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Abstract. A sorting network is a geodesic path from 12 · · ·n to n · · ·21 in the Cayley graph of Sn generated by adjacent transpo-
sitions. For a uniformly random sorting network, we establish the existence of a local limit of the process of space–time locations
of transpositions in a neighbourhood of an for a ∈ [0,1] as n → ∞. Here time is scaled by a factor of 1/n and space is not scaled.

The limit is a swap process U on Z. We show that U is stationary and mixing with respect to the spatial shift and has time-
stationary increments. Moreover, the only dependence on a is through time scaling by a factor of

√
a(1 − a).

To establish the existence of U , we find a local limit for staircase-shaped Young tableaux. These Young tableaux are related to
sorting networks through a bijection of Edelman and Greene.

Résumé. Un réseau de tri est un chemin géodésique de 12 · · ·n à n · · ·21 dans le graphe de Cayley de Sn généré par les transposi-
tions adjacentes. Pour un réseau de tri uniforme, on établit l’existence d’une limite locale du processus des positions espace-temps
des transpositions dans un voisinage de an pour a ∈ [0,1] lorsque n → ∞. Ici, le temps est mis à l’échelle par un facteur de 1/n et
l’espace n’est pas mis à l’échelle.

La limite est un processus d’échange U sur Z. On montre que U est stationnaire et mélangeant par rapport au déplacement
spatial, et qu’il a des incréments de temps qui sont stationnaires. De plus, la seule dépendance sur a est à travers une mise à
l’échelle temporelle par un facteur de

√
a(1 − a).

Pour établir l’existence de U , on trouve une limite locale pour les tableaux de Young en forme d’escalier. Ces tableaux de Young
sont reliés aux réseaux de tri à travers une bijection d’Edelman et Greene.
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1. Introduction

Consider the Cayley graph of the symmetric group Sn where the edges are given by adjacent transpositions πi =
(i, i + 1) for i ∈ {1, . . . , n − 1}. The permutation farthest from the identity idn = 12 · · ·n is the reverse permutation
revn = n · · ·21, at distance

(
n
2

)
. A sorting network is a path in this Cayley graph from the identity to the reverse

permutation of minimal possible length, namely N = (
n
2

)
. Equivalently, a sorting network is a representation revn =

πk1πk2 · · ·πkN
, with the path being the sequence σt = ∏

i≤t πki
, so that σ0 = idn and σN = revn.

For this reason, sorting networks are also known as reduced decompositions of the reverse permutation. Under
this name, the combinatorics of sorting networks have been studied in detail, and there are connections between
sorting networks and Schubert calculus, quasisymmetric functions, zonotopal tilings of polygons, and aspects of
representation theory. We refer the reader to Stanley [17], Manivel [14], Garsia [8], Bjorner and Brenti [5] and Tenner
[19] for more background in this direction.
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Fig. 1. A “wiring diagram” for a sorting network with n = 4. In this diagram, trajectories are drawn as continuous curves for clarity, whereas our
definition specifies that trajectories make jumps at swap times.

Sorting networks also arise in computer science, as a sorting network can be viewed as an algorithm for sorting
a list. Consider an array with n elements, and let πk1,πk2 , . . . , πkN

be the sequence of adjacent transpositions in a
sorting network. At each step i, instead of swapping the elements at positions ki and ki+1, rearrange these elements in
increasing order. After all N steps, this process will sort the entire array from any initial order. If we start with revn,
then every comparison will result in a swap.

It is helpful to think of the elements of {1, . . . , n} as labeled particles (see Figure 1). Each step in the sorting
network has the effect of swapping the locations of two adjacent particles. In this way, we can talk of the particles as
having Z-valued trajectories, with jumps of {0,±1} at integer times. Exactly two particles make a non-zero jump at
each time. We denote by Hk(·) the trajectory of particle k. Specifically, for t ≤ N we have σ�t�(Hk(t)) = k (here and
later �t� denotes the integer part).

The number of sorting networks of order n has been computed by Stanley [17]. Stanley observed that the number
of sorting networks equals the number of standard Young tableaux of a certain staircase shape. A bijective proof of
this was provided by Edelman and Greene [6]. Later, another bijective proof was found by Little [13], and recently
Hamaker and Young [11] proved that the two bijections coincide.

The study of random sorting networks was initiated by Angel, Holroyd, Romik and Virág [4]. That paper considered
the possible scaling limits of sorting networks, namely weak limits of the scaled process

lim
n→∞

1

n
H�an�(t/N).

Here, space is rescaled by a factor of n and time by a factor of N = (
n
2

)
. With this scaling, H�an� becomes a function

from [0,1] to [0,1], starting at a and terminating at 1 − a. It is not a priori clear that the limit exists (in distribution)
or even that the limit is continuous. While existence of the above limit is still an open problem, it is shown in Angel
et al. [4] that the scaled trajectories are equicontinuous in probability, and that subsequential limits are Hölder(α) for
any α < 1/2.

It is also conjectured – based on strong numerical evidence – that particle trajectories converge to sine curves
as n → ∞. We refer the reader to Angel et al. [4], Angel and Holroyd [2], Kotowski [12] and Rahman, Virág, and
Vizer [16] for further results and conjectures in this direction. See also Angel, Holroyd, and Romik [3] for the scaling
limit of certain non-uniform random sorting networks under this scaling. Different local properties of random sorting
networks have also been studied in Angel, Gorin, and Holroyd [1].

1.1. Limits of sorting networks

In this paper we are interested in local limits of sorting networks. These limits are local in the sense that space is not
scaled at all. However, time still needs to be scaled by a factor of 1/n to observe a non-constant process. Thus instead
of the sorting process finishing at time N , it will finish at time N/n = (n − 1)/2.

Definition. A swap function is a function U : Z×R+ → Z with the following properties:

(i) For each x, we have that U(x, ·) is cadlag.
(ii) For each t we have that U(·, t) is a permutation of Z.
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(iii) Define the trajectory Hx(t) by U(Hx(t), t) = x. Then Hx is a cadlag path with nearest neighbour jumps for each
x (i.e. the inverse permutation U−1 is pointwise cadlag).

(iv) For any time t ∈ (0,∞) and any x ∈ Z,

lim
s→t−

U(x, s) = U(x + 1, t) if and only if lim
s→t−

U(x + 1, s) = U(x, t).

We think of a swap function as a collection of particle trajectories {Hx(·) : x ∈ Z}. Condition (iv) guarantees that
the only way that a particle at position x can move up at time t is if the particle at position x + 1 moves down. That
is, particles move by swapping with their neighbours.

We let A be the space of swap functions endowed with the following topology. A sequence of swap functions Un →
U if each of the cadlag paths Un(x, ·) → U(x, ·) and Hn,x(·) → Hx(·). Convergence of cadlag paths is convergence
in the Skorokhod topology. We refer to a random swap function as a swap process.

Our main result is the following limit theorem.

Theorem 1. There exists a swap process U so that the following holds. Let u ∈ (−1,1), and let {kn : n ∈ N} be any
sequence such that kn/n → (1 + u)/2. Consider the shifted, and time scaled swap process

Un(x, t) = σn

�nt/
√

1−u2�(kn + x) − kn,

where σn is a uniformly random n-element sorting network. Then

Un
d−−−→

n→∞ U.

Moreover, U is stationary and mixing of all orders with respect to the spatial shift, and has stationary increments in
time: the permutation (U(·, s)−1U(·, s + t))t≥0 has the same law as (U(·, t))t≥0.

The scaling in Theorem 1 can be thought of in the following way. We first choose a spatial location u ∈ (−1,1) and
look at a finite window around the position (1 + u)n/2. That is, we are concerned with particles whose labels are in a
window [(1 + u)n/2 − K,(1 + u)n/2 + K]. We want to know what the start of the sorting network looks like in this
local window, at a scale where we see each of the individual swaps in the limit. To do this, we need to rescale time by
a factor of 1/n. Note that the semicircle factor of

√
1 − u2 accounts for the fact that the swap rate is slower outside

of the center of a random sorting network. On the global scale, this was proven in Angel et al. [4], so the slow-down
does not come as a surprise.

To precisely define each Un, for x such that kn + x /∈ {1, . . . , n}, we use the convention that Un(x, t) = x. For
t > N/n we use the convention that Un(x, t) = Un(x,N/n). By doing this, any sorting network corresponds to a
swap function. Convergence in the above theorem is weak convergence in the topology on A.

Recall also that a process is spatially mixing of order m if translations by k1, . . . , km are asymptotically independent
as min |ki − kj | → ∞. Spatial mixing (even of order 2) of the system implies ergodicity.

As a by-product of the proof, we also show that for any t , there is a bi-infinite sequence of particles in the limit
process U that have not moved by time t . Consequently, Z can be split into finite intervals that are preserved by the
permutation U(·, t). Furthermore, we prove convergence in expectation of the number of swaps between positions x

and x + 1 by some time t . Specifically, if s(x, t,U) is the number of swaps between positions x and x + 1 up to time
t in the process U , then

Es(x, t,Un) → Es(x, t,U) = 4

π
t as n → ∞.

The expected number of swaps here agrees with corresponding global result obtained in Angel et al. [4].
Theorem 1 is proven in the k = 0 case as Theorem 6.2. The general case is a consequence of Theorem 7.1.
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Fig. 2. The staircase Young diagram of order 5, i.e., of λ = (4,3,2,1), with squares labelled by a reverse standard Young tableau, shown in both
the usual and in our coordinate system in H. One can think of the Young diagram λ = (4,3,2,1) as ten blocks in a triangular pile. The entries in a
tableau of shape λ give a possible order in which to place these blocks in the pile while respecting gravity.

1.2. Limits of Young tableaux

To prove Theorem 1, we will first prove a limit theorem for staircase Young tableaux, and then use the Edelman–
Greene bijection to translate this into a theorem about sorting networks. This theorem is of interest in its own right.

Recall that for an integer N , a partition λ of N is a non-increasing sequence (λ1, . . . , λn) of positive integers
adding up to N . The size of λ is N = |λ| = ∑

λi .
We shall use the convention N = {1,2, . . .}. The Young diagram associated with λ is the set A ⊂ N × N given by

A = {(i, j) : j ≤ λi}. A Young diagram is traditionally drawn with a square for each element, and elements of A are
referred to as squares. The lattice N × N is usually oriented so that the square (1,1) is in the top left corner of the
lattice, but a different orientation will be convenient for us as discussed below. The staircase Young diagram of order
n is the diagram of the partition (n − 1, n − 2, . . . ,1), of size N = (

n
2

)
.

A standard Young tableau of shape λ is an order-preserving bijection f : A → {1, . . . ,N}, i.e., f is increasing in
both i and j . For both the statement of our results and their proofs, it will be more convenient to work with reverse
standard Young tableaux, where the bijection is order-reversing. Clearly f �→ N + 1 − f is a bijection between
standard and reverse standard Young tableaux.

Our second main result is a limit theorem for the entries near the diagonal of a uniformly random staircase shaped
Young tableau of order n. To introduce this theorem, we must first change the coordinate system for staircase Young
tableaux (see Figure 2).

Define H = {(x, y) ∈ Z×N : x + y ∈ 2Z}. We introduce a partial order on H given by (x, y) ≤ (x ′, y′) if x + y ≤
x′ + y′ and y − x ≤ y′ − x′ (i.e. (x, y) ≤ (x′, y′) if there is a path in the lattice from the (x, y) to (x′, y′), increasing
in the y-coordinate. For (c, n − 1) ∈ H, define T (c,n) = {z ∈ H : z ≤ (c, n − 1)}. The set T (c,n) is the image of a
staircase shaped Young diagram of order n by the mapping (i, j) �→ (c− i +j, n+1− i −j). We extend the definition
of a staircase diagram of order n and use that term for T (c,n). We call the value c the center of the diagram.

The order on T (c,n) induced by the order on H corresponds to reversing the order on the Young diagram induced
by the order on N × N. Therefore any order-preserving bijection G : T (c,n) → {1, . . . ,N} is a reverse standard
Young tableau. We extend G to a function from H → [0,∞] by setting G(z) = ∞ for all z /∈ T (c,n). In the topology
of pointwise convergence in this function space, we then have the following theorem about convergence of uniformly
random reverse standard Young tableaux.

Theorem 2. There exists a random function F : H → [0,∞) such that the following holds. Fix u ∈ (−1,1), and a
sequence kn with kn/n → 1+u

2 . Let Gn be a uniformly random staircase Young tableau on T (kn,n). Then

Gn

n

d−−−→
n→∞

1√
1 − u2

F.

Moreover F is stationary and mixing of all orders with respect to translations by (2m,0) for m ∈ Z.

The different components of Theorem 2 are proved in Theorem 2.2, Proposition 5.3, and Theorem 7.1 below.
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Overview

The structure of the paper is as follows. Section 2 contains the necessary background about Young tableaux and the
Edelman–Greene bijection, as well as some basic domination lemmas about Young tableaux. This will allow us to
conclude Theorem 1 from the limit theorem for staircase Young tableaux, Theorem 2. Section 3 contains the proof of
Theorem 2 for the case u = 0.

In order to translate Theorem 2 using the Edelman–Greene bijection to a theorem about sorting networks, we
require certain regularity properties of the Young tableau limit. These are proved in Sections 4 and 5. Finally, we
deduce Theorem 1 in the case u = 0 in Section 6. In Section 7, we extend Theorem 2 and consequently Theorem 1 to
arbitrary u ∈ (−1,1) by exploiting a monotonicity property of random Young tableaux.

Remark. We note that Gorin and Rahman [9] have results that overlap some of ours. Our proof of the local limit
is probabilistic, and is based on the Edelman–Greene bijection, the hook formula and an associated growth process,
and a monotonicity property for random Young tableaux. Gorin and Rahman take a very different approach, using a
contour integral formula for Gelfand–Tsetlin patterns discovered by Petrov [15]. This allows them to get determinan-
tal formulas for the limiting process. While for many models exact formulas are the only known approach to limit
theorems, we show that for random Young tableaux the local limit and its properties can also be established from first
principles.

2. The hook formula, the Edelman–Greene bijection and tableau processes

In this section, we introduce some preliminary information regarding Young tableaux and the Edelman–Greene bijec-
tion. We then use the hook formula to prove some basic domination lemmas about pairs of growing tableau processes.

The hook formula

Let d(λ) be the number of reverse standard Young tableaux of shape λ. Frame, Robinson, and Thrall [7] proved a
remarkable formula for d(λ). To state it, we first need some definitions. Let A(λ) ⊂ N×N be the Young diagram of
shape λ. For a square z = (i, j) ∈ A(λ), define the hook of z by

Hz = {(
i, j ′) ∈ A : j ′ ≥ j

} ∪ {(
i′, j

) ∈ A : i′ ≥ i
}
.

Define the hook length of z by hz = |Hz|. We also define the reverse hook for z by

Rz = {
w ∈ A \ {z} : z ∈ Hw

}
.

The reverse hook will be of use later when manipulating the hook formula. We note here for future use hook lengths
and reverse hook lengths in H. For a point z = (x, y) in a diagram T (c,n), we have that hz = 2y − 1, and that
|Rz| = n − 1 − y.

Theorem 2.1 (Hook formula, Frame et al. [7]). With the above notations, we have

d(λ) = |λ|!∏
z∈A(λ) hz

.

The Edelman–Greene bijection

For the staircase Young diagram of order n, the hook formula gives

d(λn) =
(
n
2

)!
1n3n−15n−2 . . . (2n − 3)1

.

As noted, this is also the formula for the number of sorting networks of order n given in Stanley [17]. We now describe
the bijection between these two sets given by Edelman and Greene [6].
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Fig. 3. The first three iterations in the Edelman–Greene bijection. Squares not shown have Gt (z) = ∞. In each iteration, (the start of) the sliding
path is in bold.

Fig. 4. The Edelman–Greene bijection applied to a tableau of order n = 4. The particles are labelled A–D to distinguish them from the entries in
the tableau. The sorting network corresponds to the wiring diagram shown in Figure 1.

We recount here a version of the Edelman–Greene bijection for rotated (defined on subsets of H) reverse standard
Young tableaux. More precisely, the map as we describe it gives a bijection between Young tableaux on the diagram
T (c,n) and sorting networks of size n with particles located at positions {c− (n−1), c− (n−1)+2, . . . , c+ (n−1)}.
Note that here particles are located at positions in 2Z, and not in Z as in the statement of Theorem 1. This is done to
optimize the description of the bijection. To accommodate this, for odd k we use πk to denote the swap of the particles
at positions k − 1 and k + 1.

Given a reverse standard Young tableau G : T (c,n) → {1, . . . ,N}, we generate a sorting network πk1πk2 , . . . , πkN

and a sequence of Young tableaux (Gt )t≤N , starting with G0 = G. Recall that by convention G(z) = ∞ for z /∈
T (c,n). We repeat the following for t ∈ {1, . . . ,N}, computing kt and Gt from Gt−1. (See Figures 3 and 4 for an
example.)

Step 1: Find the point z∗ ∈ H such that the value of Gt−1(z∗) is minimal. Clearly z∗ = (k,1) for some odd k. Set
kt = k.

Step 2: Recursively compute the “sliding path” z1, z2, . . . as follows. Set z1 = z∗. If zi = (x, i), then zi+1 ∈ (x ±
1, i + 1) is chosen to be the point with a smaller value of Gt−1. If both are infinite then the choice is immaterial.

Step 3: Perform sliding to update G: If z is in the sliding path, so that z = zi for some i then let Gt(z) = Gt−1(zi+1).
Otherwise, let Gt(z) = Gt−1(z).

The output of the Edelman–Greene bijection is the swap sequence (ki) of length N = (
n
2

)
, taking odd values

ki ∈ [c − (n − 2), c + (n − 2)]. Edelman and Greene proved that applying the given sequence of swaps will reverse
the elements of the interval [c − (n − 1), c + (n − 1)] ⊂ 2Z, and moreover, that any sorting network on this interval
results from a unique reverse standard Young tableau on T (c,n).

2.1. Uniform Young tableaux

The Edelman–Greene bijection allows us to sample a uniformly random sorting network of size n given a uniformly
random reverse standard Young tableau of shape T (c,n). We say a set A ⊂ H is downward closed if whenever z ∈ A

and w ≤ z, then w ∈ A. In the language of Young diagrams, such an A is a special case of a skew Young diagram.
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Given a reverse standard Young tableau G on T (c,n), let Ai = {z : G(z) ≤ i}. Monotonicity of G implies that Ai

is downward closed. Moreover |Ai | = i for each i ∈ {0, . . . ,N}, and we have Ai ⊂ Ai+1. Thus a Young tableau on
T (c,n) can be viewed as a maximal sequence of downward closed subsets A0 =∅ ⊂ A1 ⊂ A2 ⊂ · · · ⊂ AN = T (c,n).
The complementary sets Bi = T (c,n) \ Ai are rotated Young diagrams, and G|Bi

is a reverse standard Young tableau
on that diagram (with entries shifted by i).

If B is a Young diagram, and G is a reverse standard Young tableau on B , then G(z) = 1 for some square z ∈ B ,
and this square must have hook Hz = {z}. We call such squares corners of B . The restriction of G to B \ {z} is a
reverse standard Young tableau with all values increased by 1. This observation allows us to use the hook formula to
find the probability that in a uniformly random reverse standard Young tableau of shape λ, the square containing 1 is
a given corner z. We call this the hook probability, denoted P(B, z). A simple calculation shows that

P(B, z) = d(B \ {z})
d(B)

= 1

|B|
∏
y∈Rz

(
hy

hy − 1

)
.

This gives a simple procedure for sampling a uniformly random reverse standard Young tableau on any diagram
B: Pick a random corner z1 of B with probability mass function P(B, z) and set G(z1) = 1. Recursively pick a corner
z2 of B \ {z} and set G(z2) = 2, and repeat until all elements of B have been chosen. In terms of the corresponding
growing sequence of sub-diagrams, this takes the following form: Set A0 = ∅. Having chosen {A0, . . . ,Ai−1}, pick
a corner zi of B \ Ai−1 with probability mass function P(B \ Ai−1, zi), and let G(zi) = i and Ai = Ai−1 ∪ {zi}. We
will primarily be interested in this process when B is a staircase diagram T (c,n).

Remark. While the hook probabilities have an explicit formula, which we use directly, one can sample a corner of a
diagram with this distribution very efficiently using the hook walk, a process described by Greene, Nijenhuis, and Wilf
[10]. We omit the mechanism of the walk since we do not need it, but remark that it can be used to provide alternate
proofs of some of the stochastic domination lemmas that follow.

2.2. Continuous time growth

A significant simplification of our analysis is achieved by Poissonizing time. Instead of generating a sequence of
growing diagrams Ai , we shall define a continuous time process with the same jump distribution but moving at the
times of a Poisson process.

The staircase tableau process (or simply tableau process) is a Markov process X(t) = X(c,n, r)(t). Its law is
determined by parameters c, n and r , and it is related to the uniform reverse standard Young tableau of T (c,n). The
state space of this process comprises all downward closed subsets A ⊂ T (c,n). The initial state is X(0) =∅. If A and
A ∪ {z} are two states, then the rate of jump from A to A ∪ {z} is

vX(z,A) = r · P
(
T (c,n) \ A,z

)
. (2.1)

When the process X is clear from context we omit the subscript on the rate v. No other jumps are possible.
Note that the parameter r simply multiplies all jump rates, so that the process X(n, c, r)(t) has the same law as

X(n, c,1)(rt). Running these processes at different rates will be useful, hence the inclusion of r in the notations. The
state T (c,n) is absorbing. The total rate of jumps from any other state is r , so the first

(
n
2

)
jump times of the process

coincide with points in a rate-r Poisson process.
Given the process X, let the inclusion time of a square z be defined by

F(z) = inf
{
t : z ∈ X(t)

}
.

These determine the process X, since we have X(t) = {z : F(z) ≤ t}. Note that F is naturally defined on all of H,
with F(z) = ∞ for z /∈ Tc,n, so that F ∈ [0,∞]H. We refer to F as the inclusion function for X. The first convergence
theorem we prove can now be stated.

Theorem 2.2. Let Xn = Xn(cn,n,n) be a sequence of tableau processes with cn = o(n), and let Fn be the corre-

sponding sequence of inclusion functions. Then Fn
d−−−→

n→∞ F for some random F : H → R+. Moreover, the limit F is

translation invariant, in the sense that F
d= Fτ , where τ(x, y) = (x + 2, y).
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We will use the notation τ throughout the paper to signify horizontal translation on H.
By the law of large numbers for the Poisson process, the limit of the inclusion functions Fn for the processes Xn is

the same as the limit of a uniformly random reverse standard Young tableau on T (cn,n) with entries scaled by 1/n.
Thus Theorem 2.2 immediately implies the convergence and translation invariance in Theorem 2 in the case u = 0.
We will similarly prove Theorem 2 for u �= 0 in Section 7 by again Poissonizing time, noting that this does not change
the limit.

Note also that T (c,n) is only defined when c and n have opposite parity, so when taking tableau limits for constant
c, we may need to change the value of c by 1, depending on whether n is odd or even. In all of our proofs, shifting the
position that the tableaux are centered at by 1 does not affect any of the arguments, as all of the domination lemmas
we use are unaffected by distance changes of size o(n). Therefore from now on, we will ignore issues of the parity of
c and n.

2.3. Stochastic domination

A central tool in our proof of existence of certain limits is stochastic domination of growth processes. Subsets of H
are naturally ordered by inclusion. For coupled tableau processes X and X′, we say that X is dominated by X′ up to
time T if for all t ≤ T we have X(t) ⊂ X′(t). In terms of the inclusion functions, this can be stated equivalently as
F ≥ F ′ ∧ T in the pointwise order on inclusion functions (note the order reversal: a smaller process X corresponds to
larger inclusion times F .) In light of Strassen’s theorem (see Strassen [18]), we have that X is stochastically dominated
by X′ if there is a coupling of the two so that domination holds, and write X � X′ up to time T .

The next lemma gives a sufficient condition for stochastic domination of one tableau process by another, in terms
of their rates.

Lemma 2.3. Let X1 and X2 be two tableau processes on the diagrams T (c1, n1) and T (c2, n2) respectively. Let S
be some subset of the state space of X, and let the stopping time T be the first time t that X1(t) /∈ S . Suppose that for
any A1 ∈ S , any state A2 with A1 ⊂ A2, and for any lattice point z we have

vX1(z,A1) ≤ vX2(z,A2), (2.2)

provided both are non-zero. Then X1 � X2 up to time T .

Proof. Suppose first that S is the entire state space of X1. The proof when S is not the whole state space goes through
in the same way.

We define a Markov process Y whose state space is all pairs (A1,A2) with A1 ⊂ A2 such that Y has marginals
X1 and X2. We define the transitions rates of Y out of a state (A1,A2) as follows. Let C1 be the set of all corners
of T (c1, n1) \ A1, C2 be the set of all corners of T (c2, n2) \ A2, and C′

1 be the set of all corners belonging to both
T (c1, n1) \ A1 and T (c2, n2) \ A1.

For z ∈ C′
1, Y transitions to state (A1 ∪{z},A2 ∪{z}) with rate vX1(z,A1). Y also transitions to state (A1,A2 ∪{z})

with rate vX2(z,A2) − vX1(z,A1). For z ∈ C2 \ C′
1, Y transitions to state (A1,A2 ∪ {z}) with rate vX2(z,A1). For

z ∈ C1 \ C′
1, Y transitions to state (A1 ∪ {z},A2) with rate vX1(z,A1).

It is easy to check that Y has the correct marginals and provides a coupling of X1 and X2 with X1 ≤ X2. �

We can further simplify which rates we need to compare to prove stochastic domination with the following obser-
vation.

Lemma 2.4. Suppose X(t) = X(c,n, r)(t) is a tableau process, and A1 ⊂ A2. Then v(z,A1) ≤ v(z,A2) for any point
z /∈ A2.

Proof. The only interesting case here is when z is a corner for both T (c,n) \ A1 and T (c,n) \ A2. Then by Equa-
tion (2.1) and the hook probability formula,

v(z,Ai) = r

|T (c,n) \ Ai |
∏
y∈Ri

z

(
1 + 1

hi
y − 1

)
.
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Here Ri
z refers to the reverse hook for z in the diagram T (c,n) \Ai , and hi

y refers to the cardinality of the hook for

y in the same diagram. We have that R1
z = R2

z , and each of these are simply the reverse hook for z in T (c,n). Also,
h2

y ≤ h1
y for all y since T (c,n) \ A2 ⊂ T (c,n) \ A1, and |T (c,n) \ A2| ≤ |T (c,n) \ A1|. Putting this together, we get

that v(z,A1) ≤ v(z,A2), as desired. �

To prove the more general stochastic domination result, we need the following lemma to help bound hook proba-
bilities.

Lemma 2.5. Let a, b be either two integers greater than 1 or two half-integers greater than 1, and define

y =
b∏

i=a

(
1 + 1

2i − 1

)
=

b∏
i=a

2i

2i − 1
,

where the product runs over integers between a and b if both are integers, and over half-integers between a and b if
both are half-integers. Then√

2b − 1

2a − 1
< y <

√
2b

2a − 2
.

Proof. We have x < y < z where

x =
b∏

i=a

2i + 1

2i
, z =

b∏
i=a

2i − 1

2i − 2
.

Then xy and yz are telescoping products given by

xy = 2b − 1

2a − 1
, yz = 2b

2a − 2

so we get
√

xy < y <
√

yz. �

Now we can prove the following more general lemma about stochastic domination.

Lemma 2.6. Let T (c1, n1) ⊂ T (c2, n2), and consider two tableau processes

X1 = X1(c1, n1, n1), and X2 = X2(c2, n2, θn2).

Fix α ∈ (0,1), and let T be the stopping time when �α(
n1
2

)� lattice points have been added to X1. Let the difference
between the horizontal centers of the two tableau processes be d = |c1 − c2|. Then X1 � X2 up to time T , provided
that

θ >
(n2 − 1)n1

(n1 − 1)(n2 − 2)

(
(1 − α)

√
1 −

(
n1 + d

n2 − 2

)2)−1

.

Proof. We may assume that c1 = d and c2 = 0. By Lemmas 2.3 and 2.4 it suffices to show that for any state A with
|A| ≤ �α(

n1
2

)�, and any corner z of both T (d,n1) \ A and T (0, n2) \ A we have

vX1(z,A) ≤ vX2(z,A).

Let R1
z be the reverse hook of z in T (d,n1), and let h1

y be the hook length of y in T (d,n1) \ A, and similarly define

R2
z and h2

y for T (0, n2). To get a simple expression for
vX2 (z,A)

vX1 (z,A)
, observe that if y ∈ R1

z , then y ∈ R2
z and h1

y = h2
y for
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such y. Thus

vX2(z,A)

vX1(z,A)
= θ

n2

n1

|T (d,n1) \ A|
|T (0, n2) \ A|

∏
y∈R2

z \R1
z

(
1 + 1

h2
y − 1

)
. (2.3)

We will show that this is always greater than 1. For y = (y1, y2) to be in R2
z \ R1

z where z = (z1, z2), one of two
possibilities must occur. Either

(y1, y2) ∈ E1 = {
(z1 − i, z2 + i) : z2 − z1 + 2i ∈ (n1 − 1 − d,n2 − 1]}, or

(y1, y2) ∈ E2 = {
(z1 + i, z2 + i) : z1 + z2 + 2i ∈ (n1 − 1 + d,n2 − 1]}.

For (y1, y2) = (z1 − i, z2 + i) ∈ E1 and for y = (z1 + i, z2 + i) ∈ E2, the hook for y is of length 1 + (y2 − z2)+ (y2 −
1) = 2i + z2. Thus using Lemma 2.5, we find that

∏
y∈R2

z \R1
z

(
1 + 1

h2
y − 1

)

=
[n2−1−z2+z1]/2∏

i=[n1−1−d−z2+z1]/2+1

(
1 + 1

2i + z2 − 1

) [n2−1−z2−z1)]/2∏
i=[n1−1+d−z2−z1]/2+1

(
1 + 1

2i + z2 − 1

)

>

√
(n2 − 2)2 − z2

1

n2
1 − (z1 − d)2

.

Thus for the quantity (2.3) to be greater than 1, we need

θ ≥ n1

n2

|T (0, n2) \ A|
|T (d,n1) \ A|

√
n2

1 − (z1 − d)2

(n2 − 2)2 − z2
1

, (2.4)

for all values of z1 and A with |A| ≤ �α(
n1
2

)�. We then have the following chain of inequalities for the right hand side
of (2.4), which show that the inequality (2.4) holds for the values of θ specified in the Lemma.

n1

n2

|T (0, n2) \ A|
|T (d,n1) \ A|

√
n2

1 − (z1 − d)2

(n2 − 2)2 − z2
1

<
n1

n2

(
n2
2

)
(1 − α)

(
n1
2

) n1

n2 − 2

(
1 −

(
z1

n2 − 2

)2)−1/2

≤ (n2 − 1)n1

(n1 − 1)(n2 − 2)

(
(1 − α)

√
1 −

(
n1 + d

n2 − 2

)2)−1

. �

We will use this lemma when n1 is much smaller than n2, the value α small, and the distance d grows linearly with
n2. In this case we have the following asymptotic version of the stochastic domination.

Corollary 2.7. Let X(un + an,n, n√
1−u2

)(t) be a sequence of tableau processes for n ∈ N, where u ∈ (−1,1) and

an = o(n) is a sequence of integers. Then for any ε1 > 2ε2 ∈ (0,1), for all sufficiently large m there exists some N(m)

such that

X

(
un + an,n,

(1 + ε1)n√
1 − u2

)
� X(0,m,m)

up to time T , for all values of n ≥ N(m). Here T is the stopping time when ε2
(
m
2

)
lattice points have been added to

the process X(0,m,m).
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Finally, we will also state Lemma 2.6 for domination of a tableau process over two independently coupled tableau
processes, as this will be necessary for the proof that the tableau limit is mixing. The proof goes through analogously.

Lemma 2.8. Let T (b1, n1) and T (c1, n1) be disjoint sets with T (b1, n1) ∪ T (c1, n1) ⊂ T (c2, n2), and consider three
tableau processes

X1(t) = X1(c1, n1, n1),X
′
1(t) = X1(b1, n1, n1) and X2(t) = X2(c2, n2, θn2).

Let Y be the process given by the union of independent copies of X1 and X′
1. Let d = max(|c2 − c1|, |c2 − b1|).

Then if α and θ are as in the statement of Lemma 2.6 (with the new definition for d), we have that Y � X2 up to a
stopping time T . In this case T is the stopping when either �α(

n1
2

)� lattice points have been added to X1 or X′
1.

3. Inclusion functions and convergence

We want to show that for a sequence of tableau processes Xn(t) = Xn(0, n,n)(t), that the corresponding inclusion
functions converge in the weak topology on the space of probability measures on [0,∞]H. To do this, we use the
monotonicity established by Corollary 2.7, which will be exploited using the following lemmas.

Lemma 3.1. Let Gn be a tight sequence of random variables taking values in [0,∞)m. Suppose that for every ε > 0,
there exists a sequence of random variables Gε

n such that P(Gε
n �= Gn) → 0 as n → ∞ and such that the following

holds. For all sufficiently large M there is some N ∈N such that

Gn � (1 + ε)Gε
M for all n ≥ N.

Then the sequence Gn has a distributional limit G.

We leave the proof of this lemma for the Appendix, as it is fairly standard but somewhat lengthy.

Lemma 3.2. Let Xn = Xn(an,n,n) be a sequence of tableau processes with an = o(n) and let Fn be the correspond-
ing sequence of inclusion functions. Then for any z ∈H,{

Fn(z) : n large enough so that z ∈ T (0, n)
}

is a tight as a sequence taking values in [0,∞).

Proof. Let z = (x, y) and consider the set An = {z′ ∈ T (an,n) : z′ ≥ z} (see Figure 5). Then An is a rectangle and as
n → ∞ the relative size |An|/|T (an,n)| → 1/2. Moreover, no square in An is added before z.

Now let n be large enough so that |An| > n2/8, and let m, θ be such that

θ >
n(m − 1)

(n − 1)(m − 2)

(
1

4

√
1 −

(
n + |an − am|

m − 2

)2)−1

. (3.1)

Fig. 5. The set An in the proof of Lemma 3.2. As the size of the Young diagram goes to infinity, the proportion of T (0, n) taken up by An increases
to 1/2, as the point z does not grow with n.
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By Lemma 2.6, θXm dominates Xn until the time when 3
4

(
n
2

)
squares have been added to Xn. By this time at least one

square from An must have been added to Xn, so z must have been added to Xn. Therefore θFn(z) � Fm(z).
As the right hand side of (3.1) is bounded uniformly for large m for a fixed value of n, there is some K > 0 such

that KFn(z) � Fm for all large m, so {Fn(z)} is tight. �

Now we can prove Theorem 2.2, which as mentioned previously corresponds precisely with Theorem 2 in the case
u = 0, and proves all parts of the Theorem in that case except for the mixing property with respect to spatial shift.

Proof of Theorem 2.2. First assume that an = 0 for all n. Since the product topology on [0,∞]H is compact, Fn has
subsequential limits. Suppose that there are two subsequential limits Fa �= Fb . Then for some finite set K ⊂ H, the
restrictions Fa|K and Fb|K are not equal. Define T ε

n to be the stopping time when ε
(
n
2

)
lattice points have been added

to Xn. T ε
n

d→ ∞ as n → ∞, so for any z, P(Fn(z) ≤ T ε
n ) → 1 as n → ∞ since{

Fn(z) : n large enough so that z ∈ T (0, n)
}

is tight by Lemma 3.2. Defining Fε
n by to be Fε

n (z) = F(z) for F(z) ≤ T ε
n and Fε

n (z) = ∞ otherwise, P(F ε
n |K �=

Fn|K) → 0 as n → ∞.
Now by Corollary 2.7, for large enough m there exists N(m) such that X(0, n, (1 + 3ε)n) � X(0,m,m) up to time

T ε
m, for all n ≥ N . This implies that (1 + 3ε)F ε

m(z) � Fn(z). Under these conditions we can appeal to Lemma 3.1,
which gives that Fn|K does indeed have a distributional limit, contradicting that F1|K �= F2|K . Thus Fn itself has
some distributional limit F . Note that F ∈ [0,∞)H almost surely since each {Fn(z)} is a tight sequence on [0,∞).

The same proof works in the case when Xn is centred at an for a sequence an = o(n), since all the domination
lemmas can be used in exactly the same way. Moreover, translation invariance follows by comparing the sequences
Xn(an,n,n) and Xn(an + 2, n,n) since the difference between the center points, dn = 2 = o(n). �

4. Bounding rates of adding lattice points

The goal of this section and the next one is to establish regularity properties of the limit F of random Young tableaux
in order to apply the Edelman–Greene bijection. In order to do this we will show that at every time t , the points in the
limit tableau that are added before time t form a set of disjoint downward closed subsets of H, and that the limit F

is still an order-preserving injection. The key to both of these proofs is the following proposition about bounding the
rates of adding points in the finite tableau processes.

Throughout this section we let Xn be the tableau process Xn(0, n,n).

Proposition 4.1. There exist constants K1 and K2 such that for any z ∈H and for any t ,

E

[
sup
s≤t

v
(
z,Xn(s)

)] ≤ K1t + K2,

for all large enough n (how large we need to take n depends on the square z).

The cylindrical tableau process

To prove this proposition we introduce cylindrical Young diagrams and the cylindrical tableau process. Define C(n),
the discrete cylinder of size n, to be the set of equivalence classes of points (x, y) in {(x, y) ∈ H : 1 ≤ y ≤ n − 1}
where (x, y) ∼ (x′, y′) if y = y′ and x ≡ x′ (mod 2(n − 1)). This cylinder has the following partial order inherited
from the partial order on H. For (x, y), (x′, y′) ∈ C(n), (x, y) ≤ (x′, y′) if (x′, y′) ∼ (x′′, y′′) for some (x′′, y′′) ∈ H

with (x′, y) ≤ (x′′, y′′).
Thus we have a notion of downward closed sets in C(n), and notions of corners, hooks, and reverse hooks in

C(n) \ A for any downward closed set A ⊂ C(n) by thinking of C(n) as a cylindrical Young diagram. As in a usual
Young diagram, for any corner z ∈ C(n) \ A we can define the “hook probability” for z by

P
(
C(n) \ A,z

) = 1

|C(n) \ A|
∏
y∈Rz

(
1 + 1

hy − 1

)
.
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Now we define the cylindrical tableau process C(t) = C(n, r)(t) on C(n) with rate r as the continuous time Markov
process C(t) where a square z is added to configuration A at rate

vC(z,A) = rP
(
C(n) \ A,z

)
.

Note that the hook probabilities in cylindrical tableaux do not sum to 1 as they do with staircase tableaux. This is not
an issue as we are only using the hook probabilities to define rates, not as actual probabilities.

The symmetry in the cylindrical process makes it easier to bound the expectation of the rate vC(z,C(t)). We can
then use that the staircase tableau process can be coupled with an appropriately sped up cylindrical process in a
way that allows rates in the staircase process to be controlled by the rates in the cylindrical process. This will prove
Proposition 4.1.

The modified rate

Instead of working with v(z,A), we will replace it with a monotone increasing function w(z,A) called the modified
rate. The modified rate wC(z,A) is the rate of adding z to the configuration A with the cone Sz = {z′ : z′ ≥ z} above z

removed. More precisely

wC(z,A) = vC(z,A \ Sz).

By the definition of v, the modified rate satisfies

wC(z,A) = r

|C(n) \ A ∪ Sz|
∏
y∈Rz

(
1 + 1

f z
y − 1

)
.

Here f z
y is the hook length of y in the residual tableau corresponding to the state A \ Sz. We also define wX(z,A) for

a staircase tableau process X in the analogous way.
Since vC is monotone in A as long as zC has not been added, we get that wC is monotone in A (even if z has been

added). Therefore to prove Proposition 4.1 it suffices to prove the following.

Proposition 4.2. For all large enough n, we have

E

[
sup
s≤t

wX

(
z,Xn(s)

)] = EwX

(
z,Xn(t)

) ≤ K1t + K2. (4.1)

We first need a lemma bounding the products in the hook probability formula.

Lemma 4.3. Let A be a downward closed subset of C(n), and let β be the maximal second coordinate of squares
in A. Then we have

∏
y∈Rz

(
1 + 1

f z
y (A) − 1

)
< 2n(β + 1).

Proof. If we order squares in the reverse hook of z by their second coordinate (s + 1 below), we get upper bounds on
the individual factors. This gives an overall upper bound

n−1∏
s=1

(
1 + 1

s + (s − β)+

)2

= (β + 1)2
n−1−β∏

s=(β+3)/2

(
2s

2s − 1

)2

< 2n(β + 1).

The last inequality is from Lemma 2.5. �

Remark. The same bound holds in the staircase tableau case.
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Next, we bound w(z,A) for z at the bottom of the cylinder.

Proposition 4.4. Let B denote the bottom row of C(n). Then we have that∑
z∈B

w(z,A) ≤ 48
(|A| + n

)
,

in the rate n cylindrical tableau process.

We have only included the explicit constant 48 in the above proposition to streamline the proof. It is far from
optimal for large n.

Proof. For z ∈ B, define

Dz =
∏
y∈Rz

(
1 + 1

f z
y (A) − 1

)
.

It suffices to show that∑
z∈B

Dz ≤ 12
(
n|A| + n2), (4.2)

since |C(n)\A∪Sz| ≥ |Sz| ≥
(
n
2

)
. To establish this bound, we will build the set A in |A| steps by starting with A0 =∅

and repeatedly adding a single square (αi, βi) to Ai−1 to get Ai . We do this in a way so that Ai stays downward closed
and βi are non-decreasing.

Define the quantities Dz
i for Ai analogously to Dz. By simple algebra,

∑
z∈B

Dz ≤ nmax
z∈B

Dz
0 +

|A|∑
i=1

[
max
z∈B

Dz
i−1

]∑
z∈B

∣∣∣∣ Dz
i

Dz
i−1

− 1

∣∣∣∣.
By defining β0 = 0, we have that βi is the maximal y-coordinate of a square in Ai . The first term on the right is
bounded above by 2n2 by Lemma 4.3. By the same lemma,

max
z∈B

Dz
i−1 ≤ 2n(βi−1 + 1) ≤ 2n(βi + 1) ≤ 4nβi,

since βi ≥ 1 for i ≥ 1. So it suffices to show that for any i ≥ 1, we have

∑
z∈B

∣∣∣∣ Dz
i

Dz
i−1

− 1

∣∣∣∣ ≤ 3

βi

. (4.3)

To do this, recall that Ai = Ai−1 ∪ {(αi, βi)}. Note that if for z ∈ B we have z ≤ (αi, βi) then Dz
i /D

z
i−1 = 1. Let

B′ = B \ {z : z ≤ (αi, βi)}. Then |B′| = n − 1 − βi .
For any z ∈ B′ the reverse hooks Rz and R(αi,βi ) intersect at exactly two points, one on the right leg of Rz and

one on the left. Call the y-coordinates of these points sz and s′
z, respectively. As we move z, these intersection points

exhaust the set R(αi,βi ). More precisely, s and s′ are both bijections from B′ to {βi + 1, . . . , n− 1}. For z ∈ B′ we have

Dz
i /D

z
i−1 = Q(sz)Q

(
s′
z

)
,

where

Q(s) = 1 + 1
2s−βi−2

1 + 1
2s−βi−1

= (2s − βi − 1)2

(2s − βi − 2)(2s − βi)
.
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Since s and s′ are bijections, Cauchy–Schwarz gives

∑
z∈B′

Q(sz)Q
(
s′
z

) ≤
n−1∑

s=βi+1

Q(s)2.

By simple algebra Q(s) ≥ 1 and

Q(s)2 − 1 ≤ 3

(2s − βi − 1)2
.

So the left hand side of (4.3) is bounded above by

n−1∑
s=βi+1

3

(2s − βi − 1)2
<

3

βi

.
�

Now we can embed the staircase tableau of size n into the cylinder C(n) by identifying the subset T (0, n) with
its equivalence class in C(n). Thus we can talk about stochastic domination of a cylindrical tableau process over a
staircase tableau process, and we can talk about domination of modified rates.

Lemma 4.5. Let T be the time at which n2/4 particles have been added to the tableau process Xn(t). Let Cn(t) be a
cylinder process on C(n) with rate 8n. Then there exists a coupling so that for n ≥ 3,

Xn(t) ≤ Cn(t) for all t ≤ T .

Moreover, for any z in the bottom row of T (0, n), wC(z,Cn(t)) ≥ wX(z,Xn(t)) for all t ≤ T in this coupling.

Proof. To prove the existence of a coupling, it suffices to show that for any A, and any lattice point z that is both
a corner of C(n) \ A and T (0, n) \ A, that vXn(z,A) ≤ vCn(z,A). From here we can appeal to Lemmas 2.3 and 2.4,
which can be proven in the exact same way if one of the processes is a cylinder process.

Reverse hooks in C(n) are larger than reverse hooks in T (0, n), and for y ∈ C(n) ∩ T (0, n), we have hX
y = hC

y , so

∏
y∈Rz

X

(
1 + hX

y

hX
y − 1

)
≤

∏
y∈Rz

C

(
1 + hC

y

hC
y − 1

)
. (4.4)

Also,

|C(n) \ A|
|T (0, n) \ A| ≤ 8 (4.5)

for all n ≥ 3. Combining the inequalities (4.4) and (4.5) proves the lemma. The relation among modified rates follows
in the same way. �

Now we can prove Proposition 4.2 for z in the bottom row of T (0, n).

Proof. Let T be the stopping time when (2t +1)n squares have been added to the tableau process Xn. Since the times
of adding squares are the points of a rate n Poisson process, it is easy to check that

P(T < t) ≤ e−Ln

for some universal constant L.
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Observe the naive bound that wX(z,Xn(t)) ≤ n for all n. We can now use Lemma 4.5 together with the mono-
tonicity of modified rates to get:

E

[
sup
s≤t

vX

(
z,X(s)

)] ≤ EwX

(
z,Xn(t)

)
≤ E

[
wC

(
z,Cn(t)

)
1t<T

] + ne−Ln

≤ EwC

(
z,Cn(T )

) + ne−Ln.

Finally, using Proposition 4.4 and the rotational symmetry of the cylinder process, we get that

EwC

(
z,Cn(T )

) + ne−Ln ≤ 48
(
(2t + 1) + 1

) + ne−Ln ≤ K1t + K2,

completing the proof. �

Finally, we show that for any fixed z′ ≥ z ∈ H, that for large enough n, the modified rate for adding z′ to Xn is
always bounded by twice the modified rate for adding z. This extends Proposition 4.2 to encompass all z ∈ H, and
therefore completes the proof of Proposition 4.1.

Lemma 4.6. Let z′ ≥ z = (z1, z2) and for a downward closed subset A ⊂ T (0, n) let w(z,A) and w(z′,A) be the
modified rates in Xn. Then

lim
n→∞

(
sup

A⊂T (0,n)

w(z′,A)

w(z,A)

)
= 1. (4.6)

Specifically, for all large enough n, we have that w(z′,X(t)) ≤ 2w(z,X(t)) for all t .

Proof. We only prove this in the case z′ = (z1 + 1, z2 + 1), as the general case follows by symmetry and induction.
Observe first that the supremum on the right hand side of (4.6) is at least 1 for every n, since w(z′, T (0, n)) =
w(z,T (0, n)) for all n. Also, it is easy to see that

|T (0, n) \ A ∪ Sz|
|T (0, n) \ A ∪ Sz′ | → 1

as n → ∞, since |Sz|/n2 → 1/4 as n → ∞, but |Sz�Sz′ |/n → 1/2. Therefore to complete the proof it suffices to
show that for any configuration A ⊂ T (0, n), that

∏
y∈Rz′

(
1 + 1

f z′
y − 1

)
≤

∏
y∈Rz

(
1 + 1

f z
y − 1

)
. (4.7)

To prove this, let y′ = (y1 + 1, y2 + 1) ∈ Rz′ . It is clear that y = (y1, y2) must be in Rz. Moreover, if (x1, x2) ∈ Hy

in the configuration T (0, n) \ A ∪ Sz, then (x1 + 1, x2 + 1) ∈ Hy′ in the configuration T (0, n) \ A ∪ Sz′ . This gives an
injective mapping of Rz′ into Rz that does not decrease hook length, proving (4.7). �

5. Regularity and mixing of the limit F

In Theorem 2.2 we showed that the inclusion functions of random staircase Young tableaux have a limit F . In this
section we establish regularity properties and mixing of F using the results of Section 4.

Proposition 5.1. F is almost surely injective.
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Proof. Suppose not. Since there are only countably many pairs of points in H, then there exists a pair (z1, z2) ∈ H
2

with P(F (z1) = F(z2)) = δ > 0. Then for any ε > 0, there is some N such that P(|Fn(z2) − Fn(z1)| < ε) ≥ δ
2 for all

n ≥ N . Without loss of generality, we can remove the absolute values at the expense of a factor of 1/2 to get

P
(
0 ≤ Fn(z2) − Fn(z1) < ε

) ≥ δ

4
. (5.1)

Let T be the stopping time when z1 is added to the process Xn. The probability of adding z2 in the interval
[T ,T + ε] is bounded by the integral of the rate in that interval. This gives that

P
(
0 ≤ Fn(z2) − Fn(z1) < ε

) ≤ sup
s∈[T ,T +ε]

v
(
z2,Xn(t)

)

≤ Ktε + P

(
sup
s≤t

v
(
z2,Xn(s)

) ≥ Kt
)

+ P(T > t − ε).

By Proposition 4.1 we can choose K and t large enough and independently of ε to make the last two terms on the
right hand side arbitrarily small for all large enough n. Taking ε close to 0 then contradicts (5.1). �

Corollary 5.2. For each z, the distribution of F(z) has no atoms.

Proof. The proof that F has no atoms is the same as the proof that F is almost surely injective, except instead of
conducting the analysis at a stopping time T when the square z1 is added, we conduct it at a (deterministic) time t . �

5.1. The limit F is mixing

Recall that a measure μ is k-mixing with respect to a measure-preserving transformation τ if for any measurable sets
A1, . . . ,Ak ,

lim
m1,...,mk→∞μ

(
A1 ∩ τ−m1A2 ∩ · · · ∩ τ−m1−m2−···−mkAk

) =
k∏

i=1

μ(Ai).

Note that this proposition completes the proof of Theorem 2 in the case u = 0.

Proposition 5.3. The limit F is mixing of all orders with respect to the spatial shift τ .

We first present an outline of the proof that F is 2-mixing. Fix m, and consider two sets Ar and Br of the form

Ar =
∏

i∈T (0,m)

[0, ai] and Br =
∏

i∈T (0,m)

[0, bi],

and let

A = Ar ×
∏

i /∈T (0,m)

[0,∞) and B = Br ×
∏

i /∈T (0,m)

[0,∞).

By Dynkin’s π − λ Theorem, it suffices to show that

P
(
F ∈ A ∩ τ−KB

) → P(F ∈ A)P(F ∈ B) as K → ∞, (5.2)

for any such A and B . To show this, we will approximate the value of F on A ∩ τ−KB in two different ways.
Figure 6 illustrates the two approximations used. For the first approximation, take two disjoint tableaux T (0, �K/2�)
and T (−K, �K/2�) and run independent, rate-�K/2� tableau processes Y1 and Y2 on each of these tableaux. Let GK,1
and GK,2 be the inclusion functions for Y1 and Y2. For K � m, convergence of GK,1 and GK,2 to F implies that
P(GK,1 ∈ A) is very close to P(F ∈ A), and similarly for GK,2 and τ−KB .
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Fig. 6. The two approximating processes used in the proof of Proposition 5.3. The first approximation pairs two disjoint processes on T (0, �K/2�)
and T (−K, �K/2�) for K � m and the second approximation takes a tableau process on T (0, n) for n � K .

For the second approximation, take n � K , and let Xn be the rate-n tableau process on T (0, n) with inclusion
function Fn. Since n � K , the convergence of Fn to F implies that P(Fn ∈ A∩ τ−KB) is close to P(F ∈ A∩ τ−KB),
and that P(Fn ∈ A) and P(Fn ∈ τ−KB) are close to P(F ∈ A) and P(F ∈ B) respectively.

Finally, we can use the domination Lemma 2.8 to show that a small speed-up of Xn dominates the union of the
independent processes Y1 and Y2 up to a large stopping time. This in turn implies that up to a small error,

P
(
Fn ∈ A ∩ τ−KB

)
< P(GK,1 ∈ βA)P

(
GK,2 ∈ βτ−KB

)
,

where β is the value of the speed-up. Combining this with our previous relationships between probabilities implies
that P(GK,1 ∈ A)P(GK,2 ∈ τ−KB) must be very close to P(Fn ∈ A ∩ τ−KB). Passing to the limit in n and then K

then proves that F is 2-mixing, noting that

P
(
GK,2 ∈ τ−KB

) → P(F ∈ B) as n → ∞
by spatial stationarity.

The general case can be proven using the same method, with the main difference being that in that case, we
approximate the limit F with n disjoint independent tableau processes instead of 2. For simplicity, we only prove
2-mixing below.

Proof. The proof exactly follows the outline of what is stated above, but with precise bookkeeping regarding the error
terms.

With notation as in the outline, first note that it suffices to show that for large enough n,∣∣P(
Fn ∈ A ∩ τ−KB

) − P(GK,1 ∈ A)P
(
GK,2 ∈ τ−KB

)∣∣ < εK, (5.3)

where εK → 0 as K → ∞. To see that (5.3) implies (5.2), let∣∣P(F ∈ A)P(F ∈ B) − P(GK,1 ∈ A)P
(
GK,2 ∈ τ−KB

)∣∣ = δK.

Taking n → ∞ in (5.3) and replacing GK,1 and GK,2 with F , we get that∣∣P(
F ∈ A ∩ τ−KB

) − P(F ∈ A)P(F ∈ B)
∣∣ ≤ εK + δK.
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We can pass to the limit in Fn since A∩B is a set of continuity of H by Corollary 5.2. Moreover, δK → 0 as K → ∞
since A and B are sets of continuity of F by the same corollary and using the spatial stationarity of F .

Now let γ > 0, define

β = K + 1

(1 − γ )(K − 4)
,

and let

αK,γ = max
{
P
(
F(i) ∈ [c,βc] : c ∈ {ai, bi}

)}
.

We have chosen β in a way so that if n is large enough, then the tableau process X
β
n on the tableau T (0, n) with speed

βn stochastically dominates the independent coupling of the tableau processes Y1 and Y2 up to time Tγ . Here Tγ is
the time when either γ

(�K/2�
2

)
squares have been added to Y1 or γ

(�K/2�
2

)
squares have been added to Y2. This can be

seen by comparing with the condition in Lemma 2.8.
Therefore letting M = max{ai, bi}, we have

P(GK,1 ∈ A)P
(
GK,2 ∈ τ−KB

)
< P

(
Fn

β
∈ A ∩ τ−KB

)
+ P(Tγ < M).

Moreover, we have that for all large enough n,

P

(
Fn

β
∈ A ∩ τ−KB

)
= P

(
Fn ∈ βA ∩ τ−KβB

)
< P

(
Fn ∈ A ∩ τ−KB

) + 2m(m − 1)αK,γ .

Here βA = {βx : x ∈ A}, and similarly for B . For the above inequality to hold, n just needs to be large enough so that

max
{
P
(
Fn(i) ∈ [c,βc] : c ∈ {ai, bi}

)}
< 2αK,γ .

Combining the above two inequalities, we get that

P(GK,1 ∈ A)P
(
GK,2 ∈ τ−KB

)
< P

(
Fn ∈ A ∩ τ−KB

) + 2m(m − 1)αK,γ + P(Tγ < M). (5.4)

We can similarly get that

P
(
GK,1 ∈ Ac

)
P
(
GK,2 ∈ τ−KBc

)
> P

(
Fn ∈ Ac ∩ τ−KBc

) − 2m(m − 1)αK,γ − P(Tγ < M). (5.5)

Finally, let

σK = max
{∣∣P(GK,1 ∈ A) − P(F ∈ A)

∣∣, ∣∣P(
GK,2 ∈ τ−KB

) − P
(
F ∈ τ−KB

)∣∣}.
For large enough n, we have that∣∣P(Fn ∈ A) − P(GK,1 ∈ A)

∣∣ < 2σK and
∣∣P(

Fn ∈ τ−KB
) − P

(
GK,1 ∈ τ−KB

)∣∣ (5.6)

since A and B are sets of continuity of F . This similarly holds for Ac and Bc . Therefore∣∣(P(GK,1 ∈ A)P
(
GK,2 ∈ τ−KB

) − P
(
GK,1 ∈ Ac

)
P
(
GK,2 ∈ τ−KBc

))
− (

P
(
Fn ∈ A ∩ τ−KB

) − P
(
Fn ∈ Ac ∩ τ−KBc

))∣∣ < 4σK.

Combining this bound with (5.4) and (5.5) gives that for all large enough n,∣∣(P(GK,1 ∈ A)P
(
GK,2 ∈ τ−KB

) − P
(
Fn ∈ A ∩ τ−KB

)∣∣
< 4m(m − 1)αK,γ + 2P(Tγ < M) + 4σK. (5.7)
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Now note that for any fixed value of ε > 0, as K → ∞, we can choose a sequence γK → 0 such that P(TγK
>

M) < ε. With this sequence of γK s, αK,γK
→ 0 as K → ∞.

Noting also that σK → 0 as K → ∞, this shows that the left hand side of (5.7) tends to 0 as n → ∞. �

5.2. Inclusion times for squares in the bottom row

We can also use the rate bound to get a lower bound on the probability that it takes a long time to add any given square
in the bottom row. Note that by spatial stationarity of the limit F , it suffices to prove this for the square z0 = (1,1).
We can then combine this with the mixing property of F to show that at any time infinitely many squares have not
been added.

The idea here is to modify the process Xn to create a new process Yn. Yn will be Xn, but with the hook probabilities
modified so that Yn never adds z0. We will then show that Xn and Yn can always be coupled so that at any time t they
are equal with positive probability P independent of n.

The construction of Yn

Yn is a Markov process with the same state space as the tableau process Xn, namely:{
A ⊂ T (0, n) : A is downward closed

}
.

If A = Yn(t), and z is corner of T (0, n) \ A with z �= z0, then we add the point z to Yn with rate

n
P(T (0, n) \ A,z)

1 − P(T (0, n) \ A,z0)
.

In words, the rates in Yn for squares that can be added are given by the rates in Xn times

1

1 − P(T (0, n) \ A,z0)
. (5.8)

Note that this only makes sense as long as there are squares other than z0 that can be added to Yn. Once z0 is the
only square left that can be added, we can define Yn so that nothing happens past that point. We first show that Yn is
dominated by a sped-up version of Xn. Note that the total rate of jumps from any non-terminal state in Yn is exactly n.

Lemma 5.4. Let M <
n(n−1)

128 , and let TM be the stopping time when M squares have been added to Yn. Then letting
X2

n = X(0, n,2n) be a tableau process on T (0, n) with speed 2n, we have that Yn � X2
n up to time TM .

Proof. Suppose that A is some configuration with fewer than n(n−1)
128 points added. The maximum height of A is

bounded by n
8 − 1, since any square of height n

8 − 1 lies above a triangle with n(n−1/8)
128 squares. By the remark

following Lemma 4.3 this implies a bound on the hook probabilities, namely

P
(
T (0, n) \ A,z0

) ≤ 1(
n
2

) − M
2n

n

8
<

1

2

for n ≥ 3. Then by (5.8) we have domination of the rates of Yn by those in X2
n. Lemmas 2.3 and 2.4 (more precisely,

the proofs of those lemmas,) then imply stochastic domination. �

Now we couple Xn and Yn to bound the probability of adding z0.

Proposition 5.5. There exist constants K and L such that for any t > 0

P
{
F(z0) > t

} ≥ e−Kt−Lt2
.



432 O. Angel et al.

Proof. Couple Xn and Yn so that they add squares at the same times (we can do this since the total rate of exiting
non-absorbing states in Xn and Yn is n), and add the same squares until the time when Xn adds square 0. Now let
M ∈N, and for m ∈N let Tm be the stopping time when the mth square is added to Xn. Let M be the set of maximal
sequences {A0 =∅ ⊂ A1 · · · ⊂ AM} of downward closed subsets of T (0, n) such that z0 /∈ AM . Then we have

P
(
Xn(t) = Yn(t)

) ≥ P(TM ≥ t)
∑

{Am}∈M
P
(
X(Tm) = Am for all m ≤ M

)
.

Using the transition probabilities for Yn the sum above can be written as

∑
{Am}∈M

P
(
Y(Tm) = Am for all m ≤ M

) M∏
m=1

(
1 − P

(
T (0, n) \ Am−1, z0

))
.

We may write this as an expectation

E

M∏
m=1

(
1 − P

(
T (0, n) \ Yn(Tm−1), z0

)) ≥ E
(
1 − P

(
T (0, n) \ Yn(TM), z0

))M
.

The inequality follows since the probabilities are monotone. By Jensen’s inequality we get the lower bound

(
1 −EP

(
T (0, n) \ Yn(TM), z0

))M
.

We use Lemma 5.4 to bound the expectation above. Assume M ≤ n(n−1)
128 , then X2

n(TM) stochastically dominates
Yn(TM), that is in some coupling X2

n(TM) ≥ Yn(TM), and since z0 /∈ Yn(TM), we have X2
n(TM)\Sz0 ≥ Yn(TM), where

Sz0 is the set of squares that are greater than z0 in the partial order. By monotonicity of the rates we have

EP
(
T (0, n) \ Yn(TM), z0

) ≤ EP
(
T (0, n) \ (

X2
n(TM) \ Sz0

)
, z0

)
.

We can bound the rates in X2
n \ Sz0 at some fixed time s = 2M/n by Proposition 4.2 from the previous section. Here

note that the rate of adding z0 to X2
n \ Sz0 is the modified rate of adding z0 to Xn. We get the upper bound

EP
(
T (0, n) \ (

X2
n(s) \ Sz0

)
, z0

) + P(TM > s) ≤ K1

n
+ K2M

n2
+ e−K3n,

where bound on P(TM > s) follows from the tail probabilities of the Poisson distribution. Monotonicity of the rates
implies that this is also an upper bound for EP(T (0, n) \ (X2

n(TM) \ Sz0), z0). Putting everything together and setting
M = 2tn, we get for large enough n

P
(
Xn(t) = Yn(t)

) ≥ P(TM > t)

(
1 − K1 + 2K2t

n
− e−K3n

)2tn

.

Letting n → ∞ gives that

lim
n→∞P

(
Xn(t) = Yn(t)

) ≥ e−Kt−Lt2
,

for some constants L and K . Using that F(z0) has a continuous distribution (Corollary 5.2) then finishes the proof. �

The mixing of F combined with Lemma 5.5 implies that at any time, a bi-infinite sequence of squares has not been
added. This is a direct consequence of the fact that mixing implies ergodicity.

Corollary 5.6. For any time t , there are almost surely infinitely many values of x > 0 and infinitely many values of
x < 0 such that F(x,1) > t .
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6. Sorting networks at the center

Now we are finally in a position to prove the existence of the local limit of random sorting networks at the center. Let
A be the space of swap functions. Define I to be the set of all functions G : H → [0,∞] such that the following two
conditions hold.

(i) Let B = {z ∈H : G(z) �= ∞}. Then G|B is order-preserving and injective.
(ii) For any t , we have that G(x,1) > t for infinitely many x > 0 and x < 0.

We will define a map EG : I → A which will generalize the Edelman–Greene bijection. To do this we first define
swap functions EGt (G) for every t > 0. These swap functions will be EG(G) defined up to time t > 0. Consider the
set of points

A = {
z : G(z) ≤ t

} ⊂H.

Since G(x,1) > t for infinitely many x > 0 and x < 0 and G is order-preserving on H, A breaks down into infinitely
many finite downward closed sets Ai such that each Ai lies in some T (�i, ki) and the sets T (�i, ki) are disjoint. We can
then define the swap function on each T (�i, ki) individually up to time t using the regular Edelman–Greene bijection
on that diagram, since these swap functions don’t interact before time t and G|B is order-preserving and injective.

Now define the process EG(G) by letting

EG(G)(x, r) = EGt (G)(x, r),

where t is any time greater than r . This is well-defined since for r < s < t , EGt (G)(x, r) = EGs(G)(x, r).
It is easy to see that EG is continuous on I , by checking that EGt is continuous for all t . This is clear since if

Gn → G in I , for any subset T (�i, ki) ⊂ H, eventually Gn will be identically ordered to G on T (�i, ki) and so the
ordering of the swaps given by the Edelman–Greene bijection will be the same for Gn and G on T (�i, ki). Moreover,
the times at which these swaps occur converge in the limit. This implies convergence of both the cadlag paths of the
permutation EG(Gn)(·, x) and the cadlag paths of the inverse permutation, thus showing that EG is continuous.

Finally, by Corollary 5.6 and Proposition 5.1, we know that our tableau process limit F ∈ I almost surely, so

Un = EG(Fn) → U = EG(F )

in distribution as well by the continuity of the map EG. This proves convergence of random sorting networks at the
center to a swap process U . The only thing left to do to prove Theorem 1 when u = 0 is to show that the limit EG(F )

has time-stationary increments, as the spatial stationarity and mixing follow from the spatial stationarity and mixing
of F .

Proposition 6.1. U has time-stationary increments. Namely, the distribution of the process(
U(·, s)−1U(·, s + t) : t ≥ 0

)
does not depend on s.

Proof. The sequence of transpositions {πi1, . . . , πik } in a random sorting network is equal in law to the sequence
{πi�, . . . , πi�+k−1}. To prove this time stationarity, note that if we remove the first swap πi1 from a sorting network,
we can get another sorting network by adding the swap πn−i1 to the end of the sorting network. This result was first
proved in Angel et al. [4].

We use this idea to extend the process Un, which only completes
(
n
2

)
swaps at the first

(
n
2

)
times of a rate-n Poisson

process n, to a process U∗
n , which completes swaps at every time in n. Let the first N swaps in U∗

n be as in Un and
then recursively define the kth swap in U∗

n to be equal to πn−j , where πj is the (k − (
n
2

)
)th swap in U∗

n for k > N .
Then U∗

n is a time-stationary process, and U∗
n (x, t) = Un(x, t) for all t ≤ Tn, where Tn is the

(
n
2

)
th point in n.

Since Tn
d→ ∞ as n → ∞, and Un

d→ U , U∗
n

d→ U as well. Finally, since each U∗
n has stationary increments, U

must have stationary increments as well. �

Putting this all together, we obtain Theorem 1 in the u = 0 case.
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Theorem 6.2. Let an be a sequence of integers with an = o(n). Let Un be the swap process defined by

Un(x, t) = σn�nt�(an + x) − an,

where σn is an n-element random sorting network. Then

Un
d→ U,

where U is a swap process that is stationarity and mixing of all orders with respect to the spatial shift, and has
time-stationary increments.

7. The local limit outside the center

In this section, we prove that the local limit of random reverse standard staircase Young tableaux exists at distance
�un� + o(n) outside the center. This will immediately imply the existence of the local limit outside the center for
sorting networks via the Edelman–Greene map EG in Section 6.

Theorem 7.1. Let u ∈ (−1,1), an = o(n), and let Gn be the inclusion functions for the sequence of tableau processes
Xn(�un� + an,n,n). Then

Gn
d→ Fu = 1√

1 − u2
F,

where F is the limit when u = 0.

We will assume that an = 0 throughout, as it is easy to use domination lemmas to conclude Theorem 7.1 for general
an from this case. The basic idea of the proof is as follows. By using the domination lemmas in Section 2.3, it is easy
to see that any subsequential limit G at a distance �un� outside the center must be stochastically dominated by Fu, so
we just need to show domination in the opposite direction. For this, we show that the expected heights in the tableau
process corresponding to Fu are greater than expected heights in the tableau process corresponding to G at every
location and every time.

Note that it is possible to get domination in the opposite direction for almost every value of u by comparing the
number of squares in a tableau process at time t with the expected number of squares in each of processes shifted by
u, integrated over all u ∈ (−1,1). However, this approach only proves Theorem 7.1 for almost every u. To prove the
theorem for any u, we take the following approach.

By considering the inclusion functions Gn of the shifted tableau processes as elements of H = [0,∞]H we have
a set G of subsequential limits of Gn by compactness. Consider largest and smallest elements in G in the stochastic
ordering on inclusion functions. Such elements exist since G is closed and the space of probability measures on H is
compact. Call G ∈ G a limsup if for any G′ ∈ G, G′ � G if and only if G′ = G. Similarly, we define a liminf in G to
be any G ∈ G such that for G′ ∈ G, G′ � G if and only if G′ = G.

We show that these elements are translation invariant, and that any translation invariant element of G has expected
heights less than those of Fu. Therefore any limsup or liminf in G must be Fu. As any element in G must lie between
a liminf and a limsup, this allows us to conclude that G = {Fu}.

Shifted tableau processes

We introduce new notation for the tableau processes used in this section, using Y instead of X to distinguish from
centered tableau processes. For a fixed value of u ∈ (−1,1), define YK

n (t) to be the rate Kn tableau process on the
diagram T (�un�, n). When K = 1, we omit the superscript. To establish the translation invariance of liminfs and
limsups, we need a basic domination lemma involving these processes.
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Lemma 7.2. Fix u ∈ (−1,1), and choose � so that for every n,

T
(�un�, n) ⊂ T

(⌊
u(n + �)

⌋ + 2, n + �
)
, and

T
(�un� + 2, n

) ⊂ T
(⌊

u(n + �)
⌋
, n + �

)
.

Let Tn be the time when
(
n
2

)
/2 squares have been added to Yn, and let θn = n+4�

n−1 . Then for all large enough n,

Y
θ2
n

n+2� � τY
θn

n+� � Yn and

Y
θ2
n

n+2� � Y
θn

n+� � Yn,

(7.1)

where all stochastic domination holds up to time Tn.

As before, τ is the spatial shift. Thus τYK
n (t) is exactly YK

n shifted by 2 units to the right so that it lives on the
diagram T (�un� + 2, n). The essence of this lemma is that we can get domination of the shifted process τYn1 over
Yn by letting n1 be slightly larger than n, and slightly speeding up τYn1 . The precise value of the speed-up θn is not
important here, only that θn → 1 as n → ∞.

Proof. We just prove that τY
θn

n+� � Yn up to time Tn, as the rest of the inequalities follow using the same argument.
By Lemmas 2.3 and 2.4, we just need to show that if Yn and τY

θn

n+� are in the same configuration A, and z is a corner
of both T (�un�, n) \A and T (�u(n+ �)�+ 2, n+ �) \A, that vn(z,A) < vn+�(z,A), where vn and vn+� refer to rates
in Yn and Y

θn

n+�, respectively. To see this, observe that for any set A of cardinality at most
(
n
2

)
/2,

vn+�(z,A)

vn(z,A)
= θn

n + �

n

|T (�un�, n) \ A|
|T (�u(n + �)� + 2, n + �) \ A|

∏
y∈Rn+�

z \Rn
z

(
1 + 1

hn+�
y − 1

)

≥ (n + 4�)(n + �)

n(n − 1)

n(n − 1)

2(n + �)(n + � − 1) − n(n − 1)

> 1. �

Now we can characterize liminfs and limsups in G.

Proposition 7.3. Suppose G ∈ G is a limsup (or a liminf). Then G is translation invariant.

Proof. Throughout this proof, we let GK
n be the inclusion function of YK

n (t). Let Gn(i) → G for some liminf G ∈ G
(the case for G a limsup is similar). Note that by Lemma 7.2, G′ � G for any subsequential limit G′ of G

θ2
n(i)

n(i)+2�. By
passing to the limit, we remove any issues with the stopping time Tn from Lemma 7.2 since Tn

d→ ∞ as n → ∞. Such
limits exist by compactness of H.

However, since θ2
n → 1 as n → ∞, G′ is also a subsequential limit of Gn(i)+2�, so since G is a liminf, G′ = G.

Therefore G
θ2
n(i)

n(i)+2�

d→ G. Now again by Lemma 7.2, we have that

G
θ2
n(i)

n(i)+2� � G
θn(i)

n(i)+� � Gn(i) and

G
θ2
n(i)

n(i)+2� � G
θn(i)

n(i)+� ◦ τ � Gn(i),

where G∗ = G ∧ Tn for each of the inclusion functions G∗ corresponding to the tableau processes in (7.1). Note here
that if G is the inclusion function for the process Y , then G ◦ τ is the inclusion function for the shifted process τY . By

the squeeze theorem, and the facts that θn → 1 and Tn
d→ ∞, this implies that both Gn(i)+�

d→ G and Gn(i)+� ◦τ
d→ G,

allowing us to conclude that G ◦ τ
d= G. �
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We now aim to show that every translation-invariant element G ∈ G is the rescaled central limit Fu by comparing
heights. For any J ∈H, x ∈ 2Z+ 1 and t ∈ [0,∞), define the height function

h(J, x, t) = ∣∣{z = (z1, z2) : z1 = x or x + 1 and J (z) < t
}∣∣.

We first prove the following lemmas about the expected heights in F .

Lemma 7.4. Eh(F,x, t) is finite for all t ∈ [0,∞) and x ∈ 2Z.

Proof. Note that Fn
d→ F , and that

h(Fn, x, t)
d→ h(F,x, t)

for all t and x since F has no atoms. Recall also that the tableau processes Xn are dominated by a sped-up cylinder
process C(n,8n) up to the stopping time Tn when n2/4 squares have been to Xn. Since Tn → ∞ in probability as
n → ∞, we also have

h(Fn, x, t ∧ Tn)
d→ h(F,x, t).

By the symmetry of the cylinder, the expected height at x at time t in C(n,8n) is 8t , so by Fatou’s lemma,

Eh(F,x, t) ≤ lim inf
n→∞ Eh(Fn, x, t ∧ Tn) ≤ 8t. �

Lemma 7.5. Let T n
t to be the stopping time when �nt� squares have been added to the centered tableau process

Xn = X(0, n,n). There exists a subsequence {ni : i ∈ N} such that

Eh
(
Fni

, x, T
ni
t

) → Eh(F,x, t).

Proof. We find a dominating “infinite tableau process” for the sequence of tableau processes Xn. We can find an
increasing sequence {ni : i ∈ N} and a decreasing sequence {δi : i ∈ N} such that for all i, the tableau process

Zi = X
(
0, ni, (1 + δi)ni

)
stochastically dominates the process Zi−1 up to time T

ni−1
t , and such that

∞∏
i=1

(1 + δi) < ∞.

Finding such sequences can easily be done by iteratively choosing n1, n2 and ε appropriately in Lemma 2.6 (noting
that that domination in that lemma is up to the time when εn2

1 squares have been added, so we can let ε become
arbitrarily small for large n1 and still have domination up to time T

n1
t ). Then letting Ji be the inclusion function for

Zi , we have

Ji =
i∏

j=1

(1 + δj )
−1Fni

d→ J =
∞∏

j=1

(1 + δj )
−1F.

Ji is a monotone decreasing sequence in the stochastic ordering. Moreover, Fni
� Ji � J so h(Fni

, x, t) � h(J, x, t),
for every x and t . Finally, heights in J have finite expectation by Lemma 7.4 as J is a sped-up version of F . Therefore
the dominated convergence theorem,

Eh(Fni
, x, t) → Eh(F,x, t).

As |Eh(Fni
, x, t) −Eh(Fni

, x, T
ni
t )| → 0 as n → ∞, this completes the proof. �
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In order to compare the heights in Fu and G we will need to translate the tableau processes to swap processes on
the integers. The reason for doing this is that we can relate the expected height at position x to the expected number of
swaps at position x, and the expected number of swaps at any position in a sorting network is given by the following
theorem from Angel et al. [4].

Theorem 7.6. Let σ be a random sorting network on n particles given by a sequence of adjacent transpositions
{πk1 , . . . , πkN

}, and let an be a sequence of positive integers with 2an

n
− 1 → u ∈ (−1,1). Then

nP(k1 = an) → 4

π

√
1 − u2 and E

(∣∣{i ≤ Cn : ki = an}
∣∣) → 4C

π

√
1 − u2.

We use this theorem to prove the following lemma about expected height in F .

Lemma 7.7.

lim
t→0

Eh(F,0, t)

t
≥ 4

π
.

Proof. By Lemma 7.5, we can first replace Eh(F,0, t) by limn→∞ Eh(Fni
,0, T

ni
t ). Now we replace h(Fni

,0, t) by
the strictly smaller quantity 1(Fni

(z0) < T
ni
t ) where z0 = (1,1), and note that

P
(
Fni

(z0) < T
ni
t

) ≥ 1 −
(

1 − pi

ni

)�ni t�
,

where pi = vXni
(z0,∅). We can make this replacement since the rate of adding the square z0 is monotone increasing

in time. Now by Theorem 7.6, pi → 4
π

as i → ∞, so we have

lim
t→0

Eh(F,0, t)

t
≥ lim

t→0

1 − e− 4t
π

t
= 4

π
,

as desired. �

For x ∈ 2Z+ 1, we now define s(J, x, t) to be the number of swaps at location x before time t in the swap process
EG(J ), where the map EG is as in Section 6. We then have the following relationships between heights and swaps.

Lemma 7.8. Let x ∈ 2Z, t ∈ [0,∞), and let G ∈ G be translation invariant. Then G ∈ I and Eh(G,x, t) =
Es(G,x, t) (I is defined at the beginning of Section 6). We also have that Eh(F,x, t) = Es(F, x, t).

Proof. We can use the bound in Lemma 2.6 to conclude that G � F , thus implying that at any time t , there is a
bi-infinite sequence of squares in the bottom row that have not been added to G. Moreover, there exists a constant
C such that for all large enough n the modified rates in each Gn are bounded up to the stopping time T when n2/4
squares have been added by C times the modified rate in Fn. This allows us to conclude that G is injective, by the
proof of Proposition 5.1. Therefore G ∈ I .

Thus we can apply the Edelman–Greene map EG from Section 6 to G, giving a translation-invariant swap process
EG(G) and allowing us to define s(G,x, t) for all t . We now show that Eh(G,x, t) = Es(G,x, t). By translation
invariance, it suffices to consider the case x = 1. For each square z ∈H, let π(z) ∈ 2Z+ 1 be the location of the swap
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in EG(G) corresponding to the square z. Since only squares z′ ≥ z0 can have π(z) = 1, we have

Es(G,1, t) =
∑
z′≥z0

P
(
F

(
z′) < t and π

(
z′) = 1

)

=
∞∑
i=1

∑
j∈[1−(i−1),1+(i−1)]

P
(
F(j, i) < t and π(j, i) = 1

)

=
∞∑
i=1

∑
j∈[1−(i−1),1+(i−1)]

P
(
F(qi, i) < t and π(qi, i) = 1 + qi − j

)
. (7.2)

Here qi is either 1 or 2 depending on the parity of i. The second equality is just rearranging terms in the sum and the
final equality comes from the translation invariance of the swap process. Since

π(qi, i) ∈ [
qi − (i − 1), qi + (i − 1)

]
,

we have∑
j∈[−i,i]

P
(
F(qi, i) < t and π(qi, i) = 1 − j

) = P
(
F(qi, i) < t

)
,

and so the final line of (7.2) is equal to Eh(G,1, t). The exact same proof works for F . �

Proposition 7.9. Suppose G ∈ G is translation invariant. Then G
d= 1√

1−u2
F .

Proof. First define

K = {f : 2Z+ 1 ×R+ → Z},
and define H : H → K by H(J ) = h(J, ·, ·). Note that H a strictly decreasing function with respect to the pointwise

orders on H and K. As every G ∈ G satisfies G � Fu, to show that Fu d= G it suffices to show that Eh(G,x, t) ≤
Eh(Fu, x, t) for all x and t . By Theorem 7.6,

Es(Gn,0, t) →
(

4

π

√
1 − u2

)
t.

Then by Fatou’s Lemma and Lemma 7.8 we have that

Eh(G,0, t) = Es(G,0, t) ≤ lim
n→∞Es(Gn,0, t) =

(
4

π

√
1 − u2

)
t. (7.3)

Now by the time-stationarity of the increments in the limit EG(F ) (Proposition 6.1), we have that Es(F,0, t) is
linear in time. Therefore Eh(F,0, t) must be linear in time as well since it is equal to Es(F,0, t) by Lemma 7.8.
Combining this with Lemma 7.7 gives that Eh(F,0, t) = Kt for some K ≥ 4

π
, so

Eh
(
Fu,0, t

) ≥
(

4

π

√
1 − u2

)
t,

which combined with (7.3) gives the desired result. �

Proof of Theorem 7.1. We can finally combine Propositions 7.3 and 7.9 to conclude the convergence of the processes
Gn to Fu, which completes the proof of Theorem 7.1. This in turn completes the proofs of Theorems 1 and 2. �

Proposition 7.9 also allows us to conclude the following proposition about expected heights in F , and therefore
swaps in EG(F ).
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Proposition 7.10. For any x and t , we have

Eh(F,x, t) = Es(F, x, t) = 4

π
t.

Appendix

Proof of Lemma 3.1. Gn is tight, so it has subsequential limits in distribution. Suppose that G1 and G2 are two

different subsequential limits of G. Then there are subsequences Gα(i)
d→ G1 and Gβ(i)

d→ G2. Without loss of
generality, we can assume that there are some numbers a1, . . . , am > 0 such that

P

(
G1 ∈

m∏
k=1

[0, ak]
)

− P

(
G2 ∈

m∏
k=1

[0, ak]
)

> 0.

Then there is some δ > 0 such that

P

(
G1 ∈

m∏
k=1

[0, ak + δ)

)
− P

(
G2 ∈

m∏
i=1

[0, ak + 2δ]
)

> 0.

By weak convergence, we get the following chain of inequalities.

lim sup
i→∞

P

(
Gβ(i) ∈

m∏
k=1

[0, ak + 2δ]
)

≤ P

(
G2 ∈

m∏
k=1

[0, ak + 2δ]
)

< P

(
G1 ∈

m∏
k=1

[0, ak + δ)

)

≤ lim inf
i→∞ P

(
Gα(i) ∈

m∏
k=1

[0, ak + δ)

)
. (A.1)

However, letting ε = δ
a+δ

where a = maxk ak , for any large enough i there exists some J such that for all j ≥ J ,

P

(
Gε

α(i) ∈
m∏

k=1

[0, ak + δ)

)
≤ P

(
(1 + ε)Gε

α(i) ∈
m∏

k=1

[0, ak + 2δ]
)

≤ P

(
Gβ(j) ∈

m∏
k=1

[0, ak + 2δ]
)

,

since (1 + ε)Gε
α(i) � Gβ(j) for all large enough j by assumption. Thus

lim sup
i→∞

P

(
Gβ(i) ∈

m∏
k=1

[0, ak + 2δ]
)

≥ lim inf
i→∞ P

(
Gε

α(i) ∈
m∏

k=1

[0, ak + δ)

)
,

which contradicts (A.1), since

lim inf
i→∞ P

(
Gε

α(i) ∈
m∏

k=1

[0, ak + δ)

)
= lim inf

i→∞ P

(
Gα(i) ∈

m∏
k=1

[0, ak + δ)

)
.

Thus G1 = G2 for any two subsequential limits of Gn, so Gn has a distributional limit. �
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