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Abstract. We introduce a Gibbs measure on nearest-neighbour paths of length t in the Euclidean d-dimensional lattice, where each
path is penalised by a factor proportional to the size of its boundary and an inverse temperature β. We prove that, for all β > 0,
the random walk condensates to a set of diameter (t/β)1/3 in dimension d = 2, up to a multiplicative constant. In all dimensions
d ≥ 3, we also prove that the volume is bounded above by (t/β)d/(d+1) and the diameter is bounded below by (t/β)1/(d+1).
Similar results hold for a random walk conditioned to have local time greater than β everywhere in its range when β is larger than
some explicit constant, which in dimension two is the logarithm of the connective constant.

Résumé. Nous introduisons une mesure de Gibbs sur les chemins de longueur t dans le réseau Euclidien de dimension d, telle
qu’un chemin donné est penalisé par un facteur proportionnel à la taille de sa frontière et l’inverse d’une température β > 0.
Nous montrons qu’en dimension d = 2, la marche aléatoire se condense dans un ensemble de diamètre (t/β)1/3 à une constante
multiplicative près. En dimensions d ≥ 3, nous montrons que la marche occupe un volume inférieur à (t/β)d/(d+1) et son diamètre
est au moins (t/β)1/(d+1). Des résultats similaires sont obtenus pour une marche aléatoire conditionnée à avoir un temps local
supérieur à β en chaque point visité, pourvu que β soit supérieur à une constante explicite qui en deux dimensions est égale au
logarithme de la constante de connectivité.
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1. Introduction

1.1. Statement of the main results

Let d ≥ 2 and let � be the space of nearest neighbour, right continuous, infinite paths (ωt , t ∈ [0,∞)) on Zd , and
let (Xt (ω), t ≥ 0) be the canonical process. For x ∈ Zd , let Px denote the law of simple random walk on (�,F) in
continuous time where each edge has rate one started from x, and where F denotes the σ -field generated by X. We
call P = P0.

Our main result deals with geometric properties of some penalisations of random walks on Zd by their boundary.
More precisely, we introduce a Gibbs measure μ = μt on random paths defined as follows. Let Rt = {v ∈ Zd : Xs =
v for some s ≤ t} denote the range of the walk at time t . For a given time t , we consider the Hamiltonian H given by

H(ω) = |∂Rt |, (1.1)
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Fig. 1. Simulations using a Gibbs sampler algorithm of a random walk cluster with t = 25,000 steps, corresponding to β = 0.01, β = 0.1, β = 1,
and β = 2.

where for a set G, ∂G = {x ∈ G : x ∼ y for some y /∈ G} is the (inner) vertex-boundary of G. (Here x ∼ y means that
x is a neighbor of y in Zd .) The associated Gibbs measure on random paths μ = μt is obtained by considering the
measure μ defined by

dμ

d P
(ω) = 1

Z
exp

(−βH(ω)
)

(1.2)

on F . Here β > 0 is a positive number playing the role of inverse temperature and Z = Z(t,β) = E(exp(−β|∂Rt |))
is a normalising factor called the partition function. In plain words, the Gibbs measure μ penalises every site on the
boundary of the range Rt by a fixed amount e−β . Hence μ favours “highly condensed” configurations (see Figure 1
for a simulation). Interpreting the random walk (X0, . . . ,Xt ) as a chain of monomers, the Gibbs measure μ describes
the law of a diluted polymer in a poor solvent.

We will be interested in describing the geometry of Rt . With a constraint on its maximal volume and a penalty in
case of a large boundary, this problem is closely related to the question of phase separation in statistical mechanics.
This is a classical topic with a long and distinguished history, for which we mention only a few major milestones.
Traditionally, microscopic models for this phenomenon have been based on the framework of either percolation or the
Ising model. Either way, a key goal is to prove a shape theorem for the cluster. Such a result can then be viewed as a
microscopic justification for the Wulff construction ([33]), which is a method to determine the equilibrium shape of
crystals based on surface energy minimisation. In the percolation context, a rigorous derivation of the limiting shape
was first given by Alexander, Chayes and Chayes [2] in two dimensions, while in the context of the Ising model, this
was achieved slightly earlier in a celebrated work of Dobrushin, Kotecký and Shlosman [17] (for which preliminary
announcements can be found in [16,25], as noted by an anonymous referee). This result was derived again by Pfister
[29], see also the papers by Ioffe and Schonmann [24] extending the results of [17] to all subcritical temperatures. The
three-dimensional case, which is the most delicate, was handled only relatively recently by Cerf [10], with earlier work
by Bodineau [7], Cerf and Pisztora [11] as well as Bodineau, Ioffe and Velenik [8]. See [28] for an early reference
on the problem of phase separation in the context of the Ising model, [10] for a recent monograph giving a detailed
overview of the subject.

As mentioned above, until now the question of phase separation has been studied rigorously mostly in the context
of percolation and the Ising model. As far as we are aware, the present paper is the first attempt to study the question
through genuinely d-dimensional random walks. Note however that in the 1-dimensional SOS model, namely for
a 1 + 1-dimensional random walk conditioned on describing an atypically large arithmetic area, it was proven by
Dobrushin and Hryniv in [15] that a limiting Wulff shape arises.

Our main result gives precise estimates for the condensation effect that results from the attractive self-interaction
in dimension d ≥ 2. If G ⊂ Zd , let diamG denote the (Euclidean) diameter of G:

diamG = sup
{|z − w| : z,w ∈ G

}
.
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While we are currently unable to derive a shape theorem, our main result suggests that the limit shape, if it exists, has
diameter of order t1/(d+1).

Theorem 1.1.

(i) Let d = 2. For any β0 > 0 there exist positive constants c1, c2 depending only on β0 such that for all β > β0,

μt

(
c1

(
t

β

)1/3

≤ diam(Rt ) ≤ c2

(
t

β

)1/3)
→ 1, (1.3)

as t → ∞.
(ii) For all d ≥ 3 we have for all β0 and for all β > β0,

μt

(
diam(Rt ) ≥ c1

(
t

β

)1/(d+1)

and |Rt | ≤ c2

(
t

β

)d/(d+1))
→ 1 (1.4)

as t → ∞, where the constants c1 and c2 depend only on d and β0.

In principle, the inverse temperature β may even be chosen to depend on t , in which case the same result holds if
we also assume β = β(t) satisfies β(t)/t → 0 as t → ∞.

Note that the proof gives precise estimates on the probability of these events, as well as estimates on the partition
function Z = Z(t,β). We refer the reader to Theorem 3.8 for a precise statement. In dimensions d ≥ 3, we conjecture
that diam(Rt ) scales like (t/β)1/(d+1), but we have only obtained a lower bound. Our proof supports this conjecture,
but the upper bound is elusive (roughly because of topological complications in dimensions ≥ 3). Nevertheless we
still manage to get an upper bound on the volume which is consistent with this conjecture. This difficulty is a common
feature of all works on Wulff crystal.

A related problem was studied by E. Bolthausen [9] in dimension d = 2. In that work, the energy H(ω) serving
to define the Gibbs measure μ in (1.2) is taken to be Ĥ (ω) = |Rt(ω)|, the size of the range (as opposed to that of
its boundary). Thus dμ̂ = Ẑ−1

t exp(−βĤ (ω)) d P. Bolthausen’s result is that the random walk condensates to a set
of diameter t1/4, which is close in the Hausdorff sense to a Euclidean ball of that diameter. In both problems, good
bounds on the partition functions Zt and Ẑt play a crucial role. In the case where the energy is just the volume,
we have Ẑt = E(exp(−β|Rt |)), and precise asymptotics for this quantity were already obtained by Donsker and
Varadhan [18,19]. This is a considerably easier problem than the one considered here, essentially because |Rt(ω)|
is “almost” a continuous function of its local time profile, viewed as a probability measure on Zd . In particular, the
powerful machinery of large deviations theory provides the right tools to study that question. This goes a long way in
explaining the appearance of the Euclidean ball as a limit shape, and explains why the inverse temperature β is not a
relevant parameter in that model.

In contrast, here we believe that the limit shape depends on β and is not a rotationally symmetric ball. So the
microscopic geometry of the lattice is important even to determine the macroscopic shape of the random walk cluster,
and thus there is no hope in directly applying the Donsker–Varadhan large deviations machinery to the problem.
A related major difficulty is that two local time profiles can be macroscopically close in the �1 sense, say, even though
the sizes of their boundaries are of widely different orders of magnitude.

1.2. Some related problems

Our technique is sufficiently robust that it yields similar results for a number of models which turn out to be quite
closely related. One interesting case is the following conditioning problem, initially suggested by Itai Benjamini in
private communication with the first author (in fact, it was this question which was initially the focus of the present
investigation). For t ≥ 0, define the event Et as follows:

Et = {
L(t, x) ≥ β,∀x ∈ Rt

}
. (1.5)

Here L(t, x) = ∫ t

0 1{Xs=x} ds is the amount of time the walk spends at a vertex x. Conditioning on this event gives a
uniform lower bound on the density of local time uniformly over the range Rt . This also favours highly condensed
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configurations. In Benjamini’s original question, it was assumed that β = β(t) → ∞ as t → ∞. The question was to
decide whether, conditional on the event Et , there is a shape theorem for the range Rt .

As we will see later on (see for instance (3.19)), the conditioning also heavily penalises shapes Rt with large
boundaries: essentially, every point on the boundary penalises the shape by a factor of order e−β , and so a behaviour
similar to Theorem 1.1 may be expected. In particular, the conditioning is already highly nontrivial when β(t) ≡ β

is a fixed constant. This is perhaps counterintuitive initially, since in dimension d = 2 for instance, typical points are
visited logarithmically many times, so the constraint Et does not seem “very” singular.

Unlike in Theorem 1.1, we will need an assumption that β > β0, where β0 is an explicit constant: β0 = logα,
where α is the connective constant of Z2. (In dimension d ≥ 3, that constant takes a different value related to a notion
of self-avoiding surfaces, see (3.20) for the definition.)

Theorem 1.2.

(i) Let d = 2. Let β0 = logα, where α is the connective constant. For all β > β1 > β0, we have

P

(
c1

(
t

β

)1/3

≤ diam(Rt ) ≤ c2

(
t

β

)1/3 ∣∣∣ Et

)
→ 1 (1.6)

as t → ∞, where the positive constants c1 and c2 depend only on β1.
(ii) For all d ≥ 2, there exists β0 = β0(d) such that for all β > β1 > β0,

P

(
diam(Rt ) ≥ c1

(
t

β

)1/(d+1)

; and |Rt | ≤ c2

(
t

β

)d/(d+1) ∣∣∣ Et

)
→ 1 (1.7)

as t → ∞, where the positive constants c1 and c2 depend only on d and β1.

As in Theorem 1.1, the result remains valid if β = β(t) is allowed to depend on t , provided also that β(t)/t → 0
as t → ∞.

Another variant consists in taking a slightly different Hamiltonian H̃ , defined by

H̃ (ω) =
∑

x∈∂Rt

L(t, x). (1.8)

Thus the penalisation takes into account not only the size of the boundary, but also the amount of time spent on it.
Define dμ̃t = (Z̃)−1 exp(−βH̃ )d P on F .

Theorem 1.3. Theorem 1.1 still holds true with μ̃t instead of μt .

Updates
Since the first version was posted to the arXiv in 2013, there has been some progress on questions inspired by this
paper. For instance, the series of works by Asselah and Schapira [3,4] discusses a large deviation principle for the
boundary of the range of a simple random walk in dimensions d ≥ 3. In a different direction, a series of two articles
by Biskup and Procaccia [5,6] study a direct analogue of (1.2) in the two-dimensional case, except that the boundary
of the range is understood to mean the edge boundary (whereas we consider here the vertex boundary) and the weight
of the edges is also allowed to be random. Then by letting t → ∞ and then β → ∞ they are able to obtain a limit
theorem for the shape of the range, which is nonrandom but depends on the law of the weights. In the particular case
of deterministic (nonrandom) edge weights, this limit shape is simply the unit square. This is the analogue of our
conjecture here (see Section 4) that the limit shape is a diamond when β → ∞. The difference between their square
and our diamond comes from the difference between edge and vertex boundary in the formulation of the problem in
[5,6].
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1.3. Main ideas in the proof; organisation of the paper

Since the proof of Theorem 1.1 has many technical aspects, and involves plenty of careful computations, let us provide
a sketch of the main ideas involved. Recall that we are trying to estimate the radius and volume of the trace of the
random walk penalised by its local time at its boundary. A very rough heuristic for the size of the diameter is as follows.
The probability of staying in a box S of diameter L is approximately exp(−const. × t/L2), since the random walk has
a probability of order 1 to escape S every L2 units of time. In this case, one can expect the size of the boundary to then
be approximately Ld−1, so the corresponding energy of such a configuration is of order exp(−βLd−1). Balancing
energy and entropy gives us βLd−1 = t/L2 and so L = (t/β)1/(d+1), which is indeed the conjectured order of the
diameter in all dimensions d ≥ 2 (see Theorem 1.1).

The main issue in translating this rough heuristic to a rigorous argument is that the random walk could stay in a box
of size L while having a boundary much larger than Ld−1: this will be the case if the boundary is in some sense rough
or fractal, which is a priori the case at least in small dimensions (recall that in dimension d = 2, the dimension of the
outer boundary of Brownian motion is 4/3). This raises serious questions about the heuristic argument above: could
the probability of staying in a box of size L and have a smooth boundary be substantially smaller than exp(−const. ×
t/L2)? Fortunately we answer by the negative. Correspondingly, our main task is to prove a lower bound on the
partition function Z (see Proposition 3.1), which establishes one scenario of probability roughly exp(−const. × t/L2)

where the boundary of the range is of size approximately Ld−1. From this point of view, the most delicate case appears
to be d = 2; yet surprisingly this is where our results are also the most precise.

In order to do this, we first have to guess the profile of local times (π(x))x∈S , in the box S of diameter L, achieved
by a random walk conditioned to have a small boundary. The trickiest part is to guess the behaviour of this profile
close (at micro- and mesoscopic distance) to the boundary of the box. We define a specific profile which with hindsight
should be almost the optimal one. We then have to compute the cost of achieving this profile, and show that the
boundary has the desired size O(Ld−1) with this profile.

This leads us to a change of measure argument, as done in [9], and we must estimate the Radon–Nikodym derivative
under the tilted measure. The main term turns out to be exp(

∫ t

0

f
f

(Xs) ds), where f (x) is the square root of the local
time profile π which we seek to impose (see Lemma 3.4). If the local times of X are well approximated by the
profile π then it is relatively easy to conclude (using careful second-order Taylor expansions, see Lemma 3.5) that
this Radon–Nikodym derivative is indeed of order exp(−const. × t/L2), as desired. Hence what is needed is a precise
control of the large deviations of local time at points under the tilted measure. This is achieved by a careful analysis
done in Lemma 2.6, and our main use of it is summarised in Corollary 2.8. Roughly speaking, to obtain good large
deviation control on the local time at a point x which might be close to the boundary of S, it suffices to show that there
is a positive chance to hit the point x, every 1/π(x) units of time. This is achieved through a quantitative analysis
of the tilted measure, using electrical network theory, and is the main purpose of Section 2. This is one of the most
technical parts of the paper, and is particularly delicate in the case d = 2 (reflecting the above mentioned difficulty).

Finally, in Section 3.4, we apply the bound on the partition function bound to control the radius and volume of the
penalised random walk trace. This is done mainly using discrete isoperimetric inequalities.

Let us note that our methods work even for the constant β regime (not just β(t) → ∞). In order to achieve this, it
was necessary to correctly pick an accurate local time profile π for the lower bound on the partition function Z(t,β).
The naive choice in this case (essentially the normalised squared principal eigenfunction) was not good enough for
constant β because of how it behaves near the boundary. We discuss the required properties of this profile in the
beginning of Section 2, adjacent to the definition of π . (For example, the polylogarithmic terms appearing in the
definition of π are essential for the analysis to work, but would be absent in the naive choice of π .)

2. Quantitative estimates for lower bound on Z

2.1. Change of measure

As mentioned above, a main technical part of this paper consists in deriving good lower bounds on the partition
function Z, which hold in all dimensions d ≥ 2. In order to do this, we introduce a change of measure which is key
to our analysis. This is a relatively standard technique in large deviations (see, e.g., Bolthausen’s article [9] as well as
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the work of Gärtner and den Hollander [21] on intermittency of parabolic Anderson model; see [12] and [13] for a
general introduction to large deviations theory). However, the precise change of measure which needs to be performed
here is much more delicate than usual. The analysis of the titled walk in particular will require a host of tools from
the quantitative theory of Markov chains: we will need very precise information about how the tilted walk behaves at
microscopic and mesoscopic distances away from the boundary ∂S.

Let π ∈M1(Z
d) be a probability measure on Zd , and define a law Q on (�,F) as the Markov chain on Zd having

the transition rates Q(x,y) = √
π(y)/π(x) for x ∼ y and π(x) > 0 or, equivalently, infinitesimal generator defined

by

Qf (x) =
∑
y∼x

√
π(y)

π(x)

[
f (y) − f (x)

]
. (2.1)

It is immediate (but essential) that π is a reversible equilibrium measure under Q. We will also let Qx denote the law
of this Markov chain started from a given vertex x ∈ Zd . The choice of π will be crucial to our proof. Let L be least
integer greater than (t/β)1/(d+1), i.e., L = �(t/β)1/(d+1)
. Let S = [−L,L]d ∩Zd be the cube of side length 2L. Our
choice of π is extremely delicate and is determined by the following requirements.

• π must be chosen so that the walk never leaves the cube S, and should spend most of its time in the “bulk” of the
cube S, so π(x) � 1/Ld near the centre.

• π must be chosen so that by time t , points on the boundary ∂S are visited, but typically only a finite (Poisson-like)
number of times, so π(x) � 1/t near the boundary, i.e., π(x) � 1/Ld+1. At a finite but large distance from the
boundary, the mean number of visits should still be finite but large.

• π must be a “reasonably smooth” function near the boundary, so that achieving the profile π is not too unlikely (we
are aiming for probability of order exp(−ct/L2), which is roughly the probability of staying in a cube of size L for
time t ).

These three conditions would ensure that the boundary of the range is not much bigger than the boundary of the
cube S, while the smoothness condition ensures that π is not too unlikely. Recall in particular that L was chosen so
that the entropic cost, exp(−ct/L2), balances the energy cost exp(−cβLd−1).

In view of the above requirements it might be natural to take π(x) � dist(x, ∂S)/Ld+1, i.e., increases linearly with
the distance to the boundary of S. While this clearly fulfils the first and second point, it turns out that the Dirichlet
energy of

√
π (which ends up governing how likely it is to achieve π ) is too high by a logarithmic factor. Instead, the

specific choice of π is as follows. For 0 ≤ r ≤ L, let

Sr = {
z ∈ S : dist(z, ∂S) = r

} = {
z ∈ S : ‖z‖∞ = L − r

}
,

where dist(·, ·) refers to the graph distance on Zd and for a point z = (z1, . . . , zd) ∈ Zd , ‖z‖∞ = max1≤i≤d |zi |. Then,
for x ∈ Sr , set

π(x) = C(2.2)μr where μr :=
{

r+1
Ld+1(log(r+2))2 if r ≤ L/2,

(
√

μL/2 + (r−L/2)

L(d+2)/2 )2 if r ≥ L/2.
(2.2)

Let π(z) = 0 for z /∈ S, and the constant C(2.2) is chosen so that
∑

z π(z) = 1. It can then be checked that C(2.2) is
uniformly bounded away from 0 and infinity and converges to a constant as L tends to infinity.

We comment briefly on the choice of π . In view of large deviation theory and the Donsker–Varadhan principle, the
most natural choice a priori is to take π to be the square of the first Dirichlet eigenfunction on S, normalised to have
unit mass. This is for instance what is used in Bolthausen’s work [9] with some additional tweaking near the boundary
of the shape (see the definition of ψ̃ on p.893 of [9]). However this turns out to be “too flat” near the boundary, making
the second requirement untrue.

Our choice means that the growth of π is much steeper near the boundary. The slightly sublinear growth of π near
the boundary, in r/(log r)2, is in fact the crucial feature of this choice: the linear factor r guarantees that points at a
large distance from the boundary have a large mean number of visits, while the correcting factor in 1/(log r)2 ensures
that π is smooth enough that achieving a profile π has a probability of the right order of magnitude.



Condensation of a self-attracting random walk 841

Orientation
At the technical level, we recall that our argument is organised as follows. Roughly speaking, we wish to obtain large
deviation bounds on the local time accumulated at a point y ∈ S under the tilted measure Q (Lemma 2.6). The key for
doing so will be to show that y is hit sufficiently frequently, and in particular to obtain exponential tails on the hitting
time of y (Proposition 2.2, using electrical network theory). Once Lemma 2.6 is proved, we use the concentration
of local time to estimate the Radon–Nikodym derivative of P with respect to Q (Lemma 3.5) and hence estimate the
partition function Z(t,β) (Proposition 3.1).

2.2. Crude estimate on mixing time

Our first goal is to prove a crude bound on the mixing time of the Markov chain defined by Qx , which is needed at
various points in our argument. We do this by estimating the spectral gap of the Markov chain, using the method of
canonical paths of Diaconis and Saloff-Coste [14]. We use the standard canonical paths on Zd : that is, for x, y ∈ S,
we define the path γx,y as follows. We first try to match the first coordinate of x and y, then the second coordinate,
and so on until the last coordinate. Each time, the change in coordinate is monotone. As an example if d = 2 and
x = (x1;x2) and y = (y1;y2), let z = (y1;x2). Then γx,y is the union of two straight segments, going horizontally
from x to z and then vertically from z to y. We call |γ | the length (number of edges) of a path γ . If e = (x, y) is an
edge, let q(e) = π(x)Q(x, y) be the equilibrium flow through e.

Lemma 2.1. Let E denote the set of edges within S.

B = max
e∈E

{
1

q(e)

∑
x,y:e∈γx,y

|γx,y |π(x)π(y)

}
.

Then B ≤ C2.1L
2 for some constant C2.1 > 0.

Proof. Fix an edge e and suppose dist(e, ∂S) = r . Say that a point x is below e if dist(x, ∂S) ≤ r , and otherwise
say that x is above e. Note that if e ∈ γx,y , x and y cannot be both above e. Indeed, if mi = min{xi, yi} and Mi =
max{xi, yi} then γx,y ⊂ ∏

i[mi,Mi] ⊂ S, and x, y are two corners of this hypercube. So any point on γx,y must be
further from ∂S than one of x or y.

Therefore at least one of x or y is below e, say x. In this case π(x)/q(e) ≤ O(1). Moreover it is elementary
to check that the number of pairs of points x, y ∈ S such that e ∈ γx,y is at most O(Ld+1). Indeed, suppose that
the two endpoints of e differ only in the ith coordinate with 1 ≤ i ≤ d . Then the coordinates 1, . . . , i of x can be
chosen arbitrarily among O(L) possibilities (while the remaining coordinates are fixed and imposed by those of
either endpoint of e). Conversely, the coordinates i, . . . , d can be chosen arbitrarily among O(L) choices for y, and
the remaining coordinates are fixed and imposed by those of either endpoint of e. Consequently, the total number of
choices for x and y such that e ∈ γx,y is at most O(Li) × O(Ld−i+1) = O(Ld+1).

Therefore, using the facts that π(y) ≤ O(1/Ld) and |γx,y | = O(L),

1

q(e)

∑
x,y:e∈γx,y

|γx,y |π(x)π(y) ≤ CL
1

Ld
#{x, y ∈ S : e ∈ γx,y} ≤ CL2

as desired. �

By Theorem 3.2.1 in [31], it follows that if gap is the spectral gap of the Markov chain, then gap≥ 1/(C2.1L
2).

(In fact, that result holds for discrete time chains but it is straightforward to adapt the proof to the continuous time
case.) Now, it is well known that estimates on the spectral gaps yield estimates on the heat kernel. More precisely,∣∣Qx(Xt = y) − π(y)

∣∣ ≤ √
π(y)/π(x)e−gap t .

(See, e.g., the proof of Corollary 2.1.5 of [31]). Let

tmix = inf

{
t ≥ 0 : for all x, y ∈ S :

∣∣∣∣Qx(Xt = y)

π(y)
− 1

∣∣∣∣ ≤ 1/2

}
.
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From Lemma 2.1 we deduce that for all x, y ∈ S,

∣∣Qx(Xt = y) − π(y)
∣∣ ≤ √

Le−t/(C2.1L
2).

Since π(y) ≥ c/Ld+1 for all y ∈ S, it follows that taking t ≥ CL2 logL with some sufficiently large constant C,

∣∣Qx(Xt = y) − π(y)
∣∣ ≤ 1

2
π(y).

Thus we have proved:

tmix ≤ C2.3L
2 logL. (2.3)

2.3. Flows and hitting estimates

In this section we start deriving a key estimate used in the proof, which gives exponential decay of the tail for the
hitting time of an arbitrary point y in S (Proposition 2.2 below). Recall that the main use of this result is to derive
concentration of local time (Lemma 2.6) which in turn gives us estimates on the Radon–Nikodym derivative of P with
respect to Q, and hence on the partition function Z(t,β).

Throughout we will use the notation Ty := inf{t ≥ 0 : Xt = y} for the first hitting time of a vertex y.

Proposition 2.2. Uniformly over all x, y ∈ S, for some positive constants c2.2,C2.2 depending only on the dimen-
sion d ,

Qx[Ty > t] ≤ exp
(−c2.2tπ(y)

)
(2.4)

for all t ≥ C2.2/π(y), if d ≥ 3. For d = 2, we get

Qx[Ty > t] ≤ exp

(
−c2.2

t

κ log(r + 2)

)
(2.5)

for all t ≥ C2.2κ log(r + 2), where κ = π(y)−1 ∨ L2 logL and r = dist(y, ∂S).

Remark 2.3. Note that when d = 2, it is always the case that (1/κ) = π(y) ∧ 1/(L2 logL) satisfies

1

κ
≥ c

π(y)

log(r + 2)

(consider the cases dist(y, ∂S) ≤ L/2 and dist(y, ∂S) ≥ L/2 to see this). Hence c2.2 can be chosen so that for all
y ∈ S,

Qx[Ty > t] ≤ exp

(
−c2.2

tπ(y)

(log(r + 2))2

)
(2.6)

with r = dist(y, ∂S).

We start the proof of Proposition 2.2 with a lemma which bounds the local time accumulated at a vertex y until
hitting another vertex x. We introduce a box B1 of side-length L/100 at macroscopic distance (of order L) away from
∂S; for now we will take B1 = [−L/200,L/200]d but later we will allow B1 to be centered at a different point such
as (�L/2�, . . . , �L/2�). We take B2 a box of side length L/50 and B3 a box of side-length L/10 both concentric to
B1.
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Fig. 2. The shaded area is C, the union of the two cones C̃y and C̃x in the proof of Lemma 2.4.

Lemma 2.4. Assume that x ∈ B1 and y ∈ S \ B3. There is a constant C2.4 = C2.4(d) > 0 depending only on the
dimension d such that

Ey

[
L(Tx, y)

] ≤
{

C2.4 if d ≥ 3,

C2.4 log(r + 2) if d = 2,

where r = dist(y, ∂S)

Proof. Let Cy ⊂ S be the cone formed by y and B1. Let �m = {z ∈ S ∩ Cy : dist(z, y) = m}, where dist is the graph
distance. Let M = inf{m : �m ∩ B2 �= ∅}, note that M = O(L) uniformly in y /∈ B3. Let C̃y = ⋃M

m=1 �m. Then let
C̃x be the cone formed by x and �M (see Figure 2), and let C = C̃x ∪ C̃y .

We will bound from below the probability that the Markov chain started from y hits x before returning to y.
Recall that our Markov chain with law Q is reversible with respect to π . Therefore it is equivalent to a discrete time
random walk on a network on S where the weight, or conductance, of the edge e = (z,w) is given by π(z)Q(z,w) =√

π(z)π(w). It is equivalent in the sense that both processes visit the same points in the same order, though possibly
at different times. Hence it suffices to bound from above the effective resistance Reff(y → x) in this network.

We set all the weights on edges at distance greater than 1 from C to be 0, then we have only reduced the conduc-
tance of all edges. Rayleigh’s monotonicity principle (see [27, Chapter 2.4]) tells us that the effective resistance only
increases. So it suffices to bound from above the effective resistance between y and x in this modified network.

The approach we use is that of [27, Chapter 2] (see, e.g., (2.17)). Let U be a random variable uniformly distributed
on the base of the cone, �M . Let R be the union of the Euclidean segments [y,U ] and [U,x]. Given U , let � be
some choice of a monotone path in S that stays as close as possible from the two segments forming R, starting at y

and ending at x. By monotone we mean that each coordinate changes monotonically along �. (� is thus a random
monotone path connecting x and y through �M , which stays at distance at most

√
d from R; the exact way of choosing

� given U does not matter.) Because � is chosen to be monotone, it traverses any edge at most once. So the function
θ(e) = P[e ∈ �] − P[ê ∈ �] (where ê is the directed edge e in the reverse direction) defines a unit flow in C, from y

to x. Indeed θ can be viewed as the expectation of a random variable which itself defines a unit flow almost surely.
(Again, see [27, Chapters 2.4 & 2.5], and especially (2.17).) Moreover, it is easily calculated that for an edge e at
distance k from y in C̃y , the probability that e ∈ � is at most O(k−(d−1)). Likewise, for an edge e at distance k from
x in C̃x , the probability that e is traversed by � is at most O(k−(d−1)). Also, the number of edges in C̃y (resp. C̃x ) at
distance k from y (resp. x) is at most O(kd−1).
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Thompson’s principle ([27, Chapter 2.4]) then implies that the energy of this flow bounds the effective resistance.
Noting that π(z) ≥ cπ(y) for all z ∈ C we deduce

Reff(y → x) ≤
∑

e

res(e)θ(e)2

≤
M∑

k=1

1

cπ(y)
· O(

k−2(d−1)
) · O(

kd−1) +
diam(C̃x)∑

k=1

1

cπ(y)
· O(

k−2(d−1)
) · O(

kd−1)

≤
{

1
cπ(y)

· O(logL) if d = 2,
1

cπ(y)
if d ≥ 3.

Thus, letting wy = ∑
x∼y

√
π(x)π(y),

Qy[Tx < Ty] = 1

wy Reff(y → x)
≥

{
c(logL)−1 if d = 2,

c if d ≥ 3.
(2.7)

In fact, when d = 2 we can get a better bound by improving on the estimation of res(e) used above. Consider first
the edges e ∈ C̃y , and assume y ∈ Sr0 . It is obvious that for r ≥ r0 + 1, |Sr ∩ C̃y | = O(r − r0). Also, for each edge
with at least one end in Sr , the probability that e ∈ � is at most O(r − r0)

−1. Hence, if r0 ≤ L/2,

∑
e∈C̃y

res(e)θ(e)2 ≤ c

L∑
r=r0+1

1

μr

1

r − r0

≤ cL3
L/2∑

r=r0+1

(log(r + 2))2

r(r − r0)
+ c

L∑
r=L/2

1

μL/2(L/10)

≤ cL3 (log(r0 + 2))3

r0 + 2
+ cL2(logL)2 = c

μr0

log(r0 + 2) + cL2(logL)2

≤ c

μr0

log(r0 + 2).

In the second line above we have used that

∞∑
r=r0+1

(log(r + 2))2

r(r − r0)
≤ 4(log(r0 + 2))2

r0 + 1
·

2(r0+1)∑
r=r0+1

1

r − r0
+

∑
r>2(r0+1)

2(log(r + 2))2

r2
.

It is immediate that this conclusion also holds if r0 ≥ L/2. As for the edges in C̃x , note that

∑
e∈C̃x

res(e)θ(e)2 ≤ c

L/100∑
k=1

1

μ99L/100

1

k
≤ cL2 logL

and note that this, too, is less or equal to c/μr0 . Therefore, we deduce that

Reff(y → x) ≤ (C/μr0) log(r0 + 2).

Consequently,

Qy[Tx < Ty] = 1

wy Reff(y → x)
≥ c

log(r0 + 2)
(2.8)

for all d ≥ 2.
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The result follows easily by the strong Markov property and the fact that at each subsequent visit to y, the accumu-
lated local time is an exponential random variable with rate bounded away from 0 and thus has bounded mean. �

Let τxy = inf{t ≥ 0 : Ex[L(t, y)] ≥ 1}, and let τ = maxx∈B1 τxy . We immediately deduce from the above:

Lemma 2.5. Uniformly over x ∈ B1 and y /∈ B3, we have

Qx[Ty < τ ] ≥
{

c
log(r+2)

if d = 2,

c if d ≥ 3,

where r = dist(y, ∂S).

Proof. It suffices to prove this with τ replaced by τxy since τ ≥ τxy . Now, observe that

Qx[Ty < τxy] =Qx

[
L(τxy, y) > 0

] = Ex[L(τxy, y)]
Ex[L(τxy, y) | L(τxy, y) > 0] .

Now, by definition, Ex[L(τxy, y)] = 1. On the other hand, by the strong Markov property,

Ex

[
L(τxy, y) | L(τxy, y) > 0

] ≤ Ey

[
L(τxy, y)

] ≤ Ey

[
L(Tx, y)

] +Ex

[
L(τxy, y)

]
≤

{
C log(r + 2) + 1 if d = 2,

C + 1, if d ≥ 3,

where C = C2.4 is the constant from Lemma 2.4. Thus, Qx[Ty < τ ] ≥ 1/(C + 1) if d ≥ 3, and Qx[Ty < τ ] ≥
1/(C log(r + 2) + 1) for d = 2, as desired. �

We are now able to complete the proof of Proposition 2.2.

Proof of Proposition 2.2. Suppose first that y /∈ B3, and let x be arbitrary in S. By (2.3), we know that tmix ≤
C2.3L

2 logL. It follows that, uniformly over x ∈ S, if t = C2.3L
2 logL,

Qx[Xt ∈ B1] ≥ c.

Define a sequence of times t1, t2, . . . by setting tn = n(C2.3L
2 logL + τ). Then uniformly over x ∈ S and y /∈ B3, we

obtain by Lemma 2.5 and the Markov property at time t ,

Qx[Ty > t1] ≤ 1 − h,

where h = c if d ≥ 3 and h = c/ log(r + 2) if d = 2. Hence, since this estimate is uniform in x ∈ S, we deduce by
applying the Markov property at times t1, . . . , tn,

Qx[Ty > tn] ≤ (1 − h)n ≤ exp(−nh).

Observe now that for d ≥ 3, τ ≤ c/π(y) for some c large enough. Indeed, π(y) ≤ C/Ld so if t = c/π(y) with c

sufficiently large, then t ≥ 2 tmix (see (2.3)). Hence we have that

Ex

[
L(t, y)

] ≥
∫ t

t/2
Qx[Xs = y]ds ≥ t

2
· π(y)

2
≥ 1,

and hence it follows that for all x ∈ B1 (and indeed all x ∈ S), τxy ≤ t . Taking the maximum over x ∈ B1, we obtain as
desired τ ≤ c/π(y). Observe further that, still in the case d ≥ 3, we have that L2 logL ≤ C/π(y) hence t1 ≤ C/π(y)

as well.
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On the other hand, if d = 2, then the same argument gives τ ≤ C(L2 logL+1/π(y)) for some C > 0 large enough,
so that we have t1 ≤ Cκ , where κ = 1/π(y) + L2 logL. Hence for n = �cπ(y)t� (d ≥ 3) or n = �ct/κ� (d = 2),

Qx(Ty > t) ≤Qx(Ty > tn) ≤
{

exp(−htπ(y)) if d ≥ 3,

exp(−ht/κ) if d = 2,

as soon as t ≥ C/π(y) (for d ≥ 3) or t ≥ C/κ (d = 2) so that n ≥ 1.
This immediately implies the result of Proposition 2.2 if y /∈ B3. But the restriction y /∈ B3 is not essential. Indeed

if y ∈ B3, we can always consider a disjoint cube B̃3, also of side length L/100, and at macroscopic distance (of order
L) away from ∂S, for instance the one centered at (�L/2�, . . . , �L/2�). Throughout this box it will also be the case
that π(x) ≥ c/Ld and so the exact same calculations apply, yielding a similar conclusion for all y /∈ B̃3. Since a given
y is either in S \ B3 or in S \ B̃3 (as B3 and B̃3 are disjoint), Proposition 2.2 follows. �

2.4. Tail estimates for local time

We now turn to Lemma 2.6, which proves concentration of the local time at an arbitrary point y ∈ S, for which the
key input is the exponential tails derived in Proposition 2.2. We will then state a corollary summarising our main use
of Lemma 2.6.

Lemma 2.6. There exist constants C2.6, c2.6 > 0 depending only on d , such that the following holds.

(i) Assume d ≥ 3. Uniformly in x, y ∈ S, for any δ > 2/(π(y)qyt),

Qx

(
L(t, y) ≥ (1 + δ)π(y)t

) ≤ C2.6 exp
(−c2.6

(√
δ ∧ δ2)π(y)t

)
. (2.9)

(ii) Assume d = 2. Uniformly in x, y ∈ S, for any δ > 2/(π(y)qyt),

Qx

(
L(t, y) ≥ (1 + δ)π(y)t

) ≤ C2.6 exp

(
−c2.6

(√
δ ∧ δ2) π(y)t

(log(r + 2))2

)
, (2.10)

where r = dist(y, ∂S).

Proof. Fix y ∈ S. In this proof it is convenient to define a time θ by putting

θ =
{

c2.2
π(y)

(log(r + 2))2 if d = 2,
c2.2
π(y)

if d ≥ 3.
(2.11)

By Proposition 2.2 (and Remark 2.3), y is hit with positive probability every θ units of time.
Let qy = ∑

x Q(y, x) be the total jump rate from y under Q. Note that qy is of constant order for L sufficiently
large. Fix ε > 0 (in a way which will depend on δ and will be specified below), and let n = �π(y)qyt (1 + ε)
.

It will be useful to define

T = inf{t ≥ 0 : Xt = y}, T + = inf{t ≥ TS\{y} : Xt = y} − TS\{y},

which are the hitting and return time to y, and also the successive return times to y: T0 = T , and for k > 0,

T̃k = inf{t ≥ Tk−1 : Xt �= y}, Tk = inf{t ≥ T̃k : Xt = y}.
Note that Tn is the sum of the independent increments

Tn = T0 +
n∑

j=1

Tj − Tj−1 = T0 +
n∑

j=1

Tj − T̃j +
n∑

j=1

T̃j − Tj−1. (2.12)
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For each j , the increments Tj − T̃j have the same law. Also, the second sum

n∑
j=1

T̃j − Tj−1

is just L(T̃n, y) = L(Tn, y), each increment having the law of an independent exponential random variable of rate qy .
Step I. First, we bound Qx(Tn ≤ t) by bounding the first sum

∑n
j=1 Tj − T̃j . Note that Tj − T̃j has the distribution

of T + under Qy . Thus, by Proposition 2.2 and Remark 2.3 (for the d = 2 case), Tj − T̃j has an exponential tail

Qx(Tj − T̃j > t) = Qy(T
+ > t) ≤ e−θ−1t for t ≥ C2.2θ , and

Ex

[
(Tj − T̃j )

2] = Ey

[(
T +)2] =

∫ ∞

0
2t Py

[
T + > t

]
dt

≤
∫ C2.2θ

0
2tdt +

∫ ∞

C2.2θ

2te−t/θ dt

≤ A := (
(C2.2)

2 + 2
) · θ2.

Also, it is well known that Ey[T +] = 1
qyπ(y)

, so

n∑
j=1

Ex[Tj − T̃j ] = nEy

[
T +] ≥ t (1 + ε)

by our choice of n. Using the inequalities e−ξ ≤ 1 − ξ + ξ2, valid for for ξ > 0, and 1 + ξ ≤ eξ , valid for any ξ ∈ R,
we deduce that for any α > 0,

Ex

[
e−αTn

] ≤ (
Ey

[
e−αT +])n ≤ (

1 − αEy

[
T +] + α2A

)n ≤ exp
(−αnEy

[
T +] + nα2A

)
. (2.13)

Since Qx(Tn ≤ t) ≤ Qx(e
−αTn ≥ e−αt ), we have

Qx(Tn ≤ t) ≤ exp
(
α2nA + α

(
t − nEy

[
T +]))

,

which we may optimise over α > 0. We find that the right hand side is minimised for α = nEy [T +]−t

2nA
(note that

α ≥ tε/(2nA) > 0). Substituting, this implies

Qx(Tn ≤ t) ≤ exp

(
− (nEy[T +] − t)2

4nA

)
≤ exp

(
− ε2t2

4nA

)

≤ exp

(
− ε2

4(2 + (C2.2)2)
· t2

nθ2

)
. (2.14)

Step II. Next, we bound Qx(Tn > t,L(t, y) ≥ π(y)t (1 + δ)) by bounding the second sum
∑n

j=1 T̃j − Tj−1 in
(2.12).

Note that
n∑

j=1

(T̃j − Tj−1) = L(T̃n, y) = L(Tn, y)

has the distribution of
∑n

j=1 Ej where (Ej )j are i.i.d. exponential random variables of rate qy . Standard concentration
bounds on sums of i.i.d. exponential random variables show that for any η > 0,

P

(
n∑

k=1

Ek ≥ n
1 + η

qy

)
≤ exp

(−n
(
η − log(1 + η)

))
.
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Thus, if ε > 0 satisfies

π(y)qyt (1 + δ) ≥ n(1 + ε) (2.15)

then

Qx

(
L(Tn, y) ≥ π(y)t (1 + δ)

) ≤Qx

(
L(Tn, y) ≥ n

1 + ε

qy

)
≤ exp

(−n
(
ε − log(1 + ε)

))
. (2.16)

Finally, we have that the event {L(t, y) ≥ π(y)t (1 + δ)} implies that either Tn ≤ t or L(Tn, y) ≥ L(t, y) ≥
π(y)t (1 + δ) ≥ n(1 + ε)/qy , still assuming that ε satisfies the constraint (2.15). Since n ≤ π(y)qyt (1 + ε) + 1 and
δ ≥ 2/(π(y)qyt) by assumption on δ in the theorem, this is the case as soon as

(
2ε + ε2) ≤ δ/2

1 + 1/(π(y)qyt)
.

Note that π(y)qyt ≥ β0C(2.2)/2 as qy → 1 uniformly and t ≥ βLd+1. Hence we can choose

ε � min(δ,
√

δ)

so that (2.15) is satisfied, where the implied constants depend on β0 and d only. Combining (2.14) and (2.16) we
arrive at the conclusion of the lemma, since

Qx

(
L(t, y) ≥ π(y)t (1 + δ)

) ≤ Qx(Tn ≤ t) +Qx

(
L(Tn, y) ≥ π(y)t (1 + δ)

)
≤ exp

(
−c

ε2

1 + ε

(
log(r + 2)

)−2
π(y)t

)
+ exp

(−cε2π(y)t
)

≤ 2 exp
(−c

(
ε2 ∧ ε

) · (log(r + 2)
)−2 · π(y)t

)
, (2.17)

where the (log(r + 2))−2 term can be removed when d ≥ 3 and c > 0 is a constant depending on C(2.2), C2.2, c2.2, β0
and d . (We have used (2.16) to get (2.17) and the fact that (ε − log(1 + ε)) � ε2 ∧ ε as well as n ≤ (1 + ε)π(y)t .) The
lemma now follows since ε � min(δ,

√
δ), so that ε2 ∧ ε � min(

√
δ, δ, δ2) � min(

√
δ, δ2). �

Remark 2.7. A similar statement to Lemma 2.6 holds with the upper bound replaced by a lower bound: The proof
is essentially similar with a few additional complications because we can no longer use the simple bound e−ξ ≤
1 − ξ + ξ2 which was valid for all ξ ≥ 0, but when ξ ≤ 0 is only valid for −1 ≤ ξ ≤ 0 (see (2.13)). However, in order
to not overload the paper with technical details, and since this isn’t needed for the proof of Theorem 1.1 we have
chosen not to include the proof.

Corollary 2.8. For all β0 > 0 there exists a constant c2.8 > 0 depending only on d and β0, such that the following
holds. For any integer k > 0 and any x, y ∈ S,

Qx

(
L(t, y) ≥ 2kπ(y)t

) ≤ 2 exp
(−c2.82k/2 · β0r

(
log(r + 2)

)−4)
,

where r = dist(y, ∂S).

Proof. This just follows from taking 1 + δ = 2k in Lemma 2.6, where we also use the facts that qy → 1 uniformly
over S, and that t = βLd+1 so that π(y)t ≥ C(2.2)β0r(log(r + 2))−2. �

3. Proof of Theorem 1.1

The goal of this section is to obtain the following lower bound on the partition function.
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Proposition 3.1. Let β0 > 0 be fixed and let β > β0. Then

Z(t,β) ≥ exp
(−γ t1−2/(d+1)β2/(d+1)

)
,

where γ is a constant depending only on β0 and d ≥ 2.

3.1. Good event

For any 0 < r ≤ L recall the definition of Sr :

Sr = {
z ∈ S : dist(z, ∂S) = r

} = {
z ∈ S : ‖z‖∞ = L − r

}
.

For z ∈ Sr let 〈z〉 = #{1 ≤ j ≤ d : |zj | = ‖z‖∞} (which is between 1 and d). Define

Dr = {
z ∈ Sr : 〈z〉 > 1

}
. (3.1)

In two dimensions the vertices of Dr are exactly the four corners of the square Sr , while in three dimensions these
are the edges of the cube defined by Sr . More generally the vertices of Dr are those which are in the intersections of
faces of the hypercube defined by Sr .

For any k ≥ 1 define the (random) subset

Xk =
{
x ∈ S : L(t, x)

tπ(x)
∈ [

2k,2k+1)},

and consider the set of vertices

Sr,k = Sr ∩Xk, Dr,k = Dr ∩Xk.

Define the “good” events:

Sr,k = {|Sr,k| ≤ |Sr | exp
(−c3.22k/2r

(
log(r + 2)

)−4)}
,

where c3.2 = 1
2c2.8. Define:

Sr =
⋂

k≥k3.2

Sr,k, S =
L⋂

r=1

Sr ,

where k3.2 will be chosen below, large enough. Likewise, define

Dr,k = {|Dr,k| ≤ |Dr | exp
(−c3.22k/2r

(
log(r + 2)

)−4)}
,

where c3.2 = 1
2c2.8, and

Dr =
⋂

k≥k3.2

Dr,k, D =
L⋂

r=1

Dr

as above.
Fixing some c(3.2) large enough (which will be chosen later) we define the event

B := {|∂Rt | ≤ c(3.2)L
d−1}, (3.2)

and finally, we define the good event G as follows:

G = B ∩ S ∩D. (3.3)
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We will now proceed to show that the probability of the good event Qx(G) is bounded below uniformly in L. We
will allow the starting point to be any fixed arbitrary x ∈ S (although we only require these results with x = 0).

Lemma 3.2. Fix ε > 0 and β0 > 0. We can choose k3.2 = k3.2(β0, ε) such that for any β ≥ β0, and for all t sufficiently
large, we have Qx(S) ≥ 1 − ε and Qx(D) ≥ 1 − ε for all x ∈ S.

Proof. We only show the proof for S , as the proof for D is very similar. By Corollary 2.8, taking expectation under
Qx ,

Ex |Sk,r | ≤ |Sr |max
y∈Sr

Qx(y ∈ Xk) ≤ |Sr |max
y∈Sr

Qx

(
L(t, y) ≥ 2kπ(y)t

)
≤ |Sr | exp

(−2c3.22k/2r
(
log(r + 2)

)−4)
.

Applying a union bound and Markov’s inequality, we deduce that

Qx

(
Sc

) ≤
∑

k≥k3.2

∑
r≥1

exp
(−c3.22k/2r

(
log(r + 2)

)−4)

and so can be made arbitrarily small by choosing k3.2 large enough (depending only on β0), as desired. �

Now, we estimate Ex |∂Rt | under Qx .

Lemma 3.3. Let β0 > 0. There exists C3.3 > 0 (depending only on β0) such that for all β ≥ β0, under Qx we have
Ex |∂Rt | ≤ C3.3L

d−1.

Proof. Since the maximal degree is 2d we obtain that |∂Rt | ≤ 2d|S \ Rt | + CLd−1, where the second term rep-
resents all vertices on ∂S. Note that if y ∈ Sr then π(y)t ≥ c2.2βr(log(r + 2))−2 for some constant c > 0. Using
Proposition 2.2 (and Remark 2.3),

Ex |S \ Rt | =
∑
y∈S

Qx[y /∈ Rt ] =
∑
y∈S

Qx[Ty > t] ≤
∑

r

|Sr | exp
(−c2.2β0r

(
log(r + 2)

)−4) ≤ CLd−1,

as desired. �

We deduce from Lemma 3.3 and Markov’s inequality that

Qx

(|∂Rt | ≥ 2C3.3L
d−1) ≤ 1/2.

In particular, together with Lemma 3.2, if we take c(3.2) ≥ 2C3.3 (so altogether c(3.2) is chosen large enough in a way
which depends only on β0 and d), we obtain for L sufficiently large

Qx(G) ≥ 1/4. (3.4)

3.2. Radon–Nikodym derivative estimates

The following lemma is well known but very useful, see e.g. [30], IV, (22.8). We include it for completeness.

Lemma 3.4. Let f (z) = √
π(z). Let 
f (x) = ∑

y∼x f (y) − f (x) be the discrete Laplacian. Then

d Px

dQx

|Ft
= f (X0)

f (Xt )
exp

(∫ t

0


f

f
(Xs) ds

)
.
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Proof. This follows easily from a discrete Feynman–Kac representation (see e.g. Lemma 11 in [21]). An alternative
elementary proof is as follows. Suppose the successive states visited by ω up to time t are x0, . . . , xn, with the path
staying a time τ0, . . . , τn at respectively at these locations. (Hence τ1 + · · · + τn = t .) If x ∈ Zd , then the total rate at
which the particle would jump out of x under Q is given by q(x) = f (x)−1 ∑

y∼x f (y). Then letting d(x) = 2d be
the total rate of leaving x under P,

d Px

dQx

(ω) = e−d(x0)τ0 · · · e−d(xn)τn

Q(x0, x1)e−q(x0)τ0 · · ·Q(xn−1, xn)e−q(xn)τn

= f (x0)

f (xn)

n∏
i=0

exp
(
(q − d)(xi)τi

) = f (x0)

f (xn)

∏
x∈Zd

exp
(
(q − d)(x)L(t, x)

)

= f (x0)

f (xn)
exp

( ∑
x∈Zd


f (x)

f (x)
L(t, x)

)
.

The result follows immediately. �

Lemma 3.5. Recall the events S,D defined above (3.3). On the event S ∩D we have

∫ t

0


f

f
(Xs) ds ≥ −c3.5tL

−2,

where c3.5 > 0 is some constant (depending only on the dimension d and on β0).

Proof. To ease the presentation, write μ(r) = μr , and consider μ as a function on real positive numbers. We want to
estimate

∑
x


f (x)
f (x)

L(t, x) from below. The terms x ∈ Sr \ Dr , r �= L/2 are the “main terms” and all the other terms
(r = L/2 or x ∈ Dr ) are a kind of error which we need to estimate.

Step 1: contribution of main terms. We will show that

∑
r �=L/2

∑
x∈Sr\Dr


f (x)

f (x)
L(t, x) ≥ −c · t

L2
. (3.5)

Note that 
f (x)/f (x) does not change if we mutiply f by a nonzero constant. Hence for this calculation we may
take C(2.2) = 1 in the definition of π(x). Thus we have for x ∈ Sr

f (x) = √
μ(r) =

{
L−(d+1)/2

√
r

log(r+2)
if r ≤ L/2,√

μ(L/2) + r−L/2
L(d+2)/2 if r > L/2.

A second order Taylor expansion provides the following estimate for all x ∈ Sr, y ∈ Sr+1 with r + 1 ≤ L/2:

f (y)

f (x)
− 1 = 1

2r
− 1

(r + 2) log(r + 2)
+ O

(
r−2).

Now, for x ∈ Sr \ Dr with r + 1 ≤ L/2, all neighbours are in Sr (and hence do no contribute to the Laplacian) except
for one in Sr+1 and one in Sr−1. Hence, for some ξ ∈ [r − 1, r],


f (x)

f (x)
= 1

2r
− 1

(r + 2) log(r + 2)
− 1

2(r − 1)
+ 1

(r + 1) log(r + 1)
+ O

(
r−2)

= − 1

2ξ2
+ log(ξ + 2) + 1

(ξ + 2)2(log(ξ + 2))2
+ O

(
r−2) ≥ −cr−2,
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for some constant c > 0. For r > L/2, we have that if x ∈ Sr \ Dr , then 
f (x) = 0 since f is affine in this range.
Hence let us estimate the contribution to the Radon–Nikodym derivative (3.5) coming from points in Sr \ Dr . Denote

ϕ(r) =
{

r(log(r + 2))−2 if r ≤ L/2,

r if r > L/2.

If x ∈ Sr,k \ Dr we have that 
f (x)
f (x)

≥ −cr−2 and also L(t, x) ≤ 2k+1π(x)t ≤ c2k+1(t/Ld+1)ϕ(r). So, on the event
Sr,k ,

∑
x∈Sr,k\Dr


f (x)

f (x)
L(t, x) ≥ −c|Sr,k \ Dr | · 2k+1 t

Ld+1
ϕ(r)r−2

≥ −c|Sr | · 2k+1 t

Ld+1
ϕ(r)r−2 · exp

(−c3.22k/2r
(
log(r + 2)

)−4)
.

Summing over k and since |Sr | ≤ Ld−1, we obtain that on the event S ,

∑
x∈Sr\Dr


f (x)

f (x)
L(t, x) ≥ −tL−2 · ϕ(r)r−2 ·

(
2k3.2+1 +

∑
k≥k3.2

2k+1e−c3.22k/2r(log(r+2))−4
)

≥ −ctL−2ϕ(r)r−2,

where the final constant c > 0 depends on k3.2. Hence, summing over r �= L/2, the contribution of the main terms to
the Radon–Nikodym derivative is

∑
r �=L/2

∑
x∈Sr\Dr


f (x)

f (x)
L(t, x) ≥ −ctL−2

as desired in (3.5), because

L∑
r=1

ϕ(r)r−2 ≤
∑

1≤r≤L/2

1

r(log(r + 2))2
+

∑
L/2<r≤L

1

r
≤ C. (3.6)

Step 2: contribution of Dr , r < L/2. If x ∈ Dr for r < L/2, then 2d − 〈x〉 neighbours of x are in Sr , and 〈x〉
neighbours are in Sr−1 (here recall that 〈x〉 = #{1 ≤ j ≤ d : |xj | = ‖x‖∞} is the number of coordinates which achieve
the sup norm of x, as defined in (3.1)). So,


f (x)

f (x)
= − 〈x〉

2(r − 1)
+ 〈x〉

(r + 1) log(r + 1)
+ O

(
r−2) ≥ −d · c(r + 2)−1.

Hence noting that |Dr | = O(Ld−2), on the event D the contribution to (3.5) coming from Dr, r < L/2, is:

∑
x∈Dr


f (x)

f (x)
L(t, x) ≥ −c|Dr | · t

Ld+1
ϕ(r)r−1 ·

(
2k3.2+1 +

∑
k≥k3.2

2k+1e−c3.22k/2r(log(r+2))−4
)

≥ −cLd−2 · t

Ld+1
ϕ(r)r−1 ≥ −ctL−3ϕ(r)r−1

and thus summing over r < L/2 we get

∑
r<L/2

∑
x∈Dr


f (x)

f (x)
L(t, x) ≥ −c

t

L2(logL)2
. (3.7)
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Step 3: contribution of Dr with r ≥ L/2. If x ∈ Dr for r ≥ L/2 then


f (x)

f (x)
= −〈x〉 · 1

L(d+2)/2f (x)
≥ −c

1

Ld/2+1f (x)
.

Thus for r ≥ L/2 and k ≥ 1 we have, on Dr,k :

∑
x∈Dr,k


f (x)

f (x)
L(t, x) ≥ −1/Ld/2+1

f (x)
2k+1tf (x)2 × |Dr |e−c3.22k/2r(log(r+2))−4

≥ − t

Ld/2+1
Ld−2

(√
μL/2 + r − L/2

Ld/2+1

)
× e−c3.22k/2r(log(r+2))−4

so that summing over k, on D, reasoning as above,

∑
x∈Dr


f (x)

f (x)
L(t, x) ≥ −c

t

Ld/2+1
Ld−2

(
1

Ld/2 logL
+ r − L/2

Ld/2+1

)

and then summing over r ≥ L/2:

∑
r≥L/2

∑
x∈Dr


f (x)

f (x)
L(t, x) ≥ −c

(
t

L2 logL
+ t

L2

)
≥ −c

t

L2
. (3.8)

Step 4. The contribution coming from r = L/2 is estimated in a similar way: for any x ∈ SL/2,


f (x)

f (x)
≥ −c

logL

L

and hence for the same reason as above, on the good event S ,

∑
x∈SL/2


f (x)

f (x)
L(t, x) ≥ −cLd−1 logL

L
× t

1

Ld(logL)2

≥ −c
t

L2 logL
. (3.9)

Conclusion

Combining the results of all four steps above ((3.5), (3.7), (3.8), and (3.9)), we deduce

∑
x∈S


f (x)

f (x)
L(t, x) ≥ −c

t

L2
.

This concludes the proof of Lemma 3.5. �

Remark 3.6. Note that it is in (3.6) that we see the importance of the logarithmic correction terms in the choice of
the local time profile π(x) in (2.2).

With this lemma it is now easy to conclude the proof of the lower bound on the partition function.

Proof of Proposition 3.1. Let d ≥ 2, and let x = 0 be the starting point of the walk. Using the definition of G,
Lemma 3.5, and (3.4), and the fact that π(x) ≤ π(0) for any x ∈ S, we obtain:

Z(t,β) = E0
[
exp

(−β|∂Rt |
)] ≥ E0

[
1G exp

(−β|∂Rt |
)]



854 N. Berestycki and A. Yadin

≥ exp
(−βc(3.2)L

d−1)P0(G) = exp
(−βc(3.2)L

d−1)Q0

(
1G

d P0

dQ0

)

≥ 1

4
exp

(−(
βc(3.2)L

d−1 + c3.5tL
−2)).

Recall that our choice of L = (t/β)1/(d+1) guarantees that both terms βLd−1 and tL−2 in the exponential are of the
same order of magnitude, namely t1−2/(d+1)β2/(d+1). This finishes the proof of Proposition 3.1 for a sufficiently large
γ (depending only on β0 and the dimension d). �

3.3. Discrete isoperimetry

We now state and prove a modified isoperimetric inequality which deals with the outer boundary of a set. We first
need some definitions. For a set G ⊂ Zd , let Ext(G) be the unique unbounded connected component of Zd \ G. Let
the outer vertex boundary ∂∗G be defined by

∂∗G = {
x ∈ G : ∃y ∈ Ext(G), x ∼ y

}
.

The outer edge boundary, denoted by ∂∗
e G, consists of those edges e = (x, y) with x ∈ G and y ∈ Ext(G).

Lemma 3.7. Let A ⊂ Zd be a finite, connected set with |A| ≥ 2.

(i) Assume d = 2, and let R be the smallest rectangle in Z2 containing A (i.e., R is the intersection of all rectangles
containing A). Then,∣∣∂∗R

∣∣ ≤ 3
∣∣∂∗A

∣∣. (3.10)

(ii) For any d ≥ 2,

∣∣∂∗A
∣∣ ≥ 2d

2d − 1
|A| d−1

d . (3.11)

Proof. For any connected set A such that 2 ≤ |A| < ∞, we have that∣∣∂∗A
∣∣ ≤ ∣∣∂∗

e A
∣∣ ≤ (2d − 1)

∣∣∂∗A
∣∣. (3.12)

Indeed, for the first inequality simply note that the map which associates to an edge e ∈ ∂∗
e A the endpoint of e which

belongs to A is a map from ∂∗
e A to ∂∗A which is clearly onto. This proves the first inequality. Moreover, any x ∈ ∂∗A

has at most 2d −1 pre-images in this map (since for any x ∈ ∂∗A then there are at most 2d −1 edges in ∂∗
e A connected

to x, and at least one other edge must connect x to the rest of A, as A is connected). This proves the second inequality
and thus (3.12).

Consider the case d = 2. We claim that |∂∗
e R| ≤ |∂∗

e A| (then we will see that (3.10) follows directly from (3.12)).
Let (x, x + e) ∈ ∂∗

e A, for some e ∈ {±ei}, where ei are the standard unit vectors of Z2, where x ∈ A and x + e /∈ A.
Note that since x ∈ A, we also have x ∈ R. Thus, there exists a (necessarily unique) k ≥ 0 such that y = x + ke ∈ R

and x + ze /∈ R for all z > k. Thus, (x + ke, x + (k + 1)e) ∈ ∂∗
e R. Hence we can define a map φ : ∂∗

e A → ∂∗
e R by

setting:

φ
(
(x, x + e)

) = (y, y + e).

In words, we start from (x, x + e) and travel in the direction e until we leave R. This defines an edge in the outer edge
boundary of R.

We claim that φ : ∂∗
e A → ∂∗

e R is onto. This follows since if (y, y + e) ∈ ∂∗
e R, then considering the line L =

{y − ke : k ≥ 0}, it must be that L ∩ A �= ∅, since otherwise either A would not be connected or R would not be the
smallest rectangle containing A. (This relies on the assumption that d = 2.) Thus, there must exist some k ≥ 0 such
that y − ke ∈ A and y − ze /∈ A for any z < k. Thus, the edge (y − ke, y − (k − 1)e) is in ∂∗

e A, and it is immediate
that φ(y − ke, y − (k − 1)e) = (y, y + e).
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This proves that there is a map from ∂∗
e A onto ∂∗

e R, and hence |∂∗
e R| ≤ |∂∗

e A|. Therefore, by (3.12), |∂∗R| ≤
|∂∗

e R| ≤ |∂∗
e A| ≤ 3|∂∗A|, which proves (3.10).

For the general case d ≥ 3 we use the discrete Loomis–Whitney inequality (Theorem 2 in [26]), which states that
if Ai is the projection of A onto Zd−1 along the ith coordinate then

|A|d−1 ≤
d∏

i=1

|Ai |. (3.13)

For each 1 ≤ i ≤ d and each vertex in z ∈ Ai consider the line L going through z and which is parallel to the ith
coordinate axis. It intersects A in at least one vertex (assume for simplicity and without loss of generality that A does
not intersect any hyperplane where one of the coordinates is 0). The first and last such intersections with A necessarily
correspond to two edges in ∂∗

e A, since the rest of the line lies in Zd \ A and is unbounded. Thus to each vertex in
Ai one can associate two edges in ∂∗

e A. Note that for two distinct vertices z and w the corresponding edges will be
pairwise distinct. Hence |Ai | ≤ |∂∗

e A|/2 for each 1 ≤ i ≤ d . We deduce, using the arithmetic geometric inequality and
(3.12),

d∏
i=1

|Ai | ≤
(

1

d

d∑
i=1

|Ai |
)d

≤
(

1

2d

∣∣∂∗
e A

∣∣)d

≤
(

2d − 1

2d

∣∣∂∗A
∣∣)d

.

Combining with (3.13) this gives the desired result. �

3.4. Proof of condensation

We will prove the following more precise statement of Theorem 1.1.

Theorem 3.8. Let d ≥ 2. Fix β0 > 0 and let β > β0. Let γ be as in Proposition 3.1. Then,

μt

[
diam(Rt ) ≥ 1√

2γ

(
t

β

)1/(d+1)]
≥ 1 − C exp

(−γ t1−2/(d+1)β2/(d+1)
)
, (3.14)

and if d = 2 then

μt

[
diam(Rt ) ≤ 6γ

(
t

β

)1/3]
≥ 1 − C exp

(−γ t1/3β2/3).
Moreover, for all d ≥ 2,

μt

[
|Rt | ≤ (2γ )d/(d−1)

(
t

β

)d/(d+1)]
≥ 1 − C exp

(−γ t1−2/(d+1)β2/(d+1)
)
.

Proof. Recall that by Proposition 3.1

Z(t,β) ≥ exp
(−γ t1−2/(d+1)β2/(d+1)

)
. (3.15)

We start with the lower bound on the diameter. We require the following standard estimate. Let R�
t denote the

smallest d-dimensional box containing Rt . For 1 ≤ i ≤ d , let J i
t denote the length of the projection of R�

t (or equiv-
alently Rt ) onto the ith coordinate axis.

Lemma 3.9. We have

P0
[
J i

t ≤ n
] ≤ n exp

(
−t

π2

2n2

)
.
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Proof. Under P0, the coordinates X1
t , . . . ,X

d
t are independent continuous time (with rate 2) simple random walks on

Z. We just focus on the first coordinate, Xt = X1
t , and compute Px(T > t) where x ∈ {1, . . . , J } and T = inf{t ≥ 0 :

Xt /∈ [1, J − 1]}. Let L denote the generator of (rate 1) simple random walk on Z, and let φ(x) = eiπx/J . It is trivial
to check that

Lφ(x) = −λφ(x)

for all x ∈ Z, where λ = 2(1 − cos(π/J )). Thus if we let ψ(t, x) = eλt sin(πx/J ) we have

∂

∂t
ψ +Lψ = 0

and hence Mt := eλt sin(πXt/J ) is a martingale. Consequently, applying the optional stopping time theorem at the
time t ∧ T (which is bounded), and the inequality sin(u) ≥ (2/π)u valid for 0 ≤ u ≤ π/2, yields

sin(πx/J ) = Ex

(
eλt sin(πXt∧T /J )

)
≥ eλt 2

J
Px(T > t).

Therefore,

Px(T > t) ≤ Je−λt .

Now, λ = 2(1 − cos(π/J )) ≥ π2/(2J 2) for J large enough, and the result follows. �

We now deduce from Lemma 3.9 a lower bound on the diameter of Rt under μt . Let J 1
t , . . . , J d

t be the side-lengths
of R�

t . Let N = min{J 1
t , . . . , J d

t }. We will prove the stronger statement that N ≥ c(t/β)1/(d+1) with high probability.
By Lemma 3.9 and Proposition 3.1, for an integer n > 0,

μt

[
J 1

t ≤ n
] ≤ Z(t,β)−1nC exp

(
− π2t

4dn2

)

≤ Cn exp

(
γ t1−2/(d+1)β2/(d+1) − π2

2n2
t

)
.

Thus, if n = (1/
√

2γ )(t/β)1/(d+1) and since π2 ≥ 2, we get that

μt

[
J 1

t ≤ n
] ≤ Cn exp

(−γ t1−2/(d+1)β2/(d+1)
)
.

Of course, we get the same bound replacing J 1
t by J i

t . Therefore,

μt [N ≤ n] ≤ O(t/β)d+1 exp
(−γ t1−2/(d+1)β2/(d+1)

)
. (3.16)

In particular, it holds that with high μt -probability

diam(Rt ) ≥ 1√
2γ

(t/β)1/(d+1).

We now turn to the upper bound on the diameter in dimension d = 2. We make the following observation. In
dimension d = 2, if we know that the diameter of a shape G is ≥ M for some large M then we will see that it
automatically follows (by Lemma 3.7) that |∂G| ≥ cM . This ensures that the energy associated to this particular
shape is at least cβM . This is enough for proving the theorem in the d = 2 case. [On the other hand, in dimension
3 and higher, such a simple relationship is no longer true: if diam(G) ≥ M then we can only infer that |∂G| ≥ cM ,
translating into an energy cost of cβM . This is far less than what we need, since we believe the relevant energy
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contributions are of order βMd−1. The issue is that a shape could have a big diameter in one direction and be very
“thin” along other directions.]

More precisely, recall that R�
t is a J 1

t × J 2
t rectangle. Lemma 3.7 tells us that |∂Rt | ≥ |∂∗Rt | ≥ 1

3 |∂∗R�
t | =

2
3 · (J 1

t + J 2
t ). Thus,

μt

[
J i

t > m
] ≤ Z(t,β)−1

∞∑
k=m+1

exp

(
−β

2

3
k

)

≤ C exp

(
−β

2

3
m + γ t1/3β2/3

)
.

If m = 3γ (t/β)1/3 this probability is at most C exp(−γ t1/3β2/3). A union bound over i = 1,2 give that in particular,
diam(Rt ) ≤ 2m with high probability, which concludes the proof of the first part of Theorem 3.8.

We turn to the second part of the proof which yields an upper bound on the volume of Rt in all dimensions d ≥ 2.
For this we note that by Lemma 3.7, if |Rt | ≥ m then |∂Rt | ≥ |∂∗Rt | ≥ (2d/(2d − 1))m(d−1)/d ≥ m(d−1)/d , and so
almost surely on this event, exp(−βH(ω)) ≤ exp(−βm(d−1)/d). Consequently,

μt

[|Rt | ≥ m
] ≤ Z(t,β)−1 exp

(−βm(d−1)/d
) · P[|Rt | ≥ m

]
≤ exp

(−βm(d−1)/d + γ t1−2/(d+1)β2/(d+1)
)
.

If m(d−1)/d = 2γ ( t
β
)(1−2/(d+1)), or equivalently, m = (2γ )d/(d−1)( t

β
)d/(d+1), this probability is at most exp(−γ ×

t1−2/(d+1)β2/(d+1)). This completes the upper bound on the volume in all dimensions and thus the proof of the
theorem. �

3.5. Proof of Theorems 1.3 and 1.2

We explain how to adapt the arguments of the proof of Theorem 1.1 to give the proof of Theorem 1.2. Let K > 0
be large enough and let S′ = ⋃

r>K Sr . Let B′ = {∀x ∈ S′ : L(t, x) ≥ β}. Let G = G′
t = B′ ∩ S ∩ D. Then the same

arguments as in (3.4) show that Q(G ′
t ) ≥ 1/4, provided that K is a sufficiently large constant. The only difference

with (3.4) is that it no longer suffices to bound the expected number of vertices that were not visited by time t as in
Lemma 3.3, which followed directly from Proposition 2.2. Instead, we need to show that the local time at every vertex
in S′ is greater than β with probability greater than 1/2 say. However this is a direct consequence of the lower bound
large deviations discussed in Remark 2.7.

We deduce that

P
(
G′) ≥ exp

(−γ t1−2/(d+1)β2/(d+1)
)

for some large enough constant γ depending only on β0 and d . Assume that G′
t holds. In the next t units of time, we

make sure that the each of the remaining O(KLd−1) vertices of S \ S′ are visited at least β units of time each, as
follows. For each 1 ≤ k ≤ K , we visit each vertex in Sk in clockwise order, starting from (k,0, . . . ,0). At each new
vertex, the walk remains at least β and at most 2β units of time. When the walk has visited each vertex of Sk , it moves
on to Sk+1. The total amount of time spent doing so is at most 2βKLd−1 ≤ 2Kt/L2, which is much less than the t

units of time in which we want to achieve this, since by assumption β = o(t). In the remaining amount of time, the
walk is free to do what it wants, provided it stays in S.

If all these conditions are fulfilled, it is clear that R2t = S and that each vertex has a local time greater than β , so E2t

holds. The probability of visiting every vertex in this prescribed order immediately after t is at least exp(−cβKLd−1)

for some c < ∞. The probability of remaining in S after that (for a time necessarily shorter than t ) is easily seen to
be at least exp(−ct/L2) and hence at least exp(−ct1−2/(d+1)β2/(d+1)). All in all, we deduce

P(E2t ) ≥ exp
(−γ t1−2/(d+1)β2/(d+1)

)
, (3.17)
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and thus (changing t into t/2) the same inequality holds with the left hand side replaced by P(Et ). This argument also
shows that if Z̃(t, β) is the partition function corresponding to the Hamiltonian H̃ = ∑

x∈∂Rt
L(t, x) in (1.8), then

Z̃(t, β) ≥ exp
(−γ t1−2/(d+1)β2/(d+1)

)
. (3.18)

(In fact, this could also be deduced from Corollary 2.8.)
Now, we claim that for any finite set G of vertices,

P(Rt = G,Et ) ≤ exp
(−β|∂G|). (3.19)

For each x ∈ ∂G, let y be a neighbour of x such that y /∈ G. Consider the event Jxy(t) that by time t there has never
been a jump from x to y. On Et , x is visited at least β units of time. While at x, the rate of jumping to y is of course
1. Let Exy be independent exponential random variables with rate 1, which represents the amount of time a particle
would have to wait before jumping to y. Thus Jxy(t) ∩ Et ⊂ {Exy > β}. Hence

P(Rt = G,Et ) ≤ P

( ⋂
x∈∂G

Jxy(t) ∩ Et

)
≤ P

( ⋂
x∈∂G

Exy > β

)
≤ e−β|∂G|

by independence of the random variables Exy . Thus (3.19) is established.
Putting together (3.17) and (3.19) (resp. (3.18) and the definition of μ̃), the proof of Theorem 1.2 (resp. Theo-

rem 1.3) proceeds essentially as in Theorem 3.8. More precisely, let J 1
t , . . . , J d

t be the dimensions of Rt in each
coordinate. The lower bound in (3.17) implies exactly as in (3.16) that

P
(
min

(
J 1

t , . . . , J d
t

) ≥ n | Et

) → 1

as t → ∞, where n = (1/
√

2γ )(t/β)1/(d+1). In particular, conditioned on Et , with high probability we have
diam(Rt ) ≥ n.

For the upper-bound on diam(Rt ) in the case d = 2, or the upper bound on |Rt | in the general case d ≥ 2, we
proceed as follows. We focus on the bound on |Rt | in the general case d ≥ 2, which requires a few more ideas. For
each edge e, consider the unit area plaquette p(e), orthogonal to e and such that the centre of p(e) coincides with the
midpoint of the edge e.

Definition 3.10. By a self-avoiding surface, we mean a connected union of plaquettes with disjoint (d − 1)-
dimensional interior.

When d = 2, this is essentially equivalent to a self-avoiding walk. Let Sn denote the set of self-avoiding surfaces
with n plaquettes, and contained in a ball of radius n about the origin. Let cn = |Sn| and let

α = α(d) = lim sup
n→∞

c
1/n
n , β0 = logα. (3.20)

Note that when d = 2, the limsup is a limit and is (essentially by definition) equal to the connective constant of Z2

[22]. It is easy to check that 1 ≤ α ≤ (2d)2d < ∞ in general, which is all we will use.
To each finite G ⊂ Zd we can associate a finite self-avoiding surface, where the plaquettes are obtained by con-

sidering each of the edges e = (x, y), with x ∈ G and y ∈ Ext(G). Let Sj1,...,jd
denote the set of surfaces where the

diameter in each direction 1, . . . , d , does not exceed j1, . . . , jd respectively. Let � be the (random) self-avoiding sur-
face associated with Rt . For a given self-avoiding surface σ ∈ Sj , we have by the same argument as in (3.19) (since
each plaquette corresponds to an edge (x, y) such that the corresponding exponential random variable Exy satisfies
Exy > β , and these events are independent even for edges which share vertices)

P(� = σ,Et ) ≤ exp(−βj). (3.21)

Let β1 > β0 = logα and assume that β > β1. Let β ′
1 = (β0 + β1)/2. Note that for n large enough, we have |Sn| ≤

exp(β ′
1n).
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Therefore, by (3.21),

P[� ∈ Sn | Et ] ≤ P(Et )
−1

∞∑
j=n

eβ ′
1j e−βj

≤ C exp
{
γ t1−2/(d+1)β2/(d+1) − (

β − β ′
1

)
n
}
,

where C = ∑
j≥0 exp(−(β − β ′

1)j) ≤ ∑
j exp(−j (β1 − β ′

1)/2) < ∞ since β1 > β ′
1. Let

n =
⌈

γ t1−2/(d+1)β2/(d+1)

2(β − β ′
1)

⌉
≤ Cγ (t/β)

d−1
d+1 ,

where C depends only on β1. Then we deduce

P[� ∈ Sn | Et ] → 0.

Hence |∂∗R�
t | ≤ n with high conditional probability given Et , and thus (by Lemma 3.7)

|Rt | ≤
[
(2d − 1)n

]d/(d−1) ≤ Cγ (t/β)
d

d+1

with high conditional probability, as desired.

Remark 3.11. It is interesting to note that the lower bound on diam(Rt ) is valid for all β > 0 (i.e., does not assume
β > β0).

4. Open problems and conjectures

We finish the paper with a brief discussion of some open problems raised by our results.

Limit shape theorem

The most basic question is to ask whether the constants c1 and c2 appearing in Theorem 1.1 really need to be different
from one another, and if indeed t1/(d+1) is the right order of magnitude in all dimensions d ≥ 2. We make the following
more precise conjecture:

Conjecture. There exists a nonrandom closed, bounded and convex set S = S(β) ⊂Rd such that

inf
z∈Rd

dHaus

(
Rt

diam(Rt )
; z + S

)
→ 0

in probability, where dHaus stands for Hausdorff distance.

An equivalent way of stating the conjecture is that there exists a deterministic S (compact and convex) such that if
we translate the range Rt to have a centre of mass at the origin, then the resulting set is close to S with high probability
in the Hausdorff sense. This is similar to the situation in [9].

Once the existence of S is established one may ask numerous questions about its geometry. For instance, does it
have any (macroscopic) flat facet?

Studying the extreme cases β → ∞ and β → 0 should also be interesting. Further to the above open problem, we
conjecture that as β → ∞, S(β)/diam(S(β)) converges in the Hausdorff sense to a diamond of unit diameter. This is
because the diamond is the minimiser of the isoperimetric problem for the vertex-boundary: min|S|=k |∂S| is attained
for a diamond S = {x, y : |x| + |y| ≤ n}, whenever k = 2n(n + 1). Since this conjecture was first made, a very closely
related result has been proved by Biskup and Procaccia [5,6]. At the other extreme, as β → 0 it is natural to believe
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that the lattice effects become less and less relevant, so that the limit shape becomes rotationally invariant. Thus we
conjecture that S(β)/diam(S(β)) converges as β → 0 in the Hausdorff sense to a ball of unit diameter. This seems
intuitively related to the result of Duminil-Copin on the limit of the Wulff crystal for percolation as p → pc on the
triangular lattice ([20]).

We make similar conjectures for the case of a random walk conditioned on {Lt(x) ≥ β,∀x ∈ Rt }. However, in the
case β → ∞ we believe that the limit should be a square with unit diameter instead of a diamond. This is because by
(3.19)

P[Rt = G,Et ] ≤ exp
(−β|∂eG|),

where ∂eG denotes the edge boundary of a graph G. Thus, when β → ∞, it is reasonable to guess that S(β) should
minimise its edge boundary, rather than its vertex boundary, and hence be a square rather than a diamond. As we do
not yet know whether the behaviour described in Theorem 1.2 persists for β ≤ β0, we do not make any conjecture for
the case β → 0.

Fluctuations

The question of the roughness of the boundary of the shape is of considerable interest. In the case of two-dimensional
percolation, these fluctuations are known with considerable precision. For instance (see [32] and [1]), the maximal
local roughness, which measures the maximal distance from a point on the boundary of the shape to the polygonal
hull of that shape (and hence the size of inward deviations), is of order (diameter)1/3. More recently, Hammond [23]
established an extremely precise result in this direction which gives a sharp logarithmic power-law correction (stated
in the greater generality of the q-state Potts model with q ≥ 1). This exponent and related ones are common to a large
class of two-dimensional interfaces, including the KPZ (Kardar–Parisi–Zhang) universality class. We conjecture that
this is the case here as well; and since the diameter itself is of order t1/3, this leads us to the following:

Conjecture. For any β > 0, with high μt -probability, the maximum local roughness of Rt is of order t1/9, up to
logarithmic corrections.
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