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Abstract. We give a new, two-step approach to prove existence of finite invariant measures for a given Markovian semigroup.
First, we fix a convenient auxiliary measure and then we prove conditions equivalent to the existence of an invariant finite measure
which is absolutely continuous with respect to it. As applications, we obtain a unifying generalization of different versions for
Harris’ ergodic theorem which provides an answer to an open question of Tweedie. Also, we show that for a nonlinear SPDE on
a Gelfand triple, the strict coercivity condition is sufficient to guarantee the existence of a unique invariant probability measure
for the associated semigroup, once it satisfies a Harnack type inequality with power. A corollary of the main result shows that any
uniformly bounded semigroup on Lp possesses an invariant measure and we give some applications to sectorial perturbations of
Dirichlet forms.

Résumé. On établit une approche en deux étapes pour démontrer l’existence des mesure invariantes finies pour un semigroupe de
Markov donné. En fixant d’abord une mesure auxiliaire convenable, on démontre ensuite des conditions équivalentes à l’existence
d’une mesure invariante finie qui est absolument continue par rapport à elle. Comme applications, on obtient une généralisation
unificatrice des diverses versions du théorème ergodique de Harris et on fournit une réponse à une question ouverte de Tweedie. On
montre aussi que pour une EDP stochastique sur un triplet de Gelfand, la condition de coercivité stricte est suffisante pour garantir
l’existence d’une seule mesure de probabilité pour le semigroupe associé, si une inégalité de type Harnack avec puissance est
satisfaite. Un corollaire du résultat central montre que tout semigroupe uniformément borné sur Lp possède une mesure invariante ;
on donne des applications aux perturbations sectorielles des formes de Dirichlet.
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1. Introduction

The invariant measure is a key concept in ergodic theory. In this paper we deal with the question of existence of finite
invariant measures for Markovian semigroups. This problem has been studied by many authors over the last decades,
from various points of view; see e.g. the monographs [6,26], and the references therein.

If the underlying space E is a Polish space, the semigroup is given by the transition probabilities of a Markov
process and is Feller (i.e., it maps the space of bounded continuous real-valued functions on E into itself), then one
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can obtain the existence of an invariant measure by applying the result of [21] (for uniqueness see [18]), provided that
there is a compact subset of E which is infinitely often visited by the process; this technique dates back to the seminal
work of Foguel [9]. Although these hypotheses are verified in many examples, sometimes they are quite difficult or
even impossible to check, especially if the state space is of infinite dimensions. Another technique to obtain invariant
measures is to make use of Harris’ theorem (see [13]) and its refined versions, cf. e.g. [7,26–29,32] and [11]. In
contrast to the previously mentioned, these results involve non-topological assumptions such as the existence of small
sets (in the sense which will be made precise in Section 3.2 below) that are infinitely often visited. This kind of test sets
are encountered, provided the associated process is irreducible; see [26], Theorem 5.2.2. Invariant measures have also
been investigated from an analytic perspective, as in [4] and [15], by working with strongly continuous Markovian
semigroups on Lp , 1 < p < ∞. Examples of this situation arise by considering sectorial perturbations of Dirichlet
forms satisfying some functional inequalities (see Section 3.3 below).

The purpose of this paper is to give a new approach to the existence of invariant measures for Markovian semi-
groups, consisting of two steps. First, we construct a convenient auxiliary measure m (see Proposition 2.11) and then
we give conditions on the pair (Pt ,m) which characterize the existence of a non-zero integrable co-excessive func-
tion for (Pt )t≥0, regarded as a semigroup on L∞(m), which is equivalent to the existence of an invariant measure
for (Pt )t≥0, which is absolutely continuous with respect to m (see Theorem 2.4 below and also Theorems 2.8, 2.9
as its useful variants). Therefore, we call the procedure proposed above the two-step approach; see Section 2.2. We
point out that our main results are entirely measure theoretic and also do not involve irreducibility properties of the
semigroup. Since (co-)excessive functions are key objects here, we refer the reader to [2], which is a survey of results
concerning the space of (differences of) excessive functions.

Several applications are considered: In Section 3.1 we unify various versions of Harris’ ergodic theorem to a more
general one; see Theorem 3.6, which contains all of these as special cases. As a byproduct, in Corollary 3.8 we give
an answer to an open question mentioned by Tweedie [33].

In Section 3.2 we show that for a nonlinear SPDE on a Gelfand triple V ⊂ H ⊂ V ∗, under a Wang’s Harnack type
inequality, the strict coercivity condition with respect to the H -norm is sufficient to guarantee the existence of a unique
invariant probability measure for the solution; see Proposition 3.10. This result improves the ones from [22] and [36]
where the embedding V ⊂ H must be compact and the strict coercivity is considered with respect to the stronger
V -norm. We also consider a perturbation of a Markov kernel satisfying a combined Harnack–Lyapunov condition, for
which the result of Tweedie (Theorem 3.2 below) can not be used, but for which our two-step approach works easily.
We also discuss the applicability of Harris’ result to this kind of perturbation. The last part of this subsection was
written taking into account a kind remark of Martin Hairer, which lead to the statement of Proposition 3.14.

In Section 3.3 we study the case of uniformly bounded C0-semigroups on Lp , p ≥ 1. Implementing our two-step
approach we obtain new applications for semigroups coming from small perturbations of Dirichlet forms, generalizing
[4] and [14].

2. Existence of invariant measures

2.1. Preliminaries

Throughout, (E,B) is a measurable space and m a finite positive measure on it. Let Lp(m), 1 ≤ p ≤ ∞ be the standard
Lebesgue spaces and ‖ · ‖p the associated norms.

We denote by L
p
+(m) the space of positive elements from Lp(m). A linear operator T on Lp(m) is called positivity

preserving if T (L
p
+(m)) ⊂ L

p
+(m). Note that (as in [16], Lemma 1.2), any positivity preserving operator on Lp(m),

1 ≤ p ≤ ∞ is automatically bounded. T is called sub-Markovian (resp. Markovian) if it is positivity preserving
and T 1 ≤ 1 (resp. T 1 = 1). If T is a sub-Markovian operator on Lp(m) for some p ≥ 1, then T extends to a sub-
Markovian operator on Lr(m) for all p ≤ r ≤ ∞. Moreover, if (E,B) is a Lusin measurable space then T is given by
a sub-Markovian kernel on (E,B); cf. e.g. [1], Lemma A.1.9.

We recall that a transition function on (E,B) is a family (Pt )t≥0 of sub-Markovian kernels on (E,B) such that
Pt (Psf ) = Ps+t f for all positive B-measurable functions f and all s, t ∈R+. The transition function (Pt )t≥0 is called
Markovian provided that for all t (or for only one t > 0) the kernel Pt is Markovian. The transition function (Pt )t≥0
is called measurable if the function (t, x) 	→ Ptf (x) is B([0,∞)) ⊗ B-measurable for all positive B-measurable
functions f .
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Hereinafter, (Pt )t≥0 and m are satisfying either

(A1) (Pt )t≥0 is a strongly continuous semigroup of Markovian operators on Lp(m) for some p ≥ 1,

or

(A2) (Pt )t≥0 is a measurable Markovian transition function on (E,B) such that m(f ) = 0 ⇒ m(Ptf ) = 0 for all
t > 0 and all positive B-measurable functions f . In this case, we say that m in an auxiliary measure for (Pt )t≥0.

Our goal is to investigate the existence of a nonzero invariant measure ν for (Pt )t≥0, i.e. a nonzero finite positive
measure ν on (E,B) such that

∫
Ptf dν = ∫

f dν for all t > 0 and all bounded B-measurable functions f .
As a matter of fact, the class of invariant measures to be studied consists of absolutely continuous measures with

respect to the fixed measure m, whose densities are invariant functions for the dual semigroup. Inspired by well known
ergodic properties for semigroups and resolvents (see for example [3]), our main idea in order to produce co-invariant
functions is to apply some compactness results in L1(m), not for (Pt )t≥0 but for its adjoint semigroup. However, if
(Pt )t≥0 satisfies (A1) or (A2), it is not obvious that its adjoint semigroup may be regarded as a semigroup acting on
L1(m). Apparently, another difficulty when (Pt )t>0 satisfies (A2) is the lack of Bochner integrability of its adjoint, on
(L∞(m))∗. All these issues are clarified by the following result, whose proof is presented in the Appendix.

Lemma 2.1.

(i) Assume that (Pt )t≥0 satisfies (A1) for p > 1. Then the adjoint semigroup (P ∗
t )t≥0 on Lp′

(m), 1
p

+ 1
p′ = 1, may

be regarded as a C0-semigroup of positivity preserving operators on L1(m).
(ii) Assume that (Pt )t≥0 satisfies either (A2) or (A1) for p = 1. Then the adjoint semigroup (P ∗

t )t≥0 on (L∞(m))∗
may be regarded as a semigroup of positivity preserving operators acting on L1(m), and there exists (ϕt )t≥0 ⊂
L1+(m) with the following properties:
(ii.1) m(

∫ t

0 Psf ds) = m(f ϕt ) for all t ≥ 0 and f ∈ L∞(m).
(ii.2) P ∗

t ϕs = ϕt+s − ϕs for all s, t ≥ 0.
(ii.3) ‖ 1

s
(ϕt+s − ϕs)‖L1 −→s→∞ 0 for all t ≥ 0.

Remark 2.2. If (Pt )t≥0 satisfies (A1) for p > 1, then by Lemma 2.1(i), the Bochner integrals ϕ̃t := ∫ t

0 P ∗
s 1ds are

well defined in L1(m) for all t > 0, and (ϕ̃t )t>0 satisfies (ii.1)–(ii.3). On the other hand, if (Pt )t≥0 is either as in (A2)
or as in (A1) for p = 1, then t 	→ P ∗

t 1 may no longer be integrable on compact intervals. From this point of view,
(ϕt )t>0 in Lemma 2.1(ii) should be regarded as a substitute for (

∫ t

0 P ∗
s 1ds)t>0.

Recall that if (Pt )t≥0 is a measurable Markovian transition function on (E,B) (or satisfies (A1)), then the corre-
sponding resolvent (Rα)α>0 is defined by

Rαf (x) =
∫ ∞

0
e−αtPtf (x) dt

for all bounded B-measurable functions f , (m-a.e.) x ∈ E, and α > 0.
The following known result shows that the problem of existence of invariant measures for a semigroup of operators

may be stated in terms of a single operator.

Proposition 2.3. The following assertions hold for a measurable Markovian transition function (Pt )t≥0 on (E,B).

(i) The measure m is invariant for (Pt )t≥0 if and only if m ◦ αRα = m for some (hence for all) α > 0.
(ii) (Pt )t≥0 possesses an invariant measure if and only if there exists t0 > 0 such that Pt0 possesses an invariant

measure.

Proof. (i) Clearly, if m is (Pt )t≥0-invariant then m ◦ αRα = m for all α > 0, by the definition of the resolvent. Con-
versely, if m ◦ αRα = m, because RαPtf − Rαf = αRα(

∫ t

0 Psf ds) − ∫ t

0 Psf ds for all bounded and B-measurable
functions f , it follows that m is (Pt )t≥0-invariant.

(ii) If m is Pt0 -invariant, then one can easily check that 1
t0

∫ t0
0 m ◦ Ps ds is (Pt )t≥0-invariant. �
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2.2. The main results

Let (Pt )t≥0 and m be as in (A1) or (A2). For a sequence (tn)n ↗ ∞ we define the index c((Pt )t ,m, (tn)n) by

c
(
(Pt )t ,m, (tn)n

) := lim
ε↘0

sup
A∈B,m(A)≤ε

sup
n

1

tn

∫ tn

0
m(Ps1A)ds.

Note that c((Pt )t ,m, (tn)n) = 0 if and only if either ( 1
tn

∫ tn
0 P ∗

s 1ds)n≥1 or ( 1
tn

ϕtn)n≥1 (according to which of the
assumptions (A1) or (A2) is satisfied) is uniformly integrable, or equivalently, by Dunford–Pettis theorem, it is weakly
relatively compact in L1(m). From this point of view, c((Pt )t ,m, (tn)n) can be regarded as a measurement for the non-
uniformly integrability of ( 1

tn

∫ tn
0 P ∗

s 1ds)n≥1, resp. ( 1
tn

ϕtn)n≥1 in L1(m). On the other hand, c((Pt )t ,m, (tn)n) can

also be interpreted as an index of non-uniformly absolute continuity of the Krylov–Bogoliubov measures ( 1
tn

∫ tn
0 m ◦

Ps ds)n with respect to m.
We say that a positive finite measure m is almost invariant for (Pt )t≥0 if (A1) or (A2) are satisfied w.r.t. m

and there exist δ ∈ [0,1) and a set function φ : B → R+ which is absolutely continuous with respect to m (i.e.
limm(A)→0 φ(A) = 0) such that

m(Pt1A) ≤ δm(E) + φ(A) for all t > 0. (2.1)

Analogously, m is said to be mean almost invariant (w.r.t. (tn)n ↗ ∞) if there exist δ and φ as above such that

1

tn

∫ tn

0
m

(
Pt (1A)

)
dt ≤ δm(E) + φ(A) for all n. (2.2)

Clearly, for a positive finite measure we have the following implications between the above three properties:

invariant ⇒ almost invariant ⇒ mean almost invariant.

We are now in the position to present our main result.

Theorem 2.4. Assume that (Pt )t≥0 and m are as in (A1) or (A2). The following assertions are equivalent.

(i) There exists a nonzero positive finite invariant measure for (Pt )t≥0 which is absolutely continuous with respect
to m.

(ii) m is almost invariant.
(iii) m is mean almost invariant with respect to every (tn)n ↗ ∞.
(iv) For all sequences (tn)n ↗ ∞ it holds that

c
(
(Pt )t ,m, (tn)n

)
< m(E). (2.3)

(v) There exists a sequence (tn)n of positive real numbers increasing to infinity for which condition (2.3) is satisfied.

Proof. (i) ⇒ (ii). Let 0 ≤ ρ ∈ L1(m) such that the measure ρ · m is nonzero and (Pt )t≥0-invariant. Set γ :=
m((1 − ρ)+)m(E)−1 and note that since ρ · m is nonzero it follows that γ ∈ [0,1). Also, let c ≥ 0 be such that
m(ρ1[ρ>c]) ≤ 1−γ

2 m(E). Then, for A ∈ B and t ≥ 0 we have that m(Pt1A) = m(ρPt1A) + m((1 − ρ)Pt1A) =
m(ρ1A) + m((1 − ρ)Pt1A) ≤ m(ρ1A∩[ρ≤c]) + m(ρ1A∩[ρ>c]) + m((1 − ρ)+Pt1A) ≤ cm(A) +
m(ρ1[ρ>c]) + m((1 − ρ)+) ≤ cm(A) + 1−γ

2 m(E) + γm(E) = cm(A) + 1+γ
2 m(E). Therefore, we obtained that

m is almost invariant with φ(A) = cm(A) and δ = 1+γ
2 .

The implications (ii) ⇒ (iii) and (iv) ⇒ (v) are clear.
(iii) ⇒ (iv). Let (tn)n ↗ ∞, δ ∈ [0,1), and a function φ : B → R+ which is absolutely continuous with respect to

m such that (2.2) holds. Then

c
(
(Pt )t ,m, (tn)n

) ≤ lim
ε↘0

sup
A∈B,m(A)≤ε

(
δm(E) + φ(A)

) = δm(E) < m(E).

Therefore, (iv) is satisfied.
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(v) ⇒ (i). Assume (A1). Let (P ∗
t )t>0 be as in Lemma 2.1(i) and define fn := 1

tn

∫ tn
0 P ∗

s 1ds. Then (fn)n ⊂ L1+(m)

and is L1-bounded since
∫

fn dm = 1
tn

∫ tn
0

∫
Ps1dmds = m(E).

By Chacon’s Biting lemma (see Appendix A.2), there exist a subsequence (fnk
)n≥1, f ∈ L1(m), and a decreasing

sequence of “bits” (Br)r≥1 ⊂ B such that m(Br)−→r 0 and for all r ≥ 1 the sequence (1Bc
r
fnk

)k≥1 is weakly con-
vergent to 1Bc

r
f . On the other hand, by Komlós lemma (see Appendix A.3), there exists a subsequence (gk)k≥1 of

(fnk
)n≥1 such that g1+···+gk

k
is m-a.e. convergent to some g ∈ L1(m).

Without loss, we may assume that sk = fn1 +···+fnk

k
converges m-a.e. to g. One can easily check that g = f m-a.e.;

see for example [8], Proposition 3.
We claim that P ∗

t f ≤ f m-a.e. for al t > 0. To see this, first note that∫ ∫ tni
+t

tni

P ∗
r 1dr dm =

∫ tni
+t

tni

∫
Pr1dmdr = tm(E) =

∫ ∫ t

0
P ∗

r 1dr dm,

hence

(hi)i≥1 :=
(

1

tni

∫ tni
+t

tni

P ∗
r 1dr

)
i≥1

and (gi)i≥1 :=
(

1

tni

∫ t

0
P ∗

r 1dr

)
i≥1

are both convergent to 0 in L1(m). By passing to a subsequence, without loss of generality we may assume that (hi)i≥1
and (gi)i≥1 converge to 0 m-a.e. Then

P ∗
t f = P ∗

t

(
lim
k

sk

)
= P ∗

t

(
sup
N

inf
k≥N

sk

)
= sup

N

P ∗
t

(
inf
k≥N

sk

)

≤ sup
N

inf
k≥N

P ∗
t (sk) = lim inf

k
P ∗

t (sk) = lim inf
k

1

k

k∑
i=1

1

tni

∫ tni

0
P ∗

t+s1ds

= lim inf
k

1

k

k∑
i=1

1

tni

(∫ tni

0
P ∗

s 1ds +
∫ tni

+t

tni

P ∗
s 1ds −

∫ t

0
P ∗

s 1ds

)
= lim

k
sk = f m-a.e.

If we set μ = f · m then
∫

Ptg dμ = ∫
gP ∗

t f dm ≤ ∫
g dμ, hence μ is sub-invariant. Since Pt1 = 1, t > 0, it

follows that μ is invariant. However, we still have to check that μ is non-zero. Indeed, by [8] we have that

lim
r

lim sup
k

∫
Br

fnk
dm = inf

ε>0
sup

m(A)<ε

sup
k

∫
A

fnk
dm

≤ inf
ε>0

sup
m(A)<ε

sup
n

∫
A

fn dm = c
(
(Pt )t ,m, (tn)n

)
< m(E).

Therefore,

ν(E) =
∫

f dm = sup
r

∫
Bc

r

f dm = lim
r

lim
k

∫
Bc

r

fnk
dm

= lim
r

lim inf
k

(∫
fnk

dm −
∫

Br

fnk
dm

)
≥ m(E) − lim

r
lim sup

k

∫
Br

fnk
dm > 0.

Finally, if (Pt )t≥0 is as in (A2), then the proof follows the same lines as above once we replace (
∫ t

0 P ∗
s 1ds)t>0 by

(ϕt )t≥0 given by Lemma 2.1(ii); see also Remark 2.2. �

Remark 2.5.

(i) We emphasize that the Markov property was essentially used to conclude that the non-zero sub-invariant measure
f · m constructed in the proof of Theorem 2.4, (v) ⇒ (i), is in fact invariant. However, it can be easily checked
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that if (Pt )t is sub-Markovian, then the condition c((Pt )t ,m, (tn)n) < lim inf 1
tn

∫ tn
0 m(Ps1) ds is sufficient for the

existence of a non-zero sub-invariant finite measure ρ · m.
(ii) We would like to point out that although inequality (2.3) looks like a contraction assumption once we normalize

the measure m such that m(E) = 1, a Banach fixed point type argument is rather inapplicable since B � A 	→
supn

1
tn

∫ tn
0 m(Ps1A)ds is not a measure.

A kind observation of Wolfhard Hansen led us to the following reinterpretation of almost invariance, more precisely
of condition (2.1).

Corollary 2.6. The following assertions are equivalent.

(i) m is almost invariant.
(ii) There exists ε0 > 0 such that infA∈B,m(E\A)≤ε0 inft>0 m(Pt1A) > 0.

Proof. Without loss we may assume that m(E) = 1.
(i) ⇒ (ii). Replacing A with E \ A in condition (2.1), we get that m(Pt1A) + φ(E \ A) ≥ 1 − δ for all t ≥ 0. Now

(ii) follows since φ is absolutely continuous with respect to m.
(ii) ⇒ (i). Clearly,

lim
ε↘0

inf
A∈B,m(E\A)≤ε

inf
n

1

tn

∫ tn

0
m(Ps1A)ds ≥ lim

ε↘0
inf

A∈B,m(E\A)≤ε
inf
t>0

m(Pt1A)

≥ inf
A∈B,m(E\A)≤ε0

inf
t>0

m(Pt1A) > 0.

Replacing A with E \ A we obtain that c((Pt )t ,m, (tn)n) < 1, hence (i) follows by Theorem 2.4. �

Corollary 2.7. The following assertions are equivalent for a measurable Markovian transition function (Pt )t≥0.

(i) There exists a nonzero finite invariant measure.
(ii) There exists a nonzero almost invariant measure.

Proof. The implication (i) ⇒ (ii) is immediate and the converse follows by Theorem 2.4. �

Some versions of Theorem 2.4
At this point we would like to formulate two versions of Theorem 2.4, one in terms of resolvents and the other one
involving a single operator P . Their proofs are essentially the same as the one given for the main result, the only
differences being that the semigroup property and the integrals are replaced either by the resolvent identity or by the
Cesaro means of the powers (P n)n, and for this reason we omit them.

First, for (αn)n ↘ 0, define

c
(
(Rα)α>0,m, (αn)n

) := lim
ε↘0

sup
A∈B,m(A)<ε

sup
n

m(αnRαn1A).

Also, m is said resolvent almost invariant if m(αRα1A) ≤ φ(A) + δm(E) for all A ∈ B and α > 0, where φ : B →
[0,∞) is absolutely continuous w.r.t. m in the sense made precise in the beginning of Section 2.2, and δ ∈ [0,1).

With Remark 2.3(i) in mind, we have:

Theorem 2.8. Let m be a finite positive measure on (E,B) such that (Pt )t≥0 satisfies (A2) w.r.t. m. The following
assertions are equivalent.

(i) There exists a non-zero finite (Pt )t≥0-invariant measure which is absolutely continuous w.r.t. m.
(ii) The measure m is resolvent almost invariant.

(iii) There exists (αn) ↘ 0 such that

c
(
(Rα)α,m, (αn)n

)
< m(E).
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We turn now to the case of a single operator. Analogously to conditions A1 and A2, for an operator P we shall
assume that it is either a Markovian operator on Lp(m), 1 ≤ p < ∞, or a Markovian kernel which respects the m-
classes, that is the measure m ◦ P is absolutely continuous with respect to m. Also, we say that m is almost invariant,
resp. mean almost invariant for the operator P if m(P n(A)) ≤ φ(A) + δm(E), resp. m(Sn1A) ≤ φ(A) + δm(E) for
all n greater than some n0, where φ and δ are as for relation (2.1), and the operators Sn are given by

Sn = 1

n

n−1∑
k=0

P k.

The index c is defined by c(P,m) := limε↘0 supA∈B,m(A)≤ε supn≥1 m(Sn1A).
Now, Theorem 2.4 together with Corollary 2.6 stated for a single operator P become:

Theorem 2.9. The following assertions are equivalent.

(i) There exists a non-zero finite invariant measure for P which is absolutely continuous with respect to m.
(ii) The measure m is almost invariant for P .

(iii) There exists ε0 > 0 such that infA∈B,m(E\A)≤ε0 infn≥1 m(P n1A) > 0.
(iv) The measure m is mean almost invariant for P .
(v) c(P,m) < m(E).

Remark 2.10. At this point we would like to thank the anonymus referee who drew our attention to the work of
A. Lasota and M. A. Mackey [20], where the authors study the asymptotic behaviour of deterministic measurable
transformations on a space E via the associated Frobenius–Perron operators w.r.t. some duality measure μ. The
Frobenius–Perron operator regarded on L1(E,μ) is, as a matter of fact, the adjoint of a Markov operator P on
L∞(E,μ), and the existence of a stationary distribution for the deterministic system reduces to the existence of a
stationary density for the Frobenius–Perron operator, which in turn is equivalent with the existence of a stationary dis-
tribution for the Markov operator P . In fact, the stationary distributions under investigation are absolutely continuous
with respect to μ, so, using the terminology of this paper, the measure μ plays the role of an auxiliary measure for P .
Concerning the existence of a stationary density for the Frobenius–Perron operator, the authors prove a result which
can be stated for Markov operators in general: if P is a Markov operator on L∞(E,μ) (μ finite) such that its adjoint
P̂ on L1(E,μ) is constrictive, then there exists a non-trivial integrable stationary density for P̂ ; see [20], Proposi-
tion 5.4.1. Recall that P̂ is constrictive if there exists a weakly (hence strongly) precompact subset F ∈ L1(E,μ) such
that limn infg∈F ‖P̂ nf − g‖L1(E,μ) = 0 for all 0 ≤ f ∈ L1(E,μ), ‖f ‖L1(E,μ) = 1. But if P̂ is constrictive, then it is
easy to see (either by the above definition or using the deeper spectral representation from [20], Theorem 5.3.2) that
for any f as above, the sequence (P̂ nf )n is weakly relatively compact in L1(E,μ); in particular, (P̂ n1)n is uniformly
integrable, hence we can easily deduce: if P is a Markov operator on L∞(E,μ) such that its adjoint is constrictive,
then c(P,μ) = 0; as a comparison, our result (Theorem 2.8) reveals that the much weaker condition c(P,μ) < μ(E)

is necessary and sufficient for the existence of a stationary distribution which has density w.r.t. μ. We investigate some
situations when c(P,μ) = 0 later on, in Section 3.3.

Construction of auxiliary measures
Assume that (Pt )t≥0 is a measurable Markovian transition function on (E,B). Going back to assumption (A2) it is
clear that in order to apply Theorem 2.4 to (Pt )t≥0, one has to look for an auxiliary measure on (E,B), i.e. a measure
with respect to which (Pt )t≥0 respects classes. As in [1] or [31], it turns out that the resolvent provides a natural way
to construct such measures, as follows.

Proposition 2.11. Let μ be a probability measure on (E,B) and for any fixed α > 0 define the finite positive measure
m by

m(f ) = μ ◦ Rαf =
∫

E

Rαf dμ (2.4)

for all positive and B-measurable functions f . Then m is an auxiliary measure for (Pt )t≥0.
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Proof. If A ∈ B such that m(A) = 0 then m(Pt1A) = ∫
E

Rα(Pt1A)dμ = eαt (
∫
E
(Rα1A − ∫ t

0 e−αsPs1A ds) dμ) ≤
eαt

∫
E

Rα1A dμ = eαtm(A) = 0. �

Remark 2.12.

(i) If E is a separable metric space and limt→0 Ptg(y) = g(y) for any bounded continuous function g on E, y ∈ E,
we get additional information about some particular measures constructed by Proposition 2.11, namely topo-
logical full support. More precisely, if (xn)n≥1 is a dense subset in E, then the measure m = μ ◦ Rα , where
μ = ∑∞

n=1
1
2n δxn , has full support for all α > 0. Moreover, one can associate a generalized Dirichlet form on

L2(m) such that the associated semigroup is an m-version of (e−αtPt )t>0. For these results we refer to [31],
Lemma 2.3 and Theorem 3.2. As we shall see later, the problem of existence of invariant measures can be ap-
proached in terms of sectorial forms via functional inequalities.

(ii) When we deal with a single Markovian kernel P and μ is a probability measure on (E,B), then one has a
similar construction for an auxiliary measure for P , by setting m := μ ◦ R, where R is the resolvent kernel
R := ∑∞

n=0
1

2n+1 P n.

3. Applications

In the sequel we will apply the main results of the previous section in several directions, and we would like to em-
phasize from the beginning that the results presented here concerning the existence of invariant probability measures
involve exclusively non-topological conditions.

First, we take another look at some versions of Harris’ ergodic theorem and give short proofs for the existence of
invariant measures under more general conditions. We also investigate the number of the othogonal invariant (resp.
ergodic) measures. This approach allows us to give an answer to the open question mentioned by Tweedie (see [33],
Remark 6) concerning the sufficiency of the so called generalized drift condition for the existence of an invariant
measure.

In the second part we deal with nonlinear SPDEs on a Gelfand triple V ⊂ H ⊂ V ∗. We show that under a Wang’s
Harnack type inequality, the strict coercivity condition with respect to the H -norm is sufficient to guarantee the exis-
tence of a unique invariant probability measure for the solution. In order to justify even more our two-step approach,
we apply it to a perturbation of a Markov kernel satisfying a combined Harnack–Lyapunov condition, for which the
result of Tweedie (Theorem 3.2 below) can not be used. We also discuss the applicability of Harris’ result to this kind
of perturbation.

At the end of this section we present several applications to sectorial forms, mainly in terms of functional inequal-
ities. In this situation we remain in the case when the constant δ (and hence the index c) in (2.1) equals 0, hence we
do not exploit the fact that Theorem 2.4 allows us to drop the uniform integrability down to c((Pt )t ,m) < m(E).

3.1. Almost invariant measures and Harris’ theorem

In this subsection we place ourselves in the general situation of a Markovian kernel P on a measurable space (E,B).
We emphasize that, in view of Proposition 2.3, all of the following results, although stated for a single operator, can
be applied to the case of a continuous time transition function (Pt )t≥0 just by looking at a single kernel Pt0 .

We first recall several definitions and conditions required by some well known versions of Harris’ theorem to
guarantee the existence, uniqueness, and also different rates of stability (polynomial, sub-exponential or exponential)
for a semigroup. These conditions slightly differ one from another but, in principle, they assume the existence of
a small set (in the sense made precise below) which is visited infinitely often. Small sets should be regarded as a
substitute for infinitely often visited compact sets in the Feller case (which is the situation of the classical result of
Krylov–Bogoliubov and its extentsion due to [21]). As a matter of fact, if P is irreducible and a T -chain, then every
compact set is a small set; see [26]. In practice, the small sets of interest are the sub-level sets of a Lyapunov function.

Recall that (cf. e.g. [26], Chapter 5, Section 5.2) a measurable set C ∈ B is small with respect to a Markovian
kernel P on (E,B) if there exist a constant α ∈ (0,1] and a probability measure ν such that

inf
x∈C

P (x, ·) ≥ αν(·).
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Let us recall the following two assumptions; see e.g. [12].

Assumption A. There exist a function V ∈ pB and constants b ≥ 0 and γ ∈ (0,1) such that

PV ≤ γV + b on E.

Furthermore, the sub-level set [V ≤ r] is small for some r > 2b/(1 − γ ).

Assumption A′. There exist Ṽ ∈ pB, Ṽ ≥ 1, constants b̃ ≥ 0 and γ̃ ∈ (0,1), and a subset S ⊂ E which is small such
that

P Ṽ ≤ γ̃ Ṽ + b̃1S on E.

The second assumption is encountered more frequently in the theory of Markov chains and in general it does not
imply the first one; see, e.g. [12], Remark 3.3. However, it was shown in [12], Theorem 3.4, that if Assumption A′
holds for P , then Assumption A holds for SN = 1

N

∑N−1
k=0 P k for some sufficiently large N .

It is well known that under Assumption A not only existence and uniqueness of the invariant measure is ensured,
but also the spectral gap in a weighted supremum norm. For completeness we state this result below. Although there
exist several different approaches to prove it, we refer the reader to the work of [12] for a direct proof based on Banach
fixed point theorem; see also the references therein.

Theorem 3.1 (cf. e.g. [12]). If Assumption A is satisfied, then there exists a unique invariant probability measure m

for P . In addition, for some constants C > 0 and γ ∈ (0,1) it holds that

∥∥P nf − m(f )
∥∥ ≤ Cγ n

∥∥f − m(f )
∥∥

for all B-measurable f with ‖f ‖ < ∞, where ‖f ‖ = ‖ f
1+V

‖∞.

There is an extended notion of small sets, namely the so called petite sets, which are defined by means of general-
ized resolvents. These instruments were developed by Meyn and Tweedie in order to study (geometric) convergence
for Markov processes in both discrete and continuous time, and we refer the reader to [26–28] and [29]. For a study
of weaker rates of convergence we mention [7,11], and the references therein.

Anyway, to check the smallness of a set C is a quite delicate issue and the usual techniques require continuity or
irreducibility conditions for the associated Markov process. In the papers [33] and [10], the authors investigate the
existence of invariant measures for Markov chains, with direct applications to non-linear time series, assuming the
existence of a Foster–Lyapunov function and, instead of the smallness property for the test set C, a weak uniform
countable additivity condition. More precisely, the following assumption has been considered.

Assumption B.

(i) There exist a measurable function V : E → [0,∞), a finite constant b and a measurable set C such that

PV ≤ V − 1 + b1C on E.

(ii) The set C from (i) is such that the following uniform countable additivity condition holds: for all (An)n ⊂ B
decreasing to ∅ we have that

lim
n

sup
x∈C

P (An)(x) = 0.

Under such hypotheses, Tweedie proved the following result.
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Theorem 3.2 (cf. [33], Theorem 1). If Assumption B holds, then there exists a positive finite number of orthogonal
invariant probability measures νi,1 ≤ i ≤ n. Moreover, for each x ∈ E there exists a convex combination m of (νi)i
such that

1

n

n∑
k=1

P k(x,A)−→
n

m(A)

for all A ∈ B.

Remark 3.3.

(i) The uniform countable additivity condition looks easier to check than the smallness property, since e.g. it is
clearly satisfied if there exists a finite measure ν such that P(x, ·) ≤ ν(·) for all x ∈ C; see [33], Remark 5 for
more details.

(ii) We stress out that in all of the above assumptions one can let V take infinite values because we may consider the
restriction of P to the absorbing set [V < ∞] without altering the other conditions.

Open question (cf. [33], Remark 6). Can we replace the constant b in Assumption B(i) by a not necessarily bounded
function?

For the rest of this subsection, our main purpose is to recapture the above discussed versions of Harris’s result in
a single more general statement with a very short proof in terms of almost invariant measures, and also to give an
answer for the open question.

For convenience, we denote by B+
1 the set of all B-measurable real-valued functions f such that 0 ≤ f ≤ 1, and

recall that in Section 2 we introduced the operators Sn and R by setting

Sn = 1

n

n−1∑
k=0

P k, resp. R =
∞∑

k=0

1

2k+1
P k.

Let us introduce the following assumptions.

Assumption C.

(i) There exist C ∈ B, φ : B+
1 →R+, and γ : E →R+ such that

Pf (x) ≤ φ(f ) + γ (x)

for all x ∈ C and f ∈ B+
1 .

(ii) There exists a finite positive measure m on E such that
(ii.1) φ ◦ R � m ◦ R (i.e. limm◦R(A)→0 φ ◦ R(1A) = 0).
(ii.2) There exists n0 > 0 such that supn≥n0

m(Sn(1C(γ − 1))) < 0, where C is the set from (i).

It is convenient to look for φ which is a real function composed with a measure. Also, if γ is constant then additional
information about the number of the orthogonal measures can be obtained. For these reasons, we shall consider the
following particular case of Assumption C.

Assumption C′.
(i) There exist a finite positive measure m on E, a set C ∈ B, a function φ : [0,∞) → [0,∞) which is continuous

and null in 0, and δ ∈ [0,1) such that

Pf (x) ≤ φ
(
m(f )

) + δ

for all f ∈ B+
1 and x ∈ C.

(ii) There exists n0 > 0 such that infn≥n0 m(Sn1C) > 0, where C is the set from (i).
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The following result states that Assumptions A, A′, and B are particular cases of Assumption C′.

Proposition 3.4. The following assertions hold.

(i) If Assumption A is satisfied, then for all N > 0 there exists n0 > 0 and δ ∈ [0,1) such that

P nf (y) ≤ P mf (x) + δ

for all n,m ≥ n0, x, y ∈ [V < N], and f ∈ B+
1 .

(ii) If Assumption A′ is satisfied, then for all N > 0 there exist n0 > 0 and δ ∈ [0,1) such that

Snf (y) ≤ Smf (x) + δ

for all n,m ≥ n0, x, y ∈ [V < N], and f ∈ B+
1 .

In particular, if any of the Assumptions A or A′ is satisfied, then Assumption C′ holds for all P n resp. Sn if n

is sufficiently large.
(iii) If Assumption B(i) is satisfied, then Assumption C′(ii) holds for every (non-trivial) measure m.

Proof. We shall prove only (i) and (iii), since the second assertion can be easily proved using the same ideas involved
for proving the other two.

(i) Iterating the relation PV ≤ γV + b, we get that for n > 0, P nV ≤ γ nV + b
1−γ

and

P n
([V > r]) ≤ 1

r
P nV ≤ 1

r

(
γ nV + b

1 − γ

)
≤ γ nV

r
+ 1

2
. (∗)

On the other hand, we know that C := [V ≤ r] is small, so there exist a constant α ∈ (0,1] and a probability ν such
that Pf (y) ≥ αν(f ) for all y ∈ C and f ∈ B+

1 . Taking in this inequality 1 − f instead of f , we obtain Pf (y) ≤
1 − α + αν(f ) for all y ∈ C. Combining the last two inequalities it follows that Pf (x) ≤ Pf (y) + 1 − α for all
x, y ∈ C, hence

Pf ≤ Pf (y) + 1 − α1C on E

for all y ∈ C. Integrating this inequality w.r.t. P n−1(x, ·), x ∈ E we obtain

P nf ≤ Pf (y) + 1 − αP n−11C on E

for all y ∈ C and n > 0. Replacing f with 1 − f we get

Pf ≤ P nf (x) + 1 − αP n−11C(x)1C

for all x ∈ E, and again integrating the last inequality but now w.r.t. P m−1(y, ·) we obtain

P mf (y) ≤ P nf (x) + 1 − αP n−11C(x)P m−11C(y)

for all x, y ∈ E, f ∈ B+
1 , and n,m > 0. Now, the assertion follows if we combine the last inequality with relation (∗),

since the coefficient of α is far away from 0 for all n and m sufficiently large, uniformly in x, y ∈ [V < N].
The fact that Assumption A implies C′ for P n follows by choosing φ(x) = x, C = [V ≤ r], and m = δy ◦ P n for

some arbitrarily fixed y ∈ C, and taking into accout relation (∗).
(iii) Let μ be a non-zero finite measure. Since V < ∞, there exists n0 > 0 such that μ([V ≤ n0]) ≥ ε > 0. Now,

iterating the relation PV ≤ V − 1 + b1C we get that P nV ≤ V − n+ b
∑n−1

k=0 P k(1C), hence Sn(1C) ≥ 1
b
(1 − V

n
) and

therefore

1[V ≤n0]Sn(1C) ≥ 1

2b
1[V ≤n0]
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for all n ≥ 2n0. Integrating the last inequality with respect to μ we conclude that

inf
n≥2n0

μ
(
Sn(1C)

) ≥ 1

2b
μ

([V ≤ n0]
) ≥ ε

2b
> 0

which proves the assertion. �

Remark 3.5. Often, the sublevel sets [V ≤ r] of the Lyapunov function V which appears in Assumption A are small
for all sufficiently large r . In this case, one can easily adapt the proof of Proposition 3.4(i) to show that Assumption C′
holds for P , not just for P n with n big enough.

We can now state the main result of this subsection.

Theorem 3.6. If Assumption C is satisfied, then m ◦ R is mean almost invariant.

Proof. With the set C given by the hypothesis, we have for all f ∈ B+
1 that Pf ≤ φ(f )+ γ 1C + 1E\C which leads to

P kf ≤ φ(f ) + P k−1(γ 1C) + P k−11E\C, k > 0.

Considering the Cesaro means, we obtain that

Snf = 1

n

n−1∑
k=0

P kf ≤ 1

n
f + n − 1

n
φ(f ) + n − 1

n
Sn−1(γ 1C) + n − 1

n
Sn−1(1E\C)

≤ 1

n
+ φ(f ) + Sn−1

(
1C(γ − 1)

) + 1.

Integrating with respect to m it leads to

m(Snf ) ≤ m(E)φ(f ) +
{
m

(
Sn−1

(
1C(γ − 1)

))
m(E)−1 +

(
1 + 1

n

)}
m(E).

Now by hypothesis, the term in brackets is strictly less then 1 for all sufficiently large n, uniformly in n. Hence there
exist δ ∈ [0,1) and n0 such that for all n ≥ n0 we have

m(Snf ) ≤ m(E)φ(f ) + δm(E).

By replacing f with Rf in the last inequality we obtain for all f ∈ B+
1 and n ≥ n0 that

m ◦ R(Snf ) ≤ m(E)φ ◦ R(f ) + δm ◦ R(E).

Taking into account Remark 2.12(ii), it follows that m ◦ R is mean almost invariant. �

We recall the following condition.

Generalized drift condition. There exist two measurable functions V,b : E → [0,∞), and a measurable set C such
that

PV ≤ V − 1 + b1C on C.

Next, we consider an integrability assumption for b that appears in the generalized drift condition, with respect to
the measure m involved in Condition C′(i).
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Condition D. For all r > 0 there exists N0 > 0 such that

sup
n≥N0

m
(
1[V ≤r]Sn

(
b2)) < ∞.

Proposition 3.7. Let m be a non-trivial finite measure. Assume that the generalized drift condition and Condition D
hold.

Then Assumption C′(ii) is satisfied w.r.t. m.

Proof. As in the beginning of the proof for Proposition 3.4(iii), and by Cauchy–Schwartz inequality, we obtain that

Sn

(
b2) 1

2 Sn(1C)
1
2 ≥ Sn(b1C) ≥ 1 − V

n
,

hence

1[V ≤n0]Sn

(
b2) 1

2 Sn(1C)
1
2 ≥ 1

2b
1[V ≤n0]

for all n ≥ 2n0, where n0 is such that m([V ≤ n0]) ≥ ε > 0. By applying one more time the Cauchy–Schwartz
inequality w.r.t. m from this time, it follows that

m
(
Sn(1C)

) ≥ ε2

4b2m(1[V ≤n0]Sn(b2))

for all n ≥ 2n0.
The result now follows due to the hypotheses. �

The announced answer to Tweedie’s question is now a collection of the above results. To make it more clear, we
consider:

Condition E. Assume that the generalized drift condition, Condition D, and Assumption C′(i) are verified.

Corollary 3.8. If Condition E is satisfied then m ◦ R is almost invariant.

Proof. By the hypothesis and Proposition 3.7 we have that Assumption C′ is verified. Now, the result follows by
Theorem 3.6. �

Recall that a set A ∈ B is called absorbing if P(A,x) = 1 on A. In probabilistic terms, this means that if the process
starts from A it remains in A.

Corollary 3.9. Let E be a universally measurable separable metric space. Consider that Assumption C′(i) (and
hence (ii)) holds for C = E, and the function φ has an increasing inverse. Then m ◦ R is mean almost invariant and
the number of all orthogonal invariant probability measures is less than m(E)

φ−1(1−δ)
. Consequently, if φ(

m(E)
2 ) < 1 − δ

then there is a unique invariant measure (hence ergodic).

Proof. The fact that m ◦ R is mean almost invariant follows by Theorem 3.6. Using e.g. [3], Proposition 2.4, one can
show that the support of an invariant probability measure contains an absorbing set of total mass equal to 1. But if
A ∈ B is absorbing and x ∈ A, then 1 = P 1A(x) ≤ φ(m(A)) + δ, hence m(A) ≥ φ−1(1 − δ) and the proof for the first
assertion follows. Now, clearly φ(

m(E)
2 ) < 1 − δ is the same with m(E)

φ−1(1−δ)
< 2, hence there can not be two orthogonal

invariant measures. On the other hand (cf. e.g. [3], Proposition 4.4), any two distinct extremal invariant probability
measures are singular. This means that there is a unique extremal invariant probability measure. The uniqueness of the
invariant probability measure follows by the fact that all invariant probability measures can be represented by means
of the extremal ones; see e.g. [25]. �
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3.2. Harnack type inequalities and almost invariant measures

Applications to nonlinear SPDEs
Let V ⊂ H ≡ H ∗ ⊂ V ∗ be a Gelfand triple, i.e. (V ,‖ · ‖V ) is a reflexive Banach space which is continuously and
densely embedded in a separable Hilbert space (H, 〈·, ·〉,‖ · ‖H ). The duality between V ∗ and V is denoted by
V ∗〈·, ·〉V . Let (L2(H),‖ · ‖2) denote the Hilbert space of all Hilbert–Schmidt operators on H , with the associated
norm.

Let (W(t))t≥0 be the cylindrical Brownian motion on H w.r.t. a complete filtered space (�,F, (Ft )t≥0,P ). Con-
sider the following nonlinear equation with additive noise

dX(t) = A
(
X(t)

)
dt + B dW(t), (3.1)

where A : V → V ∗ and B ∈ L2(H) satisfy the following conditions:

(H1) (Hemicontinuity) For all u,v, x ∈ V the map

R � λ 	−→ V ∗
〈
A(u + λv), x

〉
V

is continuous.
(H2) (Weak monotonicity) There exists c ∈ R such that for all u,v ∈ V

2V ∗
〈
A(u) − A(v),u − v

〉
V

≤ c‖u − v‖2
H .

(H3) (Coercivity) There exist α ∈ (0,∞), c1 ∈ R, f, c2 ∈ (0,∞) such that

2V ∗
〈
A(v), v

〉
V

+ ‖B‖2
2 ≤ c1‖v‖2

H − c2‖v‖α+1
V + f.

(H4) (Growth) For all u,v ∈ V∣∣
V ∗

〈
A(v),u

〉
V

∣∣ ≤ f + c1
(‖v‖α

V + ‖u‖α+1
V + ‖u‖2

H + ‖v‖2
H

)
.

By [19] (see also [23]) there exists a strong solution for equation (3.1), i.e. there exists a continuous H -valued
adapted process X = (X(t))t≥0 s.t.

X(t) = X(0) +
∫ t

0
A(Xs)ds + B

(
W(t)

)
and

E

(∫ t

0

∥∥X(s)
∥∥α+1

V
+ ∥∥X(s)

∥∥2
H

ds

)
< ∞, t > 0

for every X(0) ∈ L2(�,F0,P ;H).
Moreover (X(t))t≥0 is a time-homogeneous Markov processes on H with transition function Ptf (x) :=

E(f (Xx(t))), f ∈ pB(H), x ∈ H , where Xx(t) is the solution of equation (3.1) with Xx(0) = x.
Our aim is to investigate the existence of invariant measures for (Pt )t≥0 defined above, using our two step-approach.

To do this, let us consider the following assumptions.

Assumption F (Strict coercivity w.r.t. ‖‖H ). There exist β,g ∈ (0,∞) such that

2V ∗
〈
A(v), v

〉
V

+ ‖B‖2
2 ≤ −β‖v‖2

H + g

for all v ∈ V .
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Assumption G. There exists p ≥ 1 such that for all t > 0 and for every ball BH (0,R) of radius R there exists a
constant at (R) < ∞ s.t. for all x, y ∈ BH (0,R) and f ∈ pB(H)(

Ptf (y)
)p ≤ at (R) · Pt

(
f p

)
(x).

Assumption G is a generalization of the famous Wang’s Harnack inequality [36].
It is well known that if dimH < ∞, then Assumption F ensures the existence of an invariant probability measure

for (Pt )t≥0; see [30], Proposition 4.3.5. If dimH = ∞ and the embedding V ⊂ H is compact, then under a strict
coercivity condition w.r.t. ‖‖V , namely

2V ∗
〈
A(v), v

〉
V

+ ‖B‖2
2 ≤ −β‖v‖1+α

V + g

for all v ∈ V , the existence of an invariant probability measure is still guaranteed, as shown in [36], Proposition 2.2.3.
Clearly, since ‖‖V is stronger than ‖‖H , the above inequality is more restrictive than Assumption F. As a mat-
ter of fact, Assumption F is considered because it guarantees that the solution X is bounded in probability, i.e.
limR→∞ supt≥0 P(‖Xt‖H ≥ R) = 0 (hence the existence of an invariant probability measure if dimH < ∞). As
noted in [6], in general, the boundness in probability property is not sufficient to ensure the existence of an invariant
measure for (Pt )t≥0 even for deterministic equations, and we refer to [34] for a counterexample. However, we can
show that Assumption F in combination with Assumption G does imply the existence of an invariant measure. To the
best of our knowledge, this result is new in the literature and we present it below (the uniqueness and full support
properties were already known, see [36], Theorem 1.4.1 and Corollary 2.2.4).

Recall that by Theorem 3.6, the following condition ensures the existence of an invariant probability measure for a
Markov kernel P on a measurable space (E,B):

Assumption C′.
(i) There exist a finite positive measure ν on E, a nonempty set C ∈ B, a function φ : [0,∞) → [0,∞) which is

continuous and zero in 0, and δ ∈ [0,1) such that

Pf (x) ≤ φ
(
ν(f )

) + δ

for all f ∈ B+
1 and x ∈ C.

(ii) There exists n0 > 0 such that infn≥n0 ν(Sn1C) > 0, where C is the set from (i) and Sn := 1
n

∑n−1
k=0 P k .

Proposition 3.10. Suppose that Assumptions F and G are satisfied. Then there exists a unique invariant probability
measure for (Pt )t≥0 and it has full support on H .

Proof. First, note that the strict coercivity assumption implies that E(‖X0
t ‖2

H ) ≤ g
β

for all t ≥ 0 (cf. [30], page 103,

(4.3.12)), hence Pt (1BH (0,R))(0) ≥ 1 − g

βR2 , t > 0,R > 0. Now fix R large enough so that inft>0 Pt (1BH (0,R))(0) > 0

and recall that by Assumption G (Ptf (y))p ≤ at (R)Pt (f
p)(x) for all x, y ∈ BH (0,R), f ∈ pB(H).

If we fix t > 0 and set ν(f ) := δ0 ◦Pt(f ), f ∈ pB, and φ(x) = p
√

at (R)x, x ≥ 0, we obtain that Ptf (y) ≤ φ(ν(f ))

for all y ∈ BH (0,R), f ∈ B+
1 , and infn ν(Sn1BH (0,R)) > 0. Therefore, Assumption C′ is satisfied for the Markovian

kernel Pt , and by Theorem 3.6 and Proposition 2.3, the existence part is proved.
As we already mentioned, the uniqueness and the fact that the invariant measure has full support follow in a similar

way as for Corollary 2.2.4 from [36]. �

For the reader’s convenience we recall some sufficient conditions under which Assumption G is satisfied.
Assume that the operator B is non-degenerate, i.e. if v ∈ H and Bv = 0 then v = 0, and denote by ‖ · ‖B the

intrinsic norm induced by B defined as

‖v‖B =
{‖y‖H , if there exists y ∈ H such that By = v,

∞, otherwise.

Consider the following assumptions (cf. [36], (2.5), or [22], (1.3) and (1.4)):
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(G1) α ≥ 1 and there exist θ ∈ [2,∞) ∩ (α − 1,∞) and η, γ ∈ R with η > 0 such that for all u,v ∈ V

2V ∗
〈
A(u) − A(v),u − v

〉 ≤ −η‖u − v‖θ
B‖u − v‖α+1−θ

H + γ ‖u − v‖2
H .

(G2) α ∈ (0,1) and there exist some measurable function h : V → (0,∞), some constant θ ≥ 4
α+1 , some γ ∈ R, and

some strictly positive constants q, δ, η such that for all u,v ∈ V

2V ∗
〈
A(u),u

〉
V

+ ‖B‖2
2 ≤ q − δh(u)α+1 + γ ‖u‖2

H ,

2V ∗
〈
A(u) − A(v),u − v

〉
V

≤ − η‖u − v‖θ
B

‖u − v‖θ−2
H (h(u) ∨ h(v))1−α

+ γ ‖u − v‖2
H .

By [36], Theorems 2.2.1 and 2.3.1, the following two assertions concerning Harnack inequalities hold:

(a) If (G1) holds then for every p > 1, t > 0, x, y ∈ H and f ∈ pB(H)

(
Ptf (y)

)p ≤ Ptf
p(x) exp

[
p( θ+2

θ+1−α
)

2(θ+1)
θ ‖x − y‖

2(θ+1−α)
θ

H

2(p − 1)(
∫ t

0 η
2

θ+2 e− θ+1−α
θ+2 γ s ds)

θ+2
θ

]
. (3.2)

(b) If (G2) holds then there exists a constant c > 0 s.t. for all t > 0,p > 1, x, y ∈ H , and f ∈ pB(H)(
Ptf (y)

)p

≤ Ptf
p(x) exp

[
cp

p − 1

(‖x − y‖2
H (1 + ‖x‖2

H + ‖y‖2
H )

(t ∧ 1)
θ(α+1)+4
θ(α+1)

+
(

p

p − 1

) 4(1−α)
α(θ+2)+θ−2 ‖x − y‖ 2θ(α+1)

α(θ+2)+θ−2

(t ∧ 1)
θ(α+1)+4

α(θ+2)+θ−2

)]
. (3.3)

Concrete examples of operators A,B satisfying conditions (G1) or (G2) have been constructed in [36], Section 2.4,
for stochastic generalized porous media, p-Laplace, and generalized fast-diffusion equations; see also [22].

Remark 3.11.

(i) The existence part of Proposition 3.10 may be also proved by applying Theorem 3.2 (due to Tweedie), since one
can see that for fixed Pt , Assumption B(i) is satisfied for v = ‖ · ‖2

H and C = BH (0,R) with R sufficiently big,
while Assumption B(ii) follows by the Harnack inequality.

(ii) We would like to point out that we considered only the additive noise case just because in this situation it is already
known that if (G1) or (G2) hold then inequalities (3.2) resp. (3.3) are satisfied (hence so is Assumption G). In
fact, one can easily see that Proposition 3.10 is true also for the multiplicative case, i.e. B : V → L2(H).

Perturbations of Markov chains satisfying a combined Harnack–Lyapunov condition
Let P be a Markov kernel on (E,B) satisfying the following condition:

(H-L) There exists a positive measurable function V such that PV ≤ γV + c for some positive constants c and
γ < 1. Moreover, for each r > 0 there exist a point z0 ∈ E, p > 1, and a constant M = M(r, z0) such that
(Pf (x))p ≤ MPf p(z0) for all x ∈ [V ≤ r].

Clearly, an example of such a kernel is any Pt associated to the previous SPDE, under Assumptions F and (G1)
(or (G2)).

Let now ρ : E → (0,1) be a measurable function such that 0 < a := infx∈E ρ(x) and supx∈E ρ(x) =: b < 1, and
Q be a second Markovian kernel on (E,B).

In the sequel we are interested in showing the existence of an invariant probability measure not for P (for which we
already now that such a measure exists; cf. Theorem 3.2 or by our generalization Theorem 3.6) but for the following
modified Markov kernel

Pf := ρPf + (1 − ρ)Qf, f ∈ pB.
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Corollary 3.12. Assume there exist constants η and l <
1−bγ
1−a

such that QV ≤ lV + η. Then there exists an invariant

probability measure for P .

Proof. By hypothesis,

Pf ≤ bPf + 1 − a ≤ b p
√

MPf (z0) + 1 − a ≤ b
p

√
M

a
Pf (z0) + 1 − a

for all f ∈ B+
1 and x ∈ [V ≤ r]. Hence, if m := δz0 ◦ P and φ(t) = b p

√
M
a

t , t ≥ 0, we obtain that P satisfies Assump-

tion C′(i) for C = [V ≤ r]. On the other hand, V is a Lyapunov function for P too because

PV ≤ ργV + (1 − ρ)lV + bc + (1 − a)η ≤ (
bγ + (1 − a)l

)
V + bc + (1 − a)η,

and bγ + (1 − a)l < 1. But as in the proof of Proposition 3.4(i) (relation (∗)) we obtain that infk P
k
1[V ≤r](z0) > 0

which leads to infk m(Sk1[V ≤r]) > 0 for sufficiently large r . Consequently, P satisfies Assumption C′ and the result
follows by Theorem 3.6. �

In the particular case when Q(x, ·) = δx , x ∈ E, let us denote P by P ρ , i.e.

P ρf (x) = ρ(x)Pf (x) + (
1 − ρ(x)

)
δx(f )

for all f ∈ pB.
By Corollary 3.12 we get:

Corollary 3.13. The Markov kernel P ρ admits an invariant probability measure.

For the reader’s convenience, we recall the assumptions involved in the results of Harris and Tweedie, respectively,
which ensure the existence of an invariant probability measure for P , as we already discussed in Section 3.2 (see
Theorems 3.1 and 3.2):

Assumption A. There exist a function Ṽ ∈ pB and constants b̃ and γ̃ ∈ (0,1) such that

P Ṽ ≤ γ̃ Ṽ + b̃ on E.

Furthermore, the sub-level set [Ṽ ≤ r] is small for some r > 2b̃/(1 − γ̃ ), i.e.

inf
x∈[Ṽ ≤r]

P(x, ·) ≥ ν(·)

for some non-zero sub-probability ν.

Assumption B.

(i) There exist a measurable function Ṽ : E → [0,∞), a constant b̃, and a set C ∈ B such that

P Ṽ ≤ Ṽ − 1 + b̃1C on E.

(ii) The set C from (i) is such that the following uniform countable additivity condition holds: for all (An)n ⊂ B
decreasing to ∅ we have that

lim
n

sup
x∈C

P (An)(x) = 0.

Our next purpose is to show that P ρ does not satisfy Assumption B. Regarding the aplicability of Harris’ result we
do not have a similar negative answer. However, we can show that if P does not satisfy Assumption A then neither
does P ρ . More precisely, we have:
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Proposition 3.14. The following assertions hold for the kernel P ρ :

(i) If a non-empty set C ∈ B satisfies Assumption B(ii) then C consists of a finite number of points. In particular, if
P(x, {y}) = 0 for all x, y ∈ E then P ρ does not satisfy Assumption B.

(ii) If P does not satisfy Assumption A and P(x, {y}) = 0 for all x, y ∈ E then P ρ does not satisfy Assumption A
provided a > 1

2 .

Proof. (i) Assume that the set C is not finite, so we can find a sequence (An)n ⊂ B, ∅ �= An ⊂ C, decreasing to ∅.
Then supx∈C P ρ(x,An) ≥ supx∈C(1 − ρ(x))δx(An) ≥ (1 − b) supx∈C δx(An) = 1 − b for all n ≥ 1, hence Assump-
tion B(ii) is not verified, which is a contradiction.

Suppose now that P(x, {y}) = 0 for all x, y ∈ E. We claim that (P ρ)n(x,C)→n 0 for any C = {x1, . . . , xn} ⊂ E

and x ∈ E. Clearly, it is enough to show this for C = {y} for some arbitrarily fixed y ∈ E. But

P ρ
(
x, {y}) = ρ(x)P

(
x, {y}) + (

1 − ρ(x)
)
δx

({y}) = (
1 − ρ(y)

)
1{y}(x) for all x ∈ E,(

P ρ
)2(

x, {y}) = (
1 − ρ(x)

)(
1 − ρ(y)

)
P

(
x, {y}) + (

1 − ρ(x)
)(

1 − ρ(y)
)
1{y}(x)

= (
1 − ρ(y)

)21{y}(x) for all x ∈ E.

Inductively, one gets(
P ρ

)n(
x, {y}) = (

1 − ρ(y)
)n1{y}(x) ≤ (1 − a)n →

n
0.

Now, if P ρ satisfies Assumption B for some set C ∈ B, then by the above considerations C must be finite and
(P ρ)n(x,C)→n 0 for all x ∈ E. But this implies that Sn(x,C) = 1

n

∑n−1
k=0(P

ρ)k(x,C)→n 0 for all x ∈ E, which
contradicts Proposition 3.4(iii).

(ii) Assume that P ρ satisfies Assumption A, so that there exists Ṽ ∈ pB s.t. P ρṼ ≤ γ̃ Ṽ + b̃ for some positive
constants b and γ < 1, and r > 2b̃

1−γ̃
s.t. infx∈[Ṽ ≤r] P ρ(x, ·) ≥ ν(·) for some non-zero sub-probability ν. Then

P Ṽ (x) = 1

ρ(x)
P ρṼ (x) − 1 − ρ(x)

ρ(x)
Ṽ (x) ≤ γ̃ − 1 + ρ(x)

ρ(x)
Ṽ (x) + b̃

ρ(x)
≤ γ̃ Ṽ (x) + b̃

a

for all x ∈ E, therefore Ṽ is a Lyapunov function for P .
The next step is to prove that [Ṽ ≤ r] is small for P , which clearly completes the proof, since it would contra-

dict the hypothesis that P does not satisfy Assumption A. To this end, let us notice first that [Ṽ ≤ r] is uncount-
able, in particular [Ṽ ≤ r] contains at least two points. Indeed, as in the proof of Proposition 3.4(i), we have that

P n([Ṽ > r]) ≤ γ̃ nṼ
r

+ 1
2a

for all n ≥ 1, so that P n(x, [Ṽ ≤ r]) ≥ ε for all n large enough, some arbitrarily fixed x,
and some ε = ε(x) > 0. If [Ṽ ≤ r] is countable, then P n(x, [Ṽ ≤ r]) = 0 (since P(x, ·) does not charge the points)
which is a contradiction.

Let now y ∈ E arbitrarily chosen and let x ∈ [Ṽ ≤ r], x �= y. Then ν({y}) ≤ P ρ(x, {y}) = ρ(x)P (x, {y}) +
(1 − ρ(x))δx{y} = 0, hence ν does not charge the points as well. Then, for A ∈ B

P(x,A) = P
(
x,A \ {x}) = 1

ρ(x)
P ρ

(
x,A \ {x}) − 1 − ρ(x)

ρ(x)
δx

(
A \ {x})

= 1

ρ(x)
P ρ

(
x,A \ {x}) ≥ 1

b
ν
(
A \ {x}) = 1

b
ν(A) for all x ∈ [Ṽ ≤ r].

Consequently, [Ṽ ≤ r] is small for P . �

Remark 3.15.

(i) It is worth to mention that with small changes in the proof, Proposition 3.14(i) remains true for more general P

when Q is not necessarily the identity kernel, if we assume that Q inherits the following property: there exists
ε > 0 such that Q(x, {x}) > ε and Q(x, {y}) = 0 for all x �= y ∈ E.
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(ii) As already mentioned in Remark 3.5, Assumption A is often formulated such that [Ṽ ≤ r] is small for all suffi-
ciently large r > 0. In this situation, one can easily see that with essentially the same proof, no lower bound for
the constant a is needed in order for Proposition 3.14(ii) to be true.

3.3. Uniform boundness on L1 implies uniform integrability for the adjoint

From now on we assume that (Pt )t≥0 is a strongly continuous semigroup of Markovian operators on Lp(m) for some
p ≥ 1. We consider the associated resolvent (Rα)α>α0≥0

Rα(f ) =
∫ ∞

0
e−αtPtf dt, f ∈ Lp(m).

Remark 3.16.

(i) In general, Rα is not defined on Lp(m) for all α > 0, unless (0,∞) is included in the resolvent set of the generator
associated with (Pt )t≥0. However, Rα can be defined on Lp(m) ∩ L∞(m), for all α > 0.

(ii) If (Pt )t≥0 is uniformly bounded then (0,∞) is included in the resolvent set of the generator and (αRα)α>0 is
uniformly bounded, but the converse is not necessarily true in general.

Theorem 3.17. Assume that Rα is defined for all α > 0 and that the family (αRα)α>0 is uniformly bounded on
Lp(m). Then m is resolvent almost invariant, hence there exists a nonzero positive finite invariant measure ν = ρ · m.
Moreover, if p > 1 then ρ can be chosen from L

q
+(m).

Proof. The first part follows since for all A ∈ B

m(αnRαn1A) ≤ m(E)
p−1
p · M · m(A)

1
p .

If p > 1, since (αR∗
α1)α>0 is bounded in Lq(m) and arguing as in the proof of Theorem 2.4, (v) ⇒ (i), one can see

that any accumulation point ρ of (αR∗
α1)α>0 in Lq(m) leads to a non-zero finite invariant measure ρ · m. �

Extending [15], a positivity preserving operator P on Lp(m), p ≥ 1 is said to satisfy condition (I) if there exists
φ ∈ L

p
+(m) such that

lim
r→∞ sup

f ∈Lp(m),‖f ‖p≤1

∥∥(|Pf | − rφ
)+∥∥

p
< 1.

Closely related to condition (I), the following Lp-tail norm was considered in [35] in order to measure the
non(semi)compactness of a bounded operator P on Lp(m), for a fixed φ ∈ L

p
+(m), p ≥ 1:

‖P‖φ
p,T = lim

r→∞ sup
‖f ‖p≤1

∥∥(Pf )1{|Pf |>rφ}
∥∥

p
.

Remark 3.18.

(i) If a positivity preserving operator P on Lp(m) satisfies ‖P‖φ
p,T < 1 then it satisfies condition (I), since

‖(|Pf | − rφ)+‖p = ‖(|Pf | − rφ)+1[|Pf |>rφ]‖p ≤ ‖(Pf )1[|Pf |>rφ]‖p .
(ii) Hino used condition (I) (for φ = 1) in order to show the existence of a nonzero element ρ in kerP ∗ (hence a

nonzero invariant measure for P ). More precisely, he showed that if P is a Markovian operator on a separable
Lp(m) space with p > 1 such that P n satisfies condition (I) for some n > 0 and φ = 1, then there exists a nonzero
element ρ ∈ ker(I −P ∗). Then he applied this result for P = Pt0 , for some t0 > 0, and P = αRα , for some α > 0;
see [15], Theorems 2.8 and 2.9.

We recapture Hino’s results in the following more general statement, as a particular case of Theorem 3.17. Our
main improvement consists of allowing p = 1 and remaining in the case of an arbitrary measurable space (E,B).
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Corollary 3.19.

(i) If there exist t0 > 0 and φ ∈ Lp(m) such that Pt0φ ≤ φ and Pt0 satisfy condition (I) then (Pt )t≥0 is uniformly
bounded.

(ii) If there exist n ≥ 1, α > α0, and φ ∈ Lp(m) such that (αRα)nφ ≤ φ and (αRα)n satisfies condition (I), then Rβ

is defined for all β > 0 and (βRβ)β>0 is uniformly bounded.

In particular, if the assumptions in (i) or (ii) are satisfied then the conclusion of Theorem 3.17 holds.

Proof. By a simple adaptation of the proof for Proposition 2.5 in [15], one can show that under (i) it follows that
(Pt )t>0 is uniformly bounded, and respectively, in the case of (ii), that {(αRα)k}k≥1 is uniformly bounded. So, let
M < ∞ be a positive real number such that ‖(αRα)k‖Lp(m) ≤ M for all k > 0. For 0 < β < α, define

R̃β :=
∞∑

k=0

(α − β)Rk+1
α .

Then

‖R̃β‖ ≤
∞∑

k=0

(α − β)n
∥∥Rk+1

α

∥∥ ≤ M

α

∞∑
k=0

(
α − β

α

)k

= M

β

and it is straightforward to check that (Rβ)β≥α0 extends to a Markovian resolvent (Rβ)β>0 by setting Rβ = R̃β for all
0 < β < α0, such that (βRβ)β>0 is uniformly bounded. �

Applications to sectorial forms
Following [24], (E,D(E)) is called a coercive closed form on L2(m) if D(E) is a dense linear subspace of L2(m)

and E : D(E) × D(E) → R is bilinear, non-negative definite such that D(E) is complete with respect to the norm

‖ · ‖E1 := E1(·, ·) 1
2 , where, for α ∈ R+, Eα(f, g) := E(f, g) + α〈f,g〉L2(m) for all f,g ∈ D(E). Also, the “weak sector

condition” is assumed, i.e. there exists k ∈R+ such that |E(f, g)| ≤ kE1(f,f )
1
2 E1(g, g)

1
2 for all f,g ∈ D(E).

A bilinear form (E,D(E)) on L2(m) is called sectorial if there exists α ∈ [0,∞) such that (Eα,D(Eα) := D(E)) is
a coercive closed form; in this case, as in [24], Chapter 1, Sections 1 and 2, one can associate a strongly continuous
semigroup (Tt )t≥0 on L2(m) whose generator (L,D(L)) satisfies D(L) ⊂ D(E) densely and E(f, g) = (−Lf,g) for
all f ∈ D(L) and g ∈ D(E). We say that (E,D(E)) is Markovian if Tt is a Markovian operator for all t > 0.

Since the semigroup generated by a coercive closed form is of contractions, the following result is an immediate
consequence of Theorem 3.17.

Corollary 3.20. Assume that (Tt )t>0 is a Markovian semigroup associated to a coercive closed form (E,D(E)). Then
there exists 0 �= ρ ∈ L2+(m) such that ρ · m is Tt -invariant.

As in [35], let us consider the following inequality for (E,D(E)): there exist r0 ≥ 0, β : (r0,∞) → (0,∞), and a
strictly positive φ ∈ L2(m) such that

m
(
f 2) ≤ rE(f,f ) + β(r)m

(
φ|f |)2

, r > r0, f ∈ D(E). (3.4)

Recall that (E,D(E)) is said to satisfy the super Poincaré inequality if (3.4) is satisfied for r0 > 0.
Also, let F : (0,∞) → R be an increasing and continuous function such that supr∈(0,1] |rF (r)| < ∞ and

limr→∞ F(r) = +∞. We say that (E,D(E)) satisfy the F -Sobolev inequality if there exist two constants c1 > 0,

c2 ≥ 0 such that

m
(
f 2F

(
f 2)) ≤ c1E(f,f ) + c2, f ∈ D(E),m

(
f 2) = 1. (3.5)

If F = log, then (3.5) is called (defective when c2 �= 0) log-Sobolev inequality.

Remark 3.21. By [35], Theorem 3.3.1, if (E,D(E)) is a positive bilinear form on L2(m), then F -Sobolev inequality
implies (3.4) for φ ≡ 1 and β(r) = c1F

−1(c2(1 + r−1)) for some c1, c2 > 0, where F−1(r) = inf{s ≥ 0 : F(s) ≥ r}.
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Lemma 3.22. Let (E,D(E)) be a Markovian sectorial form such that Eα is coercive and satisfies (3.4) for some
α < 1

r0
. If there exists t0 > 0 such that Tt0φ ≤ φ, then there exists ρ ∈ L2(m) such that ρ · m is (Tt )t≥0-invariant.

Proof. By [35], Theorem 3.2.2, we have that ‖e−αtTt‖φ
2,T ≤ e

− t
r0 for all t > 0. Since ‖Tt‖φ

2,T = eαt‖e−αtTt‖φ
2,T ≤

e
(α− 1

r0
)t

< 1, the result follows by Remark 3.18(i) and Corollary 3.19(i). �

Corollary 3.23. Let (E,D(E)) be a Markovian sectorial form such that (Eα,D(E)) satisfies the F -Sobolev inequality
for one (and hence for all) α ≥ 0. Then there exists ρ ∈ L2(m) such that ρ · m is (Tt )t≥0-invariant.

Proof. It follows by Remark 3.21 and Lemma 3.22. �

Example (Small perturbation of Dirichlet forms; cf. [4]). Following [4], let X be a locally convex topological real
vector space with dual X∗, B = B(X) its Borel σ -algebra, and H a separable Hilbert space which is continuously
embedded in X.

For f ∈FC∞
b := {ϕ(l1, . . . , lm)|m ∈ N, li ∈ X∗, ϕ ∈ C∞

b (Rm)}, x ∈ X, define ∇H f (x) the element in H uniquely
defined by

〈∇H f (x),h
〉 = d

ds
f (x + sh)

∣∣∣∣
s=0

.

Let μ be a probability measure on (X,B) such that Eμ(f,g) := ∫
X
〈∇H f,∇H g〉dμ, f,g ∈ F̃C∞

b

μ

is well defined

and closable on L2(μ), where F̃C∞
b

μ

denotes the set of all μ-classes determined by FC∞
b .

If Ls(H) stands for the set of all symmetric nonnegative definite bounded linear operators on H , then for any
strongly measurable map A : X → Ls(H) such that

c−1IH ≤ Aμ-a.e. for some c > 0 and
∫

X

∥∥A(x)
∥∥
L(H)

μ(dx) < ∞

the form

Eμ,A(f, g) :=
∫

X

〈
A(x)∇H f (x),∇H g(x)

〉
H

μ(dx), f, g ∈ F̃C∞
b

μ

is well defined and closable on L2(μ), and its closure, denoted by (E,D(E)) for some fixed μ and A, is a symmetric
coercive closed form.

Let v : X → H be B(X)/B(H)-measurable with ‖v‖H ∈ L2(μ) such that there exist ε ∈ (0,1), a, b ∈ R+ such
that for all f,g ∈FC∞

b we have∣∣∣∣
∫

〈v,∇H f 〉H g dμ

∣∣∣∣ ≤ bE1(f,f )
1
2 E1(g, g)

1
2

and ∫
〈v,∇H f 〉H g dμ ≥ −εE(f,f ) − a‖f ‖2

L2(μ)
.

Let Ev(f, g) := E(f, g)+ ∫ 〈v,∇H f 〉H g dμ, f,g ∈ FC∞
b . Then (Ev, F̃C∞

b ) is closable and if (Ev,D(Ev)) denotes
its closure, then D(Ev) = D(E), and for α := a + 1 − ε, (Ev,α,D(E)) is a coercive closed form (hence Ev is sectorial),
and

(1 − ε)E1(f,f ) ≤ Ev,α(f,f ) ≤ max{1 + b1,1 + b + a − ε}E1(f,f ). (3.6)

Moreover, if we denote by (P v
t )t≥0 the semigroup associated to (Ev,D(Ev)), then (P v

t )t≥0 is Markovian.
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The following result covers and extends Theorem 3.6 from [4]; see also [14] and [15].

Corollary 3.24.

(i) Assume that (E,D(E)) satisfies inequality (3.4) for some strictly positive φ ∈ L2(m) such that there exists t0 > 0
with P v

t0
φ ≤ φ and for some r0 < 1−ε

a
. Then there exists ρ ∈ L2(m) such that ρ · m is (P v

t )t≥0-invariant.
(ii) If (E,D(E)) satisfies the F -Sobolev inequality such that F−1 < ∞ then the assumptions in (i) are fulfilled for

φ ≡ 1.

Proof. Since (ii) follows by Remark 3.21, we prove only the first statement. It is straightforward to check that under
(i) and taking into account the first inequality in (3.6), there exists γ (r) such that

μ
(
f 2) ≤ rEv,α(f,f ) + γ (r)μ

(
φ|f |)2

, f ∈ D(E), r > r̃0,

where r̃0 = r0
(1+r0)(1−ε)

. Since r0 < 1−ε
a

and α = a + 1 − ε, it follows that α < (r̃0)
−1, and by applying Lemma 3.22

we obtain the desired conclusion. �

Appendix

A.1. Proof of Lemma 2.1

(i) Let f ∈ L1+(m) and define P ∗
t f := supn P ∗

t (f ∧ n) in L1(m). By monotone convergence we get that ‖P ∗
t f ‖1 =

m(P ∗
t f ) = supn m(f ∧n) = m(f ) < ∞. Moreover, ‖P ∗

t f −f ‖1 ≤ ‖P ∗
t (f ∧n)−f ∧n‖1 +‖P ∗

t f −P ∗
t (f ∧n)‖1 +

‖f − f ∧ n‖1 ≤ ‖P ∗
t (f ∧ n)− f ∧ n‖p′ + 2‖f − f ∧ n‖1 −→t→0 2‖f − f ∧ n‖1 −→n→∞ 0. By linearity, it follows

that (P ∗
t )t≥0 is a strongly continuous semigroup on L1(m). The fact that (P ∗

t )t≥0 consists of positivity preserving
operators is straightforward, by duality.

(ii) If (Pt )t≥0 satisfies (A2) or (A1) for p = 1 then (Pt )t≥0 may also be regarded as a semigroup of Marko-
vian operators on L∞(m). Denoting by (P ∗

t )t≥0 its adjoint on (L∞(m))∗, we prove first that (P ∗
t )t≥0 may be re-

stricted to L1(m). To this end, let f ∈ L1+(m). Then P ∗
t f is a positive finitely additive measure on (E,B) which

is absolutely continuous with respect to m. Let (An)n be a sequence of mutually disjoint B-measurable sets. Then
P ∗

t f (
⋃

n An) = m(f Pt (1⋃
n An

)) = ∑
n m(f Pt (1An)) = ∑

n P ∗
t f (An), hence P ∗

t f is a σ -additive positive measure,
absolutely continuous with respect to m. By Radon–Nikodym it follows that P ∗

t f identifies with an element from
L1+(m). By linearity, we obtain that (P ∗

t )t≥0 may be regarded as a semigroup of positivity preserving operators on
L1(m).

Now, since for each t ≥ 0 the measure pB � f 	→ m(
∫ t

0 Psf ds) is absolutely continuous with respect to
m, there exists ϕt ∈ L1+(m) such that m(

∫ t

0 Psf ds) = m(ϕtf ), i.e. (ii.1) holds. Then, P ∗
t ϕs(g) = m(ϕsPtg) =

m(
∫ s

0 Pr+t g dr) = m(
∫ s+t

0 Prg dr) − m(
∫ t

0 Prg dr) = ϕt+s − ϕs , which proves (ii.2). Finally, ‖ 1
s
(ϕt+s − ϕs)‖1 ≤

1
s
(‖ϕt+s‖1 + ‖ϕs‖1) = t

s
−→s→∞ 0, where the last inequality follows from (ii.1).

A.2. Biting lemma (cf. [5])

Let (�,F,m) be a finite positive measure space and let (fn)n≥1 be a bounded sequence in L1(m), i.e.
supn

∫
E

|fn|dm < ∞. Then there exist a function f ∈ L1(m), a subsequence (fnk
)k≥1 and a decreasing sequence

of measurable sets (Br)r≥1 with limr→∞ m(Br) = 0 such that

fnk
⇀

k→∞f weakly in L1(E \ Br,m)

for every fixed r ≥ 1.
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A.3. Komlós lemma (cf. [17])

Let (�,F,m) be a finite positive measure space and (fn)n≥1 be a bounded sequence in L1(m). Then there exist a
function f ∈ L1(m) and a subsequence (fnk

)k≥1 such that

1

N

N∑
k=1

fnk
−→

N→∞f almost everywhere. (A.1)

Moreover, the subsequence (fnk
)k≥1 can be chosen in such a way that its further subsequence will also satisfy (A.1).
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