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Abstract. We exhibit an explicit natural isomorphism between spaces of branched and geometric rough paths. This provides
a multi-level generalisation of the isomorphism of Lejay–Victoir [J. Differential Equations 225 (2006) 103–133] as well as a
canonical version of the Itô–Stratonovich correction formula of Hairer–Kelly [Ann. Inst. Henri Poincaré Probab. Stat. 51 (2015)
207–251]. Our construction is elementary and uses the property that the Grossman–Larson algebra is isomorphic to a tensor algebra.

We apply this isomorphism to study signatures of branched rough paths. Namely, we show that the signature of a branched
rough path is trivial if and only if the path is tree-like, and construct a non-commutative Fourier transform for probability measures
on signatures of branched rough paths. We use the latter to provide sufficient conditions for a random signature to be determined
by its expected value, thus giving an answer to the uniqueness moment problem for branched rough paths.

Résumé. Nous explicitons un isomorphisme naturel entre les espaces de chemins rugueux branchants et géométriques. Ceci fournit
une généralisation multi-échelle de l’isomorphisme de Lejay–Victoir [J. Differential Equations 225 (2006) 103–133], ainsi qu’une
version canonique de la formule pour le terme correctif d’Itô–Stratonovich d’Hairer et Kelly [Ann. Inst. Henri Poincaré Probab.
Stat. 51 (2015) 207–251]. Notre construction est élémentaire et utilise la propriété que l’algèbre de Grossman–Larson est isomorphe
à une algèbre tensorielle.

Nous appliquons cet isomorphisme pour étudier la signature des chemins rugueux branchants. Plus précisément, nous montrons
que la signature d’un chemin rugueux branchant est triviale si et seulement si le chemin a une structure arborescente, et nous
construisons une transformée de Fourier non commutative pour les mesures de probabilités sur les signatures de chemins rugueux
branchants. Nous utilisons cette dernière pour donner des conditions suffisantes pour qu’une signature aléatoire soit déterminée par
sa valeur moyenne, fournissant ainsi une réponse au problème d’unicité des moments pour les chemins rugueux branchants.
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1. Introduction

Differential equations of the form

dYt =
d∑

i=1

fi(Yt )dXi
t , Y0 = y ∈ R

e, (1.1)

where fi : Re → R
e are smooth vector fields and X = (X1, . . . ,Xd) : [0,1] → R

d is a path, are ubiquitous in control
theory and stochastic analysis. A major difficulty in giving meaning to (1.1) in the stochastic setting is that many
examples of X (e.g., the sample paths of Brownian motion) are highly irregular, and beyond the reach of Lebesgue–
Stieltjes–Young integration theory.
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A key observation of Lyons [39] in his introduction of rough paths theory was that equation (1.1) is well-defined
in a pathwise sense as long as the driver X is a geometric rough path. One of the successes of rough paths theory has
been a separation of probabilistic and deterministic arguments required to solve such differential equations, which has
allowed the driver X to be taken well beyond semi-martingale theory (e.g., fractional Brownian motion with Hurst
parameter H > 1

4 ) as well as given a novel perspective on many classical results in stochastic analysis.
The geometric theory of rough paths is restricted to drivers which respect the usual chain rule of smooth paths.

A meaningful generalisation of the theory was provided by Gubinelli’s notion of branched rough paths [31]. Branched
rough paths can be seen as an adaptation of Butcher series [11], which are used in the analysis of non-linear ODEs, to
the setting of rough driving paths.

Branched rough paths also fall naturally into Hairer’s theory of regularity structures [32], in which drivers of
singular stochastic PDEs are typically “non-geometric” due to renormalisation procedures required to obtain non-
trivial limits. A careful analysis of branched rough paths in this framework was recently carried out in [8], which
in turn inspired an algebraic method to renormalise SPDEs in regularity structures [7]. See also [4] for a recent
application of techniques from regularity structures in a setting very close to branched rough paths.

There have been several attempts to reformulate non-geometric as geometric rough paths (the inclusion of geo-
metric into branched/non-geometric rough paths is clear, but a canonical reverse inclusion is not). For p ∈ (2,3), it
was shown in [36] that the space of non-geometric p-rough paths is canonically isomorphic to a space of geometric
rough paths over a larger space with mixed (p,p/2)-regularity. This led to a natural (deterministic) Itô formula for
rough differential equations. Another approach was taken in [33], where the authors showed that to every branched p-
rough path one can associate a geometric p-rough path, also leading to an Itô-type formula. The construction of [33],
however, is highly non-canonical (relying on the Lyons–Victoir extension theorem [38]) and requires a non-trivial
transformation of the original branched rough path. It therefore comes short of the satisfactory answer provided in
[36] for p ∈ (2,3).

The first main contribution of this article is to exhibit, for any p ≥ 1, an explicit natural isomorphism between
the space of branched p-rough paths and a suitable space of geometric rough paths, see Theorem 4.3. This result
can be seen as a multi-level generalisation of the result of [36], which is important for studying rough signals with
3-variation (or 1

3 -Hölder) regularity and worse. In turn, this isomorphism gives rise to a canonical Itô–Stratonovich
correction formula, see Proposition 4.9.

Our construction is elementary and relies on a result of Foissy [22] and Chapoton [15], which was already con-
jectured by Agrachev-Gamkrelidze [1], that the Grossman–Larson Hopf algebra, in which branched rough paths take
values, is isomorphic to a tensor Hopf algebra. Theorem 4.3 follows by combining the result of Foissy–Chapoton with
a natural way to measure mixed regularity (we find it convenient for this purpose to work with the notion of �-rough
paths [29]).

The second contribution of this article is in the study of signatures of branched rough paths. By reducing to the
geometric setting, we show that

(a) (Theorem 5.1) the signature map uniquely determines branched rough paths up to tree-like equivalence,
(b) (Theorem 5.13) there exists a Fourier transform on probability measures on signatures of branched rough paths

which uniquely determines measures.

As a consequence of the final point, we give sufficient conditions for the expected value of the signature of a random
branched rough path to uniquely determine its law, see Proposition 5.16.

The signature (also known as the Chen–Fliess series) can be seen as the exponential function on path space and
arose in Chen’s study of the cohomology of loop space [17]. It was shown in [34] that the signature uniquely de-
termines bounded variation paths up to tree-like equivalence, and this result was recently generalised to all weakly
geometric rough paths [6].

In the stochastic setting, it was shown in [19] that there exists a natural non-commutative Fourier transform (or
characteristic function) on random signatures of geometric rough paths, and that, for of a wide class of stochastic
processes, the expectation of the signature uniquely determines its law. The terms in the expected signature also arise
naturally in stochastic Taylor expansions [2,3,25] and were instrumental in the development of cubature methods on
Wiener space [37].

The difficulty in proving (a) and (b) for branched rough paths directly is that the techniques developed in [6,19]
rely on the geometric nature of the rough paths at hand. In particular, as we explain in Section 5.2, one defines a



An isomorphism between branched and geometric rough paths 1133

Fourier transform in terms of unitary representations of the signature group, and the study of these representations
in [19] relies crucially on the fact that the signature is a group-like element of a tensor Hopf algebra. That said, the
reduction to the geometric setting greatly simplifies (though does not trivialise) both problems.

Remark 1.1. We work in this paper only with rough paths over a finite-dimensional vector space. We note that a
framework to address branched rough paths over general Banach spaces has been given in [14], and we expect that
the isomorphism and uniqueness of signature from Theorems 4.3 and 5.1 carry over to this setting; the construction of
a Fourier transform however is more delicate (in [19], this was not achieved for geometric rough paths over infinite-
dimensional Banach spaces).

The structure of the article is the following. In Section 2 we collect some preliminary material and recall the result
of Foissy–Chapoton. In Section 3 we recall and prove several properties of geometric �-rough paths. In Section 4
we make explicit the isomorphism between branched and geometric rough paths, and derive several important conse-
quences. In Section 5 we prove the aforementioned results concerning signatures of branched rough paths. We con-
clude in Section 6 with an explicit example of the isomorphism from Theorem 4.3 applied to lifts of semi-martingales,
and show how to verify the conditions of Proposition 5.16 to solve the moment problem.

2. Preliminaries

2.1. Notation

Throughout the paper, we fix p ≥ 1. For a vector space V , we let T ((V )) = ∏∞
m=0 V ⊗m denote the Hopf algebra of

formal series in tensors of V . By convention, we set V ⊗0 = span(1) � R, where 1 is the unit of T ((V )). We denote
the product and coproduct on T ((V )) by ⊗̇ and � respectively. Let T (V ) = ⊕∞

m=0 V ⊗m denote the (free) tensor Hopf
algebra generated by V , which we identify with the subspace of T ((V )) consisting of finite series.

We denote by | · | a norm on a vector space. Whenever we refer to a norm on a tensor product V1 ⊗ · · · ⊗ Vm,
where V1, . . . , Vm are normed spaces, we shall always assume this is the projective norm. We then let V1⊗̂ · · · ⊗̂Vm

denote its completion. For a locally convex space V , we consequently define the algebra P(V ) = ∏∞
m=0 V ⊗̂m. Note

that T ((V )) is a subspace of P(V ), and that T ((V )) = P(V ) whenever V is finite dimensional.

2.2. Branched rough paths and the GL algebra

We briefly recall the notion of a branched p-rough path over Rd . For a graph τ , we let Nτ denote its node set. A
labelled rooted tree (henceforth simply tree) is a triple (τ, r,L), where τ is a graph which contains no loops, r ∈ Nτ

is a distinguished vertex called the root, and L : Nτ → {1, . . . , d} is a labelling of the nodes of τ . A forest is an
(unordered) multiset of trees; by convention, we postulate the empty set, denoted by 1, to be a forest. We will denote
by F and T the set of all forests and trees respectively. Let B and H denote the formal linear span over R of T and
F respectively. Let H∗ = {∑σ∈F λσ σ : λσ ∈ R ∀σ ∈ F} denote the space of formal series in forests. The space H
contains exactly the series in H∗ where all but finitely many terms are zero.

We equip both H and H∗ with the structure of the Grossman–Larson Hopf algebra and denote by � and δ the
corresponding product and coproduct respectively (note that 1 is the unit for �). For our purposes, we do not need the
precise definitions of � and δ and refer the reader to [8, Section 3] and [33, Section 2] for details.

The Butcher group G∗ is defined to be the set of all group-like elements of H∗, i.e., G∗ = {g ∈ H∗ : δ(g) =
g ⊗ g,g 
= 0}. One can check that G∗ indeed forms a group.

For σ ∈ F , let |σ | denote the number of nodes in σ . For N ≥ 0, note that the space of series of the form
∑

|σ |>N λσ σ

is an ideal of H∗. We can thus form the corresponding quotient algebra HN and denote by ρN : H∗ → HN the
canonical projection. By construction, the (finite) set FN := {σ ∈ F : |σ | ≤ N} is a basis for HN and we equip HN

with the inner product for which FN is an orthonormal basis. We define the level-N Butcher group GN as the image
of G∗ under ρN .

We also denote by H(N) the space spanned by F (N) := {σ ∈ F : |σ | = N} and let πN denote the projection
πN : ∑σ λσ σ �→ ∑

|σ |=N λσ σ , where the series
∑

σ λσ σ is understood as an element of H∗ or HM for some M ≥ N .
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Define the simplex  = {(s, t) : 0 ≤ s ≤ t ≤ 1}. A control is a continuous function ω :  → [0,∞) such that

ω(s,u) + ω(u, t) ≤ ω(s, t), ∀(s, u), (u, t) ∈ .

Definition 2.1. A branched p-rough path is a continuous function X :  → G�p� such that

(1) for all s ≤ u ≤ t

Xs,u � Xu,t = Xs,t ;

(2) there exists a control ω such that for all n = 1, . . . , �p� and s ≤ t ,

∣∣πnXs,t

∣∣ ≤ ω(s, t)n/p.

We recall the following extension theorem.

Theorem 2.2 ([31]). Let X :  → G�p� be a branched p-rough path. Then there exists a unique extension S(X) :
 → H∗ such that

(1) ρ�p�S(X) = X;
(2) for all s ≤ u ≤ t ,

S(X)s,u � S(X)u,t = S(X)s,t ;

(3) for all n ≥ 1, there exists a control ω such that |πnS(X)s,t | ≤ ω(s, t)n/p .

One can show that the S(X)s,t ∈ G∗ for all s ≤ t . The element S(X)0,1 ∈ H∗ is called the signature of X.

2.3. GL algebra as a free algebra

We recall the following result of Foissy [22, Section 8] and Chapoton [15], which will play a central role in the sequel.

Theorem 2.3 ([15,22]). There exists a subspace B = span(τ1, τ2, . . .) of B such that H is isomorphic as a Hopf
algebra to the tensor Hopf algebra T (B).

We note that the subspace B (and evidently choice of basis τ1, τ2, . . .) is not unique. However, we can and will
assume that we have a fixed set of basis elements τ1, τ2, . . . which are in T and that |τi | ≤ |τj | if i < j (cf. [22,
p. 106]).

Remark 2.4. This assumption on τ1, τ2, . . . is only for convenience; all our arguments carry through if instead τi =∑ni

j=1 c
(j)
i τ

(j)
i , where every τ

(j)
i is an element of T with |τ (1)

i | = · · · = |τ (ni )
i |.

Due to the grading of H, it follows that every element σ ∈H∗ can be written uniquely as

σ =
∞∑

m=0

∞∑
r1,...,rm=1

λr1,...,rmτr1 � · · · � τrm (2.1)

(the term with m = 0 corresponds to a linear multiple of the empty forest 1). Note that σ ∈ H if and only if all but
finitely many of the λ’s are zero.
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3. Geometric �-rough paths

In order to describe how every branched rough path is canonically a geometric rough path, we find it most natural to
work with a generalisation of geometric p-rough paths which allows one to measure different components with dif-
ferent regularity; the notion of a �-rough path [28,29], which is a generalisation of (p, q)-rough paths [36], provides
a convenient framework for this purpose.

Remark 3.1. Having different regularities for different components of the “driver” is also naturally achieved in the
theory of regularity structures. In fact, the restriction of the algebraic formalism in [10] to the one-dimensional setting
(and ignoring the presence of polynomials and derivatives on kernels) yields precisely a “branched” version of �-
rough paths. The isomorphism between branched and geometric rough paths from Theorem 4.3 then carries over to
this setting and reads: every branched �-rough path is canonically a geometric �̃-rough path, where �̃ is a tuple of
regularities which depends on �. In fact, we work with branched p-rough paths (i.e., every component of the driver
has the same regularity) only for simplicity.

Let V be a finite dimensional normed vector space. We represent different homogeneities of a rough path by
decomposing the space V into

V = V 1 ⊕ · · · ⊕ V k. (3.1)

We define the set of multi-indexes

Ak = {
(r1, . . . , rm) : ri ∈ {1, . . . , k},m ≥ 0

}
.

Due to the decomposition (3.1), we may write

T
(
(V )

) =
∏

(r1,...,rm)∈Ak

V ⊗R,

where for R = (r1, . . . , rm) ∈ Ak we denote V ⊗R = V r1 ⊗ · · · ⊗ V rm . We let πR : T ((V )) → V ⊗R denote the corre-
sponding projection.

Consider a scaling tuple � = (p1, . . . , pk) with p1 ≥ · · · ≥ pk ≥ 1. We would like to scale V 1 by 1
p1

, V 2 by 1
p2

,
etc. For a multi-index R = (r1, . . . , rm) ∈ Ak , we set nj (R) = |{i : ri = j}| for all j = 1, . . . , k, and define the scaling
for V ⊗R by

deg�(R) =
k∑

j=1

nj (R)

pj

,

which is the inhomogeneous analogue of the tensor degree.
For s ≥ 0, define further

A�
s = {

R ∈ Ak : deg�(R) ≤ s
}
.

Remark 3.2. Note that the set A�
s is finite. In the spirit of Remark 3.1, this fact is directly related to the notion of

subcriticality in regularity structures.

Consider the ideal

B�
s = {

v ∈ T
(
(V )

) : πR(v) = 0 ∀R ∈A�
s

}
.

We define the truncated tensor algebra at degree s as the quotient algebra

T (�,s)(V ) = T
(
(V )

)
/B�

s .



1136 H. Boedihardjo and I. Chevyrev

Definition 3.3. A �-rough path is a continuous function X :  → T (�,1)(V ) such that

(1) for all s ≤ u ≤ t

Xs,u⊗̇Xu,t = Xs,t ;
(2) there exists a control ω such that for all R ∈ A�

1 and s ≤ t

∣∣πR(Xs,t )
∣∣ ≤ ω(s, t)deg�(R).

The usual extension theorem for p-rough paths holds for �-rough paths, namely that a �-rough path X has a
unique extension S(X) :  → T ((V )) which preserves the multiplicative and regularity properties, see [29, Thm. 2.6].

Finally, consider the subgroup G(�,1)(V ) of T (�,1)(V ) defined as the exponential of the Lie subalgebra of
T (�,1)(V ) generated by V . We say that a �-rough path is weakly geometric if it takes values in G(�,1)(V ).

3.1. Paths in homogeneous groups

We describe now how weakly geometric �-rough paths can be treated as paths taking values in a homogeneous
group. The advantage of this viewpoint is that it gives rise to a homogeneous p-variation metric which is convenient
to work with in practice (particularly for establishing interpolation estimates). The results here will be helpful later in
Section 5.1.

We introduce on T (�,1)(V ) a family of algebra morphisms (δλ)λ>0, called dilation operators, given for any v ∈
V ⊗R by δλ(v) = λp1 deg�(R)v. Note that the restriction of (δλ)λ>0 to G(�,1)(V ) defines a homogeneous group in the
sense of Folland–Stein [23] (which is a Carnot group if and only if p1 = · · · = pk = 1).

We equip G(�,1)(V ) with a sub-additive homogeneous norm and corresponding left-invariant metric d , see [35].
Consequently, we define the p-variation norm ‖ · ‖p-var and (homogeneous) p-variation metric dp-var on the space of
functions from [0,1] to G(�,1)(V ) (see, e.g., [18, Section 3.1]).

For maps X,Y :  → T (�,1)(V ) and any tuple �′ = (p′
1, . . . , p

′
k), we define the (inhomogeneous) �′-variation

distance

ρ�′-var(X̄, Ȳ ) = max
R∈A�

1

sup
P

( ∑
[s,t]∈P

∣∣πR(X̄s,t − Ȳs,t )
∣∣1/deg�′ (R)

)deg�′ (R)

,

where supP denotes the supremum over all finite partitions of [0,1] and
∑

[s,t]∈P denotes the sum over adjacent point
in P . Note that there is a one-to-one correspondence between multiplicative maps X :  → G(�,1)(V ) and paths
X̃ : [0,1] → G(�,1)(V ) with X̃0 = 1, given by Xs,t = X̃−1

s ⊗̇X̃t . An analogue of the ball-box estimate [27, Prop. 7.49]
yields the following lemma.

Lemma 3.4. Let p ≥ 1. Define p′
j = p

p1
pj and �′ = (p′

1, . . . , p
′
k). Then the identity map

(
Cp-var([0,1],G(�,1)(V )

)
, dp-var

)
�

(
Cp-var([0,1],G(�,1)(V )

)
, ρ�′-var

)
is Lipschitz on bounded sets in the → direction, and Hölder continuous on bounded sets in the ← direction.

As usual in rough paths theory, the use of this lemma comes from the fact that the Itô-Lyons solution map for RDEs is
locally Lipschitz for the metric ρ�-var, while interpolation estimates are most easily derived for the metric dp-var. For
example, for any 0 < p < p′, it holds that (e.g., [18, Lem. 3.3])

sup
t∈[0,1]

d
(
Xn

t ,Xt

) → 0 and sup
n

∥∥Xn
∥∥

p-var < ∞ ⇒ dp′-var
(
Xn,X

) → 0. (3.2)

A useful consequence is the following.
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Lemma 3.5. Let X be a weakly geometric �-rough path. Let p > p1 and define �′ as in Lemma 3.4. Suppose that p

is sufficiently close to p1 so that T (�′,1)(V ) = T (�,1)(V ). Then X is a geometric1 �′-rough path.

Proof. Observe that there exists C > 0 such that if γ : [0,1] → G(�,1)(V ) is the lift of a bounded variation path
γ̃ : [0,1] → V with |γ̃ |1-var ≤ 1, then

‖γ ‖p1/pk

(p1/pk)-var ≤ C|γ̃ |1-var. (3.3)

By the Rashevsky–Chow theorem, for every y ∈ G(�,1)(V ) there exists a path γ : [0,1] → G(�,1)(V ), which is the
lift of a Lipschitz path in V , such that γ0 = 1 and γ1 = y. By the Arzelà–Ascoli theorem and the lower semi-continuity
of ‖ · ‖(p1/pk)-var, there exists γ (not necessarily unique) for which ‖γ ‖(p1/pk)-var is minimal amongst all such paths.
We call such a γ a (p1/pk)-geodesic from 1 to y. By (3.3), we see that ‖γ ‖(p1/pk)-var → 0 as y → 1. It follows that
‖y‖′ = ‖γ ‖(p1/pk)-var defines a sub-additive homogeneous norm on G(�,1)(V ), and is therefore equivalent to ‖ · ‖.

Let Pn be a sequence of partitions for which the mesh size |Pn| → 0. Let Xn be a piecewise (p1/pk)-geodesic
approximation to X over Pn, i.e., for every [s, t] ∈ Pn, the path [s, t] → G(�,1)(V ),u �→ Xn

s,u, is a (reparametrisation
of a) (p1/pk)-geodesic from 1 to Xs,t . It clearly holds that Xn → X uniformly. Furthermore, using the equivalence of
‖ · ‖ and ‖ · ‖′, one can apply [18, Lem. A.5] to show that ‖Xn‖p1-var � ‖X‖p1-var. It follows by (3.2) and Lemma 3.4
that X is a geometric �′-rough path. �

4. Branched rough paths are geometric �-rough paths

We proceed to give an explicit isomorphism between branched p-rough paths and weakly geometric �-rough paths.
The key remark throughout this section, which is a direct consequence of Theorem 2.3, is that every element in HN

can be uniquely written as∑
R

λRτr1 � · · · � τrm, (4.1)

where R = (r1, . . . , rm) ranges over all multi-indexes for which
∑m

j=1 |τrj | ≤ N .

Definition 4.1. Let k ≥ 1 be the largest integer such that |τk| ≤ p. Consider the decomposition into one-dimensional
subspaces

Bk = B1 ⊕ · · · ⊕ Bk, (4.2)

where Bj = span(τj ). Define pj = p/|τj | and the tuple

� = (p1,p2, . . . , pk).

We now specialise all the notation from Section 3 by setting Bk = V with the corresponding decomposition (4.2).
Note that, by construction, every element σ ∈ T (�,1)(Bk) can be written uniquely as

σ =
∑

(r1,...,rm)∈A�
1

λRτr1⊗̇ · · · ⊗̇τrm,

where A�
1 is the set of all multi-indexes R = (r1, . . . , rm) ∈ {1, . . . , k}m, m ≥ 0, for which deg�(R) = ∑m

j=1 |τrj |/
p ≤ 1.

Lemma 4.2. There is an algebra isomorphism  :H�p� → T (�,1)(Bk) given, for all R = (r1, . . . , rm) ∈A�
1 , by

 : τr1 � · · · � τrm �→ τr1⊗̇ · · · ⊗̇τrm.

1A �-rough path is called geometric if it is in the closure under ρ�-var of the lifts of V -valued bounded variation paths.
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Furthermore, there exists C > 0 such that for all τ ∈ H�p� and n = 1, . . . , �p�, it holds that

sup
deg�(R)=n/p

C−1
∣∣πR(τ)

∣∣ ≤ ∣∣πnτ
∣∣ ≤ sup

deg�(R)=n/p

C
∣∣πR(τ)

∣∣. (4.3)

Proof. The existence of  is immediate from the definitions and Theorem 2.3, while (4.3) follows from the equiva-
lence of norms on the finite-dimensional space H(n). �

Recall that the space of maps from  into H�p� and T (�,1)(Bn) can be equipped respectively with the (inhomoge-
neous) p- and �-variation metrics

ρp-var(X,Y ) = max
n=1,...,�p�

sup
P

( ∑
[s,t]∈P

∣∣πn(Xs,t − Ys,t )
∣∣p/n

)n/p

,

ρ�-var(X̄, Ȳ ) = max
R∈A�

1

sup
P

( ∑
[s,t]∈P

∣∣πR(X̄s,t − Ȳs,t )
∣∣1/deg�(R)

)deg�(R)

,

where, as before, supP denotes the supremum over all finite partitions of [0,1] and
∑

[s,t]∈P denotes the sum over
adjacent point in P .

Theorem 4.3. Consider a map X :  →H�p�. For  as in Lemma 4.2, let X̄ := (X) :  → T (�,1)(Bk). Then

(a) X is multiplicative if and only if X̄ is multiplicative,
(b) X takes values in G�p� if and only if X̄ takes values in G(�,1)(Bk),
(c) there exists C > 0, independent of X, such that if Y :  → H�p� is another map and Ȳ := (Y), then

C−1ρ�-var(X̄, Ȳ ) ≤ ρp-var(X,Y ) ≤ Cρ�-var(X̄, Ȳ ); (4.4)

in particular, X is a branched p-rough path if and only if X̄ is a weakly geometric �-rough path over Bk associ-
ated with the decomposition (4.2),

(d) suppose that X is a branched p-rough path. Let S(X) :  → H∗ denote the extension of X and S(X̄) :  →
T ((Bk)) denote the extension of X̄. Then S(X) = ıS(X̄), where ı : T ((Bk)) ↪→ P(B) is the natural inclusion
map, and where we identify H∗ with P(B) as in Section 5.2.2.

Proof. Since  is an algebra isomorphism, it holds that X is multiplicative if and only X̄ is, which proves (a).
Likewise, log(X) takes values in the Lie subalgebra of H�p� generated by the trees τ1, . . . , τk if and only if log(X̄)

takes values in the Lie subalgebra of T (�,1)(Bk) generated by τ1, . . . , τk , which proves (b). Next, the bound (4.4) is
an immediate consequence of (4.3) and the definition of ρp-var and ρ�-var, which proves (c).

To prove (d), consider N ≥ �p� and Z = ρNıS(X̄) :  → HN . It is immediate that ρ�p�Z = X, and, since ı and
ρN are algebra morphisms, that Z is a multiplicative map. Furthermore, using that S(X̄) has finite �-variation [29,
Thm. 2.6], it readily follows from an analogous bound to (4.3) that Z has finite p-variation. By uniqueness of the
branched rough path lift, it follows that Z = ρNS(X), and thus S(X) = ıS(X̄) as desired. �

Remark 4.4. The reader may wonder how canonical our interpretation of X as a geometric �-rough path is, given
that the space B and the decomposition (4.2) depend on the choice of basis τ1, τ2, . . . . It is easy to see, however, that
a different choice of τ1, τ2, . . . will lead to canonically isomorphic objects (provided τi are chosen in accordance with
Remark 2.4).

Remark 4.5. The isomorphism between geometric and non-geometric rough paths shown in [36] is precisely the case
p ∈ (2,3) of Theorem 4.3.
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Remark 4.6. In [33], for any branched p-rough path, the authors employ the Lyons–Victoir extension theorem [38]
to construct a geometric p-rough path taking values in the tensor algebra over B�p� = span(τ ∈ T : |τ | ≤ �p�). In
contrast, the isomorphism in Theorem 4.3 does not “extend” the branched rough path in any way and instead treats its
target space as a different algebraic structure. The explicit nature of this isomorphism will be particularly important
in our study of the signature in Section 5.

We now present two consequences of Theorem 4.3. For the remainder of this section, suppose that X :  → G�p� is
a branched p-rough path and that X̄ = (X) :  → T (�,1)(Bk). As before, denote by S(X) :  → H∗ the extension
of X.

First, it follows from Theorem 4.3 that the level-N lift of a branched p-rough path is the solution of a linear
differential equation driven by a geometric �-rough path.

Corollary 4.7. Let N ≥ �p� and let Y = ρNS(X)0,· : [0,1] → GN . Then Y is the solution of the linear RDE

dY = f (Y )dX̄,

where f = (f1, . . . , fk) are the (left-invariant) vector fields on HN given by right-multiplication by (τ1, . . . , τk) re-
spectively.

The interest in the above corollary stems from the fact that in general one is not able to describe Y as the solution
of a linear RDE driven by the original branched rough path X, cf. [8, Rem. 34].

Second, we show an Itô-type formula that any RDE driven by X coincides in a natural way with an RDE driven
by X̄. For the remainder of this section, consider bounded smooth vector fields f = (f1, . . . , fd) on R

e with bounded
derivatives of all orders.2

Recall the pre-Lie product �: B × B → B defined by τ � σ = πB(τ � σ ) , where πB : H → B is the projection
onto B. Explicitly, τ � σ = ∑

τ̄ n(τ, σ, τ̄ )τ̄ , where the sum is over all trees τ̄ ∈ T and n(τ, σ, τ̄ ) is the number of
single admissible cuts of τ̄ for which the branch is τ and the trunk is σ . Recall also that the space of vector fields
C∞(Re,Re) can be equipped with a pre-Lie product defined by f � g = ∑e

i=1 f i∂ig. By a result of Chapoton–
Livernet [16], we can identify B with the free pre-Lie algebra over Rd , and thus there exists a unique pre-Lie algebra
morphism B → C∞(Re,Re), τ �→ fτ , for which f•i

= fi for all i = 1, . . . , d .

Remark 4.8. Every tree τ ∈ T can be written as τ = [σ1 . . . σn]i (which is unique up to permutation of the σj ), by
which we mean that τ is formed by attaching the trees σ1, . . . , σn ∈ T to a root with label i ∈ {1, . . . , d} (if n = 0, we
have τ = •i ). For τ = [σ1 . . . σn]i ∈ T , the vector field fτ admits the inductive form

fτ = cτ

(
Dnfi

)
(fσ1, . . . , fσn), (4.5)

where cτ is a combinatorial factor expressible in terms of the symmetries of τ .

Proposition 4.9. Define the vector fields f̄ = (f̄1, . . . , f̄k) = (fτ1 , . . . , fτk
) on R

e. Then the unique solutions to the
(branched) RDE dY = f (Y )dX and the (geometric) RDE dȲ = f̄ (Ȳ )dX̄ coincide.

Proof. Recall that Y and Ȳ are characterised by the Euler estimates

Ys,t =
∑

|τ |≤�p�
fπBXs,t (Ys) + o

(
ω(s, t)

)

(where we treat Xs,t as an element of H by the embedding H�p� ↪→H) and

Ȳs,t =
∑

(r1,...,rm)∈A�
1

f̄r1 · · · f̄rmI (Ȳs)〈X̄s,t , τr1⊗̇ · · · ⊗̇τrm〉 + o
(
ω(s, t)

)
,

2The regularity assumptions on f can be significantly weakened, see the sharp version of the universal limit theorem for geometric �-rough paths
[29, Thm. 4.3]; we restrict to smooth vector fields only for simplicity.
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where ω is a control on the p-variation of X and X̄ (for the former, see [33, Prop. 3.8];3 for the latter, see [27,
Cor. 10.15]). To conclude that Y and Ȳ coincide, it remains to observe that∑

(r1,...,rm)∈A�
1

f̄r1 · · · f̄rmI (y)〈X̄s,t , τr1⊗̇ · · · ⊗̇τrm〉 = f̄Xs,t I (y) = fπBXs,t (y),

where f̄τ denotes the image of τ ∈ H under the unique algebra morphism H → O(Re) which maps τr �→ fτr for
r = 1,2, . . . , where O(Re) is the algebra of differential operators on R

e (this algebra morphism exists due to Theo-
rem 2.3). �

5. Signatures of branched rough paths

5.1. Uniqueness of signatures

We now apply the identification of branched p-rough paths and geometric �-rough paths to prove the following
characterisation of branched rough paths with trivial signature.

For a topological space S , recall that a continuous path X : [0,1] → S is called tree-like if there exists an R-tree
T, a continuous function φ : [0,1] → T, and a map ψ : T → S such that φ(0) = φ(1) and X = ψ ◦ φ.

Theorem 5.1. Let X :  �→ G�p� be a branched p-rough path. Then S(X)0,1 = 1 if and only if X0,· is tree-like.

We will first prove that a tree-like branched rough path has trivial signature, which, by Theorem 4.3, is equivalent
to showing that a weakly geometric tree-like �-rough path has trivial signature. The proof is effectively identical to
that of geometric rough paths case [6, Thm. 1.1], but we find it necessary to emphasise several details.

Lemma 5.2. Let notation be as in Section 3. Let X :  → T (�,1)(V ) be a weakly geometric �-rough path, and define

(
←−
X )s,t = X−1

1−t,1−s .

Then for all s ≤ t ,

S(
←−
X )1−t,1−s ⊗̇ S(X)s,t = 1.

Proof. The claim is clearly true if X has bounded variation (as a path in V ) and the conclusion follows by density
and Lemma 3.5. �

Remark 5.3. While we state Lemma 5.2 only for weakly geometric �-rough paths, a direct (albeit more involved)
argument shows that the same result holds true for any �-rough path (not necessarily weakly geometric) and Banach
space V .

Proposition 5.4. Let X be a weakly geometric �-rough path for which X0,· is tree-like. Then S(X)0,1 = 1.

Proof. The proof in [6, Section 3] for weakly geometric p-rough paths carries over to our present setting mutatis
mutandis. Indeed,

• the “central case” [6, Lem. 3.1] follows in the identical way by applying Lemma 5.2, and
• the proof in [6, Section 3.3] follows in the identical way once we use Lemma 3.4, the interpolation result (3.2), and

that the signature map is a continuous function in the metric ρ�′-var [28, Lem. 2.1.2]. �

3Note though that the factors cτ in (4.5) are missing from the definition of fτ in [33].
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Proof of Theorem 5.1. Denote as before X̄ = (X). Note that X̄ is tree-like if and only if X is. Furthermore, by part
(c) of Theorem 4.3, X̄ is a weakly geometric �-rough path and, by part (d) of Theorem 4.3, it holds that S(X)0,1 = 1
if and only if S(X̄)0,1 = 1. The “if” direction now follows from Proposition 5.4, while the “only if” direction follows
from the main result of [6] (one simply notes that every weakly geometric �-rough path lifts canonically to a weakly
geometric p1-rough path over Bk). �

5.2. Fourier transform and moment problem

We now discuss the Fourier transform (or characteristic function) and moment problem for signatures of branched
rough paths. The results here employ Theorem 2.3 to identify H with the tensor alegbra T (B), which allows us to
extend the methods of [19].

5.2.1. Universal locally m-convex algebra over B

We begin by constructing a certain universal topological algebra over B .

Remark 5.5. Throughout this subsection, we use no special structure of B and note that it may be replaced by c00,
the vector space of R-valued sequences which are eventually zero.

We equip B with the product topology given by the sequence of semi-norms (γk)k≥1

γk

(∑
r

λrτr

)
=

k∑
r=1

|λr |.

Let Ea(B) denote the topological algebra formed by equipping the tensor algebra T (B) with the corresponding
universal locally m-convex topology, see [19, Section 2]. Explicitly, a fundamental family of sub-multiplicative semi-
norms on Ea(B) is given by {exp(Kγk)}k≥1,K>0, where

exp(Kγk) =
∞∑

n=0

Knγ ⊗n
k ,

and

γ ⊗n
k

( ∞∑
m=0

∞∑
r1,...,rm=1

λr1,...,rmτr1⊗̇ · · · ⊗̇τrm

)
=

k∑
r1,...,rn=1

|λr1,...,rn |

(as usual, the term with m = 0 on the LHS corresponds to a linear multiple of 1 ∈ B⊗0). Note that all sums above are
finite.

For m ≥ 1, the (complete) locally convex space B⊗̂m can be identified with the space of formal series

∞∑
r1,...,rm=1

λr1,...,rmτr1⊗̇ · · · ⊗̇τrm, (5.1)

and so P(B) = ∏
m≥0 B⊗̂m can be identified with the space of formal series

∞∑
m=0

∞∑
r1,...,rm=1

λr1,...,rmτr1⊗̇ · · · ⊗̇τrm.

Let E(B) denote the completion of Ea(B). The following lemma is immediate from the above discussion (and is a
special case of [19, Cor. 2.5]).
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Lemma 5.6. The space E(B) can be identified with the subspace of P(B) consisting of series

σ =
∞∑

m=0

∞∑
r1,...,rm=1

λr1,...,rmτr1⊗̇ · · · ⊗̇τrm

such that for every k ≥ 1 and K > 0

exp(Kγk)(σ ) =
∞∑

m=0

k∑
r1,...,rm=1

Km|λr1,...,rm | < ∞.

We note that E(B) is metrizable and separable since B is (see [19, Cor. 2.4]). Moreover, recall from [19, Section 3]
that the coproduct � : Ea(B) → Ea(B)⊗Ea(B), defined as usual by �(τ) = τ ⊗1+1⊗τ for all τ ∈ B and extended
uniquely as an algebra morphism, is continuous, and so extends to the completions � : E(B) → E(B)⊗̂E(B).

Definition 5.7. Let G = {g ∈ E(B) : �g = g ⊗ g,g 
= 0} denote the set of group-like elements of E(B).

Note that G is a Polish space and a topological group.

5.2.2. Topology on H
By Theorem 2.3, there is a Hopf algebra isomorphism H � Ea(B), and we henceforth equip H with the locally
m-convex topology induced by this isomorphism. We let Ĥ denote the completion of H and note that the previous
isomorphism extends to Ĥ � E(B) as locally m-convex algebras. We continue to use exp(Kγk) for the semi-norms
on H induced by this isomorphism. That is, a fundamental family of sub-multiplicative semi-norms on H is given by
{exp(Kγk)}k≥1,K>0, where

exp(Kγk) =
∞∑

n=0

Knγ ⊗n
k , (5.2)

and

γ ⊗n
k

( ∞∑
m=0

∞∑
r1,...,rm=1

λr1,...,rmτr1 � · · · � τrm

)
=

k∑
r1,...,rn=1

|λr1,...,rn |.

Note that the above sums are all finite. Remark that while the semi-norms exp(Kγk) on H depend on the choice of
basis of B , the locally m-convex topology on H does not.

Since every element in H∗ admits a unique representation as (2.1), we can identify H∗ with P(B) = ∏
m≥0 B⊗̂m.

In particular, by Lemma 5.6, we can identify Ĥ with a subspace of H∗ consisting of formal series with a suitable
decay condition.

Recall the set of group-like elements G∗ = {g ∈H∗ : δg = g ⊗ g,g 
= 0}.

Definition 5.8. Let G = G∗∩Ĥ denote the set of group-like elements in Ĥ. Furthermore, for k ≥ 1, let Gk = G∩P(Bk)

denote the group-like elements in Ĥ generated by τ1, . . . , τk , where we canonically identify P(Bk) with a subalgebra
of H∗.

Note that G is precisely the image of G under the isomorphism E(B) � Ĥ. Equivalently, G is the subset of all
g ∈ G∗ for which exp(Kγn)(g) < ∞ for all n ≥ 1 and K > 0.

Let k be as in Definition 4.1. Then Gk consists of all g ∈ G whose unique series representation as (2.1) contains no
terms τ for which |τ | > �p�, i.e.,

g =
∞∑

m=0

k∑
r1,...,rm=1

λr1,...,rmτr1 � · · · � τrm.
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An immediate consequence of Theorem 4.3 part (d) along with the factorial decay of geometric �-rough paths [29,
Thm. 2.6], is that the signature of a branched p-rough path takes values in Gk . More precisely, we have the following
corollary.

Corollary 5.9. Let p ≥ 1 and X a branched p-rough path. For every (s, t) ∈ , it holds that S(X)s,t can be uniquely
written as

S(X)s,t =
∞∑

m=0

k∑
r1,...,rm=1

λs,t
r1,...,rm

τr1 � · · · � τrm,

where, for all K > 0,

∞∑
m=0

k∑
r1,...,rm=1

Km
∣∣λs,t

r1,...,rm

∣∣ < ∞.

Remark 5.10. We note that it is difficult to use Theorem 4.3 to obtain information about the individual quantities
〈S(X)s,t , τ 〉 for τ ∈ F . Nonetheless, using an independent method, it was shown in [5, Thm. 4] that |〈S(X)0,1, τ 〉| �
c|τ |τ !−1/p uniformly over τ ∈ F , where τ ! denotes the tree factorial.

5.2.3. Non-commutative Fourier transform
For the remainder of the section, we identify H with Ea(B) and Ĥ with E(B) as topological algebras; we also identify
G with G as topological (Polish) groups.

Our main motivation for the construction of Ĥ as the complete universal locally m-convex algebra over B is that
one can readily characterise the continuous representations of Ĥ. Indeed, for any Banach algebra A, there is a natural
bijection between continuous linear maps M : B → A and continuous algebra morphisms M : Ĥ → A. Furthermore,
for any normed space V , the set of continuous linear maps M : B → V has a straightforward characterisation: a linear
map M : B → V is continuous if and only if there exists N ≥ 1 such that M(τj ) = 0 for all j ≥ N .

For a complex finite-dimensional Hilbert space H , let L(H) denote the algebra of linear operators on H , and u(H)

the Lie subalgebra of L(H) consisting of anti-Hermitian operators on H .

Definition 5.11. Let A denote the family of all continuous finite-dimensional algebra representations M : Ĥ →
L(HM) which arise from extensions of continuous linear maps M : B → u(HM), where HM ranges over all finite-
dimensional complex Hilbert space. We define the corresponding set of matrix coefficients by

C = {
σ �→ 〈

M(σ)u, v
〉
HM

: M ∈ A, u, v ∈ HM

}
.

Note that C consists of C-valued continuous linear functionals on Ĥ. It readily follows that the restriction of any
M ∈A to G is a continuous group morphism into the compact group of unitary operators on HM (see [19, Section 4]).
Moreover, by considering adjoint and tensor product representations, one can easily show that C|G is closed under
multiplication and conjugation, and is therefore a ∗-subalgebra of Cb(G,C). To summarise, we have the following
lemma.

Lemma 5.12. The set C|G is a subspace of Cb(G,C) which is closed under multiplication and conjugation.

In order to apply a Stone–Weierstrass argument, the final and deeper point left to observe is that C separates the points
of Ĥ. Remark that if B were finite-dimensional, this would follow directly from [19, Thm. 4.8]. Although B is infinite
dimensional, it holds that every element in B⊗̂m admits the form (5.1). We can thus apply the result of Giambruno–
Valenti [30, Thm. 6] on polynomial identities of symplectic Lie algebras to conclude that, for every non-zero τ ∈ B⊗̂m,
there exists M ∈ A such that M(τ) 
= 0. It follows from the identification of Ĥ with a space of formal series from
Lemma 5.6 that for every τ ∈ Ĥ,

M(τ) = 0, ∀M ∈A ⇔ τ = 0
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(cf. proof of [19, Thm. 4.8]). Using a Stone–Weierstrass argument, we obtain the following generalisation of [19,
Cor. 4.12].

Theorem 5.13. Let μ, ν be two Borel probability measures on G. It holds that μ = ν if and only if μ(f ) = ν(f ) for
all f ∈ C, or equivalently, μ(M) = ν(M) for all M ∈ A.

Theorem 5.13 naturally suggests the following definition.

Definition 5.14 (Fourier transform). The abstract non-commutative Fourier transform of a probability measure μ

on G is the map μ̂ : C → C, μ̂ : f �→ μ(f ), or equivalently, the map μ̂ : M �→ μ(M), where M ∈A.

5.2.4. Moment problem
With the Fourier transform in hand, we are ready to address the moment-problem. Let X be a G-valued random
variable for which 〈X, σ 〉 is integrable for every σ ∈ F (e.g., X = S(X)0,1 for a random branched p-rough path with
controlled moments).

Definition 5.15. We call the element of H∗

ESig(X) =
∑
σ∈F

E
[〈X, σ 〉]σ (5.3)

the expected signature of X.

Combining Theorem 5.13 with [19, Prop. 3.2], we arrive at the following solution to the moment problem.

Proposition 5.16 (Moment problem). Suppose X is a G-valued random variable such that ESig(X) exists and lies
in Ĥ, i.e.,

exp(Kγk)
(
ESig(X)

)
< ∞, ∀K > 0, k ≥ 1, (5.4)

where exp(Kγk) is given by (5.2). If Y is another G-valued random variable such that ESig(X) = ESig(Y), then X
and Y and equal in law.

Remark 5.17. The reader may wonder the extent to which it is possible to control the quantities exp(Kγk)(ESig(X))

given that it requires us to derive the form

ESig(X) =
∞∑

m=0

∞∑
r1,...,rm

λr1,...,rmτr1 � · · · � τrm, (5.5)

and there does not seem to be an easy way to determine the values λr1,...,rm from the expression (5.3).
In the case X = S(X)0,1 for a branched p-rough path X, however, we point out that the form (5.5) can in fact arise

more naturally than (5.3) once we identify X with a geometric rough path. Furthermore, checking the bound (5.4) can
also become simpler due to the fact that

(a) by Corollary 5.9, the expression (5.5) has no terms τr with |τr | > p, and thus it suffices to check (5.4) only for k

as in Definition 4.1,
(b) a number of methods are available to bound the expected signature of geometric rough paths, one of the most

applicable being better-than-exponential tails on the local p-variation [12], see [19, Cor. 6.5].
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6. Example: Itô-lift of a semi-martingale

Suppose p ∈ (2,3) and (Xi)di=1 : [0,1] →R
d is a semi-martingale. Let X :  → G2 be the corresponding Itô branched

p-rough path defined by

Xs,t = 1 +
d∑

i=1

•iX
i
s,t +

∑
1≤i≤j≤d

•i •j Xi
s,tX

j
s,t +

d∑
i,j=1

[•i]j
∫ t

s

Xi
s,u dX

j
u,

where [•i]j is defined in Remark 4.8 and the integral is defined in the sense of Itô. Recall the subspace of trees Bk

from Definition 4.1. Using the basic identity4

•i � •j =
{

•i•j + [•i]j if i 
= j,

2 •i •i + [•i]i if i = j,

it is easy to check in this case that k = d(d+3)
2 and a suitable basis for Bk is

{•i : 1 ≤ i ≤ d} ∪ {[•i]j : 1 ≤ i ≤ j ≤ d
}
.

Furthermore, using the identities∫ t

s

Xi
s,u dX

j
u =

∫ t

s

Xi
s,u ◦ dX

j
u − 1

2

[
Xi,Xj

]
s,t

,

Xi
s,tX

j
s,t =

∫ t

s

Xi
s,u ◦ dX

j
u +

∫ t

s

X
j
s,u ◦ dXi

u,

where ◦d denotes the Stratonovich differential, we see that the unique way to write Xs,t in the form (4.1) is

Xs,t = 1 +
d∑

i=1

Xi
s,t •i +

d∑
i,j=1

∫ t

s

Xi
s,u ◦ dX

j
u •i � •j

+ 1

2

∑
1≤i<j≤d

[
Xi,Xj

]
s,t

[•i ,•j ] −
∑

1≤i<j≤d

[
Xi,Xj

]
s,t

[•i]j − 1

2

d∑
i=1

[
Xi,Xi

]
s,t

[•i]i , (6.1)

where [•i ,•j ] = •i � •j − •j � •i is the usual Lie bracket in H2.
It follows that the corresponding geometric �-rough path (or simply p-rough path if we ignore the refined �-

variation) over Bk is given, in the first d components, by the canonical (Stratonovich) geometric lift of (Xi)di=1 with

a bounded variation drift added to the Lévy area, and, in the remaining d(d+1)
2 components, by another bounded

variation drift.
Let us now specialise to the case that (Xi)di=1 is a Brownian motion with zero mean and covariance [Xi,Xj ]s,t =

�i,j (t − s). We can treat X as a G2(Bk)-valued continuous Lévy process and apply [24, Thm. 53] to obtain the
formula

ESig
(
S(X)0,t

) = exp�

[
t

(
1

2

d∑
i,j=1

�i,j •i �•i + 1

2

∑
1≤i<j≤d

�i,j [•i ,•j ]

−
∑

1≤i<j≤d

�i,j [•i]j − 1

2

d∑
i=1

�i,i[•i]i
)]

,

4In practice, one computes τ � σ by the definition of � as the dual of the Connes–Kreimer coproduct which in turn is defined in terms of admissible
cuts.
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from which it is manifest that ESig(S(X)0,t ) satisfies (5.4). We conclude by Proposition 5.16 that S(X)0,t is the
unique G-valued random variable with the above expected signature.

Remark 6.1. As pointed out in Remark 5.17, an alternative method to check the bound (5.4) is to note that we have
sufficient bounds on the local p-variation of X (as a random geometric rough path). The advantage of this method is
that it readily generalises to stochastic processes for which an explicit form of the expected signature is not readily
available, including a wide class of Gaussian and Markovian rough paths [12,13,26].

Remark 6.2. A series of papers [9,20,21] have studied the relation between Itô and Stratonovich iterated integrals,
particularity in relation with the quasi-shuffle algebra and Hoffman’s exponential. One of the main results of [9] is
the existence of a unique a Hopf algebra morphism ∗ : H∗ →H∗ whose adjoint is the arborification of the Hoffman
exponential, see [9, Thm. 2]. In particular, a level-N branched rough path satisfying the shuffle identity can be mapped
through ∗ to a level-N branched rough path satisfying the quasi-shuffle identity (e.g., Stratonovich- resp. Itô-lift of
Brownian motion), which provides in this case a higher order analogue of (6.1). Note that the results of this article
are somewhat distinct from those of [9] since we are not directly interested in mapping one branched rough path to
another, but rather in reinterpreting every branched rough path as a geometric rough path (over a different space).

Appendix: Symbolic index

In this appendix, we collect the most used symbols of the article, together with their meaning and the page where they
were first introduced.

Symbol Meaning Page

|σ | Number of nodes in a forest σ ∈ F 1133
A Algebra morphisms M : Ĥ → L(HM) with M(B) ⊂ u(HM) 1143
Ak {(r1, . . . , rm) : ri ∈ {1, . . . , k},m ≥ 0} 1135
A�

s {R ∈Ak : deg�(R) ≤ s} 1135
B Vector subspace of B such that H � T (B) as Hopf algebras 1134
B Span of T 1133
Bk Subspace of B spanned by its first k basis elements 1137
C The set of matrix coefficients of elements in A 1143

deg�(R)
∑k

j=1
nj (R)

pj
if � = (p1, . . . , pk) 1135

dp-var Homogeneous p-variation metric 1136
δ Coproduct on the Grossman–Larson algebra 1133
� Coproduct on the Hopf algebra T ((V )) 1133
Ea(B) T (B) equipped with a universal locally m-convex topology 1141
E(B) Completion of Ea(B) 1141
G Group-like elements in E(B) 1142
G∗ Group-like elements in H∗ 1133
GN Image of G∗ under ρN 1133
G G∗ ∩ Ĥ 1142
Gk G ∩ P(Bk) 1142
(γk)k≥0 Sequence of semi-norms on B 1141
G(�,1)(V ) Exponential of Lie algebra in T (�,1)(V ) generated by V 1136
F Set of all forests 1133
H Span of F equipped with Grossman–Larson Hopf algebra 1133
H∗ Space of formal series in forests 1133
HN Subspace of H∗ spanned by forests with at most N 1133
H(N) Subspace of H∗ spanned by forests with exactly N nodes 1133
Ĥ Completion of H under topology induced by H � Ea(B) 1142
Nτ Node set of a rooted tree τ 1133
nj (R) |{i : ri = j}| if R = (r1, . . . , rm) ∈ Ak 1135
‖ · ‖p-var The p-variation norm 1136



An isomorphism between branched and geometric rough paths 1147

Symbol Meaning Page

ω A control 1134
πN Projection of H∗ onto H(N) 1133
πR Projection of T ((V )) onto V ⊗R 1135

P(V )
∏∞

m=0 V ⊗̂m 1133
 Algebra isomorphism from H�p� to T (�,1)(Bk) 1137
ρN Projection of H∗ onto HN 1133
ρ�-var The �-variation metric 1136
� A pre-Lie product B ×B → B 1139
� Product in the Grossman–Larson algebra 1133
 {(s, t) : 0 ≤ s ≤ t ≤ 1} 1134
S(X) Signature of a rough path X 1134
T Set of all rooted trees with node label set {1, . . . , d} 1133
T ((V ))

∏∞
m=0 V ⊗m, i.e., formal series of tensors of V 1133

T (V ) Finite series in T ((V )) 1133
T (�,s)(V ) Inhomogeneous tensors with �-degree at most s 1135
⊗̇ Tensor product on T ((V )) 1133
⊗ Algebraic tensor product 1133
⊗̂ Completion of the algebraic tensor product 1133
u(H) Anti-Hermitian operators on H 1143
V ⊗R V r1 ⊗ · · · ⊗ V rm if R = (r1, . . . , rm) ∈ Ak 1135
X̄ Image under  of a branched rough path X 1138
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