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Abstract. We study the alternating k-arm incipient infinite cluster (IIC) of site percolation on the triangular lattice T. Using Camia
and Newman’s result that the scaling limit of critical site percolation on T is CLE6, we prove the existence of the scaling limit of
the k-arm IIC for k = 1,2,4. Conditioned on the event that there are open and closed arms connecting the origin to ∂DR , we show
that the winding number variance of the arms is (3/2 + o(1)) logR as R → ∞, which confirms a prediction of Wieland and Wilson
[Phys. Rev. E 68 (2003) 056101]. Our proof uses two-sided radial SLE6 and coupling argument. Using this result we get an explicit
form for the CLT of the winding numbers, and get analogous result for the 2-arm IIC, thus improving our earlier result.

Résumé. Nous étudions le cluster infini conditionné (IIC) à k-bras alternants pour la percolation par site sur le réseau triangu-
laire T. En utilisant le résultat de Camia et Newman montrant que la limite d’échelle de la percolation par site sur T est le CLE6,
nous prouvons l’existence de la limite d’échelle de l’IIC à k bras pour k = 1,2,4. Conditionnellement à l’événement qu’il y
ait un bras ouvert et un bras fermé connectant l’origine à ∂DR , nous montrons que la variance du nombre d’enroulements est
(3/2 + o(1)) logR quand R → ∞, ce qui confirme la prédiction de Wieland et Wilson [Phys. Rev. E 68 (2003) 056101]. Notre
preuve utilise le SLE6 radial à deux côtés ainsi que des arguments de couplage. En utilisant ce résultat, nous obtenons une forme
explicite pour le CLT sur le nombre d’enroulements, et obtenons des résultats analogues pour le IIC à deux bras, améliorant ainsi
notre résultat précédent.
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1. Introduction

Percolation is a central model of probability theory and statistical physics, see [13,40] for background and [14] for a
summary of recent progress. For bond percolation on Zd , there is almost surely no infinite open cluster at the critical
point when d = 2 or d > 10 (see the recent work [11]), and is conjectured that this is the case whenever d ≥ 2. The
term “incipient infinite cluster” (IIC) has been used by physicists to refer to the large-scale connected clusters present
in critical percolation, and was defined mathematically by Kesten [22] in two dimensions. Roughly speaking, IIC is
obtained by conditioning on the event that there is an open path connecting the origin to the boundary of the box with
radius n centered at the origin, and letting n → ∞. Following Kesten’s spirit, Damron and Sapozhnikov introduced
multi-arm IIC in [8]. We will give the definitions of these IICs later.

In fact, IIC is a very natural and robust object that can be constructed in many different ways. We introduce some
natural constructions for dimension two as follows. In [22], Kesten gave an alternative way to construct the IIC: Take
p > pc, condition on the cluster of the origin to be infinite, and let p → pc. Járai [18] showed that if we choose a
site uniformly from the largest cluster or the spanning clusters in [−n,n]2, and let n → ∞, then we get the IIC. In
[19] Járai also proved that the invasion percolation cluster looks asymptotically like the IIC, when viewed from an

http://www.imstat.org/aihp
http://www.imstat.org/aihp
https://doi.org/10.1214/17-AIHP858
mailto:deducemath@126.com


Multi-arm IIC in 2D 1849

invaded site v, in the limit |v| → ∞. Similarly, Damron and Sapozhnikov [8] showed that the invasion percolation
cluster looks asymptotically like the 2-arm IIC (resp. 4-arm IIC), when viewed from a site v belonging to the backbone
(resp. outlets), in the limit |v| → ∞. Recently, Hammond, Pete and Schramm [15] defined a local time measure on the
exceptional set of dynamical percolation, and showed that at a typical time with respect to this measure, the percolation
configuration has the law of IIC. For IIC in high dimensions, see [36,38], where it was also shown that several related
and natural constructions lead to the same object.

In this paper, we will study the scaling limit of IIC for site percolation on the triangular lattice T and the winding
numbers of the arms. Before giving our main results, we wish to introduce some related works in the literature.

The scaling limit of IIC has been extensively studied in recent years, and it has turned out to be useful in under-
standing the discrete model. We list a few related works in the following:

• Percolation in high dimensions. Van der Hofstad conjectured in [36] that the scaling limit of IIC above 6 dimen-
sions is infinite canonical super-Brownian motion (ICSBM), which corresponds to the canonical measure of super-
Brownian motion conditioned on non-extinction. ICSBM consists of a single infinite Brownian motion path together
with super-Brownian motions branching off from this path. In [17], it is showed that the scaling limit of the back-
bone of the high-dimensional IIC is Brownian motion. The scaling limit of another version of high-dimensional IIC
is conjectured to be integrated super-Brownian excursion (ISE) by Hara and Slade [16]. Using the lace expansion,
they obtained strong evidence for their conjecture in [16].

• Oriented percolation in high dimensions. The existence of the IIC for sufficiently spread-out oriented percolation
on Zd × Z+ above 4 + 1 dimensions has been proved by van der Hofstad, den Hollander, and Slade [37]. Van der
Hofstad [36] proved that ICSBM is the scaling limit of the IIC.

• Percolation on a regular tree. The IIC on a regular tree was constructed by Kesten in [23]. It has a simple structure,
and can be viewed as an infinite backbone from the origin with critical percolation clusters attached to it. Very re-
cently, Angel, Goodman and Merle [3] proved that the scaling limit of the IIC (w.r.t. the pointed Gromov-Hausdorff
topology) is a random R-tree with a single end.

Motivated by a question from Beffara and Nolin [4], in [41] we proved a CLT for the winding numbers of alternating
arms crossing the annulus A(l, n) (as n → ∞ and l fixed) for critical percolation on T and Z2. Using this, we also
got a CLT for corresponding multi-arm IIC in [41]. However, the exact estimate for the winding number variance
was not given in that paper. Based on numerical simulations, Wieland and Wilson [39] made a conjecture on the
winding number variance of Fortuin-Kasteleyn contours (and more generally, the winding at points where k paths
come together), including the above case. The conjecture seems hard, to our knowledge, it has been verified rigorously
on only a few particular cases. For example, conditioned on the event that there are 2 (resp. 3) disjoint loop-erased
random walks starting at the neighbors of the origin and ending at the unit circle centered at the origin in ηZ2,
Kenyon [21] (see also “Remarks on LERW” in [39]) showed that the winding number variance of the paths is (1/2 +
o(1)) log(1/η) (resp. (2/9 + o(1)) log(1/η)) as η → 0. The interested reader is referred to the Introduction of [41] for
a more general discussion and references on winding numbers.

The rest of the paper is organized as follows. Section 1.1 introduces the basic notation used throughout the paper,
and gives the definitions of k-arm IIC measure and arm events for CLE6. Section 1.2 gives our main results, together
with the main ideas in their proofs. In Section 2.1, we define the uniform metric, which is related to the convergence
in distribution. Section 2.2 collects different versions of coupling arguments that will be used. Section 2.3 gives
basic properties of arm events, including a generalized quasi-multiplicativity. Section 3 provides proofs of scaling-
limit results for multi-IIC. In Section 4.1, we introduce two-sided radial SLE and give second moment estimate for
its winding number. We study convergence of discrete exploration to SLE6 in Section 4.2, moment bounds on the
winding of discrete exploration in Section 4.3, and decorrelation of winding in Section 4.4, which will enable us
to translate the winding number result for two-sided radial SLE6 to percolation. Section 4.5 provides proofs of the
winding number results for the arms.

1.1. The model and notation

Let T = (V,E) denote the triangular lattice, where V := {x + yeπi/3 ∈C : x, y ∈ Z} is the set of sites, and E is the set
of bonds, connecting adjacent sites. Throughout the paper, we will focus on critical site percolation on ηT with small
mesh size η > 0, where each site is chosen to be blue (open) or yellow (closed) with probability 1/2, independently
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of each other. Let P = P η denote the corresponding product probability measure on the set of configurations. We also
represent the measure as a (blue or yellow) random coloring of the faces of the dual hexagonal lattice ηH, and view
the sites of ηT as the hexagons of ηH. Further, let Hv denote the regular hexagon centered at v ∈ V(T) with side
length 1/

√
3 with two of its sides parallel to the imaginary axis.

A path is a sequence v0, . . . , vn of distinct sites of T such that vi−1 and vi are neighbors for all i = 1, . . . , n.
A boundary path (or b-path) is a sequence e0, . . . , en of distinct edges of H belonging to the boundary of a cluster
and such that ei−1 and ei meet at a vertex of H for all i = 1, . . . , n. A circuit is a path whose first and last sites are
neighbors. For a circuit C, define

C := C ∪ interior sites of C.

A color sequence σ is a sequence (σ1, σ2, . . . , σk) of “blue” and “yellow” of length k. We use the letters “B” and
“Y” to encode the colors. We identify two sequences if they are the same up to a cyclic permutation.

We say that a finite set D of hexagons is simply connected if both D and its complement are connected. For a
simply connected set D of hexagons, we denote by �D its external site boundary, or s-boundary (i.e., the set of
hexagons that do not belong to D but are adjacent to hexagons in D), and by ∂D the topological boundary of D when
D is considered as a domain of C. We will call a bounded, simply connected subset D of T a Jordan set if �D is a
circuit.

Given a Jordan set D ⊂ T, for any vertex v ∈ H that belongs to ∂D, if the edge incident on v that is not in D does
not belong to a hexagon in D, we call v an e-vertex.

Given a Jordan set D and two e-vertices a, b in ∂D, we denote by ∂a,bD the portion of ∂D traversed counter-
clockwise from a to b, and call it the right boundary; the remaining part of the boundary is denoted by ∂b,aD and is
called the left boundary. Analogously, the portion of �a,bD of �D whose hexagons are adjacent to ∂a,bD is called
the right s-boundary and the remaining part the left s-boundary. Imagine coloring blue all the hexagons in �a,bD and
yellow all those in �b,aD. Then, for any percolation configuration inside D, there is a unique b-path γ from a to b

which separates the blue cluster adjacent to �a,bD from the yellow cluster adjacent to �b,aD. We call γ = γD,a,b a
percolation exploration path.

Given a Jordan domain D of the plane, we denote by Dη the largest Jordan set of hexagons of ηH that is contained
in D. For two distinct points a, b ∈ ∂D, we let γ

η
D,a,b := γDη,aη,bη , where aη (resp. bη) is the e-vertex in ∂Dη closest

to a (resp. b). If there are two such vertices closest to a (resp. b), we choose the first one encountered going clockwise
(resp. counterclockwise) along ∂Dη . Further, let ∂a,bD

η := ∂aη,bηD
η and �a,bD

η := �aη,bηD
η .

For a domain D, let D := D ∪ ∂D. For a topological annulus A = D2 \ D1 (D1 and D2 are Jordan domains)
whose boundary is composed of two simple loops in the plane, we denote by ∂1A (resp. ∂2A) the inner (resp. outer)

boundary of A, and let Aη := D
η
2 \ D

η
1 .

Define the disc and annulus as follows: for 0 < r < R,z ∈ C,

DR(z) := {x ∈ C : |x − z| < R
}
, DR := DR(0), D := D1;

A(z; r,R) :=DR(z) \Dr (z), A(r,R) := A(0; r,R).

Now let us define the arm events for percolation. For a topological annulus A whose boundary is composed of two
simple loops, denote by Aη

σ (A) = Aη
k,σ (A) the event that there exist |σ | = k disjoint monochromatic paths (arms) in

Aη connecting the two boundary pieces of Aη, whose colors are those prescribed by σ , when taken in counterclock-
wise order. For |σ | ≤ 6, given a Jordan domain D with a point z ∈ D, let Aη

σ (z;D) denote the event that there exist
|σ | disjoint arms connecting ∂Dη and the hexagon in ηH whose center is closest to z (if there are more than one such
hexagons, we choose a unique one by some deterministic method), whose colors are those prescribed by σ , when
taken in counterclockwise order. For any η ≤ r < R and z ∈ C, write

Aη
σ (z; r,R) := Aη

σ

(
A(z; r,R)

)
.

For short, let Aη
σ (r,R) =Aη

σ (0; r,R) and let Aη
1 =Aη

B , Aη
2 =Aη

BY , Aη
4 =Aη

BYBY .
The IIC was defined by Kesten [22] as follows. It is shown in [22] that the limit

ν
η
1 (E) := lim

R→∞P η
(
E|Aη

1(η,R)
)
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exists for any event E that depends on the state of finitely many sites in ηT. The unique extension of ν
η
1 to a probability

measure on configurations of ηT exists and we call ν
η
1 the IIC measure or 1-arm IIC measure. Then, Damron and

Sapozhnikov introduced multi-arm IIC measures in [8]. Let k = 2,4. For every cylinder event E, it is shown in
Theorem 1.6 in [8] the limit

ν
η
k (E) := lim

R→∞P η
(
E|Aη

k(η,R)
)

exists. The unique extension of ν
η
k to a probability measure on the configurations of ηT exists. We call ν

η
k the k-arm

IIC measure. A curve γ [0,1] is called a loop if γ (0) = γ (1). All percolation interfaces under ν
η
k induce a probability

measure on the loops in the one-point compactification Ĉ of C, denoted by μ
η
k . We postpone precise definitions of the

space of loops and the topology of weak convergence till Section 2.1. We also call μ
η
k the k-arm IIC measure.

Given a percolation configuration, we assign a direction to each edge of ηH belonging to the boundary of a cluster
in such a way that the hexagon to the right of the edge with respect to the direction is blue. To each b-path γ , we can
associate a direction according to the direction of the edges in the path. Denote by 	B(γ ) (resp., 	Y (γ )) the set of
blue (resp., yellow) hexagons adjacent to γ ; we also let 	(γ ) := 	B(γ ) ∪ 	Y (γ ).

For any Jordan domain D, let P
η
D denote the percolation law in Dη with monochromatic (blue) boundary condition,

that is, all the sites in �Dη are blue. Then the percolation interfaces under P
η
D induce a law on the loops in D, denoted

by μ
η
D .

In Camia and Newman [7], the following theorem is shown:

Theorem 1.1 ([7]). Let D be a Jordan domain. As η → 0, μ
η
D converges in law, under the topology induced by

metric (8), to a probability distribution μD on collections of continuous nonsimple loops in D.

The continuum nonsimple loop process in Theorem 1.1 is just the full scaling limit introduced by Camia and
Newman [5,7]. Since it is also called the conformal loop ensemble CLE6 in [32] (for the general CLEκ , 8/3 ≤ κ ≤ 8,
see [32,34]), we just call it CLE6 (in D) in the present paper.

For simplicity, let P
η
R := P

η

DR
, μ

η
R := μ

η

DR
and μR := μDR

.
We need to define arm events for CLE6 in a way that makes them measurable and equal to the limit of the probability

of corresponding arm events for percolation as η → 0. Now we express the arm events Aη
k(r,R), k = 1,2,4 for μ

η
R in

terms of loops (cluster interfaces). See Figure 1.

• It is well-known that the complement of Aη
1(r,R) is that there exists a yellow circuit surrounding the origin in

Aη(r,R). Since μ
η
R has monochromatic blue boundary condition, the outer boundary of the cluster containing this

yellow circuit is in Aη(r,R) \ ∂1A
η(r,R), and has counterclockwise direction. So, we have

Aη

1(r,R) =
{

There exists no counterclockwise loop surrounding

the origin in Aη(r,R) \ ∂1A
η(r,R)

}
. (1)

In fact, a simple observation leads to that

Aη
1(r,R) =

{
There exits neither counterclockwise loop nor clockwise

loop surrounding the origin in Aη(r,R) \ ∂1A
η(r,R)

}
.

Fig. 1. Illustration of arm events with monochromatic blue boundary condition. The red loops are the outer boundaries of the clusters containing
yellow arms. The first panel indicates Aη

1(r,R). The second panel indicates Aη
2(r,R). The last two panels indicate Aη

4(r,R).
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• Assume that Aη
2(r,R) holds, then there exist a blue arm and a yellow arm connecting ∂1A

η(r,R) and ∂2A
η(r,R).

The outer boundary of the cluster containing the yellow arm must intersect with both of the two boundary pieces of
Aη(r,R). Conversely, if there exists a counterclockwise loop γ in Aη(r,R) intersecting both of the two boundary
pieces of Aη(r,R), we can find a blue arm in 	B(γ ) and a yellow arm in 	Y (γ ), which connect the two boundary
pieces of Aη(r,R). Hence,

Aη
2(r,R) =

{
There exists a counterclockwise loop in Dη

R , which

intersects with both ∂1A
η(r,R) and ∂2A

η(r,R)

}
. (2)

• Denote by Aη,B
4 (r,R) (resp. Aη,Y

4 (r,R)) the event that there are four alternating arms in Aη(r,R) connecting

∂1A
η(r,R) and ∂2A

η(r,R), and the two blue (resp. yellow) arms are in the same cluster in Dη
R . It is clear that

Aη
4(r,R) = Aη,B

4 (r,R) ∪ Aη,Y
4 (r,R). If Aη,B

4 (r,R) occurs, there exist two counterclockwise loops in Dη
R , which

intersect with both ∂1A
η(r,R) and ∂2A

η(r,R); if Aη,Y
4 (r,R) occurs, there exists a counterclockwise loop in Dη

R ,
which is composed of two curves γ1 and γ2: γ1 starts at a ∈ ∂2A

η(r,R) and ends at b ∈ ∂2A
η(r,R), γ2 starts at b

and ends at a, both γ1 and γ2 intersect with ∂1A
η(r,R). In fact, it is easy to see that

Aη
4(r,R) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

There exist two counterclockwise loops in Dη
R , which

intersect with both ∂1A
η(r,R) and ∂2A

η(r,R); or there

exists a counterclockwise loop in Dη
R , which is composed

of two curves γ1 and γ2: γ1 starts at a ∈ ∂2A
η(r,R) and

ends at b ∈ ∂2A
η(r,R), γ2 starts at b and ends at a, both

γ1 and γ2 intersect with ∂1A
η(r,R)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (3)

This leads us to define arm events Ak(r,R), k = 1,2,4 for μR as follows:

A1(r,R) := {There exists no counterclockwise loop surrounding the origin in A(r,R)} ,

A2(r,R) :=
{

There exists a counterclockwise loop in DR , which

intersects with both ∂1A(r,R) and ∂2A(r,R)

}
,

A4(r,R) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

There exist two counterclockwise loops in DR , which intersect

with both ∂1A(r,R) and ∂2A(r,R); or there exists a counterclockwise

loop in DR , which is composed of two curves γ1 and γ2: γ1 starts

at a ∈ ∂2A(r,R) and ends at b ∈ ∂2A(r,R), γ2 starts at b and ends

at a, both γ1 and γ2 intersect with ∂1A(r,R)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Given two Jordan domains D and D′ with D′ ⊂ D, similarly to the definitions of Ak(r,R) for μR , one can define
arm events Ak(D \ D′) for μD .

In this paper, we sometimes omit the superscript η of P η and γ η when it is clear that we are talking about the the
discrete percolation model. C,C1,C2, . . . and α,β denote positive finite constants that may change from line to line
or page to page according to the context.

1.2. Main results

Our main results include two parts, the first part is about the existence and conformal invariance of the k-arm IIC
scaling limit, the second part is about the variance estimate and CLT for the winding numbers of the arms, conditioned
on the 2-arm event and under the 2-arm IIC measure, respectively.
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1.2.1. Scaling limit of k-arm IIC
Theorem 1.2. Let k = 1,2,4. Let D be a Jordan domain with a point z ∈ D. Let {Dn} be a sequence of Jordan
domains such that z ∈ Dn,Dn ⊂ D and the diameter of Dn converges to zero as n → ∞.

• As η → 0 and n → ∞, μ
η
D[·|Aη

k(z;D)] and μD[·|Ak(D \ Dn)] converge in law, under the topology induced by
metric (8), to the same probability measure, denoted by μk,D,z.

• Furthermore, let D′ be a Jordan domain and let f : D → D′ a continuous function that maps D conformally onto
D′. Let z′ := f (z). Then the image of μk,D,z under f has the same law as μk,D′,z′ .

We call μk,D,z the scaling limit of k-arm IIC pinned at z in D, which can be considered as a conditioned version
of CLE6. In [33], the authors constructed CLEκ in D conditioned on the event that z is in the gasket (i.e., the set of
points that are not surrounded by any loop in CLEκ ) for 8/3 < κ ≤ 4. One can view μ1,D,z as CLE6 in D conditioned
on the event that z is in the gasket. We write μk,R := μk,DR,0.

Remark. Using Theorem 1.2 and Theorem 4 in [7], it is not hard to show that μk,D,z inherits some domain Markov
property from CLE6. It is expected that analogs of Propositions 4.3 and 4.4 in [33] for domain Markov property of
simple CLE in the punctured disc also hold for μk,D,z.

For a domain D, we denote by ID the mapping (on  or R , see the definitions in Section 2.1) in which all
portions of curves that exit D are removed. Let ÎD be the same mapping lifted to the space of probability measures
on  or R .

Theorem 1.3. There exists a unique probability measure μk on the space  of collections of continuous curves in
Ĉ such that μk,R → μk as R → ∞ in the sense that for every bounded domain D, as R → ∞, ÎDμk,R → ÎDμk .
Furthermore, as η → 0, μ

η
k converges in law, under the topology induced by metric (10), to μk .

We call μk the scaling limit of k-arm IIC. In [33], the authors constructed CLEκ in the punctured plane for 8/3 <

κ ≤ 4. One can view μ1 as CLE6 in the punctured plane. Note that if one can construct IIC for the discrete O(n)

models, it is expected that the scaling limit of the IIC is just the corresponding CLEκ in the punctured plane. In
particular, the scaling limit of IIC of the critical Ising model (which is the O(1) model) is expected to be CLE3 in the
punctured plane.

Remark. From Camia and Newman’s construction of the full-plane CLE6, it is easy to see that full-plane CLE6
is invariant under scalings, translations, and rotations. However, with their construction, the invariance of full-plane
CLE6 under the inversion z �→ 1/z turns out to be not obvious to establish. In [20], using the Brownian loop soup,
the authors proved the inversion-invariance of full-plane CLEκ for 8/3 < κ ≤ 4. In [33], the inversion-invariance of
CLEκ in the punctured plane for 8/3 < κ ≤ 4 was also proved. Hence, we propose the following conjecture:

Conjecture 1.4. The full-plane CLE6 and μk (k = 1,2,4) are invariant under z �→ 1/z.

1.2.2. Winding numbers of the arms
For a curve γ [0, T ] in the plane with γ (t) �= 0 for all 0 ≤ t ≤ T , we define the winding number of γ (around 0) by
θ(γ ) := arg(γ (T )) − arg(γ (0)), with arg chosen continuous along γ .

Denote by Aη the event that the percolation exploration path γ
η

D,1,−1 intersect with the boundary of the hexagon
ηH0. Note that Aη is the same as the event that there is a blue arm connecting ηH0 to ∂1,−1Dη and a yellow arm
connecting ηH0 to ∂−1,1Dη.

Assume Aη occurs and T is the first hitting time with ηH0 of γ
η

D,1,−1. Let θη := θ(γ
η

D,1,−1[0, T ]).
Theorem 1.5 establishes a particular case of Wieland and Wilson’s conjecture on winding number variance of

Fortuin-Kasteleyn contours [39].

Theorem 1.5. Conditioned on the event Aη, we have

Var[θη] =
(

3

2
+ o(1)

)
log

(
1

η

)
as η → 0. (4)
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Furthermore, under the conditional measure P [·|Aη],
θη√

3
2 log( 1

η
)

→d N(0,1) as η → 0. (5)

Suppose the 2-arm event Aη
2(η,1) happens. We fix a deterministic way to choose a unique blue arm connecting

∂Dη and ηH0, and denote by θ̃η the winding number of this arm (here we consider the arm as a continuous curve by
connecting the neighbor sites with line segments).

The following corollary refines [41] for the 2-arm case by giving variance estimates and CLT for winding numbers
of the arms in explicit expressions.

Corollary 1.6. Under the conditional measure P [·|Aη
2(η,1)] and the 2-arm IIC measure ν

η
2 , as η → 0, we both have

Var[θ̃η] =
(

3

2
+ o(1)

)
log

(
1

η

)
and

θ̃η√
3
2 log( 1

η
)

→d N(0,1).

Remark. Corollary 1.6 confirms a prediction of Beffara and Nolin [4] for the 2-arm case explicitly. Following [41]
(see Theorem 1.1 and Remark 1.2 in [41]), we give the following conjecture for the 4-arm case:

Conjecture 1.7. Under P [·|Aη
4(η,1)] and ν

η
4 , as η → 0 we both have

Var[θ̃η] =
(

3

8
+ o(1)

)
log

(
1

η

)
and

θ̃η√
3
8 log( 1

η
)

→d N(0,1).

Remark. If one can generalize the results for two-sided radial SLE that we used in this paper to “2k-sided radial
SLE”, it is expected that one can use our method to get precise estimate of the winding number variance for the
2k-arm case, and get the corresponding CLT.

1.2.3. Ideas of the proofs
Let us explain the main ideas in the proofs of our main results.

Scaling limits. First, we use the approach of Aizenman-Burchard [1] to show that the k-arm IIC has subsequential
scaling limit. Then, conditioned on the k-arm events for a sequence of annuli, we introduce conditional measures for
percolation and CLE6. Using these measures, by coupling argument introduced in [12] and Theorem 1.1, we establish
the uniqueness of the scaling limit. The conformal invariance of the scaling limit can be derived from that of CLE6

easily.
Winding numbers. The proof can be divided into three main steps as follows.

• First, we use the approach of Schramm [31] to derive the winding number variance of two-sided radial SLE6.
• Second, conditioned on the event that the percolation exploration path in Dη goes through ηH0, we show the scaling

limit of the path is two-sided radial SLE6. The key ingredients include a proposition of Green’s function for chordal
SLE proved by Lawler and Rezaei [26], the coupling argument and the well-know result that the scaling limit of
percolation exploration path is SLE6.

• Third, we divide the unit disk into concentric annuli with large modulus, and show that the sum of winding number
variances of the paths in these annuli approximates the variance of θη, and the winding number variance corre-
sponding to each annulus can be approximated well by that of two-sided radial SLE6 as η → 0. This step involves
many technical issues and uses coupling argument extensively. A key ingredient is the estimate of winding number
variance of the arms from [41].
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2. Preliminary definitions and results

2.1. The space of curves

When taking the scaling limit of percolation on the whole plane, it is convenient to compactify C into Ĉ := C∪{∞} 
S2 (i.e., the Riemann sphere) as follows. First, we replace the Euclidean metric with a distance function �(·, ·) defined
on C×C by

�(u,v) := inf
ϕ

∫ (
1 + |ϕ|2)−1

ds, (6)

where the infimum is over all smooth curves ϕ(s) joining u with v, parameterized by arclength s, and | · | denotes the
Euclidean norm. This metric is equivalent to the Euclidean metric in bounded regions. Then, we add a single point ∞
at infinity to get the compact space Ĉ which is isometric, via stereographic projection, to the two-dimensional sphere.

Let D be a Jordan domain and denote by SD the complete separable metric space of continuous curves in D with
the metric (7) defined below. Curves are regarded as equivalence classes of continuous functions from the unit interval
to D, modulo monotonic reparametrizations. F will represent a set of curves (more precisely, a closed subset of SD).
d(·, ·) will denote the uniform metric on curves, defined by

d(γ1, γ2) := inf sup
t∈[0,1]

∣∣γ1(t) − γ2(t)
∣∣, (7)

where the infimum is over all choices of parametrizations of γ1 and γ2 from the interval [0,1]. The distance between
two closed sets of curves is defined by the induced Hausdorff metric as follows:

dist
(
F,F ′) := inf

{
ε > 0 : ∀γ ∈ F,∃γ ′ ∈F ′ such that d

(
γ, γ ′)≤ ε and vice versa

}
. (8)

The space D of closed subsets of SD (i.e., collections of curves in D) with the metric (8) is also a complete separable
metric space. Write R := DR

.
We will also consider the complete separable metric space S of continuous curves in Ĉ with the distance

D(γ1, γ2) := inf sup
t∈[0,1]

�
(
γ1(t), γ2(t)

)
, (9)

where the infimum is again over all choices of parametrizations of γ1 and γ2 from the interval [0,1]. The distance
between two closed sets of curves is again defined by the induced Hausdorff metric as follows:

Dist
(
F,F ′) := inf

{
ε > 0 : ∀γ ∈ F,∃γ ′ ∈F ′ such that D

(
γ, γ ′)≤ ε and vice versa

}
. (10)

The space  of closed sets of S (i.e., collections of curves in Ĉ) with the metric (10) is also a complete separable
metric space.

It was noted in [5,7] that one should add a “trivial” loop for each z in D, so that the collection of CLE6 loops is
closed in the appropriate sense [1]. When considering the CLE6 in Ĉ, one should also add a trivial loop for each z ∈ Ĉ
to make the space of loops closed. In this paper, we will not include these trivial loops to the loop process except for
dealing with this technical problem.

2.2. Coupling argument

The coupling argument for 1-arm events appeared in [22] for the construction of IIC, and then the coupling argument
for multi-arm events appeared in [8] for the construction of multi-arm IIC. Recently, Garban, Pete and Schramm [12]
introduced the notion of faces, and gave the coupling argument in a clear and general form, which turns out to be very
useful. For example, we used it in [41] to prove a CLT for the winding numbers of the arms with alternating colors.
In this paper, we will make extensive use of coupling argument. Being familiar with it in [12] and Lemma 2.3 in [41]
will be helpful to the readers. First, let us state the coupling argument that will be used in Section 3 for k-arm IIC. To
state the result, we need some definitions.
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Let k be an even number. For a circuit C = γ1γ2 · · ·γk (i.e., the concatenation of γ1, . . . , γk), if γ1, . . . , γk are
monochromatic paths with alternating colors, we call C a k-circuit, and write C = (γ1, . . . , γk). We will always assume
that γ1 is blue. For convenience, a monochromatic blue circuit is called a 1-circuit. For any 4-circuit C = (γ1, . . . , γ4),
denote by U = UC the indicator function of the event that there exists a blue path connecting γ1 and γ3 in C (recall
that C = C ∪ interior sites of C). Note that UC = 0 if and only if there exists a yellow path connecting γ2 and γ4 in C.

The proofs of the following coupling arguments (which are different versions of the coupling arguments in [12])
are essentially the same as those of Proposition 3.1, 3.6 and 5.2 in [12] (see also the sketch of the proof of Lemma 2.3
in [41]), we omit the proofs of Proposition 2.1 and 2.2 except just stating how to deal with an additional issue in the
case of k = 4 in Proposition 2.1.

Proposition 2.1. Let k = 1,2,4. There exists a constant α = α(k) > 0, such that for any 10η < r < R/100 and
2r ≤ r ′ ≤ R, there is a coupling of the measures P [·|Aη

k(η,R)] and P [·|Aη
k(r,R)], such that with probability at

least 1 − (r/r ′)α there exists an identical k-circuit C surrounding the origin in Aη(r, r ′) for both measures, and the
configuration outside C is also identical, and furthermore UC is identical in the case k = 4.

Proof. As we have said before Proposition 2.1, we only deal with the additional issue for UC in the case k = 4.
Similarly to the proofs of Proposition 3.6 in [12] and Lemma 2.3 in [41], one can construct a coupling of the measures
P [·|Aη

4(η,R)] and P [·|Aη
4(r,R)], such that with probability at least 1 − (r/r ′)α the following event B occurs: There

exists an identical k-circuit C surrounding the origin in Aη(r, r ′) for both measures, and the configuration outside
C is also identical. Denote by C1 (resp. C2) the k-circuit C under P [·|Aη

4(η,R)] (resp. P [·|Aη
4(r,R)]). Further, the

above construction is symmetric for the colors, so conditioned on B, the probability of UC2 = 1 equals to that of
UC2 = 0. Note that the color of the hexagon ηH0 under P [·|Aη

4(η,R)] is essentially irrelevant to the construction of
the coupling. Hence, if B occurs, one can let the hexagon be blue if UC2 = 1, and yellow if UC2 = 0; otherwise we
toss a coin to determine the color. Then under this new coupling one has UC1 = UC2 . �

Proposition 2.2. Let k = 1,2,4. There exists a constant α = α(k) > 0, such that for any 100η < R1 < R2 and 10η <

r < R1/2, there is a coupling of P [·|Aη
k(η,R1)] and P [·|Aη

k(η,R2)], so that with probability at least 1 − (r/R1)
α

there exists an identical k-circuit C surrounding the origin in Aη(r,R1) for both measures, and the configuration
inside C is also identical.

Now, we want to give the coupling argument that will be used in Section 4 for winding numbers. Following the
terminology of [12,41], we first introduce the notion of faces. Let x1, x2 be distinct e-vertices in ∂Dη

R . Let γ1 be a blue
path of hexagons joining x1 to x2 and let γ2 be a yellow path of hexagons joining x2 to x1. Denote by � = (γ1, γ2)

the circuit which is composed of the two paths. We assume furthermore that Dη
R ⊂ interior of �. Then we call the

circuit � a configuration of faces with endpoints x1, x2, and say � are faces around ∂Dη
R . Define the quality of a

configuration of faces Q(�) to be the distance between the endpoints, normalized by R. That is,

Q(�) := |x1 − x2|
R

.

Let Cone1 := {z ∈ C : −3π/4 < arg(z) < 3π/4}, Cone2 := {z ∈ C : π/4 < arg(z) < 7π/4}, Cone3 := {z ∈ C :
−π/4 < arg(z) < π/4}, Cone4 := {z ∈C : 3π/4 < arg(z) < 5π/4}.

In the annulus A = Aη(R,2R), let R = R(A) be the event that there are exactly two disjoint alternating arms
crossing A, and the resulting two interfaces are contained respectively in Cone1 and Cone2, with the endpoints of the
interfaces on the two boundaries of A belonging to Cone3 and Cone4, respectively.

Lemma 2.3 is the straightforward 2-arm analog of Lemma 2.2 in [41]. The proof is analogous to the second proof
of Lemma 3.4 in [12], we leave it to the reader.

Lemma 2.3. P(R(Aη(R,2R))) > C for an absolute constant C > 0.

For Aη(R,2R), if the event R happens, then the two interfaces induce a natural configuration of faces � ⊂
Aη(R,2R) around ∂Dη

R . We call � good faces around ∂Dη
R . See Figure 2.



Multi-arm IIC in 2D 1857

Fig. 2. Two interfaces crossing the annulus induce a natural configuration of good faces.

For η ≤ r < R and faces � = (γ1, γ2) around ∂Dη
R , define

Aη
�(r,R) :=

{∃ a blue arm connecting γ1 to ∂Dη
r and

a yellow arm connecting γ2 to ∂Dη
r

}
.

Let us now define a measure P ∗
R[·] as follows. First, we sample good faces � around ∂Dη

R according to the law
P [·|R]; then conditioning on �, we sample the configuration inside � according to P [·|A�(η,R)]. This induces a
probability measure on good faces around ∂Dη

R and the configuration inside the good faces, denoted by P ∗
R .

For η < R, denote by Aη(R) the event that the percolation exploration path γ
η

DR,R,−R
intersects with the hexagon

ηH0. Note that Aη(1) =Aη.
The proofs of the following coupling results are very similar to those of Proposition 3.1 and 3.6 in [12] (see also

Lemma 2.3 in [41]), which are omitted here.

Proposition 2.4. There exists a constant β > 0, such that for all η < 1/100,10η < r < R/2 and R ≤ 1, there is a
coupling of the measures P [·|Aη], P [·|Aη(R)] and P [·|Aη

2(η,R)], so that with probability at least 1 − (r/R)β there
exist identical good faces � ⊂ Aη(r,R) for these three measures, and the configuration in � is also identical.

Proposition 2.5. There exist constants C0,C1 > 0, such that for all η ≤ r < R/2, any fixed faces � around ∂Dη
R and

N := �log2(R/r)�, there is a coupling of P [·|Aη
�(r,R)] and {P ∗

(1/2)j R
[·]}1≤j≤N , so that

• for all 1 ≤ j ≤ N , with probability at least 1 − exp(−C0j), there exists 1 ≤ j∗ ≤ j such that there exist good faces
�j∗ around ∂Dη

(1/2)j
∗
R

under P [·|Aη
�(r,R)], and the configuration in �j∗ under P [·|Aη

�(r,R)] is the same as the

configuration under P ∗
(1/2)j

∗
R
[·];

• for all 1 ≤ j ≤ N − 1, with probability at least exp(−C1(j + 1)), for all 1 ≤ j ′ ≤ j there do not exist good faces
around ∂Dη

(1/2)j
′
R

, but there exist good faces �j+1 around ∂Dη

(1/2)j+1R
under P [·|Aη

�(r,R)], and the configuration

in �j+1 under P [·|Aη
�(r,R)] is the same as the configuration under P ∗

(1/2)j+1R
[·].

For the next proposition we need some additional notation. Let 0 < r < 1. For the percolation exploration path
γ

η

D,1,−1, define event

Aη
r := {γ η

D,1,−1 ∩ ∂Dη
r �=∅

}
.

For a curve γ with γ ∩ ∂Dη
r �=∅, denote by τ

η
r the first hitting time with ∂Dη

r of γ .

Proposition 2.6. There exists a constant β > 0, such that for all 100η < 10r < R < 1, there is a coupling of the
measures P [·|Aη] and P [·|Aη

r ], so that with probability at lest 1 − (r/R)β , the stopped percolation exploration path
γ

η

D,1,−1[0, τ
η
R] under P [·|Aη] is identical to that under P [·|Aη

r ].



1858 C.-L. Yao

2.3. Basic properties of arm events

In this paper, we assume that the reader is familiar with the FKG inequality (see Lemma 13 in [29] for generalized
FKG), the BK (van den Berg-Kesten) inequality and Reimer’s inequality [30], and the RSW (Russo–Seymour–Welsh)
technology. See [13,40]. The following properties of arm events are well known (see [29]) except (12) and (13), where
(13) is a generalization of the standard quasi-multiplicativity.

1. A priori bounds for arm events: For any color sequence σ , there exist C1(|σ |), C2(|σ |), α(|σ |), β(|σ |) > 0 such
that for all η ≤ r < R,

C1

(
r

R

)α

≤ P
[
Aη

σ (r,R)
]≤ C2

(
r

R

)β

. (11)

2. There exists a constant C > 0, such that for all η ≤ r < R and faces � around ∂Dη
R with Q(�) > 1/4,

CP
[
Aη

2(r,R)
]≤ P

[
Aη

�(r,R)
]≤ P

[
Aη

2(r,R)
]
. (12)

3. Quasi-multiplicativity: For any color sequence σ , there is a C1(|σ |) > 0, such that for all η ≤ r1 < r2 ≤ r3 < r4 and
r3 ≤ 10r2,

C1P
[
Aη

σ (r1, r2)
]
P
[
Aη

σ (r3, r4)
]≤ P

[
Aη

σ (r1, r4)
]≤ P

[
Aη

σ (r1, r2)
]
P
[
Aη

σ (r3, r4)
]
.

Furthermore, there is a C2 > 0, such that for all η ≤ r1 < r2 ≤ r3/2 and any given faces � around ∂Dη
r3 ,

C2P
[
Aη

2(r1, r2)
]
P
[
Aη

�(r2, r3)
]≤ P

[
Aη

�(r1, r3)
]≤ P

[
Aη

2(r1, r2)
]
P
[
Aη

�(r2, r3)
]
. (13)

Proof. We just need to prove (12) and (13). Applying a standard gluing argument with generalized FKG, RSW and
Theorem 11 in [29], one gets (12). The details are omitted. Now let us show (13). Conditioned on Aη

�(r2, r3), the
two interfaces (or b-paths) starting from the endpoints of � = (γ1, γ2) to reach ∂Dη

2r3/3 together with � induce faces

�′ = (γ ′
1, γ

′
2) around ∂Dη

2r3/3. By Lemma 3.3 (Strong Separation Lemma) in [12], there is some absolute constant
C3 > 0 such that

P

[
Q
(
�′)>

1

4

∣∣∣Aη
�(r2, r3)

]
≥ C3. (14)

By a gluing construction with FKG, RSW and Theorem 11 in [29], there is some absolute constant C4 > 0 such that
for any given �′ with Q(�′) > 1/4 (see an analogous quasi-multiplicativity in [41]),

C4P
[
Aη

2(r1, r2)
]
P
[
Aη

�′(r2,2r3/3)
]≤ P

[
Aη

�′(r1,2r3/3)
]
. (15)

Define

A�,�′ :=
{∃ a blue arm connecting γ1 and γ ′

1 and

a yellow arm connecting γ2 and γ ′
2

}
.

By (14) and (15), we have

C3C4P
[
Aη

2(r1, r2)
]
P
[
Aη

�(r2, r3)
]

≤ C4

∑
Q(�′)>1/4

P
[
�′,A�,�′

]
P
[
Aη

�′(r2,2r3/3)
]
P
[
Aη

2(r1, r2)
]

≤
∑

Q(�′)>1/4

P
[
�′,A�,�′

]
P
[
Aη

�′(r1,2r3/3)
]≤ P

[
Aη

�(r1, r3)
]
.

By choosing C2 = C3C4, we conclude the proof. �
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3. Scaling limit of multi-arm IIC

In this section we will prove our main results concerning the scaling limit of k-arm IIC. First we give some lemmas
that will be used. The following lemma can be seen as an analog of Lemma 2.9 in [12] for quad-crossing percolation
limit.

Lemma 3.1. For any 0 < r < R and k = 1,2,4, there exists a constant Ck > 0 (depending on r/R), such that

lim
η→0

μ
η
R

[
Aη

k(r,R)
]= μR

[
Ak(r,R)

]
> Ck. (16)

Moreover, in any coupling of the measures {μη
R} and μR on (R,FR) in which dist(ωη

R,ωR) → 0 a.s. as η → 0, we
have

P̂
[{

ω
η
R ∈ Aη

k(r,R)
}
�
{
ωR ∈ Ak(r,R)

}]→ 0 as η → 0, (17)

where P̂ [·] denotes the coupling measure.

Proof. By Theorem 1.1, we can couple the measures {μη
R} and μR on (R,FR) such that dist(ωη

R,ωR) → 0 a.s. as
η → 0. Let us show (17) for k = 1,2,4 respectively in the following.

By (1) and the definition of A1(r,R), it is easy to see that for each small ε > 0 and η < ε,

P̂
[{

ω
η
R ∈ Aη

1(r,R)
}
�
{
ωR ∈ A1(r,R)

}]
≤ P̂

[
dist
(
ω

η
R,ωR

)≥ ε
]+ P̂

[∃ counterclockwise loop γ η ∈ ω
η
R surrounding the

origin in A(r − ε,R), and γ η ∩ A(r − ε, r + ε) �=∅

]
.

The first term goes to zero as η → 0. The event in the second term produces a half-plane 3-arm event from the 2ε-
neighborhood of ∂Dr to a distance of unit order, whose probability goes to zero as ε → 0, since the polychromatic
half-plane 3-arm exponent is 2; see, e.g., Lemma 6.8 in [35]. Then (17) is proved in the case k = 1.

By (2) and the definition of A2(r,R), for each small ε > 0 and η < ε,

P̂
[{

ωR ∈ A2(r,R)
} \ {ωη

R ∈ Aη
2(r,R)

}]
≤ P̂

[
dist
(
ω

η
R,ωR

)≥ ε
]+ P̂

⎡⎣∃ counterclockwise loop γ η ∈ ω
η
R intersecting with ∂Dr+ε

and ∂DR−ε in Dη
R , and γ η ∩ ∂Dη

r =∅ or γ η ∩ ∂Dη
R =∅

⎤⎦ .

The event in the second term implies a half-plane 3-arm event from the 2ε-neighborhood of ∂Dr or ∂DR to a distance
of unit order, whose probability goes to zero as ε → 0. Then we get that P̂ [{ωR ∈ A2(r,R)} \ {ωη

R ∈ Aη
2(r,R)}] → 0

as η → 0. Now let us show the other direction. Similarly, for each small ε > 0 and η < ε, we have

P̂
[{

ω
η
R ∈ Aη

2(r,R)
} \ {ωR ∈ A2(r,R)

}]
≤ P̂

[
dist
(
ω

η
R,ωR

)≥ ε
]+ P̂

[∃ counterclockwise loop γ ∈ ωR intersecting with ∂Dr+ε

and ∂DR−2ε in DR , and γ ∩ ∂Dr =∅ or γ ∩ ∂DR =∅

]
.

Clearly the second term goes to zero as ε → 0. Then (17) is proved in the case k = 2.
Similarly to the case k = 2, one can prove the case where k = 4, and the details are omitted.
(11) and (17) imply (16) immediately. �

A collection of measures is said to be (weakly) relatively compact if every sequence has a convergent subsequence.
To prove the existence of the scaling limit, we need a lemma on the existence of subsequential scaling limits:

Lemma 3.2. Let k = 1,2,4. {μη
R[·|Aη

k(η,R)]}η and {μη
k [·]}η are relatively compact.
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Proof. We use the machinery developed by Aizenman and Burchard (Theorem 1.2 in [1]). Let μη denote the proba-

bility measure supported on collections of curves that are polygonal paths on the edges of ηH in Dη
R . In our setting,

Hypothesis H1 of [1] is as follows.
Hypothesis H1. For all j ∈ N, z ∈DR and η ≤ r1 < r2 ≤ 1, the following bound holds uniformly in η and z:

μη
[
A(z; r1, r2) is traversed j times by a curve

]≤ Kj(r1/r2)
φ(j)

for some Kj < ∞ and φ(j) → ∞ as j → ∞.
Observe that the number of segments of a loop crossing an annulus is necessarily even and that, if the annulus is

traversed by j ∈ 2N separate segments of a loop ∈ ω
η
R , there will be j/2 disjoint yellow arms crossing this annulus.

Now let us prove that {μη
R[·|Aη

k(η,R)]}η satisfies Hypothesis H1 for k = 1,2,4. First, we do this in the case k = 1,
which is the easiest one.

The BK inequality and (11) imply that there exist constants C > 1, λ > 0, such that for all η ≤ r1 < r2, z ∈ C and
j ∈ N,

P
η
R

[
Aη

j,Y ···Y (z; r1, r2)
]≤ {P η

R

[
Aη

Y (z; r1, r2)
]}j ≤ Cj (r1/r2)

λj . (18)

Let j ∈ 2N, η ≤ r1 < r2, z ∈DR , we have

P
η
R

[
A(z; r1, r2) is traversed j times by a loop |Aη

1(η,R)
]

≤ P
η
R[Aη

1(η,R),Aη
j/2,Y ···Y (z; r1, r2)]

P
η
R[Aη

1(η,R)]
≤ P

η
R

[
Aη

j/2,Y ···Y (z; r1, r2)
]

by Reimer’s inequality

≤ Cj/2(r1/r2)
λj/2 by (18).

Now let us consider the cases of k = 2,4. Without loss of generality, we assume 10η ≤ 10r1 ≤ r2 ≤ R/4, j ∈
2N and j ≥ k + 2. Let C1,C2,C3 (just depending on k) be appropriate positive constants. We will distinguish the
following four cases (see Figure 3).

Case 1: R/2 ≤ |z| ≤ R.

P
η
R

[
A(z; r1, r2) is traversed j times by a loop |Aη

k(η,R)
]

≤ P
η
R[Aη

k(η,R/5)]
P

η
R[Aη

k(η,R)] P
η
R

[
Aη

j/2,Y ···Y (z; r1, r2)
]

≤ C1C
j/2(r1/r2)

λj/2 by quasi-multiplicativity and (18).

Case 2: r2/3 ≤ |z| ≤ R/2.

P
η
R

[
A(z; r1, r2) is traversed j times by a loop |Aη

k(η,R)
]

≤ P
η
R[Aη

k(η, |z| − r2/4),Aη
k(|z| + r2/4,R)]

P
η
R[Aη

k(η,R)] P
η
R

[
Aη

j/2,Y ···Y (z; r1, r2/4)
]

≤ C2C
j/2(r1/r2)

λj/2 by quasi-multiplicativity and (18).

Case 3: 3r1 ≤ |z| ≤ r2/3.

P
η
R

[
A(z; r1, r2) is traversed j times by a loop |Aη

k(η,R)
]

≤ P
η
R

[
Aη

k

(
η, |z|/2

)
,Aη

k

(
D(z; r2) \D(z/2; |z|)),Aη

k

(
DR \D(z; r2)

)
,

Aη
j/2,Y ···Y

(
z; r1, |z|/2

)
,Aη

j/2,Y ···Y
(
D(z; r2) \D(z/2; |z|))]/P η

R

[
Aη

k(η,R)
]
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Fig. 3. A sketch of the four cases in the proof of Lemma 3.2 (k = 2, j = 4).

≤ P
η
R[Aη

k(η, |z|/2),Aη
k(3|z|/2, r2 − |z|),Aη

k(r2 + |z|,R)]
P

η
R[Aη

k(η,R)]
× P

η
R

[
Aη

j/2,Y ···Y
(
z; r1, |z|/2

)
,Aη

(j−k)/2,Y ···Y
(
z;3|z|/2, r2

)]
by Reimer’s inequality

≤ C3C
(j−k)/2(r1/r2)

λ(j−k)/2 by quasi-multiplicativity and (18).

Case 4: |z| ≤ 3r1.

P
η
R

[
A(z; r1, r2) is traversed j times by a loop |Aη

k(η,R)
]

≤ P
η
R[Aη

k(η, r1),Aη
k(z; |z| + r1, r2),Aη

k(DR \D(z; r2)),Aη
j/2,Y ···Y (z; |z| + r1, r2)]

P
η
R[Aη

k(η,R)]

≤ P
η
R[Aη

k(η, r1),Aη
k(2|z| + r1, r2 − |z|),Aη

k(r2 + |z|,R)]
P

η
R[Aη

k(η,R)]
× P

η
R

[
Aη

(j−k)/2,Y ···Y
(
z; |z| + r1, r2

)]
by Reimer’s inequality

≤ C4C
(j−k)/2(r1/r2)

λ(j−k)/2 by quasi-multiplicativity and (18).

Hence, for k = 1,2,4, {μη
R[·|Aη

k(η,R)]}η satisfies Hypothesis H1. Then Theorem 1.2 in [1] implies that it is relatively
compact.

For the relatively compactness of {μη
k [·]}η, we need to consider Ĉ with metric (6). It is noted in the Remark just

below Theorem 3.1 in [2], although Theorem 1.2 in [1] was formulated for compact subsets � ⊂ Rd , it also applies
to this case. By the inequalities above and the definition of μ

η
k , we have that there exists a constant C5 > 0 depending

on k, such that

μ
η
k

(
A(z; r1, r2) is traversed j times by a loop

)
= lim

R→∞P
η
R

[
A(z; r1, r2) is traversed j times by a loop |Aη

k(η,R)
]≤ C5C

j (r1/r2)
λ(j−k)/2.
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Similarly to the proof of (i) of Theorem 1.1 in [2], by Lemma 3.3 in [2], the corresponding bound on crossing
probabilities holds (with the same exponents) also for the system on Ĉ with the metric (6). Then Theorem 1.2 in [1]
implies that {μη

k [·]}η is relatively compact for k = 1,2,4. �

The following lemma is a particular case of the first part of Theorem 1.2, the proof of the general case is essentially
the same as for this lemma.

Lemma 3.3. Let k = 1,2,4. For each R > 0, as η → 0 and ε → 0, μ
η
R[·|Aη

k(η,R)] and μR[·|Ak(ε,R)] converge in
law, under the topology induced by metric (8), to the same probability distribution, denoted by μk,R .

Proof. By Theorem 1.1 and Lemma 3.1, for any fixed small ε > 0 and δ > 0, we can couple μ
η
R[·|Aη

k(ε,R)] and
μR[·|Ak(ε,R)] for all η small enough, such that with probability at least 1 − δ,

dist
(
ω

η
k,ε,R,ωk,ε,R

)≤ δ, (19)

where ω
η
k,ε,R,ωk,ε,R are the configurations under these two laws.

By Proposition 2.1, there exists a constant α > 0 such that for small ε > 10η, we can couple μ
η
R[·|Aη

k(ε,R)] and
μ

η
R[·|Aη

k(η,R)], such that with probability at least 1− εα/2, there exists an identical k-circuit C = C(η, ε) surrounding
the origin in A(ε,

√
ε) for both measures, and the configuration outside C is also identical, and furthermore UC is

identical in the case k = 4. Observe that when the above event happens,

dist
(
ω

η
k,ε,R,ω

η
k,η,R

)≤ 2
√

ε. (20)

Let us now explain (20) separately in the three cases. Assume that the above event holds. If k = 1, any loop from
ω

η
k,ε,R or ω

η
k,η,R is either inside or outside C, and the loop configuration outside C is identical for ω

η
k,ε,R and ω

η
k,η,R .

Then (20) holds obviously. If k = 2, the loops entirely outside C are identical for ω
η
k,ε,R and ω

η
k,η,R . Furthermore, both

ω
η
k,ε,R and ω

η
k,η,R have a unique loop crossing the 2-circuit C which is composed of two curves, one outside C and

the other inside, and the outside one is identical for ω
η
k,ε,R and ω

η
k,η,R . From this one gets (20) easily. Suppose k = 4,

the loops entirely outside C are identical for ω
η
k,ε,R and ω

η
k,η,R . Furthermore, if UC = 0, both ω

η
k,ε,R and ω

η
k,η,R have

a unique loop crossing the 4-circuit C which is composed of four curves, two outside C and the others inside, and the
outside ones are identical for ω

η
k,ε,R and ω

η
k,η,R ; if UC = 1, both ω

η
k,ε,R and ω

η
k,η,R have exactly two loops crossing C,

with each loop composed of two curves, one outside C and the other inside, and the outside ones are identical for
ω

η
k,ε,R and ω

η
k,η,R . Then one obtains (20).

Combining (19) and (20), for each δ > 0, ε > 0, there exists η0(δ, ε) > 0 such that for each η < η0, we can couple
μR[·|Ak(ε,R)] and μ

η
R[·|Aη

k(η,R)] such that with probability 1 − δ − εα/2,

dist
(
ωk,ε,R,ω

η
k,η,R

)≤ δ + 2
√

ε. (21)

Lemma 3.2 says that there exist subsequential limits of μ
η
R[·|Aη

k(η,R)] as η → 0, (21) implies the uniqueness of the
limit, and we denote it by μk,R . (21) also implies that μR[·|Ak(ε,R)] converges in law to μk,R as ε → 0. �

The conformal invariance of CLE6 is expressed in the following theorem, which will be used in the proof of
Theorem 1.2.

Theorem 3.4 ([7]). Let D,D′ be two Jordan domains and let f : D → D′ be a continuous function that maps D

conformally onto D′. Then the CLE6 in D′ is distributed like the image under f of the CLE6 in D.

To prove Theorem 1.2, we also need the following lemma about conformal transformations, which is Corollary 3.25
in [24].
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Lemma 3.5 ([24]). Let D,D′ be two Jordan domains. If f : D → D′ is a conformal transformation with z ∈ D, then
for all 0 < r < 1 and all |w − z| ≤ r dist(z, ∂D),

∣∣f (w) − f (z)
∣∣≤ 4|w − z|

(1 − r)2

dist(f (z), ∂D′)
dist(z, ∂D)

.

Proof of Theorem 1.2. The first part of Theorem 1.2 is a generalization of Lemma 3.3. Its proof is basically the
same as for Lemma 3.3, and we omit it. Now we show the second part. For any small ε > 0, by the definitions of f

and z′, it is easy to see that f (D(z; ε)) is a Jordan domain, z′ ∈ f (D(z; ε)) and f (D(z; ε)) ⊂ D′. Further, Lemma 3.5
implies that the diameter of f (D(z; ε)) converges to zero as ε → 0. By the definitions of arm events and Theorem 3.4,
the image of μD[·|Ak(D \ D(z; ε))] under f has the same law as μD′ [·|Ak(D′ \ f (D(z; ε)))]. Then the first part of
Theorem 1.2 implies the second part of Theorem 1.2 immediately. �

Proof of Theorem 1.3. By Proposition 2.2, given any bounded domain D, for each ε > 0, there exists a R0(D, ε) > 0,
such that for any R2 > R1 > R0 and any small enough η, we can couple μ

η
R1

[·|Aη
k(η,R1)] and μ

η
R2

[·|Aη
k(η,R2)] such

that with probability at least 1 − ε, the cluster boundaries or portions of boundaries contained in D are identical.
Therefore, letting η → 0 and using Lemma 3.3, there is a coupling between μk,R1 and μk,R2 , such that with probability
at least 1 − ε the loops or portions of loops contained in D are identical. Taking ε → 0 and R = R(ε) → ∞, we get
that ÎDμk,R converges in law to a probability measure. For D = Dr , we denote the above limiting measure by μ′

k,r .

The above argument also implies that μ′
k,r on (r,Br ), for r > 0, satisfy the consistency μ′

k,r1
= ÎDr1

μ′
k,r2

conditions

for all 0 < r1 < r2. Then using Kolmogorov’s extension theorem (see, e.g., [9]) we conclude that there exists a unique
probability measure μk on (,B) with μ′

k,r = ÎDr
μk for all r > 0. For any domain D ⊂ Dr , the above discussion

implies that as R → ∞, ÎDμk,R → ÎDμ′
k,r = ÎDμk .

By Lemma 3.2, we let {ηj } be a convergent subsequence for μ
η
k and let μ′

k be the limit in distribution of μ
ηj

k as
ηj → 0. Now we show μ′

k = μk . To achieve this, it is enough to prove that ÎDr
μ′

k = ÎDr
μk for all r > 0, which is

achieved as follows.
By the definition of μ

η
k , for each ε > 0, there exist η0 > 0,R0 > 0, such that for all η < η0 and all R > R0, we can

couple ÎDr
μ

η
k and ÎDr

μ
η
R[·|Aη

k(η,R)] such that with probability at least 1 − ε,

Dist
(
ω

η
k,r ,ω

η
k,r,R

)≤ ε,

where ω
η
k,r ,ω

η
k,r,R are the configurations under these two laws. Using Lemma 3.3 and the definition of μ′

k , by taking

ηj → 0, we can couple ÎDr
μ′

k and ÎDr
μk,R such that with probability at least 1 − ε,

Dist
(
ω′

k,r ,ωk,r,R

)≤ ε,

where ω′
k,r ,ωk,r,R are the configurations under these two laws. Taking R → ∞ and then ε → 0, by the first part of

the proof of Theorem 1.3, we have ÎDr
μ′

k = ÎDr
μk . �

4. Winding numbers

In this section we will prove our main results concerning the variance estimate and CLT for winding numbers of the
arms in the 2-arm case. We will use two-sided radial SLE6, which is introduced below. We assume that the reader is
familiar with the basic theory of SLE. (See, for instance, Lawler’s book [24].) For the basic results regarding two-sided
radial SLE, we refer to [10,25,26,28].

4.1. Winding for two-sided SLE

To introduce two-sided radial SLE, we need the notion of Green’s function for chordal SLE. Roughly speaking, the
Green’s function gives the normalized probability that the chordal SLE path goes through an interior point. Before
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stating the precise definition, we set up some notation. If D is a simply connected domain with z ∈ D, we let ϒD(z)

be twice the conformal radius of z in D; that is, if f : D → D is a conformal transformation with f (0) = z, then
ϒD(z) = 2|f ′(0)|. Suppose 0 < κ < 8, a, b ∈ ∂D, let γ = γD,a,b denote chordal SLEκ path from a to b in D. Let D∞
denote the component of D \ γ containing z. The Green’s function GD(z;a, b) for γ is defined by

lim
ε→0

εd−2P
[
ϒD∞(z) < ε

]= C∗GD(z;a, b),

where d := 1 + κ/8 is the Hausdorff dimension of SLEκ path, C∗ := 2[∫ π

0 sin8/κ xdx]−1. See, e.g., [28] and Propo-

sition 2.2 in [26]. In fact, for the Euclidean distance, there also exists a constant Ĉ > 0 (the value of Ĉ is unknown)
such that

lim
ε→0

εd−2P
[
dist(z, γ ) < ε

]= ĈGD(z;a, b).

Furthermore, Lawler and Rezaei proved that the Green’s function satisfies the following proposition (Theorem 2.3 in
[26], see also Theorem 2.3 in [27]):

Proposition 4.1 ([26]). Suppose 0 < κ < 8. There exist 0 < Ĉ,C,u < ∞ (depending on κ) such that the following
holds. Suppose D is a simply connected domain, z ∈ D,a,b,∈ ∂D and γ is a chordal SLEκ path from a to b in D.
Then, for all 0 < ε < dist(z, ∂D)/10,∣∣∣∣P [dist(z, γ ) ≤ ε]

ε2−dGD(z;a, b)
− Ĉ

∣∣∣∣≤ C

(
ε

dist(z, ∂D)

)u

.

Assume 0 < κ < 8 and 0 < α < 2π . Roughly speaking, a two-sided radial SLEκ path from 1 to eiα through 0 in
D can be thought of as a chordal SLEκ path γ from 1 to eiα in D, conditioned to pass through 0 (see Proposition 4.2
below). The curve can be defined by weighting γ in the sense of the Girsanov theorem by Green’s function in the
slit domain at 0. More precisely, we parametrize γ by the radial parametrization (i.e., g′

t (0) = et ), and let Mt :=
GD\γ [0,t](0;γ (t), eiα), which is a local martingale. Then using Girsanov’s theorem, we can define a new probability
measure P ∗ which corresponds to paths “weighted locally by Mt ”. That is,

P ∗[V ] = M−1
0 E[Mt1V ] for V ∈ Ft ,

where E denotes expectation with respect to P , Ft denotes the σ -algebra generated by {Ŵs,0 ≤ s ≤ t}, and Ŵ is a
standard Brownian motion and is the driving function of γ .

Explicitly, if γ denotes the two-sided radial SLEκ path from 1 to eiα through 0 in D stopped when it reaches 0, Dt

denotes the connected component of D \ γ (0, t] containing the origin, and gt (two-sided radial SLEκ ): Dt → D is the
conformal transformation with gt (0) = 0, g′

t (0) = et , then gt can be obtained from solving the initial value problem

∂tgt (z) = gt (z)
eiUt + gt (z)

eiUt − gt (z)
, (22)

d�t = 2 cot

[
�t

2

]
dt + √

κ dWt , �0 = α, −dUt = cot

[
�t

2

]
dt + √

κ dWt, (23)

where W is a standard Brownian motion with respect to P ∗. Further, if we write gt (e
iα) = eiVt , then

�t = Vt − Ut . (24)

Note that we write the equation slightly differently than in [10,25], where the authors added a parameter a = 2/κ that
gives a linear time change, and wrote 2Ut in the exponent in (22).

Given r > 0 and a curve γ , let τr = τr (γ ) be the first hitting time with ∂Dr of γ . The following proposition is the
analog of Proposition 2.13 in [28], replacing conformal radius with Euclidean distance. The justification for calling
two-sided radial SLE “chordal SLE conditioned to go through an interior point” comes from this proposition.
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Proposition 4.2. Let 0 < κ < 8 and 0 < α < 2π . There exist 0 < u,C < ∞ (depending on κ) such that the following
is true. Suppose γ is a chordal SLEκ path from 1 to eiα . Suppose 0 < ε < 1/10,0 < ε′ < ε/10. Let μ′,μ∗ be the two
probability measures on {γ (t) : 0 ≤ t ≤ τε} corresponding to chordal SLEκ conditioned on the event {τε′ < ∞} and
two-sided radial SLEκ through 0, respectively. Then μ′,μ∗ are mutually absolutely continuous with respect to each
other and the Radon–Nikodym derivative satisfies∣∣∣∣dμ∗

dμ′ − 1

∣∣∣∣≤ C

(
ε′

ε

)u

.

Proof. Let P [·] denote the law of the entire γ and let Pε[·] denote the law of {γ (t) : 0 ≤ t ≤ τε} restricted to the event
{τε < ∞}. From the definitions of μ′,μ∗, we know that

dμ∗ = Mτε

M0
dPε, dμ′ = P [dist(0, γ ) ≤ ε′|γ [0, τε]]

P [dist(0, γ ) ≤ ε′] dPε.

So μ′ and μ∗ are mutually absolutely continuous. Denote by E the expectation with respect to P , by Fε the σ -algebra
generated by γ [0, τε], by T the time that γ reaches eiα , by PD\γ [0,τε] the law of γ [τε, T ]. Using Proposition 4.1, we
have that for each V ∈ Fε ,

μ∗(V ) = M−1
0 E[Mτε 1V ]

= GD

(
0;1, eiα

)−1
E
[
GD\γ [0,τε]

(
0;γ (τε), e

iα
)
1V

]
= GD

(
0;1, eiα

)−1
E
[
E
[
GD\γ [0,τε]

(
0;γ (τε), e

iα
)|Fε

]
1V

]
= (ε′)2−d

Ĉ
(
1 + O

((
ε′)u))P [dist(0, γ ) ≤ ε′]−1

× E
[
E
[(

ε′)d−2
Ĉ−1(1 + O

((
ε′/ε

)u))
PD\γ [0,τε]

[
dist
(
0, γ [τε, T ])≤ ε′]|Fε

]
1V

]
= (1 + O

((
ε′/ε

)u))
P
[
dist(0, γ ) ≤ ε′]−1

E
[
E
[
PD\γ [0,τε]

[
dist
(
0, γ [τε, T ])≤ ε′]|Fε

]
1V

]
= (1 + O

((
ε′/ε

)u))
μ′(V ).

Then the result follows from the above inequality. �

The following lemma for two-sided radial SLE is an analog of Theorem 7.2 for radial SLE in [31].

Lemma 4.3. Let 0 < κ < 8. Suppose γ is a two-sided radial SLEκ path from 1 to −1 through 0 in D stopped when
it reaches 0. Let T ≥ 0, and θκ(T ) be the winding number of the path γ [0, T ] around 0. Then there exist constants
C0,C1 > 0 depending only on κ , such that for all s > 0,

P ∗[∣∣T + log
∣∣γ (T )

∣∣∣∣> s
]≤ C0 exp(−C1s), (25)

and

P ∗
[∣∣∣∣θκ(T ) +

√
κ

2
WT

∣∣∣∣> s

]
≤ C0 exp(−C1s). (26)

Proof. Schwarz Lemma and the Koebe 1/4 Theorem give

dist
(
0, γ [0, T ])≤ e−T = 1/g′

t (0) ≤ 4 dist
(
0, γ [0, T ])≤ 4

∣∣γ (T )
∣∣, (27)

which implies

log
∣∣γ (T )

∣∣≥ −T + log 4. (28)
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By Theorem 3 in [25], there exist C2(κ),C3(κ) > 0 such that for all k,n ∈N,

P ∗[γ [τe−n−k ,∞) ∩ ∂De−k �=∅
]≤ C2 exp(−C3n). (29)

(27) and (29) imply that there exist C4,C5 > 0, such that

P ∗[T + log
∣∣γ (T )

∣∣> s
]≤ P ∗[γ [τe−T ,∞) ∩ ∂De−T +s �=∅

]≤ C4 exp(−C5s).

Combining this with (28), we get (25).
The proof of (26) is similar to that of (7.3) in [31], we just sketch it here. For t ∈ [0, T ], let y(t) := arg[gt (γ (T ))],

where arg is chosen to be continuous in t . Using the argument in the proof of (7.3) in [31], one can show that

θκ(T ) = UT − U0 + y(0) − y(T ). (30)

By (23), we have

−Ut = �t

2
+

√
κ

2
Wt. (31)

From (24), we have 0 ≤ �t ≤ 2π for all t ≥ 0. Then, by (30) and (31), proving (26) boils down to prove the appropriate
bound on the tail of |y(0) − y(T )|. Let τ1 be the largest t ∈ [0, T ] such that log |gt (γ (T ))| ≤ −1, and set τ1 = 0 if
such a t does not exist. Analogous to the proof of (7.7) in [31], it can be shown that |y(0) − y(τ1)| < ∞. Now let
us bound |y(τ1) − y(T )|. Set t0 = T , and inductively, let tj be the last t ∈ [0, tj−1] such that π/2 = min{|√κUt −√

κUtj−1 − 2πn| : n ∈ Z}, and set tj = 0 if no such t exists. Analogous to the proof of (7.8) in [31], one can show that
for every a > 0 and n ∈N,

P ∗[∣∣y(τ1) − y(T )
∣∣≥ 2πn

]≤ P ∗[T − τ1 ≥ a] + P ∗[tn ≥ T − a].
Using (25), (31) and the argument at the end of the proof of Theorem 7.2 in [31], choosing a to be n times a very
small constant, one can bound the two summands on right hand side appropriately. �

Remark. Theorem 3 in [25] is a result only for two-sided radial SLEκ from 1 to −1 through 0. Adapting the proof of
this result, one can get the analog for general two-sided radial SLEκ from 1 to eiα through 0 in D, where 0 < α < 2π .
Using this, following the proof of Lemma 4.3, one can obtain the analog of Lemma 4.3 for general two-sided radial
SLEκ . For the general case, it is expected that the corresponding C0 and C1 depend only on κ , not on α. Combining
Theorem 1.3 in [10] and our proof of Lemma 4.3, one can show this for 0 < κ ≤ 4.

The following result gives exact second moment estimate for the winding number of the two-sided radial SLE,
which will be used to give estimate for the winding number variance of the arms crossing a long annulus in the 2-arm
case.

Lemma 4.4. Let E∗ denote the expectation with respect to P ∗. γ and θκ are as defined in Lemma 4.3. We have

E∗[θκ(τε)
2]=

(
κ

4
+ o(1)

)
log

(
1

ε

)
as ε → 0.

Proof. Schwarz Lemma and the Koebe 1/4 Theorem give

ε ≤ e−τε = 1/g′
τε

(0) ≤ 4ε. (32)

Using this, similarly to the proof of (26), one can show that there exist constants C0,C1 > 0 depending only on κ ,
such that for all s > 0,

P ∗
[∣∣∣∣θκ(τε) +

√
κ

2
Wτε

∣∣∣∣> s

]
≤ C0 exp(−C1s). (33)

Combining (32) and (33), one obtains Lemma 4.4 easily. �
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4.2. Convergence of discrete exploration to SLE6

Assume 0 < r < 1. Similarly to the definition of Aη
r defined above Proposition 2.6, for chordal SLE6 path γD,1,−1 we

define event

Ar := {γD,1,−1 ∩ ∂Dr �=∅}.

The following lemma is a corollary of the well-known result that the percolation exploration path converges in the
scaling limit to the chordal SLE6 path (see, e.g., Theorem 5 in [6]). The proof is standard and easy.

Lemma 4.5. Let 0 < r ′ ≤ r < 1. γ
η

D,1,−1[0, τ
η
r ] conditioned on Aη

r ′ converges in distribution to stopped chordal SLE6

path γD,1,−1[0, τr ] conditioned on Ar ′ with respect to the uniform metric (7) as η → 0.

Proof. Let P η and P denote the laws of γ
η

D,1,−1 and γD,1,−1, respectively. We claim that for each 0 < r < 1, there
exists a constant C > 0 (depending on r), such that

lim
η→0

P η
[
Aη

r

]= P [Ar ] > C. (34)

Moreover, in any coupling of {P η} and P on (,F) in which d(γ
η

D,1,−1, γD,1,−1) → 0 a.s. as η → 0, we have

P̂
[{

γ
η

D,1,−1 ∈ Aη
r

}
�{γD,1,−1 ∈ Ar}

]→ 0 as η → 0, (35)

where P̂ [·] denotes the coupling measure. The proof of the claim is analogous to that of Lemma 3.1: By Theorem 5
in [6], we can couple {P η} and P on (,F) such that d(γ

η

D,1,−1, γD,1,−1) → 0 a.s. as η → 0. Now let us show (35).
For each small ε > 0 and η < ε,

P̂
[{γD,1,−1 ∈Ar} \ {γ η

D,1,−1 ∈Aη
r

}]
≤ P̂

[
d
(
γ

η

D,1,−1, γD,1,−1
)≥ ε

]+ P̂
[
γ

η

D,1,−1 ∩ ∂Dr+ε �=∅, γ
η

D,1,−1 ∩ ∂Dη
r =∅

]
.

The event in the second term implies a half-plane 3-arm event from the 2ε-neighborhood of ∂Dr to a distance of unit
order, whose probability goes to zero as ε → 0. Then we get that P̂ [{γ η

D,1,−1 ∈ Aη
r }�{γD,1,−1 ∈ Ar}] → 0 as η → 0.

The other direction is easy to prove and the details are omitted. Then we get (35). RSW, FKG and (35) imply (34)
immediately.

Let 0 < r ′ ≤ r < 1. Conditioned on Aη

r ′ and Ar ′ , let γ
η
r [0,1] and γr [0,1] be the respective reparametrized curve of

γ
η

D,1,−1[0, τ
η
r ] and γD,1,−1[0, τr ]. Notice that {γ η

r } satisfies the conditions in [1] and thus has a scaling limit in terms

of continuous curves along subsequence of η. We claim that for every subsequence limit γ̃r [0,1], γ̃r [0,1) ⊂ D \ Dr

almost surely. Then the fact that γ
η
r converges in distribution to γr easily follows from our two claims and Theorem 5

in [6]. It remains to show this claim. Assume that this is not the case for the limit γ̃r along some subsequence {ηk}k∈N.
Then with positive probability γ̃r [0,1) � D \ Dr . Suppose this happens. We can find coupled versions of γ

ηk
r and γ̃

on (,B) such that d(γ
ηk
r , γ̃r ) → 0 a.s. as k → ∞. Using this coupling, for each small ε > 0 and ηk < ε/10, we have

a half-plane 3-arm event produced by γ
ηk
r from the ε-neighborhood of γ̃r (1) to a distance of unit order. As ηk → 0,

we can let ε → 0, in which case the probability of the seeing this event goes to zero, leading to a contradiction. �

In order to derive winding number estimates for the arms from the corresponding result for two-sided radial SLE6,
we need the following lemma.

Lemma 4.6. Suppose 0 < ε < 1/10. Let γ η and γ denote γ
η

D,1,−1 conditioned on Aη and two-sided radial SLE6 path

from 1 to −1 through 0 in D, respectively. Then γ η[0, τ
η
ε ] converges in distribution to γ [0, τε] with respect to the

uniform metric (7), as η → 0.
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Proof. For 0 < ε′ < 1, let γε′ denote γD,1,−1 conditioned on Aε′ , and let γ
η

ε′ denote γ
η

D,1,−1 conditioned on Aη

ε′ . By

Proposition 2.6, for all η < ε′/10 < ε/100, we can couple γ η and γ
η

ε′ , such that with probability at lest 1 − (ε′/ε)β ,

d
(
γ η
[
0, τ η

ε

]
, γ

η

ε′
[
0, τ η

ε

])= 0. (36)

By Lemma 4.5, for each 0 < δ < 1, there exists η0(δ, ε
′), such that for each η < η0 and 0 < ε′ < ε < 1/10, there is a

coupling of γ
η

ε′ and γε′ , such that with probability at least 1 − δ,

d
(
γ

η

ε′
[
0, τ η

ε

]
, γε′ [0, τε]

)≤ δ. (37)

By Proposition 4.2, for each 0 < δ < 1, there exists ε′
0(δ, ε), such that for each 0 < ε′ < ε′

0 there is a coupling of γε′
and γ , such that with probability at least 1 − δ,

d
(
γε′ [0, τε], γ [0, τε]

)≤ δ. (38)

Combining (36), (37) and (38) gives the desired result. �

4.3. Moment bounds on the winding of discrete exploration

Define Rη(r,R) := {z ∈ ηT : | arg(z)| < π/10} ∩ Aη(r,R). We say a path γ ⊂ Rη(r,R) is a crossing of Rη(r,R)

if the endpoints of γ lie adjacent (Euclidean distance smaller than η) to the rays of argument ± π
10 respectively. By

Lemma 2.1 in [41], we obtain the following lemma, which implies that it is very unlikely that there is an arm with
large winding in an annulus.

Lemma 4.7 ([41]). There exist constants C1,C2,K0 > 0, such that for all K > K0 and η ≤ r < R,

P
[∃ ⌊K log(R/r)

⌋
disjoint blue crossings of Rη(r,R)

]≤ C1 exp
[−C2K log(R/r)

]
.

The following three lemmas give moment bounds for the winding numbers of percolation exploration path. Let us
define some notation before stating the results.

Suppose r < R. For a curve γ hitting with ∂Dη
R before hitting with ∂Dη

r , denote by T
η
R,r the last hitting time with

∂Dη
R of γ before time τ

η
r .

Recall the definition of P ∗
R[·] which is defined after the definition of good faces. Denote by E∗

R the expectation
with respect to P ∗

R[·]. Let � be the good faces around ∂Dη
R under P ∗

R[·]. Denote by γ ∗
R the percolation exploration

path connecting the endpoints of � stopped when it reaches ηH0.
Unless specified otherwise, in the rest of this paper, we denote by E = Eη the expectation with respect to P [·|Aη],

and by γ = γ η the percolation exploration path γ
η

D,1,−1 conditioned on Aη. For simplicity, we will omit the superscript

η of γ η, τ
η
r and T

η
R,r when it is clear that we are talking about the the discrete percolation model.

Lemma 4.8. Let η ≤ r < R ≤ 1. We have∣∣Eθ
(
γ [0, τr ]

)∣∣≤ π,
∣∣Eθ

(
γ [TR,r , τr ]

)∣∣≤ π,
∣∣Eθ

(
γ [τR, τr ]

)∣∣≤ 2π and E∗
Rθ
(
γ ∗
R

)= 0.

Proof. First let us show the first inequality. Conditioned on Aη, consider the time-reversal of γ
η

D,1,−1 stopped when
it reaches ηH0, denoted by γ ′. By the symmetry of the lattice, it is easy to see that Eθ(γ [0, τr ]) = −Eθ(γ ′[0, τr ]).
It is obvious that |θ(γ [0, τr ]) − θ(γ ′[0, τr ])| ≤ 2π . These two observations immediately imply |Eθ(γ [0, τr ])| ≤ π .
Similarly one can show the second inequality. Using the first inequality, we get the third one:∣∣Eθ

(
γ [τR, τr ]

)∣∣≤ ∣∣Eθ
(
γ [0, τr ]

)− Eθ
(
γ [0, τR])∣∣≤ 2π.

Now let us show E∗
Rθ(γ ∗

R) = 0. For any fixed good faces � around ∂Dη
R , denote by �′ the mirror image of � with

opposite colors with respect to the imaginary axis. It is obvious that � �= �′, P ∗
R[�] = P ∗

R[�′] and E∗
R[θ(γ ∗

R)|�] =
−E∗

R[θ(γ ∗
R)|�′]. Then E∗

Rθ(γ ∗
R) = 0 follows immediately. �
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Lemma 4.9. There exist constants C1,C2,C3 > 0, such that for all η ≤ r ≤ R/2 ≤ 1/2,

E
∣∣θ(γ [TR,r , τr ]

)∣∣≤√C1 log(R/r), (39)

E
[
θ
(
γ [TR,r , τr ]

)2]≤ C1 log(R/r), (40)

E
[
θ
(
γ [TR,r , τr ]

)4]≤ C2
[
log(R/r)

]4
, (41)

E
[
θ
(
γ [τR,TR,r ]

)2]≤ C3. (42)

Proof. First let us show (40). In [41], conditioned on Aη
2(η,1), we showed that the winding number variance of the

arm connecting the two boundary pieces of Aη(η,1) is O(log(1/η)) (Theorem 1.1 in [41]) by a martingale method.
Conditioned on Aη, one can use the same method to show that Var(θη) is again O(log(1/η)). Furthermore, with a
little modification for our setting, one can also use this method to show that there exists a constant C0 > 0, such that
for all η ≤ r ≤ R/2 ≤ 1/2,

Var
∣∣θ(γ [TR,r , τr ]

)∣∣≤ C0 log(R/r). (43)

We left the details to the reader. Lemma 4.8 says that∣∣Eθ
(
γ [TR,r , τr ]

)∣∣≤ π. (44)

Then (43) and (44) imply (40). (40) and Cauchy–Schwarz inequality imply (39) immediately.
We show (41) now. We claim that there exist C4,C5,C6 > 0, such that for all η ≤ r ≤ R/2 ≤ 1/2 and x ≥

C4 log(R/r),

P
[∣∣θ(γ [TR,r , τr ]

)∣∣≥ x|Aη
]≤ C5 exp(−C6x).

Then (41) follows from the claim immediately. The claim is proved as follows. Choosing C4 large enough, we have

P
[∣∣θ(γ [TR,r , τr ]

)|∣∣≥ x|Aη
]≤ C7P [∃�x/2π� − 2 disjoint blue crossings of Rη(r,R)]

P [A2(r,R)]
by quasi-multiplicativity and (12)

≤ C5 exp(−C6x) by Lemma 4.7 and (11).

Now let us show (42). Set N = max{�log2(1/R)�, �log2(R/r)�}. For 0 ≤ j ≤ N + 1, let Rj := min{1,2jR}, rj :=
max{r, (1/2)jR}. For 0 ≤ j ≤ N , define event

Bj := {γ [τR,TR,r ] ∩ (∂Dη
Rj

∪ ∂Dη
rj

) �=∅, γ [τR,TR,r ] ⊂ Aη(rj+1,Rj+1)
}
.

There exist C8,C9,C10 > 0, such that for all Bj , 0 ≤ j ≤ N ,

P
[
Bj |Aη

]
≤ C8P [∃ bichromatic 3-arm crossing Aη(R,Rj ) or Aη(rj ,R),Aη

2(rj ,Rj )]
P [Aη

2(rj ,Rj )]
by quasi-multiplicativity and (12)

≤ C9 exp(−C10j) by BK inequality and (11). (45)

Moreover, using quasi-multiplicativity and a gluing argument with FKG, RSW and Theorem 11 in [29], it is easy
to show that there exist C11,C12 > 0 such that

P
[
Bj ,Aη

]≥ C11 exp(−C12j)P
[
Aη

2(Rj+1,1)
]
P
[
Aη

2(η, rj+1)
]
. (46)
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We leave the details to the reader. For simplicity, we let P [Aη
2(x, x)] = 1 for any x > 0 in the above inequality and in

the rest of the paper.
Hence, we can choose C13,C14,C15 > 0 such that for all 0 ≤ j ≤ N and x ≥ C13(j + 1),

P
[∣∣θ(γ [τR,TR,r ]

)∣∣≥ x|Aη,Bj

]
≤ P [∃�x/(2π)� − 2 disjoint blue crossings of Rη(rj+1,Rj+1)]

C11 exp(−C12j)
by (46)

≤ C14 exp(−C15x) by Lemma 4.7. (47)

Choosing C3 large enough, (42) follows easily from (45) and (47):

E
[
θ
(
γ [τR,TR,r ]

)2]≤
N∑

j=0

P
[
Bj |Aη

]
E
[
θ
(
γ [τR,TR,r ]

)2|Bj

]

≤
N∑

j=0

C16 exp(−C10j)(j + 1)2 ≤ C3.
�

The following lemma can be considered as a generalization of Lemma 4.8.

Lemma 4.10. There exists a constant C > 0, such that for all η ≤ r < R/2, any given faces � around ∂Dη
R , and the

percolation exploration path γ connecting the endpoints of � stopped when it reaches ηH0 conditioned on Aη
�(η,R),

we have∣∣E�

[
θ
(
γ [0, τr ]

)]∣∣≤ C,

where E� is the expectation with respect to P [·|Aη
�(η,R)].

Proof. For simplicity, we just show that |E�[θ(γ )]| ≤ C, the proof of |E�[θ(γ [0, τr ])]| ≤ C is essentially the same.
By Proposition 2.5, there exist C0,C1 > 0, such that for all 10η < R/2, any fixed faces � around ∂Dη

R and N :=
�log2(R/η)�, there is a coupling of P [·|Aη

�(η,R)] and {P ∗
(1/2)j R

[·]}1≤j≤N , so that for all 1 ≤ j ≤ N , with probability

at least 1 − exp(−C0j), the following event Bj occurs: There exists 1 ≤ j∗ ≤ j such that there exist good faces �j∗
around ∂Dη

(1/2)j
∗
R

under P [·|Aη
�(η,R)], and the configuration constraint in �j∗ under P [·|Aη

�(η,R)] is the same as

the configuration under P ∗
(1/2)j

∗
R
[·]. Furthermore, under this coupling for all 1 ≤ j ≤ N − 1, with probability at least

exp(−C1(j + 1)) the event Bc
jBj+1 occurs.

Denote by P̂ the coupling law, and by Ê the expectation with respect to P̂ . By Proposition 2.5 and Lemma 4.8, we
have ∣∣E�

[
θ(γ )

]∣∣= ∣∣Ê[IB1θ(γ )
]+ Ê

[
IBc

N
θ(γ )

]+ �N−1
j=1 Ê

[
IBc

jBj+1θ(γ )
]∣∣

≤ Ê
∣∣θ(γ [0, τR/2]

)∣∣+ exp(−C0N)Ê
[∣∣θ(γ )

∣∣|Bc
N

]
+ �N−1

j=1 exp(−C0j)
∣∣Ê[θ(γ [0, τ(1/2)j+1R])|Bc

jBj+1
]∣∣.

Then |E�[θ(γ )]| ≤ C easily follows from the following claim: There exists C2 > 0, such that for all 1 ≤ j ≤ N − 1,

Ê
[∣∣θ(γ [0, τ(1/2)j+1R])∣∣|Bc

jBj+1
]≤ C2j. (48)

Furthermore, there exist C3,C4 > 0 such that

Ê
∣∣θ(γ [0, τR/2]

)∣∣≤ C3 and Ê
∣∣θ(γ )

∣∣Bc
N | ≤ C4N. (49)
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Let us show (48) now. By the coupling, there is a constant C1 > 0 such that for all 1 ≤ j ≤ N − 1,

P̂
[
Bc

jBj+1
]≥ exp

(−C1(j + 1)
)
. (50)

Without loss of generality, for the faces 	1 and 	2 of � = (	1,	2) (recall that we always assume that 	1 is blue
and 	2 is yellow), we assume that |θ(	1)| ≤ |θ(	2)| (we think of the face as a continuous curve by connecting the
neighbor sites with line segments). By a gluing construction with RSW and FKG, it is easy to show that

P [Aη
�(R/2,R)] � P

[
	1

�̇↔ ∂Dη
R/2

]
, (51)

where 	1
�̇↔ ∂Dη

r denotes that there exists a blue path connecting 	1 and ∂Dη
r in the interior of � for r < R. Then we

know that there exist C5,C6,C7 > 0 such that for all 1 ≤ j ≤ N − 1,

P
[
Aη

�

(
(1/2)jR,R

)]
≥ C5P

[
Aη

2

(
(1/2)jR,R/2

)]
P
[
Aη

�(R/2,R)
]

by quasi-multiplicativity

≥ C6 exp(−C7j)P
[
	1

�̇↔ ∂Dη
R/2

]
by (51) and (11). (52)

Conditioned on Aη
�((1/2)jR,R), we let γj be the b-path starting at an endpoint of � and ending when it reaches

∂Dη

(1/2)j R
with yellow hexagons on its left. We can choose C8 large enough, such that the following inequalities hold:

P̂
[∣∣θ(γ [0, τ(1/2)j+1R])∣∣≥ C8j |Bc

jBj+1
]

≤ exp
(
C1(j + 1)

)
P
[∣∣θ(γ [0, τ(1/2)j+1R])∣∣≥ C8j |Aη

�(η,R)
]

by (50)

≤ C9 exp(C1j)P
[∣∣θ(γj+1)

∣∣≥ C8j |Aη
�

(
(1/2)j+1R,R

)]
by quasi-multiplicativity

≤ C10 exp(C11j)
P [|θ(γj+1)| ≥ C8j,Aη

�((1/2)j+1R,R)]
P [	1

�̇↔ ∂Dη
R/2]

by (52).

Observe that if |θ(γj+1)| is very large, then γj+1 will produce many crossings in the “rectangle” Rη((1/2)j+1R,2R),
or γj+1 will cross Aη(R,2R) many times and produce many crossings in a longer “rectangle” (it is obvious that if

� ⊂ Dη
2R this would not happen). This observation and the above inequality lead to

P̂
[|θ(γ [0, τ(1/2)j+1R])| ≥ C8j |Bc

jBj+1
]

≤ C10 exp(C11j)

P [	1
�̇↔ ∂Dη

R/2]

⎧⎪⎨⎪⎩P

⎡⎢⎣∃�C8j/4π� − 2 disjoint yellow arms crossing

Aη(R,2R) in �̇,	1
�̇↔ ∂Dη

(1/2)j+1R

⎤⎥⎦

+ P

⎡⎢⎣∃�C8j/4π� − 2 disjoint yellow crossings of

Rη((1/2)j+1R,2R) in �̇,	1
�̇↔ ∂Dη

(1/2)j+1R

⎤⎥⎦
⎫⎪⎬⎪⎭

≤ C10 exp(C11j)(exp(−C12j) + exp(−C13j)) by BK inequality, (11) and Lemma 4.7

≤ C14 exp(−C15j).

Then (48) follows immediately. The proof of (49) is similar to that of (48), the details are left to the reader. �
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4.4. Decorrelation of winding

To simplify notation, we write Tj := Tεj ,εj+1 and τj := τεj in the following. The two lemmas below say that Var[θη] is
well-approximated by the sum of the second moment of the winding numbers of the paths in annuli on dyadic scales.

Lemma 4.11. There exists a constant C > 0, such that for all 10η < ε < 1/2, under the conditional law P [·|Aη], we
have ∣∣∣∣∣Var[θη] −

�logε η�∑
j=0

E
[
θ
(
γ [Tj , τj+1]

)2]∣∣∣∣∣≤ C
[
log(1/ε)

]− 1
2 log(1/η).

Proof. Lemma 4.8 says that |Eθη| ≤ π . Therefore, in order to prove Lemma 4.11, it is enough to prove that there
exists a constant C1 > 0, such that for all 10η < ε < 1/2,∣∣∣∣∣E[θ2

η

]− �logε η�∑
j=0

E
[
θ
(
γ [Tj , τj+1]

)2]∣∣∣∣∣≤ C1
[
log(1/ε)

]− 1
2 log(1/η). (53)

It is clear that

θη =
�logε η�∑

j=0

θ
(
γ [τj , τj+1]

)
.

So, to show (53), it suffices to prove that there are C2,C3 > 0, such that for all 10η < ε < 1/2,

�logε η�∑
j=0

∣∣E[θ(γ [τj , τj+1]
)2]− E

[
θ
(
γ [Tj , τj+1]

)2]∣∣≤ C2
[
log(1/ε)

]− 1
2 log(1/η) (54)

and ∣∣∣∣ ∑
0≤j<k≤�logε η�

E
[
θ
(
γ [τj , τj+1]

)
θ
(
γ [τk, τk+1]

)]∣∣∣∣≤ C3 logε η. (55)

Let us first show (54). By (40), (42) and Cauchy–Schwarz inequality, there exist C4,C5 > 0, such that

E
∣∣θ(γ [τj , τj+1]

)2 − θ
(
γ [Tj , τj+1]

)2∣∣
= E

∣∣2θ
(
γ [τj , Tj ]

)
θ
(
γ [Tj , τj+1]

)+ θ
(
γ [τj , Tj ]

)2∣∣
≤ 2
{
E
[
θ
(
γ [τj , Tj ]

)2]} 1
2
{
E
[
θ
(
γ [Tj , τj+1]

)2]} 1
2 + E

[
θ
(
γ [τj , Tj ]

)2]
≤ C4

[
log(1/ε)

] 1
2 + C5.

Then we get (54).
Now let us show (55). For this, it is enough to show that there are C6,C7 > 0, such that for any 0 ≤ j ≤ �logε η�,∣∣E[θ(γ [τj , τj+1]

)
θ
(
γ [τj+1, τη]

)]∣∣≤ C6, (56)

∣∣E[θ(γ [0, τj ]
)
θ
(
γ [τj , τj+1]

)]∣∣≤ C7. (57)

We first show (56). Note that γ [0, τj ] and the b-path γ ′[0, τj ] from (−1)η to ∂Dη

εj induce faces �j around ∂Dη

εj .

Denote by E�j
the expectation with respect to P [·|Aη

�j
(η, εj )]. By Lemma 4.8 and Lemma 4.10, choosing C6,C8
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appropriately, we have∣∣E[θ(γ [τj , τj+1]
)
θ
(
γ [τj+1, τη]

)]∣∣
≤
∑
�j+1

P
[
�j+1|Aη

]∣∣E�j+1

[
θ
(
γ [τj , τj+1]

)]∣∣∣∣E�j+1

[
θ
(
γ [τj+1, τη]

)]∣∣
≤ C8

∣∣E[θ(γ [τj , τj+1]
)]∣∣≤ C6.

Now let us show (57), which proof is similar to that of (56). By Lemma 4.8 and Lemma 4.10 again, we have∣∣E[θ(γ [0, τj ]
)
θ
(
γ [τj , τj+1]

)]∣∣≤∑
�j

P
[
�j |Aη

]∣∣E�j

[
θ
(
γ [0, τj ]

)]∣∣∣∣E�j

[
θ
(
γ [τj , τj+1]

)]∣∣
≤ C9

∣∣E[θ(γ [0, τj ]
)]∣∣≤ C7. �

Denote by Ej the expectation with respect to the conditional law P [·|Aη(εj )]. Conditioned on Aη(εj ), denote by
γj the percolation exploration path γ

η

D
εj

,εj ,−εj stopped when it reaches ∂Dη

εj+1 .

Lemma 4.12. There exist C > 0 and 0 < ε0 < 1/2, such that for all 10η < ε < ε0, we have∣∣∣∣∣
�logε η�∑

j=0

E
[
θ
(
γ [Tj , τj+1]

)2]− �logε η�∑
j=0

Ej

[
θ(γj )

2]∣∣∣∣∣≤ C
[
log(1/ε)

]− 1
7 log(1/η).

Proof. Let β be the constant in Proposition 2.4. By Proposition 2.4, we can couple P [·|Aη] and P [·|Aη(εj )] such
that with probability at least 1 − εβ/3 there exist identical good faces � ⊂ Aη(εj+1/3, εj ) for both measures, and the
configuration in � is also identical. Let us denote by P̂ the coupling law, by Ê the expectation with respect to P̂ , and
by B the above event. We write

Ê
∣∣θ(γ [Tj , τj+1]

)2 − θ(γj )
2
∣∣

= Ê
[
IBc

∣∣θ(γ [Tj , τj+1]
)2 − θ(γj )

2
∣∣]+ Ê

[
IB
∣∣θ(γ [Tj , τj+1]

)2 − θ(γj )
2
∣∣].

Let us estimate the two terms in the r.h.s. of above equality separately. For the first term, with Cauchy–Schwarz
inequality and (41), we get

Ê
[
IBc

∣∣θ(γ [Tj , τj+1]
)2 − θ(γj )

2
∣∣]

≤ {P̂ [Bc
]} 1

2
{
Ê
[∣∣θ(γ [Tj , τj+1]

)2 − θ(γj )
2
∣∣2]} 1

2 ≤ C1ε
β
6
[
log(1/ε)

]2
.

Now let us bound the second term. For each x > 0, define event

Sx := {∃�x/2π� − 4 disjoint blue crossings of Rη
(
εj+1/3, εj

)}
.

There exist C2,C3,C4,C5 > 0 such that for all 10η < ε < 1/2 and all x ≥ C2[log(1/ε)] 1
2 − 1

7 ,

P̂
[
B,
∣∣θ(γ [Tj , τj+1]

)− θ(γj )
∣∣≥ x

]
≤ P

[
Sx

∣∣Aη
]+ P

[
Sx

∣∣Aη
(
εj
)]

≤ C3P [Sx]
P [Aη

2(ε
j+1, εj )] by quasi-multiplicativity and (12)

≤ C4 exp(−C5x) by (11) and Lemma 4.7.
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Combining (40), Cauchy–Schwarz inequality and above inequality, we have

Ê
[
IB
∣∣θ(γ [Tj , τj+1]

)2 − θ(γj )
2
∣∣]

≤ {Ê[∣∣θ(γ [Tj , τj+1]
)+ θ(γj )

∣∣2]} 1
2
{
Ê
[
IB
∣∣θ(γ [Tj , τj+1]

)− θ(γj )
∣∣2]} 1

2

≤ C5
[
log(1/ε)

]1− 1
7 .

This, together with the upper bound for the first term completes the proof immediately. �

4.5. Proofs of Theorem 1.5 and Corollary 1.6

We now conclude the proof of our main result concerning winding numbers.

Proof of Theorem 1.5. By Lemma 4.11 and Lemma 4.12, to establish (4), it is enough to show that for each 0 < δ < 1,
there exists 0 < ε0(δ) < 1 such that for each given 0 < ε < ε0, there exists η0(ε) > 0, such that for all η < η0,∣∣∣∣∣32�logε η� log(1/ε) −

�logε η�∑
j=0

Ej

[
θ(γj )

2]∣∣∣∣∣≤ δ�logε η� log(1/ε). (58)

By (40), there exists a constant C > 0, such that for all η < ε < 1/2 and 0 ≤ j ≤ �logε η�,

Ej

[
θ(γj )

2]≤ C log(1/ε). (59)

Combining (59) and Lemma 4.6, we have that for any fixed 0 < ε < 1/2, for any j such that �logε η� − j → +∞ as
η → 0,

Ej

[
θ(γj )

2]→ E∗[θ(γ [0, τε]
)2] as η → 0, (60)

where γ is the two-sided radial SLE6 path from 1 to −1 through 0 in D. By the convergence of the Cesàro mean and
(60), we have

lim
η→0

∑�logε η�
j=0 Ej [θ(γj )

2]
�logε η� = E∗[θ(γ [0, τε]

)2]
.

Combining this and Lemma 4.4 gives (58).
Using the approach in the 2-arm case in [41] with a little modification, one can show that under P [·|Aη],

θη√
Var θη

→d N(0,1) as η → 0.

Then (5) follows from this and (4). �

Proof of Corollary 1.6. Let θ̃η,1 and θ̃η,ν denote θ̃η under P [·|Aη
2] and ν

η
2 , respectively. First we prove the corollary

for θ̃η,1. By Lemma 3.4 in [41] and Lemma 4.8, we know |E′θ̃η,1| ≤ 2π and |Eθη| ≤ π , where E′ is the expectation
with respect to P [·|Aη

2]. Combining this, Theorem 1.1 in [41] and Theorem 1.5, to show the corollary for θ̃η,1, it is
enough to show that there exists a constant C > 0, such that for all small η,∣∣E[θ2

η

]− E′[θ̃2
η,1

]∣∣≤ C
[
log(1/η)

] 6
7 . (61)

The proof of (61) is analogous to that of Lemma 4.12, we just sketch it here: By Proposition 2.4, one can couple
P [·|Aη] and P [·|Aη

2] such that with probability at least 1 − ηβ/3 there exist identical good faces � ⊂ Aη(η1/3,1) for
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both measures, and the configuration in � is also identical. Denote by P̂ the coupling law, by Ê the expectation with
respect to P̂ , and by B the above event. Then one can show that there exist C1,C2 > 0 such that

Ê
[
IBc

∣∣θ2
η − θ̃2

η,1

∣∣]≤ C1η
β
6
[
log(1/η)

]2
,

Ê
[
IB
∣∣θ2

η − θ̃2
η,1

∣∣]≤ C2
[
log(1/η)

] 6
7 ,

which imply (61) immediately.
Now let us show the corollary for θ̃η,ν , which proof is similar to that for θ̃η,1. It is easy to show that |Eνθ̃η,ν | ≤ 2π ,

where Eν is the expectation with respect to ν
η
2 . Combining this, |Eθη| ≤ π , Corollary 1.5 in [41] and Theorem 1.5, to

show the corollary for θ̃η,ν , it is enough to show that there exists a constant C3 > 0, such that for all small η,∣∣E[θ2
η

]− Eν

[
θ̃2
η,ν

]∣∣≤ C3
[
log(1/η)

] 6
7 . (62)

For n ≥ 1, let θ̃η,n denote θ̃η under P [·|Aη
2(η,n)]. Similar to the proof of (61), one can show that there is a C3 > 0

such that for all n ≥ 1 and all small η,∣∣E[θ2
η

]− En

[
θ̃2
η,n

]∣∣≤ C3
[
log(1/η)

] 6
7 ,

where Ek is the expectation with respect to P [·|Aη
2(η,n)]. Then one obtains (62) from the above inequality by taking

n → ∞. �
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