires P(α) to be defined on the space of marked trees with distinguished rays, that is
infinite lines of descents starting from the root or simply the elements of ∂T (we refer to Neveu [30] for more details).
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The distinguished ray is called the spine and will be denoted by {wn}. To explain how it is chosen, let for any u > α,
�̂(α)(u) denote a point process whose distribution under P is the law of (u + V (x), |x| = 1) under P(α+u). We start
with a single particle placed at the origin of the real line. Denote this particle by w0 =∅. At nth moment in time (for
n > 0), each particle of generation n dies and gives birth to point processes independently of each other: the particle
wn generates a point process distributed as �̂(α)(V (wn)) whereas other particle say x, with |x| = n and x �= wn

generates a point process distributed as V (x) + �. Finally the particle wn+1 is chosen among the children y of wn

with probability proportional to R(α + V (y))e−V (y)1{V (y)≥−α}. An induction argument proves

P(α)[wn = x|Fn] = R(V (x) + α)e−V (x)1{V (x)≥−α}
D

(α)
n

.

Note that, formally, the measure defined above is different from the one defined by the equation (4.3). However,
since there is a natural projection from the space of marked trees with distinguished rays to the space of marked trees
and (4.3) defines marginal law of P(α) defined on space of marked trees with distinguished rays, we feel free, by slight
abuse of notation, to use the same symbol for both measures.

4.3. Spine and conditioned random walk

Biggins and Kyprianou [12] proved that the positions of the particles obtained in the way described above have the
same distribution as the branching random walk under P(α). Moreover the process {V (wn)} under P(α), is distributed
as the centered random walk {Sn} conditioned to stay in [−α,∞).

Since the truncated martingale (4.2) is positive, it has an a.s. limit

D(α) = lim
n→∞D(α)

n . (4.4)

It turns out (see Biggins and Kyprianou [12]) that this convergence holds also in mean. This implies in particular that
P(α) is absolutely continuous with respect to P with density D(α), that is for any A ∈F

P(α)[A] = E

[
1A

D(α)

R(α)

]
.

4.4. Truncated cascades

The truncated martingale D
(α)
n introduced above is a useful tool to provide a different construction of the measure μ.

The idea is to define a truncated version of Mandelbrot cascades that converge to some limit measure which with high
probability, up to a multiplicative constant, coincides with μ. The advantage of this approach is that it allows us to
prove the upper bound in Theorem 2.1 and deduce continuity of measure μ.

For given α ≥ 0 and any x ∈ T we consider the martingale

D(α)
x,n =

∑
|y|=|x|+n

y>x

R
(
V (y) + α

)
e−(V (y)−V (x))1{V x(y)≥−α}, (4.5)

where for y > x, V x(y) = minz∈�x,y� V (z). As before D
(α)
x,n converges almost surely and in the mean to the limit D

(α)
x .

We may define now the measure μ(α) on ∂T by setting

μ(α)
(
B(x)

) = 1{V (x)≥−α}e−V (x)D(α)
x . (4.6)

Note that since μn(∂T) = ∑
|x|=n e−V (x) → 0, inf|x|=n V (x) → ∞. Thus, by (3.4) we have

μ(α)
(
B(x)

) = c0e
−V (x)Dx
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on the set {minx∈T V (x) > −α}. Since the probability of the last event is at least 1 − c9e
−α (cf. formula (2.2) in [17])

we have

μ = c0

c8
μ(α), (4.7)

with probability at least 1 − c9e
−α .

4.5. Reduction to the measure P(α)

Our main result concerns P∗-a.s. fluctuations of μ(B(ξn)) along infinite path ξ ∈ ∂T that does not belong to the null
set of a measure μ. However, here we explain how to reduce the problem to the measure P(α). Instead of sampling ξ

according to μ (or its normalized version) we will take it as the random spine {wn}. We already know that for α ≥ 0
the process (P(α), {V (wn)}) behaves like a conditioned random walk. To reduce the main problem to this setting, we
need to know that μ-a.e. element from ∂T belongs to the range of a spine in (P(α), {wn}) for some parameter α. In
other words we need to prove that the range of the spines (P(α), {wn}) is a relatively big subset of (P, ∂T). We start
with the following Lemma.

Lemma 4.1. Assume (2.1) and (2.3). We have

P∗[D(α) = 0
] ≤ c9e

−α → 0 as α → ∞.

Proof. By (3.5)

R(x + α) ≥ c2(1 + x + α) ≥ c2x.

Since D > 0, P∗-a.s., on the set {minx∈T V (x) ≥ −α} we have D(α) ≥ c2D > 0. Therefore,

P∗[D(α) = 0
] ≤ P∗[min

x∈T V (x) < −α
]

≤ c9e
−α

(see inequality (2.2) in [17]). �

The following Lemma (and its respectively analogues statements for ≤i.o., ≥a.a., ≥i.o.) reduces our main results
to the measure P(α). Formally, there is a factor of c0

c8
appearing in the claim. However, it does not affect our main

results. To see that this is in fact the case, note that in Theorems 2.1 and 2.2, φ(n) = e−√
nψ(n), where

√
nψ(n) → ∞.

One can see that, by the form of the integral test of ψ in Theorem 2.1 and an explicit expression of ψ in Theorem 2.2,
the factor c0

c8
can be in fact omitted in the statements of both Theorems.

Lemma 4.2. Suppose there are a constant α0 and a function φ such that for every α > α0, P(α) almost surely for μ(α)

almost all ξ ∈ T

μ(α)
(
B(ξn)

) ≤a.a. φ(n).

Then, P∗ almost surely for μ almost all ξ ∈ T

μ
(
B(ξn)

) ≤a.a.

c0

c8
φ(n).

Proof. To establish the Lemma we need to consider measures P∗ and P(α) on the set of labelled rooted trees with
distinguished rays i.e.

X = {
(t, ξ) : t is a labelled rooted tree, ξ ∈ ∂T

}
.
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A labelled tree t is a pair (T, (Ax)x∈T\{∅}), T is a rooted tree and Ax ’s are real numbers representing the displacement
of particle v from its parent, i.e. Ax = V (x) − V (x|x|−1). Recall that for P∗ almost all labelled rooted trees t we have
a measure μ defined on ∂T. It allows us to define a measure Q on X (with a canonical σ algebra) by

Q(dt, dξ) = P∗(dt)
μ(dξ)

μ(∂T)
.

Choose α > 0 and define

U =
{
(t, ξ) ∈ X : μ(

B(ξn)
) ≤a.a.

c0

c8
φ(n)

}
,

Uα = {
(t, ξ) ∈X : μ(α)

(
B(ξn)

) ≤a.a. φ(n)
}
.

We need to justify Q(U) = 1, knowing P(α)(Uα) = 1 for α big enough. Take

Aα =
{
(t, ξ) ∈X : min

x∈T V (x) > −α
}
.

Since μ = c0
c8

μ(α) on the set Aα and thus Uc ∩Aα = Uc
α ∩Aα , for any δ > 0 we have

Q
(
Uc

) ≤Q
(
Aα ∩ Uc

) +Q
(
Ac

α

)
≤ R(α)

δ
P(α)

(
Uc

α

) + P∗(D(α) < δ
) +Q

(
Ac

α

)
= P∗(D(α) < δ

) + P∗(Ac
α

)
.

Passing with δ to 0, in view of Lemma 4.1 we obtain

Q
(
Uc

) ≤ ce−α + P∗(Ac
α

)
.

When α tends to infinity, the last expression converges to 0, thus Q(Uc) = 0. �

Let us also emphasise that, given the random label tree, the normalised measure μ(α)

μ(α)(∂T)
is the law of the (infinite)

spine ω ∈ ∂T. In other words, sampling a label tree with distinguished ray from P(α) is equivalent to first sampling a
label tree from D(α)P and then sampling a ray from μ(α) (after normalisation).

From now, the main idea is use formula (4.1) and to show that the growth of Dwn does not interfere in the behaviour
of μ(B(wn)) that should be governed by e−V (wn). However, under the changed measure P(α) the law of Dwn depends
on V (wn): conditioned on V (x) and V (wk) for |x|, k ≤ n, Dwn under P(α) has the same law as D under P(α+V (wn))

and it can be easily seen that the sequence is not even tight. This problem is the most significant difference between
the critical and subcritical case and in order to overcome this issue we need a convenient representation of μ(B(wn)),
which is available in a slightly changed settings, as explained in the previous subsection (see (4.6)).

5. Some auxiliary lemmas

In this section we are going to prove some further properties of μ that will be needed in the proofs of Theorems 2.1
and 2.2. Our main aim is to obtain a formula for the measure μ more suitable for our needs. This will be done in
Lemma 5.3. Reduction to the measure P(α) allows us to control the measure of a ball near a typical point and, in
particular, prove its continuity needed in Lemma 5.3. The fact that μ is continuous, under stronger assumptions, has
been already shown in [4], however here we work under much weaker moment hypotheses and cannot apply directly
that results.
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5.1. Continuity of μ and upper estimates

The goal of this subsection is to establish that if
∫ ∞

ψ(t)t−1 dt < ∞, then

μ
(
B(wn)

) ≤a.a. e
−√

nψ(n) P(α)-a.s.

This will in particular imply that μ is continuous. As explained above we deduce this result from analogous properties
of the measure μ(α) considered with respect to P(α) for arbitrary large α. Therefore it follows immediately from the
lemma:

Lemma 5.1. Under hypotheses of Theorem 2.1

μ(α)
(
B(wn)

) ≤a.a. e
−√

nψ(n) P(α)-a.s.

Proof. Observe that

μ(α)
(
B(wn)

) ≤ e−V (wn) sup
k

D
(α)
wn,k

≤
∑
j≥n

R
(
V (wj ) + α

)
e−V (wj ) sup

k

∑
x∈	(wj+1)

eV (wj )−V (x)
D

(α)
x,k

R(V (wj ) + α)
. (5.1)

Step 1. First we prove that the contribution of the second sum above is negligible. For this purpose we show that
for δ > 1/p (for p defined in (2.3)) we have

G
(α)
j := sup

k

∑
x∈	(wj+1)

eV (wj )−V (x)
D

(α)
x,k

R(V (wj ) + α)
≤a.a. e

jδ

P(α)-a.s. (5.2)

To prove this inequality first we show that for β > 0 and F(β) := E(β)[(log+(G
(β)

0 ))p] we have

sup
β>0

F(β) = c10 < ∞. (5.3)

By (3.5) we can take constant c11 > 0 such that for all β > 0 and x ≥ −β we have

R(β + x)

R(β)
≤ c11

(
1 + x+)

.

Then, by the fact that under P(β) conditioned on x ∈ 	(w1) the processes (V (y) − V (x)|y ∈ Tx) evolves indepen-
dently of other branches of the process and have the same law as (V (y)|y ∈ T) under P∗, we can write

E(β)
[(

log+(
G

(β)

0

))p] = E(β)

[ ∑
|y|=1

P(β)[w1 = y|F1]E(β)
[(

log+(
G

(β)

0

))p|F1,w1 = y
]]

.

Due to the structure of P(β) we have

E(β)
[(

log+(
G

(β)

0

))p|F1,w1 = y
] = E(β)

[(
log+

(
sup
k

∑
x∈	(y)

e−V (x)
D

(α)
x,k

R(α)

))p ∣∣∣F1

]
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which leads us to

E(β)
[(

log+(
G

(β)

0

))p]
= E(β)

[ ∑
|y|=1

R(V (y) + β)

D
(β)

1

e−V (y)1{V (y)≥−β}
(

log+
(

sup
k≥0

∑
x∈	(y)

D
(α)
x,k

R(β)
e−V (x)1{V (x)≥−β}

))p]

= E

[ ∑
|y|=1

R(V (y) + β)

R(β)
e−V (y)1{V (y)≥−β}

(
log+

(
sup
k≥0

∑
x∈	(y)

D
(α)
x,k

R(β)
e−V (x)1{V (x)≥−β}

))p]

≤ E

[ ∑
|y|=1

R(V (y) + β)

R(β)
e−V (y)1{V (y)≥−β}

(
log+

(
sup
k≥0

∑
|x|=1

D
(α)
x,k

R(β)
e−V (x)1{V (x)≥−β}

))p]

= E

[(
log+(

sup
n≥1

D(β)
n /R(β)

))p ∑
|y|=1

R(V (y) + β)

R(β)
e−V (y)1{V (y)≥−β}

]

≤ (2p)pc11E

[(
log+(

sup
n

D(β)
n /R(β)

)1/2p)p ∑
|y|=1

(
1 + V +(y)

)
e−V (y)

]
.

For the latter we can use the simple inequality

ab ≤ ea + b log+ b,

valid for any a, b ≥ 0. Taking

a =
(

log+(
sup
n

D(β)
n /R(β)

))1/2p

and bp = L =
∑
|y|=1

(
1 + V +(y)

)
e−V (y)

the above expectation can be bounded in the following way

E(β)
[(

log+(
G

(β)

0

))p] ≤ E

[((
sup
n

D(β)
n /R(β)

)1/2p + 1 + 1

p
L1/p log+ L

)p]
≤ 3pE

[(
sup
n

D(β)
n /R(β)

)1/2 + 1 + L
(
log+ L

)p
]

< ∞,

since by Doob’s martingale inequality E[(supn D
(β)
n /R(β))1/2] ≤ 2. This proves (5.3). Then for any α ≥ 0 and n ∈ N

we have

P(α)
[
G(α)

n > enδ ] = E(α)
[
P(α)

[
G(α)

n > enδ |V (wn)
]]

= E(α)
[
P(α)

[(
log+(

G(α)
n

))p
> npδ|V (wn)

]]
≤ E(α)

[
F

(
α + V (wn)

)
n−pδ

] ≤ c10n
−pδ.

The claim follows by the Borel–Cantelli lemma.
Step 2. Now we prove the required upper bound. Recall that (P(α), {V (wn)}) has the same distribution as the con-

ditioned random walk (P
↑
α, Sn). We bound the μ(α) using Lemma 3.2 and (5.2). Let us take any ψ like in Theorem 2.1

then

V (wn) >a.a. 8
√

nψ(n) P(α) a.s.
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and hence, by (5.1) and (5.2)

μ(α)
(
B(wn)

) ≤a.a.

∑
j≥n

R
(
V (wj ) + α

)
e−V (wj ) · G(α)

j

≤a.a.

∑
j≥n

e−4
√

jψ(j)+jδ

P(α)-a.s.

Using the monotonicity of t
1
2 −δψ(t) and ψ(t) for sufficiently large n we have∑

j≥n

e−4
√

jψ(j)+jδ ≤
∑
j≥n

e−3
√

jψ(j) ≤
∫ ∞

n−1
e−3

√
tψ(t) dt ≤

∫ ∞

n

e−2
√

tψ(t) dt.

Again, since d
dt

(t
1
2 −δψ(t)) ≥ 0, we infer that

ψ(t)

2
√

t
+ √

tψ ′(t) ≥ δ
ψ(t)√

t
.

Note that left hand side of above inequality is just d
dt

√
tψ(t). Changing the variables in the integral to s = √

tψ(t)

gives ∫ ∞

n

e−2
√

tψ(t) dt ≤
∫ ∞

n

e−2
√

tψ(t)

√
t

δψ(t)

(
ψ(t)

2
√

t
+ √

tψ ′(t)
)

dt

≤
∫ ∞

n

e−√
tψ(t)

(
ψ(t)

2
√

t
+ √

tψ ′(t)
)

dt =
∫

√
nψ(n)

e−s ds

= e−√
nψ(n)

for n ∈ N large enough. Whence

μ(α)
(
B(wn)

) ≤a.a. e
−√

nψ(n) P(α)-a.s. �

As an immediate consequence of the Lemmas 5.1 and 4.2 we obtain upper estimates in Theorem 2.1 and continuity
of μ.

Corollary 5.2. Under hypotheses of Theorem 2.1 the measure μ is continuous and

μ
(
B(wn)

) ≤a.a. e
−√

nψ(n) P(α)-a.s.

if
∫ ∞

ψ(t)t−1 dt < ∞.

5.2. A useful formula for the measure μ

In the proof of our main result the following representation of the sequence μ(B(wn)) will be needed:

Lemma 5.3. For P(α) a.e. infinite ray {wn} ∈ ∂T we have

μ
(
B(wn)

) =
∑
k≥n

e−V (wk)D̂k, (5.4)

where

D̂n = c8

∑
x∈	(wn+1)

e−(V (x)−V (wn))Dx.
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Proof of Lemma 5.3. Because of (4.1), we have

μ
(
B(wn)

) =
∑

x∈C(wn)

μ
(
B(x)

)
= μ

(
B(wn+1)

) +
∑

x∈	(wn+1)

μ
(
B(x)

)
= μ

(
B(wn+1)

) + c8e
−V (wn)

∑
x∈	(wn+1)

e−(V (x)−V (wn))Dx

= μ
(
B(wn+1)

) + e−V (wn)D̂n.

Notice that by iterating the formula above and μ(B(wn)) → 0, by continuity of μ, we conclude the lemma. �

We close this section with two more lemmas which establish that the contribution of D̂n is negligible by providing
upper and lower estimates respectively.

Lemma 5.4. Assume (2.1) and (2.3). Then for δ > 1/p

D̂n ≤a.a. e
nδ

P(α)-a.s.

Proof. The proof of the lemma is similar to the first step of the proof of Lemma 5.1. For β > 0 we set F(β) =
E(β)[(log+(D̂0))

p] and we have

F(β) = E

[ ∑
|y|=1

R(V (y) + β)

R(β)
e−V (y)1{V (y)≥−β}

(
log+

( ∑
x∈	(y)

Dxe
−V (x)

))p]

≤ E

[ ∑
|y|=1

R(V (y) + β)

R(β)
e−V (y)1{V (y)≥−β}

(
log+

( ∑
|x|=1

Dxe
−V (x)

))p]

= E

[ ∑
|y|=1

R(V (y) + β)

R(β)
e−V (y)1{V (y)≥−β}

(
log+(D∅)

)p
]

≤ (2p)pc11E

[(
log+(

D
1

2p
))p

∑
|y|=1

(
1 + V +(y)

)
e−V (y)

]
< ∞.

For t > 2 and γ = log t we have

P[D > t] ≤ P

[
D > t, min

x∈T
V (x) > γ

]
+ P

[
min
x∈T V (x) ≤ γ

]
≤ P

[
c−1

0 D(γ ) > t
] + e−γ ≤ c−1

0 t−1R(γ ) + e−γ ≤ c12t
−1 log t,

for some constant c12. In particular E[D1/2] < ∞ which in turn, by the same argument as in the proof of Lemma 5.1,
implies that the function F is bounded by some constant c13.

Finally, for n ∈N we have

P(α)
[
D̂n > enδ ] = E(α)

[
P(α)

[
D̂n > enδ |V (wn)

]]
= E(α)

[
P(α)

[(
log+(D̂n)

)p
> npδ|V (wn)

]]
≤ E(α)

[
F

(
α + V (wn)

)
n−pδ

] ≤ c13n
−pδ.

The claim follows by the Borel–Cantelli lemma. �
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Lemma 5.5. Assume (2.1). There exists η > 0 such that for all sufficiently large α ≥ 0

max
n3≤j<(n+1)3

D̂j ≥a.a. η P(α)-a.s.

Proof. By our assumptions we can infer existence of M , δ0, δ1, δ2 > 0 such that

• P[there are x �= y such that |x| = |y| = 1 and V (x),V (y) ∈ (−M,M)] ≥ δ0,
• P[D > δ1] > δ2.

Note that for α > 2M , by (3.5), we have

R(α − M)

R(α)
≥ c1

2c2
=: δ3.

The following claim holds true with η = δ1e
−M , δ = δ0δ2δ3e

−M

P(α)[D̂0 > η] ≥ δ (5.5)

for any α > 2M . Indeed,

P(α)[D̂0 > η] = P(α)

[ ∑
|x|=1,
w1 �=x

e−V (x)Dx > η

]

≥ P(α)
[
e−V (x)Dx > η for some x �= w1, |x| = 1

]
≥ P(α)

[
e−V (x) > e−M,Dx > δ1 for some x �= w1, |x| = 1

]
= E(α)

[
P(α)

[
V (x) < M,Dx > δ1 for some x �= w1, |x| = 1|F1

]]
≥ E(α)

[
1{V (x)<M for some x �=w1,|x|=1}P[D > δ1]

]
≥ δ2P

(α)
[
V (x) < M, for some x �= w1, |x| = 1

]
.

The remaining probability can be bounded from below by

P(α)

[ ⋃
|x|=1,
w1 �=x

V (x) < M

]
= E

[ ∑
|y|=1

1{∃x �=yV (x)<M}
R(α + V (y))

R(α)
e−V (y)1{V (y)≥−α}

]

≥ δ3E

[ ∑
|y|=1

1{∃x �=yV (x)<M}e−V (y)1{V (y)∈(−M,M)}
]

≥ δ3e
−MP

[∃x �= yV (x),V (y) ∈ (−M,M)
]

≥ δ0δ3e
−M.

This proves (5.5).
At the end of the proof of this lemma, we will invoke the Borel–Cantelli lemma, so first we consider the sequence

P(α)
[

min
k3≤i<(k+1)3

D̂i < η
]

≤ P(α)
[

min
k3≤i<(k+1)3

V (wi) < M
]

+ P(α)
[

max
k3≤i<(k+1)3

D̂i < η; min
k3≤i<(k+1)3

V (wi) ≥ M
]
.
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From here, we will use an induction argument in order to show that for any k, l ∈N and α > 2M

P(α)
[

max
k≤i<l

D̂i < η; min
k≤i<l

V (wi) ≥ M
]

≤ (1 − δ)l−k+1. (5.6)

Put

A(k, l) =
{

max
k≤i<l

D̂i < η; min
k≤i<l

V (wi) ≥ M
}
.

For l = k (5.6) follows from (5.5). For bigger l we argue that

P(α)
[
A(k, l + 1)

] = E(α)
[
P(α)

[
A(k, l + 1)|V (wi), D̂i , i ≤ l, V (wl+1)

]]
= E(α)

[
1A(k,l)1{V (wl+1)>M}P(α)

[
D̂l+1 ≤ η|V (wl+1)

]]
= E(α)

[
1A(k,l)1{V (wl+1)>M}P(α+V (wl+1))[D̂1 ≤ η]]

≤ P(α)
[
A(k, l)

]
(1 − δ).

Finally, from (5.6) and Lemma 3.4 we infer that for sufficiently large k

P(α)
[

max
k3≤j<(k+1)3

D̂j ≤ η
]

≤ (1 − δ)3k2 + C logk/k3/2.

From this the claim follows by Borel–Cantelli lemma. �

6. Proofs of Theorems 2.1 and 2.2

Proof of Theorem 2.1. Step 1. Upper bound. The upper bound was already proved in Corollary 5.2
Step 2. Lower bound. In view of (5.4)

μ
(
B(wn)

) ≥ e−V (wn)D̂n.

Lemma 3.2 ensures that for any ψ such that
∫ ∞

ψ(t)dt/t = ∞ we have

V (wn) <i.o.

1

2

√
nψ(n) P(α) a.s., (6.1)

that implies

e−V (wn) >i.o. e
− 1

2
√

nψ(n) P(α) a.s. (6.2)

The idea of the proof is the following. We will prove that for some large constant M , D̂n > e−M , P(α) i.o., moreover
this estimate holds i.o. on the set where (6.2) is satisfied. For a rigorous argument choose ε > 0 and M such that

P
[
there are x �= y, |x| = |y| = 1 and −M < V (x),V (y) < M

]
> ε

and

P[D > 1] ≥ ε.

Next, we define a sequence of stopping times

T0 = 0, Tk = inf
{
n > Tk−1 : 0 < V (wn) <

√
nψ(n)/2

}
,
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where the corresponding filtration is given by F∗
n = σ({V (x) : x ∈ T \Twn ∪ {wn}}), where Twn ⊆ T denotes the tree

rooted at wn. Because of (6.1), these stopping times are finite a.s. For an event

Ak = {|V (x0) − V (wTk
)| < M and Dx0 > 1 for some x0 ∈ C(wTk

) \ {wTk+1}
}
,

observe that Ak−1 ∈F∗
Tk

. For any β > 0 we set

H(β) = P(β)[A0]
and observe that for β > 2M and δ = c1

2c2
we have

P(β)[A0] ≥ E(β)
[
P(α)

[∃|x0| = 1, x0 �= w1,
∣∣V (x0)

∣∣ < M
]]
P[D > 1]

≥ εE

[ ∑
|x|=1

R(V (x) + β)

R(β)
1{V (x)+β≥0}e−V (x)1{∃x0 �=x |V (x0)|<M}

]

≥ εE

[ ∑
|x|=1

δ
1 + V (x) + β

1 + β
1{|V (x)|<M}e−M1{∃x0 �=x |V (x0)|<M}

]

≥ ε
δ

2
e−MP

[∃x0 �= x, |x0| = |x| = 1,
∣∣V (x0)

∣∣ < M,
∣∣V (x)

∣∣ < M
]

≥ δ

2
e−Mε2.

Since for α > 2M

P(α)
[
Ak|F∗

Tk

] = E(α)
[
H

(
α + V (wTk

)
)|F∗

Tk

]] ≥ δ

2
e−Mε2,

the conditioned Borel–Cantelli lemma (see e.g. Corollary 5.29 in Breiman [15]) P(α)[Ak i.o.] = 1. Hence

μ
(
B(wn)

) ≥i.o. c8e
− 1

2
√

nψ(n)e−αe−M ≥i.o. e
−√

nψ(n) P(α) a.s. �

Proof of Theorem 2.2. Step 1. Lower bound. As in the previous case it is sufficient to prove the result for P(α) a.e.
spine {wn} and all sufficiently large α. Take an arbitrary δ > 0. Then by Lemma 3.1

V (wn) ≤a.a. (1 + δ/2)

√
2σ 2n log logn P(α) a.s.

From this we obtain

μ
(
B(wn)

) ≥a.a.

∑
j≥n

e−(1+δ/2)
√

2σ 2j log log(j)D̂j .

Now we use Lemma 5.5 and for the sequence (kn)n such that (kn − 1)3 ≤ n < k3
n we write, since D̂j ≥ 0

μ
(
B(wn)

) ≥a.a.

( ∑
n≤j<k3

n

+
∑

k3
n≤j≤(kn+1)3

+
∑

j>(kn+1)3

)
e−(1+δ/2)

√
2σ 2j log log(j)D̂j

≥a.a.

∑
k3
n≤j≤(kn+1)3

e−(1+δ/2)
√

2σ 2j log log(j)D̂j

≥a.a. ηe−(1+δ/2)
√

2σ 2(kn+1)3 log log((kn+1)3)

≥a.a. e
−(1+δ)2

√
2σ 2n log logn.

This completes the first step.
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Step 2. Upper bound. Fix δ > 0. First we write lower estimates for the spine {V (wk)}. Lemma 3.1 gives

V (wn) >i.o. (1 − δ/8)

√
2nσ 2 log logn P(α) a.s. (6.3)

Choosing ψ(n) = 1/(logn)2 in Lemma 3.2 we obtain

V (wn) >a.a.

3
√

n

(logn)2
P(α) a.s. (6.4)

We define a sequence of stopping times (this is a subsequence of the indices for which (6.3) holds)

T1 = inf
{
n : V (wn) > (1 − δ/8)

√
2σ 2n log logn

}
,

Tk+1 = inf
{
n ≥ Tk(logTk)

5 : V (wn) > (1 − δ/8)

√
2σ 2n log logn

}
.

In view of (6.3) these stopping times are finite P(α) a.s. Denote

Ak+1 = {
V (wn) ≥ (1 − δ/4)

√
2σ 2Tk log logTk for Tk < n ≤ Tk(logTk)

5}.
We will prove that P(α)[An i.o.] = 1. Notice that, applying Lemma 3.3 and (3.5) we have

P(α)
[
Ak+1|F∗

Tk

] = P(α)
[

min
Tk<n≤Tk(logTk)

5
V (wn) > (1 − δ/4)

√
2σ 2Tk log logTk|V (wTk

)
]

≥ P(α)
[

min
n>Tk

V (wn) > (1 − δ/4)

√
2σ 2Tk log logTk|V (wTk

)
]

≥ R(δ/8
√

2σ 2Tk log logTk)

R(α + (1 − δ/8)
√

2σ 2Tk log logTk)
>

1

1 + α
δ.

Since Ak ∈ F∗
Tk

, the conditioned Borel–Cantelli lemma (Corollary 5.29 in Breiman [15]) implies that P(α)[Ak i.o.] =
1. Therefore, by (6.3), (6.4) and Lemma 5.4, for n = Tk such that Ak holds, we have

μ
(
B(wn)

) ≤i.o.

∑
n≤k≤n(logn)5

e−(1−δ/4)
√

2σ 2n log lognekδ +
∑

k>n(logn)5

e
− 3

√
k

(log k)2 ekδ

≤i.o. n(logn)5e−(1−δ/4)
√

2σ 2n log logne(n(logn)5)δ +
∑

k>n(logn)5

e
− 2

√
k

(log k)2

≤i.o. e
−(1−δ/2)

√
2σ 2n log logn +

(
2
√

n(logn)5

(log(n(logn)5))2

)4

× e
− 2

√
n(logn)5

(log(n(logn)5))2

≤i.o. e
−(1−δ)

√
2σ 2n log logn.

This proves Theorem 2.2. �
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