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Abstract. We consider the damped nonlinear wave (NLW) equation driven by a noise which is white in time and colored in space.
Assuming that the noise is non-degenerate in all Fourier modes, we establish a large deviations principle (LDP) for the occupation
measures of the trajectories. The lower bound in the LDP is of a local type, which is related to the weakly dissipative nature of
the equation and is a novelty in the context of randomly forced PDE’s. The proof is based on an extension of methods developed
in (Comm. Pure Appl. Math. 68 (12) (2015) 2108–2143) and (Large deviations and mixing for dissipative PDE’s with unbounded
random kicks (2014) Preprint) in the case of kick forced dissipative PDE’s with parabolic regularization property such as, for
example, the Navier–Stokes system and the complex Ginzburg–Landau equations. We also show that a high concentration towards
the stationary measure is impossible, by proving that the rate function that governs the LDP cannot have the trivial form (i.e., vanish
on the stationary measure and be infinite elsewhere).

Résumé. Nous considérons l’équation des ondes non linéaire avec un bruit qui est blanc en temps et coloré en espace. Sous
l’hypothèse que le bruit est non dégénéré, nous établissons un principe de grandes déviations (PGD) pour la famille de mesures
d’occupation des trajectoires. La borne inférieure dans le PGD est d’un type local, qui est lié à la nature faiblement dissipative de
l’équation. La preuve est basée sur une généralisation des méthodes développées dans (Comm. Pure Appl. Math. 68 (12) (2015)
2108–2143) et (Large deviations and mixing for dissipative PDE’s with unbounded random kicks (2014) Preprint) pour des EDP
paraboliques, comme les équations de Navier–Stokes ou de Ginzburg–Landau complexe, perturbées par une force aléatoire discrète
en temps. Nous montrons également que la fonction de taux du PGD n’est pas triviale, ce qui implique qu’une forte concentration
vers la mesure stationnaire est impossible.
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0. Introduction

This paper is devoted to the study of the large deviations principle (LDP) for the occupation measures of the stochastic
nonlinear wave (NLW) equation in a bounded domain D ⊂R3 with a smooth boundary ∂D:

∂2
t u + γ ∂tu − �u + f (u) = h(x) + ϑ(t, x), u|∂D = 0, (0.1)[
u(0), u̇(0)

] = [u0, u1]. (0.2)

Here γ > 0 is a damping parameter, h is a function in H 1
0 (D), and f is a nonlinear term satisfying some standard

dissipativity and growth conditions (see (1.1)–(1.3)). These conditions are satisfied for the classical examples f (u) =
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sinu and f (u) = |u|ρu − λu, where λ ∈ R and ρ ∈ (0,2), coming from the damped sine–Gordon and Klein–Gordon
equations. We assume that ϑ(t, x) is a colored white noise of the form

ϑ(t, x) = ∂t ξ(t, x), ξ(t, x) =
∞∑

j=1

bjβj (t)ej (x), (0.3)

where {βj } is a sequence of independent standard Brownian motions, the set of functions {ej } is an orthonormal basis
in L2(D) formed by eigenfunctions of the Dirichlet Laplacian with eigenvalues {λj }, and {bj } is a sequence of real
numbers satisfying

B1 :=
∞∑

j=1

λjb
2
j < ∞. (0.4)

We denote by (ut ,Pu), ut = [ut , u̇t ] the Markov family associated with this stochastic NLW equation and
parametrized by the initial condition u = [u0, u1] ∈ H 1

0 (D) × L2(D). The exponential ergodicity for this family is
established in the paper [21].

The LDP for the occupation measures of randomly forced PDE’s has been previously established in [7,8] in the
case of the Burgers equation and the Navier–Stokes system, based on some abstract results from [27]. In these papers,
the random force is assumed to be rough in the space variable and white in time, i.e., it is of the form (0.3) with the
following condition on the coefficients:

cj−α ≤ bj ≤ Cj− 1
2 −ε,

1

2
< α < 1, ε ∈

(
0, α − 1

2

]
, j ≥ 1. (0.5)

This condition implies that the Markov process associated with the problem has the strong Feller property (SFP). The
SFP plays a central role in the arguments of the mentioned three papers. In the case of a spatially regular noise, i.e.
when the coefficients bj in (0.5) are allowed to converge to zero sufficiently fast, it is not known if the SFP still holds.

In the case of a perturbation which is a regular random kick force, the LDP is proved in [10,12] for a family of
PDE’s with parabolic regularization (such as the Navier–Stokes system or the complex Ginzburg–Landau equation).
See also [11] for the proof of the LDP and the Gallavotti–Cohen principle in the case of a rough kick force.

Let us explain in a few words the goal of this paper as well as the choice of the model. Our aim is to extend the
results and the methods developed in [10,12] under more general assumptions on both stochastic and deterministic
parts of the equation. The stochastic NLW equation suits well for implementing this analysis. Indeed, on the one hand
it is probably the most representative SPDE of hyperbolic type. The fact that it is only weakly dissipative and lacks a
regularizing property allows to cover a wide range of systems with similar properties. On the other hand, it is one of
the few equations without a regularizing effect for which the (exponential) ergodicity is known.

In what follows, we shall denote by μ the stationary measure of the family (ut ,Pu), and for any bounded continuous
function ψ : H 1

0 (D) × L2(D) → R, we shall write 〈ψ,μ〉 for the integral of ψ with respect to μ. Let U be the space
of bounded Hölder-continuous functions ψ : H 1

0 (D) × L2(D) →R depending only on finite-dimensional projections
(see (1.10)). We prove the following level-1 LDP for the solutions of problem (0.1), (0.3).

Main Theorem. Assume that conditions (0.4) and (1.1)–(1.3) are verified and bj > 0 for all j ≥ 1. Then for any
non-constant function ψ ∈ U , there is ε = ε(ψ) > 0 and a convex function Iψ : R → R+ such that, for any1 u ∈
Hr+1(D) × Hr(D) and any open subset O of the interval (〈ψ,μ〉 − ε, 〈ψ,μ〉 + ε), we have

lim
t→∞

1

t
logPu

{
1

t

∫ t

0
ψ

(
u(τ )

)
dτ ∈ O

}
= − inf

α∈O
Iψ(α), (0.6)

where r > 0 is a small number. Moreover, limit (0.6) is uniform with respect to u in a bounded set of Hr+1(D) ×
Hr(D).

1Here Hr(D) is the domain of the definition of (−�)r/2 (see (0.7)).
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The proof of this result is obtained by extending the techniques and results introduced in [10,12]. According to a
local version of the Gärtner–Ellis theorem, relation (0.6) will be established if we show that, for some β0 > 0, the
following limit exists

Q(β) = lim
t→+∞

1

t
logEu exp

(∫ t

0
βψ(uτ )dτ

)
, |β| < β0

and it is differentiable in β on (−β0, β0). We show that both properties can be derived from a multiplicative er-
godic theorem, which is a convergence result for the Feynman–Kac semigroup of the stochastic NLW equation.
A continuous-time version of a criterion established in [10] shows that a multiplicative ergodic theorem holds pro-
vided that the following four conditions are satisfied: uniform irreducibility, exponential tightness, growth condition,
and uniform Feller property. The smoothness of the noise and the lack of a strong dissipation and of a regularizing
property in the equation result in substantial differences in the techniques used to verify these conditions. While in the
case of kick-forced models the first two of them are checked directly, they have a rather non-trivial proof in our case,
relying on a feedback stabilization result and some subtle estimates for the Sobolev norms of the solutions. Nonethe-
less, the most involved and highly technical part of the paper remains the verification of the uniform Feller property.
Based on the coupling method, its proof is more intricate here mainly due to a more complicated Foiaş–Prodi type
estimate for the stochastic NLW equation. An important difference compared with the parabolic case is that we get a
uniform Feller property only for potentials that have a sufficiently small oscillation, and this is the main reason why
the LDP established in this paper is of a local type.

We also establish a more general result of level-2 type in Theorem 1.1 and an abstract criterion given in Section A.1.
These results are slightly different from the standard Donsker–Varadhan form (e.g., see Theorem 3 in [6]), since here
the LDP is proved to hold locally on some part of the phase space. Another abstract result in this direction can be
found in Theorem 4.5.20 in [5]. The question of global LDP for our system is open and, certainly, deserves further
investigation.

Let us mention that there is a substantial amount of literature studying the local LDP of level-1 type for finite-
dimensional deterministic and stochastic dynamical systems (e.g., see [9,13,15,25]). The papers [15] and [2] provide
an example of a Doeblin chain with good mixing properties for which the local LDP holds whereas the global one
fails.

The paper is organized as follows. We formulate in Section 1 the second main result of this paper on the level-2
LDP for the NLW equation and, by using a local version of Kifer’s criterion, we reduce its proof to a multiplicative
ergodic theorem. Section 2 is devoted to the derivation of the Main Theorem. In Sections 3 and 4, we are checking
the conditions of an abstract result about the convergence of generalized Markov semigroups. In Section 5, we prove
the exponential tightness property and provide some estimates for the growth of Sobolev norms of the solutions. The
multiplicative ergodic theorem is established in Section 6. In the Appendix, we prove the local version of Kifer’s cri-
terion, the abstract convergence result for the semigroups, and some other technical results which are used throughout
the paper.

Notation

For a Banach space X, we denote by BX(a,R) the closed ball in X of radius R centered at a. In the case when a = 0,
we write BX(R). For any function V : X →R, we set OscX(V ) := supX V − infX V . We use the following spaces:

L∞(X) is the space of bounded measurable functions ψ : X →R endowed with the norm ‖ψ‖∞ = supu∈X |ψ(u)|.
Cb(X) is the space of continuous functions ψ ∈ L∞(X), and C+(X) is the space of positive continuous functions

ψ : X → R.
C

q
b (X), q ∈ (0,1] is the space of functions f ∈ Cb(X) for which the following norm is finite

‖ψ‖C
q
b

= ‖ψ‖∞ + sup
u �=v

|ψ(u) − ψ(v)|
‖u − v‖q

.

M(X) is the vector space of signed Borel measures on X with finite total mass. For μ ∈ M(X) and ψ ∈ Cb(X),
we denote 〈ψ,μ〉 = ∫

X
ψ(u)μ(du). The space M(X) is endowed with the topology of the weak convergence, i.e.
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the weakest topology such that μ �→ 〈f,μ〉 is continuous for any f ∈ Cb(X). M+(X) ⊂ M(X) is the cone of
non-negative measures.

P(X) is the set of probability Borel measures on X. If μ1,μ2 ∈ P(X), we set

|μ1 − μ2|var = sup
{∣∣μ1(�) − μ2(�)

∣∣ : � ∈ B(X)
}
,

where B(X) is the Borel σ -algebra of X.

For any measurable function w : X → [1,+∞], let Cw(X) (respectively, L∞
w (X)) be the space of continuous (mea-

surable) functions ψ : X → R such that |ψ(u)| ≤ Cw(u) for all u ∈ X. We endow Cw(X) and L∞
w (X) with the

seminorm

‖ψ‖L∞
w

= sup
u∈X

|ψ(u)|
w(u)

.

Pw(X) is the space of measures μ ∈P(X) such that 〈w,μ〉 < ∞.
For an open set D of R3, we introduce the following function spaces:

Lp = Lp(D) is the Lebesgue space of measurable functions whose pth power is integrable. In the case p = 2 the
corresponding norm is denoted by ‖ · ‖.

Hr = Hr(D), r ≥ 0 is the domain of definition of the operator (−�)r/2 endowed with the norm ‖ · ‖r :

Hr =D
(
(−�)r/2) =

{
u =

∞∑
j=1

uj ej ∈ L2 : ‖u‖2
r :=

∞∑
j=1

λs
ju

2
j < ∞

}
. (0.7)

In particular, H 1 coincides with H 1
0 (D), the space of functions in the Sobolev space of order 1 that vanish at the

boundary. We denote by H−r the dual of Hr .

1. Level-2 LDP for the NLW equation

1.1. Stochastic NLW equation and its mixing properties

In this subsection we give the precise hypotheses on the nonlinearity and recall a result on the property of exponential
mixing for the Markov family associated with the flow of (0.1). We shall assume that the function f satisfies the
following regularity and growth conditions

f ∈ C2(R), f (0) = 0,
∣∣f ′′(u)

∣∣ ≤ C
(|u|ρ−1 + 1

)
, u ∈R, (1.1)

for some positive constants C and ρ < 2, and the dissipativity conditions

F(u) ≥ C−1
∣∣f ′(u)

∣∣ ρ+2
ρ − νu2 − C, (1.2)

f (u)u − F(u) ≥ −νu2 − C, (1.3)

where F is a primitive of f , ν is a positive number less than (λ1 ∧ γ )/8. Let us note that inequality (1.2) is slightly
more restrictive than the one used in [21]; this hypothesis allows us to establish the exponential tightness property (see
Section 5.1). We consider the NLW equation in the phase space H = H 1 × L2 endowed with the norm

|u|2H = ‖u1‖2
1 + ‖u2 + αu1‖2, u= [u1, u2] ∈ H, (1.4)

where α = α(γ ) > 0 is a small parameter. Under the above conditions, for any initial data u0 = [u0, u1] ∈ H, there
is a unique solution (or a flow) ut = u(t;u0) = [ut , u̇t ] of problem (0.1)–(0.3) in H (see Section 7.2 in [3]). For any
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r ∈R, let Hr denote the space Hr+1 × Hr endowed with the norm

|u|2Hr = ‖u1‖2
r+1 + ‖u2 + αu1‖2

r , u = [u1, u2] ∈ Hr

with the same α as in (1.4). If u0 ∈ Hr and 0 < r < 1 − ρ/2, the solution u(t;u0) belongs2 to Hr almost surely.
Let (ut ,Pu) be the Markov family associated with (0.1), and let Pt (u,�) = Pu{ut ∈ �} be its transition function.

Recall that a measure μ ∈ P(H) is said to be stationary if

μ(�) =
∫
H

Pt (u,�)μ(du) for any t ≥ 0.

By Theorem 5.3 in [21], we know that, if conditions (1.1)–(1.3) are verified and bj > 0, j ≥ 1 is a sequence satisfying
(0.4), then the family (ut ,Pu) has a unique stationary measure μ ∈P(H).

1.2. The statement of the result

Before giving the formulation of the main result of this section, let us introduce some notation and recall some basic
definitions from the theory of LDP (see [5]). For any u ∈H, we define the following family of occupation measures

ζt = 1

t

∫ t

0
δuτ dτ, t > 0, (1.5)

where uτ := u(τ ;u) and δv is the Dirac measure concentrated at v ∈H. For any V ∈ Cb(H) and R > 0, we set

QR(V ) = lim sup
t→+∞

1

t
log sup

u∈XR

Eu exp
(
t〈V, ζt 〉

)
,

where XR := BHr (R), r ∈ (0,1 − ρ/2). Then QR : Cb(H) → R is a convex 1-Lipschitz function, and its Legendre
transform is given by

IR(σ ) :=
{

supV ∈Cb(H)(〈V,σ 〉 − QR(V )) for σ ∈P(H),

+∞ for σ ∈M(H) \P(H).
(1.6)

The function IR : M(H) → [0,+∞] is convex lower semicontinuous in the weak topology, and QR can be recon-
structed from IR by the formula

QR(V ) = sup
σ∈P(H)

(〈V,σ 〉 − IR(σ )
)

for any V ∈ Cb(H). (1.7)

Note that, for any σ ∈M(H), IR(σ ) is non-increasing in R, so we can set

I (σ ) = lim
R→+∞ IR(σ ). (1.8)

We denote by V the set of functions V ∈ Cb(H) satisfying the following two properties.

Property 1. For any R > 0 and u ∈ XR , the following limit exists (called pressure function)

Q(V ) = lim
t→+∞

1

t
logEu exp

(∫ t

0
V (uτ )dτ

)

and does not depend on the initial condition u and the number R > 0. Moreover, this limit is uniform with respect to
u ∈ XR .

2Some estimates for the Hr -norm of the solutions are given in Section 5.2.
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Property 2. There is a unique measure σV ∈ P(H) (called equilibrium state) satisfying the equality

Q(V ) = QR(V ) = 〈V,σV 〉 − IR(σV ) (1.9)

for any R > 0.

A mapping I : M(H) → [0,+∞] is a good rate function if for any a ≥ 0 the level set {σ ∈ M(H) : I (σ ) ≤ a}
is compact. A good rate function I is non-trivial if the effective domain DI := {σ ∈ M(H) : I (σ ) < ∞} is not a
singleton. Finally, we shall denote by U the set of functions V ∈ Cb(H) for which there is a number q ∈ (0,1], an
integer N ≥ 1, and a function F ∈ C

q
b (HN) such that

V (u) = F(PNu), u ∈ H, (1.10)

where HN := HN ×HN , HN := span{e1, . . . , eN }, and PN is the orthogonal projection in H onto HN . Given a number
δ > 0, Uδ is the subset of functions V ∈ U satisfying Osc(V ) < δ.

Theorem 1.1. Under the conditions of the Main Theorem, there is a number δ > 0 such that Uδ ⊂ V . The function
I : M(H) → [0,+∞] defined by (1.8) is a non-trivial good rate function, and for any R > 0, the family {ζt , t > 0}
satisfies the following local LDP.

Upper bound. For any closed set F ⊂P(H), we have

lim sup
t→∞

1

t
log sup

u∈XR

Pu{ζt ∈ F } ≤ −I (F ). (1.11)

Lower bound. For any open set G ⊂P(H), we have

lim inf
t→∞

1

t
log inf

u∈XR

Pu{ζt ∈ G} ≥ −I (W ∩ G). (1.12)

Here3 I (�) := infσ∈� I (σ ) for � ⊂P(H) and W := {σV : V ∈ Uδ}, where σV is the equilibrium state correspond-
ing to V .

This theorem is proved in the next subsection, using a multiplicative ergodic theorem and a local version of Kifer’s
criterion for LDP. Then in Section 2, we combine it with a local version of the Gärtner–Ellis theorem to establish the
Main Theorem.

1.3. Reduction to a multiplicative ergodic theorem

In this subsection we reduce the proof of Theorem 1.1 to some properties related to the large-time behavior of the
Feynman–Kac semigroup defined by

PV
t ψ(u) = Eu

{
ψ(ut ) exp

(∫ t

0
V (uτ )dτ

)}
.

For any V ∈ Cb(H) and t ≥ 0, the application PV
t maps Cb(H) into itself. Let us denote by PV ∗

t : M+(H) →
M+(H) its dual semigroup, and recall that a measure μ ∈P(H) is an eigenvector if there is λ ∈R such that PV ∗

t μ =
λtμ for any t > 0.

Let us define a function w : H → [0,∞] by

w(u) = 1 + |u|2Hr + E4(u), (1.13)

3The infimum over an empty set is equal to +∞.
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which will play the role of the weight function. Here

E(u) = |u|2H + 2
∫

D

F(u1)dx, u = [u1, u2] ∈H

is the energy functional of the NLW equation. From (5.24) with m = 1 it follows that PV
t maps4 Cw(Hr ) into itself

(note that w1 = w in (5.24)). We shall say that a function h ∈ Cw(Hr ) is an eigenvector for the semigroup PV
t if

PV
t h(u) = λth(u) for any u ∈Hr and t > 0. Then we have the following theorem.

Theorem 1.2. Under the conditions of the Main Theorem, there is δ > 0 such that the following assertions hold for
any V ∈ Uδ .

Existence and uniqueness. The semigroup PV ∗
t admits a unique eigenvector μV ∈ Pw(H) corresponding to an

eigenvalue λV > 0. Moreover, for any m ≥ 1, we have∫
H

[|u|mHr + exp
(
κE(u)

)]
μV (du) < ∞, (1.14)

where κ := (2α)−1B0 and B0 := ∑
b2
j . The semigroup PV

t admits a unique eigenvector hV ∈ Cw(Hr ) ∩ C+(Hr )

corresponding to λV normalized by the condition 〈hV ,μV 〉 = 1.
Convergence. For any ψ ∈ Cw(Hr ), ν ∈ Pw(H), and R > 0, we have

λ−t
V PV

t ψ → 〈ψ,μV 〉hV in Cb(XR) ∩ L1(H,μV ) as t → ∞, (1.15)

λ−t
V PV ∗

t ν → 〈hV , ν〉μV in M+(H) as t → ∞. (1.16)

This result is proved in Section 6. Here we apply it to establish Theorem 1.1.

Proof of Theorem 1.1. Step 1: Proof of the inclusion Uδ ⊂ V . Let δ > 0 be the constant in Theorem 1.2. Taking
ψ = 1 in (1.15), we get Property 1 with QR(V ) := logλV for any V ∈ Uδ (in particular, Q(V ) := QR(V ) does not
depend on R).

Property 2 is deduced from limit (1.15) in the same way as in [10]. Indeed, for any V ∈ Uδ , we introduce the
semigroup

S
V,F
t ψ(u) = λ−t

V h−1
V PV +F

t (hV ψ)(u), ψ,F ∈ Cb(H), t ≥ 0, (1.17)

the function

QV
R(F) := lim sup

t→+∞
1

t
log sup

u∈XR

log
(
S

V,F
t 1

)
(u), (1.18)

and the Legendre transform IV
R : M(H) → [0,+∞] of QV

R(·). The arguments of Section 5.7 of [10] show that
σ ∈ P(H) is an equilibrium state for V if and only if IV

R (σ ) = 0. So the uniqueness follows from the following
result which is a continuous-time version of Proposition 7.5 in [10]. Its proof is given in the Appendix.

Proposition 1.3. For any V ∈ Uδ and R > 0, the measure σV = hV μV is the unique zero of IV
R .

Step 2: Upper and lower bounds. We apply Theorem A.1 to prove estimates (1.11) and (1.12). Let us consider the
following totally ordered set (�,≺), where � = R∗+ × XR and ≺ is a relation defined by (t1,u1) ≺ (t2,u2) if and
only if t1 ≤ t2. For any θ = (t,u) ∈ �, we set rθ := t and ζθ := ζt , where ζt is the random probability measure given
by (1.5) defined on the probability space (�θ ,Fθ ,Pθ ) := (�,F,Pu). Note that a family {xθ ∈ R, θ ∈ �} converges
if and only if it converges uniformly with respect to u ∈ XR as t → +∞. We have that (A.1) holds with Q = QR for

4When we write Cw(Hr ) or C(XR), the sets Hr and XR are assumed to be endowed with the topology induced by H.
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any V ∈ Cb(H), and for any V ∈ V , Properties 1 and 2 imply limit (A.3) and the uniqueness of the equilibrium state.
Let {Vk} ⊂ V1 := U δ be a sequence which defines the weak topology in P(X), then V1 ∩ span{V1, . . . , Vn} is open for
any n ≥ 1. It remains to check the following condition, which we postpone to Section 5.

Exponential tightness. There is a function Φ : H → [0,+∞] whose level sets {u ∈ H : Φ(u) ≤ a} are compact for
any a ≥ 0 and

Eu exp

(∫ t

0
Φ(uτ )dτ

)
≤ Cect , u ∈ XR, t > 0 (1.19)

for some positive constants C and c.

Theorem A.1 implies that IR is a good rate function and the following two inequalities hold for any closed set F ⊂
P(H) and open set G ⊂P(H)

lim sup
θ∈�

1

rθ
logPθ {ζθ ∈ F } ≤ −IR(F ), (1.20)

lim inf
θ∈�

1

rθ
logPθ {ζθ ∈ G} ≥ −IR(W ∩ G). (1.21)

From (1.8) it follows that I is also a good rate function. Let us note that IR(σV ) does not depend on R for V ∈ V .
Indeed, this follows from (1.9). Thus the quantity IR(W ∩ G) does not depend on R as well, so IR(W ∩ G) =
I (W ∩ G). On the other hand, I (F ) ≤ IR(F ) for any R > 0. Combining this with (1.20), (1.21), and the inequalities

lim sup
θ∈�

1

rθ
logPθ {ζθ ∈ F } = lim sup

t→∞
1

t
log sup

u∈XR

Pu{ζt ∈ F },

lim inf
θ∈�

1

rθ
logPθ {ζθ ∈ G} = lim inf

t→∞
1

t
log inf

u∈XR

Pu{ζt ∈ G},

we obtain (1.11) and (1.12).
Step 3: Non-triviality of I . We argue by contradiction. Let us assume that DI is a singleton. Then so is DIR

for
any R > 0. By Proposition 1.3 with V = 0, we have that the stationary measure μ is the unique zero5 of IR , so
DIR

= {μ}. Then (1.7) implies that Q(V ) = 〈V,μ〉 for any V ∈ Cb(H). Let us choose any non-constant V ∈ Uδ such
that 〈V,μ〉 = 0. Then Q(V ) = 0, and limit (1.15) with ψ = 1 implies that λV = eQ(V ) = 1 and

sup
t≥0

E0 exp

(∫ t

0
V (uτ )dτ

)
< ∞, (1.22)

where E0 means that we consider the trajectory issued from the origin. Combining this with the central limit theorem
(see Theorem 2.5 in [21] and Theorem 4.1.8 and Proposition 4.1.4 in [19]), we get V = 0. This contradicts the
assumption that V is non-constant and completes the proof of Theorem 1.1. �

2. Proof of the Main Theorem

Step 1: Proof in the case ψ ∈ U . For any R > 0 and non-constant ψ ∈ U , we denote

I
ψ
R (p) = inf

{
IR(σ ) : 〈ψ,σ 〉 = p,σ ∈ P(H)

}
, p ∈R,

where IR is given by (1.6). Then QR(βψ) is convex in β ∈ R, and using (1.7), it is straightforward to check that

QR(βψ) = sup
p∈R

(
βp − I

ψ
R (p)

)
for β ∈ R.

5Note that when V = 0, we have λV = 1, hV = 1, IV
R

= IR , and μV = μ.
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By well-known properties of convex functions of a real variable (e.g., see [26]), QR(βψ) is differentiable in β ∈ R,
except possibly on a countable set, the right and left derivatives D+QR(βψ) and D−QR(βψ) exist at any β and
D−QR(βψ) ≤ D+QR(βψ). Moreover, the following equality holds for some β,p ∈ R

QR(βψ) = βp − I
ψ
R (p) (2.1)

if and only if p ∈ [D−QR(βψ),D+QR(βψ)]. Let us set β0 := δ/(4‖ψ‖∞), where δ > 0 is the constant in The-
orem 1.1. Then for any |β| ≤ β0, we have βψ ∈ Uδ ⊂ V and QR(βψ) does not depend on R > 0; we set
Q(βψ) := QR(βψ). Let us show that D−Q(βψ) = D+Q(βψ) for any |β| < β0, i.e., Q(βψ) is differentiable at β .
Indeed, assume that p1,p2 ∈ [D−Q(βψ),D+Q(βψ)]. Then equality (2.1) holds with p = pi , i = 1,2. As IR is a
good rate function, there are measures σi ∈P(H) such that 〈ψ,σi〉 = pi and IR(σi) = I

ψ
R (pi), i = 1,2. Thus

Q(βψ) = βpi − I
ψ
R (pi) = 〈βψ,σi〉 − IR(σi),

i.e., σ1 and σ2 are equilibrium states corresponding to V = βψ . As βψ ∈ V , from Property 2 we derive that σ1 = σ2,
hence p1 = p2. Thus Q(βψ) is differentiable at β for any |β| < β0. Let us define the convex function

Qψ(β) :=
{

Q(βψ), for |β| ≤ β0,

+∞, for |β| > β0,
(2.2)

and its Legendre transform

Iψ(p) := sup
β∈R

(
βp − Qψ(β)

)
for p ∈R. (2.3)

Then Iψ is a finite convex function not depending on R > 0. As Qψ(β) is differentiable at any |β| < β0 and (A.3)
holds with Q = Qψ(β) (with respect to the directed set (�,≺) defined in the proof of Theorem 1.1), we see that
the conditions of Theorem A.5 in [13] are satisfied.6 Hence, we have (0.6) for any open subset O of the interval
Jψ := (D+Qψ(−β0),D

−Qψ(β0)).
Step 2: The interval Jψ . Let us show that if ψ ∈ U is non-constant, then the interval Jψ = (D+Qψ(−β0),

D−Qψ(β0)) is non-empty and contains the point 〈ψ,μ〉. Clearly we can assume that 〈ψ,μ〉 = 0. As Qψ(0) = 0,
it is sufficient to show that β = 0 is the only point of the interval [−β0, β0], where Qψ(β) vanishes. Assume the
opposite. Then, replacing ψ by −ψ if needed, we can suppose that there is β ∈ (0, β0] such that Qψ(β) = 0. As in
Step 3 of Theorem 1.1, this implies

sup
t≥0

E0 exp

(
β

∫ t

0
ψ(uτ )dτ

)
< ∞

and ψ ≡ 0. This contradicts our assumption that ψ is non-constant and completes the proof of the Main Theorem.

3. Checking conditions of Theorem A.4

The proof of Theorem 1.2 is based on an application of Theorem A.4. In this section, we verify the growth condition,
the uniform irreducibility property, and the existence of an eigenvector for the following generalized Markov family
of transition kernels (see Definition A.3)

P V
t (u,�) = (

PV ∗
t δu

)
(�), V ∈ Cb(H),� ∈ B(H),u ∈H, t ≥ 0

in the phase space X = H endowed with a sequence of compacts XR = BHr (R), R ≥ 1 and a weight function w

defined by (1.13). The uniform Feller property is the most delicate condition to check in Theorem A.4, it will be
established in Section 4. In the rest of the paper, we shall always assume that the hypotheses of Theorem 1.1 are
fulfilled.

6Theorem A.5 in [13] is stated in the case � = R+ . However, the proof presented there remains valid for random variables indexed by a directed
set.
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3.1. Growth condition

Since we take XR = BHr (R), the set X∞ in the growth condition in Theorem A.4 will be equal to Hr which is dense
in H. For any u ∈ Hr and t ≥ 0, we have u(t;u) ∈ Hr , so the measure P V

t (u, ·) is concentrated on Hr . As V is a
bounded function, condition (A.12) is verified. Let us show that estimate (A.11) holds for any V with a sufficiently
small oscillation.

Proposition 3.1. There is a constant δ > 0 and an integer R0 ≥ 1 such that, for any V ∈ Cb(H) satisfying Osc(V ) < δ,
we have

sup
t≥0

‖PV
t w‖L∞

w

‖PV
t 1‖R0

< ∞, (3.1)

where 1 is the function on H identically equal to 1 and ‖ · ‖R0 is the L∞ norm on XR0 .

Proof. Without loss of generality, we can assume that V ≥ 0 and Osc(V ) = ‖V ‖∞. Indeed, it suffices to replace V

by V − infH V . We split the proof of (3.1) into two steps.
Step 1. Let us show that there are δ0 > 0 and R0 ≥ 1 such that

sup
t≥0

‖PV
t 1‖L∞

w

‖PV
t 1‖R0

< ∞, (3.2)

provided that ‖V ‖∞ < δ0. To prove this, we introduce the stopping time

τ(R) = inf
{
t ≥ 0 : |ut |Hr ≤ R

}
and use the following result.

Lemma 3.2. There are positive numbers δ0, C, and R0 such that

Eueδ0τ(R0) ≤ Cw(u), u ∈Hr . (3.3)

We omit the proof of this lemma, since it is carried out by standard arguments, using the Lyapunov function w and
estimate (5.24) for m = 1 (see Lemma 3.6.1 in [19]). Setting Gt := {τ(R0) > t} and

�V (t) := exp

(∫ t

0
V (us)ds

)
, (3.4)

we get

PV
t 1(u) = Eu�V (t) = Eu

{
IGt �V (t)

} +Eu

{
IGc

t
�V (t)

} =: I1 + I2. (3.5)

Since V ≥ 0, we have PV
t 1(u) ≥ 1. Combining this with (3.3) and ‖V ‖∞ < δ0, we obtain for any u ∈Hr

I1 ≤ Eu�V

(
τ(R0)

) ≤ Eu exp
(
δ0τ(R0)

) ≤ Cw(u) ≤ Cw(u)
∥∥PV

t 1
∥∥

R0
.

The strong Markov property and (3.3) imply

I2 ≤ Eu

{
IGt �V

(
τ(R0)

)
Eu(τ (R0))�V (t)

}
≤ Eu

{
eδ0τ(R0)

}∥∥PV
t 1

∥∥
R0

≤ Cw(u)
∥∥PV

t 1
∥∥

R0
,

where we write u(τ (R0)) instead of uτ(R0). Using (3.5) and the estimates for I1 and I2, we get (3.2).
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Step 2. To prove (3.1), we set δ := δ0 ∧ (α/2) and assume that ‖V ‖∞ < δ and t = T k, where k ≥ 1 is an integer
and T > 0 is so large that q := 2e−T α

2 < 1. Then, using the Markov property and (5.24), we get

PV
T kw(u) ≤ eT δEu

{
�V

(
T (k − 1)

)
w(uT k)

}
= eT δEu

{
�V

(
T (k − 1)

)
Eu(T (k−1))w(uT )

}
≤ eT δEu

{
�V

(
T (k − 1)

)[
2e−T αw(uT (k−1)) + C1

]}
≤ qPV

T (k−1)w(u) + eT δC1P
V
T (k−1)1(u).

Iterating this and using fact that V ≥ 0, we obtain

PV
T kw(u) ≤ qkw(u) + (1 − q)−1eT δC1P

V
T k1(u).

Combining this with (3.2), we see that

A := sup
k≥0

‖PV
T kw‖L∞

w

‖PV
T k1‖R0

< ∞.

To derive (3.1) from this, we use the semigroup property and the fact that V is non-negative and bounded:∥∥PV
t w

∥∥
L∞
w

= ∥∥PV
t−T k

(
PV

T kw
)∥∥

L∞
w

≤ C2
∥∥PV

T kw
∥∥

L∞
w

,∥∥PV
t 1

∥∥
R0

≥ ∥∥PV
T k1

∥∥
R0

,

where k ≥ 0 is such that T k ≤ t < T (k + 1) and

C2 := sup
s∈[0,T ]

∥∥PV
s w

∥∥
L∞
w

≤ eT ‖V ‖∞ sup
s∈[0,T ]

‖Psw‖L∞
w

< ∞.

So we get

sup
t≥0

‖PV
t w‖L∞

w

‖PV
t 1‖R0

≤ C2A < +∞.

This completes the proof of the proposition. �

3.2. Uniform irreducibility

In this section, we show that the family {P V
t } satisfies the uniform irreducibility condition with respect to the sequence

of compacts {XR}. Since V is bounded, we have

P V
t (u,dv) ≥ e−t‖V ‖∞Pt (u,dv), u ∈ H,

where Pt (u, ·) stands for the transition function of (ut ,Pu). So it suffices to establish the uniform irreducibility for
{Pt }.

Proposition 3.3. For any integers ρ,R ≥ 1 and any r > 0, there are positive numbers l = l(ρ, r,R) and p = p(ρ, r)

such that

Pl

(
u,BH(û, r)

) ≥ p for all u ∈ XR, û ∈ Xρ. (3.6)

Proof. Let us show that, for sufficiently large d ≥ 1 and any R ≥ 1, there is a time k = k(R) such that

Pk(u,Xd) ≥ 1

2
, u ∈ XR. (3.7)
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Indeed, by (5.24) for m = 1, we have

Eu|ut |2Hr ≤ Euw(ut ) ≤ 2e−αtw(u) + C1.

Combining this with the estimate∣∣E(u)
∣∣ ≤ C2

(
1 + |u|4H

)
, (3.8)

we get

Eu|ut |2Hr ≤ C3e
−αtR16 + C1, u ∈ XR.

The Chebyshev inequality implies that

Pt(u,Xd) ≥ 1 − d−2(C3e
−αtR16 + C1

)
.

Choosing t = k and d so large that e−αkR16 ≤ 1 and d2 > 2(C3 + C1), we obtain (3.7).
Combining (3.7) with Lemma 3.4 and the Kolmogorov–Chapman relation, we get (3.6) for l = k + m and p =

q/2. �

Lemma 3.4. For any integers d,ρ ≥ 1 and any r > 0, there are positive numbers m = m(d,ρ, r) and q = q(d,ρ, r)

such that

Pm

(
v,BH(û, r)

) ≥ q for all v ∈ Xd, û ∈ Xρ. (3.9)

Proof. It is sufficient to prove that there is m ≥ 1 such that

Pm

(
v,BH(û, r/2)

)
> 0 for all v ∈ Xd, û ∈ X̃ρ, (3.10)

where X̃ρ = {u = [u1, u2] ∈ Xρ : u1, u2 ∈ C∞
0 (D)}. Indeed, let us take this inequality for granted and assume that

(3.9) is not true. Then there are sequences vj ∈ Xd and ûj ∈ Xρ such that

Pm

(
vj ,BH(ûj , r)

) → 0. (3.11)

Moreover, up to extracting a subsequence, we can suppose that vj and ûj converge in H. Let us denote by v∗ and û∗
their limits. Clearly, v∗ ∈ Xd and û∗ ∈ Xρ . Choosing j ≥ 1 so large that |ûj − û∗|H < r/2 and applying the Chebyshev
inequality, we get

Pm

(
v∗,BH(û∗, r)

) ≤ Pm

(
vj ,BH(ûj , r/2)

) + P
{∣∣u(m;vj ) − u(m;v∗)

∣∣
H ≥ r/2

}
≤ Pm

(
vj ,BH(ûj , r/2)

) + 4/r2E
∣∣u(m;vj ) − u(m;v∗)

∣∣2
H.

Combining this with (3.11) and using the convergence vj → v∗ and a density property, we arrive at a contradiction
with (3.10). Thus, inequality (3.9) is reduced to the derivation of (3.10). We shall prove the latter in three steps.

Step 1: Exact controllability. In what follows, given any ϕ ∈ C(0, T ;H 1), we shall denote by Sϕ(t;v) the solution
at time t of the problem

∂2
t u + γ ∂tu − �u + f (u) = h + ϕ̇, u|∂D = 0, t ∈ [0, T ]

issued from v. Let v̂ = [v̂,0], where v̂ ∈ H 1 is a solution of

−�v̂ + f (v̂) = h.

In this step we prove that for any û= [û1, û2] ∈ X̃ρ , there is ϕ∗ satisfying

ϕ∗ ∈ C
(
0,1;H 1) and Sϕ∗(1; v̂) = û. (3.12)
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First note that, since the function f is continuous from H 1 to L2, we have

−�v̂ = −f (v̂) + h ∈ L2,

so that v̂ ∈ H 2. Moreover, since f is also continuous from H 2 to H 1 (recall that f vanishes at the origin), we have
f (v̂) ∈ H 1. As h ∈ H 1, it follows that

−�v̂ ∈ H 1. (3.13)

Let us introduce the functions

u(t) = a(t)v̂ + b(t)û1 + c(t)û2,

ϕ∗(t) =
∫ t

0

(
∂2
t u + γ ∂tu − �u + f (u) − h

)
dτ,

(3.14)

where a, b, c ∈ C∞([0,1],R) satisfy

a(0) = 1, a(1) = ȧ(0) = ȧ(1) = 0, b(1) = 1, b(0) = ḃ(0) = ḃ(1) = 0,

ċ(1) = 1, c(0) = c(1) = ċ(0) = 0.

Then, we have [u(0), u̇(0)] = v̂, [u(1), u̇(1)] = û, and Sϕ∗(1; v̂) = û. Let us show the first relation in (3.12). In view
of (3.14) and the smoothness of the functions a, b and c, we have

∂2
t u + γ ∂tu − h ∈ C

(
0,1;H 1)

and thus it is sufficient to prove that

−�u + f (u) ∈ C
(
0,1;H 1). (3.15)

Since u ∈ C(0,1;H 2), we have f (u) ∈ C(0,1;H 1). Moreover, in view of (3.13) and the smoothness of û1 and û2, we
have −�u ∈ C(0,1;H 1). Thus, inclusion (3.15) is established and we arrive at (3.12). Let us note that by continuity
and compactness, there is κ = κ(v̂, ρ, r) > 0, not depending on û ∈ X̃ρ , such that

Sϕ∗(1;v) ∈ BH(û, r/4) for any v ∈ BH(v̂,κ). (3.16)

Step 2: Feedback stabilization. We now show that there is m̃ ≥ 1 depending only on d and κ such that for any
v ∈ Xd there is ϕ̃v satisfying

ϕ̃v ∈ C
(
0, m̃;H 1) and Sϕ̃v(m̃,v) ∈ B(v̂,κ). (3.17)

To see this, let us consider the flow ṽ(t;v) associated with the solution of the equation

∂2
t ṽ + γ ∂t ṽ − �ṽ + f (ṽ) = h + PN

[
f (ṽ) − f (v̂)

]
, t ∈ [0, m̃] (3.18)

issued from v ∈ Xd , where PN stands for the orthogonal projection in L2 onto the subspace spanned by the functions
e1, e2, . . . , eN . Then, in view of Proposition 6.5 in [22], for N ≥ N(|v̂|H, d), we have

∣∣ṽ(m̃;v) − v̂
∣∣2
H ≤ |v− v̂|2He−αm̃ ≤ Cde−αm̃ < κ

for m̃ sufficiently large. It follows that (3.17) holds with the function

ϕ̃v(t) =
∫ t

0
PN

[
f (ṽ) − f (v̂)

]
dτ.
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Step 3: Proof of (3.10). Let us take m = m̃ + 1 and, for any v ∈ Xd , define a function ϕv(t) on the interval [0,m]
by

ϕv(t) =
{

ϕ̃v(t) for t ∈ [0,m − 1],
ϕ̃v(m − 1) + ϕ∗(t − m + 1) for t ∈ [m − 1,m].

In view of (3.12), (3.16), and (3.17), we have ϕv(t) ∈ C(0,m;H 1) and Sϕv(m;v) ∈ BH(û, r/2). Hence there is δ > 0
such that Sϕ(m;v) ∈ BH(û, r/2) provided ‖ϕ − ϕv‖C(0,m;H 1) < δ. It follows that

Pm

(
v,BH(û, r/2)

) ≥ P
{‖ξ − ϕv‖C(0,m;H 1) < δ

}
.

To complete the proof, it remains to note that, due to the non-degeneracy of ξ , the term on the right-hand side of this
inequality is positive. �

3.3. Existence of an eigenvector

For any m ≥ 1, let us define functions wm, w̃m : H → [1,+∞] by

wm(u) = 1 + |u|2m
Hr + E4m(u), (3.19)

w̃m(u) =wm(u) + exp
(
κE(u)

)
, u ∈H, (3.20)

where κ := (2α)−1B0 and B0 := ∑
b2
j . The following proposition proves the existence of an eigenvector μ =

μ(t,V ,m) for the operator PV ∗
t for any t > 0. We shall see in Section 6 that the measure μ actually does not de-

pend on t and m.

Proposition 3.5. For any t > 0, V ∈ Cb(H) and m ≥ 1, the operator PV ∗
t admits an eigenvector μ = μ(t,V ,m) ∈

P(H) with a positive eigenvalue λ = λ(t,V ,m):

PV ∗
t μ = λμ.

Moreover, we have∫
H
w̃m(u)μ(du) < ∞, (3.21)

∥∥PV
t wm

∥∥
XR

∫
Xc

R

wm(u)μ(du) → 0 as R → ∞. (3.22)

Proof. Step 1. We first establish the existence of an eigenvector μ for PV ∗
t with a positive eigenvalue and satisfying

(3.21). Let t > 0 and V be fixed. For any A > 0 and m ≥ 1, let us introduce the convex set

DA,m = {
σ ∈P(H) : 〈w̃m,σ 〉 ≤ A

}
,

and consider the continuous mapping from DA,m to P(H) given by

G(σ) =PV ∗
t σ/PV ∗

t σ (H).

Thanks to inequality (5.25), we have〈
w̃m,G(σ)

〉 ≤ exp
(
t OscH(V )

)〈
w̃m,P∗

t σ
〉

≤ 2 exp
(
t
(
OscH(V ) − αm

))〈w̃m,σ 〉 + Cm exp
(
t OscH(V )

)
. (3.23)
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Assume that m is so large that

OscH(V ) ≤ αm/2 and exp(−αmt/2) ≤ 1/4,

and let A := 2Cmeαmt . Then, in view (3.23), we have 〈w̃m,G(σ)〉 ≤ A for any σ ∈ DA,m, i.e., G(DA,m) ⊂ DA,m.
Moreover, it is easy to see that the set DA,m is compact in P(H) (we use the Prokhorov compactness criterion to show
that it is relatively compact and the Fatou lemma to prove that it is closed). Due to the Leray–Schauder theorem, the
map G has a fixed point μ ∈ DA,m. Note that, by the definitions of DA,m and G, the measure μ is an eigenvector of
PV ∗

t with positive eigenvalue λ := PV ∗
t μ(H) and satisfies (3.21).

Step 2. We now establish (3.22). Let us fix an integer m ≥ 1 and let n = 17m. In view of the previous step, there is
an eigenvector μ satisfying 〈wn,μ〉 < ∞. From the Cauchy–Schwarz and Chebyshev inequalities it follows that∫

Xc
R

wm(u)μ(du) ≤ 〈
w2

m,μ
〉1/2(

μ
(
Xc

R

))1/2 ≤ Cm〈wn,μt,V 〉R−n. (3.24)

On the other hand, using (5.24) and (3.8), we get∥∥PV
t wm

∥∥
XR

≤ exp
(
t‖V ‖∞

)
sup
u∈XR

Euwm(ut ) ≤ C′
m exp

(
t‖V ‖∞

)(
R16m + 1

)
.

Combining this with (3.24), we obtain (3.22). �

4. Uniform Feller property

4.1. Construction of coupling processes

As in the case of discrete-time models considered in [10,12], the proof of the uniform Feller property is based on
the coupling method. This method has proved to be an important tool for the study of the ergodicity of randomly
forced PDE’s (see Chapter 3 in [19] and the papers [18,21,23,24]). In this section, we recall a construction of coupled
trajectories from [21], which was used to establish the exponential mixing for problem (0.1), (0.3). This construction
will play a central role in the proof of the uniform Feller property in the next section.

For any z, z′ ∈ H, let us denote by ut and u′
t the flows of (0.1), (0.3) issued from z and z′, respectively. As above,

PN is the orthogonal projection in L2 onto the space span{e1, . . . , eN }. Let us take any integer N ≥ 1 and consider the
flow v = [v, ∂tv] of the problem

∂2
t v + γ ∂tv − �v + f (v) + PN

(
f (u) − f (v)

) = h + ϑ(t, x), v|∂D = 0,v(0) = z′. (4.1)

The laws of the processes {vt , t ∈ [0,1]} and {u′
t , t ∈ [0,1]} are denoted by λ(z, z′) and λ(z′), respectively. We have

the following estimate for the total variation distance between λ(z, z′) and λ(z′).

Proposition 4.1. There is an integer N1 ≥ 1 such that, for any N ≥ N1, ε > 0, and z, z′ ∈H, we have

∣∣λ(
z, z′

) − λ
(
z′
)∣∣

var ≤ C∗εa + C∗
[
exp

(
CNεa−2

∣∣z− z′
∣∣2
He(|E(z)|+|E(z′)|)) − 1

]1/2
, (4.2)

where a < 2, C∗, and CN are positive numbers not depending on ε, z, and z′.

See Section A.3 for the proof of this proposition. By Proposition 1.2.28 in [19], there is a probability space
(�̂, F̂, P̂) and measurable functions Z,Z ′ : H × H × �̂ → C([0,1],H) such that (Z(z, z′),Z ′(z, z′)) is a maxi-
mal coupling for (λ(z, z′), λ(z′)) for any z, z′ ∈H. We denote by ṽ = [ṽt , ∂t ṽ] and ũ′

t = [ũ′
t , ∂t ũ

′] the restrictions of Z
and Z ′ to time t ∈ [0,1]. Then ṽt is a solution of the problem

∂2
t ṽ + γ ∂t ṽ − �ṽ + f (ṽ) − PNf (ṽ) = h + ψ(t), ṽ|∂D = 0, ṽ(0) = z′,
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where the process {∫ t

0 ψ(τ)dτ, t ∈ [0,1]} has the same law as

{
ξ(t) −

∫ t

0
PNf (uτ )dτ, t ∈ [0,1]

}
.

Let ũt = [ũ, ∂t ũ] be a solution of

∂2
t ũ + γ ∂t ũ − �ũ + f (ũ) − PNf (ũ) = h + ψ(t), ũ|∂D = 0, ũ(0) = z.

Then {ũt , t ∈ [0,1]} has the same law as {ut , t ∈ [0,1]} (see Section 6.1 in [21] for the proof). Now the coupling
operators R and R′ are defined by

Rt

(
z, z′,ω

) = ũt , R′
t

(
z, z′,ω

) = ũ′
t , z, z′ ∈ H,ω ∈ �̂.

By Proposition 4.1, if N ≥ N1, then for any ε > 0, we have

P̂
{∃t ∈ [0,1] s.t. ṽt �= ũ′

t

}
≤ C∗εa + C∗

[
exp

(
CNεa−2

∣∣z− z′
∣∣2
He(|E(z)|+|E(z′)|)) − 1

]1/2
. (4.3)

Let (�k,Fk,Pk), k ≥ 0 be a sequence of independent copies of the probability space (�̂, F̂, P̂). We denote by
(�,F,P) the direct product of the spaces (�k,Fk,Pk), and for any z, z′ ∈ H, ω = (ω1,ω2, . . .) ∈ �, and k ≥ 0,
we set ũ0 = u, ũ′

0 = u′, and

ũt (ω) =Rτ

(
ũk(ω), ũ′

k(ω),ωk
)
, ũ′

t (ω) =R′
τ

(
ũk(ω), ũ′

k(ω),ωk
)
,

ṽt (ω) =Zτ

(
ũk(ω), ũ′

k(ω),ωk
)
,

where t = τ + k, τ ∈ [0,1). We shall say that (ũt , ũ
′
t ) is a coupled trajectory at level N issued from (z, z′).

4.2. The result and its proof

The following theorem establishes the uniform Feller property for the semigroup PV
t for any function V ∈ Uδ with

sufficiently small δ > 0. The property is proved with respect to the space C = U which is a determining family for
P(H) and contains the constant functions.

Theorem 4.2. There are positive numbers δ and R0 such that, for any function V ∈ Uδ , the family {‖PV
t 1‖−1

R PV
t ψ,

t ≥ 1} is uniformly equicontinuous on XR for any ψ ∈ U and R ≥ R0.

Proof. To prove this result, we develop the arguments of the proof of Theorem 6.2 in [10]. For any δ > 0, V ∈ Uδ ,
and ψ ∈ U , we have

PV
t ψ(u) = Eu

{
(�V ψ)(ut , t)

}
,

where

(�V ψ)(ut , t) := exp

(∫ t

0
V (uτ )dτ

)
ψ(ut ). (4.4)

We prove the uniform equicontinuity of the family {gt , t ≥ 1} on XR , where

gt (u) = ∥∥PV
t 1

∥∥−1
R

PV
t ψ(u).

Without loss of generality, we can assume that 0 ≤ ψ ≤ 1 and infH V = 0, so that OscH (V ) = ‖V ‖∞. We can assume
also that the integer N entering representation (1.10) is the same for ψ and V and it is denoted by N0.
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Step 1: Stratification. Let us take any N ≥ N0 and z, z′ ∈ XR such that d := |z− z′|H ≤ 1, and denote by (�,F,P)

the probability space constructed in the previous subsection. Let us consider a coupled trajectory (ut ,u
′
t ) := (ũt , ũ

′
t )

at level N issued from (z, z′) and the associated process vt := ṽt . For any integers r ≥ 0 and ρ ≥ 1, we set7

Ḡr =
r⋂

j=0

Gj, Gj = {
vt = u′

t ,∀t ∈ (j, j + 1]}, Fr,0 =∅,

Fr,ρ =
{

sup
τ∈[0,r]

(∫ τ

0

(‖∇uτ‖2 + ∥∥∇u′
τ

∥∥2)dτ − Lτ

)
≤ ∣∣E(z)

∣∣ + ∣∣E(
z′
)∣∣ + ρ;

∣∣E(ur )
∣∣ + ∣∣E(

u′
r

)∣∣ ≤ ρ

}
,

where L is the constant in (4.15). We also define the pairwise disjoint events

A0 = Gc
0, Ar,ρ = (

Ḡr−1 ∩ Gc
r ∩ Fr,ρ

) \ Fr,ρ−1, r ≥ 1, ρ ≥ 1, Ã = Ḡ+∞.

Then, for any t ≥ 1, we have

PV
t ψ(z) −PV

t ψ
(
z′
) = E

{
IA0

[
(�V ψ)(ut , t) − (�V ψ)

(
u′

t , t
)]}

+
∞∑

r,ρ=1

E
{
IAr,ρ

[
(�V ψ)(ut , t) − (�V ψ)

(
u′

t , t
)]}

+E
{
I
Ã

[
(�V ψ)(ut , t) − (�V ψ)

(
u′

t , t
)]}

= I t
0

(
z, z′

) +
∞∑

r,ρ=1

I t
r,ρ

(
z, z′

) + Ĩ t
(
z, z′

)
, (4.5)

where

I t
0

(
z, z′

) := E
{
IA0

[
(�V ψ)(ut , t) − (�V ψ)

(
u′

t , t
)]}

,

I t
r,ρ

(
z, z′

) := E
{
IAr,ρ

[
(�V ψ)(ut , t) − (�V ψ)

(
u′

t , t
)]}

,

Ĩ t
(
z, z′

) := E
{
I
Ã

[
(�V ψ)(ut , t) − (�V ψ)

(
u′

t , t
)]}

.

To prove the uniform equicontinuity of {gt , t ≥ 1}, we first estimate these three quantities.
Step 2: Estimates for I t

0 and I t
r,ρ . Let δ1 > 0 and R0 ≥ 1 be the numbers in Proposition 3.1. Then, if Osc(V ) < δ1

and R ≥ R0, we have the following estimates

∣∣I t
0

(
z, z′

)∣∣ ≤ C1(R,V )
∥∥PV

t 1
∥∥

R
P{A0}1/2, (4.6)∣∣I t

r,ρ

(
z, z′

)∣∣ ≤ C2(R,V )er‖V ‖∞∥∥PV
t 1

∥∥
R
P{Ar,ρ}1/2 (4.7)

for any integers r, ρ ≥ 1. Let us prove (4.7), the other estimate is similar. First assume that r ≤ t . Using the inequalities
0 ≤ ψ ≤ 1, the positivity of �V ψ , and the Markov property, we derive

I t
r,ρ

(
z, z′

) ≤ E
{
IAr,ρ (�V ψ)(ut , t)

} ≤ E
{
IAr,ρ (�V 1)(ut , t)

}
= E

{
IAr,ρE

[
(�V 1)(ut , t)|Fr

]} ≤ er‖V ‖∞E
{
IAr,ρ

(
PV

t−r1
)
(ur )

}
,

7The event Ḡr is well defined also for r = +∞.
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where {Ft } stands for the filtration generated by (ut ,u
′
t ). Then from (3.1) it follows that

PV
t−r1(z) ≤ M

∥∥PV
t−r1

∥∥
R0
w(z),

so we have

I t
r,ρ

(
z, z′

) ≤ C3e
r‖V ‖∞∥∥PV

t−r1
∥∥

R0
E

{
IAr,ρw(ur )

}
≤ C3e

r‖V ‖∞∥∥PV
t−r1

∥∥
R0

{
P(Ar,ρ)Ew2(ur )

}1/2
.

Using this, (5.24), and the symmetry, we obtain (4.7). If r > t , then

I t
r,ρ

(
z, z′

) ≤ er‖V ‖∞P{Ar,ρ} ≤ er‖V ‖∞∥∥PV
t 1

∥∥
R
P{Ar,ρ}1/2,

which implies (4.7) by symmetry.
Step 3: Estimate for Ĩ t . Let us show that, for any N ≥ N0, we have∣∣Ĩ t

ρ

(
z, z′

)∣∣ ≤ C4(ψ,V )
∥∥PV

t 1
∥∥

R
dq. (4.8)

Indeed, we write

Ĩ t
(
z, z′

) = E
{
I
Ã
(�V 1)(ut , t)

[
ψ(ut ) − ψ

(
u′

t

)]}
+E

{
IÃ

[
(�V 1)(ut , t) − (�V 1)

(
u′

t , t
)]

ψ
(
u′

t

)}
. (4.9)

Let us denote by J t
1,ρ and J t

2,ρ the expectations in the right-hand side of this equality. Then by estimate (A.27), on the

event Ã we have∣∣PN

(
uτ − u′

τ

)∣∣2
H ≤ e−ατ d2, τ ∈ [0, t]. (4.10)

Since ψ ∈ C
q
b (H), we derive from (4.10)∣∣J t

1,ρ

∣∣ ≤ E
{
I
Ã
(�V 1)(ut , t)

∣∣ψ(ut ) − ψ
(
u′

t

)∣∣} ≤ ‖ψ‖C
q
b
e−αt/2dq

∥∥PV
t 1

∥∥
R

≤ ‖ψ‖C
q
b

∥∥PV
t 1

∥∥
R
dq.

Similarly, as V ∈ C
q
b (H),∣∣J t

2,ρ

∣∣ ≤ E
{
I
Ã

∣∣(�V 1)(ut , t) − (�V 1)
(
u′

t , t
)∣∣}

≤ E

{
I
Ã
(�V 1)(ut , t)

[
exp

(∫ t

0

∣∣V (uτ ) − V
(
u′

τ

)∣∣dτ

)
− 1

]}

≤ [
exp

(‖V ‖C
q
b
dq

(
1 − e−αqt/2)) − 1

]∥∥PV
t 1

∥∥
R

≤ [
exp

(‖V ‖C
q
b
dq

) − 1
]∥∥PV

t 1
∥∥

R
.

Combining these estimates for J t
1,ρ and J t

2,ρ with (4.9), we get (4.8).
Step 4: Proof of uniform equicontinuity. We use the following lemma which is proved at the end of this subsection.

Lemma 4.3. For sufficiently large N ≥ 1, we have

P{A0} ≤ C5(R,N)da/2, (4.11)

P{Ar,ρ} ≤ C6(R)
{(

dae−aαr/2 + [
exp

(
C7(R,N)dae2ρ−aαr/2) − 1

]1/2) ∧ e−βρ
}
, (4.12)

where a and β are the constants in (4.2) and (4.15).
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From (4.5)–(4.8), (4.11), and (4.12) it follows that, for any z, z′ ∈ XR , t ≥ 1, and R ≥ R0, we have

∣∣gt (z) − gt

(
z′
)∣∣ ≤ C8(R,V,N,ψ)

(
da/4 + dq

+
∞∑

r,ρ=1

er‖V ‖∞{(
da/2e−aαr/4 + [

exp
(
C7d

ae2ρ−aαr/2) − 1
]1/4) ∧ e−βρ/2}),

provided that N ≥ N0 ∨ N1 ∨ N2. When d = 0, the series in the right-hand side vanishes. So to prove the uniform
equicontinuity of {gt }, it suffices to show that the series converges uniformly in d ∈ [0,1]. Since its terms are positive
and monotone, it suffices to show the converge for d = 1:

∞∑
r,ρ=1

er‖V ‖∞{(
e−aαr/4 + [

exp
(
C7e

2ρ−aαr/2) − 1
]1/4) ∧ e−βρ/2} < ∞. (4.13)

To prove this, we will assume that Osc(V ) is sufficiently small. Let us consider the sets

S1 = {
(r, ρ) ∈N2 : ρ ≤ aαr/8

}
, S2 =N2 \ S1.

Then taking δ < δ1 ∨ (aα/32) and Osc(V ) < δ, we see that∑
(r,ρ)∈S1

er‖V ‖∞(
e−aαr/4 + [

exp
(
C7e

2ρ−aαr/2) − 1
]1/4)

≤ C9(R,N)
∑

(r,ρ)∈S1

er‖V ‖∞e−aαr/16 ≤ C10(R,N)

∞∑
r=1

e−aαr/32 < ∞.

Choosing δ < aαβ/32, we get

∑
(r,ρ)∈S2

er‖V ‖∞e−βρ/2 ≤ C11

∞∑
ρ=1

e−βρ/4 < ∞.

These two inequalities show that (4.13) holds. �

Proof of Lemma 4.3. Taking ε = d in (4.3), using (3.8), and recalling that d ≤ 1, we get

P{A0} ≤ C∗da + C∗
[
exp

(
CNdaeC7R

4) − 1
]1/2 ≤ C5(R,N)da/2,

provided that N is larger that the number N1 in Proposition 4.1. This gives (4.11). To show (4.12), we use the estimates

Eu exp
(
β
∣∣E(ut )

∣∣) ≤ C exp
(
β
∣∣E(u)

∣∣), u ∈ H, (4.14)

Pu

{
sup
t≥0

(∫ t

0
‖∇uτ‖2 dτ − Lt

)
≥ ∣∣E(u)

∣∣ + ρ

}
≤ Ce−βρ, ρ > 0, (4.15)

where L, β , and C are some positive constants depending on γ , ‖h‖, and B0; they follow immediately from Proposi-
tions 3.1 and 3.2 in [21]. From the inclusion Ar,ρ ⊂ Fc

r,ρ−1 and inequalities (4.14), (4.15), and (3.8) it follows that

P{Ar,ρ} ≤ C12(R)e−βρ. (4.16)

By the Foiaş–Prodi type estimate (see (A.29) in Proposition A.5), there is N2 ≥ 1 such that for any N ≥ N2 on the
event Ḡr−1 ∩ Fr,ρ we have∣∣ur − u′

r

∣∣2
H ≤ exp

(−αr + ρ + ∣∣E(z)
∣∣ + ∣∣E(

z′
)∣∣)d2 ≤ C13(R)e−αr+ρd2, (4.17)
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where we used (3.8). Recall that on the same event we have also

∣∣E(ur )
∣∣ + ∣∣E(

u′
r

)∣∣ ≤ ρ. (4.18)

So using the Markov property, (4.3) with ε = de−αr/2, (4.18) and (4.17), we obtain

P{Ar,ρ} ≤ P
{
Ḡr−1) ∩ Gc

r ∩ Fr,ρ

} = E
{
IḠr−1∩Fr,ρ

E(IGc
r
|Fr )

}
≤ C∗dae−aαr/2 + C∗E

{
IḠr−1∩Fr,ρ

× [
exp

(
CNda−2e−(a−2)αr/2

∣∣ur − u′
r

∣∣2
He(|E(ur )|+|E(u′

r )|)) − 1
]1/2}

≤ C∗dae−aαr/2 + C∗
[
exp

(
C6(R,N)dae2ρ−aαr/2) − 1

]1/2
.

Combining this with (4.16) and choosing N ≥ N1 ∨ N2, we get the required inequality (4.12). �

5. Estimates for regular solutions

In this section, we establish the exponential tightness property and obtain some higher order moment estimates for
solutions in Hr .

5.1. Exponential tightness

Here we show that the exponential tightness property (1.19) is verified for the function Φ(u) = |u|κHr , if we choose
κ > 0 sufficiently small. Clearly, the level sets of Φ are compact in H.

Theorem 5.1. For any r < 1/2, there is κ ∈ (0,1) such that, for any R ≥ 1, we have

Ev exp

(∫ t

0
|uτ |κHr dτ

)
≤ cect for any v ∈ XR, t ≥ 0, (5.1)

where c is a positive constant depending on R.

Proof. It is sufficient to prove that there is κ ∈ (0,1) such that, for any R ≥ 1, we have

Ev exp

(
δ

∫ t

0
|uτ |κHr dτ

)
≤ c̃ec̃t for any v ∈ XR, t ≥ 0, (5.2)

where δ and c̃ are positive constants depending on R. Indeed, once this is proved, we can use the inequality

|u|
κ

2
Hr ≤ δ|u|κHr + δ−1

to derive (5.1), where κ should be replaced by κ/2. We divide the proof of (5.2) into several steps.
Step 1: Reduction. Let us split the flow u(t) to the sum u = v1 + v2 + z, where v1(t) = [v1(t), v̇1(t)] corresponds

to the flow of (0.1) with f = h = ϑ = 0 issued from v and v2(t) = [v2(t), v̇2(t)] is the flow of (0.1) with f = 0 issued
from the origin. Some standard arguments show that the following a priori estimates hold:

∣∣v1(t)
∣∣2
Hr ≤ |v|2Hr e

−αt , (5.3)

E exp

(
δ1

∫ t

0

∣∣v2(τ )
∣∣2
Hr dτ

)
≤ c1e

c1t for any t ≥ 0, (5.4)
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where δ1 and c1 are positive constants depending only on α, B1, and ‖h‖1. Now using the Cauchy–Schwarz inequality
and (5.3), we get, for any δ < δ1/2,

Ev exp

(
δ

∫ t

0

∣∣u(τ )
∣∣κ
Hr dτ

)
≤ exp

(
δ

∫ t

0

∣∣v1(τ )
∣∣κ
Hr dτ

)
E exp

(
2δ

∫ t

0

∣∣v2(τ )
∣∣κ
Hr dτ

)

×E exp

(
2δ

∫ t

0

∣∣z(τ )
∣∣κ
Hr dτ

)

≤ exp
(
2δRκ(ακ)−1)E exp

(
2δ

∫ t

0

(∣∣v2(τ )
∣∣2
Hr + 1

)
dτ

)

×E exp

(
2δ

∫ t

0

∣∣z(τ )
∣∣κ
Hr dτ

)
.

Combining this with (5.4), we see that inequality (5.2) will be established if we prove that

E exp

(
δ

∫ t

0

∣∣z(τ )
∣∣κ
Hr dτ

)
≤ cect for all t ≥ 0 (5.5)

for some δ > 0 and c > 0. The rest of the proof is devoted to the derivation of this inequality.
Step 2: Pointwise estimates. Let us note that, by construction, z is the flow of equation

∂2
t z + γ ∂tz − �z + f (u) = 0, z|∂D = 0,

[
z(0), ż(0)

] = 0. (5.6)

Let us differentiate this equation in time, and set a = ż(t). Then a solves

∂2
t a + γ ∂ta − �a + f ′(u)∂tu = 0, a|∂D = 0,

[
a(0), ȧ(0)

] = [
0,−f

(
u(0)

)]
. (5.7)

We write a(t) = [a(t), ȧ(t)]. Multiplying equation (5.7) by 2(−�)r−1(ȧ + αa) and integrating over D, we obtain

d

dt
|a|2Hr−1 + 3α

2
|a|2Hr−1 ≤ 2

∫
D

∣∣f ′(u)
∣∣|u̇|∣∣(−�)s−1(ȧ + αa)

∣∣dx = L. (5.8)

Let κ < 1 be a positive constant that will be fixed later. Then, by the triangle inequality, we have

L
2

≤
∫

D

∣∣f ′(u)
∣∣|v̇1|1−κ |u̇|κ∣∣(−�)r−1(ȧ + αa)

∣∣dx

+
∫

D

∣∣f ′(u)
∣∣|v̇2|1−κ |u̇|κ∣∣(−�)r−1(ȧ + αa)

∣∣dx

+
∫

D

∣∣f ′(u)
∣∣|a|1−κ |u̇|κ∣∣(−�)r−1(ȧ + αa)

∣∣dx = L1 +L2 +L3. (5.9)

Using the Hölder inequality, we derive

L1 ≤ ∣∣f ′(u)
∣∣
Lp1 |v̇1|1−κ

L(1−κ)p2
|u̇|κLκp3

∣∣(−�)r−1(ȧ + αa)
∣∣
Lp4 , (5.10)

L2 ≤ ∣∣f ′(u)
∣∣
Lq1 |v̇2|1−κ

L(1−κ)q2
|u̇|κLκq3

∣∣(−�)r−1(ȧ + αa)
∣∣
Lq4 , (5.11)

L3 ≤ ∣∣f ′(u)
∣∣
Lp1 |a|1−κ

L(1−κ)p2
|u̇|κLκp3

∣∣(−�)r−1(ȧ + αa)
∣∣
Lp4 , (5.12)

where the exponents pi , qi are Hölder admissible. We now need the following lemma, which is established in the
Appendix.
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Lemma 5.2. Let us take p1 = 6/ρ, p3 = 2/κ, q1 = (ρ + 2)/ρ and q3 = 2/κ. Then, for κ > 0 sufficiently small, the
exponents p2, p4, q2 and q4 can be chosen in such a way that we have the following embeddings:

2Hr ↪→ L(1−κ)p2 , H 1−r ↪→ Lp4, (5.13)

H 1 ↪→ L(1−κ)q2 , H 1−r ↪→ Lq4 . (5.14)

Step 3: Estimation of L1 and L3. In view of Lemma 5.2 and inequalities (1.1) and (5.10), we have

L1 ≤ C0
∣∣f ′(u)

∣∣
L6/ρ ‖v̇1‖1−κ

r ‖u̇‖κ∥∥(−�)r−1(ȧ + αa)
∥∥

1−r

≤ C1‖v̇1‖1−κ

r

(‖u‖ρ
1 + 1

)‖u̇‖κ‖ȧ + αa‖r−1.

Now let us suppose that κ < 2 − ρ. Then using (5.3) together with the Young inequality, we derive

L1 ≤ C2|v|1−κ

Hr

(‖u‖2
1 + ‖u̇‖2 + Cκ

)‖ȧ + αa‖r−1 ≤ C3R
(
E(u) + C3

)|a|Hr−1 . (5.15)

To estimate L3, we again apply Lemma 5.2 and inequalities (1.1) and (5.12)

L3 ≤ C4
(‖u‖ρ

1 + 1
)‖a‖1−κ

r ‖u̇‖κ‖ȧ + αa‖r−1 ≤ C4
(‖u‖ρ

1 + 1
)‖u̇‖κ |a|2−κ

Hr−1 .

Applying the Young inequality, we get

L3 ≤ C5
(
E(u) + C5

)|a|2−κ

Hr−1 . (5.16)

Step 4: Estimation of L2. It follows from Lemma 5.2 and inequalities (1.2) and (5.11) that

L2 ≤ C6
∣∣f ′(u)

∣∣
L(ρ+2)/ρ ‖v̇2‖1−κ

1 ‖u̇‖κ∥∥(−�)r−1(ȧ + αa)
∥∥

1−r

≤ C7‖v̇2‖1−κ

1

(∫
D

(
F(u) + νu2 + C

)
dx

)ρ/ρ+2

‖u̇‖κ‖ȧ + αa‖r−1

≤ C8‖v̇2‖1−κ

1

(
E(u) + C8

)ρ/ρ+2‖u̇‖κ |a|Hr−1 .

Finally, applying the Young inequality, we obtain

L2 ≤ C9
(
E(u) + |v2|2Hs + C9

)|a|Hr−1 . (5.17)

Step 5: Estimation of |a|Hr−1 . Combining inequalities (5.8), (5.9) and (5.15)–(5.17), we see that

d

dt

∣∣a(t)∣∣2
Hr−1 + α

∣∣a(t)∣∣2
Hr−1 ≤ C10R

(
E
(
u(t)

) + ∣∣v2(t)
∣∣2
Hs + C10

)(∣∣a(t)∣∣2−κ

Hr−1 + 1
)
. (5.18)

We now need an auxiliary result, whose proof is presented in the Appendix.

Lemma 5.3. Let x(t) be an absolutely continuous nonnegative function satisfying the differential inequality

ẋ(t) + αx(t) ≤ g(t)x1−β(t) + b(t) for all t ∈ [0, T ], (5.19)

where α, T , and β < 1 are positive constants and g(t) and b(t) are nonnegative functions integrable on [0, T ]. Then
we have

α

2

∫ t

0
xβ(τ )dτ ≤ β−1(1 + x(0)

)β +
∫ t

0

(
α + g(τ) + b(τ)

)
dτ for t ∈ [0, T ]. (5.20)
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Applying this lemma to inequality (5.18), we obtain

α

2

∫ t

0

∣∣a(τ )
∣∣κ
Hr−1 dτ ≤ 2κ−1(1 + ∣∣a(0)

∣∣2
Hr−1

)κ/2 + αt

+ 2C10R

∫ t

0

(
E
(
u(τ )

) + ∣∣v2(τ )
∣∣2
Hs + C10

)
dτ. (5.21)

Step 6: Completion of the proof. Note that

|z|2Hr = ‖z‖2
r+1 + ‖ż + αz‖2

r = ‖�z‖2
r−1 + ‖a + αz‖2

r .

On the other, in view of (5.6), we have

‖�z‖2
r−1 = ∥∥ȧ + γ a + f (u)

∥∥2
r−1 ≤ C11

(|a|2Hr−1 + ∥∥f (u)
∥∥2)

,

whence we get

|z|2Hr ≤ C12
(|a|2Hr−1 + E3(u) + C12

)
. (5.22)

It follows that

|z|κHr ≤ C13
(|a|κHr−1 + E(u) + C13

)
,

provided κ < 2/3. Multiplying this inequality by α/2, integrating over [0, t] and using (5.21) together with the fact
that ∣∣a(0)

∣∣2
Hr−1 = ∥∥f

(
u(0)

)∥∥2
r−1 ≤ ∥∥f

(
u(0)

)∥∥2 ≤ C14
(‖v‖6

1 + 1
)
, (5.23)

we derive

α

2

∫ t

0

∣∣z(τ )
∣∣κ
Hr dτ ≤ C15

(
1 +

∫ t

0

[
E
(
u(τ )

) + ∣∣v2(τ )
∣∣2
Hr + C15

]
dτ

)
,

where C15 depends on R. Multiplying this inequality by a small constant δ(R) > 0, taking the exponent and then
the expectation, and using (5.4) together with Proposition 3.2 in [21], we derive (5.5). This completes the proof of
(1.19). �

5.2. Higher moments of regular solutions

For any m ≥ 1, let wm and w̃m be the functions given by (3.19) and (3.20). The following result shows that they are
both Lyapunov functions for the trajectories of problem (0.1), (0.3).

Proposition 5.4. For any v ∈ Hr , m ≥ 1, and t ≥ 0, we have

Evwm(ut ) ≤ 2e−αmtwm(v) + Cm, (5.24)

Evw̃m(ut ) ≤ 2e−αmt w̃m(v) + Cm. (5.25)

Proof. Step 1: Proof of (5.24). We split the flow u(t;v) to the sum u(t;v) = ũ(t) + z(t), where ũ is the flow issued
from v corresponding to the solution of (0.1) with f = 0. Let us note that here z= [z, ż] is the same as in Section 5.1.
A standard argument shows that

E
∣∣ũ(t)∣∣2m

Hr ≤ e−αmt |v|2m
Hr + C

(
m,‖h‖1,B1

)
. (5.26)
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As in Section 5.1, we set a = ż and write a = [a, ȧ]. Notice that thanks to the Hölder inequality, the Sobolev embed-
dings H 1 ↪→ L6 and H 1−r ↪→ L6/(3−ρ) for r < 1 − ρ/2, and inequality (A.33), we can estimate the right-hand side
of inequality (5.8) by

L ≤ C1
(|u|ρ

L6 + 1
)‖u̇‖∣∣(−�)r−1(ȧ + αa)

∣∣
L6/(3−ρ)

≤ C2
(‖u‖2

1 + 1
)‖u̇‖∥∥(−�)r−1(ȧ + αa)

∥∥
1−r

≤ C3
(|u|3H + 1

)‖ȧ + αa‖r−1

≤ α

4
|a|2Hr−1 + C4

(
E3(u) + C4

)
.

Combining this with (5.8), we infer

d

dt
|a|2Hr−1 ≤ −5α

4
|a|2Hr−1 + C4

(
E3(u) + C4

)
.

It follows that8

d

dt
|a|2m

Hr−1 = m|a|2m−2
Hr−1

d

dt
|a|2Hr−1 ≤ −αm|a|2m

Hr−1 + C5
(
E3m(u) + C5

)
,

where we used the Young inequality. Taking the mean value in this inequality and applying the comparison principle,
we derive

E
∣∣a(t)∣∣2m

Hr−1 ≤ e−αmt
∣∣a(0)

∣∣2m

Hr−1 + C6

∫ t

0
eαm(τ−t)

(
EE3m

(
u(τ )

) + C6
)

dτ.

Combining this with (5.22) and (5.23), we get

E
∣∣z(t)∣∣2m

Hr ≤ C7

(
e−αmtE3m(v) +

∫ t

0
eαm(τ−t)EE3m

(
u(τ )

)
dτ + C7

)
.

Using the Itô formula, it is not difficult to show (cf. Proposition 3.1 in [21]) that

EEk
(
u(t)

) ≤ exp(−αkt)Ek(v) + C
(
k,‖h‖,B0

)
for any k ≥ 1. (5.27)

It follows from the last two inequalities that

E
∣∣z(t)∣∣2m

Hr ≤ C8
(
e−αmtE3m(v) + C8

)
.

Combining this with the inequality

(x + y)2m ≤ 2x2m + C9y
2m for any x, y ≥ 0,

and (5.26), we infer

E
∣∣u(t)∣∣2m

Hr ≤ E
(∣∣ũ(t)∣∣Hr + ∣∣z(t)∣∣Hr

)2m ≤ 2E
∣∣ũ(t)∣∣2m

Hr + C9E
∣∣z(t)∣∣2m

Hr

≤ 2e−αmt |v|2m
Hr + C10

(
e−αmtE3m(v) + C10

)
.

So that we have

Ewm

(
u(t)

) ≤ 2e−αmt |v|2m
Hr + C10

(
e−αmtE3m(v) + C10

) +EE4m
(
u(t)

)
≤ 2e−αmt

(|v|2m
Hr + E4m(v)

) + C11 = 2e−αmtwm(v) + C11,

where we used the Young inequality together with (5.27).

8All the constants Ci , i ≥ 5 depend on m.
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Step 2: Proof of (5.25). It was shown in Section 3.2 of [21], that for any κ ≤ (2α)−1B0, we have

Ev exp
[
κE

(
u(t)

)] ≤ exp
(
κE(v)

)
+κ

∫ t

0
Ev exp

[
κE

(
u(τ )

)](−αE
(
u(τ )

) + C
(
B0,‖h‖))dτ.

Using this with inequality

er(−αr + C) ≤ −αmer + C12 for any r ≥ −C

and applying the Gronwall lemma, we see that

Ev exp
[
κE

(
u(t)

)] ≤ e−αmt exp
(
κE(v)

) + C13.

Finally, combining this inequality with (5.24), we arrive at (5.25). �

6. Proof of Theorem 1.2

The results of Sections 3-5 imply that the growth conditions, the uniform irreducibility and uniform Feller properties
in Theorem A.4 are satisfied if we take

X =H, XR = BHr (R), P V
t (u,�) = (

PV ∗
t δu

)
(�),

w(u) = 1 + |u|2Hr + E4(u), C = U , V ∈ Uδ

for sufficiently large integer R0 ≥ 1, small δ > 0, and any r ∈ (0,1 − ρ/2). Let us show that the time-continuity
property is also verified.

Step 1: Time-continuity property. We need to show that the function t �→ PV
t g(u) is continuous from R+ to R for

any g ∈ Cw(Hr ) and u ∈Hr (recall that X∞ =Hr ). For any T , t ≥ 0 and u ∈Hr , we have

PV
T g(u) −PV

t g(u) = Eu

{[
�V (T ) − �V (t)

]
g(ut )

} +Eu

{[
g(uT ) − g(ut )

]
�V (T )

}
=: S1 + S2, (6.1)

where �V is defined by (3.4). As V is bounded and g ∈ Cw(Hr ), we see that

|S1| ≤ Eu

{∣∣∣∣exp

(∫ T

t

V (uτ )dτ

)
− 1

∣∣∣∣�V (t)
∣∣g(ut )

∣∣}

≤ C1
(
e|T −t |‖V ‖∞ − 1

)
eT ‖V ‖∞Euw(ut ).

Combining this with (5.24), we get S1 → 0 as t → T . To estimate S2, let us take any R > 0 and write

e−T ‖V ‖∞|S2| ≤ Eu

∣∣g(uT ) − g(ut )
∣∣

= Eu

{
IGc

R

∣∣g(uT ) − g(ut )
∣∣} +Eu

{
IGR

∣∣g(uT ) − g(ut )
∣∣}

=: S3 + S4,

where GR := {ut , uT ∈ XR}. From the Chebyshev inequality, the fact that g ∈ Cw(Hr ), and inequality (5.24) we
derive

S3 ≤ C1Eu

{
IGc

R

(
w(uT ) +w(ut )

)}
≤ C1R

−2Eu

{
w2(uT ) +w2(ut )

} ≤ C2R
−2w2(u).



Local large deviations principle for occupation measures of the stochastic damped nonlinear wave equation 2027

On the other hand, by the Lebesgue theorem on dominated convergence, for any R > 0, we have S4 → 0 as t → T .
Choosing R > 0 sufficiently large and t sufficiently close to T , we see that S3 +S4 can be made arbitrarily small. This
shows that S2 → 0 as t → T and proves the time-continuity property.

Step 2: Application of Theorem A.4. We conclude from Theorem A.4 that there is an eigenvector μV ∈ P(H) for
the semigroup PV ∗

t corresponding to some positive eigenvalue λV , i.e., PV ∗
t μV = λt

V μV for any t > 0. Moreover,
the semigroup PV

t has an eigenvector hV ∈ Cw(Hr ) ∩ C+(Hr ) corresponding to λV such that 〈hV ,μV 〉 = 1. The
uniqueness of μV and hV follows immediately from (1.15) and (1.16). The uniqueness of μV implies that it does not
depend on m and (1.14) holds for any m ≥ 1. It remains to prove limits (1.15) and (1.16).

Step 3: Proof of (1.15). By (A.16), we have (1.15) for any ψ ∈ U . To establish the limit for any ψ ∈ Cw(Hr ), we
apply an approximation argument similar to the one used in Step 4 of the proof of Theorem 5.5 in [10]. Let us take
a sequence ψn ∈ U such that ‖ψn‖∞ ≤ ‖ψ‖∞ and ψn → ψ as n → ∞, uniformly on bounded subsets of Hr . If we
define

�t(g) = sup
u∈XR

∣∣λ−t
V PV

t g(u) − 〈g,μV 〉hV (u)
∣∣, ‖g‖R = sup

u∈XR

∣∣g(u)
∣∣,

then

�t(ψ) ≤ �t(ψn) + ‖hV ‖R

∣∣〈ψ − ψn,μV 〉∣∣ + λ−t
V

∥∥PV
t (ψ − ψn)

∥∥
R

for any t ≥ 0 and n ≥ 1. In view of (1.15) for ψn and the Lebesgue theorem on dominated convergence,

�t(ψn) → 0 as t → ∞ for any fixed n ≥ 1,∣∣〈ψ − ψn,μV 〉∣∣ → 0 as n → ∞.

Thus, it suffices to show that

sup
t≥0

λ−t
V

∥∥PV
t (ψ − ψn)

∥∥
R

→ 0 as n → ∞. (6.2)

To this end, for any ρ > 0, we write∥∥PV
t (ψ − ψn)

∥∥
R

≤ J1(t, n,ρ) + J2(t, n,ρ),

where

J1(t, n,ρ) = ∥∥PV
t

(
(ψ − ψn)IXρ

)∥∥
R
, J2(t, n,ρ) = ∥∥PV

t

(
(ψ − ψn)IXc

ρ

)∥∥
R
.

Since ψn → ψ uniformly on Xρ , we have

J1(t, n,ρ) ≤ ε(n,ρ)
∥∥PV

t 1
∥∥

R
,

where ε(n,ρ) → 0 as n → ∞. Using convergence (1.15) for ψ = 1, we see that

λ−t
V

∥∥PV
t 1

∥∥
R

≤ C3(R) for all t ≥ 0. (6.3)

Hence,

sup
t≥0

λ−t
V J1(t, n,ρ) ≤ C3(R)ε(n,ρ) → 0 as n → ∞.

We use (3.1) and (6.3), to estimate J2:

λ−t
V J2(t, n,ρ) ≤ 2‖ψ‖∞ρ−2λ−t

V

∥∥PV
t w

∥∥
R

≤ C4(R)‖ψ‖∞ρ−2λ−t
V

∥∥PV
t 1

∥∥
R0

≤ C4(R)‖ψ‖∞ρ−2C3(R0).



2028 D. Martirosyan and V. Nersesyan

Taking first ρ and then n sufficiently large, we see that supt≥0 λ−t
V ‖PV

t (ψ − ψn)‖R can be made arbitrarily small.
This proves (6.2) and completes the proof of (1.15).

Step 4: Proof of (1.16). Let us show that

λ−t
V

〈
PV

t ψ, ν
〉 → 〈ψ,μV 〉〈hV , ν〉 as t → ∞

for any ψ ∈ Cb(H). In view of (1.15), it suffices to show that

sup
t≥0

{∫
H

IXc
R

∣∣λ−t
V PV

t ψ(u) − 〈ψ,μV 〉hV (u)
∣∣ν(du)

}
→ 0 as R → ∞. (6.4)

From (3.2) and (6.3) we derive that∥∥PV
t ψ

∥∥
L∞
w

≤ ‖ψ‖∞
∥∥PV

t 1
∥∥

L∞
w

≤ C5
∥∥PV

t 1
∥∥

R0
≤ C6(R0)λ

t
V , t ≥ 0,

hence∣∣λ−k
V PV

t ψ(u)
∣∣ ≤ C6(R0)w(u), u ∈Hr , t ≥ 0.

Since hV ∈ Cw(Hr ) and∫
H
IXc

R
(u)w(u)ν(du) → 0 as R → ∞,

we obtain (6.4). This completes the proof of Theorem 1.2.

Appendix

A.1. Local version of Kifer’s theorem

In [14], Kifer established a sufficient condition for the validity of the LDP for a family of random probability measures
on a compact metric space. This result was extended by Jakšić et al. [10] to the case of a general Polish space. In this
section, we obtain a local version of these results. Roughly speaking, we assume the existence of a pressure function
(i.e., limit (A.3)) and the uniqueness of the equilibrium state for functions V in a set V , which is not necessarily dense
in the space of bounded continuous functions. We prove the LDP with a lower bound in which the infimum of the rate
function is taken over a subset of the equilibrium states. To give the exact formulation of the result, we first introduce
some notation and definitions. Assume that X is a Polish space, and ζθ is a random probability measure on X defined
on some probability space (�θ ,Fθ ,Pθ ), where the index θ belongs to some directed set9 � (i.e., a partially ordered
set whose every finite subset has an upper bound). Let r : � → R be a positive function such that limθ∈� rθ = +∞.
For any V ∈ Cb(X), let us set

Q(V ) := lim sup
θ∈�

1

rθ
logEθ exp

(
rθ 〈V, ζθ 〉

)
, (A.1)

where Eθ is the expectation with respect to Pθ . The function Q : Cb(X) → R is convex, Q(V ) ≥ 0 for any V ∈ C+(X),
and Q(C) = C for any C ∈R. Moreover, Q is 1-Lipschitz. Indeed, for any V1,V2 ∈ Cb(X) and θ ∈ �, we have

1

rθ
logEθ exp

(
rθ 〈V1, ζθ 〉

) ≤ ‖V1 − V2‖∞ + 1

rθ
logEθ exp

(
rθ 〈V2, ζθ 〉

)
,

9Let us emphasize that the use of a directed set � to index the family ζθ is necessary, since it allows us to establish the LDP of uniform type with
respect to the initial condition (see the proof of Theorem 1.1).



Local large deviations principle for occupation measures of the stochastic damped nonlinear wave equation 2029

which implies that

Q(V1) ≤ ‖V1 − V2‖∞ + Q(V2).

By symmetry we get∣∣Q(V1) − Q(V2)
∣∣ ≤ ‖V1 − V2‖∞.

The Legendre transform of Q is given by

I (σ ) =
{

supV ∈Cb(X)(〈V,σ 〉 − Q(V )) for σ ∈ P(X),

+∞ for σ ∈ M(X) \P(X)
(A.2)

(see Lemma 2.2 in [1]). Then I is convex and lower semicontinuous function, and

Q(V ) = sup
σ∈P(X)

(〈V,σ 〉 − I (σ )
)
.

A measure σV ∈P(X) is said to be an equilibrium state for V if

Q(V ) = 〈V,σV 〉 − I (σV ).

We shall denote by V the set of functions V ∈ Cb(X) admitting a unique equilibrium state σV and for which the
following limit exists

Q(V ) = lim
θ∈�

1

rθ
logEθ exp

(
rθ 〈V, ζθ 〉

)
. (A.3)

Let us assume that the sequence of functions {Vk} ⊂ Cb(X) defines the weak topology in P(X), and V1 ⊂ V is
such that the intersection of V1 with Ln := span{V1, . . . , Vn} is open in Ln (endowed with the ‖ · ‖∞-norm). Let
Wn := {σV : V ∈ V1 ∩ Ln} and W := ⋃

n≥1 Wn.
We have the following version of Theorem 2.1 in [14] and Theorem 3.3 in [10].

Theorem A.1. Suppose that there is a function Φ : X → [0,+∞] whose level sets {u ∈ X : Φ(u) ≤ a} are compact
for all a ≥ 0 and

Eθ exp
(
rθ 〈Φ,ζθ 〉

) ≤ Cecrθ for θ ∈ �, (A.4)

for some positive constants C and c. Then I defined by (A.2) is a good rate function, for any closed set F ⊂P(X),

lim sup
θ∈�

1

rθ
logPθ {ζθ ∈ F } ≤ −I (F ), (A.5)

and for any open set G ⊂P(X),

lim inf
θ∈�

1

rθ
logPθ {ζθ ∈ G} ≥ −I (W ∩ G), (A.6)

where I (�) := infσ∈� I (σ ), � ⊂P(X).

Proof. The fact that I is a good rate function is shown in Step 1 of the proof of Theorem 3.3 in [10]. In Step 2 of
the same proof, the upper bound (A.5) is established, under the condition that the limit Q(V ) in (A.3) exists for any
V ∈ Cb(X). The latter condition can be removed, using literally the same proof, if one defines Q(V ) by (A.1) for any
V ∈ Cb(X) (see Theorem 2.1 in [4]).
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To prove the lower bound, following the ideas of [14], for any n ≥ 1, we define an auxiliary family of finite-
dimensional random variables ζ n

θ := fn(ζθ ), where fn :P(X) → Rn is given by

fn(μ) := (〈V1,μ〉, . . . , 〈Vn,μ〉).
The following result is a local version of Lemma 2.1 in [14] and Proposition 3.4 in [10]; its proof is sketched at the
end of this section.

Proposition A.2. Assume that the hypotheses of Theorem A.1 are satisfied and set Jn(�) = inf
σ∈f −1

n (�)
I (σ ), � ⊂Rn.

Then for any closed set M ⊂Rn and open set U ⊂Rn, we have

lim sup
θ∈�

1

rθ
logP

{
ζ n
θ ∈ M

} ≤ −Jn(M), (A.7)

lim inf
θ∈�

1

rθ
logP

{
ζ n
θ ∈ U

} ≥ −Jn

(
fn(Wn) ∩ U

)
. (A.8)

To derive (A.6) from Proposition A.2, we follow the arguments of Step 4 of the proof of Theorem 3.3 in [10]. The
case I (W ∩ G) = +∞ is trivial, so we assume that I (W ∩ G) < +∞. Then for any ε > 0, there is νε ∈ W ∩ G such
that

I (νε) ≤ I (W ∩ G) + ε. (A.9)

By Lemma 3.2 in [10], the family {ζθ } is exponentially tight, hence there is a compact set K ⊂P(X) such that νε ∈K
and

lim sup
θ∈�

1

rθ
logP

{
ζθ ∈ Kc

} ≤ −(
I (W ∩ G) + 1 + ε

)
. (A.10)

Without loss of generality, we can assume that ‖Vk‖∞ = 1, k ≥ 1, so that

d(μ, ν) :=
∞∑

k=1

2−k
∣∣〈Vk,μ〉 − 〈Vk, ν〉∣∣

defines a metric on K compatible with the weak topology. As G is open, there are δ > 0 and n ≥ 1 such that if

n∑
k=1

2−k
∣∣〈Vk, ν〉 − 〈Vk, νε〉

∣∣ < δ

for some ν ∈ K, then ν ∈ G. We can assume that n ≥ 1 is so large that νε ∈ Wn. Let xε := fn(νε), and denote by
B̊Rn(xε, δ) the open ball in Rn of radius δ > 0 centered at xε , with respect to the norm

‖x‖n :=
n∑

k=1

2−k|xk|, x = (x1, . . . , xn).

Then we have f −1
n (B̊Rn(xε, δ)) ∩K ⊂ G, hence

P{ζθ ∈ G} ≥ P{ζθ ∈ G ∩K} ≥ P
{
ζθ ∈ f −1

n

(
B̊Rn(xε, δ)

) ∩K
}

≥ P
{
ζ n
θ ∈ B̊Rn(xε, δ)

} − P
{
ζθ ∈Kc

}
.

Using the inequality

log(u − v) ≥ logu − log 2, 0 < v ≤ u/2



Local large deviations principle for occupation measures of the stochastic damped nonlinear wave equation 2031

and inequalities (A.8)–(A.10), we obtain

lim inf
θ∈�

1

rθ
logP{ζθ ∈ G} ≥ lim inf

θ∈�

1

rθ

(
logP

{
ζ n
θ ∈ B̊Rn(xε, δ)

} − log 2
)

≥ −Jn

(
fn(Wn) ∩ B̊Rn(xε, δ)

) ≥ −Jn(xε)

≥ −I (νε) ≥ −I (W ∩ G) − ε,

which proves (A.6). �

Sketch of the proof of Proposition A.2. Inequality (A.7) follows from (A.5). To show (A.8), for any β = (β1, . . . ,

βn) ∈ Rn and α = (α1, . . . , αn) ∈ Rn, we set Vβ := ∑n
j=1 βjVj , Qn(β) := Q(Vβ), and In(α) := inf

σ∈f −1
n (α)

I (σ ).
One can verify that

Qn(β) = sup
α∈Rn

(
n∑

j=1

βjαj − In(α)

)
,

Jn(U) = inf
α∈U

In(α).

Assume that Jn(fn(Wn) ∩ U) < +∞, and for any ε > 0, choose αε ∈ fn(Wn) ∩ U such that

In(αε) < Jn

(
fn(Wn) ∩ U

) + ε.

Then αε = fn(σVβε
) for some βε ∈Rn such that Vβε ∈ V . It is easy to verify that the following equality holds

Qn(βε) =
n∑

j=1

βεjαεj − In(αε).

Literally repeating the proof of Proposition 3.4 in [10] (starting from equality (3.16)) and using the uniqueness of the
equilibrium state for V = Vβε and the existence of limit (A.3), one obtains

−Jn

(
fn(Wn) ∩ U

) − ε ≤ −In(αε) ≤ lim inf
θ∈�

1

rθ
logP

{
ζ n
θ ∈ U

}
for any ε > 0. This implies (A.8). �

A.2. Large-time asymptotics for generalised Markov semigroups

In this section, we give a continuous-time version of Theorem 4.1 in [10] with some modifications, due to the fact that
the generalized Markov family associated with the stochastic NLW equation does not have a regularizing property.
See also [12,17,20] for some related results.

We start by recalling some terminology from [10].

Definition A.3. Let X be a Polish space. We shall say that {Pt (u, ·),u ∈ X, t ≥ 0} is a generalized Markov family of
transition kernels if the following two properties are satisfied.

Feller property. For any t ≥ 0, the function u �→ Pt(u, ·) is continuous from X to M+(X) and does not vanish.
Kolmogorov–Chapman relation. For any t, s ≥ 0, u ∈ X, and Borel set � ⊂ X, the following relation holds

Pt+s(u,�) =
∫

X

Ps(v,�)Pt (u,dv).
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To any such family we associate two semigroups by the following relations:

Pt : Cb(X) → Cb(X), Ptψ(u) =
∫

X

ψ(v)Pt (u,dv),

P∗
t :M+(X) → M+(X), P∗

t μ(�) =
∫

X

Pt (v,�)μ(dv), t ≥ 0.

For a measurable function w : X → [1,+∞] and a family C ⊂ Cb(X), we denote by Cw the set of functions ψ ∈
L∞
w (X) that can be approximated with respect to ‖ · ‖L∞

w
by finite linear combinations of functions from C. We shall

say that a family C ⊂ Cb(X) is determining if for any μ,ν ∈ M+(X) satisfying 〈ψ,μ〉 = 〈ψ,ν〉 for all ψ ∈ C, we
have μ = ν. Finally, a family of functions ψt : X → R is uniformly equicontinuous on a subset K ⊂ X if for any
ε > 0 there is δ > 0 such that |ψt(u) − ψt(v)| < ε for any u ∈ K , v ∈ BX(u, δ) ∩ K , and t ≥ 1. We have the following
version of Theorem 4.1 in [10].

Theorem A.4. Let {Pt (u, ·),u ∈ X, t ≥ 0} be a generalized Markov family of transition kernels satisfying the follow-
ing four properties.

Growth conditions. There is an increasing sequence {XR}∞R=1 of compact subsets of X such that X∞ := ⋃∞
R=1 XR

is dense in X. The measures Pt (u, ·) are concentrated on X∞ for any u ∈ X∞ and t > 0, and there is a measurable
function w : X → [1,+∞] and an integer R0 ≥ 1 such that10

sup
t≥0

‖Ptw‖L∞
w

‖Pt1‖R0

< ∞, (A.11)

sup
t∈[0,1]

‖Pt1‖∞ < ∞, (A.12)

where ‖ · ‖R and ‖ · ‖∞ denote the L∞ norm on XR and X, respectively, and we set ∞/∞ = 0.
Time-continuity. For any function g ∈ L∞

w (X∞) whose restriction to XR belongs to C(XR) and any u ∈ X∞, the
function t �→ Pt g(u) is continuous from R+ to R.

Uniform irreducibility. For sufficiently large ρ ≥ 1, any R ≥ 1 and r > 0, there are positive numbers l = l(ρ, r,R)

and p = p(ρ, r) such that

Pl

(
u,BX(û, r)

) ≥ p for all u ∈ XR, û ∈ Xρ.

Uniform Feller property. There is a number R0 ≥ 1 and a determining family C ⊂ Cb(X) such that 1 ∈ C and the
family {‖Pt1‖−1

R Ptψ, t ≥ 1} is uniformly equicontinuous on XR for any ψ ∈ C and R ≥ R0.

Then for any t > 0, there is at most one measure μt ∈Pw(X) such that μt(X∞) = 1 and

P∗
t μt = λ(t)μt for some λ(t) ∈ R (A.13)

satisfying the following condition:

‖Ptw‖R

∫
X\XR

wdμt → 0 as R → ∞. (A.14)

Moreover, if such a measure μt exists for all t > 0, then it is independent of t (we set μ := μt ), the corresponding
eigenvalue is of the form λ(t) = λt , λ > 0, suppμ = X, and there is a non-negative function h ∈ L∞

w (X∞) such that
〈h,μ〉 = 1,

(Pt h)(u) = λth(u) for u ∈ X∞, t > 0, (A.15)

10The expression (Ptw)(u) is understood as an integral of a positive function w against a positive measure Pt (u, ·).
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the restriction of h to XR belongs to C+(XR), and for any ψ ∈ Cw and R ≥ 1, we have

λ−tPtψ → 〈ψ,μ〉h in C(XR) ∩ L1(X,μ) as t → ∞. (A.16)

Finally, if a Borel set B ⊂ X is such that

sup
u∈B

(∫
X\XR

w(v)Ps(u,dv)

)
→ 0 as R → ∞ (A.17)

for some s > 0, then for any ψ ∈ Cw, we have

λ−tPtψ → 〈ψ,μ〉h in L∞(B) as t → ∞. (A.18)

Sketch of the proof. Step 1: Existence of eigenvectors μ and h. For any t > 0, the conditions of Theorem 4.1
in [10] are satisfied11 for the discrete-time semigroup {P̃k = Ptk, k ≥ 1} generated by P̃ = Pt . So that theorem
implies the existence of at most one measure μt ∈ Pw(X) satisfying μt(X∞) = 1, (A.13), and (A.14). Moreover, if
such a measure μt exists for any t > 0, it follows from the Kolmogorov–Chapman relation that μt = μ1 =: μ and
λ(t) = (λ(1))t =: λt for any t in the set Q∗+ of positive rational numbers, i.e.,

P∗
t μ = λtμ for t ∈Q∗+. (A.20)

Using the time-continuity property and density, we get that (A.20) holds for any t > 0. So we have μt = μ and
λ(t) = λt for any t > 0, by uniqueness of the eigenvector.

Theorem 4.1 in [10] also implies that suppμ = X, λ > 0, and there is a non-negative function ht ∈ L∞
w (X∞) such

that 〈ht ,μ〉 = 1, the restriction of ht to XR belongs to C+(XR), and

(Pt ht )(u) = λtht (u) for u ∈ X∞, (A.21)

λ−tkPtkψ → 〈ψ,μ〉ht in C(XR) ∩ L1(X,μ) as k → ∞ (A.22)

for any ψ ∈ Cw, R ≥ 1, and t > 0. Taking ψ = 1 in (A.22), we see that ht = h1 =: h for any t ∈ Q∗+. The continuity
of the function t �→ Pt h(u) and (A.21) imply that ht = h for any t > 0 and

λ−tkPtkψ → 〈ψ,μ〉h in C(XR) ∩ L1(X,μ) as k → ∞. (A.23)

Step 2: Proof of (A.16). First let us prove (A.16) for any ψ ∈ C. Replacing Pt (u,�) by λ−tPt (u,�), we may
assume that λ = 1. Taking ψ = 1 and t = 1 in (A.23), we obtain supk≥0 ‖Pk1‖R < ∞. So using (A.12), we get
supt≥0 ‖Pt1‖R < ∞. This implies that {Ptψ, t ≥ 1} is uniformly equicontinuous on XR for any R ≥ R0. Setting g =
ψ −〈ψ,μ〉h, we need to prove that Pt g → 0 in C(XR) for any R ≥ 1. Since {Pt g, t ≥ 1} is uniformly equicontinuous
on XR , the required assertion will be established if we prove that

|Pt g|μ := 〈|Pt g|,μ〉 → 0 as t → ∞. (A.24)

For any ϕ ∈ L∞
w (X), we have

|Pt ϕ|μ ≤ 〈
Pt |ϕ|,μ〉 = 〈|ϕ|,μ〉 = |ϕ|μ,

11Let us note that in Theorem 4.1 in [10] it is assumed that the measures Pt (u, ·) are concentrated on X∞ for any u ∈ X. Here this is replaced by
the condition that the measures Pt (u, ·) and μt are concentrated on X∞ for any u ∈ X∞. The uniform irreducibility property is slightly different
from the one assumed in [10]. Both modifications are due to the lack of a regularizing property for the stochastic NLW equation. These changes do
not affect the proof given in [10], one only needs to replace inequality (4.16) in the proof by the inequality

sup
k≥0

‖Pkψ‖L∞
w (X) ≤ M1‖ψ‖L∞

w (X) for any ψ ∈ L∞
w (X), (A.19)

and literally repeat all the arguments. The proof of (A.19) is similar to the one of (4.16). Under these modified conditions, the concept of eigen-
function for Pt is understood in a weaker sense; namely, relation (A.15) needs to hold only for u ∈ X∞.
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thus |Pt g|μ is a non-increasing function in t . By (A.23), we have |Ptkg|μ → 0 as k → ∞. This proves (A.24), hence
also (A.16) for any ψ ∈ C.

An easy approximation argument shows that (A.16) holds for any ψ ∈ Cw (see Step 4 of the proof of Theorem 4.1
in [10]). Finally, the proof of (A.18) under condition (A.17) is exactly the same as in Step 7 of the proof of the
discrete-time case. �

A.3. Proofs of some auxiliary assertions

The Foiaş–Prodi estimate
Here we briefly recall an a priori estimate established in Proposition 4.1 in [21]. Let ut = [u, u̇] and vt = [v, v̇] be
some flows of the equations

∂2
t u + γ ∂tu − �u + f (u) = h(x) + ∂tϕ(t, x), (A.25)

∂2
t v + γ ∂tv − �v + f (v) + PN

[
f (u) − f (v)

] = h(x) + ∂tϕ(t, x), (A.26)

where ϕ is a function belonging to L2
loc(R+,L2(D)). We recall that PN stands for the orthogonal projection in L2(D)

onto the vector span HN of the functions e1, e2, . . . , eN and PN is the projection in H onto HN := HN × HN .

Proposition A.5. Assume that, for some non-negative numbers s and T , we have u,v ∈ C(s, s + T ;H). Then

∣∣PN(vt − ut )
∣∣2
H ≤ e−α(t−s)|vs − us |2H for s ≤ t ≤ s + T , (A.27)

where α > 0 is the constant entering (1.4). If we suppose that the inequality holds∫ t

s

‖∇z‖2dτ ≤ l + K(t − s) for s ≤ t ≤ s + T (A.28)

for z = u and z = v and some positive numbers K and l, then, for any ε > 0, there is an integer N∗ = N∗(ε,K) ≥ 1
such that

|vt − ut |2H ≤ e−α(t−s)+εl |vs − us |2H for s ≤ t ≤ s + T (A.29)

for all N ≥ N∗ and s ≤ t ≤ s + T .

Proof. Estimate (A.29) is proved in Proposition 4.1 in [21]. To prove (A.27), let us note that z = [z, ż] = PN(v− u)

is a solution of the linear equation

∂2
t z + γ ∂tz − �z = 0.

So we have∣∣PN(vt − ut )
∣∣2
H = |zt |2H ≤ e−α(t−s)|zs |2H ≤ e−α(t−s)|vs − us |2H. �

Proof of Proposition 4.1
This proposition is essentially proved in Section 4.2 in [21] in a different form. However, since it plays a central role
in the proof of the uniform Feller property, we find it worthwhile to give here a detailed proof of it. As in [21], we
follow the arguments presented in Section 3.3 of [19] and Section 4 of [16]. As inequality (4.2) concerns only the laws
of solutions, we can assume that the underlying probability space (�,F,P) is of a particular form. We assume that
� = C(R+,R) is endowed with the topology of uniform convergence on bounded intervals, P is the law of the Wiener
process ξ̂ = [0, ξ ], where ξ is defined in (0.3), and F is the completion of the Borel σ -algebra of � with respect to P.

We introduce some notation. Let ĤN be the N -dimensional subspace of H spanned by the vectors ê1, ê2, . . . , êN ,
where êj = [0, ej ]. Then � = �N +̇�⊥

N , where �N = C(R+, ĤN) and �⊥
N = C(R+, Ĥ⊥

N). For ω = ω1+̇ω2, we write
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ω = (ω1,ω2). For any continuous process ut with range in H, we introduce the functional

Fu(t) = ∣∣E(ut )
∣∣ + α

∫ t

0

∣∣E(us)
∣∣ds,

and the stopping time

τu = inf
{
t ≥ 0 : Fu(t) ≥ Fu(0) + Lt + ρ

}
,

where L and ρ are some positive constants to be chosen later. Now let us fix initial points z and z′ in H. We shall
denote by ut and u′

t the flows of (0.1) issued from z and z′, respectively, and by v(t) the flow of (4.1). We define a
stopping time τ̃ = τu ∧ τu

′ ∧ τv and a transformation � : � → � given by

�(ω)(t) = ω(t) −
∫ t

0
ϕ(s)ds, ϕ(t) = 1t≤τ̃ P̂N

(
0,

[
f (ut ) − f (vt )

])
,

where 1t≤τ̃ stands for the indicator function of the interval [0, τ̃ ], P̂N is the orthogonal projection in H onto ĤN , and
u is the first component of u. Let us prove the following result, which is a global version of Lemma 4.3 in [21].

Lemma A.6. For any initial points z and z′ in H, we have

|�∗P− P|var ≤ [
exp

(
CN

∣∣z− z′
∣∣2
He(|E(z)|+|E(z′)|)+ρ

) − 1
]1/2

, (A.30)

where �∗P stands for the image of P under �.

Proof of Lemma A.6. Step 1. By the definition of τ̃ , we have

Fu(t) ≤Fu(0) + Lt + ρ, Fv(t) ≤ Fu′
(0) + Lt + ρ (A.31)

for all t ≤ τ̃ . Let us show that there is an integer N1 = N1(L) such that, for all N ≥ N1 and t ≤ τ̃ , we have

∣∣v(t) − u(t)
∣∣2
H ≤ e−αt+θ

∣∣z′ − z
∣∣2
H, θ = |E(z)| ∨ |E(z′)| + ρ

2
. (A.32)

Indeed, thanks to (1.2) and the Poincaré inequality, we have

|u|2H ≤
∣∣∣∣|u|2H + 2

∫
D

F(u1)dx

∣∣∣∣ − 2
∫

D

F(u1)dx ≤ ∣∣E(u)
∣∣ + 2ν‖u1‖2 + 2C

≤ ∣∣E(u)
∣∣ + λ1

4
‖u1‖2 + 2C ≤ ∣∣E(u)

∣∣ + 1

4
|u|2H + 2C,

for any u= [u1, u2] in H. Therefore

|u|2H ≤ 2
∣∣E(u)

∣∣ + 3C. (A.33)

Combining this inequality with (A.31), we see that for all t ≤ τ̃

α

∫ t

0

∥∥∇w(s)
∥∥2 ds ≤ 2

(∣∣E(z)
∣∣ ∨ ∣∣E(

z′
)∣∣ + ρ

) + 2(L + 3C)t

for w = u and w = v. Using the above inequality and applying Proposition A.5 with ε = α/4, we infer (A.32).
Step 2. Note that the transformation � can be written as �(ω) = (ϒ(ω),ω2), where ϒ : � → �N is given by

ϒ(ω)(t) = ω1(t) +
∫ t

0
ϕ(s;ω)ds.
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It is not difficult to see that

|�∗P− P|var ≤
∫

�⊥
N

∣∣ϒ∗(PN,ω2) − PN

∣∣
varP

⊥
N(dω2), (A.34)

where PN and P⊥
N stand for the images of P under the projections P̂N : � → �N and Q̂N : � → �⊥

N , respectively.
Introduce

X = ω1(t), X̂ = ω1(t) +
∫ t

0
ϕ(s;ω)ds.

Then PN coincides with the distribution D(X) of the random variable X and ϒ∗(PN,ω2) coincides with that of X̂.
By the Girsanov theorem (see Theorem A.10.1 in [19]), we have

∣∣D(X̂) −D(X)
∣∣
var ≤ 1

2

((
E exp

[
6 max

1≤j≤N
b−1
j

∫ ∞

0

∣∣ϕ(t)
∣∣2 dt

]) 1
2 − 1

) 1
2

, (A.35)

if we assume that the Novikov condition

E exp

(
c

∫ ∞

0

∣∣ϕ(t)
∣∣2 dt

)
< ∞ for any c > 0,

is satisfied. To check this condition, first note that

E exp

(
c

∫ ∞

0

∣∣ϕ(t)
∣∣2 dt

)
= E exp

(
c

∫ τ̃

0

∣∣ϕ(t)
∣∣2 dt

)

≤ E exp

(
c

∫ τ̃

0

∥∥f (vt ) − f (ut )
∥∥2 dt

)
. (A.36)

Using (1.1), the Hölder inequality, and the Sobolev embedding H 1 ↪→ L6, we see that

∥∥f (v) − f (u)
∥∥2 ≤ C1‖v − u‖2

1

(
1 + ‖u‖4

1 + ‖v‖4
1

)
.

Joining this together with inequalities (A.31)–(A.33) and (A.36), we get

E exp

(
c

∫ ∞

0

∣∣ϕ(t)
∣∣2 dt

)

≤ E exp

(
C2

∣∣z′ − z
∣∣2
H

∫ ∞

0
e−αt+θ

(
1 + ∣∣E(z)

∣∣ ∨ ∣∣E(
z′
)∣∣ + Lt + ρ

)2 dt

)

≤ exp
(
C3

∣∣z− z′
∣∣2
He(|E(z)|+|E(z′)|)+ρ

)
< ∞.

Finally, combining this with (A.34) and (A.35), we get (A.30). �

Now we can prove (4.2). Indeed, for each ω belonging to the event {τ̃ < ∞}, let us introduce auxiliary H-
continuous processes yu′ and yv defined as follows: for t ≤ τ̃ they coincide with the processes u′ and v, respectively,
while for t ≥ τ̃ they solve ẏ = −my. We choose m ≥ 1 so large that

{
τyu′ < ∞} ⊂ {

τu
′
< ∞}

. (A.37)

This construction implies that, with probability 1, we have

yv(t,ω) = yu′
(
t,�(ω)

)
for all t ≥ 0. (A.38)
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Let us denote by u′
1 and v1 the restrictions of u′(t) and v(t) to the time interval [0,1]. Then∣∣λ(

z, z′
) − λ

(
z′
)∣∣

var = sup
�

∣∣P{v1 ∈ �} − P
{
u′

1 ∈ �
}∣∣

≤ P{τ̃ < ∞} + sup
�

∣∣P{v1 ∈ �, τ̃ = ∞} − P
{
u′

1 ∈ �, τ̃ = ∞}∣∣ = L1 +L2,

where the supremum is taken over all Borel subsets of C(0,1;H). Note that

L2 ≤ |�∗P− P|var.

Further, we have

L1 ≤ P
{
τv < ∞, τu ∧ τu

′ = ∞} + P
{
τu < ∞} + P

{
τu

′
< ∞}

.

Moreover, thanks to (A.38) and (A.37), we have

P
{
τv < ∞, τu ∧ τu

′ = ∞} ≤ P
{
τyv < ∞} = �∗P

{
τyu′ < ∞}

≤ P
{
τyu′ < ∞} + |�∗P− P|var

≤ P
{
τu

′
< ∞} + |�∗P− P|var.

Combining last four inequalities, we infer∣∣λ(
z, z′

) − λ
(
z′
)∣∣

var ≤ 2
(
P
{
τu < ∞} + P

{
τu′

< ∞} + |�∗P− P|var
)
.

Finally using this with inequality (A.30) and Corollary 3.3 from [21], we get∣∣λ(
z, z′

) − λ
(
z′
)∣∣

var ≤ 2e4βC−βρ + 2
[
exp

(
CN

∣∣z− z′
∣∣2
He(|E(z)|+|E(z′)|)+ρ

) − 1
]1/2

,

where β = α/8(supb2
j )

−1 and C is the constant entering inequalities (1.1)–(1.3). Denoting a = 2β/(β + 1) and

C∗ = 2 exp(4βC), and making a change of variable ρ = −β−1a ln ε, we derive (4.2).

Proof of Proposition 1.3
Step 1: Preliminaries. We denote by S

V,F
t the semigroup defined by (1.17), and write SV

t instead of S
V,0
t (i.e.,

F = 0). Let D(LV ) be the space of functions ψ ∈ Cb(Hs) such that

SV
t ψ(u) = ψ(u) +

∫ t

0
SV

τ g(u)dτ, t ≥ 0,u ∈ Hr (A.39)

for some g ∈ Cb(Hr ). Then the continuity of the mapping t �→ SV
t g(u) from R+ to R implies the following limit

g(u) = lim
t→0

SV
t ψ(u) − ψ(u)

t
,

and proves the uniqueness of g in representation (A.39). We set LV ψ := g. The proof is based on the following two
lemmas.

Lemma A.7. For any F ∈ Cb(Hr ), the following properties hold

(i) For any ψ ∈ D(LV ), we have ϕt := S
V,F
t ψ ∈ D(LV ) and

∂tϕt = (LV + F)ϕt , t > 0.

(ii) The set D+ := {ψ ∈ D(LV ) : infu∈Hr ψ(u) > 0} is determining for P(Hr ), i.e., if 〈ψ,σ1〉 = 〈ψ,σ2〉 for some
σ1, σ2 ∈P(Hr ) and any ψ ∈ D+, then σ1 = σ2.



2038 D. Martirosyan and V. Nersesyan

This lemma is proved at the end of this subsection. The next result is established exactly in the same way as
Lemma 5.9 in [10], by using limit (1.15); we omit its proof.

Lemma A.8. The Markov semigroup SV
t has a unique stationary measure, which is given by νV = hV μV .

Step 2. Let us show that, for any ψ ∈D+, we have

QV
R(Fψ) = 0, (A.40)

where Fψ := −LV ψ/ψ ∈ Cb(Hs) and QV
R(Fψ) is defined by (1.18). Indeed, by property (i) in Lemma A.7, the

function ϕt =S
V,Fψ

t ψ satisfies

∂tϕt =
(
LV − LV ψ

ψ

)
ϕt , ϕ0 = ψ.

From the uniqueness of the solution we derive that ψ = ϕt for any t ≥ 0, hence

lim
t→+∞

1

t
log sup

u∈XR

log
(
S

V,Fψ

t ψ
)
(u) = 0. (A.41)

As c ≤ ψ(u) ≤ C for any u ∈ Hr and some constants C,c > 0, we have

QV
R(Fψ) ≤ lim sup

t→+∞
1

t
log sup

u∈XR

log
(
S

V,Fψ

t ψ
)
(u) ≤ QV

R(Fψ).

Combining this with (A.41), we obtain (A.40).
Step 3. Let us assume12 that IV

R (σ ) = 0. Then σ ∈ P(Hr ) and

0 = IV
R (σ ) = sup

F∈Cb(Hr )

(〈F,σ 〉 − QV
R(F)

)
.

So taking here F = Fψ for any ψ ∈D+ and using the result of Step 2, we get

0 ≤ inf
ψ∈D+

∫
Hr

LV ψ

ψ
σ(du).

Since SV
t is a Markov semigroup, we have LV 1 = 0. We see that θ = 0 is a local minimum of the function

f (θ) :=
∫
Hr

LV (1 + θψ)

1 + θψ
σ(du)

for any ψ ∈ D+, so

0 = f ′(0) =
∫
Hr

LV ψσ(du).

Combining this with property (i) in Lemma A.7, we obtain∫
Hr

SV
t ψσ(du) =

∫
Hr

ψσ(du), t > 0.

From (ii) in Lemma A.7, we derive that σ is a stationary measure for SV
t , and Lemma A.8 implies that σ = hV μV .

This completes the proof of Proposition 1.3.

12As IR defined by (1.6) is a good rate function, the set of equilibrium measures for V is non-empty. So the set of zeros of IV
R

is also non-empty,
by the remark made at the end of Step 2 of the proof of Theorem 1.1.
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Proof of Lemma A.7. Step 1: Property (i). Let us show that, for any ψ ∈ Cb(Hr ), the function ϕt =S
V,F
t ψ satisfies

the equation in the Duhamel form

ϕt =SV
t ψ +

∫ t

0
SV

t−s(Fϕs)ds. (A.42)

Indeed, we have

ϕt −SV
t ψ = λ−t

V h−1
V

×Eu

{
exp

(∫ t

0
V (uτ )dτ

)[
exp

(∫ t

0
F(uτ )dτ

)
− 1

]
hV (ut )ψ(ut )

}
.

Integrating by parts and using the the Markov property, we get

ϕt −SV
t ψ = λ−t

V h−1
V

×
∫ t

0
Eu

{
exp

(∫ t

0
V (uτ )dτ

)[
F(us) exp

(∫ t

s

F (uτ )dτ

)]
hV (ut )ψ(ut )

}
ds

=
∫ t

0
λ−s

V h−1
V Eu

{
exp

(∫ s

0
V (uτ )dτ

)
hV (us)F (us)ϕt−s(us)

}
ds

=
∫ t

0
SV

s (Fϕt−s)ds =
∫ t

0
SV

t−s(Fϕs)ds.

This proves (A.42). The identity

SV
t (ϕs)(u) = ϕs+t (u) = ϕs(u) +

∫ t

0
SV

τ

(
SV

s g
)
(u)dτ, t ≥ 0,u ∈ Hr

shows that ϕs ∈ D(LV ) for ψ ∈ D(LV ) and r > 0.
Step 2: Property (ii). Assume that, for some σ1, σ2 ∈P(Hr ), we have

〈ψ,σ1〉 = 〈ψ,σ2〉, ψ ∈D+. (A.43)

Let us take any ψ ∈ Cb(Hr ) such that c ≤ ψ(u) ≤ C for any u ∈ Hr and some constants c,C > 0. Then ϕ̃s :=
1
s

∫ s

0 SV
τ ψ dτ belongs to D+ for any s > 0. Indeed, the inequality c ≤ ϕ̃r (u) ≤ C follows immediately from the

definition of SV
s , and the fact that ϕ̃s ∈D(LV ) follows from the identity

SV
t ϕ̃s − ϕ̃s = 1

s

∫ s

0

(
SV

τ+tψ −SV
τ ψ

)
dτ = 1

s

∫ s+t

s

SV
τ ψ dτ − 1

s

∫ t

0
SV

τ ψ dτ

=
∫ t

0
SV

τ

(
SV

s ψ − ψ

s

)
dτ.

Then, by (A.43), we have

〈ϕ̃s , σ1〉 = 〈ϕ̃s , σ2〉, r > 0. (A.44)

Using the continuity of the mapping s �→ SV
s ψ(u) from R+ to R, we see that ϕ̃s(u) → ψ(u) as s → 0. Passing to the

limit in (A.44) and using the Lebesgue theorem on dominated convergence, we obtain 〈ψ,σ1〉 = 〈ψ,σ2〉. It is easy to
verify that the set {ψ ∈ Cb(Hr ) : infu∈Hr ψ(u) > 0} is determining, so we get σ1 = σ2. �
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Proof of Lemma 5.2
Let us first prove (5.13). We take p4 = 6/(1 + 2r) the maximal exponent for which the Sobolev embedding H 1−r ↪→
Lp4 holds. We choose p2 in such a way that exponents (pi) are Hölder admissible. It follows that p2 = 6/(5 − ρ −
2r − 3κ). Now let κ > 0 be so small that ρ + 2rκ ≤ 2. Then a simple calculation shows that (1 −κ)p2 ≤ 6/(3 − 2r),
so the Sobolev embedding implies the first inclusion in (5.13).

We now prove (5.14). Proceeding as above, we take q4 = 6/(1 + 2r) and choose q2 such that the exponents (qi)

are Hölder admissible, i.e., q2 = 6(ρ + 2)/(12 − (ρ + 2)(1 + 2r + 3κ)). It is easy to check that for κ < 1/2 − r , we
have (1 −κ)q2 ≤ 6. The Sobolev embedding allows to conclude.

Proof of Lemma 5.3
In view of inequality (5.19), we have

β−1 d

dt
(1 + x)β = (1 + x)β−1ẋ ≤ (1 + x)β−1(−αx + gx1−β + b

)
≤ −αx(1 + x)β−1 + g + b ≤ −α

2
xβ + α + g + b.

Fixing t ∈ [0, T ] and integrating this inequality over [0, t], we obtain

β−1(1 + x(t)
)β + α

2

∫ t

0
xβ(τ )dτ ≤ β−1(1 + x(0)

)β +
∫ t

0

(
α + g(τ) + b(τ)

)
ds,

which implies (5.20).
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