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Abstract. We consider asymptotics of a domino tiling model on a class of domains which we call rectangular Aztec diamonds. We
prove the Law of Large Numbers for the corresponding height functions and provide explicit formulas for the limit. For a special
class of examples, the explicit parametrization of the frozen boundary is given. It turns out to be an algebraic curve with very
special properties. Moreover, we establish the convergence of the fluctuations of the height functions to the Gaussian Free Field in
appropriate coordinates. Our main tool is a recently developed moment method for discrete particle systems.

Résumé. Nous nous intéressons aux propriétés asymptotiques d’un modèle de pavage par dominos sur une classe de domaines
que nous appelons les diamants aztèques rectangulaires. Nous prouvons une loi des grands nombres pour les fonctions de hauteur
correspondantes, et donnons des formules explicites pour la limite. Pour une classe d’exemples particulière, nous pouvons donner
la paramétrisation explicite de la frontière gelée. Cette dernière se trouve être une courbe algébrique aux propriétés très particu-
lières. De plus, nous établissons la convergence des fluctuations des fonctions de hauteur vers le champ libre gaussien dans des
coordonnées appropriées. Notre outil principal est une méthode de moments développée récemment dans le cadre des systèmes de
particules discrets.

MSC: Primary 60K35; secondary 60C05
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1. Introduction

We study the asymptotic behavior of uniformly random domino tilings of domains drawn on the square grid. This
model has received a significant attention in the last twenty five years ([16,17,20,27,29,30]). Let us briefly describe
our results.

We consider a class of domains, which we call rectangular Aztec diamonds, see Figure 1 for an example. This
type of domains generalizes a well-known case of the Aztec diamond, introduced in [20], at the same time inheriting
many of its combinatorial properties. For instance, similar to the Aztec diamond, the domains we consider also have
a rectangular shape with sawtooth boundary.

The main feature of this class of domains is a variety of different boundary conditions which are allowed on one
side of the rectangle. These boundary conditions are parameterized by configurations of boxes with dots as presented
in Figure 1. When the mesh size goes to zero the limit behavior of the boundary boxes can be parameterized by
a probability measure η on R with a compact support. We are able to analyze a global asymptotic behavior of the
uniform random tiling of such a domain for an arbitrary choice of this measure.
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Fig. 1. Domino tiling of a Rectangular Aztec diamond R(6, (1,2,3,7,8,9),3).

Fig. 2. A limit shape simulation. There is a formation of brick-wall pattern in the areas near the boundary of the domain.

Limit shape

A domino tiling can be conveniently parameterized by the so-called height function, see Section 3.2. It is an integer-
valued function on the vertices of the square grid inside the domain, which satisfies certain conditions (see Defini-
tion 3.10 for further details). There is a one-to-one correspondence between tilings and height functions (as long as
the height is fixed at one vertex). A random domino tiling naturally gives rise to a random height function. In Theo-
rem 3.12 we prove that for an arbitrary measure η a random height function converges to a deterministic function as
the mesh size of the grid goes to zero, furthermore, we give an explicit formula for it.

In [17] it was shown that the limit shape exists for a wide class of domains on the square grid and can be found
as a solution to a certain variational problem. Our approach is different and provides an explicit formula for the limit
height function. Our computation of the limit shape is closely related to the notion of the free projection from the Free
Probability Theory (see Remark 3.9).

Frozen boundary

Typically, a limit shape forms frozen facets, that is areas, where only one type of domino is present, see Figure 2.
There also exists a connected open liquid region inside the domain in which arbitrary local configurations of dominos



1252 A. Bufetov and A. Knizel

Fig. 3. An example of the frozen boundary with s = 5.

are present. The curve, which separates the liquid region from the frozen zones is called frozen boundary, see Figure 3
and for other examples see Figures 16–21.

In a particular case, when the measure η is a uniform measure of density 1 on a union of s segments such that their
lengths add to 1, we give an explicit parametrization of the frozen boundary, see Theorem 5.1. It turns out to be an
algebraic curve of rank 2s and genus zero with very special properties. The degree of the frozen boundary linearly
depends on the number of segments. Therefore, the subclass of domains we consider provides a diverse variety of
limit shapes of an arbitrary complexity.

Moreover, our formulas allow to analyze the frozen boundary for an arbitrary measure η. We discuss several
examples in Section 7.

Fluctuations

For arbitrary boundary conditions on one side of the rectangular Aztec diamond we prove a Central Limit Theorem
for a global behavior of the random height function (see Theorem 6.9), which is the main result of this paper. We show
that after a suitable change of coordinates the fluctuations are described by the Gaussian Free Field. The appearance
of the Gaussian Free Field as a universal object in this class of probabilistic tiling models originates from the work of
Kenyon (see [30,31]).

In [30] Kenyon proved a central limit theorem for uniformly random tilings of domains of an arbitrary shape,
but with very special boundary conditions such that the limit shape does not have any frozen facets. In contrast, we
analyze rectangular domains with arbitrary boundary conditions on one of the sides and the limit shape in our case
always has frozen facets. The fluctuations of the liquid region for a random tiling model containing both frozen facets
and liquid region were first studied in [4].

Depending on the boundary conditions, the Law of Large Numbers can have a quite complicated form. It is reflected
in a (possibly complicated) choice of the complex structure, that is a map from the liquid region into the complex half-
plane. In other words, it is the choice of the coordinate in which the Gaussian Free Field appears as a limit object.

A parallel (and actually more developed) story exists for the case of lozenge tilings. We refer to [32] for the
exposition and further references on the subject. Both the domains we consider and the fluctuation results are close in
spirit to [39,40], however, the approach we take is entirely different.

We use a moment method for this type of problems. It was introduced and developed in [9,10]. Let us comment
on two other known methods. The method based on the study of a family of orthogonal polynomials, which was
extensively used in the case of the Aztec diamond, does not seem to be available in our setting. A large class of
tiling problems fits the framework of Schur processes which was introduced in [38]. It was shown in [38] that any
Schur process is a determinantal process with a correlation kernel suitable for asymptotics analysis. Papers [18,39,40]
study the lozenge tiling model which is combinatorially similar to a Schur process yet does not fit this framework;
a significant effort was necessary to derive a correlation kernel there. It is an important challenge to find a reasonable
correlation kernel for the tiling model studied in the present paper and to perform its asymptotic analysis. However,
we believe that the moment method is the most suitable method for the analysis of the global behavior in this class of
problems (see Remark 6.10 for further comments).

In this paper we give a “model case” analysis of a specific class of domino tilings. However, we believe that the
moment method and the tools developed in this paper are applicable in many other models. Let us mention some of
them.
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Fig. 4. Rectangular Aztec diamond R(6, (1,2,4,5,7,8),12) and the corresponding set of non-intersecting lines.

The domino tiling model considered in this paper can be interpreted as a random collection of non-intersecting
lines, see Figure 4 and Section 2.3 for details. In the case of the Aztec diamond this interpretation was first used by
Johansson in [28], and later many similar and more general ensembles of non-intersecting lines were studied, see
[5–8,12] and references therein. Some of these ensembles can be viewed as dimer models. More precisely, in [7] it
was shown how to interpret an arbitrary Schur process as a dimer model on a so-called rail yard graph.

The main novelty of the presented approach is that we consider non-intersecting lines with arbitrary boundary
conditions on one side. We suggest that all such models can be analyzed with the use of the moment method and
the results of this paper. Because the global behavior of the height function significantly depends on the boundary
conditions in all these models, we expect further interesting results in this direction.

This paper is organized as follows. In Section 2 we discuss combinatorial properties of rectangular Aztec diamonds.
In Sections 3 and 4 we analyze the limit shape of the tilings. In Section 5 we study the frozen boundary for a specific
class of examples. In Section 6 we prove the global Central Limit Theorem. In Section 7 we study some examples
which are not covered by Section 5. In Appendix A we briefly comment on a more general class of probability
measures on rectangular Aztec diamonds. In Appendix B we provide a result on the local behavior of these tilings.

2. The model description

In this section we study the combinatorics of the model. We establish a bijection between the domino tilings of a
rectangular Aztec diamond and the sequences of Young diagrams with some special properties. This will allow us to
bring in the machinery of the Schur functions to study the asymptotics. The key observation is Proposition 2.13.

In the end of the section we discuss another combinatorial realization for our model through the non-intersecting
line ensembles, which was mentioned in introduction.

2.1. Combinatorics of the model

Let us present a formal definition of the domain we are considering.

Definition 2.1. Let N ∈N and � = (�1, . . . ,�N), where 1 = �1 < �2 < · · · < �N and �i ∈N. Set m = �N − N .
Introduce the coordinates (i, j) as in Figure 5. Let us denote by C(i, j) a unit square with the vertex coordinates

(i, j), (i − 1
2 , j + 1

2 ), (i + 1
2 , j + 1

2 ), (i, j + 1).
The rectangular Aztec diamond R(N,�,m) is a polygonal domain which is built of 2N + 1 rows of unit squares

C(i, j). Let us enumerate the rows starting from the bottom as shown in Figure 5. Then the kth row consists of unit
squares C(i, j), where

• i = 0,1, . . . ,�N and j = 0,1, . . . ,N − 1, when k = 2s, s = 0,1, . . . ,N ;
• i = 1

2 , 3
2 , . . . ,�N − 1

2 and j = 1
2 , 3

2 , . . . ,N − 1
2 , when k = 2s + 1, s = 1,2, . . . ,N ;

• i = �l − 1
2 and j = − 1

2 for l = 1,2, . . . ,N , when k = 1. We call this row the boundary of R(N,�,m).
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Fig. 5. Rectangular Aztec diamond R(4,� = (1,2,3,7),3).

Definition 2.2. A domino tiling of a rectangular Aztec diamond R(N,�,m) is a set of pairs (C(i1, j1),C(i2, j2)),
called dominos, such that the unit squares C(i1, j1),C(i2, j2) ⊂ R(N,�,m) share an edge and every unit square
belongs to exactly one domino.

Let us denote the set of domino tilings of R(N,�,m) by D(N,�,m).

Definition 2.3. Let D ∈D(N,�,m) be a domino tiling of R(N,�,m). We call a domino d = (C(i1, j1),C(i2, j2)) ∈
D a V -domino if max(i1, i2) ∈ N and we call it a �-domino otherwise. In other words, the dominos going upwards
starting from an odd row are V -dominos and those ones starting from an even row are �-dominos. We also call the
corresponding squares C(i1, j1),C(i2, j2) – V -squares and �-squares accordingly.

Lemma 2.4. The set of V -squares in R(N,�,m) determines the tiling uniquely.

Proof. Let us reconstruct the tiling given the set of V -squares coming from some unknown tiling. We will show that
we can reconstruct it in a unique way. Let us enumerate the squares in each row from left to right.

We start by looking at the V -squares in the first row. All squares in the first row are V -squares and there are exactly
N of them. Let us take the first V -square in the first row. We will pair it with the first V -square in the second row. We
can always do it since we know that there exists at least one domino tiling with this set of V -squares. We can proceed
until the end of the first row. Note that at this point we have used all V -squares from the second row and this is the
only way we could pair the V -squares from the first row with something.

Now we pair the first �-square in the second row with the first �-square in the third row. We can proceed until the
end of the second row. Note that at this point we have used all squares from the second row and all �-squares from the
third row. Moreover, this is the only way we could pair �-squares from the second row with something. Now we look
at V -squares in the third row and notice that there are N − 1 of them. This is because the total number of squares in
the third row is less by one than the total number of squares in the second row. We start pairing them with V -squares
from the third row in the same way.

We continue in this fashion until we pair all �-squares from row 2N with all the squares from row 2N + 1. �

Definition 2.5. Let μ be a n-tuple of natural numbers μ = (μ1 ≥ μ2 ≥ · · · ≥ μn ≥ 0). We will denote �(μ) = n.
A Young diagram Yμ is a set of boxes in the plane with μ1 boxes in the first row, μ2 boxes in the second row, etc.

We call a Young diagram Yμ rectangular n×m Young diagram if m = μ1 = μ2 = · · · = μn. Let us denote it Yn×m.

Definition 2.6. Let Yμ be a Young diagram, where μ = μ1 ≥ μ2 ≥ · · · ≥ μn ≥ 0. A dual Young diagram Yμ∨ is
obtained by taking the transpose of the original diagram Yμ. Explicitly we have that μ∨

i is equal to the length of the
ith column of Yμ.

Construction 2.7. Due to Lemma 2.4 we can encode any domino tiling D ∈D(N,�,m) pictorially as it is shown in
Figure 6. We simply put a yellow node in the center of every V -square from an even row and a pink node in the center
of every V -square from an odd row. The configuration of these nodes determines the tiling uniquely. In the case of the
Aztec diamond such encoding was suggested by Johansson [28].

Let us associate to every configuration of the nodes the following sequence of Young diagrams Yj . Each diagram
Yj corresponds to the j th row j = 1,2, . . . ,2N , which has nj V -squares and mj �-squares. Let us take a rectangular
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Fig. 6. An example of a domino tiling of R(5,� = (1,2,3,6,7),3). We put nodes in the centers of V -squares.

Fig. 7. A sequence of Young diagrams corresponding to the domino tiling R(5,� = (1,2,3,6,7),3) presented in Figure 6.

nj × mj Young diagram. We start drawing a stepped line �j inside it starting from the left bottom corner. At step k

if the ith square in the row is a V -square �j goes up by one, otherwise the line goes to the right by one. The stepped
line �j is the boundary of a Young diagram, see Figure 7.

Let us look at the j th row. It has N − � j−1
2 � V -squares in positions i1, . . . , iN−� j−1

2 � starting from the left. Then

the Young diagram we obtain corresponds to the N − � j−1
2 �-tuple (i

N−� j−1
2 � − � j−1

2 �, . . . , i2 − 2, i1 − 1).

To construct a Young diagram corresponding to the boundary row we complete the row by virtually adding m �-
squares so that R(N,�,m) becomes a proper rectangular with sawtooth boundary. Let us denote the Young diagram
corresponding to the boundary row Yω, where ω is an N -tuple of integers, more precisely, ω = (�N −N, . . . ,�1 −1).

Definition 2.8. Let Yω, where ω = ω1 ≥ ω2 ≥ · · · ≥ ωN ≥ 0, be a Young diagram contained in a rectangle N × m

Young diagram YN×m. Let S(Y,N,m) be the following set of sequences of Young diagrams

S(Yμ,N,m) = {
(Yμ(N) = Yω,Yν(N) , . . . , Yμ(1) , Yν(1)

}
,

such that

• �(μ(i)) = i and �(ν(i)) = i for i = 1,2, . . . ,N .
• Yμ(i) ⊂ Yi×(m+N−i) for i = 1,2, . . . ,N ;
• Yν(i) ⊂ Yi×(m+N−i+1) for i = 1,2, . . . ,N ;
• Yμ(i) ⊂ Yν(i) for i = 1,2, . . . ,N ;
• Yν(i) \ Yμ(i) is a vertical strip of length l ≤ i for i = 1,2, . . . ,N ; that is Yν(i) can be obtained from Yμ(i) by adding l

boxes, no two in the same row, see Figure 8.
• Yν(i+1) \ Yμ(i) is a horizontal strip. In other words, they interlace (Yμ(i) ≺ Yν(i+1) ), that is

ν
(i+1)
1 ≥ μ

(i)
1 ≥ · · · ≥ ν

(i+1)
i ≥ μ

(i)
i ≥ ν

(i+1)
i+1 , for i = 1,2, . . . ,N − 1.

Theorem 2.9. Construction 2.7 defines a map

Y : D(N,�,m) → S(Yω,N,m).

The map is bijective.
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Fig. 8. Purple boxes form a vertical strip of length 6.

Fig. 9. Domino tiling of R(4,� = (1,2,3,7),3). The V -squares are purple and �-squares are blue.

Proof. Let D ∈ D(N,�,m) be a domino tiling and let Y(D) = (Yμ(n)=ω,Yν(N) , . . . , Yμ(1) , Yν(1) ). Let us first check
that this map is well-defined, i.e. Y(D) ∈ S(Yω,N,m). Thus, we need to verify all the properties in Defini-
tion 2.8.

By construction Yμ(i) ⊂ Yni×mi
, where ni and mi are the number of V -squares and �-squares in the row with

number 2(N − i) + 1. Following the proof of Lemma 2.4 we see that ni = i and mi = N + m − i. Also, the length
of Yμ(i) is equal to the number of V -squares in the corresponding row. Thus, we get �(μ(i)) = i. Similarly we have
Yν(i) ⊂ Yi×(m+N−i+1) and �(ν(i)) = i.

Note that by construction μ
(i)
j is precisely the number of �-squares to the left from the j th V -square in the

corresponding row with number k = 2(N − i) + 1. Let us look at this row. The V -squares from it are paired with
V -squares from the next row in D. It can be shown by induction that the number of �-squares to the left from the
j th V -square in the k + 1 row is always equal or greater by one than the same quantity for the j th V -square in the
kth row. It follows from the fact that if the j th V -square is in position n in the kth row (i.e. it is the nth square from
the left in this row) it must be paired with the j th V -square from the next row in position n or n + 1, see Figure 9.
Therefore, Y

μ
(i)
j

⊂ Y
ν

(i)
j

and Yν(i) \ Yμ(i) is a vertical strip with a number of blocks ≤ i.

Consider Yν∨,(i) , the Young diagram dual to Yν(i) . Note that by construction ν
∨,(i)
j is precisely the number of V -

squares to the left from the j th �-square in the corresponding row with number k = 2(N − i) + 2, where this time
we count from the right. Let us look at this row. Then the �-squares from the next row are paired with the �-squares
from this row, moreover, the j th �-square in position n is paired with the j th �-square in position n or n + 1 from
the next row counting from the right. Again, we get that Yν∨,(i) \ Yμ∨,(i+1) is a vertical strip. Thus, Yμ(i+1) \ Yν(i) is a
horizontal strip. Therefore, the interlacing condition holds.

So far we have checked that the map Y is well-defined. From Lemma 2.4 it follows that it is injective.
Let us construct the inverse map Y (−1) : S(Yα,N,m) → D(N,�,m). Inverting the Construction 2.7 we see that

each element y ∈ S(Yα,N,m) defines a configuration of V -squares. Our goal is to show that there exists a tiling with
such a configuration of V -squares. We can reconstruct it using the same ideas as we used in the proof of Lemma 2.4.
We start by pairing V -squares from the first row with V -squares from the second row starting from the left. We
can always pair the j th V -square from the first row in position n with the ith V -square from the second row be-
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cause it has to be in position n or n + 1 due to our assumptions on y. Then we proceed to the next row and pair
�-squares with � squares in the third row. The map Y (−1) is then well-defined and injective. Therefore, Y is a bijec-
tion. �

2.2. Uniform measure on S(Yα,N,m)

Theorem 2.9 allows us to reduce any question about the uniform measure on the set of domino tilings D(N,�,m) to
the same question for the uniform measure on S(Yα,N,m). This is the core of our approach.

Let U(N) denote the group of all N × N complex unitary matrices. It is well-known that all irreducible repre-
sentations of U(N) are parameterized by their highest weights, which are signatures of length N , that is, N -tuples
of integers λ = (λ1 ≥ λ2 ≥ · · · ≥ λN). We denote by GTN the set of all signatures and the length of a signature is
denoted by �(λ). We call a signature non-negative if λN ≥ 0. Note that the set of all nonnegative signatures GT

+
N is

in bijection with the set of Young diagrams YN with N rows (rows are allowed to have zero length).

Definition 2.10. Let λ ∈ GTN . The rational Schur function is

sλ(u1, . . . , uN) = deti,j=1,...,N (u
λj +N−j

i )∏
1≤i<j≤N(ui − uj )

. (2.1)

Proposition 2.11 (Weyl, [45]). The value of the character of the irreducible representation πλ corresponding to the
signature λ = (λ1 ≥ · · · ≥ λN) on a unitary matrix u ∈ U(N) with eigenvalues u1, . . . , un is given by the rational
Schur function:

Trace
(
πλ(u)

) = sλ(u1, . . . , uN).

Let μ(n) and ν(n) be two non-negative signatures of length n. Recall that Schur functions form a basis for the
algebra of symmetric functions. Define the coefficients st(μ(n) → ν(n)) and pr(ν(n) → μ(n−1)) via

sμ(n) (u1, . . . , un)

sμ(n) (1n)

n∏
i=1

(1 + ui)

2
=

∑
ν(n)∈GTn

st
(
μ(n) → ν(n)

) sν(n) (u1, . . . , un)

sν(n) (1n)
, (2.2)

sν(n) (u1, . . . , un−1,1)

sν(n) (1n)
=

∑
μ(n−1)∈GTn−1

pr
(
ν(n) → μ(n−1)

) sμ(n−1) (u1, . . . , un−1)

sμ(n−1) (1n)
, (2.3)

where 1n is a notation for a string (1,1, . . . ,1) of length n.

Lemma 2.12. The following equalities hold

st
(
μ(n) → ν(n)

) =
⎧⎨
⎩

s
ν(n) (1n)

2ns
μ(n) (1n)

, μ(n) ⊂ ν(n);
0 otherwise,

(2.4)

pr
(
ν(n) → μ(n−1)

) =
⎧⎨
⎩

s
μ(n) (1n)

s
ν(n) (1n)

, μ(n−1) ≺ ν(n);
0 otherwise.

(2.5)

As a consequence,

∑
ν(n)∈GTn

st
(
μ(n) → ν(n)

) = 1 and
∑

μ(n−1)∈GTn−1

pr
(
ν(n) → μ(n−1)

) = 1. (2.6)
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Proof. Let us start with the first identity. Let el be the lth elementary symmetric function. Recall the Pieri’s rule

elsμ =
∑
μ⊂λ

sλ,

where the sum is taken over λ obtained from μ by adding l boxes, no two in the same row.
Note that

n∏
j=1

(1 + uj )

2
= 1

2n

n∑
j=1

ej (u1, . . . , un).

Therefore,

st
(
μ(n) → ν(n)

) =
⎧⎨
⎩

s
ν(n) (1n)

2ns
μ(n) (1n)

, μ(n) ⊂ ν(n);
0 otherwise,

where ν(n) is obtained from μ(n) by adding l boxes such that l ≤ n.
We can also compute

sμ(n)

(
1n

)
el

(
1n

) = sμ(n)

(
1n

)(n

l

)
=

∑
μ(n)⊂λ

sλ
(
1n

)
, (2.7)

where the sum is taken over λ obtained from μ(n) by adding l boxes, no two in the same row.
From (2.7) we conclude

∑
ν(n)∈GTn

st
(
μ(n) → ν(n)

) = 1

2n

n∑
l=1

(
n

l

)
= 1.

The equation (2.3) is a well-known branching rule for the Schur polynomials. Thus, we get

pr
(
ν(n) → μ(n−1)

) =
⎧⎨
⎩

s
μ(n) (1n)

s
ν(n) (1n)

, μ(n−1) ≺ ν(n);
0 otherwise.

Moreover, we have

dim
(
πμ(n)) = sμ(n)

(
1n

) =
∑

ν(n)≺μ(n)

dim
(
πν(n)) =

∑
ν(n)≺μ(n)

sν(n)

(
1n

)
.

�

Let us fix a signature μ of length N . Lemma 2.12 allows us to define a probability measure on the sequences of
signatures of the form

SN = {(
μ(N), ν(N), . . . ,μ(1), ν(1)

)}
by the formula

PN
μ

((
μ(N), ν(N), . . . ,μ(1), ν(1)

))

= 1μ(N)=μ st
(
μ(N) → ν(N)

)N−1∏
j=1

pr
(
ν(N−j+1) → μ(N−j)

)
st

(
μ(N−j) → ν(N−j)

)
, (2.8)

where μ(i), ν(i) ∈ GTi .
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This measure is similar to a Schur process; the only difference is that we fix a boundary condition μ (the factor
1μ(N) = μ in the formula (2.2)) which does not fit the framework of Schur processes (boundary conditions have to be
empty there). It is this difference that significantly distinguishes asymptotic analysis of our model (as well as models
in [18,39,40]) with the case of Schur processes.

Proposition 2.13. Let R(�,N,m) be a rectangular Aztec diamond. Let us denote the support of measure PN
ω by Sω ,

where ω is the signature corresponding to the boundary row of R(�,N,m). The set of domino tilings D(�,N,m) of
R(�,N,m) is in bijection with Sω . Moreover, the measure PN

ω is uniform on Sω and, therefore, on D(�,N,m).

Proof. From (2.5) and (2.4) for any (μ(N), ν(N), . . . ,μ(1), ν(1)) we have

PN
ω

((
μ(N), ν(N), . . . ,μ(1), ν(1)

))
= 1

2N

sν(1) (1N)

sμ(1) (1N)

sμ(2) (1N−1)

sν(1) (1N)

1

2N−1

sν(2) (1N−1)

sμ(2) (1N−1)
· · · 1

2

sν(N)
(1)

sμ(N)(1)

= 1

2N(N+1)/2sω(1N)
,

when (μ(N), ν(N), . . . ,μ(1), ν(1)) ∈ S(Yω,N,m) and zero otherwise. Recall that by Theorem 2.9 the set S(Yω,N,m)

is in bijection with the set of domino tilings D(�,N,m).
Therefore, PN

ω defines the uniform measure on D(�,N,m). �

Corollary 2.14. The number of domino tilings of R(�,N,m) is equal to∣∣D(�,N,m)
∣∣ = 2N(N+1)/2sω

(
1N

)
. (2.9)

This formula was obtained in [15] based on the results from [14] and [35], see also [26]. There are many ways to
prove the corresponding formula in the case of the Aztec diamond, see [20].

2.3. Non-intersecting line ensembles

Let us describe in more detail another combinatorial interpretation of our tiling model, which was discussed in the
introduction.

One can imagine superimposing a rectangular Aztec diamond upon a checkerboard coloring and obtaining four
types of dominos, as the black unit square might be either to the right/left (resp. top/bottom) unit square of a horizontal
(resp. vertical) domino. In this way to each tiling one can bijectively associate a set of non-intersecting lines, as shown
in Figure 4. This construction first appeared in [28], we use a slightly different but equivalent representation from [5].

Next, one can think of a rectangular Aztec diamond as being embedded into tilings of R2, where outside the
domain we add only non-overlapping horizontal dominos and fill the whole space with them. Then, by means of a
simple transformation one obtains a bijection between a tiling of a rectangular Aztec diamond R(N,�,m) and a
configuration of non-intersecting lines on a Lindström–Gessel–Viennot (LGV) directed graph (see [21] and [42]),
built out of N + m basic blocks, see Figure 10. Note that � determines the boundary conditions along the bottoms of
the basic blocks as shown in Figure 10. By construction from a yellow vertex a line can go up-right or to the right,
while from a red vertex the line goes to the right or down-right.

Introduce the coordinate system as in the right picture in Figure 10. Let us associate to every vertical section
t = i, where i = 1, . . . ,2N + 1, a signature. Consider the set of nodes on a section. Suppose the nodes that belong
to the lines from the ensemble have coordinates s1 > s2 > · · · > si . Then the corresponding signature is (s1 + 1 ≥
s2 + 2 ≥ · · · ≥ si + i). In this way to every non-intersecting line ensemble one associates a sequence of signatures
(γ1, ρ1, . . . , γN ,ρN,γN+1). Note that γN+1 = (0 ≥ 0 ≥ · · · ≥ 0).

Consider the following probability model on the set of the non-intersecting line ensembles. Let us assign weight 1
to each horizontal edge, weight α = 1 to each vertical edge and β = 1

2 to each down-right edge. Consider the ith basic
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Fig. 10. Rectangular Aztec diamond R(6, (1,2,3,7,8,9),3) and the corresponding ensemble of non-intersecting paths. The height of a block is
N + 1 units.

block, let (γi, ρi, γi+1) be a triple of signatures corresponding to its left side, middle section and its right side. Let us
assign to this block the following weight

w(block) = sρi/γi+1(α) · sρi/γi
(β̂),

where sρ/γ is a skew Schur function. Here α stands for the specialization of the symmetric functions into a single
nonzero variable equal to α (with complete homogeneous symmetric functions specializing into hn(α) = αn,n ≥ 0),
and β̂ stands for the specialization into a single “dual” variable equal to β (with complete homogeneous symmetric
functions specializing into hn(β̂) = 1 if n = 0, hn(β̂) = β if n = 1, and hn(β̂) = 0 if n ≥ 2). The quantities w(block)

are essentially indicators times a power of a parameter.
Define the probability PL of an non-intersecting line ensemble satisfying our combinatorial and boundary condi-

tions to be the product of the corresponding weights of the blocks.

Proposition 2.15. Measure PL is a uniform probability measure on the set L(N,�,m) of all non-intersecting line
ensembles satisfying our combinatorial and boundary conditions.

We do not go into details of the proof of this proposition since we will not need it further, see the recent exposition in
[2].

We conclude that the uniform measure on the set of tilings D(N,�,m) corresponds under the above bijection to a
measure PL on the ensembles of non-intersecting lines.

There are many other interesting tiling models that have an interpretation as ensembles of non-intersecting lines.
For example, random tilings of a tower, discussed in [5]. More generally, the random dimer model on a rail yard graph
[7] fits into the framework of the Schur generating functions. We believe that our approach can be used to analyze the
global behavior for these models with arbitrary boundary conditions.

3. Law of large numbers

The main technique we use in the paper is the moment method introduced by Bufetov and Gorin in [9] and [10]. In
this section we first present some background to give an overview of the method and then show that the model of
random domino tilings of rectangular Aztec diamonds fits into this framework. Subsequently, we prove the Law of
Large numbers for the random height function.



Random domino tilings of rectangular Aztec diamonds 1261

3.1. LLN for the moments

One way to encode a signature λ ∈GTN is through the counting measure m[λ] on R corresponding to it via

m[λ] = 1

N

N∑
i=1

δ

(
λi + N − i

N

)
, (3.1)

where δ is a delta measure. Note that we incorporate the scaling into this formula.
Let ρ be a probability measure on the set of all signatures GTN . The pushforward of ρ with respect to the map

λ → m[λ] defines a random probability measure on R that we denote m[ρ].

Definition 3.1. Let ρ be a probability measure on GTN . The Schur generating function SU(N)
ρ (u1, . . . , uN) is a

symmetric Laurent power series in (u1, . . . , uN) given by

SU(N)
ρ (u1, . . . , uN) =

∑
λ∈GT(N)

ρ(λ)
sλ(u1, . . . , uN)

sλ(1, . . . ,1)
. (3.2)

We will need the following two results from [9].

Theorem 3.2 ([9], Theorem 5.1). Let ρ(N) be a sequence of measures such that for each N = 1,2, . . . , ρ(N) is a
probability measure on GTN . Suppose that ρ(N) is such that for every j

lim
N→∞

1

N
ln

(
SU(N)

ρ(N)

(
u1, . . . , uj ,1N−j

)) = Q(u1) + · · · + Q(uj ),

where Q is an analytic function in a neighborhood of 1 and the convergence is uniform in an open (complex) neigh-
borhood of (1, . . . ,1). Then random measures m[ρ(N)] converge as N → ∞ in probability, in the sense of moments
to a deterministic measure η on R, whose moments are given by

∫
R

xjη(dx) =
j∑

�=0

j !
�!(� + 1)!(j − �)!

∂�

∂u�

(
ujQ′(u)j−l

)∣∣∣∣∣
u=1

. (3.3)

Let us introduce some notation. Let η be a compactly supported measure on R. Let Mk(η) = ∫
R

xkη(dx) be its kth
moment. Set

Sη(z) = z + M1(η)z2 + z3M2(η) + · · · (3.4)

to be the generating function of the moments of η. Define S
(−1)
η (z) to be the inverse series to Sη(z), that is

S
(−1)
η (Sη(z)) = Sη(S

(−1)
η (z)) = z.

Let

Rη(z) = 1

S
(−1)
η (z)

− 1

z
(3.5)

be the Voiculescu R-transform of measure η.
Define the function Hη(u) as

Hη(u) =
∫ ln(u)

0
Rη(t) dt + ln

(
ln(u)

u − 1

)
, (3.6)

which should be understood as a power series in (u − 1).
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Note that we have the following expression for its derivative:

H′
η(u) = 1

uS
(−1)
η (logu)

− 1

u − 1
. (3.7)

Lemma 3.3. If η is a measure with compact support, then Hη(u) as a power series in (u− 1) is uniformly convergent
in an open neighborhood of u = 1.

Proof. Immediately follows from the definitions. �

We will need the following mild technical assumption.

Definition 3.4. A sequence of signatures λ(N) ∈ GTN is called regular, if there exists a piecewise-continuous func-
tion f (t) and a constant C such that

lim
N→∞

1

N

N∑
j=1

∣∣∣∣λj (N)

N
− f (j/N)

∣∣∣∣ = 0 (3.8)

and ∣∣∣∣λj (N)

N
− f (j/N)

∣∣∣∣ < C, j = 1, . . . ,N,N = 1,2, . . . . (3.9)

Remark 3.5. Informally, the condition (3.8) means that scaled by N coordinates of λ(N) approach a limit profile f .
The restriction that f (t) is piecewise-continuous is reasonable, since f (t) is a limit of monotone functions and, thus,
is monotone (therefore, we only exclude the case of countably many points of discontinuity for f ). We use condition
(3.9) since it guarantees that all the measures which we assign to signatures and their limits have (uniformly) compact
supports – thus, these measures are uniquely defined by their moments.

Theorem 3.6 ([9,24,25]). Suppose that λ(N) ∈ GTN , N = 1,2, . . . is a regular sequence of signatures, such that
limN→∞ m[λ(N)] = η (in weak topology). Then for any j = 1,2, . . . ,N we have

lim
N→∞

1

N
ln

(
sλ(N)(u1, . . . , uj ,1N−j )

sλ(N)(1N)

)
= Hη(u1) + · · · + Hη(uj ), (3.10)

where the convergence is uniform over an open (complex) neighborhood of (1, . . . ,1).

The uniform measure on the set of domino tilings of a rectangular Aztec diamond R(N,�,m) induces a measure
on the set of all possible configurations of N − � k−1

2 � V -squares in the kth row, for k = 1, . . . ,2N . Due to Theo-
rem 2.13 we can think of it from the other prospective, more precisely, as a measure on the signatures λ ∈GT

N−� k−1
2 �.

Let us denote the measure we get on the set of signatures by ρk(N) and � k−1
2 � by t .

Lemma 3.7.⎧⎨
⎩
SU(N)

ρk(N)
(u1, . . . , uN−t ) = sω(u1,...,uN−t ,1t )

sω(1N)

∏N−t
j=1 (

1+uj

2 )t , k = 2t + 1, t = 0, . . . ,N − 1;
SU(N)

ρk(N)
(u1, . . . , uN−t ) = sω(u1,...,uN−t ,1t )

sω(1N)

∏N−t
j=1 (

1+uj

2 )t+1, k = 2t + 2, t = 0, . . . ,N − 1.
(3.11)

Proof. This statement is an immediate corollary of Proposition 2.13. �
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We consider N → ∞ asymptotics such that all the dimensions of R(N,�(N),m(N)) linearly grow with N .
Assume that the sequence of signatures ω(N) corresponding to the first row is regular and limN→∞ m[ω(N)] = ηω.
Then from Theorem 3.6 it follows that for any j = 1,2, . . . ,N

lim
N→∞

1

N
ln

(
sλ(N)(u1, . . . , uj ,1N−j )

sλ(N)(1N)

)
= Hηω

(u1) + · · · + Hηω
(uj ). (3.12)

Let us look at what is happening at the kth row, we assume that k = [2κN ] and κ < 1. It has N − t V -squares. We
have

lim
N→∞

1

(1 − κ)N
log

(
SU(N)

ρk(N)

(
u1, . . . , uj ,1N−t−j

))

= lim
N→∞

1

(1 − κ)N
log

(
sω(u1, . . . , uj ,1N−t−j )

sω(1N)

j∏
i=1

(
1 + ui

2

)t/t+1
)

=
j∑

i=1

(
κ

1 − κ
log

(
1 + ui

2

)
+ 1

1 − κ
Hηω

(ui)

)
. (3.13)

Thus, from Theorem 3.2 we get the following proposition.

Proposition 3.8. Assume that the sequence of signatures ω(N) corresponding to the first row is regular and
limN→∞ m[ω(N)] = ηω (weak convergence). Random measures m[ρk(N)] converge as N → ∞ in probability, in
the sense of moments to a deterministic measure ηκ on R, whose moments are given by

∫
R

xjηκ(dx) = 1

2(j + 1)π i

∮
1

dz

z

(
zQ′(z) + z

z − 1

)j+1

, (3.14)

where Q′(u) = 1
1−κ

( κ
1+u

+ H′
ηω

(u)) and the integration goes over a small positively oriented contour around 1.

Proof. From Theorem 3.2 using the integral representation of the derivative we get

Mj

(
ηk

) =
j∑

�=0

j !
�!(� + 1)!(j − �)!

∂�

∂u�

(
ujQ′(u)j−l

)|u=1

= 1

2π i

∮
1

j∑
l=0

1

l + 1

(
j

l

)
zjQ′(z)j−l

(z − 1)l+1
dz

= (we can add a holomorphic function to the integrand)

= 1

2π i

∮
1

zjQ′(z)j+1

j + 1

j∑
l=−1

(
j + 1

l + 1

)
1

Q′(z)l+1(z − 1)l+1
dz

= 1

2π i

∮
1

zjQ′(z)j+1

j + 1

(
1 + 1

Q′(z)(z − 1)

)j+1

dz

= 1

2(j + 1)π i

∮
1

dz

z

(
zQ′(z) + z

z − 1

)j+1

. (3.15)

�

Remark 3.9. Proposition 3.8 implies the existence of a limit shape for the model we are considering. As we noted
in the introduction, for a uniform measure on tilings this result is not new, it follows from [17,33]. However, Propo-
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sition 3.8 supplies explicit formulas for the answer which allows the further study of properties of limit shapes. Also,
a similar analysis is possible in the case of some non-uniform measures, see Appendix A.

We can put the computation of this limit shape into the context of the quantized free convolution. This notion
(introduced in [9]) is closely but non-trivially related to the notion of the free convolution, a well-known operation
introduced by D. Voiculescu (see e.g. [44]), see also [36]. The computation of the limit shape in our case results in the
following algorithm: we start with an arbitrary measure with compact support ηw , then consider a semigroup ηw ⊗ tB
(the quantized free convolution of two measures), where t > 0 and B is an extreme beta character, and finally compute
quantized free projections of the measures from this semigroup. We refer to [9] for definitions of these operations and
notions.

The relation between tiling models and free probability is very interesting and yet to be well-understood. See
Remark 6.10 for further comments.

3.2. Height function

Definition 3.10. [43] Let D ∈ D(N,�,m) be a domino tiling of a rectangular Aztec diamond R(N,�,m). Let us
impose checkerboard coloring on the plane (i, j) such that the boundary row of R(N,�,m) consists of the dark
squares, see Figure 11. A height function hD is an integer-valued function on the vertices of the lattice squares of
R(N,�,m) which satisfies the following properties:

• if an edge (u, v) does not belong to any domino in D then h(v) = h(u) + 1 if (u, v) has a dark square on the left,
and h(v) = h(u) − 1 otherwise.

• if an edge (u, v) belongs to a domino in D then h(v) = h(u) + 3 if (u, v) has the dark square on the left, and
h(v) = h(u) − 3 otherwise.

• hD(u0) = 0, where u0 is the vertex in the upper right corner of R(N,�,m), see Figure 11.

Fix a domino tiling D ∈ D(N,�,m). Note that the height function is uniquely determined on the boundary of
the domain. Let us calculate it inside. Consider a vertex (i, j) inside the domain. It is the left-most vertex of a unit
square that belongs to a row with number (2j +1). Such a row contains (N −�j�) V -squares. Let YμD,j be the Young

diagram corresponding to this row under the Construction 2.7, where μD,j = (μ
D,j

1 ≥ μ
D,j

2 ≥ · · · ≥ μ
D,j
N−�j�). Define

the function

�N
D(i, j) : = ∣∣{1 ≤ s ≤ N − �j� : μD,j

s + (
N − �j�) − s ≥ i

}∣∣. (3.16)

Denote by tk the position of the kth V -square in this row counting from the left. By construction we have

μ
D,j
s + (

N − �j�) − s = tN−�j�−s+1 − 1.

Thus, �N
D(i, j) simply counts the number of V -squares to the right from the vertex (i, j) in the corresponding row.

Note that we can rewrite it in terms of the measure m[μD,j ]

�N
D(i, j) = (

N − �j�)∫
1[ i

N−�j� ,∞] dm
[
μD,j

]
. (3.17)

Fig. 11. An example of a domino tiling of R(2,� = (1,4),2) and its height function.
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Fig. 12. An example of a domino tiling of R(2,� = (1,4),2) and its height function.

Lemma 3.11. Let D ∈ D(N,�,m) be a domino tiling of the rectangular Aztec diamond R(N,�,m). Let (i, j) be a
vertex inside the domain. Then

hD

(
(i, j)

) = 2
(
2N + m − j − �i� − 2�N

D(i, j)
)
, j = 0, . . . ,N. (3.18)

Proof. Consider a path from (− 1
2 , j) to (N + m + 1

2 , j) for the even rows and a path from (0, j) to (N + m,j) for
the odd rows such that it goes from vertex (i, j) to (i + 1, j) along the boundary of a domino d ∈ D, see Figure 12.

By the definition of the height function with every step along this path it changes by one. The sign of this change
depends on whether the path goes along the boundary of a V -square or a �-square. Let us follow this path from right
to left. Then the height function increases by two if the path goes along the boundary of a �-square and decreases by
two otherwise. Note that the number of squares to the right from the vertex (i, j) is equal to (N + m − �i�). So the
total increment of the height function is equal to

2
(
#{� − squares} − #{V -squares}) = 2

((
N + m − �i�) − 2#{V -squares}).

Thus, what is left is to compute the value of the height function on the right boundary of the domain. It is easily
done by going alone the boundary starting from the point u0. We see that it is equal to 2(N − j). �

Theorem 3.12 (Law of Large numbers for the height function). Consider N → ∞ asymptotics such that all
the dimensions of a rectangular Aztec diamond R(N,�(N),m(N)) linearly grow with N . Assume that the se-
quence of signatures ω(N) corresponding to the first row is regular, limN→∞ m[ω(N)] = ηω (weak convergence)
and m(N)/N → ν ∈ R>0 as N goes to infinity. Let us fix κ ∈ (0,1) and let ηκ be the limit of measures m[ρk(N)],
which is given by Proposition 3.8.

Define

h(χ, κ) := 2

(
2 + ν − κ − χ − 2(1 − κ)

∫ ∞
χ

1−κ

dηκ(x)

)
.

Then the random height function hD converges uniformly in probability to a deterministic function h(χ, κ):

hD([χN ], [κN ])
N

→ h(χ, κ), as N → ∞,

where (χ, κ) are the new continuous parameters of the domain.

Proof. From Lemma 3.11 we see that for a fixed j = [κN ] the height function is the scaled distribution function of
the measure m[ρk(N)] up to a constant, where k is the number of the corresponding row. Thus, from Proposition 3.8
the Law of Large numbers follows, see e.g. Proposition 2.2 [3]. �

4. Properties of the limit measure

Let us fix some notation. We consider N → ∞ asymptotics such that all the dimensions of a rectangular Aztec dia-
mond R(N,�(N),m(N)) linearly grow with N . The limit domain scaled by N is denoted R and the new continuous
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coordinates inside the domain are (χ, κ). We also assume that the sequence of signatures ω(N) corresponding to
the first row is regular (see Definition 3.4) and the sequence of measures {m[ω(N)]} weakly converge to ηω . In this
section our goal is to compute the density of the limit measures ηκ , defined in Proposition 3.8.

4.1. Stieltjes transform of the limit measure

Note that under our assumptions ηω has compact support. Moreover, it is absolutely continuous with respect to the
Lebesgue measure and its density takes values in [0,1].

Recall that the Stieltjes transform of a compactly-supported measure η is defined as

Stη(t) =
∫
R

η[ds]
t − s

,

for t ∈ C \ Support(η) (see [1]).
If the measure η has moments Mk of any order k then the Stieltjes transform admits for each integer n an asymptotic

expansion in the neighbourhood of infinity given by

Stη(t) =
n∑

k=0

Mk

tk+1
+ o

(
1

tk+1

)
.

In particular, in this case there is the following connection between the moment generating function Sη (3.4) and
the Stieltjes transform Stη:

Sη

(
1

t

)
= Stη(t)

for t in the neighborhood of infinity.
Let x ∈ C and κ ∈ (0,1). Consider the following system of equations in z and t , where z ∈ C \ R− and t ∈

C \ Support(ηω){
Fκ (z, t) = x,

Stηω
(t) = log(z),

(4.1)

where we consider the principal branch of the logarithm and

Fκ (z, t) := z

(1 − κ)

(
t

z
− 1

(z − 1)
+ κ

1 + z

)
+ z

z − 1
. (4.2)

This system of equations will provide formulas for the limit shape. We start the analysis of (4.1) considering the
case when x is sufficiently large. The formal power series formalism will be useful for us.

Recall that whenever a formal power series of the form g(u) = ∑∞
i=1 giu

i ∈ R[[u]] has g1 �= 0, there exists a formal
power series h(u) = ∑∞

i=1 hiu
i ∈ R[[u]] that is a unique composition inverse of g(u), meaning that g(h(u)) = u.

In the case of Laurent series of the form p(u) = 1
u

+ ∑∞
i=0 piu

i ∈ R((u)) there also exists a unique composite
inverse Laurent series q(u) = ∑∞

i=1 qi(
1
u
)i ∈R((u)) such that p(q(u)) = u.

Note that Stηω
(t) is a uniformly convergent power series in 1

t
for t in a neighborhood of infinity. Let

t (z) := St(−1)
ηω

(log z),

which we view as a Laurent series in (z − 1). More precisely, we have

t (z) = 1

z − 1
+

∞∑
i=0

ui(z − 1)i, ui ∈C.



Random domino tilings of rectangular Aztec diamonds 1267

Substituting this formula into Fκ(z, t) (4.1) we obtain that Fκ (z, t (z)) is of the following form as Laurent series in
(z − 1):

Fκ

(
z, t (z)

) = 1

z − 1
+

∞∑
i=0

fi(z − 1)i , fi ∈C.

This series is uniformly convergent for z in a punctured neighborhood of 1.
Define zκ(x) as the composite inverse to Fκ(z, t (z)). Note that zκ(x) is formal power series in 1

x
, which is uniformly

convergent for x in a neighborhood of infinity.

Lemma 4.1. The following formula is valid for x in a neighborhood of infinity

Stηκ (x) = log
(
zκ(x)

)
,

where Stηκ (x) is the Stieltjes transform of the limit measure ηκ , defined in Proposition 3.8.

Proof. We know from Proposition 3.8 that the j th moment of measure ηκ can be computed as

Mj

(
ηκ

) = 1

2(j + 1)π i

∮
1

dz

z

(
z

(1 − κ)

(
H′

ηω
(z) + κ

1 + z

)
+ z

z − 1

)j+1

,

where the contour of integration is a circle of radius ε � 1 around 1.
Using the formula (3.7)

H′
ηω

(z) = 1

uS
(−1)
ηω

(log z)
− 1

z − 1
.

for H′
ηω

we get

z

(1 − κ)

(
H′

ηω
(z) + κ

1 + z

)
+ z

z − 1
= Fκ

(
z, t (z)

)
,

where t (z) = St(−1)
ηω

(log z).
Now we can compute the Stieltjes transform for x in the neighborhood of infinity as

∞∑
j=0

Mj(η
κ )

xj+1
= − 1

2π i

∮
1

dz

z
log

(
1 − Fκ (z, t (z))

x

)
.

Integrating by parts we get

∞∑
j=0

Mj(η
κ )

xj+1
= 1

2π i

∮
1

log(z)
∂z(1 − Fκ (z,t (z))

t
)

1 − Fκ (z,t (z))
x

.

The integrand has poles at roots of Fκ(z, t (z)) = x. For x large enough the only root inside the region of integration
is given by a unique composite inverse series of the Laurent series Fκ (z, t (z)) for z in the neighborhood of 1. We need
to compute the residue to obtain the final result. Thus, we get

Stηκ (x) = log
(
zκ(x)

)
for x in the neighborhood of infinity. Another way to justify the last step is to use the notions of residues and integration
by parts for formal power series rather than integrals. �
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4.2. The density of ηκ

Let us define a function

Zκ (x) = exp
(
Stηκ (x)

)
,

where x ∈ C \ Support(ηκ).
Note that due to Lemma 4.1

Fκ

(
Zκ(x), t

(
Zκ (x)

)) − x = 0 (4.3)

for x in the neighborhood of infinity. Since the left-hand side of this equation is an analytic function on its domain of
definition, the equality holds for any x ∈ C \ Support(ηκ). Therefore, Zκ(x) is one of the roots of (4.1). The system
of equations (4.1) may have several roots. A certain effort is necessary in order to determine which of them should be
chosen. We deal with this problem in the rest of this section.

Let us recall a well-known fact about Stieltjes transform of a measure.

Lemma 4.2. If a measure η has a continuous density f (x) with respect to the Lebesgue measure then the following
formula is valid

f (x) = − lim
ε→0+

1

π
Im

(
Stη(x + iε)

)
.

Theorem 4.3. The density of ηκ is given by

dηκ (x) = 1

π
Arg

(
zκ+(x)

)
, (4.4)

where zκ+(x) is the unique complex root of the system (4.1) which belongs to the upper half-plane. This formula is
valid for such (x, κ) that the complex root exists, the density is equal to zero or one otherwise.

Proof. We will first prove this statement for a special case of measure ηω . Let us fix a natural number s and let
(a1, a2, . . . , as) and (b1, b2, . . . , bs) be two s-tuples of real numbers such that

a1 < b1 < a2 < b2 · · · < as < bs and
s∑

i=1

(bi − ai) = 1.

Assume that ηω is a uniform measure on the union of the intervals [ai, bi].
Then we can compute

Stηω
(t) = log

(t − a1) · · · (t − as)

(t − b1) · · · (t − bs)
.

Let us fix κ ∈ (0,1).
Throughout the proof we will use the following fact. Consider a function

R(z) = (z − u1)(z − u2) · · · (z − us)

(z − v1)(z − v2) · · · (z − vs)
, z ∈R;

where {ui} and {vi} interlace. Then R(z) is strictly piecewise monotone between its singularities. It can be proved by
induction using the decomposition of R(z) into the sum of simple fractions.

Lemma 4.4. In the case of the uniform measure on the union of the intervals [ai, bi] the system of equations (4.1) for
x ∈ R has at most one pair of complex conjugate solutions.
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Proof. Let us express t as a function of x, κ and z from the first equation of (4.1)

t (z, κ, x) = x(1 − κ) + 2κz

z2 − 1
(4.5)

and substitute it into the second one. Let us fix x. We claim that the resulting equation (4.6) will have at most one pair
of complex conjugate solutions:

G(z,x) = z, (4.6)

where

G(z,x) = (2κz + x(1 − κ)(z2 − 1) − a1(z
2 − 1)) · · · (2κz + x(1 − κ)(z2 − 1) − as(z

2 − 1))

(2κz + x(1 − κ)(z2 − 1) − b1(z2 − 1)) · · · (2κz + x(1 − κ)(z2 − 1) − bs(z2 − 1))
. (4.7)

Let us denote the numerator of G(z,x) by Ga(z, x) and its denominator by Gb(z, x).
Let us compute the discriminant of the equation

z2(1 − κx) + 2κz + (κx − x) − (
z2 − 1

)
y = 0,

which is equivalent to t (z, x, κ) = y.
It is equal to

D = y2 + (2κx − 2x)y + (
κ2 + x2 + κ2x2 − 2κx2) = (

y + (κx − x)
)2 + κ2 ≥ 0.

Therefore, both polynomials Ga(z, x) and Gb(z, x) have only real roots, moreover, since κ > 0 all their roots are
distinct. Let {α1, . . . , α2s} be the ordered set of roots of polynomial Ga(z, x) and let {β1, . . . , β2s} be the ordered set
of roots of polynomial Gb(z, x).

We claim that the roots of Ga(z, x) and Gb(z, x) interlace.
The function t (z, x, κ) is decreasing on the intervals (−∞,−1), (−1,1) and (1,∞). It follows from the computa-

tion of its derivative which is equal to − 2κ(1+z2)

(z2−1)2 (recall κ ∈ (0,1)).
Thus, since ai and bi interlace the solutions of equations t (z, x, κ) = ai and t (z, x, κ) = bi will also interlace on

each interval of monotonicity. Looking at a general graph of t (z, x, κ) and examining the cases we will conclude that
the interlacing condition is preserved on the whole line, see Figure 13. Indeed, let us consider the interval (−∞,−1).
Let the lines y = ai and y = bi intersect the graph of t (z, x, κ) on this interval. Then the right-most point will be the
intersection with the line y = a1. Consider the interval (−1,1). Then the left-most point of intersection will be the
intersection with the line y = bs and the right-most point of intersection will be the intersection with the line y = a1.

Fig. 13. An example of the graph of y = t (z, x, κ).
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Finally, consider the interval (1,∞). Let the lines y = ai and y = bi intersect the graph of t (z, x, κ) on this interval
then the left-most point of intersection will be the intersection with the line y = bs .

The leading coefficient of Ga(z, x) is
∏2s

i=1(x(1 − κ) − ai) and the leading coefficient of Gb(z, x) is
∏2s

i=1(x(1 −
κ) − bi). First, assume that x(1 − κ) − bi �= 0 for i = 1, . . . ,2s. Since {αi} and {βi} interlace the function G(z,x) is
always piecewise monotone in z. Examining the cases in Figure 13 we conclude that

if α1 < β1, then

∏2s
i=1(x(1 − κ) − ai)∏2s
i=1(x(1 − κ) − bi)

< 0, and

if α1 > β1, then

∏2s
i=1(x(1 − κ) − ai)∏2s
i=1(x(1 − κ) − bi)

> 0.

Thus, G(z,x) is increasing on every interval (βi, βi+1) from −∞ to ∞. There are 2s − 1 such intervals and
on every interval there is at least one real solution to (4.6), see Figure 14. Since the degree of the corresponding
polynomial equation is 2s + 1 there exists at most one pair of complex conjugate roots. �

Consider the case when x(1 − κ) − bi = 0 for some i. Examining the Figure 13 we see that α1 < β1 < · · · <

β2s−1 < αs . Note that

∏2s
j=1(bi − aj )

2κ
∏2s

j=1,j �=i (bi − bj )
< 0.

Similarly it can be shown that G(z,x) is piecewise increasing. We again can find 2s − 2 roots on every interval
(βi, βi+1). Since the degree of the corresponding polynomial equation is 2s there exists at most one pair of complex
conjugate roots. �

Let x0 be such that (4.6) has a pair of complex roots. From the proof of Lemma 4.4 we see that (4.6) has 2s − 1
distinct real roots when x(1 − κ) − bi �= 0 for i = 1, . . . ,2s and 2s − 2 distinct real roots when x(1 − κ) − bi = 0
for some i. Due to the Implicit Function Theorem those roots are well-defined in some complex neighborhood U
of x. Let us denote them zj (x) (where j = 1, . . . ,2s − 1 or j = 1, . . . ,2s − 2 corresponding to two cases mentioned
above.)

Lemma 4.5. The derivative of zj (x) with respect to x at x0 is non-negative, for i = 1, . . . ,2s − 1. Moreover, it is
equal to zero if and only if zj (x0) = 1.

Fig. 14. An example of the graph of y = G(z, x0) and its intersection with y = z.
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Proof. Since zi(x) is given as an implicit function, its derivative can be computed in the following way

z′
i (x) = − G′

x(z, x)

G′
z(z, x) − 1

. (4.8)

First, we show that G′
x(z, x) ≤ 0. Recall that

G(z,x) = (x(1 − κ) + 2κz

z2−1
− a1) · · · (x(1 − κ) + 2κz

z2−1
− as)

(x(1 − κ) + 2κz

z2−1
− b1) · · · (x(1 − κ) + 2κz

z2−1
− bs)

.

Thus, when z �= ±1, the statement of the lemma is equivalent to the statement that function

f (y) = (y − u1) · · · (y − us)

(y − v1) · · · (y − vs)

is a piecewise decreasing function, where u1 < v1 < u2 < · · · < un < vn. Thus, it follows that G′
x(z, x) < 0 for

z �= ±1. Note that z = −1 can never be a solution to (4.1) and when z = 1 we have G′
x(z, x) = 0.

Next, we show that G′
z(zi(x0), x0) > 1. From the proof of Lemma 4.4 we know that G(z,x0) is an increasing func-

tion from −∞ to ∞ on every interval (βi, βi+1). Since x0 is such that (4.6) has a pair of complex roots we conclude
that there is exactly one real solution zj (x0) to (4.6) on every interval (βi, βi+1). Therefore, G′

z(zj (x0), x0) > 1 since
G(z,x) − z goes from −∞ to ∞ on (βi, βi+1) and has exactly one root.

Now let us consider x̃ = x0 + iε ∈ U , for some very small ε. From the sign of derivative we obtain Im(zi(x̃)) > 0.
On the other hand,

Zκ(x̃) = exp

(∫
R

((x0 − s) − iε)m[ds]
(x0 − s)2 + ε2

)
.

It follows that Im(Zκ (x̃)) < 0. Thus, Zκ(x) cannot be equal to a real root if the complex roots exist. Therefore, Zκ(x)

coincides with the unique complex root with negative imaginary part at x0.
Finally, from Lemma 4.2 we conclude that

dηκ (x) = − lim
ε→0+

1

π
Im

(
Stηκ (x + iε)

) = − lim
ε→0+

1

π
Im

(
log

(
Zκ(x + iε)

)) = 1

π
Arg

(
zκ+(x)

)
for this class of measures.

Now let us consider a general case of a measure ηω. There exists a sequence of measures {ηi} that converges weakly
to ηω, where ηi is a uniform measure with density one on a sequence of intervals. Then we can pass to the limit in
equation (4.4). �

Remark 4.6. Note that the scaling which we use computing ηκ is 1
(1−κ)N

, while the coordinates of the domain scale

as 1
N

.

Definition 4.7. Let L be the set of (χ, κ) inside R such that the density dηκ(
χ

1−κ
) is not equal to 0 or 1. Then L is

called the liquid region. Its boundary ∂L is called the frozen boundary.

Note that the density dηκ(
χ

1−κ
) is not equal to 0 or 1 if and only if the system (4.1) has a complex solution for

(χ, κ) ∈R.

5. Frozen boundary

In this section we consider a special case of a rectangular Aztec diamond R(N,�,m) with

� = (A1, . . . ,B1,A2, . . . ,B2, . . . ,As, . . . ,Bs), where
s∑

i=1

(Bi − Ai + 1) = N, see Figure 15.
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Fig. 15. Rectangular Aztec diamond R(5, (1,2,3,6,7),2) with A1 = 1, B1 = 3, A2 = 6, B2 = 7.

Denote the string (A1,A2, . . . ,As) by A(s) and the string (B1,B2, . . . ,Bs) by B(s). We call such domain a rectan-
gular Aztec diamond of type (N,A(s),B(s)).

We are interested in the following asymptotic regime of its growth:

lim
N→∞

Ai(N)

N
= ai, lim

N→∞
Bi(N)

N
= bi,

where a1 < b1 < · · · < as < bs are new parameters such that
∑s

i=1(bi − ai) = 1. We will call s the number of
segments.

The sequence of signatures {ω(N)} is regular and the limit measure ηω is a uniform measure on the union of
intervals [ai, bi] considered in the proof of the Lemma 4.4.

Theorem 5.1. The frozen boundary of the limit of a rectangular Aztec diamond of type (N,A(s),B(s)) is a rational
algebraic curve C with an explicit parametrization (5.3). Moreover, its dual C∨ is of degree 2s and is given in the
following parametric form

C∨ =
(

θ,
2θ�s(θ)

(�s(θ) − 1)(�s(θ) + 1)

)
, (5.1)

where

�s(θ) = (1 − a1θ)(1 − a2θ) · · · (1 − asθ)

(1 − b1θ)(1 − b2θ) · · · (1 − bsθ)
.

Remark 5.2. In projective geometry a dual curve of a given plane curve C is a curve in the dual projective plane
consisting of the set of lines tangent to C.

If C is given in a parametric form C = (x, y) then the parametrization of its dual C∨ = (x∨, y∨) can be found by
the following formula:{

x∨ = y′
yx′−xy′ ;

y∨ = − x′
yx′−xy′ .

(5.2)

We are interested in the dual curve because its parametrization can be written in a simple form and it also encodes
the information about the tangents.

Proof. In the case of a rectangular Aztec diamond of type (N,A(s),B(s)) we can rewrite the system of equations (4.1)
in the following form:{

(t−a1)(t−a2)···(t−as)
(t−b1)(t−b2)···(t−bs)

= z,

Fκ(z) = z
(1−κ)

( t
z
− 1

z−1 + κ
1+z

) + z
z−1 = χ

(1−κ)
.
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Fig. 16. An example of a curve C with three boundary segments.

Let us express z from the second equation and plug it into the first one. We find that

z±(t, κ) = κ ± √
κ2 + (t − χ)2

t − χ
.

From Theorem 4.3 it follows that (χ, κ) belongs to the frozen boundary if and only if the resulting equation has a
double root.

Let us introduce the following notation L�s(t) := log�s(t). The condition that the resulting equation has a double
root can be rewritten as the following system{

�s(t) = z±(t, κ),

L�s(t)
′ = (log(z±(t, κ)))′.

This system can be solved for χ and κ and we find that

χ(t) = �s(t)
2L�s(t)t + L�s(t)t + �s(t)

2 − 1

(�s(t)2 + 1)L�s(t)
and κ(t) = − (�s(θ)2 − 1)2

2(�s(t)2 + 1)�s(t)L�s(t)
. (5.3)

This gives us the parametric representation of the frozen boundary. In order to compute its dual we use the formula
(5.2).

Note that �s(t)
′ = �s · L�s(t). Using this relation we get the parametric representation (5.1) of the dual curve

after some lengthy computation, where we introduced the parameter θ = 1
t
.

From the parametric representation it is easy to see that the degree of the dual curve is equal to 2s. �

Definition 5.3 ([33]). A degree d real algebraic curve C ⊂RP2 is winding if

• It intersects every line L ⊂RP2 in at least d − 2 points counting multiplicity;
• There exists a point p0 ∈RP2 \ C called center, such that every line through p0 intersects C in d points.

The dual to a winding curve is called a cloud curve.

Proposition 5.4. The frozen boundary C is a cloud curve of rank 2s, where s is the number of segments. Moreover, it
is tangent to the following 2s + 2 lines

L = {χ = ai |i = 1, . . . , s} ∪ {χ = bi |i = 1, . . . , s} ∪ {κ = 0} ∪ {κ = 1}.
Proof. We need to check that the dual curve C∨ = (x, y) is winding. Let us write down the equation for the dual
curve in terms of the coordinates x and y. Let us denote

Pa(x) = (1 − a1x)(1 − a2x) . . . (1 − asx) and Pb(x) = (1 − b1x)(1 − b2x) . . . (1 − bsx).

In terms of x and y we get the following equation of C∨

y
(
Pa(x) − Pb(x)

)(
Pa(x) + Pb(x)

) − 2xPa(x)Pb(x) = 0. (5.4)

Note that Pa(0) = Pb(0) = 1. Thus, the rank of C is 2s.
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We need to compute the intersection of C∨ with any given line in RP2. Let us start with the lines given by y =
cx + d , where c, d ∈R. Then the points of intersection satisfy the following equation

(cx + d)
(
Pa(x) − Pb(x)

)(
Pa(x) + Pb(x)

) = 2xPa(x)Pb(x). (5.5)

We will use the same strategy as in Lemma 4.4. We can assume that a1 > 0 since we can move the limit rectangle to
the right along the χ axis, which does not affect the geometric properties of the frozen boundary. The roots of the RHS
of equation (5.5) are {0, 1

a1
, 1

b1
, . . . , 1

as
, . . . , 1

bs
}. Since {ai} and {bi} interlace, all the roots of p− = Pa(x)−Pb(x) and

p+ = Pa(x)+Pb(x) are real and there are 2s −1 distinct roots. Moreover, there exist two roots of p± in every interval
( 1
ai+1

, 1
ai

) and the point 1
bi

lies in between those roots. Therefore, the roots of the polynomial given by the LHS of
(5.5) interlace with the roots of the polynomial given by the RHS with probably an exception of an interval containing
the zero of cx + d . So we have found at least 2s − 2 real points of intersection of our curve with lines of the form
y = cx + d .

Next, consider the lines x = d . The intersection will be at infinity. We need to consider the homogenized polynomial
that defines our curve adding the third homogeneous coordinate z.

y
(
Pa(x, z) − Pb(x, z)

)(
Pa(x, z) + Pb(x, z)

) − 2xPa(x, z)Pb(x, z) = 0,

Pa(x, z) = (z − a1x)(z − a2x) · · · (z − asx) and Pb(x, z) = (z − b1x)(z − b2x) · · · (z − bsx).

The homogeneous form of the equation of the line is x = dz. Thus, we see that this line intersects the curve at the
point (0 : 1 : 0) with multiplicity 2s − 1. The case of the line z = 0 is analogous.

Note that due to the computation above if we choose a point p0 on the line y = 0 outside the interval (0, 1
a1

) any
line passing through p0 will intersect the curve C∨ at at least 2s − 1 real points. Therefore, any line through p0 will
intersect C∨ at exactly 2s real points. So the point p0 can be chosen to be the center.

Notice that the points (x, y) = (0, 1
ai

) as well as (x, y) = (0, 1
bi

) belong to C∨. The roots of (Pa(x) −
Pb(x))(Pa(x) + Pb(x)) correspond to 2s − 1 points of tangency of C with the line κ = 0. Also, when x = 0 the
y coordinate of C∨ is 1, which corresponds to the tangent κ = 1 of C. From these the second statement of the propo-
sition follows. �

Remark 5.5. From (5.1) and (5.3) we see that the points of tangency of C = (χ(θ), κ(θ)) with κ = 0, that is, with
the side of rectangle with nontrivial boundary conditions, are precisely the roots of

s∏
i=1

x − ai

x − bi

= ±1.

6. Central limit theorem

In this section we study the fluctuations of the limit shape. In particular, we show that the fluctuations are described by
the Gaussian Free Field. There are two major steps in the proof of this result. First, we describe the complex structure
on the liquid region that leads to the appearance of the Gaussian Free Field as the limit object. Next, we give an
overview of the results from [10] that allow us to perform the computations to establish the main result Theorem 6.3.

6.1. Characterization of the liquid region

By Theorem 4.3 (χ, κ) ∈ L (see Definition 4.7 and the remark above it) if and only if the system of equations (4.1)
has complex roots. Let us recall it{

Fκ (z,t) = χ
(1−κ)

,

Stηω
(t) = log(z),
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where

Fκ(z, t) = z

(1 − κ)

(
t

z
− 1

(z − 1)
+ κ

1 + z

)
+ z

z − 1
.

From the first equation we find that

z±(χ, κ)(t) = κ ± √
κ2 + (t − χ)2

t − χ
and t = χz2 + 2κz − χ

z2 − 1
. (6.1)

It follows that z±(χ, κ) is complex if and only if t is (if one of them is real then the other one has to be real too).
Let H be the upper half-plane of the complex plane.

Lemma 6.1. Let t ∈ H. Then there exists z(t) such that (z(t), t) is the solution to (4.1) if and only if the following
equation holds

pχ,κ(t) : = χ −
(

t + κ

(
1

exp(−Stηω
(t)) − 1

+ 1

exp(−Stηω
(t)) + 1

))
= 0. (6.2)

Proof. Let t be a solution to (6.2). Let us express Stηω
(t) from this equation. We find that

Stηω
(t) = log

(
z±(χ, κ)(t)

)
.

Picking the right sign we find z(t) which solves (4.1). A direct computations shows that if (z, t) is a solution of
(4.1) then t is a solution to (6.2). �

Note that from Lemma 4.4 using Rouché’s theorem it follows that there exists a unique solution t ∈ H of (6.2).
Denote

S(t) := Stηω
(t)

for convenience.
The next Proposition defines a homeomorphism between the liquid region and the upper half-plane H.

Proposition 6.2. Let

TL : L → H

map (χ, κ) ∈ L to the corresponding unique root of (6.2) in H. Then, TL is a homeomorphism with inverse t →
(χL(t), κL(t)) for all t ∈ H, given by

χL(t) = t + exp(S(t̄))(exp(2S(t)) − 1)(t − t̄ )

(exp(S(t)) − exp(S(t̄)))(1 + exp(S(t) + S(t̄)))
; (6.3)

κL(t) = − (exp(2S(t)) − 1)(exp(2S(t̄)) − 1)(t − t̄ )

2(exp(S(t)) − exp(S(t̄)))(1 + exp(S(t) + S(t̄)))
. (6.4)

Proof. The proof is completely analogous to the proof of Theorem 2.1 in [18]. For the reader’s convenience we will
present it.

We need to show

(1) L is non-empty. More precisely, we will show that whenever |t | is large enough t → (χL(t), κL(t)) ∈R and (6.2)
holds. Then it follows that (χL(t), κL(t)) ∈ L for such t .

(2) L is open.
(3) TL : L → H is continuous.
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(4) TL : L → H is injective.
(5) TL : L → TL(L) has inverse for all t ∈ TL(L).
(6) TL(L) =H.

Let us start with (1). Fix t ∈H and define

(χ, κ) = (
χL(t), κL(t)

)
(6.5)

using (6.3) and (6.4). Then the following equation holds(
exp

(
2S(t)

) − 1
)
(t − χ) = 2 exp

(
S(t)

)
κ. (6.6)

It is equivalent to (6.2).
Second, let us look at the Taylor expansions for χL(t) and κL(t), when |t | goes to infinity.
Let a, b ∈R be such that Support(ηω) ⊂ [a, b]. We have the following asymptotics for the Stieltjes transform

S(t) = 1

t
+ α

t2
+ β

t3
+ O

(|t |−4),
where α = ∫ b

a
xηω[dx] and β = ∫ b

a
x2ηω[dx]. After some computation we get

χ = α + O
(|t |−1) and κ = 1 +

(
α2 − β − 1

6

)
1

|t |2 + O
(|t |−3).

Recall that by our assumptions ηω is a probability measure such that b − a > 1 since ηω ≤ λ, where λ is the
Lebesgue measure. Therefore, we have

a + 1

2
=

∫ a+1

a

x dx < α <

∫ b

b−1
x dx = b − 1

2
.

Similarly,

β − α2 >
1

2

∫ ∫ 1

0
(x − y)2 dx dy = 1

12
.

It follows that (χ, κ) ∈ (a + 1
2 , b − 1

2 ) × (0,1) whenever |t | is chosen to be sufficiently large. This proves (1).
Consider (2). Let (χ1, κ1) ∈ L and t1 = TL(χ1, κ1). We will show that (χ2, κ2) ∈ L whenever |χ1 −χ2| and |κ1 −κ2|

are sufficiently small. Fix ε > 0 such that B(t1, ε) ⊂ H. Let t1 is the unique root of pχ1,κ1(t) in H, the extreme value
theorem gives,

inf
t∈∂B(t1,ε)

∣∣pχ1,κ1(t)
∣∣ > 0.

Also,∣∣pχ1,κ1(t) − pχ2,κ2(t)
∣∣ < ε (6.7)

for any ε > 0, whenever |χ1 − χ2| and |κ1 − κ2| are sufficiently small.
Whenever |χ1 − χ2| and |κ1 − κ2| are sufficiently small |pχ1,κ1(t)| > |pχ1,κ1+ (t) − p

χ2,κ2+ (t)|. Rouchés Theorem
implies that p

χ1,κ1+ (t) has a root in B(t, ε).
Consider (3). The analysis is very similar to part (2) and is tautologically the same as in [18].
Consider (4). Suppose there exist (χ1, κ1), (χ2, κ2) ∈ L such that TL(χ1, κ1) = TL(χ2, κ2) = t ∈ H.
From (6.2) we get

t = κ1χ1 − κ2χ2

κ1 − κ2
.

But then t ∈ R whenever κ1 �= κ2, which contradicts t ∈ H. Thus, κ1 = κ2 ∈ (0,1). It follows χ1 = χ2 too.
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Consider (5). This follows from (6.6).
Consider (6). We already know that TL(L) is open and homeomorphic to L. Suppose there exists t ∈ ∂TL(L) such

that t ∈ H \ TL(L). Let {tn} ∈ TL(L) be a sequence that converges to t as n → ∞. There exists a subsequence of
{(χL(tn), κL(tn))} that converges to some (χ, κ). Then we can pass to the limit in (6.2) and we see that (χ, κ) ∈ R
and t = TL(χ, κ). This is a contradiction. �

6.2. Gaussian free field

A Gaussian family is a collection of jointly Gaussian random variables {ξa}a∈ϒ indexed by an arbitrary set ϒ . We
assume that all our random variables are centered, that is

Eξu = 0, for all u ∈ ϒ.

Any Gaussian family gives rise to a covariance kernel Cov : ϒ × ϒ → R defined by

Cov(u1, u2) = E(ξu1ξu2).

Assume that a function C̃ : ϒ × ϒ → R is such that for any n ≥ 1 and u1, . . . , un ∈ ϒ , [C̃(ui, uj )]ni,j=1 is a

symmetric and positive-definite matrix. Then there exists a centered Gaussian family with the covariance kernel C̃

(see e.g. [11]).
Let C∞

0 be the space of smooth real-valued compactly supported test functions on the upper half-plane H. Let us
set

G̃(z,w) := − 1

2π
ln

∣∣∣∣z − w

z − w̄

∣∣∣∣, z,w ∈H.

This is the Green function of the Laplace operator on H with Dirichlet boundary conditions. Define a function C :
C∞

0 × C∞
0 → R via

C(f1, f2) :=
∫
H

∫
H

f1(z)f2(w)G̃(z,w)dz dz̄ dw dw̄.

The Gaussian Free Field (GFF) G on H with zero boundary conditions can be defined as a Gaussian family
{ξf }f ∈C∞

0
with covariance kernel C.

The integrals
∫

f (z)G(z) dz over finite contours in H with continuous functions f (z) make sense, cf. [41], while
the field G cannot be defined as a random function on H.

6.3. Statement of the theorem

Consider a rectangular Aztec diamond R(N,�,m). Let ω be a signature corresponding to the boundary row under
Construction 2.7.

We have defined a probability measure PN
ω on the sets of signatures

SN = (
μ(N), ν(N), . . . ,μ(1), ν(1)

)
,

see equation (2.2).
Let us define a function �N on R≥0 ×R≥0 × S →N via

�N : (
x, y,

(
μ(N), ν(N), . . . ,μ(1), ν(1)

))
→ √

π
∣∣{1 ≤ s ≤ N − �y� : μ(N−�y�)

s + (
N − �y�) − s ≥ x

}∣∣. (6.8)

Recall the definition (3.16) of �N
D(i, j), where D ∈ D(N,�,m) and (i, j) is a lattice vertex in R(N,�,m). Its

domain of definition can be extended to (i, j) ∈ R≥0 ×R≥0. We get

�N
(
i, j,μ(D)

) = √
π�N

D(i, j). (6.9)
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Here μ(D) is the sequence of signatures corresponding to Y(D), where Y is a bijection between D(N,�,m) and
S(N,�,m), see Theorem 2.9.

Let us denote by �N
D

(x, y) the pushforward of the measure P N
ω on SN with respect to �N . Note that due to

Proposition 2.13 �N
D

(x, y) coincides with the pushforward of the uniform measure on D(N,�,m) with respect to
�D .

Let us carry �N
D

(x, y) over to H in the following way

�N
D(z) := �N

D

(
NχL(z),NκL(z)

)
, z ∈ H,

where χL(z) is defined by (6.3) and κL(z) is defined by (6.4). For a real number 0 < κ < 1 and an integer j define a
moment of the random function �N

D
as

Mκ
j =

∫ +∞

−∞
χj

(
�N

D(Nχ,Nκ) − E�N
D(Nχ,Nκ)

)
dχ. (6.10)

Also define the corresponding moment of GFF via

Mκ
j =

∫
z∈H;κL(z)=κ

χL(z)jG(z)
dχL(z)

dz
dz.

Theorem 6.3 (Central Limit Theorem). Let �N
D

(z) be a random function corresponding to the uniformly random
domino tiling of the rectangular Aztec diamond in the way described above. Then

�N
D(z) − E�N

D(z) −−−−→
N→∞ G(z).

In more details, as N → ∞, the collection of random variables {Mκ
j }1≥κ>0;j∈N converges, in the sense of finite-

dimensional distributions, to {Mκ
j }1≥κ>0;j∈N.

Remark 6.4. Due to Lemma 3.11 the corresponding statement for the random height function hD follows.

Remark 6.5. Theorem 6.3 establishes the convergence for a certain limited class of test functions. It is very plausible
that the statement can be extended to a larger class of test functions, but we do not address this question here.

6.4. Schur generating functions

For the proof of Theorem 6.3 we will use the moment method of Schur-generating functions from [10]. In this section
we will recall necessary notions and results from [10] (Theorems 6.7 and 6.8 below). After this we will apply them to
our measure (Theorem 6.9).

Definition 6.6. We say that a sequence of probability measures ρ(N) on GTN is CLT-appropriate if theirs Schur
generating functions S

U(N)
ρ(N) (x1, . . . , xN) satisfy the following condition: For any fixed k ∈N we have

•

lim
N→∞

∂i lnS
U(N)
ρ(N) (x1, x2, . . . , xk,1N−k)

N
= F(xi), 1 ≤ i ≤ k,

•
lim

N→∞ ∂i∂j lnS
U(N)
ρ(N)

(
x1, x2, . . . , xk,1N−k

) = G(xi, xj ), 1 ≤ i, j ≤ k, i �= j,

where the functions F(x) and G(x,y) are holomorphic in a neighborhood of the unity, and the convergence is
uniform over an open complex neighborhood of (x1, . . . , xk) = (1k). Note that the functions in the left-hand side
of these equations depend on k variables, while the the functions in the right-hand side depend on 1 or 2 variables,
respectively.
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For λ ∈ GTk1 ,μ ∈ GTk2 , k1 ≥ k2, let us introduce the coefficients prk1→k2
(λ → μ) (the construction is similar to

the one from Section 2) via

sλ(x1, . . . , xk2,1k1−k2)

sλ(1k1)
=

∑
μ∈GTk2

prk1→k2
(λ → μ)

sμ(x1, . . . , xk2)

sμ(1k2)
.

For a symmetric function g(x1, . . . , xN) we define the coefficients st(N)
(g)

(λ → μ), for λ ∈GTN , μ ∈ GTN , via

g(x1, . . . , xN)
sλ(x1, . . . , xN)

sλ(1N)
=

∑
μ∈GTN

st(N)
(g)

(λ → μ)
sμ(x1, . . . , xN)

sμ(1N)
,

where we assume that the function g(x1, . . . , xN) is such that the number of terms in the summation in the right-hand
side is finite for all λ.

Let m be a positive integer and let 0 < a1 ≤ · · · ≤ am = 1 be reals. Let ρN = ρ[amN ] be a CLT-appropriate measure
on GT[amN ] with the Schur generating function SN , and let g1(x1, . . . , x[a1N ]), . . . , gm(x1, . . . , x[amN ]) be a collection
of Schur generating functions of some CLT-appropriate probability measures.

Let us define the probability measure on the set

GT[amN ] ×GT[amN ] ×GT[am−1N ] ×GT[am−1N ] × · · · ×GT[a1N ] ×GT[a1N ].

That is, we need to define the probability of a collection of signatures (μ(m), ν(m), μ(m−1), ν(m−1), . . . , μ(1), ν(1)),
where μ(i), ν(i) are signatures of length [aiN ], i = 1,2, . . . ,m. Let us do this in the following way.

Let

Hμ
m(x1, . . . , x[amN ]) := SN(x1, . . . , x[amN ]),

Hν
m(x1, . . . , x[amN ]) := Hμ

m(x1, . . . , x[amN ])gm(x1, . . . , x[amN ]),

H
μ
m−1(x1, . . . , x[am−1N ]) := Hν

m

(
x1, . . . , x[am−1N ],1[amN ]−[am−1N ]),

Hν
m−1(x1, . . . , x[am−1N ]) := H

μ
m−1(x1, . . . , x[am−1N ])gm−1(x1, . . . , x[am−1N ]),

· · ·
H

μ
1 (x1, . . . , x[a1N ]) := Hν

2

(
x1, . . . , x[a2N ],1[a2N ]−[a1N ]),

Hν
1 (x1, . . . , x[a1N ]) := H

μ
1 (x1, . . . , x[a1N ])g1(x1, . . . , x[a1N ]).

Assume that the coefficients st[atN ]
gt

(μ → ν), t = 1, . . . , s are positive for all t , μ ∈ GT[atN ], ν ∈ GT[atN ] (again,
we also assume that the linear decomposition which defines these coefficients is finite).

We define the probability of the configuration (μ(m), ν(m), . . . ,μ(1), ν(1)) by

PN (
μ(m), ν(m),μ(m−1), ν(m−1), . . . ,μ(1), ν(1)

)
:= ρN

(
μ(m)

)
st[a1N ]

g1

(
μ(1) → ν(1)

) m∏
i=2

st[aiN ]
gi

(
μ(i) → ν(i)

)
pr[aiN ]→[ai−1N ]

(
ν(i) → μ(i−1)

)
. (6.11)

The conditions above guarantee the existence of the following limits:

lim
N→∞

∂i lnH
μ
t (x1, x2, . . . , xk,1N−k)

N
=: Ft(xi), 1 ≤ i ≤ k,

lim
N→∞ ∂i∂j lnH

μ
t

(
x1, x2, . . . , xk,1N−k

) =: Gt(xi, xj ), 1 ≤ i, j ≤ k, i �= j,

for any t = 1,2, . . . ,m.
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Let

pk;t :=
[atN ]∑
i=1

(
μ

(t)
i + [atN ] − i

)k
,

be (shifted) moments of these signatures. These functions become random when we consider the random sequence
(μ(m), ν(m), . . . ,μ(1), ν(1)) distributed according to the probability measure PN . We are interested in the asymptotic
behavior of these functions.

Theorem 6.7 ([10]). In the notations above, the collection of random functions{
N−k(pk;t − Epk;t )

}
t=1,...,m;k∈N

is asymptotically Gaussian with the limit covariance

lim
N→∞N−k1−k2 cov(pk1;t1,pk2;t2) = a

k1
1 a

k2
2

(2π i)2

∮
|z|=ε

∮
|w|=2ε

(
1

z
+ 1 + (1 + z)Ft1(1 + z)

)k1

×
(

1

w
+ 1 + (1 + w)Ft2(1 + w)

)k2
(

Gt2(z,w) + 1

(z − w)2

)
dzdw,

where ε � 1 and 1 ≤ t1 ≤ t2 ≤ m.

Now we will apply this theorem to our case. Consider N → ∞ asymptotics of a rectangular Aztec diamond
R(N,�(N),m(N)). We assume that the sequence of signatures ω(N) corresponding to the first row is regular and
the sequence of measures {m[ω(N)]} weakly converge to ηω. Our probability measure on the set of domino tilings
D(N,�,m) defined by (8.3) has ρ concentrated on a single signature (but with a non-trivial asymptotic behavior),
and the functions gi are equal to the powers of

∏
i (1 + xi) times a constant.

Let us recall some results from [10]. We will need the following theorem.

Theorem 6.8 ([10,24]). Suppose that λ(N) ∈GTN , N = 1,2, . . . is a regular sequence of signatures such that

lim
N→∞m

[
λ(N)

] = η.

Then we have

lim
N→∞ ∂1∂2 log

(
sλ(N)(x1, x2, . . . , xk,1N−k)

sλ(N)(1N)

)

= ∂1∂2 log

(
1 − (x1 − 1)(x2 − 1)

x1H
′
η(x1) − x2H

′
η(x2)

x1 − x2

)
, (6.12)

where the convergence is uniform over an open complex neighborhood of (x1, . . . , xk) = (1k).

Construction 2.7 assigns to each row with number [2κN ] of R(N,�,m) a Young diagram given by a [(1 − κ)N ]-
tuple μ

([(1−κ)N ])
i = (μ1, . . . ,μ[(1−κ)N ]). We define the moment function as

pκ
j :=

[(1−κ)N ]∑
i=1

(
μ

([(1−κ)N ])
i + [

(1 − κ)N
] − i

)j
.

Theorem 6.9. In the notations above, the collection of random functions{
N−k

(
pκ

j − Epκ
j

)}
0<κ≤1;j∈N
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is asymptotically Gaussian with the limit covariance

lim
N→∞N−j2−j1 cov

(
p

κ1
j1

,p
κ2
j2

) = (1 − κ1)
j1(1 − κ2)

j2

(2π i)2

∮
|z|=ε

∮
|w|=2ε

(
1

z
+ 1 + (1 + z)F1(1 + z)

)j1

×
(

1

w
+ 1 + (1 + w)F2(1 + w)

)j2

Q(z,w)dz dw, (6.13)

where ε � 1 and 1 ≥ κ1 ≥ κ2 > 0,

F1(z) = 1

1 − κ1
H ′

ηω
(1 + z) + κ1

(1 − κ1)(z + 2)
,

F2(w) = 1

1 − κ2
H ′

ηω
(1 + w) + κ2

(1 − κ2)(w + 2)

and

Q(z,w) = ∂z∂w

(
log

(
1 − zw

(1 + z)H ′
ηω

(1 + z) − (1 + w)H ′
ηω

(1 + w)

z − w

))
+ 1

(z − w)2
.

Proof. It immediately follows from Theorem 6.7, Theorem 6.8 and Lemma 3.7. �

Remark 6.10. Let us make several comments about this result.
The general mechanism of Theorem 6.7 automatically produces the central limit theorem for moments. However,

a further analysis is necessary in order to show that the obtained covariance matches the one coming from the Gaussian
Free Field.

One can use another generator of the semigroup with respect to the quantized free convolution (see Remark 3.9).
In the case of rectangular Aztec diamonds we used

∏
i

(1 + xi)/2 =
∏
i

(
1 + 1

2
(xi − 1)

)
,

which can be understood as an extreme beta character with parameter 1
2 . Instead, one can use formulas∏(

1 + β(xi − 1)
)

or
∏(

1 + α(xi − 1)
)−1

, where 0 < β < 1, and 0 < α < +∞.

One can immediately generalize our results to the case when the probability measure comes from these formulas. We
give some details for 0 < β < 1 case in Appendix A.

One can also analyze another types of processes, in particular, Schur processes (or ensembles of non-intersecting
paths, see Section 2.3). In this case one needs to suitably modify Theorem 6.7; these generalizations quite straightfor-
wardly follow from the technique of [10]. After this, one can apply the technique of this paper in order to extract all
necessary information about limit shapes, frozen boundary, and global fluctuations.

Finally, let us remark that while the moment method proved to be very convenient for the study of the global
behavior of our model, it does not give insight on the local behavior. Nevertheless, it is possible to extract some
information about it from the known results on lozenge tilings. We discuss it in Appendix B.

6.5. Proof of Theorem 6.3

The goal of this section is to obtain Theorem 6.3 from Theorem 6.9.
First, let us make a change of variables

z̃ = S(−1)
ηω

(
log(1 + z)

)
, w̃ = S(−1)

ηω

(
log(1 + w)

)
,

in equation (6.13).
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Using the connection between Sηω
(z) and H ′

ηω
(z) (see (3.7)), we have

1

z
+ 1 + (1 + z)H ′

ηω
(z + 1)

1 − κ1
= 1

1 − κ1

(
1

z̃
+ κ1

exp(−Sηω
(z̃)) − 1

)
,

1

w
+ 1 + (1 + w)H ′

ηω
(w + 1)

1 − κ2
= 1

1 − κ2

(
1

w̃
+ κ2

exp(−Sηω
(w̃)) − 1

)
,

log

((
1

w
+ 1 + (1 + w)H ′

ηω
(w)

)
−

(
1

z
+ 1 + (1 + z)H ′

ηω
(z)

))
= log

(
1

w̃
− 1

z̃

)
.

Substituting these equalities and slightly transforming the expression, we obtain that the right-hand side of (6.13) is
equal to

1

(2π i)2

∮
|z|=ε

∮
|w|=2ε

(
1

z̃
+ κ1

exp(−Sηω
(z̃)) − 1

+ κ1

exp(−Sηω
(z̃)) + 1

)j1

×
(

1

w̃
+ κ2

exp(−Sηω
(w̃)) − 1

+ κ2

exp(−Sηω
(w̃)) + 1

)j2 1

(z̃ − w̃)2
dz̃ dw̃. (6.14)

For any 0 < κ ≤ 1 the set {z ∈ H : κL(z) = κ} is a well-defined curve in H. Let Zκ be a union of this curve and its
complex conjugate.

Let 0 < κ1 ≤ κ2 ≤ 1. Given the explicit formulas (6.3) and (6.4), it is easy to check that the curve Zκ2 encircles the
curve Zκ1 . Therefore, we can deform contours in (6.5) and obtain

1

(2π i)2

∮
z̃∈Z(κ1)

∮
w̃∈Z(κ2)

(
1

z̃
+ κ1

exp(−Sη(z̃)) − 1
+ κ1

exp(−Sηω
(z̃)) + 1

)j1

×
(

1

w̃
+ κ2

exp(−Sηω
(w̃)) − 1

+ κ2

exp(−Sηω
(w̃)) + 1

)j2 1

(z̃ − w̃)2
dz̃ dw̃. (6.15)

Note that for z̃ ∈ Z(κ1) the expression

1

z̃
+ κ1

exp(−Sηω
(z̃)) − 1

+ κ1

exp(−Sηω
(z̃)) + 1

is real and is equal to χL(z), see Lemma 6.1. Therefore, we can rewrite (6.5) as

− 1

4π2

∮
z̃∈Z(κ1)

∮
w̃∈Z(κ2)

χL(z̃)j1χL(w̃)j2
1

(z̃ − w̃)2
dz̃ dw̃.

Integrating (6.10) by parts we see that

Mκ
j = N−j+1√π

j + 1

(
pκ

j+1 − Epκ
j+1

)
.

Therefore, the set {Mκ
j }1≥κ>0,j∈N converges to the Gaussian distribution with zero mean and limit covariance

lim
N→∞ cov

(
M

κ1
j1

,M
κ2
j2

) = −1

4π(j1 + 1)(j2 + 1)

∮
z∈Z(κ1)

∮
z∈Z(κ2)

χL(z)j1χL(z)j2

× dχL(z)

dz

dχL(w)

dw

1

(z − w)2
dzdw. (6.16)
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By definition, the set {Mκ
j }1≥κ>0,j∈N is Gaussian with zero mean and covariance

cov
(
Mκ1

j1
,Mκ2

j2

) =
∮

z∈H:κL(z)=κ1

∮
z∈H:κL(z)=κ2

χL(z)j1χL(z)j2

× dχL(z)

dz

dχL(w)

dw

(−1

2π
ln

∣∣∣∣z − w

z − w̄

∣∣∣∣
)

dzdw. (6.17)

Using the equality

2 ln

∣∣∣∣z − w

z − w̄

∣∣∣∣ = ln(z − w) − ln(z − w̄) − ln(z̄ − w) + ln(z̄ − w̄),

we can write it in the form

cov
(
Mκ1

j1
,Mκ2

j2

) = − 1

4π

∮
z∈Z(κ1)

∮
z∈Z(κ2)

χη(z)
j1χη(z)

j2
dχη(z)

dz

dχη(w)

dw
ln(z − w)dzdw.

Integration by parts shows that this formula coincides with the right-hand side of (6.16) which concludes the proof of
the theorem.

7. Examples of the frozen boundary

7.1. The Aztec diamond

The Aztec diamond is a rectangular Aztec diamond of type (N,A1 = 1,B1 = N). In this case we have a1 = 0 and
b1 = 1.

Therefore, we obtain

Stηω
(t) = log

t

t − 1
.

Then we solve the equation Stηω
(t) = log z for t and substitute it into (4.2) we get

Fκ(z) = z

z − 1
+ κz

(1 − κ)(z + 1)
.

Solving explicitly the equation

Fκ(z) = χ

1 − κ

we find

zκ+(χ) = −1 + 2κ + √
(2χ − 1)2 + (2κ − 1)2 − 1

2(1 − χ)
.

Thus, the density

dηκ

(
χ

1 − κ

)
= 1

π
Arg

(
1 − 2κ − √

(2χ − 1)2 + (2κ − 1)2 − 1

2(χ − 1)

)
,

where (χ, κ) is such that (2χ − 1)2 + (2κ − 1)2 − 1 < 0.
Thus, the frozen boundary is given by the equation

(2χ − 1)2 + (2κ − 1)2 − 1 = 0,

as expected.
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Fig. 17. The Arctic circle.

Fig. 18. The frozen boundary for a uniform measure on [0,2].

7.2. The Aztec half-diamond

Definition 7.1. The Aztec half-diamond is a rectangular Aztec diamond R(N,�,N − 1), where � = (1,3, . . . ,

2N − 1).

This domain was considered in [22] and subsequently in [37].
In this case we obtain that ηω is a uniform measure on [0,2]. We can explicitly compute

Stηω
(t) = −1

2
log

(
1 − 2

t

)
.

Then we solve the equation Stηω
(t) = log z for t and substitute it into (4.2) we get

Fκ (z) = 2z(κ − z)

(−1 + z)(1 + z)
= χ.

Therefore,

dηκ

(
χ

1 − κ

)
= 1

π
Arg

(−κ − √
κ2 + χ(χ − 2)

χ − 2

)
.

So the frozen boundary is the curve given by the equation

κ2 + χ(χ − 2) = 0

for κ ∈ [0,1) and χ ∈ [0,2].
7.3. The case of the uniform measure on [0, θ ]
We consider a rectangular Aztec diamond R(N,�, (θ − 1)(N − 1)), where � = (1,1 + θ, . . . , θ(N − 1) + 1) and
θ ∈ Z>0.

We obtain that ηω is a uniform measure on [0, θ ]. In this case we can explicitly compute

Stηω
(t) = −1

θ
log

(
1 − θ

t

)
.
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Fig. 19. The frozen boundary for a uniform measure on [0,4].

Let θ = 4. We can explicitly solve the system (6.1) on the computer and we obtain that the frozen boundary is the
curve given by the equation

f (χ, κ) = 27κ4 + (
κ2 + (χ − 4)χ

)3
.

for κ ∈ [0,1) and χ ∈ [0,4].

7.4. Frozen boundary for general boundary conditions

For an arbitrary measure ηw the limit shape (and, in particular, the frozen boundary) is determined by the quantized
free projection of ηw , see Remark 3.9. However, it is not easy to obtain an explicit parametrization of the frozen
boundary from such a description. We performed a necessary analysis in some particular cases in Sections 5 and
Sections 7.1–7.3, and we do not address the general case in details.

Proposition 6.2 gives an explicit connection between the geometry of the liquid region in our model and the model
of random lozenge tilings of “half-hexagons” studied by Duse and Metcalfe [18] and [19]. Moreover, the techniques
developed by these authors can be directly applied in our situation. Let us mention one corollary of the results from
[18,19].

For a general limit measure the frozen boundary can have a complicated structure (see the discussion and examples
in [19]), however, it is always possible to give an explicit parametrization (not necessarily algebraic) of a part of the
boundary called the edge, a natural boundary on which universal asymptotic behavior is expected.

For a set S ⊂R let S̄ denote its closure and S◦ denote its interior. From Lemma 2.2 in [18] it follows that(
χL(·), κL(·)) : H→ L

defined by (6.3) and (6.4) has a unique continuous extension to an open set R ⊂R given by

R : = ((
R\Supp(ηω)

) ∪ (
R\Supp(λ − ηω)

))◦
, (7.1)

where λ denotes the Lebesgue measure (recall that under our usual assumptions ηω is absolutely continuous with
respect to Lebesgue measure and has density ≤ 1).

Definition 7.2. The edge E is a smooth curve which is the image of the extended map (χL(·), κL(·)) : R → ∂L.

The formulas (6.3) and (6.4) for (χL(·), κL(·)) give rise to an explicit parametrization of E . It is natural to conjec-
ture that in a generic situation the edge is not an algebraic curve (its parametrization involves exponents of the Stieltjes
transform of the limit measure), but we do not address this question formally. In the case considered in Section 5 when
ηω is a uniform measure on a union of segments R = R and the parametrization is the same as the one obtained in
Theorem 5.1.

Appendix A

Let 0 < β < 1. Consider the following more general measure on the set of tilings of rectangular Aztec diamond
R(�,N,m). In the case of the Aztec diamond it was discussed in [13].



1286 A. Bufetov and A. Knizel

Let μ(n) and ν(n) be two non-negative signatures of length n. Define the coefficients stβ(μ(n) → ν
(n)
β ) and

pr(ν(n) → μ(n−1)) via

sμ(n) (u1, . . . , un)

sμ(n) (1n)

n∏
i=1

(
1 + β(ui − 1)

) =
∑

ν(n)∈GTn

stβ
(
μ(n) → ν(n)

) sν(n) (u1, . . . , un)

sν(n) (1n)
, (8.1)

sν(n) (u1, . . . , un−1,1)

sν(n) (1n)
=

∑
μ(n−1)∈GTn−1

prβ
(
ν(n) → μ(n−1)

) sμ(n−1) (u1, . . . , un)

sμ(n−1) (1n)
. (8.2)

Analogously to the construction from Section 2 we can define a probability measure on the sequences of signatures
of the form

SN = {(
μ(N), ν(N), . . . ,μ(1), ν(1)

)}
by the formula

PN,β
μ

((
μ(N), ν(N), . . . ,μ(1), ν(1)

))

= 1μ(N)=μ stβ
(
μ(N) → ν(N)

)N−1∏
j=1

(
prβ

(
ν(N−j+1) → μ(N−j)

)
stβ

(
μ(N−j) → ν(N−j)

))
, (8.3)

where μ(i), ν(i) ∈ GTi .
Let R(�,N,m) be a rectangular Aztec diamond and ω be a signature corresponding to its boundary row. Then the

measure PN,β
ω corresponds to some measure on the set of domino tilings D(�,N,m). When β = 1

2 we know from
Proposition 2.13 that the corresponding measure is the uniform measure, for general β in can be shown in the same
fashion that the corresponding measure is Pq for q = β

1−β
defined by

Pq

(
D ∈ D(�,N,m)

) = qnumber of the horizontal dominos in D

(1 + q)N(N+1)/2sω(1N)
. (8.4)

This fact in the case of the Aztec diamond is well known, see [29] and [5]; for a recent exposition see [8].
Next, using the very same arguments as in the case of β = 1

2 we can study the asymptotics of random domino
tilings of R(�,N,m) with respect to Pq . We decided to include only the statements of the results in this case.

Proposition 8.1. Consider N → ∞ asymptotics such that all the dimensions of a rectangular Aztec diamond
R(N,�(N),m(N)) linearly grow with N . Let (χ, κ) be the new continuous coordinates of the domain. Assume
that the sequence of signatures ω(N) corresponding to the first row is regular and limN→∞ m[ω(N)] = ηω. Let us
fix κ ∈ (0,1) and let ηκ

q be the limit of measures m[ρk
q(N)], induced by Pq at the level k. The density of ηκ

q can be
computed in the following way

dηκ
q(x) = 1

π
Arg

(
zκ+(x)

)
, (8.5)

where zκ,q
+ (x) is the unique complex root of the system

{
Fβ

κ (z, t) = z
(1−κ)

( t
z
− 1

(z−1)
+ κq

1+q+q(z−1)
) + z

z−1 = x,

Stηω
(t) = log(z)

(8.6)

which belongs to the upper half-plane. This formula is valid for such (x, κ) that the complex root exists, the density is
equal to zero or one otherwise.
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Fig. 20. An example of a curve Cβ with three boundary segments and q = 0.0099.

Fig. 21. An example of a curve Cβ with three boundary segments and q = 99.

Theorem 8.2. The frozen boundary of the limit of a random rectangular Aztec diamond of type (N,A(s),B(s)) with
respect to the measure PN,q

ω is a rational algebraic curve Cβ with an explicit parametrization (8.7). Moreover, its dual
C∨

q is of degree 2s and is given in the following parametric form

C∨
q =

(
θ,

(1 + q)θ�s(θ)

(�s(θ) − 1)(q�s(θ) + 1)

)
, (8.7)

where

�s(θ) = (1 − a1θ)(1 − a2θ) · · · (1 − asθ)

(1 − b1θ)(1 − b2θ) · · · (1 − bsθ)
.

The Central Limit Theorem 6.9 is also generalized straightforwardly, we omit its statement.

Appendix B

In this section we show that the local fluctuations in our model are governed by the discrete sine kernel. The conjec-
tured local limit first appeared in [34], and the proof for the Aztec diamond is given in [13]. This is an immediate
corollary of a result of [23] about lozenge tilings, which uses the methods from [39]. Such a derivation is possible
because the distribution of a signature on one level of our probabilistic model can be obtained from some random
lozenge tilings model. However, it does not seem possible to obtain the two-dimensional local (or global) behavior
with the help of this relation between domino and lozenge tilings.

First, let us formulate the general result from [23]. Assume that {ρN }N≥1 is a sequence of probability measures
which satisfies assumptions of Theorem 3.2. Let 0 < a < 1, and let ρa

N be the probability measure on GT[aN] with
the Schur generating function

SU(N)

ρa
N

(u1, . . . , u[aN]) = SU(N)
ρN

(u1, . . . , uN)|u[aN]+1=1,...,uN=1 (9.1)
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(such a measure exists because the coefficients in the branching rule for Schur functions are nonnegative). In fact,
due to (9.1) the measure ρa

N encodes the distribution of random lozenge tilings with random boundary conditions ρN

in the model considered by Petrov in [39]. By Theorem 3.2, the random probability measures m[ρa
N ] converge to a

deterministic measure ηa . Let φ(a)(x) be the density of ηa with respect to the Lebesgue measure (recall that it always
exist and takes values in [0;1]).

For p ∈ (0;1) a discrete sine kernel is defined by the formula

Kp(y1, y2) = sin(pπ(y1 − y2))

π(y1 − y2)
, y1, y2 ∈ Z.

Let λ = (λ1 ≥ λ2 ≥ · · · ≥ λ[aN]) be a random signature distributed according to ρa
N . For x1, . . . , xm ∈ Z denote by

θ(m)(x1, . . . , xm) the probability that {x1, . . . , xm} ⊂ {λi + N − i}i=1...[aN ].

Proposition 9.1. Let x ∈ R, and let x(N) be a sequence of integers such that x(N)/N → x, as N → ∞. For m ∈ N

let x1(N), . . . , xm(N) be sequences of integers such that xi(N) − x(N) does not depend on N , i = 1, . . . ,m.
Then, in the assumptions and notations above, we have

lim
N→∞ θ(m)

(
x1(N), . . . , xm(N)

) = m

det
i,j=1

[
Kφ(a)(x)

(
xi(N), xj (N)

)]
(note that the right-hand side does not depend on N ).

Proposition 9.1 immediately follows from Theorem 4.1 of [23] and Theorem 3.2.
Let us apply it to our setting. Let k = k(N) be a sequence of integers such that k(N)/N → a as N → ∞. Recall

that ρk(N) is a probability measure on signatures of length N − � k(N)−1
2 � coming from uniform domino tilings, see

Section 3. Recall that the measures m[ρk(N)] have a limit measure ηκ . The expression for its density dηκ is given by
Theorem 4.3.

Now let λ = (λ1 ≥ λ2 ≥ · · · ≥ λ
N−� k−1

2 �) be a random signature distributed according to ρk(N). For x1, . . . , xm ∈ Z

denote by θ̃ (m)(x1, . . . , xm) the probability that {x1, . . . , xm} ⊂ {λi + N − i}
i=1,...,N−� k−1

2 �.

Proposition 9.2. Let x ∈ R, and let x(N) be a sequence of integers such that x(N)/N → x, as N → ∞. For m ∈ N

let x1(N), . . . , xm(N) be sequences of integers such that xi(N) − x(N) does not depend on N , i = 1, . . . ,m.
Then

lim
N→∞ θ̃ (m)

(
x1(N), . . . , xm(N)

) = m

det
i,j=1

[
Kdηκ (x)

(
xi(N), xj (N)

)]
(note that the right-hand side does not depend on N ).

Proof. It directly follows from Lemma 3.7 and Proposition 9.1. �
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