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Abstract. Consider the supercritical branching random walk on the real line in the boundary case and the associated Gibbs measure
νn,β on the nth generation, which is also the polymer measure on a disordered tree with inverse temperature β. The convergence
of the partition function Wn,β , after rescaling, towards a nontrivial limit has been proved by Aïdékon and Shi (Ann. Probab. 42
(3) (2014) 959–993) in the critical case β = 1 and by Madaule (J. Theoret. Probab. 30 (1) (2017) 27–63) when β > 1. We study
here the near-critical case, where βn → 1, and prove the convergence of Wn,βn

, after rescaling, towards a constant multiple of
the limit of the derivative martingale. Moreover, trajectories of particles chosen according to the Gibbs measure νn,β have been
studied by Madaule (Stochastic Process. Appl. 126 (2) (2016) 470–502) in the critical case, with convergence towards the Brownian
meander, and by Chen, Madaule and Mallein (On the trajectory of an individual chosen according to supercritical gibbs measure
in the branching random walk (2015) Preprint) in the strong disorder regime, with convergence towards the normalized Brownian
excursion. We prove here the convergence for trajectories of particles chosen according to the near-critical Gibbs measure and
display continuous families of processes from the meander to the excursion or to the Brownian motion.

Résumé. Considérons une marche aléatoire branchante surcritique réelle dans le cas frontière et la mesure de Gibbs associée νn,β

sur la n-ième génération, qui est aussi la mesure de polymère sur un arbre désordonné avec température inverse β. La convergence
de la fonction de partition Wn,β , après renormalisation, vers une limite non-triviale a été démontrée par Aïdékon et Shi (Ann.
Probab. 42 (3) (2014) 959–993) dans le cas critique β = 1 et par Madaule (J. Theoret. Probab. 30 (1) (2017) 27–63) pour β > 1.
On s’intéresse ici au cas presque-critique, où βn → 1, et on montre la convergence de Wn,βn

, après renormalisation, vers la limite
de la martingale dérivée à un facteur multiplicatif près. D’autre part, les trajectoires de particules tirées selon la mesure de Gibbs
νn,β ont été étudiées par Madaule (Stochastic Process. Appl. 126 (2) (2016) 470–502) dans le cas critique, avec convergence
vers le méandre brownien, et par Chen, Madaule et Mallein (On the trajectory of an individual chosen according to supercritical
gibbs measure in the branching random walk (2015) Preprint) dans le régime de désordre fort, avec convergence vers l’excursion
brownienne. On montre ici la convergence des trajectoires de particules tirées selon la mesure de Gibbs presque-critique et cela fait
apparaître une famille continue de processus allant du méandre jusqu’à l’excursion ou jusqu’au mouvement brownien.
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1. Introduction and main results

1.1. Definitions and assumptions

The branching random walk on the real line is a natural extension of the Galton–Watson process, with addition of a
position to each individual, and is defined as follows. Initially, there is a single particle at the origin, forming the 0th
generation. It gives birth to children, scattered in R according to some point process L and forming the 1st generation.
Then, each particle of the 1st generation produces its own children disposed around its position according to the law
of L independently of others: this set of children forms the 2nd generation. The system goes on indefinitely, unless
there is no particle at some generation.
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The genealogical tree of the branching random walk, denoted by T, is a Galton–Watson tree (where an individual
can have an infinity of children). For z ∈ T, we denote by |z| the generation of the particle z and by V (z) its position
in R. We denote by � the log-Laplace transform of L: we set, for each β ∈R+,

�(β) := logE

[∑
|z|=1

e−βV (z)

]
∈ (−∞,∞],

noting that L has the same law as (V (z), |z| = 1).
Throughout the paper, we assume the following integrability conditions on the reproduction law L. First of all, we

need to assume that the Galton–Watson tree T is supercritical, that is

E

[∑
|z|=1

1

]
> 1, (1.1)

so that the survival event S has positive probability and, thus, we can introduce the new probability P∗ := P(·|S).
Moreover, we work in the boundary case (Biggins and Kyprianou [12]) by assuming

E

[∑
|z|=1

e−V (z)

]
= 1 and E

[∑
|z|=1

V (z)e−V (z)

]
= 0, (1.2)

which means �(1) = 0 and � ′(1) = 0. See the arXiv version of Jaffuel [30] for discussion on the cases where the
branching random walk can be reduced to assumption (1.2). We assume also that

σ 2 := E

[∑
|z|=1

V (z)2e−V (z)

]
∈ (0,∞) and E

[
X(log+ X)2 + X̃ log+ X̃

]
< ∞, (1.3)

where we set, for y ≥ 0, log+ y := max(0, logy) and

X :=
∑
|z|=1

e−V (z) and X̃ :=
∑
|z|=1

V (z)+e−V (z) (1.4)

with V (z)+ := max(0,V (z)). The first part of (1.3) gives � ′′(1) = σ 2. We will say that L is (h, a)-lattice if h > 0 is
the largest real number such that the support of L is contained by a + hZ and, then, h is called the span of L. In this
paper, we work in both lattice and nonlattice cases, but we will need sometime to distinguish these cases. Finally, we
set two last assumptions that are not supposed to hold in the whole paper, but only in specific cases of the results. The
following assumption,

∃0 < δ0 < 1 : E
[∑
|z|=1

e−(1−δ0)V (z)

]
< ∞, (1.5)

means that � is finite on [1 − δ0,1] and, thus, analytic on (1 − δ0,1) and, using (1.2) and (1.3), we have �(β) =
σ 2

2 (β − 1)2 + o((β − 1)2) as β ↑ 1 by a Taylor expansion. The second one,

∃0 < δ1 < δ2 < 1/4 : E
[(∑

|z|=1

e−(1−δ1)V (z)

)1+2δ2
]

< ∞, (1.6)

comes from Madaule [34] and is probably not optimal for the results where it is used. Under assumption (1.6), � is
finite on [1− δ1,1+ δ2/2] and, therefore, analytic on a neighbourhood of 1, so we can improve the Taylor expansion:

�(β) = σ 2

2 (β − 1)2 +O((β − 1)3) as β → 1.
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For n ∈N and β ∈R+, we set

Wn,β :=
∑
|z|=n

e−βV (z) and νn,β := 1

Wn,β

∑
|z|=n

e−βV (z)δz,

as soon as Wn,β < ∞, which holds a.s. for β ≥ 1 under assumption (1.2). Then, νn,β is a random probability measure
on {z ∈ T : |z| = n}, which is called the Gibbs measure of parameter β on the nth generation of the branching random
walk. It is also the law of a directed polymer on the tree T in a random environment, introduced by Derrida and Spohn
[24] as a mean field limit for directed polymer on a lattice as dimension goes to infinity: with this terminology, V (z) is
the energy of the path leading from the root to particle z, β is the inverse temperature and Wn,β is the partition function.
In the case β =∞, we can define νn,∞ as the uniform measure on the random set {|x| = n : V (x) = min|z|=n V (z)}.

According to Derrida and Spohn [24], there is a critical parameter βc > 0 for the directed polymer on a disordered
tree (with our setting βc = 1, see Section 1.2 for more details) and our aim in this paper is to study the near-critical
case, where β depends on n and tends from above and below to βc = 1 as n → ∞. The near-critical case has been
recently studied for the directed polymer on the lattice in dimension 1 + 1 and 1 + 2 by Alberts, Khanin and Quastel
[4] and Caravenna, Sun and Zygouras [17,18], with the emergence of the so-called intermediate disorder regime. For
the polymer on a tree, some work near criticality has been done by Alberts and Ortgiese [5] and Madaule [34], mostly
on the partition function.

Before stating our results, we recall some well-known properties of the branching random walk, that hold under
assumptions (1.1), (1.2) and (1.3). First, the sequence

Dn :=
∑
|z|=n

V (z)e−V (z), n ∈N,

is a martingale, called the derivative martingale, and Biggins and Kyprianou [11] (under slightly stronger assump-
tions) and Aïdékon [1] showed that we have

Dn −−−→
n→∞ D∞ > 0, P∗-a.s. (1.7)

Moreover, Chen [20] proved that these assumptions are optimal for the nontriviality of D∞. Furthermore, Aïdékon
[1] also showed that, in the nonlattice case, min|z|=n V (z)− 3

2 logn converges in law under P∗ and described the limit
as a random shift (depending on D∞) of a Gumbel distribution. In the lattice case, we do not have this convergence,
but the tightness still holds (see Equation (4.20) of Chen [21] or Mallein [36]): for each ε > 0, it exists C > 0 such
that

P

(
min|z|=n

V (z) − 3

2
logn ∈ [−C,C]

)
≥ 1 − ε, (1.8)

for n large enough.

1.2. The partition function

The process (Wn,β)n∈N for some fixed β ∈ R+ has been intensively studied because, if �(β) is finite, then the
renormalized process (W̃n,β)n∈N := (e−n�(β)Wn,β)n∈N is a nonnegative martingale, called additive martingale, and,
therefore, converges a.s. to some limit W̃∞,β . Kahane and Peyrière [31], Biggins [7] and Lyons [33] have determined
when this limit is nontrivial: under the additional assumption that the expectation E[W1,β log+ W1,β ] is finite, we have
the following dichotomy{

W̃∞,β > 0 P∗-a.s. if β ∈ [0,1),

W̃∞,β = 0 P∗-a.s. if β ≥ 1.
(1.9)

With the terminology of polymers’ literature (see [23]), the region β ∈ [0,1) is thus called the weak disorder regime
and the region β ≥ 1 the strong disorder regime.
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In the strong disorder regime β ≥ 1, it is natural to seek a proper renormalization of Wn,β , so that it converges
towards a nontrivial limit. This question has already been answered when β does not depend on n. In the critical case
β = 1, Aïdékon and Shi [3] proved that we have

√
nWn,1 −−−→

n→∞
1

σ

√
2

π
D∞, in P∗-probability, (1.10)

and that the particles that contribute mainly to Wn,1 are those of order
√

n. On the other hand, Theorem 2.3 of Madaule
[35] shows (in the nonlattice case) that, in the case β > 1, we have

n3β/2Wn,β −−−→
n→∞ ZβD∞, in law,

where Zβ is a random variable independent of D∞, whose law have been described by Barral, Rhodes and Vargas [6].
Moreover, the particles that contribute mainly to Wn,β are in [ 3

2 logn − C, 3
2 logn + C] with C some large constant

and, thus, are close to the lowest particle at time n (see (1.8)).
Since there is a discontinuity in the size of the partition function Wn,β as β ↓ 1 between n−3β/2 and n−1/2, and also

as β ↑ 1 between exponential and polynomial size, we try to understand this transition by considering the near-critical
case where βn → 1 as n →∞. Some work has been done to this end by Alberts and Ortgiese [5], who considered the
case where βn = 1 ± n−δ for δ > 0 and proved, under stronger assumptions, that

Wn,βn =

⎧⎪⎨⎪⎩
n2δ−3/2+o(1) if βn = 1 + n−δ with 0 < δ < 1/2,

n−1/2+o(1) if βn = 1 ± n−δ with δ ≥ 1/2,

exp( σ 2

2 n1−2δ(1 + o(1))) if βn = 1 − n−δ with 0 < δ < 1/2,

in P∗-probability.

Moreover, the behavior of the limit W̃∞,β of the additive martingale has been studied near criticality by Madaule [34],
who showed under assumption (1.6) the following convergence

W̃∞,β

1 − β
−−→
β↑1

2D∞, in P∗-probability, (1.11)

and, although this is not exactly our setting where n →∞ and β → 1 simultaneously, this result and its proof are use-
ful in this paper. The following theorem improves Alberts and Ortgiese’s result, showing convergence to a nontrivial
limit of Wn,βn after rescaling, for every sequence βn := 1 ± 1/αn.

Theorem 1.1. Assume (1.1), (1.2), (1.3) and that αn → ∞ as n → ∞. Let M denotes the Brownian meander of
length 1.

(i) If βn := 1 + 1/αn and
√

n/αn →∞ as n →∞, then we have

n3βn/2

α2
n

Wn,βn −−−→
n→∞

1

σ 3

√
2

π
D∞, in P∗-probability.

(ii) If βn := 1 + 1/αn and
√

n/αn → γ ∈ [0,∞) as n →∞, then we have

√
nWn,βn −−−→

n→∞
1

σ

√
2

π
E
[
e−σγM(1)

]
D∞, in P∗-probability.

(iii) If (1.5) holds, βn := 1 − 1/αn and
√

n/αn → γ ∈ [0,∞) as n →∞, then we have

√
nWn,βn −−−→

n→∞
1

σ

√
2

π
E
[
eσγM(1)

]
D∞, in P∗-probability.
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(iv) If (1.6) holds, βn := 1 − 1/αn and
√

n/αn →∞ as n →∞, then we have

αne−n�(βn)Wn,βn −−−→
n→∞ 2D∞, in P∗-probability.

Note that, in case (i), the size of Wn,βn can be a o(n−3/2) as soon as αn logαn � logn: this possibility does not appear
in Alberts and Ortgiese’s result.

1.3. Trajectory of particles under the Gibbs measure

The second main result of this paper concerns the trajectory of particles chosen according to the Gibbs measure. We
first need to introduce some additional notation. For a particle z at the nth generation and 0 ≤ i ≤ n, we denote by zi

its ancestor at the ith generation and we set

V(z) :=
(

V (z�tn�)
σ
√

n
, t ∈ [0,1]

)
the rescaled trajectory of z’s lineage. We work here in the set D([0,1]) of the càdlàg functions from [0,1] to R, with
the Skorokhod distance (see Section A.2). For n ∈ N and β ≥ 1, we denote by μn,β the image measure of the Gibbs
measure νn,β by V, that is the random measure on D([0,1]) such that, for each F ∈ Cb(D([0,1])), we have

μn,β(F ) := 1

Wn,β

∑
|z|=n

e−βV (z)F
(
V(z)
)
,

where Cb(D([0,1])) denotes the set of continuous bounded functions from D([0,1]) to R.
Convergence of μn,β has already been studied in the strong disorder regime when β does not depend on n, under

assumptions (1.1), (1.2) and (1.3). In the critical case β = 1, Theorem 1.2 of Madaule [34] shows1 that, for all
F ∈ Cb(D([0,1])),

μn,1(F ) −−−→
n→∞ E

[
F(M)

]
, in P∗-probability. (1.12)

On the other hand, in the case β > 1, Chen, Madaule and Mallein [22] proved (in the nonlattice case) that, under P∗,
we have, for all uniformly continuous F ∈ Cb(D([0,1])),

μn,β(F ) −−−→
n→∞

∑
k∈N

pkF(ek), in law, (1.13)

where (ek)k∈N is a sequence of i.i.d. normalized Brownian excursions and (pk)k∈N follows an independent Poisson–
Dirichlet distribution with parameter (β−1,0). The convergence in (1.13) is believed to hold for all F ∈ Cb(D([0,1])).
Moreover, Chen [21] considered the case β =∞ and showed that, for all F ∈ Cb(D([0,1])), we have E∗[μn,∞(F )]→
E[F(e)] as n →∞, where e denotes the normalized Brownian excursion.

Finally, in the weak disorder regime β < 1, if there is some p > 1 such that E[Wp

1,β ] < ∞, we have the following

convergence, with σ 2
β := � ′′(β), for all F ∈ Cb(D([0,1])),

1

Wn,β

∑
|z|=n

e−βV (z)F

(
V (z�tn�)+ tn� ′(β)

σβ

√
n

, t ∈ [0,1]
)
−−−→
n→∞ E

[
F(B)
]
, (1.14)

in P∗-probability.2 It means that the trajectory is a straight line of slope −� ′(β) > 0 at first order and around which
Brownian fluctuations occur at second order.

1Actually, Madaule [34] considers the linear interpolation of the trajectory, instead of V, and the convergence on C([0,1]), instead of D([0,1]).
But the convergence (1.12) follows from Madaule’s result.
2To our knowledge, this result has not been proved yet (except when F only depends on the final position, see [8]). The proof is very similar to the
proof of case (iv) of Theorem 1.2, with no need to introduce the lower barrier and using Theorem 1 of [9] to get that (W̃n,β )n≥0 converges in Lp .
See the arXiv version of this paper for more details.
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Our aim is to prove the convergence for trajectories of particles chosen according to the Gibbs measure in the near-
critical case, in order to explain how happens the transition between the Brownian excursion, the Brownian meander
and the straight line with Brownian fluctuations.

Theorem 1.2. Assume (1.1), (1.2), (1.3) and that αn →∞ as n →∞. Let e denotes the normalized Brownian excur-
sion, M the Brownian meander of length 1 and B the Brownian motion.

(i) If βn := 1 + 1/αn and
√

n/αn →∞ as n →∞, then we have, for all F ∈ Cb(D([0,1])),

μn,βn(F ) −−−→
n→∞ E

[
F(e)
]
, in P∗-probability.

(ii) If βn := 1 + 1/αn and
√

n/αn → γ ∈ [0,∞) as n →∞, then we have, for all F ∈ Cb(D([0,1])),

μn,βn(F ) −−−→
n→∞

1

E[e−σγM(1)]E
[
e−σγM(1)F (M)

]
, in P∗-probability.

(iii) If (1.5) holds, βn := 1 − 1/αn and
√

n/αn → γ ∈ [0,∞) as n →∞, then we have, for all F ∈ Cb(D([0,1])),

μn,βn(F ) −−−→
n→∞

1

E[eσγM(1)]E
[
eσγM(1)F (M)

]
, in P∗-probability.

(iv) If (1.6) holds, βn := 1 − 1/αn and
√

n/αn →∞ as n →∞, then we have, for all F ∈ Cb(D([0,1])),

1

Wn,βn

∑
|z|=n

e−βnV (z)F

(
V (z�tn�)+ tn� ′(βn)

σ
√

n
, t ∈ [0,1]

)
−−−→
n→∞ E

[
F(B)
]
, in P∗-probability.

We now state a corollary of this theorem, concerning the location of the mass of the Gibbs measure. Note that,
for the terminology of the polymers’ literature, this position is the typical energy of the polymer in the near-critical
case.

Corollary 1.3. Assume (1.1), (1.2), (1.3) and that αn →∞ as n →∞.

(i) If βn := 1 + 1/αn and
√

n/αn →∞ as n →∞, then, for all ε > 0, it exists C > 0 such that for n large enough

P∗
(

νn,βn

([
3

2
logn +C−1αn,

3

2
logn+ Cαn

])
≥ 1 − ε

)
≥ 1 − ε.

(ii) If βn := 1 + 1/αn and
√

n/αn → γ ∈ [0,∞) as n →∞, then, for all ε > 0, it exists C > 0 such that for n large
enough

P∗(νn,βn

([
C−1√n,C

√
n
])≥ 1 − ε

)≥ 1 − ε.

(iii) If (1.5) holds, βn := 1−1/αn and
√

n/αn → γ ∈ [0,∞) as n →∞, then the same property as in case (ii) holds.
(iv) If (1.6) holds, βn := 1 − 1/αn and

√
n/αn → ∞ as n → ∞, then, for all ε > 0, it exists C > 0 such that for n

large enough

P∗(νn,βn

([−� ′(βn)n −C
√

n,−� ′(βn)n+ C
√

n
])≥ 1 − ε

)≥ 1 − ε.

Proof. In cases (ii), (iii) and (iv), it is a direct consequence of Theorem 1.2. For case (i), the assertion will be proved
at the end of Section 5.2. �
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1.4. Genealogy under the Gibbs measure

We state here a direct consequence of Theorem 1.2 concerning the overlap in the branching random walk, introduced
by Derrida and Spohn [24] in the context of polymers on trees. We set, for x, y ∈ T,

|x ∧ y| := max
{
k ≤ min

(|x|, |y|) : xk = yk

}
,

that is the generation of the most recent common ancestor of x and y. For some couple of particles (x, y) chosen
according to ν⊗2

n,β , we are interested in the overlap between x and y defined by |x ∧ y|/n. Thus, we set, for a Borel set
A ⊂ [0,1],

ωn,β(A) := ν⊗2
n,β

( |x ∧ y|
n

∈ A

)
so that ωn,β is a random probability measure on [0,1].

Madaule [34] gives the following consequence of (1.12) in the case β = 1:

ωn,1 −−−→
n→∞ δ0, in P∗-probability.

For the other extremal case β =∞, one can prove in the nonlattice case only3 that,

ωn,∞ −−−→
n→∞ δ1, in P∗-probability. (1.15)

The transition between this two cases appears with case β ∈ (1,∞), with which Chen, Madaule and Mallein [22]
deal, but their result (1.13) is only proved for F ∈ Cu

b (D([0,1])) and, thus, the convergence in law of ωn,β cannot be
obtained as a corollary. However, Mallein [37] shows that, under P∗, we have

ωn,β −−−→
n→∞ (1 − πβ)δ0 + πβδ1, in law,

where πβ :=∑k∈N p2
k and (pk)k∈N follows a Poisson–Dirichlet distribution with parameter (β−1,0). It confirms a

conjecture of Derrida and Spohn [24].
In the near critical case, we can state the following consequence of Theorem 1.2.

Corollary 1.4. In each case of Theorem 1.1, under the same assumptions, we have

ωn,βn −−−→
n→∞ δ0, in P∗-probability.

Proof. We give the proof for the case (i), but it is exactly the same for other cases (only the limiting trajectory
changes). First note that, for all F ∈ Cb(D([0,1])2), we have, with e and e′ independent normalized Brownian excur-
sions,

μ⊗2
n,βn

(F ) = 1

W 2
n,βn

∑
|x|=|y|=n

e−βnV (x)−βnV (y)F
(
V(x),V(y)

)−−−→
n→∞ E

[
F
(
e, e′
)]

, (1.16)

in P∗-probability and therefore in L1, because μ⊗2
n,βn

(F ) is bounded. Indeed, by Theorem 1.2, (1.16) holds when F is
of the form F(x, y) = G1(x)G2(y) for some G1,G2 ∈ Cb(D([0,1])) and, the general case follows. Then, we consider
some ε > 0 and the closed set A := {(x, y) ∈D([0,1])2 : ∀t ≤ ε, xt = yt } of D([0,1])2. We have

E
[
ωn,βn

([ε,1])]≤ E
[
μ⊗2

n,βn
(A)
]−−−→

n→∞ P
(∀t ≤ ε, et = e′t

)= 0,

using (1.16) and the Portmanteau theorem. �

3For example, using the stopping line Z[A] := {z ∈ T : V (z) ≥ A > maxk<|z| V (zk)} for large A, it is possible to show that, with high probability
for n large, all particles under νn,∞ have the same ancestor in Z[A]. Then (1.15) follows from Lemma 3.3 of Chen [21]. In the lattice case, one
can see that (1.15) cannot hold: for example, if there are two particles at generation 1, each branching random walk iniated from these particles has
a positive probability to have its minimum at time n at the same given position around 3

2 logn.
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1.5. Comments on the results

Theorem 1.1 fully describes the transition from the size n−3β/2 when β > 1 to the size en�(β) when β < 1 and
Corollary 1.3 shows the transition in the location of the mass of the Gibbs measure from [ 3

2 logn − C, 3
2 logn + C]

when β > 1, to [−� ′(β)n−C
√

n,−� ′(β)n+C
√

n] when β < 1 (this follows from (1.14)). Secondly, Theorem 1.2
describes the transition between the Brownian excursion in case (i) and the straight line with Brownian fluctuations
in case (iv). Note that, since minz∈T V (z) > −∞ a.s., it is natural that the limiting trajectory stays nonnegative on
[0,1] in cases (i) to (iii). In case (iv), this constraint disappears in the limit due to the drift. Indeed, staying above a
constant for a random walk with drift approximately σ

√
n/αn needs effort until times of order α2

n, so it disappears
in the trajectory after scaling by n. However, this effort has a cost of order 1/αn, which explains the presence of this
factor in the size en�(βn)/αn of the partition function.

In cases (ii) and (iii), when αn is of order
√

n or larger, the perturbation is too small to change radically the behavior
of the Gibbs measure in regards to the critical case β = 1: the size of the partition function is still n−1/2, the typical
energy is of order

√
n and the limiting trajectory has a density w.r.t. the Brownian meander. Therefore, cases (ii) and

(iii) are called the critical window by Alberts and Ortgiese [5]. It brings to light a family of laws (P γ )γ∈R on D([0,1])
defined by P γ (F ) := E[e−σγM(1)F (M)]/E[e−σγM(1)] for all F ∈ Cb(D([0,1])), including the law of the Brownian
meander of length 1 for γ = 0 and such that P γ ⇒ L(e) as γ → ∞, where L(e) denotes the law of e. But there
is no convergence as γ → −∞, because the trajectory is sent to infinity. However, we can consider another family
(Qγ )γ∈R defined by Qγ (F) := E[eσγM(1)F (Mt − σγ t, t ∈ [0,1])]/E[eσγM(1)], so that, in case (iii), we have

1

Wn,βn

∑
|z|=n

e−βnV (z)F

(
V (z�tn�)+ tn� ′(βn)

σ
√

n
, t ∈ [0,1]

)
−−−→
n→∞ Qγ (F), in P∗-probability,

This family includes also the Brownian meander’s law and we have Qγ ⇒ L(B) as γ →∞.
As opposed to this, cases (i) and (iv) are called the near-critical window and highlight some new behaviors. In

case (i), the transition between the critical size n−1/2 and the strong disorder size n−3β/2 appears. The factor n3βn/2

starts to behave differently than n3/2 when αn = O(logn) and this is also the region where the particles mainly
contributing to Wn,βn are not simply those in [C−1αn,Cαn]: the fact that the lowest particle at time n is around
3
2 logn plays a role only in this region (see Lemma 5.2). Nevertheless, in the near-critical regime, the lowest particle at
time n never has a positive weight in νn,βn in the limit, unlike in the case β > 1. Since the particles mainly contributing
to Wn,βn are far below

√
n, the endpoint of the limiting trajectory has to be 0 and, therefore, the excursion appears.

In case (iv), since βn tends to 1 slowly enough, we find the same asymptotic behavior for the partition function as
in (1.11) when we first take n → ∞ and then β ↑ 1. For the limiting trajectory, the result is also similar to (1.14) in
the case β > 1. Moreover, when αn is not too small, the different results in case (iv) can be rewritten only in terms of
σ 2: if αn � n1/3, the size of the partition function is eσ 2n/2α2

n/αn and, if n1/4 = O(αn), the location of the mass is in
[σ 2n/αn − C

√
n,σ 2n/αn +C

√
n]. But, on the contrary, if αn is too small, there is a break of universality.

Finally, we stress that there is no discontinuity between the different cases of the results. Indeed, using that
E[e−σγM(1)] ∼ 1/(σγ )2 and E[eσγM(1)] ∼ √

2πσγ e(σγ )2/2 as γ → ∞, all cases of Theorem 1.1 (requiring
αn � n1/3 in case (iv)) can be written

n3(1−βn)/2
√

n

E[e(1−βn)σM(1)
√

n]Wn,βn −−−→
n→∞

1

σ

√
2

π
D∞, in P∗-probability, (1.17)

noting that n3(1−βn)/2 → 1 as soon as αn � logn. For Theorem 1.2, the continuity between the different cases follows
from the convergences P γ ⇒ L(e) and Qγ ⇒ L(B) as γ →∞.

1.6. Organization of the paper

Sections of this paper correspond to the different cases in the results: case (i) is treated in Section 5, cases (ii) and (iii)
in Section 3 and case (iv) in Section 4. The behavior in the critical window (cases (ii) and (iii)) is a direct consequence
of the analogue results (1.10) and (1.12) in the critical case (apart from some technical details). The near-critical
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window in the weak disorder regime (case (iv)) needs slightly more work, but relies mainly on Madaule’s [34] results
and on Lp inequalities techniques (see [9]). Finally, the main part of this paper is dedicated to the proof of case (ii),
which follows some ideas of Aïdékon and Shi [3], with change of measure and spine decomposition techniques. One
main difference with the previous literature on the branching random walk is that we need here to consider particles
that are far below

√
n but also far above the lowest particle. Note that we prove in Section 5.6 a new version of the

so-called peeling lemma (see Shi [40]) with a more general setting than what is needed for the aim of this paper and
that could be of independent interest.

On the other hand, Section 2 regroups some well-known results on the branching random walk and on classical
random walk. Some new results are stated in this section and proved in the Appendix. Note that none of the results of
Section 2 are needed for the proof of cases (ii) and (iii) and only a few of them for case (iv). The Appendix contains
some other technical results.

Throughout the paper, the ci ’s denote positive constants, we set N := {0,1,2, . . . } and, for a, b ∈ N, [[a, b]] :=
[a, b] ∩ N. For two sequences (un)n∈N and (vn)n∈N of positive real numbers, we say that un ∼ vn as n → ∞ if
limn→∞ un/vn = 1, that un = O(vn) as n → ∞ if lim supn→∞ un/vn < ∞, and that un = o(vn) or un � vn if
limn→∞ un/vn = 0. For (S, d) a metric space, let Cb(S) be the set of bounded continuous functions from S →R and
Cu

b (S) be its subset of uniformly continuous functions. For F ∈ Cb(S), we set ‖F‖ := supx∈S |f (x)|. For F ∈ Cu
b (S),

we will denote by ωF a modulus of continuity for function F : ωF is a continuous bounded nondecreasing function
from R+ →R+ such that ωF (0) = 0 and ∀x, y ∈ S, |F(x) − F(y)| ≤ ωF (d(x, y)).

2. Preliminary results

In this section, we state some preliminary results that are mostly needed in Section 5. In Section 2.1, we present
some well-known tools to study the branching random walk and the next subsections contain results concerning one-
dimensional random walk.

2.1. Many-to-one lemma and changes of probabilities

For a ∈R, let Pa denote a probability measure under which (V (z), z ∈ T) is the branching random walk starting from
a, and Ea the associated expectation (for brevity we will write P and E instead of P0 and E0). We define a random
walk (Sn)n≥0 associated to the branching random walk: under Pa , S0 = a a.s. and the law of the increments is given
by

Ea

[
h(S1 − S0)

]= E

[∑
|z|=1

h
(
V (z)
)
e−V (z)

]
,

for all measurable h : R→R+. This random walk is well-defined and centred thanks to assumption (1.2). Moreover,
by assumption (1.3), we have E[S2

1 ] = σ 2 ∈ (0,∞). Then, by induction, one gets the following result (see Biggins
and Kyprianou [10]). It is also a corollary of the forthcoming Proposition 2.2.

Lemma 2.1 (Many-to-one lemma). For all n ≥ 1, a ∈R and all measurable function g : Rn+1 →R+, we have

Ea

[∑
|z|=n

g
(
V (z0), . . . , V (zn)

)]= Ea

[
eSn−ag(S0, . . . , Sn)

]
.

We now state some well-known change of probabilities and spinal decomposition results. This method dates back
at least to Kahane and Peyrière [31], Rouault [38] and Chauvin and Rouault [19]. See also Biggins and Kyprianou
[11] for spinal decomposition in more general type of branching structures and Shi [40] for a survey on this topic. Let
Fn denote the σ -algebra generated by (V (z), |z| ≤ n) and F∞ := σ(

∨
n∈N Fn).

We first introduce Lyons’ change of measure [33]: since (Wn,1)n∈N is a nonnegative martingale of mean e−a under
Pa , we can define a new probability measure Qa on F∞, by letting for all n ∈N,

Qa |Fn
:= eaWn,1 • Pa|Fn

.
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We will denote by EQa
the associated expectation and we will write Q and EQ instead of Q0 and EQ0 . Let L̂ be a

point process on R which has the law of (V (z), |z| = 1) under Q.
Lyons [33] proved the following description for the branching random walk under Qa , with a decomposition along

a spine (wn)n∈N which is a marked ray in the the genealogical tree T (in order to be mathematically rigorous, one
should enlarge the probability space and work on a product space, see Lyons [33]). The system starts with one particle
w0 at position a, forming the 0th generation. For each n ∈N, individuals of the nth generation give birth independently
of each other and of the foregoing. Individuals other than wn generate offspring around their position according to the
law of L and wn breeds according to the law of L̂. Then, wn+1 is chosen independently among wn’s children, with
probability proportional to e−V (z) for each child z. Moreover, Lyons showed the following result concerning the spine
(wn)n∈N under Qa .

Proposition 2.2. Let a ∈R.

(i) For each n ∈N and |z| = n, we have

Qa(wn = z|Fn) = e−V (z)

Wn,1
.

(ii) The process (V (wn))n∈N under Qa has the same law as (Sn)n∈N under Pa .

Now, we present another change of measure, that was first introduced by Biggins and Kyprianou [11]. For this, we
need to define R the renewal function in the first strict descending ladder height process of the random walk (Sn)n∈N.
For u ≥ 0,

R(u) :=
∞∑

k=0

P(Hk ≤ u),

where (Hk)k∈N is the first strict descending ladder height process: we set τ0 := 0, H0 := 0 and, for k ≥ 1, τk := inf{n >

τk−1 : Sn < Sτk−1} and Hk := −Sτk
. Then, we introduce the truncated derivative martingale: for L ≥ 0 and n ∈N,

D(L)
n :=

∑
|z|=n

RL

(
V (z)
)
e−V (z)1V (z)≥−L,

where, for u ≥−L, RL(u) := R(L+ u) and, for |z| = n, V (z) := min0≤i≤n V (zi). Fix now some L ≥ 0. For a ≥−L,
under Pa , (D

(L)
n )n∈N is a nonnegative martingale of mean RL(a) and therefore we can define another probability

measure Q
(L)
a by

Q(L)
a |Fn

:= D
(L)
n

RL(a)
• Pa|Fn

.

We will denote by E
Q

(L)
a

the associated expectation and write Q(L) and E
(L)
Q

instead of Q(L)
0 and E

Q
(L)
0

. For a ≥−L,

let L̂(L)
a be a point process on R with the law of (V (z), |z| = 1) under Q(L)

a .
Biggins and Kyprianou [11] proved the following spinal decomposition description for the branching random walk

under Q(L)
a , where the spine is denoted by (w

(L)
n )n∈N. The description is similar to the previous one, but here w

(L)
n

have offspring according to L̂(L)

V (w
(L)
n )

and w
(L)
n+1 is chosen among these children, with probability proportional to

RL(V (z))e−V (z)1V (z)≥−L for each child z. Moreover, we get the following analogue of Proposition 2.2.

Proposition 2.3. Let L ≥ 0 and a ≥−L.

(i) For each n ∈N and |z| = n, we have

Q(L)
(
w(L)

n = z|Fn

)= RL(V (z))e−V (z)1V (z)≥−L

D
(L)
n

.
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(ii) The process (V (w
(L)
n ))n∈N under Q

(L)
a has the same law as (Sn)n∈N under Pa conditioned to stay in [−L,∞):

for all n ∈N and all measurable function g : Rn+1 →R+,

E
Q

(L)
a

[
g
(
V
(
w

(L)
0

)
, . . . , V

(
w(L)

n

))]= 1

RL(a)
Ea

[
g(S0, . . . , Sn)RL(Sn)1Sn≥−L

]
.

2.2. One-dimensional random walks

Up to the end of this section, we consider a centred random walk (Sn)n∈N with finite variance E[S2
1 ] = σ 2 ∈ (0,∞).

In this subsection, we state various results concerning this one-dimensional random walk and the associated renewal
function R. For n ∈N, we set Sn := min0≤i≤n Si .

Recall that R is the renewal function associated to the first strict descending ladder height process (Hk)k∈N. Since
E[S1] = 0 and E[S2

1 ] < ∞, by Feller [27, Theorem XVIII.5.1 (5.2)], we have E[H1] < ∞. Thus, it follows from
Feller’s [27, p. 360] renewal theorem that it exists a constant c0 > 0 such that

R(u)

u
−−−→
u→∞ c0 (2.1)

and so there exist also c1, c2 > 0 such that, for all u ≥ 0,

c1(1 + u) ≤ R(u) ≤ c2(1 + u). (2.2)

We are interested in the behavior of random walks staying above a barrier. First, we recall the following estimate
for the probability of a random walk to stay above −a: by Kozlov [32, Theorem A], it exists a constant θ > 0 such
that for all u ≥ 0,

P(Sn ≥−u) ∼
n→∞

θR(u)√
n

, (2.3)

and it exists c3 > 0 such that, for all n ∈N and u ≥ 0, we have the uniform bound

P(Sn ≥−u) ≤ c3(1 + u)√
n

. (2.4)

Constants c0 and θ will appear all along the paper and they are related by the following equation, from Aïdékon and
Shi [3, Lemma 2.1],

θc0 =
(

2

πσ 2

)1/2

. (2.5)

The following result states the convergence in law of Sn/σ
√

n conditioned to stay above −u towards a Rayleigh
distribution, with uniformity in the position of the barrier −u: by Aïdékon and Jaffuel [2, Lemma 2.2], if (γn)n∈N is
a sequence of positive numbers such that γn � √

n as n → ∞, then we have, for all continuous bounded function
g : R+ →R,

E

[
g

(
Sn + u

σ
√

n

)
1Sn≥−u

]
= θR(u)√

n

(∫ ∞

0
g(t)te−t2/2 dt + o(1)

)
, (2.6)

uniformly in u ∈ [0, γn].
From Lemmas 2.2 and 2.4 of Aïdékon and Shi [3], we have the following inequalities, sometimes called ballot

theorems: it exists c4 > 0 such that, for all b > a ≥ 0, u ≥ 0 and n ≥ 1,

P
(
Sn ∈ [a − u,b − u], Sn ≥−u

)≤ c4
(u + 1)(b + 1)(b − a + 1)

n3/2
, (2.7)
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and, for λ ∈ (0,1), it exists c5 = c5(λ) > 0 such that for all b > a ≥ 0, u ≥ 0, v ∈R and n ≥ 1, we have

P

(
Sn ∈ [a + v, b + v], S�λn� ≥ −u, min�λn�≤j≤n

Sj ≥ v
)
≤ c5

(u + 1)(b + 1)(b − a + 1)

n3/2
, (2.8)

where we added a second barrier between times �λn� and n. From the previous results, it follows (see Aïdékon [1,
Lemma B.2]) that it exists c6 > 0 such that, for all a,u ≥ 0,∑

i≥0

P(Si ≥−u,Si ≤ a − u) ≤ c6(1 + a)
(
1 + min(a,u)

)
. (2.9)

Finally, we state a slight extension of Lemma A.6 of Shi [40]. It will be used for the proof of the peeling lemma in
Section 5.6.

Lemma 2.4. We set, for 0 ≤ i ≤ n, u,v,μ ≥ 0,

m
(n)
i :=

{
−u+ 2i1/7 −μ if 0 ≤ i < �n/2�,
v + 2(n − i)1/7 − μ if �n/2� ≤ i ≤ n.

For each ε > 0, it exists μ > 0 such that for all b,u, v ≥ 0 and n ∈N∗,

P

(
S�n/2� ≥ −u, min�n/2�≤j≤n

Sj ≥ v,Sn ∈ [b + v, b + v + 1],∃i ∈ [[0, n]] : Si ≤ m
(n)
i

)
≤ (1 + u)(1 + b)

(
ε

n3/2
+ c7

(n1/7 + v)2

n2−(1/7)

)
,

where c7 is a positive constant depending only on the law of the random walk.

Proof. Lemma A.6 of Shi [40] deals with the event {Sn ∈ [v, b+v]} instead of {Sn ∈ [b+v, b+v+1]} and, therefore,
yields a factor (1+ b)2 instead of our factor (1+ b). However, the proof is exactly the same, except at two points, that
we specify thereafter with Shi’s notation (where his (1+u) corresponds to our (1+ b)). Firstly, at the equation before
(A.11), the use of his Lemma A.4 gives a factor (1+ u) instead of (1+ u)2. Secondly, at the equation after (A.11), by
using (2.7) instead of his Lemma A.1, we also get a factor (1 + u) instead of (1 + u)2. �

Remark 2.5. This kind of result is usually proved with an envelope of order iα ∧ (n − i)α , where α ∈ (0,1/6) (see
also Aïdékon [1, Lemma B.3] and Madaule [35, Lemma 6.1]). Indeed, with their arguments, a term (nα + v)2/n2−α

appears and it is a o(n−3/2) iff α < 1/6 and v = o(n(1−2α)/4). Therefore, an anonymous referee asked us whether
a similar result holds for any α ∈ (0,1/2). The answer is yes (and moreover it holds for any v ∈ R), but, since this
extension is not useful in the sequel, we let the proof in the arXiv version of this paper.

2.3. Convergence towards the Brownian meander

We define the rescaled trajectory of the random walk until time n: for each n ∈N∗,

S(n) :=
(

S�nt�
σ
√

n
, t ∈ [0,1]

)
.

We state the following convergence result for the trajectory S(n) conditioned to stay nonnegative, with uniformity in
the starting point of the random walk.

Proposition 2.6. Let (γn)n∈N be a sequence of positive numbers such that γn � √
n as n → ∞. Then, for all F ∈

Cb(D([0,1])), we have

Eu

[
F
(
S(n)
)
1Sn≥0
]= θR(u)√

n

(
E
[
F(M)

]+ o(1)
)
,

as n →∞, uniformly in u ∈ [0, γn], where M denotes the Brownian meander of length 1.
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This invariance principle has been proved in the case u = 0 by Iglehart [28], Bolthausen [14] and Doney [25]. The
case where F is a function of the terminal value of the trajectory is already showed in (2.6). We give a short proof of
this generalization in Section B.1, that relies on the invariance principle by Caravenna and Chaumont [15], for random
walk conditioned to stay nonnegative for all time.

We present also a corollary of Proposition 2.6, which holds under an additional assumption on the random walk S

that is equivalent to assumption (1.5) by the many-to-one lemma. It will be used in Section 4 and its proof is postponed
to Section B.1.

Corollary 2.7. Assume that it exists δ0 > 0 such that E[eδ0S1 ] < ∞. Then, for all C,L > 0 and F ∈ Cb(D([0,1])), we
have

E
[
eCSn/

√
nF
(
S(n)
)
1Sn≥−L

]= θR(L)√
n

(
E
[
eCσM(1)F (M)

]+ o(1)
)
,

as n →∞, where M denotes the Brownian meander of length 1.

2.4. Convergence towards the Brownian excursion

In this subsection, our interest is the convergence of S(n), conditioned to stay above two successive barriers and to
end up in a small interval, towards the normalized Brownian excursion, with uniformity with respect to the barriers’
positions and to the endpoint as long as they are much smaller than

√
n. This result will be used repetitively in

Section 5 for the proof of part (ii) of Theorems 1.1 and 1.2.
At this scale for the endpoint Sn, the random walk behaves differently in the lattice and nonlattice cases, so they

have to be distinguished. Moreover, we need some new notation: let (S−
n )n∈N be a random walk such that, under Pa ,

S−
0 = a a.s. and S−

1 − S−
0 has the same law as S0 − S1. All objects referring to S (R, c0, θ , . . . ) have their analogue

for S− denoted with a − superscript (R−, c−0 , θ−, . . . ).
We can now state our result, which generalizes Lemma 2.6 of Chen, Madaule and Mallein [22] and is proved in

Section B.4.

Proposition 2.8. Let (γn)n∈N be a sequence of positive numbers such that γn �√
n as n →∞ and e be the normal-

ized Brownian excursion.

(i) If the law of S1 is nonlattice, then for all h > 0, λ ∈ (0,1) and F ∈ Cb(D([0,1])),

E
[
F
(
S(n)
)
1S�λn�≥−u,min�λn�≤i≤n Si≥v,Sn∈[v+b,v+b+h)

]=√π

2

θθ−

σ

R(u)

n3/2

(
E
[
F(e)
]+ o(1)

)∫ b+h

b

R−(t)dt,

as n →∞, uniformly in b,u ∈ [0, γn] and v ∈ [−γn, γn].
(ii) If the law of S1 is (h, a)-lattice, then for all λ ∈ (0,1) and F ∈ Cu

b (D([0,1])),

E
[
F
(
S(n)
)
1S�λn�≥−u,min�λn�≤i≤n Si≥v,Sn=v+b

]=√π

2

θθ−

σ

R(u)

n3/2

(
E
[
F(e)
]+ o(1)

)
hR−(b),

as n →∞, uniformly in u ∈ [0, γn], v ∈ [−γn, γn] and b ∈ [0, γn] ∩ (−v + an + hZ).

3. The critical window

We prove here cases (ii) and (iii) of Theorems 1.1 and 1.2, where βn = 1 ± 1/αn with
√

n/αn → γ ∈ [0,∞). This
proof is based on Theorem 1.2 of Madaule [34], recalled in (1.12).

Proof of part (ii) of Theorems 1.1 and 1.2. Our aim is to show that, for all F ∈ Cb(D([0,1])), we have

1

Wn,1

∑
|z|=n

e−βnV (z)F
(
V(z)
)−−−→

n→∞ E
[
e−σγM(1)F (M)

]
, in P∗-probability. (3.1)
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Then, using (1.10) and the case F ≡ 1, part (ii) of Theorems 1.1 and 1.2 follows. Note also that it is sufficient to show
(3.1) for F nonnegative.

We first deal with the case γ ∈ (0,∞). We consider some nonnegative function F ∈ Cb(D([0,1])) and ε > 0. By
dominated convergence, we have that E[e−σγ ′M(1)F (M)] tends towards E[e−σγM(1)F (M)] as γ ′ → γ , so we can
choose 0 < γ− < γ < γ+ such that

E
[
e−σγM(1)F (M)

]− ε

2
≤ E
[
e−σγ±M(1)F (M)

]≤ E
[
e−σγM(1)F (M)

]+ ε

2
. (3.2)

Since
√

n/αn → γ and, under P∗, min|z|=n V (z) →∞ a.s., it exists n0 ∈N such that, for all n ≥ n0, we have
√

n/αn ∈
[γ−, γ+] and also P∗(min|z|=n V (z) < 0) ≤ ε. Moreover, we set, for x ∈D([0,1]), G+(x) := F(x)(e−σγ+x1 ∧ 1) and
G−(x) := F(x)(e−σγ−x1 ∧1): if x1 ≥ 0, then we have G+(x) ≤ e(1−βn)x1F(x) ≤ G−(x). Thus, we get, for all n ≥ n0,

P∗
(

1

Wn,1

∑
|z|=n

e−βnV (z)F
(
V(z)
)

/∈ [μn,1
(
G+),μn,1

(
G−)])≤ P∗(min|z|=n

V (z) < 0
)
≤ ε.

Therefore, we have

P∗
(∣∣∣∣ 1

Wn,1

∑
|z|=n

e−βnV (z)F
(
V(z)
)−E
[
e−σγM(1)F (M)

]∣∣∣∣≤ ε

)
≤ ε + P∗(μn,1

(
G−)≥ E

[
e−σγM(1)F (M)

]+ ε
)+ P∗(μn,1

(
G+)≤ E

[
e−σγM(1)F (M)

]− ε
)

≤ ε + P∗
(

μn,1
(
G−)≥ E

[
G+(M)

]+ ε

2

)
+ P∗
(

μn,1
(
G+)≤ E

[
G−(M)

]− ε

2

)
, (3.3)

using (3.2). Then, applying (1.12), we get that both probabilities in (3.3) tends to 0, because G−,G+ ∈ Cb(D([0,1]))
and it concludes the proof of (3.1) in the case γ ∈ (0,∞).

Finally, for the case γ = 0, we proceed in the same way as for γ ∈ (0,∞), taking here γ+ > 0 such that
E[F(M)] − ε

2 ≤ E[e−σγ+M(1)F (M)], G+ defined as before and G− := F . Then, the same inequalities hold. �

Remark 3.1. In case (iii), we work under assumption (1.5) and we will use Proposition 3.8 of Madaule [34], whereas
Madaule works in [34] under the stronger assumption (1.6). But, for the proof of his Proposition 3.8, he only uses
Assumption (1.6) in the proof of his Lemma A.2, in order to have that � is finite on a left-neighbourhood of 1 and

�(β) = σ 2

2 (β − 1)2 + o((β − 1)2) as β ↑ 1, and this holds also under our assumption (1.5).

Proof of part (iii) of Theorems 1.1 and 1.2. Applying Proposition 3.8 of Madaule [34] (see Remark 3.1 above),
we get that μn,1(G) → E[G(M)] in P∗-probability with G : x ∈ D([0,1]) �→ eCx1 for any C > 0, although G is
not bounded. Combining this with (1.12), it is straightforward to extend this convergence to functions of the type
G : x ∈D([0,1]) �→ eCx1F(x) with C > 0 and F ∈ Cb(D([0,1])).

Then, we prove that, for all F ∈ Cb(D([0,1])) nonnegative,

1

Wn,1

∑
|z|=n

e−βnV (z)F
(
V(z)
)−−−→

n→∞ E
[
e−σγM(1)F (M)

]
, in P∗-probability, (3.4)

using the same method as for the proof of case (ii): we approach function x �→ eσx1
√

n/αnF (x) from above and from
below, by considering here G+(x) := eσγ+x1F(x) and G−(x) := eσγ−x1F(x) when γ ∈ (0,∞) and the same function
G+ but with G− := F when γ = 0. Finally, part (iii) of Theorems 1.1 and 1.2 follows from (3.4). �

4. The near-critical window in the weak disorder regime

In this section, we deal with the case where βn = 1 − 1/αn and αn �√
n and prove successively convergence of the

rescaled partition function and then convergence of the trajectories. We work here under assumption (1.6) so � is
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analytic on an open interval I containing 1. Moreover, by Lemma 4.3 of Madaule [34], assumption (1.6) implies that
there exist c8 > 0 and η0 < 1 such that E[(W̃∞,β)1+ η

2 ] ≤ c8 for any 0 < η < η0 and β = 1 − η. Thus, for any n ∈ N

and 0 < η < η0, we have, with β = 1 − η,

E
[
(W̃n,β)1+ η

2
]= E
[
E[W̃∞,β |Fn]1+ η

2
]≤ E
[
(W̃∞,β)1+ η

2
]≤ c8, (4.1)

by using Jensen’s inequality.
We need to introduce a more general statement of the many-to-one lemma. For β ∈ I , we define another random

walk (Sn,β)n∈N starting at 0 under P and such that

E
[
h(S1,β)

]= e−�(β)E

[∑
|z|=1

h
(
V (z) + � ′(β)

)
e−βV (z)

]
.

Then, S1,β is centred and has variance σ 2
β := E[S2

1,β ] = � ′′(β) ∈ (0,∞). Moreover, we have the following analogue

of the many-to-one lemma (see Shi [40]): for all n ≥ 1 and all measurable function g : Rn+1 →R+, we have

E

[∑
|z|=n

g
(
V (zi), i ∈ [[0, n]])]= en�(β)E

[
eβ(Sn,β−n� ′(β))g

(
Si,β − i� ′(β), i ∈ [[0, n]])]. (4.2)

One can see (Sn,β)n∈N as a discrete Girsanov transform of (Sn)n∈N.
We first establish a preliminary lemma.

Lemma 4.1. Let (β ′
n)n∈N ∈ (0,1)N and (kn)n∈N ∈ NN be sequences such that β ′

n → 1 and kn ≥ 1/(1 − β ′
n)

2 for any
n ∈N. Then, for any L > 0,

lim sup
n→∞

1

1 − β ′
n

E[W̃kn,β ′
n
1infx∈T V (x)≥−L] ≤ θR(L)E

[
eσM(1)

]
.

Proof. We first apply the many-to-one lemma to get that

1

1 − β ′
n

E[W̃kn,β ′
n
1infx∈T V (x)≥−L] ≤ 1

1 − β ′
n

e−kn�(β ′
n)E
[
e(1−β ′

n)Skn 1Skn
≥−L

]
.

Then, we set mn := �(1 − β ′
n)

−2� ≤ kn and, applying the Markov property at time mn, we have

E
[
e(1−β ′

n)Skn 1Skn
≥−L

]≤ E
[
e(1−β ′

n)Smn 1Smn
≥−L

]
E
[
e(1−β ′

n)Skn−mn
]

= θR(L)√
mn

(
E
[
eσM(1)

]+ o(1)
)
e(kn−mn)�(β ′

n), (4.3)

using Corollary 2.7 to bound the first expectation in the middle part of (4.3) and the many-to-one lemma for the second
expectation. Using that e−mn�(β ′

n) ≤ 1, it proves the lemma. �

Proof of part (iv) of Theorem 1.1. We set ξn := αn|W̃∞,βn − W̃n,βn | and want to show that ξn → 0 in P∗-probability.
It will prove part (iv) of Theorem 1.1, since αnW̃∞,βn → 2D∞ in P∗-probability by (1.11).

We first follow the proof of Lemma 4.2 of Madaule [34]. We set pn := 1+ 1/2αn and ξ ′
n := E[ξpn

n |Fn]. For ε > 0,
we have

P∗(ξn ≥ ε) ≤ 1

P(S)
E[1ξ

pn
n ≥εpn 1ξ ′

n<ε1+pn ] + P∗(ξ ′
n ≥ ε1+pn

)≤ ε

P(S)
+ P∗(ξ ′

n ≥ ε1+pn
)
, (4.4)

using that P(ξ
pn
n ≥ εpn |Fn) ≤ ε−pnE[ξpn

n |Fn] = ε−pnξ ′
n. By the branching property at time n, we have

ξn = αn

∑
|x|=n

e−βnV (x)−n�(βn)
(
W̃

(x)
∞,βn

− 1
)
,
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where, conditionally on Fn, the W̃
(x)
∞,βn

for |x| = n are independent variables with the same law as W̃∞,βn . Then,
using that for any sequence (Xi)i∈N of independent centred variables and any γ ∈ [1,2] we have E[|∑Xi |γ ] ≤
2
∑

E[|Xi |γ ] (see [42]), we get

ξ ′
n = E
[
ξ

pn
n |Fn

]≤ 2α
pn
n

∑
|x|=n

e−pnβnV (x)−npn�(βn)E
[|W̃∞,βn − 1|pn

]
≤ 2α

pn
n W̃n,pnβnen[�(pnβn)−pn�(βn)]2pn(c8 + 1), (4.5)

by using (4.1) for n large enough such that 1 − η0 < 1 − βn < 1. Now, we choose L > 0 such that P∗(infx∈T V (x) <

−L) ≤ ε and, by (4.5) and Markov’s inequality, we get

P∗(ξ ′
n ≥ ε1+pn

)≤ ε + ε−(1+pn) c9

P(S)
(2αn)

pnen[�(pnβn)−pn�(βn)]E[W̃n,pnβn1infx∈T V (x)≥−L].

As n → ∞, we have (2αn)
pn ∼ 2αn, 1 − pnβn ∼ 1/2αn and, by a Taylor expansion, n[�(pnβn) − pn�(βn)] ∼

−3σ 2n/8α2
n → −∞. Thus, applying Lemma 4.1 with kn = n and β ′

n = pnβn, we showed that lim supn→∞ P∗(ξ ′
n ≥

ε1+pn) ≤ ε. Coming back to (4.4), it concludes the proof. �

Proof of part (iv) of Theorem 1.2. By Lemma A.1, we can reduce the proof to the case F ∈ Cu
b (D([0,1])). More-

over, by considering F − E[F(B)] instead of F , we can assume that E[F(B)] = 0. By Theorem 1.1, we have
αne−n�(βn)Wn,βn → 2D∞ in P∗-probability with D∞ > 0 P∗-a.s., so it is sufficient to prove that

Un(F ) := αne−n�(βn)
∑
|z|=n

e−βnV (z)F
(
Ṽ(n)(z)

)−−−→
n→∞ 2D∞E

[
F(B)
]= 0, (4.6)

in P∗-probability, where Ṽ(n)
t (z) := [V (z�tn�)+ tn� ′(βn)]/σ√

n for t ∈ [0,1]. For some C > 0, we set kn := �Cαn�2

and, for each x ∈ D([0,1]), Fn(x) := F(x((n−kn)t+kn)/n − xkn/n, t ∈ [0,1]). Let ε > 0. In order to prove (4.6), it is
sufficient to prove that we can choose C such that

lim sup
n→∞

P∗(∣∣Un(F ) −Un(Fn)
∣∣≥ ε
)≤ 2ε, (4.7)

lim sup
n→∞

P∗(∣∣Un(Fn)−E
[
Un(Fn)|Fkn

]∣∣≥ ε
)≤ (2 + P(S)−1)ε, (4.8)

lim sup
n→∞

P∗(∣∣E[Un(Fn)|Fkn

]∣∣≥ ε
)≤ ε. (4.9)

The assumption that E[F(B)] = 0 is only needed for (4.9). For the sequel, we fix some L > 0 such that
P∗(infx∈T V (x) < −L) ≤ ε.

We first prove (4.8). We set ζn := Un(Fn) − E[Un(Fn)|Fkn ] and proceed in a similar way as for the proof of
part (iv) of Theorem 1.1, by setting pn := 1 + 1/2αn and ζ ′

n := E[|ζn|pn |Fn]. By (4.4), we have P∗(|ζn| ≥ ε) ≤
εP(S)−1 + P∗(ζ ′

n ≥ ε1+pn). By the branching property at time kn, we have

ζn = αn

∑
|x|=kn

e−βnV (x)−kn�(βn)
(
ϒ(x)

n −E[ϒn]
)
, (4.10)

where, conditionally on Fkn , the ϒ
(x)
n for |x| = kn are independent variables with the same law as ϒn defined by

ϒn :=
∑

|z|=n−kn

e−βnV (z)−(n−kn)�(βn)F

(
V (z�t (n−kn)�)+ t (n − kn)�

′(βn)

σ
√

n
, t ∈ [0,1]

)
. (4.11)

Since the ϒ
(x)
n −E[ϒn] are also centred, we get, in the same way as for (4.5),

ζ ′
n = E
[|ζn|pn |Fkn

]≤ 2α
pn
n

∑
|x|=kn

e−pnβnV (x)−knpn�(βn)E
[∣∣ϒn −E[ϒn]

∣∣pn
]
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≤ 4c8
(
2‖F‖αn

)pnW̃kn,pnβnekn(�(pnβn)−pn�(βn)), (4.12)

by using the following bound

E
[∣∣ϒn −E[ϒn]

∣∣pn
]≤ 2pn+1E

[|ϒn|pn
]≤ 2pn+1‖F‖pnE

[|W̃n−kn,βn |pn
]≤ 2pn+1‖F‖pnc8,

where we used (4.1) for n large enough such that 1 − η0 < 1 − βn < 1. Now, using that P∗(infx∈T V (x) < −L) ≤ ε

and Markov’s inequality, we get

P∗(ζ ′
n ≥ ε1+pn

)≤ ε + ε−(1+pn) c10

P(S)

(
2‖F‖αn

)pnekn[�(pnβn)−pn�(βn)]E[W̃kn,pnβn1infx∈T V (x)≥−L]

so, using that, as n →∞, we have (2‖F‖αn/ε)
pn ∼ 2‖F‖αn/ε, 1 − pnβn ∼ 1/2αn and kn[�(pnβn) − pn�(βn)] ∼

−3σ 2kn/8α2
n →−3σ 2C2/8, and applying Lemma 4.1 with β ′

n = pnβn, we get

lim sup
n→∞

P∗(ζ ′
n ≥ ε1+pn

)≤ ε + c11
R(L)

ε2
e−3σ 2C2/8 ≤ 2ε,

by choosing C large enough. This proves (4.8). The constant C is now fixed.
We now prove (4.7). Using that P∗(infx∈T V (x) < −L) ≤ ε and the Markov inequality, we get, with c12 := 1/P(S),

P∗(∣∣Un(F ) −Un(Fn)
∣∣≥ ε
)≤ ε + c12αn

εen�(βn)
E

[∑
|z|=n

e−βnV (z)1V (z)≥−L|F − Fn|
(
Ṽ(n)(z)

)]
. (4.13)

For t ∈ [0,1], we define S̃(n)
t := [S�tn� + tn� ′(βn)]/σ√

n. Then, using the many-to-one lemma and the triangle in-
equality, we get that, for any M > 0, the expectation in (4.13) is smaller than

E
[
eSn/αn1Sn≥−L,max0≤k≤kn Sk≤Mαn |F − Fn|

(̃
S(n)
)]+ 2‖F‖E[eSn/αn1Sn≥−L,max0≤k≤kn Sk>Mαn

]
. (4.14)

Note that, using (A.7) with here κn = kn/n, we have, for any x ∈D([0,1]),

|F − Fn|(x) ≤ ωF

(
kn

n
∨ 3 max

[0,kn/n]
|x|
)

and, thus, the first term in (4.14) is smaller than

ωF

(�Cαn�2

n
∨ 3Mαn

σ
√

n

)
E
[
eSn/αn1Sn≥−L

]= o

(
en�(βn)

αn

)
,

using (4.3) to bound the expectation and recalling that αn � √
n. On the other hand, using Markov property at time

kn, the second term in (4.14) is smaller than

2‖F‖E[eSkn/αn1Skn
≥−L,max0≤k≤kn Sk>Mαn

]
E
[
eSn−kn /αn

]
= 2‖F‖θR(L)√

kn

(
E
[
eCσM(1)1maxM>M/(Cσ)

]+ o(1)
)
e(n−kn)�(βn)

applying Corollary 2.7 and recalling that
√

kn = �Cαn�. Coming back to (4.13), we finally get

lim sup
n→∞

P∗(∣∣Un(F ) −Un(Fn)
∣∣≥ ε
)≤ ε + c13

R(L)

εC
E
[
eCσM(1)1maxM>M/(Cσ)

]≤ 2ε, (4.15)

by choosing M large enough (L and C being fixed). It proves (4.7).
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Finally, we prove (4.9). Using the branching property in the same way as for (4.10), we have E[Un(Fn)|Fkn] =
αnW̃kn,βnE[ϒn], where ϒn is defined in (4.11). By (4.2), we get

E[ϒn] = E

[
F

(
S�t (n−kn)�,βn + (t (n − kn)− �t (n − kn)�)� ′(βn)

σ
√

n
, t ∈ [0,1]

)]
= E
[
F
(
unS(n−kn,βn) + vn

)]
,

where we introduced S(n,β) := (S�tn�,β/σβ

√
n)t∈[0,1] and where (un)n∈N ∈ (R∗+)N and (vn)n∈N ∈ D([0,1])N satisfy

un → 1 and ‖vn‖∞ → 0, using that kn � n, � ′(βn) → 0 and σβn → σ . Now, note that S(n−kn,βn) → B in law. This is
not a direct consequence of Donsker’s theorem because here the law of the random walk changes for each n. However,
we can apply a strong invariance principle like Equation (11) of Sakhanenko [39]: it exists c14 > 0 such that, for any
n ≥ 1 and β ∈ I , it exists a Brownian motion B(n,β) such that

P

(
sup

t∈[0,1]

∣∣S(n,β)
t −B

(n,β)
t

∣∣≥ c14
n2/5

σβ

√
n

)
≤ nE[|S1,β |3]

(n2/5)3
.

Since σβn → σ and E[|S1,βn |3] → E[|S1|3] < ∞ as n → ∞, this proves that S(n−kn,βn) → B in law. Then, applying
Lemma A.3, we get that E[ϒn]→ E[F(B)] = 0 as n →∞. On the other hand, using that P∗(infx∈T V (x) < −L) ≤ ε

and the Markov inequality, we get

P∗(∣∣E[Un(Fn)|Fkn

]∣∣≥ ε
)≤ ε + 1

ε
αnE[W̃kn,βn1infx∈T V (x)≥−L]

∣∣E[ϒn]
∣∣,

and it proves (4.9) by using Lemma 4.1 and that E[ϒn]→ 0 as n →∞. �

5. The near-critical window in the strong disorder regime

In this section, we prove case (i) of Theorems 1.1 and 1.2 and of Corollary 1.3, where βn = 1 + 1/αn with αn �√
n.

This case constitutes the main part of this paper.

5.1. Change of probabilities

We introduce a first barrier by setting, for L > 0 and F ∈ Cb(D([0,1])),
Wn,βn(F ) :=

∑
|z|=n

e−βnV (z)F
(
V(z)
)
,

W
(L)
n,βn

(F ) :=
∑
|z|=n

e−βnV (z)F
(
V(z)
)
1V (z)≥−L,

so that for L large this two variables are equal with high probability. Moreover, recall that, for u ≥ 0, RL(u) =
R(L + u) and

D(L)
n =

∑
|z|=n

e−V (z)RL

(
V (z)
)
1V (z)≥−L

and that, using the martingale (D
(L)
n )n∈N, we defined the modified probability measure Q(L). We will work under this

measure to study the asymptotic behaviour of Wn,βn(F ).

Proposition 5.1. For all L > 0 and F ∈ Cu
b (D([0,1])), we have the convergence

n3βn/2

α2
n

W
(L)
n,βn

(F )

D
(L)
n

−−−→
n→∞

θ

σ 2
E
[
F(e)
]
, in Q(L)-probability.
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This proposition will be proved in the following subsections, using a second moment argument similar to the one used
by Aïdekon and Shi [3].

Proof of part (i) of Theorems 1.1 and 1.2. We consider F ∈ Cu
b (D([0,1])) and we are going to show here that

n3βn/2

α2
n

Wn,βn(F ) −−−→
n→∞

c0θ

σ 2
E
[
F(e)
]
D∞, in P∗-probability. (5.1)

Using (2.5), it proves part (i) of Theorem 1.1 by taking F ≡ 1. Moreover, noting that μn,βn(F ) = Wn,βn(F )/Wn,βn(1)

and D∞ > 0 P∗-a.s., it proves part (i) of Theorem 1.2 in the case F ∈ Cu
b (D([0,1])). The general case follows by

Lemma A.1. Thus, it is now sufficient to prove (5.1) and we can for this purpose assume that F is nonnegative.
Let ε, η > 0. We first fix L > 0 such that P∗(infx∈T V (x) < −L) ≤ η. Combining that min|x|=n V (x) →∞ P∗-a.s.

as n →∞ and that RL(u) ∼ c0u as u →∞, we get that, on the event {infx∈T V (x) ≥−L}, limn→∞ D
(L)
n = c0D∞ >

0 P∗-a.s. Thus, considering the event

�0 := S ∩
{

inf
x∈TV (x) ≥−L

}
∩ {∀n ≥ n0,0 < c0(1 − ε)D∞ ≤ D(L)

n ≤ c0(1 + ε)D∞
}
,

we can fix n0 ∈N such that P∗(�0) ≥ 1 − 2η. We now introduce the event

En :=
{

n3βn/2

α2
n

Wn,βn(F ) /∈
[
c0θ

σ 2
D∞
(
E
[
F(e)
]− ε
)
(1 − ε),

c0θ

σ 2
D∞
(
E
[
F(e)
]+ ε
)
(1 + ε)

]}
.

Then, using that on �0 we have W
(L)
n,βn

(F ) = Wn,βn(F ), we get, for n ≥ n0,

E
[
D(L)

n 1En∩�0

]=Q(L)(En ∩�0) ≤Q(L)

(∣∣∣∣n3βn/2

α2
n

W
(L)
n,βn

(F )

D
(L)
n

− θ

σ 2
E
[
F(e)
]∣∣∣∣> θε

σ 2

)
−−−→
n→∞ 0,

applying Proposition 5.1. Since D
(L)
n 1En∩�0 ≥ 0, it follows that D

(L)
n 1En∩�0 → 0 in P-probability. Using again that,

on �0, limn→∞ D
(L)
n = c0D∞ > 0 P∗-a.s., we get that P∗(En ∩�0) → 0. Recalling that P∗(�0) ≥ 1−2η, we showed

that lim supn→∞ P∗(En) ≤ 2η and, therefore, it proves (5.1). �

5.2. Proof of Proposition 5.1 and of part (i) of Corollary 1.3

The aim of this section is to break down the proof of Proposition 5.1 into the proof of several lemmas. Our goal is to
use a second moment argument, but the first moment of W

(L)
n,βn

(F )/D
(L)
n under Q(L) does not have the right order and

the second moment is not even necessarily finite. Thus, we first need to come down to another random variable Y ′
n(F )

that is close to W
(L)
n,βn

(F ) with high probability and that has first and second moments of the right order, by eliminating
some rare particles with a too strong weight in the expectations. The lemmas stated in this subsection will also allow
us to prove part (i) of Corollary 1.3.

Until the end of the paper, L is a fixed positive constant. We first add a second barrier between times �n/2� and n

at position (3/2) logn −K , by setting, for K > 0,

W
(L,K)
n,βn

(F ) :=
∑
|z|=n

e−βnV (z)F
(
V(z)
)
1

V (z)≥−L,min�n/2�≤j≤n V (zj )≥ 3
2 logn−K

.

This first lemma shows that W(L)
n,βn

(F ) and W
(L,K)
n,βn

(F ) are close with high probability and will be proved in Section 5.4.
Note that this step is superfluous when logn � αn �√

n: since the particles contributing to Wn,βn are of order αn, it is
approximately the same difficulty for them to stay above the two barriers than only above the first (see Proposition 2.8)
and, thus, W

(L)
n,βn

(F ) and W
(L,K)
n,βn

(F ) have asymptotically the same first moment in that case.
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Fig. 1. Representation of the trajectory of a particle in An. It has to stay above the gray area and to pass through both thick segments.

Lemma 5.2. For all L > 0 and ε, η > 0, it exists K > 0 such that, for each F ∈ Cb(D([0,1])),

lim sup
n→∞

Q(L)

(
n3βn/2

α2
n

|W(L)
n,βn

(F ) −W
(L,K)
n,βn

(F )|
D

(L)
n

> ε‖F‖
)
≤ η.

We now consider a fixed K > 0. We will see in Lemma 5.4 that W
(L,K)
n,βn

(F ) has the right first moment, but we
still need to remove other particles for the second moment. Let (α+

n )n∈N and (α−
n )n∈N be sequences of positive real

numbers and (kn)n∈N be a sequence of integers such that

1 � α−
n � αn � α+

n �√
n,

(logn)6 � kn �√
n,

when n →∞. We add some controls on the trajectory of the particle’s lineage, by considering

Yn(F ) :=
∑
|z|=n

e−βnV (z)F
(
V(z)
)
1z∈An,

where we set An := {|z| = n : ∀j ∈ [[0, n]],V (zj ) ∈ In,j } (see Figure 1), with

In,j :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[−L,∞) if 0 ≤ j < �n/2� and j �= kn,

[k1/3
n , kn] if j = kn,

[(3/2) logn,∞) if �n/2� ≤ j ≤ n,

[(3/2) logn + α−
n , (3/2) logn+ α+

n ] if j = n.

Note that the second barrier is here simply at (3/2) logn: indeed, Lemma 5.4 shows that it does not change the first
moment (and we could even have taken (3/2) logn+C with any C > 0).

But, in order to compute the first moment of Yn(F ), we will first need to take the conditional expectation given
Fkn and, thus, we want to show that F(V(z)) does not asymptotically depend on what happen before time kn. For
this, we consider for each n ∈N∗ a slight modification Fn of function F such that

Fn

(
V(z)
) := F

(
V (z�(n−kn)t�+kn)− V (zkn)

σ
√

n− kn

, t ∈ [0,1]
)

.

More formally, we set, for each x ∈D([0,1]), Fn(x) := F([√n/
√

n− kn] · [x((n−kn)t+kn)/n − xkn/n], t ∈ [0,1]). The
following lemma, proved in Section 5.5, shows that we can replace F with Fn. It does not play a crucial role, but
makes the calculations easier for the next lemmas.
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Lemma 5.3. For all L,K > 0 and F ∈ Cu
b (D([0,1])), we have

EQ(L)

[
W

(L,K)
n,βn

(|F − Fn|)
D

(L)
n

]
= o

(
α2

n

n3βn/2

)
,

as n →∞.

Noting that, for F nonnegative, Yn(F ) ≤ W
(L,K)
n,βn

(F ), Lemma 5.3 combined with the following lemma shows that the

first moments under Q(L) of W
(L,K)
n,βn

(F ), W
(L,K)
n,βn

(Fn), Yn(F ) and Yn(Fn) (divided by D
(L)
n ) have the same equivalent

as n →∞. It will be proved in Section 5.3.

Lemma 5.4. For all L,K > 0 and F ∈ Cb(D([0,1])) nonnegative, we have

lim sup
n→∞

n3βn/2

α2
n

EQ(L)

[
W

(L,K)
n,βn

(F )

D
(L)
n

]
≤ θ

σ 2
E
[
F(e)
]≤ lim inf

n→∞
n3βn/2

α2
n

EQ(L)

[
Yn(Fn)

D
(L)
n

]
.

However, this is still not sufficient for controlling the second moment of Yn(F ) and we need to introduce a new
random variable Y ′

n(F ). We consider the sequences

a
(n)
j :=

{
−L if 0 ≤ j < �n/2�,
3
2 logn if �n/2� ≤ j ≤ n,

and �
(n)
j :=

{
j1/7 if 0 ≤ j < �n/2�,
(n − j)1/7 if �n/2� ≤ j ≤ n.

Then, for some fixed sequence (ρn)n∈N that tends to infinity such that ρn � α2
n, we define the following set, that will

allow us to control the offspring of the spine in the second moment calculation (see Aïdékon [1] for the first use of
this method),

Bn :=
{
|z| = n : ∀j ∈ [[0, n − 1]],

∑
y∈�(zj+1)

e−[V (y)−a
(n)
j ] ≤ ρne−�

(n)
j

}
,

where �(x) is the set of brothers of x, and we set

Y ′
n(F ) :=

∑
|z|=n

e−βnV (z)Fn

(
V(z)
)
1z∈An∩Bn.

The following lemma shows that this new random variable Y ′
n(F ) is close to Yn(F ). Its proof relies on the peeling

lemma stated in Section 5.6 in a more general feature.

Lemma 5.5. For all L,K > 0 and F ∈ Cb(D([0,1])), we have

EQ(L)

[ |Yn(Fn)− Y ′
n(Fn)|

D
(L)
n

]
= o

(
α2

n

n3βn/2

)
,

as n →∞.

By considering Y ′
n(Fn), we can now control the second moment properly, as stated in this last lemma, proved in

Section 5.7. This second moment is exactly the square of the first moment in Lemma 5.4.

Lemma 5.6. For all L,K > 0 and F ∈ Cb(D([0,1])) nonnegative, we have

lim sup
n→∞

(
n3βn/2

α2
n

)2

EQ(L)

[(
Y ′

n(Fn)

D
(L)
n

)2]
≤
(

θ

σ 2
E
[
F(e)
])2

.
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Using these lemmas, we can now prove Proposition 5.1.

Proof of Proposition 5.1. We consider here the case F ≥ 0 and the general case follows by taking the positive and
negative parts of F . We first fix K > 0. Using Lemmas 5.4 and 5.5, we have

lim inf
n→∞

n3βn/2

α2
n

EQ(L)

[
Y ′

n(Fn)

D
(L)
n

]
≥ θ

σ 2
E
[
F(e)
]
, (5.2)

and so, by applying Bienaymé–Chebyshev inequality and Lemma 5.6, we get that

n3βn/2

α2
n

Y ′
n(Fn)

D
(L)
n

−−−→
n→∞

θ

σ 2
E
[
F(e)
]
, in Q(L)-probability. (5.3)

Combining (5.3) with Lemmas 5.4, 5.3 and 5.5, we deduce that for all K > 0,

n3βn/2

α2
n

W
(L,K)
n,βn

(F )

D
(L)
n

−−−→
n→∞

θ

σ 2
E
[
F(e)
]
, in Q(L)-probability. (5.4)

Now, for ε, η > 0, by Lemma 5.2, we can choose K > 0 such that

lim sup
n→∞

Q(L)

(
n3βn/2

α2
n

|W(L)
n,βn

(F ) −W
(L,K)
n,βn

(F )|
D

(L)
n

>
ε

2

)
≤ η (5.5)

and, thus, we get, using the triangle inequality, (5.4) and (5.5),

lim sup
n→∞

Q(L)

(∣∣∣∣n3βn/2

α2
n

W
(L)
n,βn

(F )

D
(L)
n

− θ

σ 2
E
[
F(e)
]∣∣∣∣> ε

)
≤ η.

This concludes the proof of Proposition 5.1. �

We conclude this subsection by proving part (i) of Corollary 1.3, which is a consequence of the fact that considering
only particles in An does not change the first moment asymptotic.

Proof of part (i) of Corollary 1.3. First note that it is sufficient to prove that, for all sequences (α−
n )n∈N and (α+

n )n∈N
such that 1 � α−

n � αn � α+
n �√

n, we have

νn,βn

([
(3/2) logn+ α−

n , (3/2) logn+ α+
n

])−−−→
n→∞ 1, in P∗-probability. (5.6)

Indeed, if we assume that part (i) of Corollary 1.3 is false, then it exists ε > 0 such that for any k ≥ 1, it exists
nk > nk−1 (with n0 := 0) such that

P∗(νnk,βnk

([
(3/2) lognk + k−1αnk

, (3/2) lognk + kαnk

])≤ 1 − ε
)≥ 1 − ε. (5.7)

Setting en := inf{k ∈ N : nk ≥ n}, we have en → ∞ and enk
= k. Thus, with α+

n := enαn and α−
n := e−1

n αn, (5.7)
implies the negation of (5.6). Therefore, we now want to prove (5.6).

The left-hand side of (5.6) is larger than Yn(1)/Wn,βn , therefore, it is sufficient to show that Yn(1)/Wn,βn → 1 in
P∗-probability. Combining (5.3) with Lemma 5.5, we first have

n3βn/2

α2
n

Yn(1)

D
(L)
n

−−−→
n→∞

θ

σ 2
, in Q(L)-probability, (5.8)
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and, in the same way as in the proof of part (i) of Theorems 1.1 and 1.2, where we showed (5.1) from Proposition 5.1,
it follows from (5.8) that

n3βn/2

α2
n

Yn(1)

Dn

−−−→
n→∞

c0θ

σ 2
, in P∗-probability. (5.9)

Using (5.9) and (5.1) with F ≡ 1, we get that Yn(1)/Wn,βn → 1 in P∗-probability and so (5.6) is proved. �

5.3. First moments of W
(L,K)
n,βn

(F ) and Yn(Fn)

We start with the proof of Lemma 5.4 in this subsection, because this first moment calculation will be a kind of routine
at which we will refer for the proof of other lemmas. In this calculations, sums of general term (i + C)e−i/γn appear
regularly, with C ∈R a constant and γn →∞ as n →∞. Therefore, we state the following result, proved by explicit
computation: if (γ+

n )n∈N and (γ−
n )n∈N are sequences with values in R+ ∪ {∞} such that γ−

n � γn � γ+
n as n →∞,

then we have, for any constant C ∈R,∑
i∈[γ−

n ,γ+
n ]∩N

(i +C)e−i/γn ∼
n→∞ γ 2

n and
∑

i /∈[γ−
n ,γ+

n ]∩N
(i +C)e−i/γn = o

(
γ 2
n

)
. (5.10)

Proof of Lemma 5.4. Recall that we consider F ∈ Cb(D([0,1])) nonnegative. We begin with the control of
EQ(L)[W(L,K)

n,βn
(F )/D

(L)
n ]. Note that EQ(L)[W(L,K)

n,βn
(F )/D

(L)
n ] = E[W(L,K)

n,βn
(F )]/R(L). Then, using the many-to-one

lemma, we get

E
[
W

(L,K)
n,βn

(F )
]= E
[
e−Sn/αnF

(
S(n)
)
1

Sn≥−L,min�n/2�≤j≤n V (zj )≥ 3
2 logn−K

]
.

We cut this expectation in two pieces depending on whether Sn ≤ 3
2 logn + α+

n or Sn > 3
2 logn + α+

n . Let start with
the case Sn > 3

2 logn + α+
n : we have, by cutting the interval [α+

n +K,∞) in pieces of length 1,

E
[
e−Sn/αnF

(
S(n)
)
1

Sn≥−L,min�n/2�≤j≤n Sj≥ 3
2 logn−K,Sn> 3

2 logn+α+
n

]
≤
∑

i≥�α+
n +K�

E
[
e−( 3

2 logn−K+i)/αn‖F‖1
Sn≥−L,min�n/2�≤j≤n Sj≥ 3

2 logn−K,Sn−( 3
2 logn−K)∈[i,i+1)

]

≤ ‖F‖ eK/αn

n3/2αn

∑
i≥�α+

n +K�
e−i/αnc5

(L + 1)2(i + 2)

n3/2
, (5.11)

by using (2.8). Since �α+
n + K�� αn, it follows from (5.10) that the right-hand side of (5.11) is a o(α2

n/n3βn/2). We

now control the term corresponding to the case Sn ≤ 3
2 logn+α+

n , which is the dominant term in E[W(L,K)
n,βn

(F )]. This
time, we cut the segment [0, α+

n + K] in pieces of length h > 0, where h is any real number if S1 is nonlattice and is
the span of the lattice if S1 is lattice, and thus we get

E
[
e−Sn/αnF

(
S(n)
)
1

Sn≥−L,min�n/2�≤j≤n Sj≥ 3
2 logn−K,Sn≤ 3

2 logn+α+
n

]
≤

�(α+
n +K)/h −1∑

i=0

e(K−ih)/αn

n3/2αn
E
[
F
(
S(n)
)
1

Sn≥−L,min�n/2�≤j≤n Sj≥ 3
2 logn−K,Sn−( 3

2 logn−K)∈[ih,(i+1)h)

]

≤
�(α+

n +K)/h −1∑
i=0

e−ih/αn

n3/2αn

√
π

2

θθ−

σ

R(L)

n3/2

(
E
[
F(e)
]+ o(1)

)
hR−((i + 1)h

)
, (5.12)
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by using Proposition 2.8 in both lattice and nonlattice cases, with uniformity in i because h(�(α+
n +K)/h −1) �√

n.
Then, by applying (2.1) to R−, for ε > 0, it exists M > 0 such that, for all u ≥ 0, R−(u) ≤ c−0 (1 + ε)(M + u) and
thus we get

�(α+
n +K)/h −1∑

i=0

R−((i + 1)h
)
e−ih/αn ≤

∞∑
i=0

c−0 (1 + ε)

(
i + 1 + M

h

)
he−ih/αn

= (1 + o(1)
)
c−0 (1 + ε)h

(
αn

h

)2

, (5.13)

by applying (5.10). Coming back to (5.12), we get

lim sup
n→∞

n3βn/2

α2
n

E
[
e−Sn/αnF

(
S(n)
)
1

Sn≥−L,min�n/2�≤j≤n Sj≥ 3
2 logn−K,Sn≤ 3

2 logn+α+
n

]
≤
√

π

2

θθ−

σ
R(L)E

[
F(e)
]
h

c−0 (1 + ε)

h
−−→
ε→0

θ

σ 2
R(L)E

[
F(e)
]
, (5.14)

by applying (2.5) to constants c−0 and θ−. Combining (5.11) and (5.14), we conclude that

EQ(L)

[
W

(L,K)
n,βn

D
(L)
n

]
= 1

R(L)
E
[
W

(L,K)
n,βn

]≤ θ

σ 2

α2
n

n3βn/2

(
E
[
F(e)
]+ o(1)

)
,

and it shows the first part of Lemma 5.4.
We now want to prove the lower bound for EQ(L) [Yn(Fn)/D

(L)
n ] = E[Yn(Fn)]/R(L). We use the branching property

at time kn to get

E
[
Yn(Fn)

]= E

[ ∑
|x|=kn

1
V (x)≥−L,V (x)∈[k1/3

n ,kn]ψ
(
V (x)
)]

, (5.15)

where we set, for all b ∈ [k1/3
n , kn],

ψ(b) := Eb

[ ∑
|z|=n−kn

e−βnV (z)F

(
V(z) − b

σ
√

n− kn

)
1∀0≤i≤n−kn,V (zi )∈In,i+kn

]
.

We note m := n− kn and fix λ ∈ (0,1/2), then we have �λm� ≤ �n/2�− kn for n large enough because kn � n. Using
the many-to-one lemma, we get, for b ∈ [k1/3

n , kn],

ψ(b) ≥ e−bEb

[
e−Sm/αnF

(
S(m) − b

σ
√

m

)
1

Sm− 3
2 logn∈[α−

n ,α+
n ],Sm≥−L,min�λm�≤j≤m Sj≥ 3

2 logn

]
= e−bE

[
e−(Sm+b)/αnF

(
S(m)
)
1

Sm−( 3
2 logn−b)∈[α−

n ,α+
n ],Sm≥−(L+b),min�λm�≤j≤m Sj≥ 3

2 logn−b

]
.

Then, we cut the segment [α−
n ,α+

n ] in pieces of length h > 0, where h is any real number if S1 is nonlattice and is the
span of the lattice if S1 is lattice, and we get that ψ(b) is larger than

e−b

�α+
n /h�−1∑

i=�α−
n /h 

e−(i+1)h/αn

n3/2αn
E
[
F
(
S(m)
)
1

Sm−( 3
2 logn−b)∈[ih,(i+1)h),Sm≥−(L+b),min�λm�≤j≤m Sj≥ 3

2 logn−b

]

≥ e−b

n3/2αn

�α+
n /h�−1∑

i=�α−
n /h 

e−(i+1)h/αn

√
π

2

θθ−

σ

R(L + b)

m3/2

(
E
[
F(e)
]+ o(1)

)
hR−(ih),
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where the o(1) is uniform in b ∈ [k1/3
n , kn] and i ∈ [[�α−

n /h , �α+
n /h� − 1]], by using Proposition 2.8, because we

have L + kn �√
n and h(�α+

n /h� − 1) �√
n. Thus, we get, using that R(L + b) ∼ c0(L + b) and R−(ih) ∼ c−0 ih

uniformly in b and i,

ψ(b) ≥ e−b

n3/2αn

√
π

2

θθ−

σ

c0(L + b)

n3/2
h
(
E
[
F(e)
]+ o(1)

) �α+
n /h�−1∑

i=�α−
n /h 

e−(i+1)h/αnc−0 ih

= (L + b)e−b

√
2

π

1

σ 3

α2
n

n3βn/2

(
E
[
F(e)
]+ o(1)

)
,

uniformly in b ∈ [k1/3
n , kn], where we used (2.5) twice and also (5.10). Coming back to (5.15), we get that E[Yn(Fn)]

is larger than√
2

π

1

σ 3

α2
n

n3βn/2

(
E
[
F(e)
]+ o(1)

)
E

[ ∑
|x|=kn

1
V (x)≥−L,V (x)∈[k1/3

n ,kn]
(
L + V (x)

)
e−V (x)

]
. (5.16)

Using the many-to-one lemma, the expectation in (5.16) is equal to

E
[
(Skn +L)1

Skn
≥−L,Skn∈[k1/3

n ,kn]
]≥ E
[
(Skn +L)1

Skn
≥−L,(Skn+L)/σk

1/2
n ∈[C−1,C]

]
, (5.17)

for all C > 0. We then choose a function χ : R+ →R continuous and bounded such that, for all t ∈R+,

t1t∈[2C−1,C/2] ≤ χ(t) ≤ t1t∈[C−1,C],

and (5.17) is larger than

σk
1/2
n E

[
χ

(
Skn + L

σk
1/2
n

)
1Skn

≥−L

]
= σk

1/2
n

(
1 + o(1)

)θR(L)

k
1/2
n

∫ ∞

0
χ(t)te−t2/2 dt

≥ σθR(L)
(
1 + o(1)

)∫ C/2

2C−1
t2e−t2/2 dt,

by applying (2.6). Coming back to (5.16), we get

lim inf
n→∞

n3βn/2

α2
n

E
[
Yn(Fn)

]≥√ 2

π

1

σ 3
E
[
F(e)
]
σθR(L)

∫ C/2

2C−1
t2e−t2/2 dt −−−→

C→∞
θ

σ 2
R(L)E

[
F(e)
]
,

using that
∫∞

0 t2e−t2/2 dt =
√

π
2 . Since EQ(L) [Yn(Fn)/D

(L)
n ] = E[Yn(Fn)]/R(L), it concludes the proof of Lem-

ma 5.4. �

5.4. Addition of the second barrier

In this section, we prove Lemma 5.2 with a method similar to the one used by Madaule [35] for his Lemma 4.9 (or
Lemma 3.3 of Aïdékon [1]). The main difference is that we do not only consider particles that are at a distance of
order 1 from (3/2) logn, but we can nevertheless apply some of Madaule’s results.

Proof of Lemma 5.2. We fix L > 0 and ε, η > 0. For all F ∈ Cb(D([0,1])) and K > 0, we have |W(L)
n,βn

(F ) −
W

(L,K)
n,βn

(F )| ≤ 2‖F‖|W(L)
n,βn

−W
(L,K)
n,βn

|, where W
(L)
n,βn

:= W
(L)
n,βn

(1) and W
(L,K)
n,βn

:= W
(L,K)
n,βn

(1). Therefore, it is sufficient
to show that we have

lim sup
n→∞

Q(L)

(
n3βn/2

α2
n

|W(L)
n,βn

− W
(L,K)
n,βn

|
D

(L)
n

> ε

)
≤ η, (5.18)

for K > 0 large enough.



The near-critical Gibbs measure of the branching random walk 1647

Using Proposition A.3 of Aïdékon [1], we know that D
(L)
n converges in L1 to D

(L)∞ under P, so we can choose M >

0 large enough such that, for all n ∈N, Q(L)(D
(L)
n > M) = E[D(L)

n 1
D

(L)
n >M

]/R(L) ≤ η/4. Therefore, the probability
in (5.18) is smaller than

Q(L)

(
n3βn/2

∣∣W(L)
n,βn

−W
(L,K)
n,βn

∣∣> εα2
nD

(L)
n ,

η

4
≤ D(L)

n ≤ M

)
+ η

4
+Q(L)

(
D(L)

n <
η

4

)
= E
[
D(L)

n 1
n3βn/2|W(L)

n,βn
−W

(L,K)
n,βn

|>εα2
nD

(L)
n ,

η
4 ≤D

(L)
n ≤M

]+ η

4
+ 1

R(L)
E
[
D(L)

n 1
D

(L)
n <

η
4

]
≤ MP

(
n3βn/2

∣∣W(L)
n,βn

−W
(L,K)
n,βn

∣∣> εα2
n

η

4

)
+ η

4
+ η

4
,

because R(L) ≥ 1. Thus, we now want to prove that, for some K > 0 large enough, we have

lim sup
n→∞

P
(
n3βn/2

∣∣W(L)
n,βn

− W
(L,K)
n,βn

∣∣> ε′α2
n

)≤ 2η′,

with η′ := η/4M and ε′ := εη/4. Moreover, using (1.8), we can fix K ′ ≥ 0 such that P(min|z|=n V (z) < 3
2 logn −

K ′) ≤ η′. Thus, our aim is now to show that we have

lim sup
n→∞

P

(∣∣W(L)
n,βn

− W
(L,K)
n,βn

∣∣1min|z|=n V (z)≥ 3
2 logn−K ′ > ε′ α2

n

n3βn/2

)
≤ η′, (5.19)

for some K ≥ K ′ large enough.
Now, following Madaule’s [35] proof of his Lemma 4.9, we introduce the intervals Jn(x) := [ 3

2 logn − x −
1, 3

2 logn − x), for x ∈R, and the events, for i, � ∈N and �n/2� ≤ k ≤ n,

Ei,k,�(z) :=
{
V (z) ≥−L,V (zk) = min�n/2�≤j≤n

V (zj ) ∈ Jn(K) − �,V (z) ∈ Jn

(
K ′)+ i

}
,

and, denoting a� := �eν(�+K)� for some fixed ν ∈ (0,1),

F 1
� (z) :=

⋃
i≥1,�n/2�≤k<n−a�

Ei,k,�(z) and F 2
� (z) :=

⋃
i≥1,n−a�≤k≤n

Ei,k,�(z).

Then, we have∣∣W(L)
n,βn

−W
(L,K)
n,βn

∣∣1min|z|=n V (z)≥ 3
2 logn−K ′ ≤

∑
�≥0

∑
|z|=n

e−βnV (z)(1F 1
� (z) + 1F 2

� (z)). (5.20)

On the one hand, by Madaule’s [35] proof of his Lemma 4.9, we have the inequality

P

(∑
|z|=n

1F 2
� (z) ≥ 1

)
≤ c15(1 + a�)(1 + L)e−K−�

and, therefore,

P

(∑
�≥0

∑
|z|=n

e−βnV (z)1F 2
� (z) > 0

)
≤
∑
�≥0

P

(∑
|z|=n

1F 2
� (z) ≥ 1

)
≤ c16(1 + L)e−(1−ν)K . (5.21)

On the other hand, by using the many-to-one lemma, we get, for i ≥ 1, �n/2� ≤ k < n− a� and � ≥ 0,

E

[∑
|z|=n

e−βnV (z)1Ei,k,�(z)

]
= E
[
e−Sn/αn1Ei,k,�

]≤ e−(i−1−K ′)/αn

n3/2αn
P(Ei,k,�), (5.22)
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where we set

Ei,k,� :=
{
Sn ≥−L,Sk = min�n/2�≤j≤n

Sj ∈ Jn(K) − �,Sn ∈ Jn

(
K ′)+ i

}
.

We recall Equation (4.27) of Madaule [35]:

P(Ei,k,�) ≤
{

c17
(1+L) logn

n3/2(n−k+1)3/2 (1 + � + i) if �n/2� ≤ k < �3n/4�,
c17

(1+L)

n3/2(n−k+1)3/2 (1 + � + i) if �3n/4� ≤ k ≤ n.
(5.23)

Applying (5.23), we get

n−a�−1∑
k=�n/2�

P(Ei,k,l) ≤ c18
(1 +L)

n3/2
(1 + � + i)

(
logn√

n
+ a

−1/2
�

)
. (5.24)

Using (5.22), (5.24) and that P(Ei,k,�) = 0 for � ≥ 3
2 logn−K +L, we have

E

[∑
�≥0

∑
|z|=n

e−βnV (z)1F 1
� (z)

]

≤
∑
�≥0

∑
i≥1

n−a�−1∑
k=�n/2�

E

[∑
|z|=n

e−βnV (z)1Ei,k,�(z)

]

≤ c18e(K ′+1)/αn
(1 +L)

n3βn/2

� 3
2 logn−K+L ∑

�=0

(
logn√

n
+ a

−1/2
�

)∑
i≥1

e−i/αn(1 + � + i). (5.25)

We can bound the sum on i in (5.25) by (1 + �)α2
n(1 + o(1)) uniformly in �. Moreover, taking K large enough such

that e−νK < 1/2, we have a� ≥ eν(�+K)/2 for all � ≥ 0. Thus, we get that (5.25) is smaller than

c19
(
1 + o(1)

) (1 + L)

n3βn/2
α2

n

(
(logn)3

n1/2
+ e−νK/2

)
= c19e−νK/2(1 +L)

(
1 + o(1)

) α2
n

n3βn/2
,

and, thus, with the Markov inequality, we have

P

(∑
�≥0

∑
|z|=n

e−βnV (z)1F 1
� (z) > ε′ α2

n

n3βn/2

)
≤ c19

ε′
e−νK/2(1 + L)

(
1 + o(1)

)
. (5.26)

Finally, (5.19) follows from (5.20), (5.21) and (5.26) by taking K large enough and it concludes the proof of
Lemma 5.2. �

5.5. From F to Fn

We prove here that considering Fn instead of F does not change significantly the first moment.

Proof of Lemma 5.3. To control the first moment of W
(L,K)
n,βn

(|F − Fn|)/D(L)
n under EQ(L) , we follow the proof of

Lemma 5.4 for the upper bound of the first moment of W
(L,K)
n,βn

(F )/D
(L)
n , but, instead of applying directly Proposi-

tion 2.8 as in (5.12), we use that

E
[|F − Fn|

(
S(n)
)
1

Sn≥−L,min�n/2�≤j≤n Sj≥ 3
2 logn−K,Sn−( 3

2 logn−K)∈[ih,(i+1)h)

]
= o

(√
π

2

θθ−

σ

R(L)

n3/2
hR−((i + 1)h

))
,
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uniformly in i ∈ [0, h(�(α+
n + K)/h − 1)], by using Proposition 2.8 combined with Lemmas A.3 and A.5, because

F ∈ Cu
b (D([0,1])). The result follows with the same calculations as in the proof of Lemma 5.4. �

5.6. The peeling lemma

The aim of this subsection is to prove Lemma 5.5, which shows that introducing the event {z ∈ Bn} does not change
the first moment. This proof is based on the so-called peeling lemma (see Shi [40]), which controls that the spine,
conditioned to have a specific trajectory, does not have too many and too low children. Such lemmas have been proved
in the case where the spine ends up at a distance of constant order from 3

2 logn (see [1, Lemma C.1], [35, Lemma 7.1]
and [40, Theorem 5.14]) and also when it ends up at a position of order

√
n (see [3, Lemma 4.7]). Here we have to

deal with the intermediate case where the spine end up far above 3
2 logn and far below

√
n.

In order to state the peeling lemma in a general setting, we introduce some notation. For b,u, v ∈R and n ∈N, we
set

Ab,u,v
n :=

{
|z| = n : V (z) ∈ [v + b, v + b + 1),V (z) ≥−u, min�n/2�≤j≤n

V (zj ) ≥ v
}
.

We consider

a
(n)
i :=

{
−u if 0 ≤ i < �n/2�,
v if �n/2� ≤ i ≤ n,

and �
(n)
i :=

{
i1/7 if 0 ≤ i < �n/2�,
(n − i)1/7 if �n/2� ≤ i ≤ n,

and the following set

Bρ
n :=
{
|z| = n : ∀j ∈ [[0, n − 1]],

∑
y∈�(zj+1)

(
1 + [V (y) − a

(n)
j

]
+
)
e−[V (y)−a

(n)
j ] ≤ ρe−�

(n)
j

}
.

We can now state our version of the peeling lemma, which covers the case where the spine ends up far below
√

n and
is therefore more general than the peeling lemmas in [1,35,40].

Lemma 5.7 (Peeling lemma). For all ε > 0, there exist ρ > 0 and n0 ∈ N such that, for all n ≥ n0, b ∈ R+ and
u,v ∈ [0, n1/8],

Q
(
wn ∈ Ab,u,v

n ∩ (Bρ
n

)c)≤ ε
R(u)R−(b)

n3/2
.

Remark 5.8. We present here the peeling lemma in terms of probability measure Q, because it simplifies somehow
the proof (for example, under Q, the reproduction law along the spine does not depend on the position), but it is a direct
consequence that, for all ε > 0, there exist ρ > 0 and n0 ∈N such that, for all n ≥ n0, b ∈R+ and u,v ∈ [0, n1/8],

Q(u)
(
w(u)

n ∈ Ab,u,v
n ∩ (Bρ

n

)c)≤ ε
R(u + v + b)R−(b)

n3/2
.

Before proving the peeling lemma, we first use it to show Lemma 5.5.

Proof of Lemma 5.5. We set Yn := Yn(1) and Y ′
n := Y ′

n(1) and, since F is bounded, it is sufficient to show that

EQ(L)

[
Yn − Y ′

n

D
(L)
n

]
= o

(
α2

n

n3βn/2

)
.

We first change probabilities from Q(L) to Q: we have

EQ(L)

[
Yn − Y ′

n

D
(L)
n

]
= 1

R(L)
EQ

[
Yn − Y ′

n

Wn

]
= 1

R(L)
EQ

[
e−V (wn)/αn1wn∈An∩Bc

n

]
. (5.27)
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Then, setting u = L and v = 3
2 logn and cutting the segment [α−

n ,α+
n ] in pieces of length 1, we get that (5.27) is

smaller than

1

R(L)

�α+
n  −1∑

i=�α−
n �

e−i/αnQ
(
wn ∈ Ai,u,v

n ∩ Bc
n

)≤ o

(
1

n3/2

) �α+
n  −1∑

i=�α−
n �

e−i/αnR−(i), (5.28)

using Lemma 5.7 uniformly in i, noting that Bn ⊂ B
ρn
n and ρn →∞. Using then (2.2) and (5.10), we get that (5.28)

is a o(α2
n/n3/2) and it concludes the proof of Lemma 5.5. �

Proof of Lemma 5.7. By Lemma 2.4 and (2.2), it exists μ > 0 such that, for all b ∈R+, u,v ∈ [0, n1/7] and n ∈N∗,
we have

Q
(
wn ∈ Ab,u,v

n ,∃i ∈ [[0, n]] : V (wi) < a
(n)
i + 2�

(n)
i −μ

)≤ R(u)R−(b)

(
ε

3n3/2
+ c7

9

n2−3/7

)
≤ ε

2

R(u)R−(b)

n3/2
,

for n large enough (independent of u, v and b). Thus, it is sufficient to show that

Q
(
wn ∈ Ab,u,v

n ∩ Bc
n,∀j ∈ [[0, n]],V (wj ) ≥ a

(n)
j + 2�

(n)
j −μ

)≤ ε

2

R(u)R−(b)

n3/2
, (5.29)

for n large enough, b ∈R+ and u,v ∈ [0, n1/8]. Therefore, we now prove (5.29). We first set, for 0 ≤ i ≤ n − 1,

B
ρ
n,i :=

{
|z| = n :

∑
y∈�(zi+1)

(
1 + [V (y)− a

(n)
i

]
+
)
e−[V (y)−a

(n)
i ] ≤ ρe−�

(n)
i

}
.

Since for all u,v ∈R, 1 + (u + v)+ ≤ (1 + u+)(1 + v+), we have∑
y∈�(zi+1)

(
1 + [V (y)− a

(n)
i

]
+
)
e−[V (y)−a

(n)
i ] ≤ (1 + [V (wi)− a

(n)
i

]
+
)
e−[V (wi)−a

(n)
i ]�(wi+1),

where we set, for x ∈ T, by noting ←−
x the parent of x and �(x) := V (x) − V (

←−
x ),

�(x) :=
∑

y∈�(x)

(
1 +�(y)+

)
e−�(y).

Thus, we have, on event {wn /∈ B
ρ
n,i} ∩ {V (wi) ≥ a

(n)
i + 2�

(n)
i −μ},

(
1 + [V (wi)− a

(n)
i

]
+
)
e−[V (wi)−a

(n)
i ]�(wi+1) ≥ ρe−�

(n)
i ≥ ρe−[V (wi)−a

(n)
i +μ]/2

and, if we are moreover on event {wn ∈ A
b,u,v
n } so that V (wi) ≥ a

(n)
i , it implies that

�(wi+1) ≥ ρe−μ/2 e[V (wi)−a
(n)
i ]/2

1 + [V (wi)− a
(n)
i ]+

≥ c20ρe−μ/2e[V (wi)−a
(n)
i ]/3,

where c20 := infu≥0 eu/6/(1 + u) > 0. Therefore, we get

Q
(
wn ∈ Ab,u,v

n ∩ (Bρ
n

)c
, ∀j ∈ [[0, n]],V (wj ) ≥ a

(n)
j + 2�

(n)
j − μ

)≤ n−1∑
i=0

qi, (5.30)
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where we set, for 0 ≤ i ≤ n− 1,

qi :=Q
(
wn ∈ Ab,u,v

n ,∀j ∈ [[0, n]],V (wj ) ≥ a
(n)
j + 2�

(n)
j −μ,�(wi+1) > ρ̃e[V (wi)−a

(n)
i ]/3)

and ρ̃ := c20ρe−μ/2. From now, we choose ρ such that ρ̃ ≥ e.
We first consider the case 0 ≤ i < �n/2�. Since a

(n)
i =−u, we have

qi ≤ EQ

[
1V (wi)≥−u,�(wi+1)>ρ̃e[V (wi )+u]/3Gi

(
V (wi+1)

)]
,

where we set, for x ∈R,

Gi(x) :=Qx

(
V (wn−i−1) ≥−u,V (wn−i−1)− v ∈ [b, b + 1), min�n/2�−i−1≤j≤n−i−1

V (wj ) ≥ v
)

≤ P

(
Sn−i−1 ≥−u− x,Sn−i−1 − (v − x) ∈ [b, b + 1), min�(n−i−1)/2�≤j≤n−i−1

Sj ≥ v − x
)

≤ c5
(1 + x + u)2(b + 2)

(n − i)3/2

≤ c21
(1 + x + u)R−(b)

n3/2
,

using successively Proposition 2.2(ii), (2.8) and (2.2). We thus get

qi ≤ c21
R−(b)

n3/2
EQ

[
1V (wi)≥−u,�(wi+1)>ρ̃e[V (wi )+u]/3

(
1 + V (wi+1)+ u

)]
≤ c21

R−(b)

n3/2
EQ

[
1
V (wi)≥−u,V (wi)+u<3 log

�(wi+1)

ρ̃

(
1 + V (wi)+ u +�(wi+1)

)]
≤ c21

R−(b)

n3/2
EQ

[
1
V (wi)≥−u,V (wi)+u<3 log

�(wi+1)

ρ̃

[
1 + 3 log+

�(wi+1)

ρ̃
+ (�(wi+1)

)
+

]]
.

But, under Q, (�(wi+1),�(wi+1)) is independent of (V (wj ))0≤j≤i and has moreover the same law as (X +
X̃,V (w1)), where X and X̃ are defined in (1.4). Therefore, we get, by integrating first on (V (wj ))0≤j≤i ,

qi ≤ c21
R−(b)

n3/2
EQ

[
Fi(X + X̃)

(
1 + 3 log+

X + X̃

ρ̃
+ V (w1)+

)]
, (5.31)

where we set, for x > 0,

Fi(x) :=Q

(
V (wi) ≥−u,V (wi)+ u < 3 log

x

ρ̃

)
= 10<log x

ρ̃
P(Si ≥−u,Si < −u + 3 log+ x),

by using Proposition 2.2(ii) and that ρ̃ ≥ 1. Then, applying (2.9), we have

�n/2�−1∑
i=kn

Fi(x) ≤ 1x>ρ̃c6(1 + 3 log+ x)(1 + u) ≤ 3
c6

c1
R(u)(1 + log+ x)1x>ρ̃

using also (2.2). Coming back to (5.31) and noting that, since X + X̃ > ρ̃ ≥ e, we have log+(X + X̃) ≥ 1, this gives

�n/2�−1∑
i=kn

qi ≤ c22
R(u)R−(b)

n3/2
EQ

[
1X+X̃>ρ̃ log+(X + X̃)

(
log+(X + X̃) + V (w1)+

)]
(5.32)

and concludes the case 0 ≤ i < �n/2�.
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We now consider the case �n/2� ≤ i < n, so a
(n)
i = v. On event {wn ∈ A

b,u,v
n ,�(wi+1) > ρ̃e[V (wi)−v]/3}, we have

V (wi) = V (wn) − (V (wn) − V (wi)) ∈ [v + b − (V (wn) − V (wi)), v + b + 1 − (V (wn) − V (wi))], �(wi+1) >

ρ̃ ∨ ρ̃e[V (wi)−V (wn)+b]/3 and, for all i + 1 ≤ j ≤ n, V (wn) − V (wj ) ≤ b + 1. Moreover, we set

ã
(n)
j :=

{
−u if 0 ≤ j < �n/4�,
v if �n/4� ≤ j ≤ n,

and note that, on event {wn ∈ A
b,u,v
n ,∀j ∈ [[0, n]],V (wj ) ≥ a

(n)
j + 2�

(n)
j − μ}, for n large enough, we have ∀j ∈

[[�n/4�, �n/2� − 1]],V (wj ) ≥ v = ã
(n)
j , because �

(n)
j ≥ �n/4�1/7 and u+ v ≤ 2n1/8. Thus, we get

qi ≤Q
(∀j ∈ [[1, i]],V (wj ) ≥ ã

(n)
j ,V (wi)−

(
v − (V (wn)− V (wi)

)) ∈ [b, b + 1],
�(wi+1) > ρ̃ ∨ ρ̃e[V (wi)−V (wn)+b]/3,∀j ∈ [[i + 1, n]],V (wn)− V (wj ) ≤ b + 1

)
. (5.33)

Under Q, (�(wi+1), (V (wn) − V (wj ))i≤j≤n) is independent of (V (wj ))0≤j≤i , so the right-hand side of (5.33) is
equal to

EQ

[
Hi

(
V (wn)− V (wi)

)
1�(wi+1)>ρ̃∨ρ̃e[V (wi )−V (wn)+b]/3,∀j∈[[i+1,n]],V (wn)−V (wj )≤b+1

]
, (5.34)

where we set, for x ∈R,

Hi(x) :=Q

(
V (wi) ≥−u, min�n/4�≤j≤i

V (wj ) ≥ v,V (wi)− (v − x) ∈ [b, b + 1]
)

≤ P

(
Si ≥−u, min�i/2�≤j≤i

Sj ≥ v,Si − v ∈ [b − x, b − x + 1]
)

≤ c23
R(u)

n3/2
(1 + b − x),

using successively Proposition 2.2(ii), (2.8) and (2.2) as before. On the event {�(wi+1) > ρ̃e[V (wi)−V (wn)+b]/3}, using
that ρ̃ ≥ 1, we have b − (V (wn) − V (wi)) ≤ 3 log+ �(wi+1) and also V (wn) − V (wi+1) ≥ b − 3 log+ �(wi+1) −
�(wi+1)+, therefore, (5.34) is smaller than

c23
R(u)

n3/2
EQ

[(
1 + 3 log+ �(wi+1)

)
1�(wi+1)>ρ̃

× 1V (wn)−V (wi+1)≥b−3 log+ �(wi+1)−�(wi+1)+,∀j∈[[i+1,n]],V (wn)−V (wj )≤b+1
]
. (5.35)

Note then that, under Q, (�(wi+1),�(wi+1)) is independent of (V (wn) − V (wj ))i+1≤j≤n and has the same law as
(X + X̃,V (w1)), so (5.35) is equal to

c23
R(u)

n3/2
EQ

[(
1 + 3 log+(X + X̃)

)
1X+X̃>ρ̃�i

(
3 log+(X + X̃) + V (w1)+

)]
, (5.36)

where we set, for x ≥ 0,

�i(x) :=Q
(
V (wn)− V (wi+1) ≥ b − x,∀j ∈ [[i + 1, n]],V (wn)− V (wj ) ≤ b + 1

)
= P
(
S−

n−i−1 ≤ (x + 1) − (b + 1), S−
n−i−1 ≥−(b + 1)

)
,

by applying Proposition 2.2(ii) and then reversing time. Thus, using (2.9) and (2.2), we get

n−1∑
i=�n/2�

�i(x) ≤ c−6 (1 + x + 1)(1 + b + 1) ≤ 4
c−6
c−1

(1 + x)R−(b).
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On event {X + X̃ > ρ̃}, we have log+(X + X̃) ≥ 1 so, coming back to (5.36), we get

n−1∑
i=�n/2�

qi ≤ c24
R(u)R−(b)

n3/2
EQ

[
log+(X + X̃)1X+X̃>ρ̃

(
log+(X + X̃) + V (w1)+

)]
. (5.37)

Finally, using (5.32), (5.37) and that EQ[V (w1)+|F1] = X̃/X by Proposition 2.2(i), we get

n−1∑
i=0

qi ≤ (c22 + c24)
R(u)R−(b)

n3/2
E
[(

X log2+(X + X̃) + X̃ log+(X + X̃)
)
1X+X̃>ρ̃

]
. (5.38)

Using (1.3), we can choose ρ large enough such that the expectation in (5.38) is smaller than ε/2(c22 + c24) and,
recalling (5.30), it proves (5.29) and concludes the proof of Lemma 5.7. �

5.7. Second moment of Y ′
n(Fn)

For F ∈ C(D([0,1])), by decomposing along the spine, Y ′
n(F ) is equal to

n−1∑
i=0

∑
y∈�(w

(L)
i+1)

∑
|z|=n,z≥y

e−βnV (z)F
(
V(z)
)
1z∈An∩Bn + e−βnV (w

(L)
n )F
(
V
(
w(L)

n

))
1

w
(L)
n ∈An∩Bn

.

We cut this sum in two pieces, depending on whether the lineage of the considered particle z splits off from the spine’s
lineage before or after time kn:

Y ′[0,kn)
n (F ) :=

kn−1∑
i=0

∑
y∈�(w

(L)
i+1)

∑
|z|=n,z≥y

e−βnV (z)F
(
V(z)
)
1z∈An∩Bn,

Y ′[kn,n]
n (F ) := Y ′

n(F ) − Y ′[0,kn)
n (F ).

We define in the same way D
(L),[0,kn)
n and D

(L),[kn,n]
n . Then, by Aïdékon and Shi [3, Lemma 4.7], since (logn)6 �

kn �√
n, we have

inf
u∈[k1/3

n ,kn]
Q(L)
(
D(L),[kn,n]

n ≤ n−2|V (w(L)
kn

)= u
)−−−→

n→∞ 1. (5.39)

Proof of Lemma 5.6. First note that, using Proposition 2.3(i),

Y ′
n(Fn)

D
(L)
n

=
∑
|z|=n

Q(L)
(
w(L)

n = z|Fn

) e−V (z)/αn

RL(V (z))
Fn

(
V(z)
)
1z∈An∩Bn

= EQ(L)

[
e−V (w

(L)
n )/αn

RL(V (w
(L)
n ))

Fn

(
V
(
w(L)

n

))
1

w
(L)
n ∈An∩Bn

∣∣∣Fn

]
and, thus, we have

EQ(L)

[(
Y ′

n(Fn)

D
(L)
n

)2]
= EQ(L)

[
Y ′

n(Fn)

D
(L)
n

e−V (w
(L)
n )/αn

RL(V (w
(L)
n ))

Fn

(
V
(
w(L)

n

))
1

w
(L)
n ∈An∩Bn

]
=: E[0,kn)

Q(L) +E
[kn,n]
Q(L) ,

by splitting Y ′
n(Fn) = Y

′[0,kn)
n (Fn) + Y

′[kn,n]
n (Fn). The first part will give the right order and constant and the second

part will be negligible. Recall that F is assumed to be nonnegative.
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We begin by bounding E
[0,kn)

Q(L) . Using D
(L)
n ≥ D

(L),[0,kn)
n and 1

w
(L)
n ∈Bn

≤ 1, we get

E
[0,kn)

Q(L) ≤ EQ(L)

[
Y

′[0,kn)
n (Fn)

D
(L),[0,kn)
n

e−V (w
(L)
n )/αn

RL(V (w
(L)
n ))

Fn

(
V
(
w(L)

n

))
1

w
(L)
n ∈An

]

= EQ(L)

[
Y

′[0,kn)
n (Fn)

D
(L),[0,kn)
n

ϕ
(
V
(
w

(L)
kn

))
1

V (w
(L)
kn

)∈[k1/3
n ,kn]

]
, (5.40)

where we set, for b ∈ [k1/3
n , kn] and with m := n − kn,

ϕ(b) := E
Q

(L)
b

[
e−V (w

(L)
m )/αn

RL(V (w
(L)
m ))

F

(
V
(
w(L)

m

)− b

σ
√

m

)
1∀0≤i≤n−kn,V (w

(L)
i )∈In,i+kn

]
≤ 1

RL(b)
E
[
e−(Sm+b)/αnF

(
S(m)
)
1

Sm≥−(L+b),min�λm�≤j≤m Sj≥ 3
2 logn−b,Sm−( 3

2 logn−b)∈[α−
n ,α+

n ]
]
,

for some fixed λ ∈ (1/2,1) and n large enough, by applying Proposition 2.3(ii). Then, proceeding in the same way as
for the lower bound of ψ(b) in the proof of Lemma 5.4 (but with a sum on i from �α−

n /h� to �α+
n /h − 1), we get

the upper bound

ϕ(b) ≤ 1

RL(b)
(L + b)

√
2

π

1

σ 3

α2
n

n3βn/2

(
E
[
F(e)
]+ o(1)

)= θ

σ 2

α2
n

n3βn/2

(
E
[
F(e)
]+ o(1)

)
, (5.41)

uniformly in b ∈ [k1/3
n , kn], using (2.1) and (2.5) for the last equality. Coming back to (5.40), we showed that

E
[0,kn)

Q(L) ≤ θ

σ 2

α2
n

n3βn/2

(
E
[
F(e)
]+ o(1)

)
EQ(L)

[
Y

′[0,kn)
n (Fn)

D
(L),[0,kn)
n

1
V (w

(L)
kn

)∈[k1/3
n ,kn]

]
, (5.42)

and thus we now want to bound the expectation in (5.42). We proceed in a way similar to the proof of Lemma 4.5 of
Aïdekon and Shi [3], by introducing the event {D(L),[kn,n]

n ≤ n−2}:

EQ(L)

[
Y

′[0,kn)
n (Fn)

D
(L),[0,kn)
n

1
D

(L),[kn,n]
n ≤n−2

]

= EQ(L)

[
Y

′[0,kn)
n (Fn)

D
(L),[0,kn)
n

Q(L)
(
D(L),[kn,n]

n ≤ n−2|V (w(L)
kn

)= u
)]

≥ EQ(L)

[
Y

′[0,kn)
n (Fn)

D
(L),[0,kn)
n

1
V (w

(L)
kn

)∈[k1/3
n ,kn]

]
inf

u∈[k1/3
n ,kn]

Q(L)
(
D(L),[kn,n]

n ≤ n−2|V (w(L)
kn

)= u
)
.

Thus, applying (5.39), we get that the expectation in (5.42) is smaller than

(
1 + o(1)

)
EQ(L)

[
Y

′[0,kn)
n (Fn)

D
(L),[0,kn)
n

1
D

(L),[kn,n]
n ≤n−2

]

≤ (1 + o(1)
)(

EQ(L)

[
Y

′[0,kn)
n (Fn)

D
(L),[0,kn)
n

1
D

(L)
n ≥n−7/4,D

(L),[kn,n]
n ≤n−2

]
+ ‖F‖Q(L)

(
D(L)

n < n−7/4))

≤ (1 + o(1)
)(

EQ(L)

[
Y

′[0,kn)
n (Fn)

(1 − n−1/4)D
(L)
n

]
+ ‖F‖n−7/4EQ(L)

[
1

D
(L)
n

])
, (5.43)
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using that Y
′[0,kn)
n (Fn)/D

(L),[0,kn)
n ≤ ‖F‖ and applying the Markov inequality for the second term. Using that

Y
′[0,kn)
n ≤ Y ′

n ≤ W
(L,K)
n,βn

, and then Lemmas 5.4 and 5.3, we get that (5.43) is smaller than

(
1 + o(1)

)((
E
[
F(e)
]+ o(1)

) θ

σ 2

α2
n

n3βn/2
+ ‖F‖n−7/4

R(L)

)
= (E[F(e)

]+ o(1)
) θ

σ 2

α2
n

n3βn/2
,

because 3βn/2 ≤ 7/4 for n large enough. Thus, coming back to (5.42), we proved that

E
[0,kn)

Q(L) ≤
((

E
[
F(e)
]+ o(1)

) θ

σ 2

α2
n

n3βn/2

)2

. (5.44)

We now want to show that E[kn,n]
Q(L) = o((α2

n/n3βn/2)2) and, by bounding F ≤ ‖F‖, it is sufficient to deal with the

case F ≡ 1. Using that D
(L),[0,kn)
n ≤ D

(L)
n , 1z∈Bn ≤ 1 and breaking down Y

′[kn,n]
n (1) along the spine, we first have that

E
[kn,n]
Q(L) is smaller than

n−1∑
i=kn

EQ(L)

[
1

D
(L),[0,kn)
n

e−V (w
(L)
n )/αn

RL(V (w
(L)
n ))

1
w

(L)
n ∈An∩Bn

∑
y∈�(w

(L)
i+1)

∑
|z|=n,z≥y

e−βnV (z)1z∈An

]

+EQ(L)

[
1

D
(L),[0,kn)
n

e−V (w
(L)
n )/αn

RL(V (w
(L)
n ))

1
w

(L)
n ∈An∩Bn

e−βnV (w
(L)
n )

]
. (5.45)

Noting that, on the event {z ∈ An}, we have e−βnV (z) ≤ e−V (z)n−3/2αn , the first term in (5.45) is smaller than

n−1∑
i=kn

EQ(L)

[
1

D
(L),[0,kn)
n

e−V (w
(L)
n )/αn

RL(V (w
(L)
n ))

1
w

(L)
n ∈An∩Bn

∑
y∈�(w

(L)
i+1)

∑
|z|=n,z≥y

e−V (z)n−3/2αn

]

= n−3/2αn

n−1∑
i=kn

EQ(L)

[
1

D
(L),[0,kn)
n

e−V (w
(L)
n )/αn

RL(V (w
(L)
n ))

1
w

(L)
n ∈An∩Bn

∑
y∈�(w

(L)
i+1)

e−V (y)

]
, (5.46)

by conditioning with respect to G∞ := σ(V (w
(L)
i ),V (y), y ∈ �(w

(L)
i+1), i ∈N) and noting that, given G∞, D

(L),[0,kn)
n

is independent of (V (z), |z| = n, z ≥ y, y ∈ �(w
(L)
i+1)). Noting that we are on the event {w(L)

n ∈ Bn}, (5.46) is smaller
than

n−3/2αn

n−1∑
i=kn

EQ(L)

[
1

D
(L),[0,kn)
n

e−V (w
(L)
n )/αn

RL(V (w
(L)
n ))

1
w

(L)
n ∈An∩Bn

ρne−a
(n)
i −�

(n)
i

]

≤ ρn

n3/2αn

(�n/2�−1∑
i=kn

eL−i1/7 +
n−1∑

i=�n/2�

e−(n−i)1/7

n3/2

)
EQ(L)

[
1

D
(L),[0,kn)
n

e−V (w
(L)
n )/αn

RL(V (w
(L)
n ))

1
w

(L)
n ∈An

]

≤ c25eL ρn

n3βn/2

(
1 + o(1)

)
EQ(L)

[
1

D
(L),[0,kn)
n

e−V (w
(L)
n )/αn

RL(V (w
(L)
n ))

1
w

(L)
n ∈An

]
, (5.47)

because k
1/7
n � logn and therefore the sum for i ∈ [[kn, �n/2� − 1]] is a o(n−3/2). For the second term in (5.45), we

use that, on the event {w(L)
n ∈ An}, e−βnV (w

(L)
n ) ≤ n−3βn/2, and, thus, combining with (5.47), we get

E
[kn,n]
Q(L) ≤ c25eL ρn

n3βn/2

(
1 + o(1)

)
EQ(L)

[
1

D
(L),[0,kn)
n

e−V (w
(L)
n )/αn

RL(V (w
(L)
n ))

1
w

(L)
n ∈An

]
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= c25eL ρn

n3βn/2

(
1 + o(1)

)
EQ(L)

[
1

D
(L),[0,kn)
n

ϕ
(
V
(
w

(L)
kn

))
1

V (w
(L)
kn

)∈[k1/3
n ,kn]

]
,

where the function ϕ has been defined previously in the proof. Using (5.41) again, we get

E
[kn,n]
Q(L) ≤ c26eL ρn

n3βn/2

α2
n

n3βn/2

(
1 + o(1)

)
EQ(L)

[
1

D
(L),[0,kn)
n

1
V (w

(L)
kn

)∈[k1/3
n ,kn]

]
. (5.48)

Proceeding in the same way as before by using (5.39) to introduce the event {D(L),[kn,n]
n ≤ n−2}, the expectation in

(5.48) is smaller than(
1 + o(1)

)
EQ(L)

[
1

D
(L),[0,kn)
n

1
D

(L),[kn,n]
n ≤n−2

]

≤ (1 + o(1)
)(

EQ(L)

[
1

D
(L),[0,kn)
n

1
D

(L)
n ≥n−7/4,D

(L),[kn,n]
n ≤n−2

]
+Q(L)

(
D(L)

n < n−7/4)). (5.49)

As for (5.43), (5.49) is equal to (1 + o(1))/R(L) and, coming back to (5.48), we get

E
[kn,n]
Q(L) ≤ c27

eL

R(L)

ρn

n3βn/2

α2
n

n3βn/2

(
1 + o(1)

)= o

((
α2

n

n3βn/2

)2)
,

because ρn � α2
n. This concludes the proof of Lemma 5.6. �

Appendix A: Convergence of random measures

In this section, we present some results concerning convergence of random or deterministic probability measures on
a polish space S or more specifically on D([0,1]). Some of these results are classical, but we state them here with
uniformity in some parameter θ ∈ �.

A.1. General space

Let (S, d), (S1, d1) and (S2, d2) be Polish spaces. We consider some set �. In the sequel, for each θ ∈ �, (μθ
n)n∈N will

denote a sequence of random probability measures on S and (ξ θ
n )n∈N a sequence of deterministic probability measures

on S. Moreover, μ and ξ will be probability measures on S, that are deterministic and do not depend on θ .

Lemma A.1. Assume that for all Lipschitz F ∈ Cb(S) and ε > 0, P(|μθ
n(F ) − μ(F)| ≥ ε) → 0 as n →∞ uniformly

in θ ∈ �. Then, the same convergence holds for all F ∈ Cb(S).

Note that in the case where we consider a deterministic sequence (ξ θ
n )n∈N, it simply means that ξθ

n (F ) → ξ(F )

uniformly in θ ∈ �. It is necessary that the limit does not depend on θ .

Proof. We follow the proof of Portmanteau Theorem in Billingsley [13, Theorem 2.1]. Thus, we first consider a
closed set A and ε > 0 and we want to show that

lim
n→∞ sup

θ∈�

P
(
μθ

n(A) ≥ μ(A) + ε
)= 0. (A.1)

We consider, for each η > 0, the function Fη : x �→ 1− (1∧ η−1d(x,A)) ∈ [0,1] that is Lipschitz and such that Fη ↓
1A. Thus, by dominated convergence, we have μ(Fη) → μ(A) as η → 0. We fix η such that μ(Fη) ≤ μ(A)+ (ε/2).
Since μθ

n(F
η) ≥ μθ

n(A), we get

sup
θ∈�

P
(
μθ

n(A) ≥ μ(A) + ε
)≤ sup

θ∈�

P

(
μθ

n

(
Fη
)≥ μ
(
Fη
)+ ε

2

)
−−−→
n→∞ 0,
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by using the assumption of the lemma. From (A.1), we get that, for all set A such that μ(∂A) = 0 P-a.s. and all ε > 0,

lim
n→∞ sup

θ∈�

P
(∣∣μθ

n(A) −μ(A)
∣∣≥ ε
)= 0. (A.2)

We now consider F ∈ Cb(S) and we can assume that F is nonnegative. We fix ε > 0 and set M := ‖F‖. Firstly, we
have ∫ M

0
E
[
μ
(
∂{F > t})]dt ≤

∫ M

0
E
[
μ
({F = t})]dt = E

[∫
S

∫ M

0
1F(x)=t dt dμ(x)

]
= 0,

and, therefore, for almost every t ∈ [0,M] (in the sense of the Lebesgue measure), P-a.s., μ(∂{F > t}) = 0. Thus, for
all N ∈N, we can fix a subdivision 0 = t0 < t1 < · · · < tN = M such that for all 0 ≤ k ≤ N −1, tk+1 − tk ≤ 2M/N and
for all 1 ≤ k ≤ N − 1, μ(∂{F > tk}) = 0 P-a.s. Since μ(F) = ∫M

0 μ(F > t)dt and t �→ μ(F > t) is nonincreasing,
we have

N∑
k=1

(tk − tk−1)μ(F > tk) ≤ μ(F) ≤
N−1∑
k=0

(tk+1 − tk)μ(F > tk) (A.3)

and the same holds for μθ
n instead of μ, for all n ∈ N and θ ∈ �. Since, in (A.3), the left-hand side and right-hand

side of (A.3) tend to μ(F) as N →∞, we can choose N large enough such that they are at most at distance ε/2 from
μ(F). Then, using (A.3) for μθ

n, it follows that

sup
θ∈�

P
(∣∣μθ

n(F ) −μ(F)
∣∣≥ ε
)≤ sup

θ∈�

(
P

(
N−1∑
k=1

(tk+1 − tk)
(
μθ

n(F > tk)− μ(F > tk)
)≥ ε

4

)

+ P

(
N−1∑
k=1

(tk+1 − tk)
(
μθ

n(F > tk)−μ(F > tk)
)≤−ε

4

))
,

by noting that, in the sums, the term for k = N is zero, since tN = M = ‖F‖, and the term for k = 0 is smaller than
2t1 ≤ 4M/N ≤ ε/4, if we choose N large enough. Then, we have

sup
θ∈�

P
(∣∣μθ

n(F ) −μ(F)
∣∣≥ ε
)≤ sup

θ∈�

N−1∑
k=1

P

(∣∣μθ
n(F > tk)−μ(F > tk)

∣∣≥ εN

8M(N − 1)

)
−−−→
n→∞ 0,

by using (A.2), because for all 1 ≤ k ≤ N − 1, μ(∂{F > tk}) = 0 P-a.s. �

Lemma A.2. We consider the product space S := S1 × S2. Assume that, for all G1 ∈ Cu
b (S1) and G2 ∈ Cu

b (S2),
ξθ
n (G1 � G2) → ξ(G1 � G2) as n →∞ uniformly in θ ∈ �, where G1 � G2 : (x, y) ∈ S �→ G1(x)G2(y). Then, for all

F ∈ Cb(S), ξθ
n (F ) → ξ(F ) uniformly in θ ∈ �.

Proof. Using Lemma A.1, it is sufficient to consider F ∈ Cu
b (S). Let ε > 0. Since F is uniformly continuous, it

exists η > 0 such that for any x, y ∈ S that verify d(x, y) ≤ η, we have |F(x) − F(y)| ≤ ε. Since S2 is separable
for the metric d , it exists (yi)i∈N ∈ SN

2 such that
⋃

i∈N B2(yi, η/2) = S2, where B2(y, r) denotes the open ball of
radius r centred at y in S2. Now we consider a compact set K ⊂ S such that ξ(K) ≥ 1 − ε and K ′ the image of
K under the canonical projection S → S2. Since K ′ is a compact set of S2, we can extract a finite cover K ′ ⊂⋃N

i=0 B(yi, η/2). Using again the compacity of K ′, there exist nonnegative Lipschitz functions χ0, . . . , χN ∈ Cb(S2)

such that, for all 0 ≤ i ≤ N , suppχi ⊂ B(yi, η/2), χ0 + · · · + χN ≤ 1 and χ0 + · · · + χN = 1 on K ′. Finally, we set
χ := 1 � (χ0 + · · · + χN), so that χ is a Lipschitz continuous function from S →[0,1] and χ = 1 on K .
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We can now construct some functions of the form G1 � G2 to approach F . For 0 ≤ i ≤ N , we set Gi
1 : x ∈ S1 �→

F(x, yi) and Gi
2 : y ∈ S2 �→ χi(y). By the triangle inequality, we have that |ξθ

n (F ) − ξ(F )| is smaller than∣∣∣∣∣ξθ
n

(
F −

N∑
i=0

Gi
1 � Gi

2

)∣∣∣∣∣+
N∑

i=0

∣∣ξθ
n

(
Gi

1 � Gi
2

)− ξ
(
Gi

1 � Gi
2

)∣∣+ ∣∣∣∣∣ξ
(

F −
N∑

i=0

Gi
1 � Gi

2

)∣∣∣∣∣. (A.4)

The second term in (A.4) tends to 0 as n → ∞ uniformly in θ ∈ � by the assumption of the lemma. On the other
hand, we have∣∣∣∣∣F −

N∑
i=0

Gi
1 � Gi

2

∣∣∣∣∣≤ ‖F‖(1 − χ) +
∣∣∣∣∣χF −

N∑
i=0

Gi
1 � Gi

2

∣∣∣∣∣≤ ‖F‖(1 − χ) + εχ,

because of the choice of η. Thus, we get that the first and third terms of (A.4) are smaller than 2ε + ‖F‖(ξ θ
n (1 −

χ) + ξ(1 − χ)). Since 1 − χ = 1 � (1 − χ0 − · · · − χN), we can use again the assumption of the lemma to get
that ξθ

n (1 − χ) → ξ(1 − χ) as n → ∞ uniformly in θ ∈ �. Noting that 1 − χ ≤ 1Kc and ξ(Kc) ≤ ε, it proves
Lemma A.2. �

A.2. Weak convergence in D([0,1])

We keep here the notation of the previous subsection, but we take S =D([0,1]). Recall the definition of the Skorokhod
distance d on D([0,1]): for x, y ∈D([0,1]),

d(x, y) := inf
λ∈�

(‖λ− id‖∞ ∨ ‖x − y ◦ λ‖∞
)
,

where we set � := {λ : [0,1] → [0,1]|λ(0) = 0, λ(1) = 1, λ continuous and increasing}, and that, equipped with this
distance, D([0,1]) is a polish space (see Billingsley [13]).

Lemma A.3. Assume that, for all F ∈ Cu
b (D([0,1])), we have ξθ

n (F ) → ξ(F ) as n → ∞ uniformly in θ ∈ �. We
consider F ∈ Cu

b (D([0,1])), (un)n∈N ∈ (R∗+)N, (vn)n∈N ∈D([0,1])N and (λn)n∈N ∈ �N such that un → 1, ‖vn‖∞ →
0 and ‖λn − id‖∞ → 0. We set Fn : x ∈D([0,1]) �→ F(vn + un(x ◦ λn)). Then, we have ξθ

n (|Fn −F |) → 0 uniformly
in θ ∈ �.

Proof. For x ∈D([0,1]), we first have

d
(
x, vn + un(x ◦ λn)

)≤ ‖vn‖∞ + d(x, x ◦ λn)+ d
(
x ◦ λn,un(x ◦ λn)

)
≤ ‖vn‖∞ + ‖λn − id‖∞ + |un − 1|‖x‖∞. (A.5)

Now, we consider ε > 0 and we fix K > 0 such that ξ({‖x‖∞ ≥ K}) ≤ ε and some Lipschitz function χ : D([0,1]) →
[0,1] such that 1‖x‖∞<K ≤ χ(x) ≤ 1‖x‖∞<K+1 for all x ∈ D([0,1]) (this is possible since ‖−‖∞ is Lipschitz on
D([0,1])). Thus, we have

ξθ
n

(|Fn − F |)≤ ‖Fn‖ξθ
n (1 − χ) + ξθ

n

(
χ |Fn − F |)+ ‖F‖ξθ

n (1 − χ). (A.6)

On the one hand, for x ∈D([0,1]), we have, using χ(x) ≤ 1‖x‖∞<K+1 and (A.5),

χ(x)
∣∣Fn(x) − F(x)

∣∣≤ ωF

(‖vn‖∞ + ‖λn − id‖∞ + |un − 1|(K + 1)
)
,

so we get |ξθ
n (χ(Fn − F))| ≤ ‖χ(Fn − F)‖ → 0 as n → ∞ uniformly in θ ∈ �. On the other hand, by using the

assumption of the lemma with the function 1−χ , the first and third terms in the right-hand side of (A.6) tend towards
2‖F‖ξ(1 − χ) uniformly in θ ∈ �. Since ξ(1 − χ) ≤ ε, it concludes the proof of Lemma A.3. �



The near-critical Gibbs measure of the branching random walk 1659

Remark A.4. In Lemma A.3, if the limit measure ξθ depends on θ ∈ �, then the result is still true under the additional
assumption that supθ∈� ξ({‖x‖∞ ≥ K}) → 0 as K →∞, so that in the proof K and χ could be chosen independently
of θ .

Lemma A.5. Assume that ξ({x(0) = 0}) = 1 and that, for all F ∈ Cu
b (D([0,1])), we have ξθ

n (F ) → ξ(F ) as n →∞
uniformly in θ ∈ �. We consider F ∈ Cu

b (D([0,1])) and (κn)n∈N such that κn → 0. We set Fn : x ∈ D([0,1]) �→
F(xκn+(1−κn)t − xκn, t ∈ [0,1]). Then, we have ξθ

n (|Fn − F |) → 0 uniformly in θ ∈ �.

Proof. The function ϕn : t ∈ [0,1] �→ κn + (1 − κn)t is not bijective from [0,1] to [0,1], so we consider a function
λn ∈ � such that λn(t) = κn + (1 − κn)t for t ≥ κn and that is linear on [0, κn]. Then, for x ∈D([0,1]), we have

d(x, x ◦ ϕn − xκn) ≤ ‖λn − id‖∞ ∨ ‖x ◦ λn − x ◦ ϕn − xκn‖∞ ≤ κn ∨ 3 max
[0,κn]

|x|. (A.7)

Let ε > 0. Since ξ({x(0) = 0}) = 1, it exists δ > 0 such that ξ({max[0,δ] |x| > ε}) ≤ ε. Let χ : D([0,1]) → [0,1] be
a Lipschitz function such that 1max[0,δ] |x|<ε ≤ χ(x) ≤ 1max[0,δ] |x|<2ε for all x ∈ D([0,1]). Thus, we have, using the
triangle inequality and then (A.7),

ξθ
n

(|Fn − F |)≤ ‖Fn‖ξθ
n (1 − χ) + ξθ

n

(
χ |Fn − F |)+ ‖F‖ξθ

n (1 − χ)

≤ 2‖F‖ξθ
n (1 − χ) + ωF (κn ∨ 6ε),

for n large enough such that κn ≤ δ (so independent of θ ). Finally, using the assumption of the lemma with the function
1 − χ and recalling that ξ(1 − χ) ≤ ε, it concludes the proof. �

Appendix B: Proofs of the preliminary results concerning random walk

In this section, we prove the results stated in Section 2. Section B.1 is devoted to the proof of Proposition 2.6 and
Corollary 2.7. Sections B.2 and B.3 contain preliminary results for the proof of Proposition 2.8 in Section B.4.

B.1. Convergence towards the 3-dimensional Bessel process and the Brownian meander

We first recall a known invariance principle for the random walk conditioned to stay nonnegative for all time. For all
n ∈N, u ∈R+ and B ∈ Fn, we set

P+
u (B) := 1

R(u)
Eu

[
R(Sn)1B1Sn≥0

]
. (B.1)

It defines a probability measure P+
u , that is called the law of the random walk started at u ∈ R+ and conditioned to

stay nonnegative for all time. Then we have the following invariance principle, by Theorem 1.1 of Caravenna and
Chaumont [15]: for any b ∈R+ and (bn)n∈N such that bn/σ

√
n → b as n →∞ and for any F ∈ Cb(D([0,1])),

E+
bn

[
F
(
S(n)
)]−−−→

n→∞ Eb

[
F(R)
]
, (B.2)

where R denotes the 3-dimensional Bessel process on [0,1].
Proposition 2.6 follows from (B.2) and from the following link between the 3-dimensional Bessel process and the

Brownian meander (see Imhof [29]): for all F ∈ Cb(D([0,1])), we have

E
[
F(M)

]=√π

2
E

[
1

R(1)
F (R)

]
. (B.3)
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Proof of Proposition 2.6. We can assume that F is nonnegative. For K > 0, we consider χ : R+ → [0,1] continuous
such that 1[K−1,K] ≤ χ ≤ 1[(2K)−1,2K]. On the one hand, we have

Eu

[
F
(
S(n)
)(

1 − χ

(
Sn

σ
√

n

))
1Sn≥0

]
≤ ‖F‖θR(u)√

n

(∫ ∞

0

(
1 − χ(t)

)
te−t2/2 dt + o(1)

)
, (B.4)

uniformly in u ∈ [0, γn], using (2.6). On the other hand, we have

Eu

[
F
(
S(n)
)
χ

(
Sn

σ
√

n

)
1Sn≥0

]
= R(u)√

n
E+

u

[
hn

(
Sn

σ
√

n

)
F
(
S(n)
)]

, (B.5)

where we set, for z ∈ R+, hn(z) := √
nχ(z)/R(zσ

√
n). Using (2.1) and χ ≤ 1[(2K)−1,2K], we have

lim supn→∞ supz∈R+ |hn(z) − h(z)| = 0, with h(z) := χ(z)/c0σz. Thus, we get, uniformly in u because hn and h

do not depend on u,

lim sup
n→∞

∣∣∣∣E+
u

[
hn

(
Sn

σ
√

n

)
F
(
S(n)
)]−E+

u

[
h

(
Sn

σ
√

n

)
F
(
S(n)
)]∣∣∣∣= 0.

Moreover, using (B.2), (B.3) and (2.5), we have

E+
u

[
h

(
Sn

σ
√

n

)
F
(
S(n)
)]−−−→

n→∞ E

[
χ(R(1))

c0σR(1)
F
(
R(t), t ∈ [0,1])]= θE

[
χ
(
M(1)
)
F(M)

]
,

uniformly in u ∈ [0, γn]. Coming back to (B.4) and (B.5) and using that the density of M(1) is t �→ te−t2/21t>0, we
showed that

lim sup
n→∞

sup
u∈[0,γn]

∣∣∣∣ √
n

θR(u)
Eu

[
F
(
S(n)
)
1Sn≥0
]−E
[
F(M)

]∣∣∣∣≤ 2‖F‖
∫ ∞

0

(
1 − χ(t)

)
te−t2/2 dt,

which tends to 0 as K →∞, so it concludes the proof. �

Proof of Corollary 2.7. By Lemma A.2 of Madaule [34] (that holds under the assumption of this corollary, see
Remark 3.1), it exists c28(L,C) > 0 such that for all n large enough and K ≥ 0,

E
[
eCSn/

√
n1Sn≥−L,Sn≥K

√
n

]≤ c28(L,C)√
n

e−CK/2. (B.6)

We consider some ε > 0 and fix K large enough such that c28(L,C)e−CK/2 ≤ εθR(L)/‖F‖ and also
E[eCσM(1)1M(1)≥K ] ≤ ε/‖F‖. Considering a continuous function χ : R→[0,1] such that 1x≤K ≤ χ(x) ≤ 1x≤K+1

and using the triangle inequality, we get∣∣∣∣ √
n

θR(L)
E
[
eCSn/

√
nF
(
S(n)
)
1Sn≥−L

]−E
[
eCσM(1)F (M)

]∣∣∣∣
≤ 2ε +

∣∣∣∣ √
n

θR(L)
E

[
eCSn/

√
nF
(
S(n)
)
χ

(
Sn√
n

)
1Sn≥−L

]
−E
[
eCσM(1)F (M)χ

(
σM(1)

)]∣∣∣∣. (B.7)

Then, note that in Proposition 2.6, we can replace Eu[F(S(n))1Sn≥0] by E[F(S(n))1Sn≥−u]: indeed, it works when
F ∈ Cu

b (D([0,1])) and we extend to F ∈ Cb(D([0,1])) by Lemma A.1. Thus, applying Proposition 2.6 with the
function x ∈D([0,1]) �→ eCσx1F(x)χ(σx1) which belongs to Cb(D([0,1])) we get that the right-hand of (B.7) tends
to 2ε as n →∞ and it concludes the proof of Corollary 2.7. �
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B.2. Local limit theorems

We first recall the classical Stone’s [41] local limit theorem: letting h > 0 be any real number if S1 is nonlattice and
be the span of the lattice if S1 is lattice, we have

P
(
Sn ∈ [b, b + h)

)= h

σ
√

2πn
e−b2/2σ 2n + o

(
1√
n

)
, (B.8)

as n → ∞, uniformly in b ∈ R. Thus we have the following uniform bound: it exists c29 > 0 such that, for all n ≥ 1
and b ∈R,

P
(
Sn ∈ [b, b + 1)

)≤ c29√
n
. (B.9)

Now we state a local limit theorem for the random walk staying above a barrier, in the case where the starting point is
at distance of order

√
n from the barrier and the endpoint at distance o(

√
n).

Lemma B.1. Let (γn)n∈N be a sequence of positive numbers such that γn � √
n as n → ∞. We set f : t ∈ R �→

te−t2/21t≥0.

(i) If the law of S1 is nonlattice, then, for all h > 0,

P
(
Sn ∈ [u − b,u− b + h),Sn ≥−b

)= θ−

σn
f

(
b

σ
√

n

)∫ u+h

u

R−(t)dt + o

(
R−(u)

n

)
,

as n →∞, uniformly in b ∈R and in u ∈ [0, γn].
(ii) If the law of S1 is (h, a)-lattice, then,

P(Sn = u − b,Sn ≥−b) = θ−

σn
f

(
b

σ
√

n

)
hR−(u)+ o

(
R−(u)

n

)
,

as n →∞, uniformly in b ∈R and u ∈ [0, γn] ∩ (b + an + hZ).

Proof. First note that, for each D > 0, by Propositions 11, 18 and 24 of Doney [26], both estimates of Lemma B.1
holds uniformly in b ∈ [D−1√n,D

√
n] and u ∈ [0, γn).4 Noting also that f tends to 0 at 0 and at infinity, it is

sufficient to prove that, for each h > 0 and ε > 0, there exist D and n large enough such that P(Sn ∈ [u − b,u − b +
h),Sn ≥ −b) ≤ εR−(u)/n for all b /∈ [D−1√n,D

√
n] and u ∈ R+. Reversing time, we can equivalently prove that

P(Sn ∈ [b − u,b − u + h),Sn ≥−u) ≤ εR(u)/n.
For b ∈ [0,D−1√n], using (2.7) and (2.2), we get P(Sn ∈ [b − u,b − u + h),Sn ≥ −u) ≤ c30R(u)(1 +

D−1√n)/n3/2. For D and n large enough and independent of u, this is smaller than εR(u)/n.
For b > D

√
n, we cancel the lower barrier between times �n/2� + 1 and n so that we get

P
(
Sn ∈ [b − u,b − u + h),Sn ≥−u

)≤ E

[
1S�n/2�≥−uh

(
S�n/2� + u

σ�n/2�1/2

)]
, (B.10)

where we set for x ≥ 0, h(x) := P(Sn−�n/2� +xσ�n/2�1/2 ∈ [b, b+h)). Using (B.8), we have, uniformly in b > D
√

n

and x ∈R+,

h(x) ≤ c31√
n

exp

(
− (xσ�n/2�1/2 − b)2

2σ 2(n − �n/2�)
)
+ o

(
1√
n

)
≤ c31√

n
gD(x) + o

(
1√
n

)
,

4Doney states his results in terms of the renewal function for the first weak increasing ladder height process of S and of P(min1≤k≤n Sn > 0). Our
formulation follows from Remark 4.6 of Caravenna and Chaumont [16] (although they work only in the lattice and absolutely continuous cases,
this remark does not rely on these assumptions).
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where gD : R+ → [0,1], obtained by taking the supremum on b > D
√

n, is continuous and converges simply to 0 as
D →∞. Thus, using (2.6) and (2.4), we get that (B.10) is smaller than

c31√
n

θR(u)√
n

(∫ ∞

0
gD(t)te−t2/2 dt + o(1)

)
+ c3R(u)√

n
o

(
1√
n

)
, (B.11)

uniformly in b ≥ D
√

n and u ∈ [0, γn]. By the dominated convergence theorem, the integral in (B.11) tends to 0 as
D →∞ and, thus, (B.10) is smaller than εR(u)/n for D and n large enough and independent of u. �

B.3. Convergence towards the Bessel bridge

In this subsection, we are going to prove the following generalization of Lemma 2.4 of Chen, Madaule and
Mallein [22]. It proves that conditioned by the event of Lemma B.1 the trajectory S(n) converges to the Bessel bridge.
This is a first step in the proof of Proposition 2.8.

Lemma B.2. Let (γn)n∈N be a sequence of positive numbers such that γn � √
n as n → ∞. We set f : t ∈ R �→

te−t2/21t≥0 and we denote by ρ1
b,0 the 3-dimensional Bessel bridge of length 1 from b ∈R+ to 0.

(i) If the law of S1 is nonlattice, then, for all h > 0 and F ∈ Cu
b (D([0,1])),

Ebσ
√

n

[
F
(
S(n)
)
1Sn∈[u,u+h),Sn≥0

]= θ−

σn

∫ u+h

u

R−(t)dtf (b)E
[
F
(
ρ1

b,0

)]+ o

(
R−(u)

n

)
,

as n →∞, uniformly in b ∈R and in u ∈ [0, γn].
(ii) If the law of S1 is (h, a)-lattice, then, for all F ∈ Cu

b (D([0,1])),

Ebσ
√

n

[
F
(
S(n)
)
1Sn=u,Sn≥0

]= θ−

σn
hR−(u)f (b)E

[
F
(
ρ1

b,0

)]+ o

(
R−(u)

n

)
,

as n →∞, uniformly in b ∈R and u ∈ [0, γn] ∩ (bσ
√

n+ an + hZ).

Proof. We will treat only the nonlattice case, because the proof in the lattice case is exactly the same, with hR−(u)

instead of
∫ u+h

u
R−(t)dt . Moreover, since F is bounded, f (b) → 0 as b → ∞ and Lemma B.1 deals with the case

F ≡ 1, it is sufficient to show that, for each K > 0, the estimate holds uniformly in b ∈ [0,K] instead of b ∈R+.
We first assume that ∀x ∈D([0,1]), F(x) = F ′(xt , t ∈ [0,1 − ε]) for some F ′ ∈ Cu

b (D([0,1 − ε])). Thus, F(S(n))

is Fm-measurable with m := �(1 − ε)n and we have

Ebσ
√

n

[
F
(
S(n)
)
1Sn∈[u,u+h),Sn≥0

]= Ebσ
√

n

[
F
(
S(n)
)
g

(
Sm

σ
√

n

)
1Sm≥0

]
, (B.12)

where we set, for z ∈R+,

g(z) := Pzσ
√

n

(
Sn−m ≥ 0, Sn−m ∈ [u,u + h)

)= θ−

σεn
f

(
z√
ε

)∫ u+h

u

R−(t)dt + o

(
R−(u)

n

)
,

uniformly in u ∈ [0, γn] and z ∈R+, using Lemma B.1. Therefore, (B.12) is equal to

θ−

σεn

∫ u+h

u

R−(t)dtEbσ
√

n

[
F
(
S(n)
)
f

(
Sm

σ
√

εn

)
1Sm≥0

]
+Ebσ

√
n

[
F
(
S(n)
)
1Sm≥0

]
o

(
R−(u)

n

)
,

uniformly in u ∈ [0, γn] and b ∈ [0,K]. Thus, it is now sufficient to prove that

Ebσ
√

n

[
F
(
S(n)
)
f

(
Sm

σ
√

εn

)
1Sm≥0

]
−−−→
n→∞ εf (b)E

[
F
(
ρ1

b,0

)]
, (B.13)
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uniformly in b ∈ [0,K]. On the one hand, by Equation (2.30) of Chen, Madaule and Mallein [22], we have

εf (b)E
[
F
(
ρ1

b,0

)]= b√
ε
Eb

[
F ′(R(s), s ∈ [0,1 − ε])e−R(1−ε)2/2ε

]
. (B.14)

On the other hand, recalling (B.1), we get

Ebσ
√

n

[
F
(
S(n)
)
f

(
Sm

σ
√

εn

)
1Sm≥0

]
= E+

bσ
√

n

[
F
(
S(n)
)
hn

ε,b

(
Sm

σ
√

n

)]
, (B.15)

where we set, for z ∈R+,

hn
ε,b(z) := f

(
z√
ε

)
R(bσ

√
n)

R(zσ
√

n)
= z√

ε
e−z2/2ε R(bσ

√
n)

R(zσ
√

n)
.

Since e−z2/2ε → 0 as z →∞ and using (2.1), it is clear that

sup
b∈[0,K],z∈R+

∣∣∣∣hn
ε,b(z) −

b√
ε

e−z2/2ε

∣∣∣∣−−−→n→∞ 0, (B.16)

so we get, combining (B.14), (B.15) and (B.16),

lim sup
n→∞

sup
b∈[0,K]

∣∣∣∣Ebσ
√

n

[
F
(
S(n)
)
f

(
Sm

σ
√

εn

)
1Sm≥0

]
− εf (b)E

[
F
(
ρ1

b,0

)]∣∣∣∣
≤ lim sup

n→∞
sup

b∈[0,K]
b√
ε

∣∣E+
bσ

√
n

[
F
(
S(n)
)
e−S2

m/2σ 2εn
]−Eb

[
F ′(R(s), s ∈ [0,1 − ε])e−R(1−ε)2/2ε

]∣∣,
which is equal to 0 by applying (B.2). It proves (B.13) and so it concludes the case where F(x) = F ′(xt , t ∈ [0,1−ε])
for some F ′ ∈ Cu

b (D([0,1 − ε])).
We now want to extend the result to the case F ∈ Cu

b (D([0,1])). For ε > 0 and x ∈ D([0,1]), we define ϕε(x) ∈
D([0,1]) by ϕε(x)|[0,1−ε) = x|[0,1−ε) and ϕε(x)|[1−ε,1] ≡ 0, so that F ◦ ϕε satisfies the assumption of the particular
case that is already proved. Thus, it is now sufficient to show that, for each η > 0, it exists ε > 0 such that

lim sup
n→∞

sup
u∈[0,γn],b∈[0,K]

Ebσ
√

n

[∣∣F (S(n)
)− F ◦ ϕε

(
S(n)
)∣∣1Sn∈[u,u+h),Sn≥0

]≤ η
R−(u)

n
, (B.17)

sup
b∈[0,K]

f (b)E
[∣∣F (ρ1

b,0

)− F ◦ ϕε

(
ρ1

b,0

)∣∣]≤ η. (B.18)

We first prove (B.18): we have

E
[∣∣F (ρ1

b,0

)− F ◦ ϕε

(
ρ1

b,0

)∣∣]≤ E
[
ωF

(∥∥ρ1
b,0 − ϕε

(
ρ1

b,0

)∥∥∞)]
≤ E

[
ωF

(
sup

t∈[1−ε,1]
ρ1

b,0(t)
)]

=: Eb,ε.

Since the function b �→ Eb,ε is nondecreasing and f ≤ 1, the left-hand side of (B.18) is smaller than EK,ε and,
thus, it tends to 0 as ε → 0 by dominated convergence, because ωF is bounded. Now, we prove (B.17): using that
d(S(n), ϕε(S(n))) ≤ max0≤k≤εn Sn−k/σ

√
n and reversing time, we get that the expectation in (B.17) is smaller than

E

[
ωF

(
sup

0≤k≤εn

S−
k + u + h

σ
√

n

)
1S−

n −bσ
√

n∈(−u−h,−u],S−
n ≥−u−h

]
. (B.19)
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Conditioning with respect to F�n/2� and applying (B.9), we get that (B.19) is smaller than

c29(1 + h)

(n − �n/2�)1/2
E

[
ωF

(
sup

0≤k≤εn

S−
k + u+ h

σ
√

n

)
1S−

�n/2�≥−u−h

]

= c29(1 + h)√
n/2

θ−R−(u + h)√
n/2

(
E

[
ωF

(
1√
2

sup
t∈[0,2ε]

Mt

)]
+ o(1)

)
, (B.20)

uniformly in u ∈ [0, γn] and b ∈ [0,K], by using Lemma 2.6 to get the last equality. The expectation in the right-hand
side of (B.20) does not depend on n, b and u and tends to 0 as ε → 0 by dominated convergence, so it shows (B.17)
and concludes the proof. �

B.4. Convergence towards the Brownian excursion

We prove here Proposition 2.8, in a similar way as Lemma 2.5 of Chen, Madaule and Mallein [22], but directly
with a first barrier that can be different of 0. Following [22], we fix some λ ∈ (0,1) and, for G1 : D([0, λ]) → R,
G2 : D([0,1 − λ]) →R and x ∈D([0,1]), we set

G1 � G2(x) := G1
(
xs, s ∈ [0, λ])G2

(
xλ+s , s ∈ [0,1 − λ]).

Then, by [22, Lemma 2.3], we have, for each G1 ∈ Cb(D([0, λ])) and G2 ∈ Cb(D([0,1 − λ])),

E
[
G1 � G2(e)

]=√ 2

π

1

λ1/2(1 − λ)3/2
E
[
M(λ)e−M(λ)2/2(1−λ)G1(M)G2

(
ρ1−λ
M(λ),0

)]
, (B.21)

where e is the normalized Brownian excursion, M is the Brownian meander of length λ and (ρ1−λ
z,0 )z∈R+ is a family

of Bessel bridges of length 1 − λ from z to 0, independent of M.

Proof of Proposition 2.8. Using Lemma A.2, it is sufficient to consider the case where F = G1 � G2 for some G1 ∈
Cu

b (D([0, λ])) and G2 ∈ Cu
b (D([0,1 − λ])). The proof will be only treated in the lattice case: in the nonlattice case,

the reasoning is exactly the same with
∫ b+h

b
R−(t)dt instead of hR−(b). We set m := �λn� and take the conditional

expectation according to Fm to get that

E
[
F
(
S(n)
)
1S�λn�≥−u,min�λn�≤i≤n Si≥v,Sn=v+b

]= E

[
G1

(
S�sn�
σ
√

n
, s ≤ λ

)
ϕ

(
Sm

σ
√

n

)
1Sm≥−u

]
, (B.22)

where we set ϕ(z) := Ezσ
√

n[G2(S�(s+λ)n�−m/σ
√

n, s ≤ 1 − λ)1Sn−m≥v,Sn=v+b], for each z ∈ R such that v + b +
zσ

√
n ∈ a(n−m)+hZ. Then, since G2 is uniformly continuous, using Lemma B.2 combined with Lemma A.3,5 we

get that ϕ(z) is equal to

θ−

σ(1 − λ)n
hR−(b)f

(
z√

1 − λ

)
E
[
G2
(√

1 − λρ1
z/

√
1−λ,0

(
s/(1 − λ)

)
, s ≤ 1 − λ

)]+ o

(
R−(b)

n

)
,

uniformly in v ∈ [−γn, γn], b ∈ [0, γn] ∩ (−v + an+ hZ) and z ∈R such that v + b + zσ
√

n ∈ a(n−m)+ hZ (note
that if z < 0, the fact that the Bessel bridge is not well-defined is not a problem, because f (z/

√
1 − λ) = 0 so the first

term is zero). Since the last expectation is equal to E[G2(ρ
1−λ
z,0 )] by scaling properties of the Bessel bridge, (B.22) is

5Here the limit measure is the law of ρ1−λ
z,0 that depends on the parameter (b, v, z). Thus, using Remark A.4, we should prove that P(‖ρ1−λ

z,0 ‖∞ >

K) → 0 as K → ∞ uniformly in z ∈ R+ , but it is obviously false. However, since f (z/
√

1 − λ) → 0 as z → ∞, it is sufficient to have, for each
M > 0, P(‖ρ1−λ

z,0 ‖∞ > K) → 0 as K →∞ uniformly in z ∈ [0,M] and this is clearly true.
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equal to

θ−

σ(1 − λ)n
hR−(b)E

[
G1

(
S�sn�
σ
√

n
, s ≤ λ

)
f

(
Sm√

1 − λσ
√

n

)
G2
(
ρ1−λ

Sm/σ
√

n,0

)
1Sm≥−u

]

+E

[
G1

(
S�sn�
σ
√

n
, s ≤ λ

)
1Sm≥−u

]
o

(
R−(b)

n

)
, (B.23)

where (ρ1−λ
z,0 )z∈R+ is independent of (Sn)n∈N. Then, since the function z ∈ R �→ E[G2(ρ

1−λ
z,0 )] is continuous, using

Lemma 2.6 combined with Lemma A.3, we get that (B.23) is equal to

θ−

σ(1 − λ)n
hR−(b)

θR(u)√
m

(
E

[
G1(M)f

( M(λ)√
1 − λ

)
G2
(
ρ1−λ
M(λ),0

)]+ o(1)

)
+ o

(
R−(b)R(u)

n3/2

)
,

where M is the Brownian meander of length λ, independent of (ρ1−λ
z,0 )z∈R+ . Finally, recalling the definition of f and

using (B.21), it concludes the proof of Proposition 2.8. �
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