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Abstract. We study the persistence exponent for the first passage time of a random walk below the trajectory of another random
walk. More precisely, let {Bn} and {Wn} be two centered, weakly dependent random walks. We establish that P(∀n≤NBn ≥
Wn|W)=N−γ+o(1) for a non-random γ ≥ 1/2. In the classical setting, Wn ≡ 0, it is well-known that γ = 1/2. We prove that for
any non-trivial W one has γ > 1/2 and the exponent γ depends only on Var(B1)/Var(W1). Our result holds also in the continuous
setting, when B and W are independent and possibly perturbed Brownian motions or Ornstein–Uhlenbeck processes. In the latter
case the probability decays at exponential rate.

Résumé. On s’intéresse à l’exposant de persistance du temps de premier passage d’une marche aléatoire en-dessous de la trajec-
toire d’une autre marche aléatoire. Plus précisément, étant données deux marches aléatoires {Bn} et {Wn}, centrées et faiblement
corrélées, on établit que P(∀n≤NBn ≥Wn|W)=N−γ+o(1) pour un certain exposant γ ≥ 1/2 déterministe. Il est bien connu que
lorsque Wn ≡ 0, on a γ = 1/2. On prouve ici que lorsque W n’est pas la marche nulle, alors γ > 1/2, et dépend seulement du rap-
port Var(B1)/Var(W1). Notre résultat est également valable en temps continu, lorsque B et W sont des mouvements browniens ou
des processus d’Ornstein–Uhlenbeck indépendants. Dans ce dernier cas cependant, la queue du temps de premier passage décroit
à taux exponentiel.
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1. Introduction and main results

Let {Xt }t≥0 be a stochastic process. In many cases of interest there exists γ > 0 such that

P(∀s≤tXs ≥−1)= t−γ+o(1).

The exponent γ is often called the persistence exponent associated to the process X. The persistence exponent of
stochastic processes have received a substantial research attention. We refer to [1] for a review on this subject.

In this paper we are interested in the rate of decay of

p(t) := P
(∀s≤tBs ≥ f (t)

)
,

where B is a standard Brownian motion starting from 0 and f is a continuous function. The case when f (t)=−1 is
particularly easy by the reflection principle. More broadly, if f is negative near 0 and f (t)= o(t1/2−ε) for some ε > 0
then p(t)= t−1/2+o(1). The situation changes for f (t)=−1+ λt1/2 with λ ≥ 0. It turns out that p(t)= t−θ(λ)+o(1)

for a function θ , which is strictly increasing in λ.
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It seems interesting to consider the case when f is a trajectory of a stochastic process. A Brownian motion,
considered in this paper, is particularly intriguing as it is of order t1/2. Formally, we consider the wall f to be sampled
as a Brownian curve W independent of B and kept frozen. We prove there exists a function γ such that for any β ∈R

we have

lim
t→+∞

logP(∀s≤tBs ≥ βWs |W)

log t
=−γ (β) a.s. and in L1.

One important result is that γ (β) > 1/2 for all β 	= 0. This means that the conditioning has an strong impact on the
asymptotic of this probability, i.e.

lim
t→+∞

P(∀s≤tBs ≥ βWs |W)

E(P(∀s≤tBs ≥ βWs |W))
= 0 a.s.

The function γ is universal. An analogous result holds for the decay of the probability of a random walk staying
above the path of another independent random walk. Further, the assumption of independence can be weakened or,
even more generally, we can admit random walks in a time-changing random environment.

We also study an example of strongly ergodic diffusions namely a Ornstein–Uhlenbeck process. We obtain that
the probability for an Ornstein–Uhlenbeck process to stay above the path of another Ornstein–Uhlenbeck process
decays exponentially fast. The decay is strictly faster than the exponential decay of the expectation of this conditional
probability. Our results are presented below in separate subsections further in Section 1.4 we present related results
and motivations.

1.1. Brownian motion over Brownian motion

Theorem 1.1. Let B , W be two independent standard Brownian motions. There exists a function γ :R→R such that
for any β ∈R, 0≤ a < b ≤+∞ and x > 0,

lim
t→+∞

1

log t
logP

(∀s≤t x +Bs ≥ βWs,Bt − βWt ∈
(
at1/2, bt1/2)|W )

=−γ (β) a.s. and in Lp, for all p ≥ 1.

Moreover, the function γ is symmetric, convex and for any β 	= 0,

γ (β) > γ (0)= 1/2. (1.1)

Consequently, γ is strictly increasing and limβ→+∞ γ (β)=+∞.

Remark 1.2. We conjecture that β 
→ γ (β) is strictly convex and grows at quadratic rate.

Remark 1.3. Adhering to the parlance of disordered systems one can interpret (1.1) as the relevance of the disorder.
Namely, for any β > 0 we have

lim
t→+∞

E[− logP(∀s≤t x +Bs ≥ βWs |W)]
log t

> lim
t→+∞

− logP(∀s≤t x +Bs ≥ βWs)

log t
= 1

2
.

We contrast this result with the case a random wall with fast decay of correlations. For simplicity we choose an
i.i.d. sequence but the result is still valid for other processes such as Ornstein–Uhlenbeck. In this case, the disorder is
not relevant, the wall has no impact on the asymptotic behavior of the probability.

Fact 1.4. Let {Xi}i∈N be an i.i.d. sequence of random variables such that EXi = 0 and EX2
i <+∞ and B an inde-

pendent Brownian motion. We have

lim
N→+∞

logP(∀n∈{1,...,N}x +Bn ≥Xn|{Xi}i∈N)

logN
=−1

2
a.s.
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The result of Theorem 1.1 is stable under perturbing the starting condition and the wall.

Theorem 1.5. Let B , W be two independent Brownian motions, f : R+ → R and g : R+ → R+ functions such that
there exists ε > 0 verifying

f (0)= 0, lim
t→+∞

|f (t)|
t1/2−ε

= 0, inf
t≥0

g(t) > 0 and lim
t→+∞

logg(t)

log t
= 0.

For any β ∈R and 0≤ a < b ≤+∞ we have

lim
t→+∞

logP(∀s≤t g(t)+Bs ≥ βWs + f (s),Bt − βWt ∈ (at1/2, bt1/2)|W)

log t

=−γ (β), a.s. and Lp,p ≥ 1.

1.2. Ornstein–Uhlenbeck process over Ornstein–Uhlenbeck process

We recall that an Ornstein–Uhlenbeck process {Xt }t≥0 with parameters (μ,σ ) is a diffusion fulfilling the stochastic
differential equation

dXt = σ dWt −μXt dt.

The main result of this section is following. In Remark 1.7 we will explain how this result extends the one of
Theorem 1.1.

Theorem 1.6. Let X, Y be two independent Ornstein–Uhlenbeck processes with the parameters (μ1,1) and (μ2,1)

respectively, where μ1,μ2 > 0. There exists two functions γμ1,μ2 and δμ1,μ2 such that for any β ∈R, 0≤ a < b ≤+∞,
if X0 > βY0 then

lim
t→+∞

logP(∀s≤tXs ≥ βYs,Xt − βYt ∈ (a, b)|Y)

t
=−γμ1,μ2(β) a.s. and in Lp,p ≥ 1, (1.2)

lim
t→+∞

logP(∀s≤tXs ≥ βYs,Xt − βYt ∈ (a, b))

t
=−δμ1,μ2(β). (1.3)

The functions γμ1,μ2 , δμ1,μ2 are symmetric convex and for any β 	= 0 we have

γμ1,μ2(β) > δμ1,μ2(β) > 0. (1.4)

Observe that the assumption σ1 = σ2 = 1 is non-restrictive. Given an Ornstein–Uhlenbeck process X with param-
eters (μ1,1) the process σX has parameters (μ1, σ ). Setting

g(β;σ1, σ2,μ1,μ2) := lim
t→+∞

− logP(∀s≤tXs ≥ βYs,Xt − βYt ∈ (a, b)|Y)

t

where X, Y are two independent Ornstein–Uhlenbeck processes with parameters (μ1, σ
2
1 ) and (μ2, σ

2
2 ) respectively,

we have

g(β;σ1, σ2,μ1,μ2)= γμ1,μ2

(
β

σ2

σ1

)
.

Furthermore, using the scaling property of the Brownian motion we obtain

γμ1,μ2 = μ2γμ1/μ2,1.

The same relations hold for δμ1,μ2 .
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Remark 1.7. It is well-known that if W is a standard Wiener process then

Xt := xe−μt + σ√
2μ

e−μtWe2μt−1

is an Ornstein–Uhlenbeck process with parameters (μ,σ ) starting from X0 = x. Using this relation one can see that
Theorem 1.6 with μ= μ1 = μ2 is equivalent to Theorem 1.1. One also checks that

γμ,μ(β)= 2μγ (β), δμ,μ(β)= μ.

We stress however that the case of different μ’s cannot be expressed in the terms of Theorem 1.1. Moreover, we
suspect that max(μ1,μ2) > δμ1,μ2(β) > min(μ1,μ2).

1.3. Random walk in random environment

Results analogous to Theorem 1.1 hold for random walks. Let {Bn}n∈N, {Wn}n∈N be two independent random walks.
There may exist n such that P(x +Bn ≥Wn)= 0. To resolve this issue we introduce

Ax :=
⋂
N≥0

{
P(∀n≤Nx +Bn ≥Wn|W) > 0

}
. (1.5)

We briefly study these events.

Fact 1.8. For any x ≤ x′ we have Ax ⊂Ax′ and limx→+∞ P(Ax)= 1. Moreover, the following conditions are equiv-
alent:

• For any x > 0, P(Ax)= 1.
• supSB ≥ supSW , where SB , SW are respectively the supports of the measures describing B1 and W1 (we allow

both the sides to be infinite).

Now we present an analogue of Theorem 1.1 in the random walk settings.

Theorem 1.9. Let B , W be two independent random walks such that EB1 = EW1 = 0 and suppose that there exists
b > 0 such that Eeb|B1| <+∞ and Eeb|W1| <+∞. Then for any x > 0 and 0≤ a < b ≤+∞ we have

lim
N→+∞

− logP(∀n≤Nx +Bn ≥Wn,BN −WN ∈ (aN1/2, bN1/2)|W)

logN

=
{

γ (

√
Var(W1)
Var(B1)

) on Ax,

+∞ on Ac
x,

a.s.

We stress that the function γ is the same as in theorems in Section 1.1.
Theorem 1.9 can be extended to a more general model of a random walk in random environment that we define

now. Let μ= {μn}n∈N be an i.i.d. sequence with values in the space of probability laws on R. Conditionally on μ we
sample {Xn}n∈N a sequence of independent random variables such that Xn has law μn. Moreover, we set

Sn :=
n∑

j=1

Xj , Wn := −
n∑

j=1

E(Xj |μ) and Bn := Sn +Wn.

Note that W is a random walk and conditionally on μ the process B is the sum of independent centred random
variables. We make the following standing assumptions:

(A1) We have EW1 = 0, Var(W1) ∈ [0,+∞) and Var(B1)= EB2
1 ∈ (0,+∞).

(A2) There exist C1,C2 > 0 such that E(eC1|B1||μ)≤C2 a.s.
(A3) There exists C > 0 such that EeC|W1| <+∞.
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We introduce a function f :N→N and we extend definition (1.5) as follows

Ax :=
⋂
N≥0

{
P
(∀n≤Nx +Bn ≥Wn + f (n)|W )> 0

}
. (1.6)

Theorem 1.10. Let S be a random walk in random environment and B , W as described above. Let f : N→ N such
that |f (n)| = o(n1/2−ε) for some ε > 0. For any x > 0 and 0≤ a < b ≤+∞ the following limit exists

lim
N→+∞

− logP(∀n≤Nx + Sn ≥ f (n), SN ∈ (aN1/2, bN1/2)|μ)

logN

=
{

γ (

√
Var(W1)
Var(B1)

) on Ax,

+∞ on Ac
x,

a.s. (1.7)

The previous result holds with some uniformity on the starting position. It is somewhat cumbersome to define an
analogue of Ax in this case. For this reason we state an example with the starting position xN ↗+∞, such that the
event becomes trivial by Fact 1.8.

Theorem 1.11. Let S, B and W be as above. Let f : N→ N such that |f (n)| = o(n1/2−ε) for some ε > 0 and
{xn}n ≥ 0 be such that xn ↗+∞ and xn = eo(logn). Then for any 0≤ a < b ≤+∞ the following limit exists

lim
N→+∞

logP(∀n≤NxN + Sn ≥ f (n), SN ∈ (aN1/2, bN1/2)|W)

logN
=−γ

(√
Var(W1)

Var(B1)

)
a.s.

1.4. Related works and motivations

Our result can be understood from various perspectives. One of them is the so-called entropic repulsion. This question
was asked in [3] in the context of the Gaussian free field for d ≥ 3. Namely, the authors studied the repulsive effect
on the interface of the wall which is a fixed realization of an i.i.d. field {φx}x∈Zd . They observe that the tail of φx

plays a fundamental role. When it is subgaussian the effect of the wall is essentially equivalent to the wall given by
0, while when the tail is heavier than Gaussian the interface is pushed much more upwards. It would be interesting
to ask an analogous question in our case. By Fact 1.4 we know already that the disorder has a negligible effect when
EX2+ε

i <+∞, for ε > 0. We expect that when EX2
i =∞ the repulsion becomes much stronger.

The paper [3] was followed by [4] which could be seen as an analogue of our work. Namely, the topic of this
paper is a Gaussian free field interface conditioned to be above the fixed realization of another Gaussian free field.
The authors obtain the precise estimates for the probability of this event and the entropic repulsion induced by the
conditioning.

Theorems 1.1 and 1.6 can be seen as a first step in the study of persistence exponents in random environment.
These results give examples of a one-parameter family of persistence exponents.

Similarly, a natural question arising in random walk theory is to study the probability for a random walk to stay
non-negative during n units of time. Typically this probability decays as n−1/2, which is known as the ballot theorem.
Our result stated in Theorem 1.10 provides a version of this result for random walks in random environment. The
decay is n−γ for γ ≥ 1/2. Moreover, γ > 1/2 whenever the quenched random walk is not centered.

This perspective was the initial motivation for analyzing the problems in this paper (more precisely the result given
in Theorem 1.10). Such a question arises from studies of extremal particles of a branching random walk in a time-
inhomogeneous random environment. In the companion paper [9] we show that the randomness of the environment
has a slowing effect on the position of the maximal particle. Namely, the logarithmic correction to the speed is bigger
than in the standard (time-homogenous) case, which is a consequence of (1.1).

1.5. Organization of the paper

The next section is a collection of preliminary results on the FKG inequality, Ornstein–Uhlenbeck processes and
some technical results. In Section 3 we use Kingman’s theorem to show the convergence (1.2). We prove (1.4) in
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Section 4 by inferring that the disorder of the wall has an effect on the behaviour of the probability. Section 5 is
devoted to obtaining Theorem 1.1 from Theorem 1.6 and generalize it to obtain Theorem 1.5. This last theorem is
used in Section 6 to study the analogue problem for random walks in random environment. The concluding Section 7
contains further discussion and open questions.

2. Preliminaries and technical results

In this section we list a collection of results that are useful in the rest of the article. We first introduce the so-called FKG
inequality for a Brownian motion and an Ornstein–Uhlenbeck process, that states that increasing events are positively
correlated. We then list some integrability facts concerning Ornstein–Uhlenbeck and derive technical consequences.

2.1. The FKG inequality for Brownian motion and Ornstein–Uhlenbeck processes

In the proofs we often use the so-called FKG inequality, that we now introduce. For T ≥ 0, we denote by C :=
C([0, T ],R), the space of continuous functions, endowed with the uniform norm topology. We introduce a partial
ordering ≺ on this space: For two f,g ∈ C, we set

f ≺ g if and only if ∀t∈[0,T ]f (t)≤ g(t). (2.1)

The FKG inequality is the following estimate, that follows from [2, Theorem 4 and Remark 2.1].

Fact 2.1 (The FKG inequality). Let X be a Brownian motion or an Ornstein–Uhlenbeck process and F,G : C→R

be bounded measurable functions, which are non-decreasing with respect to ≺ then

E
[
F(X)G(X)

]≥ E
[
F(X)

]
E
[
G(X)

]
. (2.2)

The result of [2] is stated for the Brownian motion only. However, this result is easily transferred to the Ornstein–
Uhlenbeck process, as (1.7) preserves the order ≺ defined in (2.1). The same reasoning of transferring estimates on
the Brownian motion to the Ornstein–Uhlenbeck process holds for the other proofs of the section. Thus to shorten and
simplify proofs, we only work with Brownian motion in the rest of the section.

We often use the following corollary of Fact 2.1, stating that increasing events (for the order ≺) are positively
correlated.

Corollary 2.2. Let X be a Brownian motion or an Ornstein–Uhlenbeck process and A,B be increasing events (i.e.
such that the functions 1A and 1B are non-decreasing for ≺), then

P(A∩B)≥ P(A)P(B). (2.3)

We also use the following property, sometimes called the strong FKG inequality.

Lemma 2.3. Let X be a Brownian motion or an Ornstein–Uhlenbeck process, f,g : R+ → R ∪ {−∞} be measur-
able functions such that f (t) ≥ g(t) for all t ∈ R+. We assume that P(∀t∈[0,T ]Xt ≥ f (t)) > 0 and P(∀t∈[0,T ]Xt ≥
g(t)) > 0. The probability distribution P(·|∀t∈[0,T ]Xt ≥ f (t)) stochastically dominates P(·|∀t∈[0,T ]Xt ≥ g(t)) with
respect to ≺. In other words for any measurable function h :R+ →R, we have

P
(∀t∈[0,T ]Xt ≥ h(t)|∀t∈[0,T ]Xt ≥ f (t)

)≥ P
(∀t∈[0,T ]Xt ≥ h(t)|∀t∈[0,T ]Xt ≥ g(t)

)
.

Proof. Let X be a Brownian motion, constructed on the canonical Wiener space (C,P). We assume without loss
of generality that P(X0 = f (0)) = P(X0 = g(0)) = 0. Using the Girsanov theorem we observe that P(∀t∈[0,T ]Xt ≥
f (t))= P(∀t∈[0,T ]Xt > f (t)). Therefore we can freely exchange the symbols ≥ and > whenever convenient.

As X is continuous, note that {∀t∈[0,T ]Xt ≥ f (t)} = {∀t∈[0,T ]Xt ≥ f̃ (t)}, where f̃ : [0, T ] 
→R is given by f̃ (x) :=
infω∈F ω(x), where F := {ω ∈ C : ∀t∈[0,T ]ω(t) > f (t)}. As the infimum of continuous function, we observe that f̃ is
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upper semicontinuous. Thus without loss of generality we assume in the rest of the proof that both f and g are upper
semicontinuous.

By Baire’s theorem there exists a sequence {fn}n such that fn ∈ C and fn(t)↘ f (t) pointwise. This implies that
An := {∀t∈[0,T ]Xt > fn(t)} is an increasing sequence of events and the limiting event is

⋃
n An = {∀t∈[0,T ]Xt > f (t)}.

We have an analogous sequence {gn} converging pointwise tor g. Up to replacing gn by min(fn, gn) we may assume
that gn ≺ fn for any n ∈N.

For any continuous function fn and ε > 0, there exists a finite set 0 ≤ t1 < t2 < . . . < tk ≤ T such that
P({∀i∈{1,...,n}Xti ≥ f (ti)}\{∀t∈[0,T ]Xt ≥ f (t)})≤ ε, by continuity of X.

We now assume that the statement of the fact is false. In this case there exists a measurable, bounded non-decreasing
function F : C→R and ε > 0 such that

E
(
F(X)|∀t∈[0,T ]Xt ≥ f (t)

)+ ε < E
(
F(X)|∀s∈[0,T ]Xt ≥ g(t)

)
. (2.4)

Using the previous arguments, there exists find n and 0≤ t1 < · · ·< tk ≤ T such that

E
(
F |∀i∈{1,...,k}Xti ≥ fn(ti)

)
< E

(
F |∀i∈{1,...,k}Xti ≥ gn(ti)

)
. (2.5)

One shows that P((Xt1 , . . . ,Xtk ) ∈ ·|∀i∈{1,...,k}Xti ≥ fn(ti)) stochastically dominates P((Xt1 , . . . ,Xtk ) ∈ ·|
∀i∈{1,...,k}Xti ≥ gn(ti)) using the same techniques as [6, B.6]. We notice that conditionally on Xti = x and Xti+1 = y

the process

{
Xt −

[
(ti+1 − t)x + (t − t)y

]
/(ti+1 − ti )

}
t∈[ti ,ti+1]

is a Brownian bridge. Moreover if we condition on the whole vector (Xt1 ,Xt2, . . . ,Xtk ), by the Markov property the
bridges on the different intervals are independent.

As a consequence, we can construct two processes Xf and Xg such that Xf has the law of X conditionally on
∀i∈{1,...,k}Xti ≥ fn(ti) and Xg the law of X conditionally on ∀i∈{1,...,k}Xti ≥ gn(ti) such that Xg ≺ Xf . Indeed, we

construct (X
f
tj
) and (X

g
tj
) on the same probability space such that Xf dominates Xg . We then link X

f
ti

with X
f
ti+1

and

X
g
ti

with X
g
ti+1

using the same bridge βi of length ti+1 − ti , setting

∀s ∈ [ti , ti+1],
{

X
f
s =Xf (ti)

ti+1−s

ti+1−ti
+Xf (ti)

s−ti
ti+1−ti

+ βi
s−ti

,

X
g
s =Xg(ti)

ti+1−s

ti+1−ti
+Xg(ti)

s−ti
ti+1−ti

+ βi
s−ti

.

With this construction, we have ∀t ≤ T ,X
g
t ≤X

f
t , which contradicts (2.5), thus (2.4). �

2.2. Integrability estimates for Ornstein–Uhlenbeck processes

We first list a collection of classical estimates for an Ornstein–Uhlenbeck process,

Fact 2.4. Let X be an Ornstein–Uhlenbeck process with parameters σ,μ > 0 starting from X0 = x.

1. The process X is a strong Markov process with an invariant measure N (0, σ 2

2μ
). For any t > 0 the random variable

Xt is distributed as N (xe−μt , σ 2

2μ
(1− e−2μt )).

2. For any y ∈R the right tail of Ty := inf{t ≥ 0 :Xt = y} decays exponentially fast.
3. The process {X̃t }t≥0 given by X̃t := Xt − e−μtX0 is an Ornstein–Uhlenbeck process with parameters σ,μ > 0

starting from X̃0 = 0.
4. The quantity M := supt≤1 Xt has Gaussian concentration i.e. there exist C,c > 0 such that

P(M > y)≤ C exp
(−cy2), ∀y ≥ 0.
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The first and third claims follow directly from (1.7). The fourth claim is a consequence of this fact as well, as
maxt≤1 Xt ≤ x + σ√

2μ
maxt≤e2μ−1 Ws , where W a Brownian motion. The random variable maxt≤e2μ−1 Ws has Gaus-

sian concentration by the reflection principle, proving this claim. Finally, the second claim was proved in [11].
We recall a classical bound on the tail estimate of Gaussian random variables.

Fact 2.5. Let Z be a standard Gaussian random variable and x > 0. We have

1√
2π

x

1+ x2
e−x2/2 ≤ P(Z ≥ x)≤ 1√

2π

1

x
e−x2/2. (2.6)

We now present a convex analysis result, stating that the probability for a Brownian motion to stay above a curve
f is log-convex as a function of f .

Lemma 2.6. Let X be a Brownian motion or Ornstein–Uhlenbeck process and h1, h2 : R→ R ∪ {−∞} be càdlàg
functions such that

P
(∀s≥0Xs ≥ h1(s)

)
> 0, P

(∀s≥0Xs ≥ h2(s)
)
> 0.

Then the function

[0,1] −→R+,

λ 
−→− logP
(∀s≥0Xs ≥ λh1(s)+ (1− λ)h2(s)

)
is convex.

Proof. By standard limit arguments it is enough to show that for any n,N ∈N the function

[0,1] −→R+,

λ 
−→− logP
(∀k≤NXk/n ≥ λh1(k/n)+ (1− λ)h2(k/n)

) (2.7)

is convex. We use the Prekopa–Leindler inequality along the lines of the proof below [5, Theorem 7.1]. For x ∈RN , set
Hλ(x)= d(x)1{xk≥λh1(k/n)+(1−λ)h2(k/n),∀k≤N}(x), where we denote by d the joint density of (X1/n,X2/n, . . . ,XN/n).
The density d is log-concave i.e for any λ ∈ (0,1) and x, y ∈ RN we have d(λx + (1 − λ)y) ≥ d(x)λd(y)(1−λ).
Similarly

1∀kλxk+(1−λ)yk≥λh1(k/n)+(1−λ)h2(k/n) ≥ (1∀kxk≥h1(k/n))
λ(1∀kyk≥h2(k/n))

1−λ.

Thus the assumption of the Prekopa–Leindler inequality is fulfilled i.e.

Hλ
(
λx + (1− λ)y

)≥ (H 1(x)
)λ(

H 0(y)
)1−λ

.

Now [5, Theorem 7.1] implies (2.7). �

We now give some estimates on the random variable− logP(∀s≤1Xs ≥ Ys |Y), where X and Y are two independent
Ornstein–Uhlenbeck processes.

Lemma 2.7. Let X, Y be independent Ornstein–Uhlenbeck processes.

1. Let C,c > 0 and x ≥ 0. Then there exists C̃ > 0 such that for any X0 ∼N (x, c2
1) with c1 ≥ c and Y0 ∼N (0,C2

1)

with C1 ∈ [0,C] we have that

E
[− logP(∀s≤1Xs ≥ Ys |Y)

]≤ C̃. (2.8)
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2. Let X0 = x > 0 and Y0 = 0, we set ρ = inf{t ≥ 0 : Yt = 0,∃s < t : |Ys | = 1}. Then

E
[− logP(∀s≤ρXs ≥ Ys |Y)

]
<+∞. (2.9)

3. Let X0 = 0, Y0 = 0 and a, b > 0 then the random variable

− logP(∀s≤1Xs ≥ Ys − a,X1 ≥ Y1 + b|Y)

has exponential moments.

Proof. Let X and Y be two independent Ornstein–Uhlenbeck processes of parameters (μ1, σ1) and (μ2, σ2) respec-
tively. We first prove the third point. By the FKG property (2.3) we have

− logP(∀s≤1Xs ≥ Ys − a,X1 ≥ Y1 + b|Y)

≤− logP(∀s≤1Xs ≥ Ys − a|Y)− logP(X1 ≥ Y1 + b|Y).

As X1, Y1 are two independent Gaussian random variables, the second term in the upper bound has exponential
moments by Fact 2.5. We set H =− logP(∀s≤1Xs ≥ Ys − a|Y). Applying (1.7), we have

H ≤− logP
(∀s≤1Bt1(s) ≥ β|Wt2(s)| − a′|W ),

where B , W are Brownian motions, β = σ2
σ1

, t1(s) = eμ1s − 1 and t2(s) = eμ2s − 1 (we recall that μ1 and μ2 are
parameters of the Ornstein–Uhlenbeck processes X and Y ). The constants a′, β > 0 can be calculated explicitly but
do not matter for the calculations. We denote by

A1 :=
{∀i∈N∀s∈[ 3

4 2−i ,2−i ]Bt1(s) ≥ β|Wt2(s)| − a′
}
,

A2 :=
{∀i∈N\{0}∀s∈[2−i , 3

2 2−i ]Bt1(s) ≥ β|Wt2(s)| − a′
}
.

Using the FKG property (2.3) again we have

H ≤− logP(A1 ∩A2|W)≤− logP(A1|W)− logP(A2|W).

For i ∈ {1,2} we write Hi =− logP(Ai |W). We prove that H1 is exponentially integrable. The same arguments will
directly apply to prove that H2 is exponentially integrable. We observe that

B := {∀i∈N∀s∈[ 3
4 2−i ,2−i ]Bt1(s) −Bt1(2−i /2) ≥ β|Wt2(s) −Wt2(2−i /2)| − 2−i/4a′/8

}⊂A1.

Let θ > 0, using the fact that the increments of a Brownian motion are independent we obtain

L(θ) := E
(
eθH1

)≤ E
(
P(B|W)−θ

)=∏
i∈N

Li(θ),

where

Li(θ) := E
(
P
(∀

s∈[ 3
2 2−i ,2−i ]Bt1(s)−t1(2−i /2) ≥ β|Wt2(s)−t2(2−i /2)| − 2−i/4a′′|W )−θ )

,

and a′′ := a′/8. By the Brownian scaling we get

Li(θ)= E
(
P
(∀

s∈[ 3
2 2−i ,2−i ]B2i [t1(s)−t1(2−i /2)] ≥ β|W2i [t2(s)−t2(2−i /2)]| − 2i/4a′′|W )−θ )

.

There exist 0 < c1 < C1 such that for any i ∈N we have

c1 ≥ 2i

[
t1

(
3

4
2−i

)
− t1

(
2−i/2

)]
and C1 ≤ 2i

[
t1
(
2−i
)− t1

(
2−i/2

)]
.
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We define analogously 0 < c2 < C2 associated to t2. We set

M := sup
s∈[c2,C2]

βWs, m := inf
s∈[c1,C1]

Bs.

With this notation, the estimate becomes

Li(θ)≤ E
(
P
(
m≥M − 2i/4a′′|M)−θ )=: L̃i(θ).

We have

0≤ L̃i(θ)− 1= E

(
1− P(m≥M − 2i/4a′′|M)θ

P(m≥M − 2i/4a′′|M)θ

)
.

It is well-known that for x ≥ 0 we have q(x) := P(M > x) ≤ C3e
−c3x

2
for some c3,C3 > 0. We also prove a bound

from below for the tail of m. Namely, we have

P(m > x) ≥ P

(
{Bc1 ≥ x + 5} ∩

{
sup

s∈[c1,C1]
|Bs −Bc1 | ≤ 5

})

≥ P(Bc1 ≥ x + 5)P
(

sup
s∈[c1,C1]

|Bs −Bc1 | ≤ 5
)
≥ C4e

−c4x
2
,

for some c4,C4 ≥ 0. We combine the estimates to get

L̃i(θ)− 1 ≤ 2θP
(
M ≤ 2i/4a′′/2

)
P
(
m≤−2i/4a′′/2

)+ P
(
M ≥ 2i/4a′′/2

)
P(m≥ 0)−θ

+
∫ +∞

0
P(m≥ y)−θP

(
M ≥ y + 2i/4a′′

)
dy.

There exists c5,C5 > 0 such that the first two terms can be bounded from above by C5e
−c5i for any i ∈ N. The last

term is bounded in the following way:∫ +∞

0
P(m≥ y)−θP

(
M ≥ y + 2i/4a′′

)
dy ≤ C−θ

4 C3

∫ +∞

0
eθc4y

2
e−c3(y+2i/4)2

dy

≤ C6e
−c6i ,

for c6,C6 > 0, with the last estimate holding under assumption that θ is small enough (i.e. θ <
c3
c4

). We conclude that

0≤ L̃i(θ)− 1≤ C5e
−c5i +C6e

−c6i .

This is enough to claim that
∏

i∈N L̃i(θ) < +∞, thus
∏

i∈N Li(θ) < +∞. We conclude that H1 admits exponential
moments.

Similar, but simpler, calculations prove that

E
[− logP(∀s≤1Xs ≥ Ys |Y,X0 = x,Y0 = 0)

]
<+∞. (2.10)

We now prove (2.9). By the FKG inequality (2.3) we have

E
[− logP(∀s≤ρXs ≥ Ys |Y)

] ≤ E
[− logP(∀s≤1Xs ≥ Ys |Y)

]

+E

[ �ρ�∑
i=1

− logP
(
∀s∈[i,i+1]Xs ≥ sup

s∈[0,ρ]
Ys |Y

)]
.

The first term is finite by (2.10). To treat the second one we study

pi(m) := − logP(∀s∈[i,i+1]Xs ≥m).
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By point 3 of Fact 2.4 the process X̃t := Xi+t − Xie
−μt is an Ornstein–Uhlenbeck process starting from X̃0 = 0.

Therefore we have

pi(m)≤− logP
(
Xi ≥meμ + 1

)− logP(∀s∈[0,1]X̃s ≥−1).

Clearly − logP(∀s∈[0,1]X̃s ≥−1) >−∞, using point 1 of Fact 2.4 and (2.6) one easily checks that

pi(m)≤ C9
(
m2 + 1

)
,

for C9 > 0. Recalling that M = sups∈[0,ρ] Ys and Fact 3.3 we conclude

E

( �ρ�∑
i=1

pi(M)

)
≤ E

(
ρ
[
C9
(
M2 + 1

)])≤ (E(ρ2)E[C9
(
M2 + 1

)]2)1/2
<+∞.

The estimate (2.8) follows by similar calculations and Fact 2.4. �

3. Existence and properties of the function γ

In this section, we denote by X, Y two independent Ornstein–Uhlenbeck processes with parameters (μ1, σ1) and
(μ2, σ2) respectively. The main result of the section is the existence of γμ1,μ2(σ2/σ1) > 0 such that

lim
t→+∞

− logP(∀s≤tXs ≥ Ys,Xt − Yt ∈ (a, b)|Y)

t
= γμ1,μ2(σ2/σ1) a.s.

To make notation lighter, we write γ instead of γμ1,μ2(σ2/σ1), as well as δ instead of δμ1,μ2(σ2/σ1) in the rest of the
section. We start proving the annealed part of Theorem 1.6.

Lemma 3.1. There exists δ > 0 such that for any 0≤ a < b ≤+∞,

lim
t→+∞

− logP(∀s≤tXs ≥ Ys,Xt − Yt ∈ (a, b))

t
= δ.

Proof. This result is a standard application from spectral theory, thus we only present a sketch of the proof. For any
t ≥ 0 and x, y ∈R, we set

ut (x, y)= P
(∀s≤tXs ≥ Ys,Xt − Yt ∈ (a, b)

)
.

We introduce the space D = {(x, y) ∈R2 : x > y} and the operator

L= σ 2
1

2
∂x,x + σ 2

2

2
∂y,y −μ1x∂x −μ2y∂y.

Note that the operator L is an Ornstein–Uhlenbeck operator, which has been the subject of studies in the recent years,
we refer to [10] and the references therein. By the Feynman-Kac formula we have⎧⎪⎨

⎪⎩
∂tut (x, y)= Lut(x, y) if (x, y) ∈D,

ut (x, y)= 0 if (x, y) /∈D,

u0(x, y)= 1x−y∈[a,b].

Further, let ν be the measure with density exp(−μ1x
2

σ 2
1
− μ2y

2

σ 2
2

). We define the scalar product on L2(D,ν) by

〈f,g〉ν =
∫

D

f (x, y)g(x, y)ν(dxdy).
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By integration by parts, for any u,v ∈ C∞(D) with compact support, we have

〈u,Lv〉ν =−
σ 2

1

2
〈∂xu, ∂xv〉ν −

σ 2
2

2
〈∂yu, ∂yv〉ν = 〈v,Lu〉ν.

As a consequence, L can be extended into a negative self-adjoint operator on H1
0(ν). Moreover, this operator is

compact, as a consequence, there exists an orthonormal basis {hn}n∈N of L2(D,ν) and a decreasing negative sequence
{λn}n∈N such that

Lhn = λnhn for any n ∈N,

and h1(x, y) > 0 for any (x, y) ∈D.
Decomposing f (x, y)= 1x−y∈[a,b] on the basis hn, we obtain

ut (x, y)=
∑
n∈N

etλnhn(x, y)〈hn,f 〉ν, for all t ≥ 0.

In particular, this yields limt→+∞ 1
t

logut (x, y)= λ1 < 0 uniformly on compact sets, concluding the proof. �

3.1. Path decomposition

In this section, we present a decomposition of the path Y into large excursions. This decomposition is used both in
proofs of (1.2) and (1.4). We define the random variables {τi}i≥0, {ρi}i≥0 such that ρ0 = 0 and

ρi+1 := inf
{
t ≥ ρi : Yt = 0 and ∃s∈(ρi ,t)|Ys | = 1

}
and τi := sup{t < ρi+1 : Yt = 0}.

We also define ri := ρi+1 − ρi and denote

Y i(t) := Yt+ρi
, t ∈ [0, ri]. (3.1)

Remark 3.2. Note that ρi is a stopping time (contrary to τi ). The precise definition of ρi and τi are not important.
What matters for our proofs is that on the interval [τi, ρi+1] the process performs a “macroscopic” excursion which is
symmetric around 0, and that ρi has a finite mean.

Fact 3.3. The sequence {(Y i, ri)}i≥0 is i.i.d. and the random variables ri and Mi := sups≤ri
Y i(s) have tails which

decay exponentially fast.

Proof. The first statement follows by the fact that Yρi
= 0 and the strong Markov property applied to Y . We define

ρ̃ := inf{t ≥ 0 : |Yt | = 1} then ρ1 = inf{t ≥ ρ̃ : Yt = 0}.
By point 2 of Fact 2.4 both ρ̃ and ρ1 − ρ̃ have exponential tails, thus r1 = ρ1 has an exponential tail. For x ≥ 0 we

have

P
(
Mi ≥ x

)≤ P

(
sup
s≤x

Y i(s)≥ x
)
+ P(ri ≥ x)≤

�x�∑
k=1

P

(
sup

s∈[k−1,k]
Y i(s)≥ x

)
+ P(ri ≥ x).

We deduce that Mi has an exponential tail using point 4 of Fact 2.4. �

3.2. A modified version of Theorem 1.6

In this section, we denote by Px the law of (X,Y ) such that X0 = x and Y0 = 0. In a first time, we study the asymptotic
behaviour of logP(∀u∈[0,ρn]Xu ≥ Yu|Y) as n→+∞, using Kingman’s subadditive ergodic theorem.
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Lemma 3.4. We assume that Y0 = 0. For any 0 < a < b ≤+∞, there exists γ̃a,b such that

lim
n→+∞

− log infx∈(a,b) Px(∀u∈[0,ρn]Xu ≥ Yu,Xρn ∈ (a, b)|Y)

logn
= γ̃a,b a.s. and in L1.

Proof. Let 0 < a < b ≤+∞, we set I = (a, b). For any 0≤m < n, we set

pm,n := inf
x∈(a,b)

P(∀u∈[ρm,ρn]Xu ≥ Yu,Xρn ∈ I |Y,Xρm = x) (3.2)

and qm,n =− logpm,n. By Markov inequality applied to X, we have

pm,n = inf
x∈(a,b)

Px(∀u∈[0,ρn−ρm]Xu ≥ Yu+ρm,Xρn−ρm ∈ I |Y).

We observe that the process X under Px has the same law as (Xt + xe−μt ) under P0. Therefore, from the FKG
inequality (2.3), if b=+∞ then the minimal value of pm,n is attained at x = a.

We prove that {qm,n}n>m≥1 fulfils the assumptions of Kingman’s subadditive ergodic theorem as stated in [7,
Theorem 9.14]. By the Markov property, as Yρn = 0 for any 1≤m < n we have

p0,n = p0,mP(∀u∈[ρm,ρn]Xu ≥ Yu,Xρn ∈ I |Y,∀u∈[0,ρm]Xu ≥ Yu,Xρm ∈ I )≥ p0,mpm,n,

thus q0,n ≤ q0,m + qm,n, which is the subadditivity condition [7, (9.9)].
We fix k ≥ 1. We recall that {Y l}l≥0 is i.i.d. Consequently the sequence

{qlk,(l+1)k}l≥0 (3.3)

is i.i.d. and condition [7, (9.7)] is fulfilled. Further, condition [7, (9.8)] follows by the fact that the process {Yt+ρk
}t≥0

is an Ornstein–Uhlenbeck process distributed as Y . As q0,n ≥ 0; Lemma 2.7 implies that Eq0,1 <+∞ thus [7, Theo-
rem 9.14] applies and

lim
n→+∞

− logp0,n

n
= lim

n→+∞
q0,n

n
=: γ̃a,b, a.s. and L1. (3.4)

The constant γ̃a,b is non-random since (3.3) is ergodic. �

Now we prove that the constant γ̃ does not depend on (a, b).

Lemma 3.5. There exists γ̃ > 0 such that for any 0 < a <+∞ we have γ̃ = γ̃a,+∞.

Proof. For any a ≥ 0 and x > 0, we write

pn(x, a) := Px(∀u∈[0,ρn]Xu ≥ Yu,Xρn > a|Y),

and accordingly qn(x, a) := − logpn(x, a). We prove that

lim
n→+∞

qn(x, a)

n
= γ̃ , a.s. and L1, (3.5)

exists and is independent of x > 0, a ≥ 0. Fix x > 0, by (3.4), we know that

lim
n→+∞

qn(x, x)

n
= γ̃x,+∞, a.s. and L1,
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as the minimum in (3.2) is attained in x = a. We prove that pn(x,0,+∞) behaves similarly. As pn(x, x) ≤
pn(x,0,+∞), we have

0≤ dn

:= qn(x, x,+∞)

n
− qn(x,0,+∞)

n

=−1

n
log

pn(x, x,+∞)

pn(x,0,+∞)

=−n−1 logPx[Xρn ≥ x|∀u∈[ρ0,ρn]Xu ≥ Yu,Y ]
≤ −n−1 logPx[Xρn ≥ x|Y ],

by the FKG inequality. We conclude easily that dn → 0 a.s. and in L1. By a simple monotonicity argument we
conclude that convergence (3.5) holds for any pair (x, a), when x > 0 and a ∈ [0, x] and the limit depends only on x.

We now fix x1 > x2 > 0, we have pn(x1,0,+∞)≤ pn(x2,0,+∞). On the other hand

qn(x2,0,+∞)

n
≤ − logPx2 [∀s≤ρ1Xs ≥ Ys,Xρ1 ≥ x1|Y ]

n
+ qn−1(x1,0,+∞)

n
. (3.6)

This proves that γ̃ = γ̃x,+∞ does not depend of x. �

Lemma 3.6. For any 0 < a < b ≤+∞, we have γ̃ = γ̃a,b

Proof. Using the previous lemma, we set γ̃ = γa,+∞ for any a > 0. To show the claim it is enough to prove that for
any b <+∞ the limit cannot be smaller. We define n0 = �n−C1 logn� for C1 > 1 to be fixed later and n1 = n− 1.
Using the Markov property we decompose

Px

(∀u≤ρnXu ≥ Yu,Xρn ∈ (a, b)|Y )≥ p1(n)p2(n)p3(n),

where

p1(n) := inf
x∈(a,b)

Px

(∀u≤ρn0
Xu ≥ Yu,Xρn0

∈ (a,n)|Y ),
p2(n) := inf

x∈[a,n]P
(∀u∈[ρn0 ,ρn1 ]Xu ≥ Yu,Xρn1

∈ (a, logn)|Y,Xρn0
= x
)
,

p3(n) := inf
x∈[a,logn]P

(∀u∈[ρn1 ,ρn]Xu ≥ Yu,Xρn ∈ (a, b)|Y,Xρn1
= x
)
.

We prove that

lim
n→+∞

− logp1(n)

n
= γ̃ , lim

n→+∞
− logp2(n)

n
= 0, lim inf

n→+∞P
(− logp3 ≤ n1/2)> 0, (3.7)

where the first two convergences hold in probability. This limit and (3.4) imply the claim of the lemma. We first treat
the second convergence. We have

p2(n) ≥ inf
x∈[a,n]Px(∀u∈[0,ρn1−ρn0 ]Xu ≥ Yρn0+u,Xρn1−ρn0

≥ a|Y)

− sup
x∈[a,n]

Px(Xρn1−ρn0
≥ logn|Y)

≥ Pa(∀u∈[0,ρn1−ρn0 ]Xu ≥ Yu+ρn0
,Xρn1−ρn0

≥ a|Y)− Pn(Xρn1−ρn0
≥ logn|Y),

using the Markov property and the FKG inequality. Using (3.4) we get that the logarithm of the first term is ≈
C1γ̃ logn. Now we fix C1 large enough so that EXρn1−ρn0

≤ 1. This can be established using property 3 of Fact 2.4.
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Further property 1 implies that logPn(Xρn1−ρn0
≥ logn|Y)≤−c1 log2 n, for some c1 > 0. We conclude that for large

n the second term is negligible and thus for some C > 0

lim
n→+∞P

(− logp2(n)

logn
≥ C

)
= 0.

This yields the second convergence in (3.7). An analogous proof gives the first one. For the last one we consider an
event An := {ρn − ρn1 ∈ [1,2], sups∈[ρn1 ,ρn] |Ys | ≤ a/2}. Clearly,

p3(n)≥ inf
x∈[1,logn]Px

(
Xρn−ρn,1 ∈ (a, b)|Y )Pa(∀u∈[0,ρn−ρn1 ]Xu ≥ Yu+ρn1

|Y,Xρn−ρn1
= a).

Conditionally on An the second term is bounded from below by a constant and the first one by exp(−(logn)3). We
conclude that for large n there is P(− logp3 ≤ n1/2)≥ P(An). This finishes the proof as the right-hand side is non-zero
and does not depend on n. �

Finally, we prove the limit in Lemma 3.4 holds for any starting position.

Lemma 3.7. For any x > y and 0≤ a < b ≤+∞, we have

lim
n→+∞

− logPx(∀u∈[0,ρn]Xu ≥ Yu,Xρn ∈ (a, b)|Y,Y0 = y)

logn
= γ̃ a.s. and in L1,

Proof. We prove this result assuming Y0 = 0, the case Y0 	= 0 being treated in a similar way. We write

qn(x, a, b)=− logPx

(∀u∈[0,ρn]Xu ≥ Yu,Xρn ∈ (a, b)|Y ).
Using the two previous lemmas, we have

lim sup
n→∞

qn(x, a, b)

n
≤ lim

n→+∞
supx∈(a,b) qn(x, a, b)

n
= γ̃ ,

as supx∈(a,b) qn(x, a, b)= q0,n. Similarly, for any x ≥ a, we have

lim inf
n→+∞

qn(x, a, b)

n
≥ lim inf

n→+∞
qn(x, a,+∞)

n
≥ lim inf

n→+∞
qn(a, a,+∞)

n
≥ γ̃ ,

by the FKG inequality. Finally, using a reasoning similar to (3.6), a similar inequality holds for x ≤ a. Consequently,
the convergence

lim
n→+∞

qn(x, a, b)

n
= γ̃ , a.s. and L1, (3.8)

holds for any a, b, x. �

3.3. Existence and basic properties of γ

We now prove that (1.2) holds. To this end we state an auxiliary fact, whose proof is postponed to the end of the
section.

Fact 3.8. For any C ≥ 0, a ≥ C and b ∈ (a,+∞] the family of random variables {Ht }t≥0 defined by

Ht := − logP(∀s≤tXs ≥ Ys +C,Xt − Yt ∈ (a, b)|Y)

t
. (3.9)

is Lp-uniformly integrable for any p ≥ 1.
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Proof. Without loss of generality it is enough to work with integer times and assume that a > C. Denoting the
probability in (3.9) by pt we estimate

− logpn ≤− logP
(∀s≤nXs ≥ Ys +C,∀k∈{1,...,n}Xk − Yk ∈ (a, b)|Y )

≤− logP
(∀s∈[0,1]Xs ≥ Ys +C,X1 − Y1 ∈ (a, b)|Y )+ ∑

k∈{1,...,n−1}
qk,

where we have set

qk := − log
[

inf
x∈(a,b)

P
(∀s∈[k,k+1]Xs ≥ Ys +C,Xk+1 − Yk+1 ∈ (a, b)|Y,Xk − Yk = x

)]
.

By the Markov property the random variables {qk}k≥1 are independent and identically distributed thus, by
Lemma 2.7, the sequence { 1

n

∑n
k=1 qk}n is Lp-uniformly integrable. Further, the proof follows by standard argu-

ments. �

Lemma 3.9. For any 0≤ a < b ≤+∞ and X0 > Y0, we have

lim
t→+∞

− logP(∀s≤tXs ≥ Ys,Xt − Yt ∈ (a, b)|Y)

t
= γ̃

E(r1)
a.s. and in L1.

Consequence of this lemma, we set γ = γ̃
E(r1)

.

Proof. Let m(t) := �t/Eρ1 − t2/3� and M(t) := �t/Eρ1 + t2/3� and

At :=
{
t ∈ [ρm(t), ρM(t)]

}
.

Clearly, ρn =∑n−1
k=0 rk , using Fact 3.3 one checks that 1At

→ 1 a.s. By Fact 3.8 it follows that

lim
t→+∞Ht1Ac

t
= 0, a.s. and Lp. (3.10)

By (3.8) we have

lim inf
t→+∞Ht ≥ lim

t→+∞1At

− logP(∀s≤ρm(t)
Xs ≥ Ys |Y)

m(t)

m(t)

t
= γ̃

Er1
, a.s. and Lp. (3.11)

The bound from above is slightly more involved

1At
Ht ≤ 1At

− logP(∀s≤ρm(t)
Xs ≥ Ys,∀s∈[ρm(t),ρM(t)]Xs − Ys ∈ (a, b)|Y)

M(t)

M(t)

t
.

Let us denote the probability in the expression above by p. We fix a′, b′ such that a < a′ < b′ < b and use the Markov
property

logp ≥ logP
(∀s≤ρm(t)

Xs ≥ Ys,Xρm(t)
− Yρm(t)

∈ (a′, b′)|Y )
+ log

[
inf

x∈[a′,b′]
logP

(∀s∈[ρm(t),ρM(t)
]Xs − Ys ∈ (a, b)|Y,Xρm(t)

= x
)]

.

It is easy to check that the second term divided by t converges to 0 (which essentially follows by the fact that M(t)−
m(t)= o(t)). Thus using (3.8) again we obtain

lim inf
t→+∞Ht ≤ γ̃

Er1
, a.s. and Lp.

This together with (3.11) concludes the proof of (1.2). �
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We study the properties of the exponent γ as a function of a constant β by which the path Y is multiplied. More
precisely, with a slight abuse of notation, we set for β ∈R

γ (β)= lim
t→+∞

1

t
logP(Xs ≥ βYs, s ≤ t |Y),

again without denoting the dependence in μ1, μ2, σ1, σ2, to avoid cumbersome notation.

Lemma 3.10. The function γ is symmetric and convex.

Proof. As the law of Y is symmetric, γ is symmetric. In effect, for any t ≥ 0 we have

P(Xs ≥ βYs, s ≤ t |Y)
(d)= P(Xs ≥−βYs, s ≤ t |Y),

thus limt→+∞ 1
t

logP(Xs ≥ βYs, s ≤ t |Y)
(d)= limt→+∞ 1

t
logP(Xs ≥ −βYs, s ≤ t |Y). We conclude that γ (β) =

γ (−β).
To prove convexity we use Lemma 2.6. To this end we fix t > 0 and λ ∈ (0,1). Applied conditionally on Y the

lemma implies that for any t ≥ 0, almost surely

− logP(∀s≤tXs ≥ (λa + (1− λ)b)Ys |Y)

t

≤−λ
logP(∀s≤tXs ≥ aYs |Y)

t
− (1− λ)

logP(∀s≤tXs ≥ bYs |Y)

t
.

Taking t →+∞ we obtain γ (λa + (1− λ)b)≤ λγ (a)+ (1− λ)γ (b). �

Using the same arguments, one obtains easily the following result.

Lemma 3.11. For β ∈R, we set

δ(β)= lim
t→+∞

1

t
logP(∀s≤tXs ≥ βYs),

the function δ is symmetric and convex.

Proof. We recall that by Lemma 2.6, the function

β 
→ − logP(∀s≤t ,Xs ≥ βYs |Y)

is a.s. a convex function. Thus, for any λ ∈ [0,1] and β , β ′ we have

P
(∀s≤t ,Xs ≥

(
λβ + (1− λ)β ′

)
Ys |Y

)≤ P(∀s≤t ,Xs ≥ βYs |Y)λP
(∀s≤t ,Xs ≥ β ′Ys |Y

)1−λ
.

Consequently, using Holder inequality, we obtain

E
(
P
(∀s≤t ,Xs ≥

(
λβ + (1− λ)β ′

)
Ys |Y

))≤ P(∀s≤t ,Xs ≥ βYs)
λP
(∀s≤t ,Xs ≥ β ′Ys

)1−λ
,

concluding the proof. �

4. Relevance of the disorder

By Lemmas 3.1, 3.9, 3.10 and 3.11, there exist two convex symmetric functions γμ1,μ2 and δμ1,μ2 such that (1.2) and
(1.3) both hold. Therefore, the only thing left to prove Theorem 1.6 is the strict inequality (1.4).
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Observe that for any fixed t > 0, by Jensen’s inequality we have

E
[− logP(∀s≤tXs ≥ βYs |Y)

]
>− logP(∀s≤tXs ≥ βYs),

which implies γμ1,μ2(β)≥ δμ1,μ2(β) for any β ∈R. Obtaining the strict inequality is a much harder result. We recall
the path decomposition from Section 3.1. The key observation, on which the proof strategy hinges on, is that Jensen’s
inequality applied on each interval [ρi, ρi+1] allows to prove there exists a “gap” between the two quantities. The
main technical difficulty will be to control this “gap” uniformly in i. This control is established in Proposition 4.5.

In this section, unless specified otherwise, we assume that X and Y are two independent Ornstein–Uhlenbeck
processes, with parameters (μ1, σ1) and (μ2, σ2) respectively, such that Y0 = 0 and X0 = 1. Before the main proof
we present three technical lemmas. The first one is a concentration inequality for a conditioned Ornstein–Uhlenbeck
process.

Lemma 4.1. Let X be an Ornstein–Uhlenbeck process. For any C1 > 0 there exist C2,C3 > 0 such that for any
f :R+ 
→R+ being a C1-Lipschitz function we have

P
(
Xt ≥ x + f (t)|∀s≤tXs ≥ f (s)

)≤ exp
(−C2x

2), x ≥ C3f (t), (4.1)

as soon as X0 ∈ [f (0)+ 2, (C1 + 1)f (0)).

Proof. To avoid cumbersome notation we assume that t ∈N. The proof for general t follows similar lines. Further we
assume that

∀s≤t f (s)≥min
{
(s + 1)1/3, (t − s + 1)1/3}. (4.2)

If it is not the case, by Lemma 2.3 we can freely change f by

s 
→ f (s)+min
{
(s + 1)1/3, (t − s + 1)1/3}

which is (C1 + 1)-Lipschitz.
We shorten xt := x + f (t) and let c1 > 1. Using Lemma 2.3 we estimate

P
(
Xt ≥ xt |∀s≤tXs ≥ f (s)

)≤ P
(
Xt ≥ xt |∀s≤tXs ≥ f (s),∀n∈{1,...,t}Xn ≥ c1f (n)

)
= P(Xt ≥ xt ,∀s≤tXs ≥ f (s)|∀n∈{1,...,t}Xn ≥ c1f (n))

P(∀s≤tXs ≥ f (s)|∀n∈{1,...,t}Xn ≥ c1f (n))

≤ P(Xt ≥ xt |∀n∈{1,...,t}Xn ≥ c1f (n))

P(∀s≤tXs ≥ f (s)|∀n∈{1,...,t}Xn ≥ c1f (n))
. (4.3)

Let us first treat the denominator denoted by Id . We use (4.2) and choose c1 sufficiently large so that Id is bounded
from below by a constant independent on t and f . Using Lemma 2.3 we obtain

Id = P
(∀s∈[0,1]Xs ≥ f (s)|∀n∈{1,...,t}Xn ≥ c1f (n)

)
× P

(∀s∈[1,t]Xs ≥ f (s)|∀n∈{1,...,t}Xn ≥ c1f (n),∀s∈[0,1]Xs ≥ f (s)
)

≥ P
(∀s∈[0,1]Xs ≥ f (s)|X1 ≥ c1f (1)

)
P
(∀s∈[1,t]Xs ≥ f (s)|∀n∈{1,...,t}Xn ≥ c1f (n)

)
.

Continuing in a same manner we obtain that

Id ≥ P
(∀s∈[0,1]Xs ≥ f (s)|X1 ≥ c1f (1)

)
×

∏
n∈{1,...,t}

P
(∀s∈[n−1,n]Xs ≥ f (s)|Xn−1 = c1f (n− 1)

)
. (4.4)
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By point 3 of Fact 2.4 conditionally on Xn−1 = c1f (n − 1) the process {X̃t }t∈[0,1] defined by X̃t := Xn−1+t −
c1e

−μtf (n− 1) is an Ornstein–Uhlenbeck process starting from X̃0 = 0. Thus

P
(∀s∈[n−1,n]Xs ≥ f (s)|Xn−1 = c1f (n− 1)

)
≥ P

(
∀s∈[0,1]X̃s ≥ sup

s∈[n−1,n]
f (s)− c1e

−μf (n− 1)
)

≥ P
(∀s∈[0,1]X̃s ≥−c1e

−μf (n)/2
)
.

We used inequality sups∈[n−1,n] f (s)− c1e
−μf (n− 1) ≤ −c1e

−μf (x)/2 which can be easily verified by (4.2) and
Lipschitz property as soon as c1 is large enough. By point 4 of Fact 2.4 we conclude that

P
(∀s∈[n−1,n]Xs ≥ f (s)|Xn−1 = c1f (n− 1)

)≥ 1−C exp
(−c

[
c1e

−μf (n)/2
]2)

.

By this estimate, (4.4), (4.2) and increasing c1 if necessary we obtain

P
(∀s≤tXs ≥ f (s)|∀n≤tXn−1 ≥ c1f (n)

)≥ p,

for some p > 0 which does not depend on n. From now on c1 is fixed. Now in order to show (4.1) it is enough to
prove that the numerator in (4.3) decays in a Gaussian fashion. This is the aim for the rest of the proof. We define a
sequence {Gn}n≥0 by putting G0 =X0 > 0 and

Gn :=Xn − cnXn−1, n≥ 1 (4.5)

where cn := Cov(Xn,Xn−1)

Cov(Xn,Xn)
. It is easy to check that in fact cn = c ∈ (0,1) and moreover the random variables {Gn}n≥0

are independent, distributed according to N (0, b2) where b is a function of the parameters of the process X. We will
prove that there exist c2,C2 > 0 such that for any x > C2f (t) and t ∈N we have

P
(
Xt ≥ x + f (t)|∀n∈{1,...,t}Xn ≥ c1f (n)

)≤ e−c2x
2
. (4.6)

We start by choosing constants B,c2 > 0 satisfying

B ∈ (c,1), c2 <
(1−B)2

2b2
. (4.7)

Let L ≥ 0, without loss of generality we assume that f (t) ≥ L. This assumption with the Lipschitz property yields
that

A−1
L ≤ f (t + 1)

f (t)
≤AL. (4.8)

for AL such that AL ↘L 1. We fix L such that B/(cAL) > 1. We proceed inductively. The constants L and C2
potentially may be increased during the further proof (the other constants stay fixed). We stress that this increase
happens once and later the constants are valid for all steps of the induction.

Checking the base case is an easy exercise. Let us assume that (4.6) holds for t ≥ 0. Let x be such that x+f (t+1)≥
c1f (t + 1), we have

P
(
Xt+1 ≥ x + f (t + 1)|∀n∈{1,...,t+1}Xn ≥ c1f (n)

)
= P(Xt+1 ≥ x + f (t + 1),∀n∈{1,...,t}Xn ≥ c1f (n))

P(∀n∈{1,...,t+1}Xn ≥ c1f (n))

= P(Xt+1 ≥ x + f (t + 1)|∀n∈{1,...,t}Xn ≥ c1f (n))

P(Xt+1 ≥ c1f (t + 1)|∀n∈{1,...,t}Xn ≥ c1f (n))
.
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We denote the denominator by ID . By (4.5) and (4.8) we have

ID ≥ P
(
Gt+1 ≥ c1f (t + 1)− cc1f (t)

)≥ P
(
Gt+1 ≥ c1(AL − c)f (t)

)
. (4.9)

By (4.5) and the union bound we conclude that the numerator is smaller than I 1
n + I 2

n , where

I 1
n := P

(
Xt ≥ B

c

(
x + f (t + 1)

)|∀n∈{1,...,t}Xn ≥ c1f (n)

)
,

I 2
n := P

(
Gt+1 ≥ (1−B)

(
x + f (t + 1)

))
.

Let x > C2f (t + 1) then

B

c

(
x + f (t + 1)

)− c1f (t) ≥ B

c
(C2 + 1)f (t + 1)− c1f (t)

≥ f (t)

[
B

cAL

(C2 + 1)− c1

]
≥ C2f (t).

We assumed that B/(cAL) > 1 thus the last inequality holds if we choose C2 large enough. We can thus use the
induction hypothesis (4.6) for t . We have

I 1
n ≤ exp

{
−c2

(
B

c
x + B

c
f (t + 1)− f (t)

)2}

≤ exp

{
−c2

(
B

c
x + [B/(cAL)− 1

]
f (t)

)2}
.

Recalling (4.9) and increasing L so that c1(AL − c)f (t) ≥ c1(AL − c)L ≥ 2 holds we can use the Gaussian tail
estimate (2.6) as follows

I 1
n

ID

≤ 5c1(AL − c)f (t)

b
e

c2
1(AL−c)2f (t)2

2b2 exp

{
−c2

(
B

c
x + [B/(cAL)− 1

]
f (t)

)2}

≤ 5c1(AL − c)f (t)

b
exp

{
c2

1(AL − c)2

2b2
f (t)2 − 2c2B[B/(cAL)− 1]

c
xf (t)

}
e
− c2B2

c2 x2

.

We increase C2 (we recall that x ≥ C2f (t + 1)) so that
c2

1(AL−c)2

2b2 < C2
2c2B[B/(cAL)−1]

cAL
. Then we increase L if neces-

sary so that the first two factors are bounded by 1/2. Finally

I 1
n

ID

≤ 1

2
exp

{
−c2B

2

c2
x2
}
,

which by (4.7) implies I 1
n /ID ≤ exp{−c2x

2}/2. We perform similar calculations for I 2
n :

I 2
n

ID

≤ 5c1(AL − c)f (t)

b
exp

{
c2

1(AL − c)2f (t)2

2b2

}
exp

{
− (1−B)2

2b2

(
x + f (t)/AL

)2}

≤ 5c1(AL − c)f (t)

b
exp

{
c2

1(AL − c)2

2b2
f (t)2 − (1−B)2

b2AL

xf (t)

}
exp

{
− (1−B)2

2b2
x2
}

≤ 1

2
exp

{
− (1−B)2

2b2
x2
}
,

where the last estimates follows by increasing C2 and L if necessary (analogously to the previous case). Now, by (4.7)
follows I 2

n /ID ≤ exp(−c2x
2)/2. Recalling the previous step we obtain (I 1

n + I 2
n )/ID ≤ exp(−c2x

2) which establish
(4.6) for t + 1. �
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A similar property holds for conditioning in future.

Lemma 4.2. Let X be an Ornstein–Uhlenbeck process and u ∈ [c,C], for C > c > 0. Then there exist C1, c1 > 0
such that for any t > 1 we have

P
(
Xu ≥ x|∀s∈[u,u+t]Xs ≥ (1+ s − u)1/3)≤ C1e

−c1x
2
.

Proof. We set f (s) := (1+�s�)1/3, by Lemma 2.3 it is enough show the claim with f (s) instead of (1+ s)1/3. Using
the Markov property we write

P
(
Xu ≥ x|∀s∈[u,u+t]Xs > f (s − u)

)= P({Xu ≥ x} ∩ {∀s∈[u,u+t]Xs > f (s − u)})
P(∀s∈[u,u+t]Xs > f (s − u))

=
∫ +∞
x

w(y, t)P(Xu ∈ dy)∫ +∞
0 w(y, t)P(Xu ∈ dy)

,

where

w(y, t)= P
(∀s≤tXs ≥ f (s)|X0 = y

)
.

The function is increasing with respect to y, thus the denominator can be estimated as

∫ 4

3
w(y, t)P(Xu ∈ dy)≥w(3, t) · P(Xu ∈ [3,4]).

By the Gaussian concentration of Xu, one checks that to show the claim it is enough to that

w(x, t)

w(3, t)
≤ exp

(
C1(logx)5/3), (4.10)

for C1 > 0 for x ≥ 3. It will be easier to rewrite w as w(x, t)= P(∀s≤tXs ≥ f (s)− xe−μs) with the assumption that
X0 = 0. Let us set tx := �Ct logx�, where Ct > 0 will be adjusted later. For x > 3 we have

w(x, t) = P
(∀s∈[tx ,t]Xs ≥ f (s)− xe−μs |∀s≤tx Xs ≥ f (s)− xe−μs

)
× P

(∀s≤tx Xs ≥ f (s)− xe−μs
)

≤ P
(∀s∈[tx ,t]Xs ≥ f (s)− xe−μs |∀s≤tx Xs ≥ f (s)− xe−μs

)
≤ P

(∀s∈[tx ,t]Xs ≥ f (s)− xe−μs |∀s≤tx Xs ≥ f (s)+ 1− 3e−μs
)
,

where in the last line we used Lemma 2.3. Moreover, by convention we assume that the probability above is 1 if tx ≥ t .
Similarly we estimate

w(3, t) ≥ P
(∀s≤tx Xs ≥ f (s)+ 1− 3e−μs,∀s∈[tx ,t]Xs ≥ f (s)

)
≥ P

(∀s≤tx Xs ≥ f (s)+ 1− 3e−μs
)

× P
(∀s∈[tx ,t]Xs ≥ f (s)|∀s≤tx Xs ≥ f (s)+ 1− 3e−μs

)
.

Using calculations similar to (4.4) and f (tx)=O((logx)1/3) one can show that

P
(∀s≤tx Xs ≥ f (s)+ 1− 3e−μs

)≥ c3e
−C3(logx)2/3tx ,
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for some c3,C3 > 0. Now we will show that for Ct large enough (recall that tx := �Ct logx�) and y ≥ f (tx)+ 1−
3e−μtx there exists a constant c > 0 such that for any t > tx we have

P(∀s∈[tx ,t]Xs ≥ f (s)|Xtx = y)

P(∀s∈[tx ,t]Xs ≥ f (s)− xe−μs |Xtx = y)

= P
(∀s∈[tx ,t]Xs ≥ f (s)|∀s∈[tx ,t]Xs ≥ f (s)− xe−μs,Xtx = y

)≥ c.

Integrating one verifies that

P(∀s∈[tx ,t]Xs ≥ f (s)− xe−μs |∀s≤tx Xs ≥ f (s)+ 1− 3e−μs)

P(∀s∈[tx ,t]Xs ≥ f (s)|∀s≤tx Xs ≥ f (s)+ 1− 3e−μs)
≤ c−1,

which is enough to conclude the proof of (4.10) and consequently the proof of the lemma. Equivalently we will show
that

H := P
(∃s∈[tx ,t]Xs ≤ f (s)|∀s∈[tx ,t]Xs ≥ f (s)− xe−μs,Xtx = y

)≤ 1− c. (4.11)

We consider

H ≤
�t�∑

k=tx

P
(∃s∈[k,k+1)Xs ≤ f (s)|∀s≤tXs ≥ f (s)− xe−μs,Xtx = y

)

≤
�t�∑

k=tx

P
(∃s∈[k,k+1)Xs ≤ f (k)|∀s∈[k,k+1]Xs ≥ f (k)− xe−μs,Xtx = y

)
.

The first inequality follows by the union bound and the second one by the assumption on f and Lemma 2.3. The first
term (i.e. k = tx ) can be made arbitrarily small by choosing Ct (and thus tx ) large. To estimate the other terms we
define a function pk :R+ 
→R by

pk(A)=− logP(∀s∈[k,k+1]Xs ≥A|Xtx = y).

By Lemma 2.6 one deduces that p is convex. Further we notice

P(∀s∈[k,k+1]Xs ≥A|Xtx = y)≥ P
(
Xk ≥Aeμ|Xtx = y

)
P
(∀s∈[k,k+1]Xs ≥A|Xk = eμA

)
.

The second factor can be easily bounded from below by a strictly positive constant uniform in A, k. Thus for some
C4 > 0 we have pk(A) ≤ C4(A+ 1)2. Using the convexity of pk it is easy to deduce that for some C5 > 0 we have
p′k(A)≤ C5(A+ 1), where p′k denotes the left derivative of pk . Thus

logP
(∀s∈[k,k+1]Xt ≥ f (k)|∀s∈[k,k+1]Xt ≥ f (k)− xe−μk

)
= pk

(
f (k)− xe−μk

)− pk

(
f (k)

)≥−C5xe−μkf (k).

Now we can make the final estimate. We write

�t�∑
k=tx+1

(
1− exp

(−C5xe−μkf (k)
))≤ C6

�t�∑
k=�tx�

f (k)e−μ(k−�log k/μ�)

for some C6 > 0. Increasing Ct (recall that tx := �Ct logx�) if necessary, we can make the sum arbitrarily small,
proving (4.11) and concluding the proof. �

We introduce bt : [0, t] 
→R+ by

bt (s) :=min
{
(s + 1)1/3, (t − s + 1)1/3}. (4.12)

Let us recall the notation of Section 3.1. We have
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Lemma 4.3. There exist C,c > 0 such that for any n, k ∈N we have

P
(∀s≤ρk

Ys ≤Cbρk
(s)
)
> c, P

({
P
(
Bn,k|{ri}

)≥ 1/10
})

> c, (4.13)

where Bn,k := {∀ρk+1≤s≤ρnYs ≤ C(s − ρk+1 + 1)1/3}.

Proof. The proof of this result is rather standard, thus we only present a sketch of it. We observe that for any k ∈ N,
we have

P
(∀s≤ρk

Ys ≤Cbρk
(s)
)

≤ 1− P
(∃s≥0 : Ys ≥ C(1+ s)1/3)− P

(∃s∈[0,ρk] : Ys ≥ C
(
1+ (ρk − s)

)1/3)
. (4.14)

We note that by (1.7) and the law of iterated logarithm, we have

sup
s≥0

Ys

(1+ s)1/3
<+∞ a.s.

thus the first term in (4.14) can be made as small as wished by choosing C large enough. To treat the second term, we
use the decomposition in excursions of the Ornstein–Uhlenbeck process and observe that (Yρk−s) has the same law
as the concatenation of an excursion conditioned to be larger than 1 and an independent Ornstein–Uhlenbeck process.
Thus, using William’s decomposition and the law of iterated logarithm again, for a given ε > 0 we can choose C > 0
large enough such that

P
(∃s∈[0,ρk] : Ys ≥ C

(
1+ (ρk − s)

)1/3)
< ε.

We now prove the second inequality. By the Markov inequality, we have

P
(
P
(
Bc

n,k|{ri}
)
> 9/10

)≤ 10

9
P
(
Bc

n,k

)
.

Using now the Markov property at time ρk , we have

P
(
Bc

n,k

)≤ P
(∃s≥0 : Ys ≥ C(1− s)1/3),

therefore choosing C large enough, we can make this probability as small as wished. �

Proof. The proof is rather standard therefore we present only a sketch. We denote f (s) := C(s + 1)1/3. We consider

P
(∀s≤ρk

Ys ≤Cbρk
(s)
)= 1− P

(∃s≤ρk
Ys ≥ Cbρk

(s)
)

≥ 1− P
(∃s≤ρk

Ys ≥ Cf (s)
)− P

(∃s≤ρk
Ys ≥ Cf (ρk − s)

)
. (4.15)

Let us treat the second term. Let l ∈N, we have

P
(∃s≤ρk

Ys ≥ Cf (s)
) ≤ P

(∃s≥0Ys ≥Cf (s)
)

≤ P
(∃s∈[0,ρl ]Ys ≥ Cf (s)

)+ +∞∑
i=l

P
(∃s∈[ρi ,ρi+1]Ys ≥ Cf (s)

)
. (4.16)

We recall Fact 3.3 and the notation there. For large enough i and some c > 0 we have

P
(∃s∈[ρi ,ρi+1]Ys ≥ Cf (s)

) ≤ P
({

Mi ≥ Cf (ρi)
}∩ {ρi ≥ ci})+ P(ρi < ci)

≤ P
(
Mi ≥ Cf (ci)

)+ P(ρi < ci)

≤ e−C1Cf (ci) + e−C2i ,
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where C1,C2 > 0. Increasing l and C one can make (4.16) as small as we want. Treating the third term of (4.15)
similarly we obtain the first statement of (4.13). We set An,k := {P(Bn,k|{ri})≥ 1/10} and p := P(An,k). We have

P(Bn,k)= EE
[
1Bn,k

|{ri}
]

= E
[
1An,k

E
[
1Bn,k

|{ri}
]]+E

[
1Ac

n,k
E
[
1Bn,k

|{ri}
]]

≤ p+ (1− p)/10

= 1

10
+ 9

10
p.

By the first argument we choose C such that P(Bn,k) > 1/10 which implies p > 0 (uniformly in n and k). �

4.1. Reformulation of the problem

We introduce necessary notions and reformulate the problem. Let M be the space of finite measures on R+. Given
m ∈M we denote ‖m‖ := ∫

R+ m(dx). Let P be the functional space

P := {f : continuous function from [0, t] to R such that f (0)= f (t)= 0
}
. (4.17)

Let us define an operator T :M×P 
→M. Given a measure m ∈M and f ∈ P such that f : [0, t] 
→ R we set
T (m,f ) := m̃ defined by

m̃(dx) := ‖m‖Pm/‖m‖
(∀s≤tXs ≥ f (s),Xt ∈ dx

)
,

where under Pm/‖m‖ the process X is an Ornstein–Uhlenbeck process such that X0 =d m/‖m‖.
For n ∈N we define iteratively M-valued random variables Tn by

Tn :=
{

δ1, n= 0,

T (Tn−1, Y
n−1), n > 0,

(4.18)

where Yn is given by (3.1). Using the Markov property one proves by induction that

Tn = P(∀s≤ρnXs ≥ Ys,Xρn ∈ dx|Y). (4.19)

Let us denote F := σ(ρi, i ∈N). The following lemma relates Tn to our original problem.

Lemma 4.4. Let γμ1,μ2 and δμ1,μ2 be the same as in Theorem 1.6. Then

γμ1,μ2 = lim
n→+∞

E[− log‖Tn‖]
nEr1

, δμ1,μ2 ≤ lim inf
n→+∞

E[− logE(‖Tn‖|F)]
nEr1

. (4.20)

The following proposition is the main technical result of this proof.

Proposition 4.5. There exist c > 0 and n0 ∈N such that

E log‖Tn‖ −E logE
(‖Tn‖|F

)≤−nc, (4.21)

for any n≥ n0.

We observe that this proposition together with Lemma 4.4 imply (1.4).

Proof of Lemma 4.4. The first convergence in (4.20) holds by (3.8) (recall also relation between γ̃ and γμ1,μ2 given
in (3.11)). We observe that (4.19) yields E(‖Tn‖|F)= P(∀s≤ρnXs ≥ Ys |F). We note that methods of Section 3 imply
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that

− logP(∀s≤ρnXs ≥ Ys |F)

n
(4.22)

converges a.s. and in L1 for the sake of brevity we skip details. We define r(n) := Eρn − n2/3 = nEr1 − n2/3 and
a sequence of events An := {ρn ≥ r(n)}. Using Fact 3.3 one proves 1Ac

n
→ 0 a.s. Consequently the convergence of

(4.22) implies

lim
n→+∞

E1Ac
n

logP(∀s≤r(n)Xs ≥ Ys |F)

n
= 0.

Using E(‖Tn‖|F)≤ 1 we estimate

E logE
(‖Tn‖|F

)≤ E1An
logE

(‖Tn‖|F
)

≤ E1An
logP(∀s≤r(n)Xs ≥ Ys |F)

= E logP(∀s≤r(n)Xs ≥ Ys |F)−E1Ac
n

logP(∀s≤r(n)Xs ≥ Ys |F). (4.23)

We denote the first term of the right-hand side of (4.23) by Jn. Applying Jensen’s inequality we get

Jn ≤ logP(∀s≤r(n)Xs ≥ Ys).

By (1.3) and the definition of r(n) we have lim supn Jn/(nEr1) ≤−δμ1,μ2 and the second term (4.23) can be shown
to converge to 0. We conclude that the second claim of (4.20) holds. �

4.2. Proof of Proposition 4.5

Proof of Proposition 4.5. We recall F = σ(ρi, i ∈N) and define a filtration {Fk}k≥0 by putting F0 := {∅,�} and

Fk := σ
{
Y i : i < k

}
, k > 0,

(see also Figure 1). We recall (4.18) and for k ∈ {0,1, . . . , n} define M-valued random variables T k
n by

T k
n := E(Tn|Fk,F).

This definition and (4.19) imply that

T k
n = P

(∀s≤ρnXs ≥ Ys,Xρn ∈ dx|{Y i
}
i<k

,F
)
, T n

n = Tn. (4.24)

By the Markov property of X we have

log
∥∥T k+1

n

∥∥= log‖Tk‖ + logPTk/‖Tk‖
(∀ρk≤s≤ρnXs ≥ Ys |Y k,F

)
. (4.25)

This expression requires some comment. We recall that Tk is a random measure, conditionally on m= Tk/‖Tk‖ we
understand X to be an Ornstein–Uhlenbeck process starting from m at time ρk . Let us now denote

Gn,k := E
[
logPTk/‖Tk‖

(∀ρk≤s≤ρnXs ≥ Ys |Y k,F
)|Fk,F

]
− logPTk/‖Tk‖(∀ρk≤s≤ρnXs ≥ Ys |F).

We notice that Gn,k is a random variable, which by Jensen’s inequality fulfills Gn,k ≤ 0 (we will prove strict inequality
later). In this notation (4.25) yields

E
[
log
∥∥T k+1

n

∥∥|Fk,F
]= log‖Tk‖ + logPTk/‖Tk‖(∀ρk≤s≤ρnXs ≥ Ys |F)+Gn,k

= log
∥∥T k

n

∥∥+Gn,k.
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Fig. 1. Notation used in the paper.

We apply this relation iteratively

E
[
log‖Tn‖|F

]= E
[
log
∥∥T n

n

∥∥|F]= E
[
E
[
log
∥∥T n

n

∥∥|Fn−1,F
]|F]

= E
[
log
∥∥T n−1

n

∥∥|F]+E
[
Gn,n−1|F

]
= E

[
E
[
log
∥∥T n−1

n

∥∥|Fn−2,F
]]+E[Gn,n−1|F]

= E
[
log
∥∥T n−2

n

∥∥|F]+E[Gn,n−2|F] +E[Gn,n−1|F]
= · · ·

= E
[
log
∥∥T 0

n

∥∥|F]+ n−1∑
k=0

E[Gn,k|F].

We notice that ‖T 0
n ‖ = P(∀s≤ρnXs ≥ Ys |F)= E[‖Tn‖|F]. Thus

E
[
log‖Tn‖

]= E logE
[‖Tn‖|F

]+ n−1∑
k=0

EGn,k.

One easily sees that an inequality

EGn,k ≤ c, (4.26)

for some c < 0, is sufficient to conclude the proof of the proposition. Proving (4.26) is our aim now. To avoid heavy
notation we denote Ẽ(·) := E(·|F) and Ẽk(·) := Ẽ(·|Fk).
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Further, we introduce additional randomization: a probability measure P± and the random variable η such that
P±(η= 1)= P±(η=−1)= 1/2. For k ∈N we define {Ỹ k

s (η)}s≥0 by

Ỹ k
s (η) :=

{
η|Ys | if s ∈ [τk, ρk+1],
Ys otherwise.

There are two easy but crucial observations to be made at this point. Firstly,

∀s≥0Ỹ
k
s (1)≥ Ỹ k

s (−1) and ∀s∈(τk,ρk+1)Ỹ
k
s (1) > Ỹ k

s (−1). (4.27)

Secondly, the excursions of an Ornstein–Uhlenbeck process are symmetric around 0. Formally, under E± ⊗ Ek the
process Ỹ k(η) has the same law as Y under Ek . Let us shorten m := Tk/‖Tk‖ and denote “the gap”

�n,k := E±Ek logPm

(∀ρk≤s≤ρnXs ≥ Ỹ k
s (η)|Y k

)
−Ek logE±Pm

(∀ρk≤s≤ρnXs ≥ Ỹ k
s (η)|Y k

)
. (4.28)

By Jensen’s inequality we have Gn,k ≤�n,k ≤ 0. In order to show (4.26) we will obtain a bound from above on �n,k

which is strictly negative and uniform in n, k. We define

gn,k := Pm(∀ρk≤s≤ρnXs ≥ Ỹ k
s (1)|Y k)

Pm(∀ρk≤s≤ρnXs ≥ Ỹ k
s (−1)|Y k)

, (4.29)

and zn,k := Pm(∀ρk≤s≤ρnXs ≥ Ỹ k
s (−1)|Y k). In this notation (4.28) writes as

�n,k = Ek

[
1

2

(
log(gn,kzn,k)+ log zn,k

)− log

(
gn,kzn,k + zn,k

2

)]

= Ek

[
1

2
loggn,k − log

(
gn,k + 1

2

)]

≤−1

8
Ek(gn,k − 1)2. (4.30)

To explain the last inequality we observe that (4.27) yields gn,k ≤ 1 and that for x ∈ (0,1] we have and elementary
inequality 1

2 logx − log( x+1
2 )≤− 1

8 (x − 1)2. Now we concentrate on proving that in fact, uniformly in n, k we have
gn,k < 1. Let us analyze the expressions appearing in (4.29). We denote Qm,k(·) := P(·|Y k), Ai := {∀ρk≤s≤ρk+1Xs ≥
Ỹ k

s (i)} and B := {∀ρk+1≤s≤ρnXs ≥ Ys}. We fix x ∈R+ and we want to find a formula for pi :=Qδx ,k(Ai ∩B). By the
Markov property we get

pi =Qδx ,k

[
Qδx ,k(1Ai

|Xρk+1)Qδx ,k(1B|Xρk+1)
]
.

We denote Lk(x, y; i) :=Qδx ,k(1Ai
|Xρk+1 = y), which expresses more explicitly as

Lk(x, y; i)= P
(∀ρk≤s≤ρk+1Xs ≥ Ỹ k

s (i)|Y k,Xρk
= x,Xρk+1 = y

)
. (4.31)

We write

pi =Qδx ,k

[
L(x,Xρk+1; i)

Qδx ,k(1B|Xρk+1)

Qδx ,k(1B)

]
×Qδx ,k(B).

Let us now consider a measure defined by

μx,n,k(Xρk+1 ∈D) :=Qδx ,k

[
1Xρk+1∈D

Qδx ,k(1B|Xρk+1)

Qδx ,k(1B)

]
,
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where D ⊂R is a Borel set. One easily verifies that it is a probability measure. Removing the conditional expectation
we get

μx,n,k(Xρk+1 ∈D) = Qδx ,k

[
Qδx ,k(1Xρk+1∈D1B|Xρk+1)

Qδx ,k(1B)

]

= Qδx ,k(1Xρk+1∈D1B)

Qδx ,k(1B)

= Qδx ,k(Xρk+1 ∈D|B).

Again, writing more explicitly we have

μx,n,k(dy)= P(Xρk+1 ∈ dy|∀ρk+1≤s≤ρnXs ≥ Ys,Xρk
= x). (4.32)

Finally, concluding the above calculations we obtain that for i ∈ {−1,1} we have

Pm

(∀ρk≤s≤ρnXs ≥ Ỹ k
s (i)|Y k

) = ∫
R+

∫
R+

Lk(x, y; i)μx,n,k(dy)m(dx)

× Pm(∀ρk+1≤s≤ρnXs ≥ Ys). (4.33)

Before going further let us comment on the further strategy. It is easy to see that for any fixed x, y ∈ R+ we have
Lk(x, y;1) < Lk(x, y;−1). The gap vanished however smaller when x, y →+∞. The uniform inequality gn,k < 1
can be obtained by showing that with positive probability the measure μx,n,k(dy)m(dx) is uniformly concentrated in
a box.

Let C1 > 0 be a constant as in Fact 4.3. We denote sequences of events

An,k :=A1
k ∩
{
rk ∈ [1,10]}∩A2

n,k,

A1
k := {ρk ≥ 1} ∩ {∀s≤ρk

Ys ≤ C1bρk
(s)
}
,

A2
n,k :=

{
P(Bn,k|F)≥ 1/10

}
,

where Bn,k := {∀ρk+1≤s≤ρnYs ≤ C1(s − ρk+1 + 1)1/3}. We first prove concentration of m = Tk/‖Tk‖ (recall (4.19)).
Let R > 0, by the FKG property stated in Lemma 2.3, conditionally on the event A1

k we have

(
Tk/‖Tk‖

)([
R−1,R

])
= P

(
Xρk

∈ [0,R]|∀s≤ρk
Xs ≥ Ys,Y

)− P
(
Xρk

≤R−1|∀s≤ρk
Xs ≥ Ys,Y

)
≥ P
(
Xρk

∈ [R−1,R
]|∀s≤ρk

Xs ≥ C1bρk
(s)
)− P

(
Xρk

≤R−1|Xρk
≥ 0
)
.

Using Lemma 4.1 we can choose R > 0 such that the first term is arbitrarily close to 1. By easy calculations the
second term can be made arbitrarily close to 0.We fix R such that(

Tk/‖Tk‖
)([

R−1,R
])≥ 1A1

k
(1/2). (4.34)

Our next aim is to study concentration of (4.32). To this end we denote

p(x) := P
(
Xρk+1 ∈ [0,Ce]|∀ρk+1≤s≤ρnXs ≥ Ys,Xρk

= x
)
,

where Ce > 0 is to be fixed later. Using Fact 2.4 we estimate

p(x) ≥ P
({

Xρk+1 ∈ [0,Ce]
}∩Bn,k|∀ρk+1≤s≤ρnXs ≥ Ys,Xρk

= x
)

= P
(
Xρk+1 ∈ [0,Ce]|Bn,k ∩ {∀ρk+1≤s≤ρnXs ≥ Ys,Xρk

= x})
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× P(Bn,k|∀ρk+1≤s≤ρnXs ≥ Ys,Xρk
= x)

≥ P
(
Xρk+1 ∈ [0,Ce]|∀ρk+1≤s≤ρnXs ≥ C1(s − ρk+1 + 1)1/3,Xρk

= x
)
P(Bn,k).

Assuming that rk = ρk+1 − ρk ∈ [1,10], we can set Ce such that Lemma 4.2 implies that the first term is bounded
away from 0 uniformly in n, k and x ∈ [R−1,R]. Together with (4.34) this implies

∫ R

R−1
μx,n,k

([0,Ce]
)
m(dx)≥ C1An,k

,

for some C > 0. One further finds ce > 0 (we skip details) such that

∫ R

R−1
μx,n,k

([ce,Ce]
)
m(dx)≥ (C/2)1An,k

. (4.35)

We are now ready to come back to (4.29). We recall (4.31) and denote

rk := sup
x∈[R−1,R],y∈[ce,Ce]

Lk(x, y;1)

Lk(x, y;−1)
, Lk := inf

x∈[R−1,R],y∈[ce,Ce]
Lk(x, y;−1). (4.36)

We have Lk(x, y;−1) > Lk(x, y;1). Moreover, one verifies that for η ∈ {−1,1} the functions Lk(·, ·;η) are contin-
uous and Lk(x, y;η) > 0 if x, y > 0. These imply rk < 1 (note that rk is a random variable since it depends on Y k).
Similarly we have Lk > 0. One checks that∫

R+

∫
R+

Lk(x, y; i)μx,k,n(dy)m(dx)≤ 1.

Using the elementary inequality (a + c)/(b+ d)≤ (a + 1)/(b+ 1) valid for 0 < a ≤ b and 0 < c ≤ d ≤ 1 we get

gn,k ≤
∫ R

R−1

∫ Ce

ce
Lk(x, y;1)μx,n,k(dy)m(dx)+ 1∫ R

R−1

∫ Ce

ce
Lk(x, y;−1)μx,n,k(dy)m(dx)+ 1

≤ rk
∫ R

R−1

∫ Ce

ce
Lk(x, y;−1)μx,n,k(dy)m(dx)+ 1∫ R

R−1

∫ Ce

ce
Lk(x, y;−1)μx,n,k(dy)m(dx)+ 1

.

Further, we notice that for rk ∈ [0,1] we have (rka+ 1)/(a+ 1)≤ (rkb+ 1)/(b+ 1) if b ≤ a. Applying (4.35) we get

gn,k ≤ rkLk

∫ R

R−1 μx,n,k([ce,Ce])m(dx)+ 1

Lk

∫ R

R−1 μx,n,k([ce,Ce])m(dx)+ 1
≤ rkLkC/2+ 1

LkC/2+ 1
≤ 1+ CLk(rk − 1)

4
,

where the last estimate follows by (ab + 1)/(a + 1) ≤ 1 + a(b − 1)/2 valid for a, b ∈ [0,1]. Combining the last
inequality with (4.30) we arrive at

Gn,k ≤−C3Ek

[
1An,k

L2
k(rk − 1)2] (4.37)

for a constant C3 > 0.
We are now ready to show (4.26) (which concludes the proof of the proposition). By the strong Markov property

we have

EGn,k ≤−C3E
[
1An,k

L2
k(rk − 1)2]≤−C3P

(
A1

k

)
E
[
L2

k(rk − 1)21rk∈[1,10]
]
P
(
A2

n,k

)
.

We notice that the law of L2
k(rk − 1)21rk∈[1,10] does not depend on k and it is not concentrated on 0, thus

P(A1
k)E[L2

k(rk − 1)21rk∈[1,10]]> 0. The other two terms are uniformly bounded away from 0 by Fact 4.3. �
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Proof of Theorem 1.6. As observed at the beginning of the section, Lemmas 3.9 and 3.10, as well as Lemmas 3.1
and 3.11 respectively prove there exist two convex symmetric functions γ , δ such that for all β ∈R,

lim
t→+∞

logP(∀s≤tXs ≥ βYs,Xt − βYt ∈ (a, b)|Y)

t
=−γ (β),

lim
t→+∞

logP(∀s≤tXs ≥ βYs,Xt − βYt ∈ (a, b))

t
=−δ(β).

Moreover, by Lemma 4.4 and Proposition 4.5, for any β 	= 0, there exists c > 0 such that

γ (β)≥ δ(β)+ c,

proving that γ (β) > δ(β) for any β 	= 0. �

5. Proof of Theorems 1.1 and 1.5

As observed in Remark 1.7, Theorem 1.1 is a direct consequence of Theorem 1.6. We now extend this result to prove
Theorem 1.5.

Proof of Theorem 1.5. For simplicity, we assume here that a = 0 and b = +∞, therefore we ignore the condition
Bt − βWt ∈ (at1/2, bt1/2). The proof in the general case is obtained in the same fashion, but with heavier notation.

Denoting x := inft≥0 g(t), one can find A > 0 and ε > 0 such that

−x/2−Aj(t)≤ f (t)≤ x/2+Aj(t), t ≥ 0,

where j (t) :=min(t, t1/2−ε). We have

P
(∀s≤t x/2+Bs ≥Ws +Aj(s)|W )
≤ P
(∀s≤t x +Bs ≥Ws + f (s)|W )

≤ P
(∀s≤t g(t)+Bs ≥Ws + f (s)|W )

≤ P
(∀s≤t g(t)+Bs ≥Ws −Aj(s)|W )

≤ P
(∀h(t)≤s≤t g(t)+ x/2+Bs ≥Ws −Aj(s)|W ), (5.1)

where h(t) is any function such that (h(t))1/2−ε ≥ g(t)+ x + 1 and h(t) = eo(log t). The right-hand side of the last
expression is bounded from above by

P
(∀h(t)≤s≤t1+Bs ≥Ws − (A+ 1)j (s)|W ).

We will show that the event

A :=
{

lim
t→+∞−

logP(∀h(t)≤s≤t1+Bs ≥Ws −Aj(s)|W)

log t
= γ (β)

}
, (5.2)

fulfills P(A) = 1. The same method can be used to show the almost sure convergence of the left-hand side of (5.1)
(we skip the details). These will conclude the proof. We define a stochastic process {Zt }t≥0 by

Zt := exp

(∫ t

0
Aj ′(s)dWs − 1

2

∫ t

0

[
Aj ′(s)

]2 ds

)
.

This process is an uniformly integrable martingale (since
∫ +∞

0 [j ′(s)]2 ds ≤ +∞). We denote its limit by Z∞, that
is P-a.s. positive, and define the measure (on the Wiener space) dQ = Z∞ dP. By the Girsanov theorem under this
measure {Ws −Aj(s)}s≥0 is a standard Wiener process. We prove that

Q(A)= 1, (5.3)
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which is enough to conclude the proof. Indeed, as P(Z∞ > 0)= 1 and E1AZ∞ =Q(A)= 1, we have P(A)= 1. We
are now going to show (5.3). By Theorem 1.1 it is enough to prove

0 ≤ δt

:= −
(

logP(∀0≤s≤t1+Bs ≥Ws |W)

log t
− logP(∀h(t)≤s≤t1+Bs ≥Ws |W)

log t

)
→ 0, P-a.s.

We have

δt =− logP(∀s≤h(t)1+Bs ≥Ws |∀h(t)≤s≤t1+Bs ≥Ws,W)

log t

≤− logP(∀s≤h(t)1+Bs ≥Ws |W)

log t
,

where the last inequality holds by Lemma 2.3. Now the proof is straightforward, indeed

− log(∀0≤s≤h(t)1+Bs ≥Ws,W)

log t
= − logP(∀0≤s≤h(t)1+Bs ≥Ws,W)

logh(t)

logh(t)

log t

→ 0, P-a.s.

Theorem 1.1 and logh(t)/ log t → 0.
In order to prove the Lp convergence it is enough to show that the family{− logP

(∀s≤t x/2+Bs ≥Ws +Aj(s)|W )/t
}
t≥0,

is Lp-uniformly integrable. This follows by easy calculations from Fact 3.8 using relation (1.7). �

We end this section with a proof of Fact 1.4.

Proof of Fact 1.4. Let (Xk)k≥0 be a sequence of i.i.d. random variables such that E(X2+ε
k ) <+∞. By Borel–Cantelli

lemma, we have

L :=max
{
n ∈N : |Xn| ≥ n1/(2+ε)

}
<+∞ a.s.

Therefore, we have

lim sup
N→+∞

logP(∀n≤NBn ≥Xn|X)

logn
≤ lim sup

N→+∞
logP(∀L<n≤NBn ≥ n1/(2+ε)|L)

logn
≤ −1

2
a.s.

Similarly, setting M =maxn≤L Xn, we have

lim inf
N→+∞

logP(∀n≤NBn ≥Xn|X)

logn

≥ lim inf
N→+∞

logP(∀n≤NBn ≥−M − n1/(2+ε)|L,M)

logn
≥ −1

2
a.s. �

6. Proof of the facts for random walks

We now use definitions of Section 1.3. We write S a random walk in random environment μ, and set

Wn =−E(Sn|μ) and Bn = Sn +Wn.
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To make the notation more clear in this section we assume that we have two probability spaces (�,F,P), (�̂,G,Q)

which supports B and μ respectively. The measure P depends on the realization of μ, which is made implicit in the
notation. Thus we are going to prove

lim
N→+∞

logP(∀n≤Nx +Bn ≥Wn + f (n),BN −WN ∈ (aN1/2, bN1/2))

logN

=
{
−γ (

√
Var(W1)
Var(B1)

) on Ax,

−∞ on Ac
x,

Q-a.s. (6.1)

Further to simplify the notation we put γ := γ (

√
Var(W1)
Var(B1)

) and

pN := P
(∀n≤Nx +Bn ≥Wn + f (n),BN −WN ∈

(
aN1/2, bN1/2)). (6.2)

We need a bound that the inhomogeneous random walk B grows fast. This will be contained in the first two lemmas
of this section. We will use tilting of measure. Let us denote the increments of B by

Xn := Bn −Bn−1.

Let us recall C1 from the assumption (A2). For any θ ∈ [0,C1] and n ∈N we define a probability measure Hn,θ by

dHn,θ

dP
:= eθXnψ−1

n (θ), ψn(θ)= EeθXn. (6.3)

The tilting is supposed to “increase” X′
ns. The following lemma quantifies this

Lemma 6.1. There exist θ0 ∈ (0,C1) and 0 < c ≤ c̃ such that for any θ ≤ θ0 and n ∈N we have

Hn,θ (Xn) ∈
[
cθEX2

n, c̃θEX2
n

]
.

Proof. By (6.3) we have

Hn,θ (Xn)=ψ−1
n (θ)EXne

θXn.

The proof will be finished once we show that for any n and small enough θ we have

EXne
θXn = (EX2

n

)
θ + o(θ), ψn(θ)= 1+O

(
θ2). (6.4)

By the assumption of the uniform exponential integrability in (A2) and Cauchy’s estimate [12, Theorem 10.26] for
any n and 0≤ θ ≤ C1/2 we get

ψ ′′
n (θ)≤C,

∣∣ψ ′′′
n (θ)

∣∣≤ C,

for some C > 0. By the assumptions ψn(0)= 1 and ψ ′
n(0)= EXn = 0, thus the second statement of (6.4) follows by

the Taylor formula (with the Lagrange reminder). For the first one we notice that EXne
θXn = ψ ′

n(θ), ψ ′′
n (0)= EX2

n

and again apply the Taylor expansion. �

We present now the aforementioned bound.

Lemma 6.2. There exist c,C > 0 such that for large enough N on the event{
N∑

n=1

E
(
X2

n

)≥NQ
(
EX2

i

)
/2

}
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we have

P(BN ≥ c
√

N log logN)≥N−C(log logN)2
.

Proof. We define an := 1
4θ0cn

1/2 log logn, where θ0, c are given by Lemma 6.1 and consider the events AN := {SN ≥
aN }. We denote also bn := (θ0n

−1/2 log logn)∨ 0 and let us define the tilted measure PN by

dPN

dP
:=�N, �N := exp

(
N∑

n=1

bnXn

)
N∏

n=1

ψ(bn)
−1. (6.5)

Further, we write qN := P(AN)= PN(1AN
�−1

N ). We have to estimate

qN = PN

(
1AN

�−1
N

)
=
(

N∏
n=1

ψ(bn)

)
PN

(
1AN

exp

(
−

N∑
n=1

bnXn

))

≥ PN

(
1AN

exp

(
−

N∑
n=1

bnXn

))
.

We introduce X̃n :=Xn −ENXn and accordingly B̃n :=∑n
i=1 X̃i . In our notation

qN ≥ exp

(
−

N∑
i=1

(ENXn)bn

)
PN

(
1AN

exp

(
−

N∑
n=1

bnX̃n

))
.

Now, by Lemma 6.1 and the assumption (A2) we obtain

N∑
n=1

(ENXn)bn ≤C1

N∑
n=1

b2
n ≤ 2C1(logN)(log logN)2,

for C1 > 0. Next, we apply the Abel transform

N∑
n=1

bnX̃n =
N∑

n=1

bn(B̃n − B̃n−1)

= B̃NbN +
N−1∑
n=1

(bn − bn+1)B̃n.

We define events BN := {∀n≤N |B̃n| ≤ C2an}, for some C2 > 0. We have an elementary estimation |bn − bn+1| ≤
C3n

−3/2 log logn, C3 > 0. Putting things together we obtain

qN ≥N−C1(log logN)2
PN

(
1AN∩BN

exp

(
−|B̃NbN | −C3

N−1∑
n=1

|n−3/2 log logn||B̃n|
))

≥N−C1(log logN)2
PN

(
1AN∩BN

exp

(
−B̃NbN −C4

N−1∑
n=1

n−1(log logn)2

))

≥N−C5(log logN)2
PN(AN ∩BN),
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where we introduced C4,C5 > 0. We notice that

AN ⊇
{

B̃N ≥ aN −
N∑

n=1

ENXi

}
⊇ {B̃N ≥−aN/2}.

Finally, we leave to the reader proving that lim infN→∞ PN(AN ∩BN) > 0, which concludes the proof. �

Let us recall the event Ax defined in (1.6). Let us denote by p̃N the version of pN from (6.2) without condition
BN −WN ∈ (aN1/2, bN1/2) i.e.

p̃N := P
(∀n≤Nx +Bn ≥Wn + f (n)

)
. (6.6)

In the following lemma we prove a crude bound corresponding to the bound from above in Theorem 1.10. Namely

Lemma 6.3. We have

lim inf
N→+∞

log p̃N

N2
≥
{

0 on Ax,

−∞ on Ac
x,

Q-a.s.

Proof. The proof will follow again by the change of measure techniques. Due to a very big normalization the proof
can be somewhat brutal. We fix bN = b ∈ (0,C1) (C1 as in (A2)) and use �N and PN as in (6.5). We denote BN :=
{∀n≤Nx +Bn ≥Wn + f (n)} and calculate

p̃N = PN

(
1BN

�−1
N

)≥ PN

(
1BN

exp

(
−

N∑
n=1

bXn

))
.

We introduce also B1
N := {∀n∈{1,...,N}Xn ≤N1/2}. Trivially we have

p̃N ≥ PN

(
1BN∩B1

N
exp

(
−

N∑
n=1

bXn

))

≥ e−bN3/2
PN

(
BN ∩B1

N

)
≥ e−bN3/2[

PN(BN)− PN

((
B1

N

)c)]
≥ e−bN3/2[

PN(BN)−Ne−cN1/2]
, (6.7)

where the last inequality follows by the union bound and the fact that exponential moments of Xn are uniformly
bounded, see (A2). Let us concentrate on PN(BN). We denote v =Q[E(X2

i )] and define

L := inf

{
n≥ 0 : ∀k≥n

k∑
i=0

E
(
X2

i

)≥ kv/2

}
.

Clearly Q(L <+∞)= 1. Fix K > 0 and denote the following events in G (i.e. describing conditions on W )

AK :=A1
K ∩A2

K, A1
K := {L < K}, A2

K :=
{∀k≥KWk ≤ k2/3 − f (k)

}
.

Using the Markov property we get

PN(BN) ≥ PN

(∀n∈{1,...,K}x +Bn ≥Wn + f (n),BK ≥Kv/2
)

× PN

(∀n∈{K,...,N}Bn ≥Wn + f (n)|BK =Kv/2
)
. (6.8)
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We denote the first term by p̃K . It is easy to check that the law of Bn under PN stochastically dominates the one under
P thus {pK = 0} ⊂Ac

x . Conditionally on A2
K we have

PN

(∀n∈{K,...,N}Bn ≥Wn + f (n)|BK =Kv/2
)≥ 1−

+∞∑
n=K

PN(Bn ≤ nv/4|BK =Kv/2).

We denote B̃n := Bn −ENBn. By Lemma 6.1, conditionally on A1
K , we have ENBk ≥ ckv/2, thus

PN

(∀n∈{K,...,N}Bn ≥Wn + f (n)|BK =Kv/2
)

≥ 1−
+∞∑
n=0

PN(B̃n ≤−cnv/4|B0 =Kv/2).

Observing that the random variables Xn are uniformly exponentially integrable we get a constant c1 > 0 such that

PN

(∀n∈{K,...,N}Bn ≥Wn + f (n)|BK =Kv/2
)≥ 1−

+∞∑
n=K

e−c1n > 0,

for K large enough. Putting the above estimates to (6.8) we obtain that for some C > 0

1AK
PN(BN)≥ 1AK

Cp̃K.

Using this in (6.7) we have

lim inf
N→+∞

log p̃N

N2
≥
{

0 on AK ∩Ax,

−∞ on Ac
K ∪Ac

x,
Q-a.s.

The proof is concluded passing K ↗+∞ and by observing that 1AK
→ 1, Q-a.s. �

We finally pass to the proof of Theorem 1.10. We notice that by the very definition of Ax (see 1.6) it is obvious that
the convergence holds on Ac

x . Thus in the proofs below we concentrate on proving the convergence on the event Ax .
The instrumental tool of this proof will be the so-called KMT coupling. We choose the measure Q to be a special
one. By [8, Corollary 2.3] we can find a probability space (�̃,G,Q) with processes {Wk}k≥0 and {Ŵk}k≥0, which is a
random walk with the increments distributed according to N (0, σ 2

W), where σ 2
W =Var(W1) and

lim sup
k→+∞

|Ŵk −Wk|
(logk)2

= 0, Q-a.s. (6.9)

Further we can extend the measure Q so that Ŵ is a marginal of a Brownian motion, also denoted by Ŵ . Slightly
abusing notation we keep Q to denote the extended measure and Ŵ for the Brownian motion.

First we prove (6.1) for this special measure. At the end of the proof we argue how this statement implies the thesis
of Theorem 1.10. We start with the bound from above. We recall pN defined in (6.2). One finds A and ε > 0 such that
for any n ∈N we have f (n)≥−An1/2−ε . Further we set p̃N of (6.6) with this function, i.e.

p̃N := logP
(∀n≤Nx +Bn ≥Wn −An1/2−ε

)
.

In this part we will show

lim sup
N→+∞

logpN

logN
≤ lim sup

N→+∞
log p̃N

logN
≤−γ, Q-a.s. (6.10)
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We define a function f :N×M(R)N 
→R by

f (n,μ) :=
n∑

i=1

EX2
i . (6.11)

We recall that the measure P depends on realization of W and that {Zi := EX2
i }i≥0 is a sequence of i.i.d variables with

respect to Q. It is easy to check, using the exponential Chebyshev inequality, that (A2) implies existence of C̃1 > 0
such that Zi ≤ C̃1. We define a sequence of events belonging to G given by

AN :=
{∀k≤N |Ŵk −Wk| ≤ (logN)2}∩ {∀k≤N sup

t∈[k,k+1]
|Ŵt − Ŵk| ≤ (logN)2

}

∩
{
∀k≥logN max

l∈{−k2/3,...,k2/3}
|Ŵk − Ŵk+l | ≤ k4/9

}

∩ {∀k≥logN

∣∣f (k,μ)− kQ
(
E
(
X2

1

))∣∣≤ k1/2 logk
}
. (6.12)

We have 1AN
→ 1 Q-a.s. The convergence of the first term follows by (6.9). The proof of the others are rather standard

(we note that exponents 2/3 and 4/9 can be made smaller but this is not relevant for our proof). As an example we
treat the last but one term. We set

qk := P

(
max

l∈{−k2/3,...,k2/3}
|Ŵk − Ŵk+l | ≤ k4/9

)
.

By the properties of a Wiener process we know that maxl∈{−k2/3,...,k2/3} |Ŵk − Ŵk+l | has the tails decaying faster than
exp(−t2/(4k2/3)), for t large enough. Thus

1− qk ≤ P

(
max

l∈{−k2/3,...,k2/3}
|Ŵk − Ŵk+l | ≥ k4/9

)
≤ exp

(−k2/9/4
)
.

This quantity is summable thus the proof follows by the standard application of the Borel–Cantelli lemma. From now
on, we will work conditionally on AN . Using its first condition we have

p̃N ≤ logP
(∀logN≤n≤N 2(logN)2 +Bn ≥ Ŵn −An1/2−ε

)
. (6.13)

We use the coupling techniques also for P. Namely, by [8, Theorem 3.1] on a common probability space (denoted still
by P), we have processes {Bk}k≥0, distributed as the random walk from our theorem and {B̂t }t≥0 a Brownian motion
which approximates B . Recalling (6.11) we define

BN :=
{∀k≤N |Bk − B̂f (k,μ)| ≤ (logN)2}∩ {∀k≤N sup

t∈[k,k+1]
(B̂t − B̂k)≤ (logN)2

}
. (6.14)

Applying [8, Theorem 3.1] to the first term and standard considerations to the second one we obtain logP(Bc
N )/

logN →N→+∞ −∞. We continue estimations of (6.13) as follows

p̃N ≤ P
(∀logN≤n≤N 4(logN)2 + B̂f (n,μ) ≥ Ŵn −An1/2−ε,BN

)+ P
(
Bc

N

)
.

We extend, in the piece-wise linear fashion, the function f to the whole line with respect to its first argument. This
function is non-decreasing and we denote its generalized inverse by g(t,μ) := inf{s ≥ 0 : f (s,μ)≥ t}. We change to
the continuous time (writing t instead of n). By the second and last condition of (6.12) for some C > 0 we have

p̃N ≤ P
(∀C logN≤t≤N/C5(logN)2 + B̂t ≥ Ŵg(t,μ) −A

(
g(t,μ)

)1/2−ε)+ P
(
Bc

N

)
.

One checks that AN ⊂ {∀t≥C logNŴg(t,μ) ≥ Ŵt/Q(E(X2
1))− t4/9} using two last conditions of (6.12). Thus conditionally

on AN we have

p̃N − P
(
Bc

N

)≤ P
(∀

C logN≤t≤N
C

5(logN)2 + B̂t ≥ Ŵt/Q(E(X2
1)) − t4/9 − 2At1/2−ε

)=: p̂N .
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Utilizing Theorem 1.5 one gets

lim
N→+∞

log p̂N

logN
=−γ

(√
EW 2

1

Q(E(X2
1))

)
.

We recall that in our notation Q(E(X2
i )) is the same as E[E(B2

1 |μ)] = EB2
1 in the standard notation. Recalling that

P(Bc
N ) is negligible we obtain (6.10).

Before passing further let us state a simple conditioning fact.

Lemma 6.4. Let {Tn}n≥0 be a random walk and {an}n≥0 be a sequence. Then for any N the law P(TN ∈
·|∀n∈{1,...,N}Tn ≥ an) stochastically dominates the law of TN .

Its proof following by inductive application of the Markov property is easy and thus skipped.
We pass to the bound from below. We recall (6.2). Our aim is to prove

lim inf
N→+∞

logpN

logN
≥
{
−γ on Ax,

−∞ on Ac
x .

(6.15)

We denote KN := �(logN)6� and AN := cK
1/2
N log logKN (c is as in Lemma 6.2 ). Utilizing the Markov property we

obtain

logpN ≥ logqN + log p̂N ,

where

qN := P
(∀n∈{0,...,KN }x +Bn ≥Wn + f (n),BKN

≥AN,BKN
≤N1/3),

p̂N := inf
x∈[AN,N1/3]

P

(
∀n∈{KN,...,N}x +B

KN
n ≥Wn + f (n)

x +B
KN

N −WN ∈ (aN1/2, bN1/2)

)
,

where for l we denote Bl
k = Bk −Bl , k ≥ l. For qN we utilize Lemma 6.4 as follows

qN ≥ P(∀n∈{0,...,KN }x +Bn ≥Wn)P(BKN
≥AN)− P

(
BKN

≥N1/3). (6.16)

Let us further denote kN := �(logKN)6� and aN := k
1/2
N log log kN . Applying a similar procedure we get

P
(∀n∈{0,...,KN }x +Bn ≥Wn + f (n)

)
≥ logP(BkN

≥ aN)+ logp(x,0, kN)+ logp(aN, kN ,KN),

where p(x, k, l) := P(∀n∈{k,...,l}x +Bk
n ≥Wn + f (n)). We will prove that

lim inf
N→+∞

p̂N

logN
≥−γ, Q-a.s. (6.17)

Lemma 6.3 and Lemma 6.2 imply

lim inf
N→+∞

logp(x,0, kN)

logN
≥
{

0 on Ax,

−∞ on Ac
x,

and

lim inf
N→+∞

logP(BKN
≥AN)

logN
= 0, Q-a.s.

(6.18)
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By simple scaling arguments we notice that (6.17) and (6.18) imply

lim inf
N→+∞

logp(aN, kN ,KN)

logN
≥ 0, and lim inf

N→+∞
logP(BkN

≥ aN)

logN
= 0, Q-a.s.

We notice that by assumption (A2) for large N we have P(BKN
≥N1/3)≤ exp(−N1/4). Thus this term is negligible

in (6.16) and we get

lim inf
N→+∞

logqN

logN
≥
{

0 on Ax,

−∞ on Ac
x .

This together with (6.17) implies (6.15). For (6.17) we will apply coupling arguments similar to the ones in the
previous proof. We keep the notation (W, Ŵ ) and (B, B̂). We will also use the events of (6.12). Finally, we know that
for some ε > 0 we have f (n)≤ n1/2−ε/2 for n large enough. We set a′, b′ such that a < a′ < b′ < b. Conditionally
on AN for N large enough

p̂N ≥ P
(∀KN≤n≤NAN +BKN

n ≥ Ŵn + n1/2−ε/2,B
KN

N − ŴN ∈
(
a′N1/2, b′N1/2)).

Further, recalling (6.11) and (6.14) for a′ < a′′ < b′′ < b′ we have

p̂N ≥ P

(∀KN≤n≤NAN/2+ B̂f (n,μ)−f (KN ,μ) ≥ Ŵn + n1/2−ε

B̂f (N,μ)−f (KN ,μ) − ŴN ∈ (a′′N1/2, b′′N1/2)

)
− P

(
Bc

N

)
.

Similarly as in the previous case the second term will be negligible. Let fN(·,μ) be the piece-wise linearization of
{KN, . . . ,N} " n 
→ f (n,μ)− f (KN,μ). It is non-decreasing thus we may define its inverse by gN(t,μ) := inf{s ≥
0 : fN(s,μ)≥ t}. We set v =Q(E(X2

1)) (we recall that X1 = B1)

CN :=
{∀t≥0

∣∣gN(t,μ)− t/v
∣∣≤ [(logN)3 ∨ t2/3]}.

We leave to the reader verifying that 1CN
→ 1 Q-a.s. Now conditionally on CN we have

p̂N ≥ P
(∀vKN/2≤t≤MN

AN/2+ B̂t ≥ ŴgN (t,μ) +
(
gN(t,μ)

)1/2−ε
,DN

)− P
(
Bc

N

)
,

where MN = vN −N3/4 and

DN :=
{∀MN<t<vN+N3/4B̂t − ŴgN (t,μ) ∈

(
a′′N1/2, b′′N1/2)}.

Using the third condition of (6.12) and performing simple calculations we have

AN ∩ CN ⊂
{∀t≥logNŴgN(t,μ) ≤ Ŵt/v + t4/9 + (logN)3}.

Therefore on AN ∩ CN , for N large enough, we get

p̂N ≥ P
(∀vKN/2≤t≤MN

AN/4+ B̂t ≥ Ŵt/v + t4/9,DN

)− P
(
Bc

N

)
.

We choose a′′′, b′′′ such that a′′ < a′′′ < b′′′ < b′′ and apply the Markov property

P
(∀vKN/2≤t≤MN

AN/4+ B̂t ≥ Ŵt/v + t4/9,DN

)
≥ P
(∀KN/2≤t≤MN

AN/4+ B̂t ≥ Ŵt/v + t4/9, B̂MN
− ŴMN/v ∈

(
a′′′N1/2, b′′′N1/2))

× inf
x∈(a′′′N1/2,b′′′N1/2)

P(DN |B̂MN
− ŴMN/v = x).

It is easy to check that with high probability (with respect to Q) the last term is bigger than 1/2. Recalling that P(Bc
N )

is negligible and utilizing Theorem 1.5 we obtain (6.17). This together with (6.10) implies (6.1) for the special choice
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of the realization of W (i.e. we worked with the measure Q on which we had the coupling (W, Ŵ )). To remove
this assumption let us consider l be the space with R-valued sequences with the product topology. Given any other
probability measure P supporting W and B we have P(W ∈A)=Q(W ∈A) for any A in the Borel σ -field of l. One
checks that

A0 :=
{
g ∈ l : lim

N→+∞
logP(∀n≤Nx +Bn ≥ gn + f (n)),BN −WN ∈ (aN1/2, bN1/2)

logN
=−γ

}

belongs to this σ -field. Now we have

P(A0)=Q(A0)= 1.

This concludes the proof of Theorem 1.10. We skip the proof of Theorem 1.11, it follows by rather simple modifica-
tions of the above proof.

We are still left with

Proof of Fact 1.8. The first part of the fact is easy e.g. by the Hsu–Robbins theorem. For the second part let us
consider first that supSB = +∞. Then every step of B can be bigger than the one of W thus clearly for any N

we have P(∀n≤Nx + Bn ≥ Wn|W) > 0. Now, we assume S := supSB < +∞. For any fixed N we have P(B1 ≥
S − x/(2N)) > 0. Further, one verifies that{∀n≤N : Bn −Bn−1 ≥ S − x/(2N)

}⊂ {P(∀n≤Nx +Bn ≥Wn|W) > 0
}
.

Therefore, one obtains P(Ax)= 1. The second part of the proof goes easily by contradiction. If the condition does not
hold then there exists S and ε > 0 such that P(W1 ≥ S + ε) > 0 and P(B1 ≥ S − ε)= 0. From this we conclude that

P
(
W�2x/ε� ≥ �2x/ε�S + 2x

)
> 0

while P(B�2x/ε� ≥ �2x/ε�S)= 0. �

7. Discussion and open questions

In the concluding section we discuss some open questions and further areas of research.

• The function γ introduced in Theorem 1.1 calls for better understanding. We are convinced that it is strictly convex.
It should be possible to obtain its asymptotics when β →+∞, we expect that γ (β)/β2 → C, for C > 0.

• The qualitative results of our paper should hold in a much greater generality. Let us illustrate that on an example.
We expect that the convergence in Theorem 1.9 stays valid for any processes {Wn}n∈N, {Bn}n∈N whose increments
are weakly correlated (for example with the exponential decay of correlations like Cov(Wn+1−Wn,Wk+1−Wk)∼
exp(−c|n− k|)). Similarly the qualitative statement of Theorem 1.1 should be valid if processes {Bt }t≥0, {Wt }t≥0
are diffusions without strong drift (possibly the proper condition to assume is that the spectral gap is 0).

• The case β = 0 in Theorem 1.1 is well-studied, in particular it is known that conditioning a Brownian motion to
stay above the line has a repelling effect and such a process escapes to infinity as t1/2 as t →+∞. Our result
γ (β) > γ (0) for β 	= 0 suggests that the repelling effect is stronger when the disorder is present. Quantifying this
effect would be an interesting research question.
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