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Abstract. Among quantum Langevin equations describing the unitary time evolution of a quantum system in contact with
a quantum bath, we completely characterize those equations which are actually driven by classical noises. The characteriza-
tion is purely algebraic, in terms of the coefficients of the equation. In a second part, we consider general quantum Langevin
equations and we prove that they can always be split into a maximal part driven by classical noises and a purely quantum
one.

Résumé. Parmi les équations de Langevin quantiques qui modélisent l’évolution temporelle d’un système quantique en contact
avec un bain thermique, nous caractérisons celles où les bruits sont en réalité classiques. Cette caractérisation est purement al-
gébrique et s’exprime en termes des coefficients de l’équation. Dans un second temps, nous nous intéressons à des équations de
Langevin générales et prouvons qu’elles peuvent toujours se décomposer en une partie maximale dirigée par des bruits classiques
et une partie purement quantique.

MSC: 81S25; 60H05
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1. Introduction

Since the construction of Quantum Stochastic Calculus and the corresponding quantum stochastic differential equa-
tions (quantum Langevin Equations) on the symmetric Fock space ([8]), it is well-known that both classical and
quantum noises could coexist in the equation. The framework is designed for quantum noises, however some classical
noises can also appear with some particular combinations of the quantum noises (see S. Attal’s lecture in [3]). This
fact was the starting point of the recent articles [1] and [2], where the authors characterized all the possible classical
processes that can emerge in such quantum Langevin equations: they are the complex normal martingales in C

n; up to
a unitary transform of Cn they are combinations of independent Wiener processes and Poisson processes in different
directions of the space.

Let us be more explicit with some simple examples. The quantum system state space is the separable Hilbert
space H, possibly infinite dimensional, whereas the quantum heat bath is represented by quantum noises dai

j (t) (see

Section 2.1 for the notations) on the symmetric Fock space � = �s(L
2(R+;C)). In the simplest case where n = 1,

the joint evolution between the system and its environment can be described by a one-parameter family of unitary
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operators (Ut ), solving a quantum Langevin equation:

dUt = −
(

iH + 1

2
L∗L

)
Ut dt + LUt da0

1(t) − L∗SUt da1
0(t) + (S − I )Ut da1

1(t), (1.1)

where H , L and S are operators on H such that H = H ∗ and S is a unitary operator.
In the particular case where S = I and L = −L∗, Equation (1.1) becomes

dUt = −
(

iH + 1

2
L2

)
Ut dt + LUt

(
da0

1(t) + da1
0(t)

)
. (1.2)

But it is well-known that the combinations of operators Bt = a0
1(t) + a1

0(t) are naturally isomorphic to the multipli-
cation operators by the Brownian motion on its canonical space. Hence Equation (1.2) is actually a Brownian motion
driven unitary evolution:

dUt = −
(

iH + 1

2
L2

)
Ut dt + LUt dBt .

Note that the conditions on H and S are the most general ones for a Brownian motion driven operator-valued equation
to give unitary solutions.

In the other particular case where L = ρ(S − I ), for some ρ > 0, Equation (1.1) becomes

dUt =
(

iH − 1

2
L∗L

)
Ut dt + LUt

(
da0

1(t) + da1
0(t) + 1

ρ
da1

1(t)

)
. (1.3)

The combinations of operators Xt = a0
1(t) + a1

0(t) + (1/ρ)a1
1(t) are naturally isomorphic to the multiplication oper-

ators by the compensated Poisson process with intensity ρ2 and jumps 1/ρ on its canonical space. Hence Equation
(1.3) is actually a Poisson process driven unitary evolution:

dUt = −
(

iH − 1

2
L∗L

)
Ut dt + LUt dXt .

Note that the conditions above on the coefficients are the most general ones for a Poisson process driven operator-
valued equation to give unitary solutions.

In general, it can be shown that for the von Neumann algebra generated by B(H) ⊗ I� and {Ut }t≥0 to be of the
form B(H) ⊗A with A commutative, one of the two following conditions must holds:

– either S = IH and there exists θ ∈ R such that L∗ = eiθL,
– or there exists a complex number λ such that L = λ(S − IH).

This statement appears for instance in [5,9] but we could not find any proof of this in the literature. The first
motivation of this paper is to give a criteria on the unitary solution of a quantum Langevin Equation so that it is driven
by classical noises, generalizing the preceding remark.

On the other hand, some evolutions are understood to be typically quantum or non-commutative, although there is
no clear definition of what it means. This is for instance the case for the spontaneous emission, where the evolution is
given by the unitary solution of the following quantum Langevin Equation:

dUt = −1

2
V ∗V Ut dt + V Ut da0

1(t) − V ∗Ut da1
0(t), (1.4)

where

V =
(

0 1
0 0

)
.



Classical and quantum part of the environment for quantum Langevin equations 2161

In a second part of the article we show that any quantum Langevin equation can be split into two parts: a maximal
commutative one (that is, driven by a classical noise and maximal in dimension) and a purely quantum one (that is,
which contains no classical part whatsoever).

The article is structured as follows. In Section 2 we recall a few notations concerning quantum noises, quantum
Langevin equations and their probabilistic interpretations. We discuss the notion of change of noise, that is, the effect
on the quantum noise of a change of basis. We recall the definition and the main properties of the noise algebra, as
defined in [4].

Section 3 is devoted to our main result: a complete characterization of those quantum Langevin equations that give
rise to a commutative noise algebra. The characterization is given both in algebraic properties of the coefficients and
in probabilistic interpretations of the classical noises appearing in the equation. As a corollary we obtain a characteri-
zation of the corresponding Lindblad generators.

In Section 4, we are back to general quantum Langevin equations and we prove that they all admit a splitting into a
maximal commutative part and a purely quantum one (in the sense that it admits no commutative subspace). We end
this section and the article with some discussion and examples.

2. The noise algebra

2.1. Notations

Let us recall here a few notations concerning quantum noises.
Let K be a finite dimensional Hilbert space of dimension d . We put � = {1, . . . , d} and we consider a fixed

orthonormal basis (ei)i∈� of K. We denote by � = �s(L
2(R+,K)) the symmetric Fock space over L2(R+,K). We

are given ourselves another auxiliary separable Hilbert space H, possibly infinite dimensional, which represents the
“small system” state space in quantum Langevin equations. We put � =H⊗ �.

On the Fock space � we consider the usual creation operators A†(f ) and annihilation operators A(f ), for all
f ∈ L2(R+,K); we also consider the differential second quantization operators d�(H), for all self-adjoint operators
H on L2(R+,K). The quantum noises ai

j (t), i, j ∈ � ∪ {0}, are then defined as follows:

a0
i (t) = A†(1[0,t]|ei〉

)
,

ai
0(t) = A

(
1[0,t]〈ei |

)
,

ai
j (t) = d�

(|ej 〉〈ei |M1[0,t]
)
,

where 1[0,t] is the the usual indicator function of the interval [0, t], where M1[0,t] is the multiplication operator by
1[0,t] and where we used the usual “bra” and “ket” notations for vectors and linear forms on K.

Quantum noises are driving quantum Langevin equations of all sorts. But it is a remarkable fact that some particular
combinations of the quantum noises actually represent well-known classical noises. It can be shown (see S. Attal’s
lecture in [3]) that:

– the operators a0
i (t) + ai

0(t) are naturally isomorphic to the multiplication operators by independent Brownian mo-
tions Bi

t acting on their canonical spaces,
– the operators a0

i (t) + ai
0(t) + λai

i (t) are naturally isomorphic to the multiplication operators by independent com-
pensated Poisson processes Xi

t , with jumps λ and intensity 1/λ2, acting on their canonical spaces.

2.2. Quantum Langevin equations

Now we recall a few elements of unitary quantum Langevin equations, in the framework of Hudson-Parthasarathy
Quantum Stochastic calculus [8,11].

On the space � we consider the following quantum stochastic equation

dUt =
∑

i,j∈�∪{0}
Li

jUt dai
j (t), (2.1)
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where the ai
j ’s are the quantum noises on � and where the Li

j ’s are operators on H. The following well-known

theorem characterizes in terms of the operators Li
j the fact that the solution (Ut ) is made of unitary operators or

not.

Theorem 2.1 ([8]). If the Li
j ’s are bounded operators on H, then Equation (2.1) admits a unique solution on B(�).

Furthermore, this solution is made of unitary operators Ut if and only if there exist bounded operators H and Si
j

(i, j ∈ �) on H such that

(i) the operator H is selfadjoint,
(ii) the operator S = ∑

i,j∈� Si
j ⊗ |j〉〈i| on B(H⊗K) is unitary,

(iii) the coefficients Li
j are of the form:

L0
0 = −iH − 1

2

∑
k∈�

(
L0

k

)∗
L0

k,

Li
0 = −

∑
j∈�

(
L0

j

)∗
Si

j ,

Li
j = Si

j − δi,j IH,

for all i, j ∈ �.

2.3. Change of noises

Usually the orthonormal basis (ei)i∈� is given by the context and one does not change it, once it is fixed. It is clear
that the choice of this basis determines the coefficients taking part in Equation (2.1). As an example, consider again
the quantum Langevin equation (1.1) given in the introduction, with S = IH:

dUt = −
(

iH + 1

2
L∗L

)
Ut dt + LUt da0

1(t) − L∗Ut da1
0(t).

Here K =Ce1 is one dimensional; one would think that the choice of the basis, i.e. the choice of the unit vector e1 ∈K
is not important. However, suppose that L∗ = λL for some λ ∈ C, |λ| = 1 (this situation may happen whenever the
Noise Algebra is commutative, as we shall see in Section 3), the previous equation becomes

dUt = −
(

iH + 1

2
L2

)
Ut dt + LUt da0

1(t) − λLUt da1
0(t). (2.2)

With this choice of a basis it is not clear that the equation is actually driven by a classical noise. However, take μ ∈C

such that μ2 = −λ. If one takes as a new basis the vector f1 = μe1, then

da0
1(t) = dA†(|e1〉1[0,t]

) = dA†(|μf1〉1[0,t]
) = μdA†(|f1〉1[0,t]

) = μdã0
1(t).

On the other hand, as da1
0(t) is the adjoint of da0

1(t), we get

da1
0(t) = μdã1

0(t).

Hence Equation (2.2) becomes

dUt = −
(

iH + 1

2
L2

)
Ut dt + μLUt

(
dã0

1(t) + dã1
0(t)

)
.
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We recognize a usual Brownian motion driven quantum Langevin equation

dUt = −
(

iH + 1

2
L̃2

)
Ut dt + L̃Ut dBt ,

where Bt = ã0
1(t) + ã1

0(t) is unitarily isomorphic to the multiplication operator by a real Brownian motion and where
we put L̃ = μL, so that L̃∗ = −L̃.

It is now clear that in order to unravel classical noises in quantum Langevin equations we must allow changes of
basis in K. We shall call such a transformation a change of noises.

In order to make the following more readable we fix the following notations. Consider a quantum Langevin equa-
tion on � of the form

dUt = L0
0Ut dt +

d∑
i=1

L0
i Ut da0

i (t) +
d∑

i=1

Li
0Ut dai

0(t) +
d∑

i,j=1

Li
jUt dai

j (t).

It will be convenient in the sequel to consider the coefficients L0
i as a column vector

L0 =
⎛
⎜⎝

L0
1
...

L0
d

⎞
⎟⎠ ,

the coefficients Li
0 as a row vector

L0 = (
L1

0 . . . Ld
0

)
and the coefficients Li

j as a d × d-block-matrix L such that Lij = L
j
i .

Note that, consistently with these notations, we have

(
L0)∗ = (

(L0
1)

∗ . . . (L0
d)∗

)
.

Proposition 2.1. Consider a quantum Langevin equation on � of the form

dUt = L0
0Ut dt +

d∑
i=1

L0
i Ut da0

i (t) +
d∑

i=1

Li
0Ut dai

0(t) +
d∑

i,j=1

Li
jUt dai

j (t), (2.3)

where the quantum noises ai
j are associated to a given orthonormal basis (ei)i∈� of K.

In the orthonormal basis (fi)i∈� of K, given by fi = Wei , i ∈ �, for some unitary operator W on K, Equation
(2.3) becomes

dUt = L0
0Ut dt +

d∑
i=1

L̃0
i Ut dã0

i (t) +
d∑

i=1

L̃i
0Ut dãi

0(t) +
d∑

i,j=1

L̃i
jUt dãi

j (t), (2.4)

where

L̃0 = W ∗L0,

L̃0 = L0W,

L̃ = W ∗
LW.
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Proof. We have ei = ∑
j∈�(W ∗)jifj , so that

da0
i (t) =

∑
j∈�

(
W ∗)

ji
dã0

j (t),

dai
0(t) =

∑
j∈�

Wij dã
j

0 (t),

dai
j (t) =

∑
k,l∈�

Wik

(
W ∗)

lj
dãk

l (t).

This gives

dUt = L0
0Ut dt +

d∑
j=1

(
d∑

i=1

(
W ∗)

ji
L0

i

)
Ut dã0

j (t) +
d∑

j=1

(
d∑

i=1

Li
0Wij

)
Ut dãi

0(t)

+
d∑

k,l=1

(
d∑

i,j=1

(
W ∗)

lj
LjiWik

)
Ut dãk

l (t).

This gives the result. �

Regarding the case of unitary-valued quantum Langevin equations, the proposition above shows that the conditions
on the Li

j ’s are not affected by changes of noise, as is summarized below.

Proposition 2.2. Consider a unitary-valued quantum Langevin equation of the form

dUt = −
(

iH + 1

2

∑
k∈�

(
L0

k

)∗
L0

k

)
Ut dt +

∑
k∈�

L0
kUt da0

k (t)

+
∑
k∈�

(
−

∑
l∈�

(
L0

l

)∗
Sk

l

)
Ut dak

0(t) +
∑

k,l∈�

(
Sk

l − δk,lIH
)
Ut dak

l (t), (2.5)

where H is selfadjoint and the operator S = ∑
i,j∈� Si

j ⊗ |j〉〈i| on B(H⊗K) is unitary. Then, after a change of noise
of the form fi = Wei , i = 1, . . . , d , the equation becomes

dUt = −
(

iH + 1

2

∑
k∈�

(
L̃0

k

)∗
L̃0

k

)
Ut dt +

∑
k∈�

L̃0
kUt dã0

k (t)

+
∑
k∈�

(
−

∑
l∈�

(
L̃0

l

)∗
S̃k

l

)
Ut dãk

0(t) +
∑

k,l∈�

(
S̃k

l − δk,lIH
)
Ut dãk

l (t), (2.6)

where

L̃0 = W ∗L0,

S̃ = W ∗SW.

2.4. The noise algebra

In a previous article on one-step evolutions [4], I. Bardet defined the Environment Algebra as the Von Neumann
subalgebra of the environment generated by the unitary operator of a one-step evolution on the bipartite system
H ⊗ K. We recall here the basic definitions and the main result on the decomposition of the environment between a
maximal commutative part and a quantum part.
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Let S be a unitary operator on H⊗K. For f,g ∈H, we define:

S(f, g) = Tr|g〉〈f |[S], S
∗(f, g) = Tr|g〉〈f |

[
S

∗], (2.7)

where for all X ∈ B(H⊗K), Tr|g〉〈f |[X] denotes the unique bound operator on H such that:〈
ψ,Tr|g〉〈f |[X]ϕ〉

H = 〈ψ ⊗ g,Xϕ ⊗ f 〉H⊗K ∀ϕ,ψ ∈H.

Those operators can be thought of as pictures of S taken from K but with different angles.

Definition 2.1. Let S be a unitary operator on H ⊗K. We call Environment Algebra the von Neumann algebra A(S)

generated by the S(f, g), that is

A(S) = {
S(f, g),S∗(f, g);f,g ∈ H

}′′
. (2.8)

The point with this definition is that it fits with the following characterization.

Proposition 2.3. Let S be a unitary operator on H⊗K. Then A(S) is the smallest von Neumann subalgebra of B(K)

such that S and S
∗ belong to B(H) ⊗ A(S), i.e. if A is another von Neumann algebra such that S and S

∗ belong to
B(H) ⊗A, then A(S) ⊂A. Furthermore, its commutant is given by

A(S)′ = {
Y ∈ B(K), [IH ⊗ Y,S] = [

IH ⊗ Y,S∗] = 0
}
, (2.9)

where the notation [·, ·] stands for the commutant of two bounded operators.

We now give the definition of the commutative parts of the environment and the resulting decomposition between
a maximal commutative part and a quantum part.

Definition 2.2. Let S be a unitary operator on H⊗K and let K̃ be a subspace of K. We say that K̃ is a Commutative
Subspace of the Environment if K̃ �= {0} and:

(i) H⊗ K̃ and H⊗ K̃⊥ are stable by S,
(ii) A(S̃) is commutative, where S̃ is the restriction of S to H⊗ K̃.

It is worth noticing that, by Proposition 2.3, point (i) in this definition is equivalent to the fact that the orthogonal
projection on K̃ is in A(S)′. We then have the following Decomposition Theorem, which is proved in [4].

Theorem 2.2. The environment Hilbert space K is the orthogonal direct sum of two subspaces Kc and Kq , such that
either Kc = {0} or

(i) Kc is a commutative subspace of the environment.
(ii) If K̃ is any commutative subspace of the environment, then K̃ ⊂Kc.

(iii) The restriction of S to H⊗Kq does not have any commutative subspace.

We now come back to our continuous time scenario. In this situation, we define the Noise Algebra as an algebra
which encodes the structure of the noise in the unitary quantum Langevin equation.

Definition 2.3. Let (Ut ) be the unitary-valued solution of a quantum Langevin Equation. The Noise Algebra (at
time t ) is defined by

At (U) = {
Tr|f 〉〈g|[Us],Tr|f 〉〈g|

[
U∗

s

];f,g ∈ H,0 < s ≤ t
}′′

. (2.10)

It is obvious that it is enough to consider only the vectors of an orthonormal basis of H in this definition. Let
(gi)i∈I be such a basis. For simplicity we adopt the following notation: if T is a bounded operator on � , we write T ij

for Tr|gi 〉〈gj |[T ], i, j ∈ I .
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3. The case of a commutative environment

The aim of this section is to characterize completely those unitary quantum Langevin equations for which At (U) is
commutative. We do that in Section 3.1. The characterization is first algebraic, then interpreted in terms of classi-
cal noises. Finally, we apply this characterization to give the general form of the associated Lindblad generator in
Section 3.2.

3.1. Characterization of commutative noise algebras

We shall need the following notations. If the matrix S, as a block-matrix on K, is diagonalizable in some orthonormal
basis of K, we put KW to be the maximal subspace of K such that S acts as the identity operator on H⊗KW and we put
KP =K⊥

W
. We shall see that whenever the noise algebra is commutative for all time, then KW (resp. KP) corresponds

to the part where the noise is a Brownian process (resp. a Poisson process). We consider some orthonormal basis
{f1, . . . , fd̃

, f
d̃+1, . . . , fd} of K adapted to the decomposition K = KW ⊕ KP, where d̃ is the dimension of KW. In

this basis, the matrix S can then be written as

S =
(

IH⊗KW
0

0 SP

)
, SP =

⎛
⎜⎜⎜⎜⎝

S1 0 · · · 0

0 S2
. . .

...
...

. . .
. . . 0

0 · · · 0 Sd−m

⎞
⎟⎟⎟⎟⎠ . (3.1)

We shall denote by �W the set of indices {1, . . . , d̃} and by �P the other one.
We can now state the first main result of this article, which completely characterizes the commutativity of the

algebra At (U) in terms of algebraic properties of the coefficients Li
j .

Theorem 3.1. Consider a unitary-valued quantum Langevin equation of the form

dUt = −
(

iH + 1

2

∑
k∈�

(
L0

k

)∗
L0

k

)
Ut dt +

∑
k∈�

L0
kUt da0

k (t)

+
∑
k∈�

(
−

∑
l∈�

(
L0

l

)∗
Sk

l

)
Ut dak

0(t) +
∑

k,l∈�

(
Sk

l − δk,lIH
)
Ut dak

l (t), (3.2)

where H is selfadjoint and the operator S = ∑
i,j∈� Si

j ⊗ |j〉〈i| on B(H⊗K) is unitary. Then the following assertions
are equivalent.

(1) The algebra At (U) is commutative for all t > 0.
(2) The algebra At (U) is commutative for some t > 0.
(3) The matrix S, as a block-matrix on K, is diagonalizable in some orthonormal basis of K (which is equivalent to

A(S) commutative) and, considering the coefficients Li
j after the appropriate change of noise, we have that

(i) there exists a symmetric unitary operator W on KW such that

⎛
⎜⎝

(L0
1)

∗
...

(L0
m)∗

⎞
⎟⎠ = W

⎛
⎜⎝

L0
1
...

L0
m

⎞
⎟⎠ , (3.3)

(ii) for all i ∈ �P, there exists λi ∈C such that

L0
i = λi(Si − IH). (3.4)
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(4) There exists a change of noise such that Equation (3.2) is of the form

dUt = A0Ut dt +
∑

i∈�W

AiUt dWi
t +

∑
i∈�P

BiUt dXi
t , (3.5)

where A0, {Ai, i ∈ �W} and {Bi, i ∈ �P} are bounded operators on H, where Wi , i ∈ �W, are (multiplication
operators by) standard Brownian motions, where Xi , i ∈ �P, are (multiplication operators by) compensated
Poisson processes and such that all the processes Wi and Xj are independent.

In some part of the proof we shall meet, in one particular case, the operator process (ai
i (t))t∈R+ alone. Though it

is a commutative family of self-adjoint operators and as such they are unitarily equivalent to multiplication operators
by a classical process, they are of deterministic law δ0 in the reference state of the Fock space (the vacuum state).
Hence they bring nothing to the probabilistic interpretation of the associated equation, nor to the associated Lindblad
generator. They are of no effect on the small system.

Proof. Obviously (1) implies (2).
Proof of (2) implies (3): Let us write Equation (3.2) as

dUt =
∑

i,j∈�∪{0}
Li

jUt dai
j (t),

for short.
We consider a fixed orthonormal basis (gi)i∈I of H and the corresponding notation T ij for bounded operators

on � . We first exploit the relation [Ukl
s ,Umn

s ] = 0 for all s < t , all k, l,m,n ∈ I . Differentiating this equality and
using the Itô rule we get

0 =
∑

i,j∈�∪{0}

[(
Li

jUs

)kl
Umn

s + Ukl
s

(
Li

jUs

)mn +
∑
i′∈�

(
Li′

j Us

)kl(
Li

i′Us

)mn
]

dai
j (s)

−
∑

i,j∈�∪{0}

[(
Li

jUs

)mn
Ukl

s + Umn
s

(
Li

jUs

)kl +
∑
i′∈�

(
Li′

j Us

)mn(
Li

i′Us

)kl
]

dai
j (s). (3.6)

Identifying each of the coefficients of dai
j (s) to 0 and taking the limit s → 0, we get, for all k, l,m,n ∈ I , all i, j ∈

� ∪ {0},
(
Li

j

)kl + (
Li

j

)mn +
∑
i′∈�

(
Li′

j

)kl(
Li

i′
)mn − (

Li
j

)mn − (
Li

j

)kl −
∑
i′∈�

(
Li′

j

)mn(
Li

i′
)kl = 0,

that is,∑
i′∈�

(
Li′

j

)kl(
Li

i′
)mn − (

Li′
j

)mn(
Li

i′
)kl = 0. (3.7)

Consider the block-matrix L given by Lij = L
j
i , i, j ∈ �. We denote by L

kl the matrix with coefficients (Lkl)ij =
(Lij )

kl = (L
j
i )

kl . With these notations we have

(
L

kl
L

mn
)
ij

=
∑
i′∈�

(
L

kl
)
ii′

(
L

mn
)
i′j =

∑
i′∈�

(
Li′

i

)kl(
L

j

i′
)mn

.

This way, Equation (3.7) means[
L

kl,Lmn
] = 0. (3.8)
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We now exploit the relation [(U∗
s )kl,Umn

s ] = 0 for all s < t , all k, l,m,n ∈ I . Differentiating this equality and
using the Itô rule we get

0 =
∑

i,j∈�∪{0}

[(
U∗

s

(
L

j
i

)∗)kl
Umn

s + (
U∗

s

)kl(
Li

jUs

)mn +
∑
i′∈�

(
U∗

s

(
L

j

i′
)∗)kl(

Li
i′Us

)mn
]

dai
j (s)

−
∑

i,j∈�∪{0}

[(
Li

jUs

)mn(
U∗

s

)kl + Umn
s

(
U∗

s

(
L

j
i

)∗)kl +
∑
i′∈�

(
Li′

j Us

)mn(
U∗

s

(
Li′

i

)∗)kl
]

dai
j (s).

Identifying each of the coefficients of dai
j (s) to 0 and taking the limit s → 0, we get, for all k, l,m,n ∈ I , all i, j ∈

� ∪ {0},
((

L
j
i

)∗)kl + (
Li

j

)mn +
∑
i′∈�

((
L

j

i′
)∗)kl(

Li
i′
)mn − (

Li
j

)mn − ((
L

j
i

)∗)kl −
∑
i′∈�

(
Li′

j

)mn((
Li′

i

)∗)kl = 0,

that is,

∑
i′∈�

((
L

j

i′
)∗)kl(

Li
i′
)mn − (

Li′
j

)mn((
Li′

i

)∗)kl = 0. (3.9)

The block-matrix L defined above satisfies (L∗)ij = (Lji)
∗ = (Li

j )
∗, so that

((
L

∗)kl)
ij

= ((
L

∗)
ij

)kl = ((
Li

j

)∗)kl
.

This way, Equation (3.9) means

[(
L

∗)kl
,Lmn

] = 0. (3.10)

With Equations (3.8) and (3.10) we have proved that all the matrices Lkl and (L∗)mn commute. As S= L+ IH⊗K,
we get that all the matrices Skl and (S∗)mn commute too, so that the algebra A(S) is commutative.

As a consequence the block-matrix S can be block-diagonalized. As announced before the theorem, K can be
decomposed as K =KW ⊕KP and the matrix S can then be written as in Equation (3.1):

S =
(

IH⊗KW
0

0 SP

)
.

We now make a change of noise adapted to the decomposition of K as the direct sum of KW and KP. In particular, in
the new noises, we have

Li
j = 0 for all i, j ∈ �, i �= j.

Following our notations above, we put Si = Si
i for all i ∈ �. Note that the coefficients Si have to be unitary operators

on H, for S to be unitary on H⊗K.
With these reductions, Equation (3.7) becomes, when i = 0 and j �= 0

(Sj − I )kl
(
L0

j

)mn = (Sj − I )mn
(
L0

j

)kl
. (3.11)

On the other hand, Equation (3.9) reduces, when i = j = 0, to

∑
i∈�

((
L0

i

)∗)kl(
L0

i

)mn =
∑
i∈�

(
Li

0

)mn((
Li

0

)∗)kl
. (3.12)
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Let us consider some index i ∈ �P, that is, for which Si �= I . In particular there exist k, l ∈ I such that
(Si − IH)kl �= 0. Equation (3.11) then gives for all m,n ∈ I ,

(
L0

i

)mn = (L0
i )

kl

(Si − I )kl
(Si − I )mn.

Defining λi = (L0
i )

kl/(Si − I )kl , this gives L0
i = λi(Si − I ). This proves the property (3.4).

We now come back to Equation (3.12), separating the indices in �P and those in �W. Using the fact that Li
0 =

−(L0
i )

∗ when i belongs to �W and the relation L0
i = λi(Si − I ) when i belongs to �P, we get from Equation (3.12)∑

i∈�W

((
L0

i

)∗)kl(
L0

i

)mn +
∑
i∈�P

|λi |2
(
(Si − I )∗

)kl
(Si − I )mn

=
∑

i∈�W

((
L0

i

)∗)mn(
L0

i

)kl +
∑
i∈�P

|λi |2
(
(Si − I )∗

)kl
(Si − I )mn.

This reduces to∑
i∈�W

((
L0

i

)∗)kl(
L0

i

)mn =
∑

i∈�W

((
L0

i

)∗)mn(
L0

i

)kl
,

or else∑
i∈�W

(
L0

i

)lk(
L0

i

)mn =
∑

i∈�W

(
L0

i

)nm(
L0

i

)kl
. (3.13)

Put u(k, l) = ((L0
i )

kl)i∈�W
∈C

d̃ and v(k, l) = ((L0
i )

lk)i∈�W
∈ C

d̃ , for all k, l ∈ I . Equation (3.13) then becomes〈
u(l, k), u(m,n)

〉 = 〈
v(l, k), v(m,n)

〉
,

for all k, l,m,n ∈ I .
We claim that this implies that there exists a unitary operator W on C

d̃ such that Wu(k, l) = v(k, l) for all k, l ∈ I .
Indeed, we can assume that the family {u(k, l); k, l ∈ I } has maximal rank in C

d̃ , otherwise we complete it. The family
{v(k, l); k, l ∈ I } has same rank, so we complete it in the same way. We denote by L2(H) the class of Hilbert–Schmidt
operators on H. We recall that it is a Hilbert space when associated to the inner product given by the trace. Consider
the operators U and V from L2(H) to C

d̃ defined by:

U : L2(H) → C
d̃

|k〉〈l| �→ u(k, l)

(and the same for V with u(k, l) replaced with v(k, l)). By hypothesis we have V ∗V = U∗U . Consider the polar
decomposition of U and V :

U = M
√

U∗U and V = N
√

V ∗V ,

where M,N : L2(H) → Cd̃ are partial isometries, where KerM = KerU and KerN = KerV , where ImM = ImU =
C

d̃ = ImV = ImN . Put W1 to be a unitary operator on C
d̃ which agrees with M on (KerM)⊥ and W2 to be a unitary

operator on C
d̃ which agrees with N on (KerN)⊥. Putting W = W2W

∗
1 it is easy to check that V = WU . This proves

the claim.
Now, let us prove that W has also to be symmetric, that is Wt = W . We have proved the relation V = WU , that is

for all k, l ∈ I⎛
⎜⎝

((L0
1)

∗)kl

...

((L0
m)∗)kl

⎞
⎟⎠ = W

⎛
⎜⎝

(L0
1)

kl

...

(L0
m)kl

⎞
⎟⎠ .
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Hence we have⎛
⎜⎝

(L0
1)

∗
...

(L0
m)∗

⎞
⎟⎠ = W

⎛
⎜⎝

L0
1
...

L0
m

⎞
⎟⎠ ,

so that(
L0

1 . . . L0
m

) = (
(L0

1)
∗ . . . (L0

m)∗
)
W ∗

and finally⎛
⎜⎝

L0
1
...

L0
m

⎞
⎟⎠ = W

⎛
⎜⎝

(L0
1)

∗
...

(L0
m)∗

⎞
⎟⎠ .

We have proved that W = W ∗, hence Wt = W . We have proved the property (3.3). We have proved that (2) implies (3).
Proof of (3) implies (4): If the coefficients Li

j satisfy all the properties described in (3), then, after the adequate
change of noise, Equation (3.2) reduces to

dUt = K0Ut dt +
∑

k∈�W

L0
kUt da0

k (t) +
∑

k∈�W

Lk
0Ut dak

0(t)

+
∑
k∈�P

λk(Sk − I )Ut da0
k (t) +

∑
k∈�P

λk(Sk − I )Ut dak
0(t) +

∑
k∈�P

(Sk − I )Ut dak
k (t), (3.14)

where we do not need to detail the operator K0 anymore here. We first focus on the Wiener part. Write L0 the column
of the coefficients L0

i , i ∈ �W and L0 the row of the coefficients Li
0, i ∈ �W. Recall that L0 = −(L0)∗, but we also

have as a condition in (3) that ((L0)∗)t = W(L0)∗, or else (L0)∗ = (L0)tW t .
The matrix W is a symmetric unitary operator. By the Takagi Factorization theorem (see [7] for example), every

symmetric complex square matrix can be decomposed as V tDV , where V is unitary and D is diagonal with real
positive entries. Thus W admits such a decomposition. But the fact that W is unitary gives

I = W ∗W = V ∗DV V tDV = V ∗D2V.

In particular D2 = I and thus D = I . We have proved that W is the form V tV for some unitary V . Actually, we apply
this decomposition to −W instead and we write −W = V tV for some unitary matrix V .

As we said above, we have L0 = −(L0)tW t , which gives

L0 = (
L0)t

V tV = (
V L0)t

V .

On the other hand we have L0 = V ∗(V L0). Hence if we put K = V L0, the part∑
k∈�W

L0
kUt da0

k (t) +
∑

k∈�W

Lk
0Ut dak

0(t)

of Equation (3.14) can now be written as∑
k∈�W

(
V ∗K

)
k
Ut da0

k (t) +
∑

k∈�W

((
Kt

)
V

)
k
Ut dak

0(t).

Hence, by Proposition 2.1, if we apply the change of noise associated to V to the orthonormal basis of KW, we obtain
a term of the form∑

k∈�W

KkUt da0
k (t) +

∑
k∈�W

KkUt dak
0(t) =

∑
k∈�W

KkUt dWk
t .
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Let us now concentrate on the part indexed by �P in Equation (3.14). If we decompose each λk into ρke
iθk , for those

λk �= 0, then this part of (3.14) can be written as

∑
k∈�P

ρk(Sk − I )Ut

(
eiθk da0

k (t) + e−iθk dak
0(t) + 1

ρk

dak
k (t)

)
.

After a change of noise fk �→ eiθkfk , the expression above reduces to

∑
k∈�P

ρk(Sk − I )Ut

(
da0

k (t) + dak
0(t) + 1

ρk

dak
k (t)

)
,

which is exactly of the form announced in (4), that is,∑
k∈�P

BkUt dXk
t .

For those λk = 0, as we discussed in Section 2.1, the equation gives rise to a term of the form

(Sk − I )Ut dak
k (t)

which is of no contribution in the probabilistic interpretation of the equation, nor the effect of the evolution on the
small system H.

Proof of (4) implies (1): We start with a quantum Langevin equation of the form of Equation (3.5)

dUt = A0Ut dt +
∑

i∈�W

AiUt dWi
t +

∑
i∈�P

BiUt dXi
t ,

as stated in (4).
Consider the von Neumann algebra Nt generated by the operators {Wi

s ,X
i
s; i ∈ �,s ≤ t}. It is clear that it is a

commutative von Neumann algebra, for they are all self-adjoint and pairwise commuting operators. We claim that
At (U) ⊂Nt , let us prove this fact.

Indeed, with the conditions on the coefficients of Equation (3.5), it is rather standard to prove that the solution (Ut )

can be obtained as the strong limit of a Picard iteration:

U0
s = I, for all s ≤ t,

Un+1
t = I +

∫ t

0
A0U

n
s ds +

∑
i∈�W

∫ t

0
AiU

n
s dWi

s

+
∑
i∈�P

∫ t

0
BiU

n
s dXi

s.

Clearly all the U0
s , s ≤ t , belong to B(H) ⊗ Nt . By induction, if all the Un

s , s ≤ t , belong to B(H) ⊗ Nt , then so
do all the Un+1

s , s ≤ t , for in the equation above Un+1
s is obtained as strong limit of Riemann sums of elements of

B(H) ⊗Nt . Hence, all the Us , s ≤ t are strong limits of operators belonging to B(H) ⊗Nt , so that they also belong
to this algebra, as a von Neumann algebra is closed under strong convergence. The same argument works also for the
U∗

s . As At (U) is the smallest von Neumann algebra such that Us ∈ B(H) ⊗At (U) for all s ≤ t and the same for the
U∗

s , we get the announced inclusion: At (U) ⊂Nt .
As a consequence, At (U) is commutative, and this holds for all t ∈R

+. This proves (1).
Strictly speaking, Equation (3.5) may contain additional terms with dak

k (t) alone as a driving noise. These terms
corresponding to the cases λk = 0 in (3). But these terms change nothing on the proof of “(4) implies (1)”, as we can
add them to the commutative algebra Nt and carry on with exactly the same proof.

The theorem is proved. �
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We thought it could be of interest to make explicit Theorem 3.1 in the case d = 1, for in this case it takes a
particularly simple form.

Theorem 3.2. Consider the unitary solution (Ut ) of a quantum Langevin equation:

dUt =
(

iH + 1

2
L∗L

)
Ut dt + LUt da0

1(t) − L∗SUt da1
0(t) + (S − IH)Ut da1

1(t),

with H,L,S ∈ B(H), H = H ∗ and S a unitary operator. Then the following assertions are equivalent:

(1) At (U) is commutative for some t > 0.
(2) At (U) is commutative for all t > 0.
(3) One of the following two conditions holds:

– either S = IH and there exists θ ∈ R such that L∗ = eiθL;
– or there exists a complex number λ such that L = λ(S − IH).

(4) After the appropriate change of noise Equation (1.1) takes the form of either Equation (1.2) or Equation (1.3)
with a Poisson process of intensity |λ| depending whether the first or the second case holds in (3).

3.2. Lindblad generators

One of the main motivations in constructing the unitary solution of quantum Langevin Equations is that their solutions
give cocycle unitary dilations of Quantum Markov Semigroups (QMS). Indeed, let U· be the unique unitary solution
of Equation (3.2). Using the Itô table for the quantum noises one shows that if we put

Pt (X) = 〈
�,U∗

t (X ⊗ I�)Ut�
〉

X ∈ B(H), (3.15)

for all t ∈ R
+, then this defines a norm-continuous Quantum Markov Semigroup on B(H). Moreover, its Lindblad

generator L(·) is given in the Heisenberg picture by (see [10])

L(X) = −i[H,X] + 1

2

∑
k∈�

(−L∗
kLkX − XL∗

kLk + 2L∗
kXLk

)
. (3.16)

We see that the unitary operator S does not play any role in this generator. For this reason, it is called the gauge of
the quantum Langevin Equation.

Any generator of a norm-continuous QMS on B(H) can be written under the form (3.16), so that the QMS admits
a cocycle unitary dilation U· solution of a quantum Langevin equation.

We now illustrate Theorem 3.1 with two applications to QMS: essentially commutative dilation and detailed bal-
ance condition.

A result of Kummerer and Maassen [9] characterizes the particular structure of those Lindblad generators for which
the QMS admits an essentially commutative dilation. In their work, the term “dilation” is more general than quantum
Langevin equations. However, within our framework, we are able to obtain their result, as stated in the following
Theorem.

Theorem 3.3. Let P· be a QMS on B(H). Then the following are equivalent.

(1) The semigroup P· admits a dilation U·, solution of a unitary quantum Langevin equation, such that At (U·) is
commutative, for all t > 0.

(2) There exist

– selfadjoint operators H,L1, . . . ,Lm on H,
– unitary operators S1, . . . , Sn on H,
– positive real numbers λ1, . . . , λn,
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such that the Lindblad generator L of P· is given by:

L(X) = −i[H,X] + 1

2

m∑
k=1

(
2LkXLk − L2

kX − XL2
k

) +
n∑

k=1

λi

(
S∗

k XSk − X
)
. (3.17)

Proof. The proof is an immediate consequence of Theorem 3.1. Indeed, if P· admits a dilation U· such that At (U) is
commutative for all t ≥ 0, then by Theorem 3.1 a change of noise leads to a quantum Langevin Equation for U· of the
form of Equation (3.5) and the result follows.

Conversely, if the Lindblad generator is of the form (3.17), the quantum Langevin equation with the corresponding
coefficients has its algebra At (U) commutative for all t . �

The other link with QMS we want to mention concerns the detailed balance condition as defined in [6]. When the
invariant state is the normalized trace, this condition summarizes into

Tr
[
L(X)Y

] − Tr
[
XL(Y )

] = Tr[XYK − YXK] for all X,Y ∈ B(H),

where K ∈ B(H) is a selfadjoint operator. Fagnola and Umanita proved in [6] that detailed balance condition with
respect to the normalized trace holds if and only if there exists a representation of the Linblad generator such that
Lk = L∗

k for all k ∈ �. As a direct consequence of Theorem 3.1 we obtain:

Theorem 3.4. A QMS satisfies the detailed balance condition with respect to the normalized trace on B(H) if and
only if its admits a unitary dilation which is the solution of a classical Langevin Equation with Brownian noises only.

4. Classical and quantum parts of the environment

We are now back to general quantum Langevin equation and we shall prove that they can always be splitted into a
maximal commutative part and a purely quantum one.

4.1. The decomposition theorem

In this section we study the Noise Algebra At (U) in the general case. Note that if K = K1 ⊕ K2, then by the expo-
nential property of the symmetric Fock space one has

� = �s

(
L2(

R
+,K1

)) ⊗ �s

(
L2(

R
+,K2

))
.

For short, if K̃ is a subspace of K, we write �(K̃) = �s(L
2(R+, ·K̃)). Suppose that U· is the unitary solution of

Equation (3.2) and that both H ⊗K1 and H ⊗K2 are stable by S. Then, as already mentioned before, � = �1 ∪ �2
according to the decomposition of S and Equation (3.2) can be written as:

dUt = −
(

iH + 1

2

∑
i∈�

(
L0

i

)∗
L0

i

)
Ut dt +

∑
i,j∈�1∪{0}

i+j �=0

Li
jUt dai

j (t) +
∑

i,j∈�2∪{0}
i+j �=0

Li
jUt dai

j (t). (4.1)

Definition 4.1. Let K1 be a subspace of K and write K2 = K⊥
1 . We say that �(K1) is a Commutative Subsystem of

the Environment if K1 �= {0} and:

• both H ⊗K1 and H ⊗K2 are stable by S. Consequently, up to a change of noise, Equation (3.2) takes the form of
Equation (4.1).

• At (U
1) is commutative for some t > 0, where U1· is the unique unitary solution of the quantum Langevin equation:

dU1
t = −1

2

∑
i∈�1

((
L0

i

)∗
L0

i

)
U1

t dt +
∑

i,j∈�1∪{0}
i+j �=0

Li
jU

1
t dai

j (t)

(i.e. we consider the quantum Langevin equation with only the coefficients indexed by λ1).
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Consequently, using the notation of the previous definition, if �(K1) is a commutative Subsystem of the Envi-
ronment then Theorem 3.1 can be applied to U1· , so that it obeys a classical stochastic differential equation driven
by independent Poisson processes and Brownian Processes. This in turn implies conditions on the coefficients in
Equation (4.1).

Theorem 4.1 (Decomposition Theorem). Suppose that U· is the unique unitary solution of Equation (3.2). Then K
is the orthogonal direct sum of two subspaces Kc and Kq such that either Kc = {0} or:

• �(Kc) is a Commutative Subsystem of the Environment.
• If K̃ is a subspace of K such that �(K̃) is a Commutative Subsystem of the Environment, then K̃ is a subspace of

Kc.
• U

q· does not have any Commutative Subsystem, where U
q· is the unique unitary solution of the quantum Langevin

equation:

dU
q
t = −1

2

∑
i∈�q

((
L0

i

)∗
L0

i

)
U

q
t dt +

∑
i,j∈�q∪{0}

i+j �=0

Li
jU

q
t dai

j (t).

Proof. The first step of the proof is to identify the subspace Kc. To do that, let Pc be the set of orthogonal projections
P ∈ A(S)′ such that P ∈ Pc iff �(PK) is a Commutative Subsystem of the Environment. We claim that Pc has
a maximal element. Indeed, as K is finite dimensional, for any totally order set P ⊂ Pc there exists a projection
Pmax ∈ P such that PmaxK has the highest dimension for this set. Consequently P ≤ Pmax for all P ∈ P . Thus Pc is
an inductive set and by Zorn Lemma it has a maximal element that we write Pc. We take Kc = PcK.

Suppose now that Pc �= 0. By definition, �(Kc) is a Commutative Subsystem of the Environment. Furthermore,
if K̃ is a subspace of K such that �(K̃) is a Commutative Subsystem of the Environment, then the orthogonal pro-
jection on K̃ is dominated by Pc so that K̃ is a subspace of Kc. Consequently U

q· does not have any Commutative
Subsystem. �

Remarks 4.1. We emphasize that Theorem 4.1 states the existence of a decomposition, without providing any prac-
tical way to explicit it in terms of the coefficients. Indeed, the first step in order to find the decomposition is to study
the Environment Algebra A(S). For small matrices this can be done for instance numerically. For instance, in [4] it is
proved that A(S)′ is the eigenspace for the eigenvalue 1 of a certain completely positive map on K. This provides by
Theorem 2.2 a decomposition of S as S = S1 + S2, such that S1 is the maximal block-diagonal unitary operator that
we can extract from S. However this does not give the decomposition of �(K) into a classical and a quantum part.

In the next subsection we develop this point with several examples.

4.2. Examples and open problems

In the first example below we prove that the spontaneous emission whose evolution is given by Equation (1.4) has a
purely quantum environment.

Examples 4.1 (Spontaneous Emission). Take H = C
2 and K = C. Let U· be the solution of the quantum Langevin

Equation

dUt = −1

2
V ∗V Ut dt + V Ut da0

1(t) − V ∗Ut da1
0(t),

where

V =
(

0 1
0 0

)
.

Here S = IH, so that A(S) is commutative. However, clearly there does not exist λ ∈C such that V ∗ = λV , so that by
Theorem 3.1, U· has a purely quantum environment.
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We rely on this typical evolution in order to construct one example where the decomposition is explicit.

Examples 4.2 (An explicit decomposition). Take H = C
2 and K = C

2. We consider the following coefficients in
the quantum Langevin Equation, with λ, θ ∈ R, λ > 0:

S=

⎛
⎜⎜⎝

sin2 θ cos2 θ sin θ cos θ sin θ cos θ

cos2 θ sin2 θ sin θ cos θ sin θ cos θ

− sin θ cos θ sin θ cos θ − cos2 θ sin2 θ

sin θ cos θ − sin θ cos θ sin2 θ − cos2 θ

⎞
⎟⎟⎠ ,

L0
1 =

(−λ cos θ λ cos θ + sin θ

λ cos θ −λ cos θ

)
, L0

2 =
(−λ sin θ λ sin θ − cos θ

λ sin θ −λ sin θ

)
.

After the change of noise given by the unitary operator

W =
(

sin θ cos θ

− cos θ sin θ

)
,

we find in the new basis:

S̃=

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ , L̃0

1 =
(

0 1
0 0

)
, L̃0

2 =
(−λ λ

λ −λ

)
= λ(S − IH),

where S = ( 0 1
1 0

)
. Consequently the quantum Langevin Equation takes the form:

dUt = −1

2

((
L̃0

1

)∗
L̃0

1 + (
L̃0

2

)2)
Ut dt + L̃0

1Ut dã0
1(t) − (

L̃0
1

)∗
Ut dã1

0(t) + L̃0
2Ut dXt ,

where Xt is a compensated Poisson process of intensity λ and jumps 1/λ.
In this example, the decomposition between classical and quantum noises resumes to the decomposition of S,

because it is possible to clearly identify the classical and quantum part after the diagonalization of S. This is not
always possible.

Examples 4.3 (A non-explicit decomposition). Take H = C2 and K = C2. We assume in this example that S =
IH⊗K. Consequently the matrix of S does not depend on the choice of the basis of K. However the coefficients L0

i

do. Consider for instance:

L0
1 =

(− cos θ cos θ + sin θ

cos θ − cos θ

)
, L0

2 =
(− sin θ sin θ − cos θ

sin θ − sin θ

)
.

It happens that the same unitary operator W as in the previous example gives the decomposition (with λ = 1) in a
classical part and a quantum part. The point is that we know no algorithm in order to compute W , by only looking at
the coefficients L0

1 and L0
2.
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