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Abstract. We study the long time behavior of the stochastic quantization equation. Extending recent results by Mourrat and Weber
(Global well-posedness of the dynamic φ4 in the plane (2015) Preprint) we first establish a strong non-linear dissipative bound
that gives control of moments of solutions at all positive times independent of the initial datum. We then establish that solutions
give rise to a Markov process whose transition semigroup satisfies the strong Feller property. Following arguments by Chouk and
Friz (Support theorem for a singular SPDE: the case of gPAM (2016) Preprint) we also prove a support theorem for the laws of
the solutions. Finally all of these results are combined to show that the transition semigroup satisfies the Doeblin criterion which
implies exponential convergence to equilibrium.

Along the way we give a simple direct proof of the Markov property of solutions and an independent argument for the existence
of an invariant measure using the Krylov–Bogoliubov existence theorem. Our method makes no use of the reversibility of the
dynamics or the explicit knowledge of the invariant measure and it is therefore in principle applicable to situations where these are
not available, e.g. the vector-valued case.

Résumé. Nous étudions le comportement sur le long terme de l’équation de quantification stochastique. Dans la continuité de
récents résultats par Mourrat et Weber (Global well-posedness of the dynamic φ4 in the plane (2015) Preprint), nous établissons
en premier lieu une borne dissipative forte non-linéaire qui contrôle les moments des solutions, pour tout choix de temps, indépen-
damment des conditions initiales. Nous prouvons ensuite que les solutions génèrent un processus Markovien dont le semigroupe
satisfait la propriété de Feller forte. Nous obtenons également un théorème pour le support des lois des solutions grâce à des argu-
ments adaptés de Chouk et Friz (Support theorem for a singular SPDE: the case of gPAM (2016) Preprint). Enfin, en combinant
tous ces résultats, nous montrons que le semigroupe de transition satisfait le critère de Doeblin, ce qui entraine une convergence
exponentielle vers l’équilibre.

Nous obtenons également au passage une preuve directe de la propriété de Markov pour les solutions, ainsi qu’un argument
indépendant pour l’existence de mesures invariantes en utilisant le théorème d’existence de Krylov–Bogoliubov. Notre méthode
n’utilise pas le caractère réversible de la dynamique ni la connaissance explicite de la mesure invariante, et peut donc en théorie
s’appliquer dans des cas où ces propriétés ne sont pas connues, par exemple le cas vectoriel.
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1. Introduction

We consider the stochastic quantization equation on the 2-dimensional torus T2 given by{
∂tX =�X−X−∑n

k=0 ak :Xk : +ξ, in R+ ×T
2,

X(0, ·)= x, on T
2,

(1.1)
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where n is odd, an > 0, ξ is a Gaussian space time white noise and x is a distribution of suitably negative regularity.
Here :Xk : stands for the kth Wick power of X (see Section 2 for its definition). This equation was first proposed by
Parisi and Wu (see [19]) as a natural reversible dynamics for the �n+1

2 measure which is given by

ν(dX)∝ exp

{
−2

∫
T2

n∑
k=0

ak

k+ 1
:Xk+1 : (z)dz

}
μ(dX), (1.2)

where μ is the law of a massive Gaussian free field.
The interpretation and construction of solutions for (1.1) remained a challenge for many years with important

contributions by Jona–Lasinio and Mitter in [13] (solution of a modified equation via Girsanov’s transformation) and
Albeverio and Röckner in [1] (construction of solutions using the theory of Dirichlet forms). In [5] Da Prato and
Debussche proposed a simple transformation of (1.1) which allowed them to prove local in time existence of strong
solutions for any initial datum x of suitable (negative) regularity and non-explosion for x in a set of measure one with
respect to (1.2). Recently Mourrat and Weber [15] obtained global in time solutions on the the full space for any initial
datum of suitable regularity by following a similar strategy. In [21] Röckner et al. identified these solutions with the
solutions obtained via Dirichlet forms.

The aim of this paper is to establish exponential convergence to equilibrium for solutions of (1.1). Building on the
analysis in [15] and using a simple comparison test for non-linear ordinary differential equations we establish a strong
dissipative bound for the solutions. We then prove the strong Feller property for the Markov semigroup generated by
the solution generalizing the method in [12, Section 4.2]. Although for convenience we make (moderate) use of global
in time existence which follows from the strong dissipative bounds derived before, this part of the analysis could also
be implemented using only local existence (see Remark 5.9); the linearized dynamics of Galerkin aproximations are
controlled by combining a localization via stopping times and the small-time bounds obtained from the local existence
theory. We furthermore establish a support theorem in the spirit of [4]. Finally, we combine all of these ingredients to
show that the associated Markov semigroup satisfies the Doeblin criterion which implies exponential convergence to
the unique invariant measure uniformly over the state space.

All steps are implemented for general odd n except for the support theorem which we only show in the case n= 3.
The reason for this restriction is explained in Remark 6.2. We expect however that a support theorem for (1.1) holds
true for all odd n and that such a result could be combined with the results of this paper to generalize Theorem 6.5 to
the case of an arbitrary odd n.

Along the way we give independent proofs of the Markov property for the dynamics as well as existence of the
invariant measure. The Markov property was already established previously in [21] based on the identification of
the dynamics with the solutions constructed via Dirichlet form. The same paper [21] also established that (1.2) is a
reversible (and in particular invariant) measure for the dynamics. We stress that our approach completely circumvents
the theory of Dirichlet forms and uses neither the symmetry of the process nor the explicit form of the invariant
measure. We therefore expect that our methods could be applied in situations where the reversibility is absent and
where there is no explicit representation of the invariant measure, for example in situations where X is vector rather
than scalar valued.

Finally, we would like to mention two independent works on a similar subject – one [22] published very recently
and one [10] about to appear. In [22] the authors establish that (1.2) is the unique invariant measure for the dynamics
and that the transition probabilities converge to this invariant measure. Their method is based on the asymptotic
coupling technique from [11] and relies on the bounds from [15]. This analysis does however not include the strong
Feller property or the support theorem and does not imply exponential convergence to equilibrium. In the forthcoming
article [10] the authors present a general method to establish the strong Feller property, for solutions of SPDE solved
in the framework of the theory of regularity structures. As an example this method is implemented for the dynamic
�4

3 model. We expect that their method can also treat the case of (1.1) but at first glance it only implies continuity
of the associated Markov semigroup with respect to the total variational norm, whereas Theorem 5.10 implies Hölder
continuity with respect to this norm.

1.1. Outline

In Section 2 we introduce some notation for Wick powers and their approximations. The results in this section are
essentially contained in [5] and [15] and the purpose of the section is mostly to fix notation. In Section 3 we first
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briefly sketch the construction of solutions to (1.1) including a short time bound and a stability result which are used
in Section 5. We then prove the strong dissipative bound which is independent of the initial condition, improving on
the bounds obtained in [15]. In Section 4 we prove the Markov property for the solution using a simple factorization
argument as in [6] and we furthermore prove existence of invariant measures based on the bounds obtained in Sec-
tion 3. The strong Feller property for the associated Markov semigroup is shown in Section 5. Finally, in Section 6 we
prove a support theorem for (1.1) in the case of n= 3 which we combine with the results of the previous sections to
prove exponential mixing.

1.2. Notation

Let Td be the d-dimensional torus of size 1 (throughout the article d = 2). We denote by C∞(Rd) and C∞(Td)

the space of real-valued smooth functions over R
d and T

d respectively as well as by S ′(Td) the dual space of
Schwarz distributions acting on C∞(Td). We furthermore denote by Lp(Td) the space of p-integrable functions on
T

d , endowed with the norm

‖f ‖Lp :=
(∫

Td

∣∣f (z)
∣∣p dz

) 1
p

.

Although we only deal with spaces of real-valued functions, we prefer to work with the orthonormal basis {em}m∈Zd

of trigonometric functions

em(z) := e2π im·z,

for z ∈ T
d . Thus some complex-valued functions appear and we write

〈f,g〉 =
∫
Td

f (z)g(z)dz

for their inner product. In this notation, for f ∈L2(Td), the mth Fourier coefficient is given by

f̂ (m) := 〈f, em〉
and since f is real-valued we have the symmetry condition

f̂ (−m)= f̂ (m), (1.3)

for any m ∈ Z
d . For f ∈S ′(Td) we define the mth Fourier coefficient as

f̂ (m) := 〈
f, cos(2π im·)〉+ i

〈
f, sin(2π im·)〉,

with the convention that 〈f, ·〉 stands for the action of f on C∞(Td).
For ζ ∈ R

d and r > 0 we denote by B(ζ, r) the ball of radius r centered at ζ . We consider the annulus A =
B(0, 8

3 ) \B(0, 3
4 ) and a dyadic partition of unity (χκ)κ≥−1 such that

(i) χ−1 = χ̃ and χκ = χ(·/2κ ), κ ≥ 0, for two radial functions χ̃ , χ ∈C∞(Rd).
(ii) supp χ̃ ⊂ B(0, 4

3 ) and suppχ ⊂A.
(iii) χ̃(ζ )+∑∞

κ=0 χ(ζ/2κ )= 1, for all ζ ∈R
d .

We furthermore let

A2κ := 2κA, κ ≥ 0.

Notice that suppχκ ⊂A2κ , for every κ ≥ 0. We also keep the convention that A2−1 = B(0, 4
3 ). The existence of such

a dyadic partition of unity is given by [2, Proposition 2.10].
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For a function f ∈ C∞(Td) we define the κ th Littlewood–Paley block as

δκf (z) :=
∑

m∈Zd

χκ(m)f̂ (m)e2π im·z, κ ≥−1. (1.4)

Sometimes it is convenient to write (1.4) as δκf = ηκ ∗ f , κ ≥−1, where

ηκ ∗ f (·)=
∫
Td

ηκ(· − z)f (z)dz,

and

ηκ(z) :=
∑

m∈Zd

χκ(m)e2π im·z.

For α ∈R and p,q ∈ [1,∞] we define the non-homogeneous periodic Besov norm (see [2, Section 2.7]),

‖f ‖Bα
p,q
:= ∥∥(2ακ‖δκf ‖Lp

)
κ≥−1

∥∥
�q . (1.5)

The Besov space Bα
p,q is defined as the completion of C∞(Td) with respect to the norm (1.5). We are mostly interested

in the Besov space Bα∞,∞ which from now on we denote by Cα . Note that for p = q =∞ our definition of Besov
spaces differs from the standard definition as the set of those distributions for which (1.5) is finite. Our convention has
the advantage that all Besov spaces are separable. Some basic properties of Besov spaces are collected in Appendix A.

Throughout the article we fix α0 ∈ (0, 1
n
) (we measure the regularity of the initial condition in C−α0 ) as well as

β > 0 (the regularity of the remainder v defined in Section 3.1) and γ > 0 (the rate of blowup of the ‖vt‖Cβ for t close
to 0, see e.g. Theorem 3.3) such that

γ <
1

n
,

β + α0

2
< γ. (1.6)

For an arbitrary α ∈ (0,1) we let

Cn,−α(0;T ) := C
([0, T ];C−α

)×C
(
(0, T ];C−α

)n−1 (1.7)

and denote by Z = (Z(1),Z(2), . . . ,Z(n)) a generic Cn,−α(0;T )-valued vector. For α′ > 0 we also define

|||Z|||α;α′;T := max
k=1,2,...,n

{
sup

0≤t≤T

t(k−1)α′∥∥Z
(k)
t

∥∥
C−α

}
.

Throughout the whole article C denotes a positive constant which might differ from line to line but we make explicit
the dependence on different parameters where necessary. Furthermore, through the proofs of our statements, in cases
where we do not want to keep track of the various constants in the inequalities we use � instead of ≤ C. Finally, we
use a ∨ b and a ∧ b to denote the maximum and the minimum of a and b.

2. Preliminaries

In this section we present the necessary stochastic tools to handle (1.1). In Section 2.1 we introduce the stochastic heat
equation along with its Wick powers in terms of abstract iterated stochastic integrals in the spirit of [18, Chapter 1].
In Section 2.2 we describe how these iterated stochastic integrals arise as limits of powers of solutions to finite
dimensional approximations after renormalization.
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2.1. The stochastic heat equation and its Wick powers

Let ξ be a space-time white noise on R× T
2 (see Appendix B) on some probability space (�,F,P), which is fixed

from now on. We set

F̃t = σ
({

ξ(φ) : φ|(t,+∞)×T2 ≡ 0, φ ∈L2(
R×T

2)}), (2.1)

for t >−∞ and denote by (Ft )t>−∞ the usual augmentation (as in [20, Chapter 1.4]) of the filtration (F̃t )t>−∞.
Consider the stochastic heat equation with zero initial condition at time s ∈ (−∞,∞){

∂t s,t =� s,t − s,t + ξ, in (s,∞)×T
2,

s,s = 0, on T
2.

(2.2)

There are several ways to give a meaning to this equation. We simply use Duhamel’s principle (see [8, Section 2.3])
as a definition and set for every φ ∈C∞(T2) and s < t

s,t (φ) :=
∫ t

s

∫
T2

〈
φ,H(t − r, z− ·)〉ξ(dr,dz), (2.3)

where H(r, ·), r ∈R \ {0}, stands for the periodic heat kernel on L2(T2) given by

H(r, z) :=
∑

m∈Z2

e−(1+4π2|m|2)r em(z), (2.4)

for all z ∈ T
2. We furthermore let

S(t) := e−tet�

be the semigroup associated to the generator �− 1 in L2(T2), i.e. the convolution operator with respect to the space
variable z ∈ T

2 with the kernel H(t, ·).
The integral in (2.3) is a stochastic integral (see Appendix B for definitions) and for fixed s < t , s,t is a family of

Gaussian random variables indexed by C∞(T2).
Since it is more convenient to work with stationary processes we extend definition (2.3) for s = −∞. For φ ∈

C∞(T2), n≥ 2 and t >−∞ we also consider the multiple stochastic integral (see Appendix B) given by

−∞,t (φ) :=
∫
{(−∞,t]×T2}n

〈
φ,

n∏
k=1

H(t − sk, zk − ·)
〉
ξ

(
n⊗

k=1

dsk,

n⊗
k=1

dzk

)
. (2.5)

We call −∞,· the nth Wick power of −∞,· and we recall that for every n ≥ 1 and φ ∈ C∞(T2), −∞,·(φ) is
an element in the nth homogeneous Wiener chaos (see Appendix B for definitions). We furthermore point out that

−∞,·(φ) is stationary, for every φ ∈C∞(T2).

The next theorem collects the optimal regularity properties of the processes { −∞,·}, n≥ 1 and is very similar
to the bounds originally derived in [5, Lemma 3.2]. The precise statement is a consequence of the Kolmogorov-type
criterion [15, Lemma 5.2, Lemma 5.3] and the proof follows similar lines to the one of [15, Theorem 5.4].

Theorem 2.1. Let p ≥ 2. For every n ≥ 1 and t0 >−∞, the process −∞,t0+· admits a modification
˜

−∞,t0+·
such that

˜
−∞,t0+· ∈ C([0, T ];C−α), for every T > 0 and α > 0. Furthermore, there exists θ ≡ θ(α) ∈ (0,1) > 0

and C ≡ C(T ,α,p) such that

E sup
s,t∈[0,T ]

‖˜−∞,t0+t −˜
−∞,t0+s‖pC−α

|t − s|pθ
≤ C. (2.6)

For notational convenience we always refer to
˜

−∞,· as −∞,·.
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Proof. See Appendix D. �

Notice that for every t ≥ s we have that

s,t = −∞,t − S(t − s) −∞,s .

It is then reasonable to define (see also [15, p. 34] for equivalent definitions) the nth shifted Wick power of s,t ,
t > s >−∞, as

s,t :=
n∑

k=0

(
n

k

)
(−1)k

(
S(t − s) −∞,s

)k
−∞,t . (2.7)

Here and below we use the convention s,t ≡ 1 for k = 0 and any −∞≤ s < t . We furthermore point out that the
nth shifted Wick power is not an element of the nth homogeneous Wiener chaos (see Appendix B for definitions). We
refer the reader to Proposition 2.3 below for a natural approximation of the objects defined in (2.7).

At this point we would like to mention that one might work directly with −∞,· instead of introducing (2.7)
(see for example [5] and [9]). This alternative approach has the advantage that the diagrams are stationary in time.
However, we prefer to work with (2.7) (as in [15]) because when proving the Markov property (see Section 4.1) we use

heavily that s,t is independent of Fs for any s < t (see Proposition 2.3). A slight disadvantage of our convention

is the logarithmic divergence of s,t as t ↓ s (see (2.8)).
The next proposition uses the regularization property of the heat semigroup (see Proposition A.5) to show that for

every t > s and n≥ 2, s,t is a well-defined element in a Besov space of negative regularity close to 0.

Proposition 2.2. Let p ≥ 2 and T > 0. For every s0 > −∞, α ∈ (0,1) and α′ > 0 there exist θ ≡ θ(α,α′) > 0 and
C ≡ C(T ,α,α′,p,n) such that

E sup
0≤s≤t

(
s(n−1)α′p‖ s0,s0+s‖pC−α

)≤ Ctpθ , (2.8)

for every t ≤ T .

Proof. We show (2.8) for s0 = 0.
Let ᾱ < α ∧ 2

3α′ and V (s)= S(s)(− −∞,0). Using (A.1) as well as Propositions A.7 and A.5 we have that∥∥V (s)n
∥∥
C−α �

∥∥V (s)
∥∥n−1
C2ᾱ

∥∥V (s)
∥∥
C−ᾱ � s−(n−1) 3

2 ᾱ‖ −∞,0‖nC−ᾱ .

In a similar way, for k /∈ {0, n}, we have that∥∥V (s)k −∞,s

∥∥
C−α � s−k 3

2 ᾱ‖ −∞,0‖kC−ᾱ‖ −∞,s‖C−ᾱ .

Thus

‖ 0,s‖C−α � s−(n−1) 3
2 ᾱ‖ −∞,0‖nC−ᾱ +

n−1∑
k=0

(
n

k

)
s−k 3

2 ᾱ‖ −∞,0‖kC−ᾱ‖ −∞,s‖C−ᾱ .

Hence

E sup
0≤s≤t

s(n−1)α′p‖ 0,s‖pC−α � t (n−1)(α′− 3
2 ᾱ)p

E‖ −∞,0‖npC−ᾱ

+
n−1∑
k=0

(
n

k

)
t ((n−1)α′−k 3

2 ᾱ)p
(
E‖ −∞,0‖2kp

C−ᾱ

) 1
2
(
E sup

0≤s≤t

‖ −∞,s‖2p

C−ᾱ

) 1
2
,

where we use a Cauchy–Schwarz inequality in the last line. Combining with (2.6) we finally obtain (2.8). �
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2.2. Finite dimensional approximations

Let ρε(z)=∑
|m|< 1

ε
em(z) and define a finite dimensional approximation of s,t by

ε

s,t (z) := s,t

(
ρε(z− ·)

)
.

We introduce the renormalization constant

�ε := ‖1[0,∞)Hε‖2
L2(R×T2)

, (2.9)

where Hε(r, z)= (H(r, ·) ∗ ρε)(z) noting that �ε ∼ log ε−1 as ε→ 0+. For any integer n≥ 1 and s ≥−∞ we define

ε

s,t :=Hn

( ε

s,t ,�ε
)
,

where Hn(X,C), X,C ∈R, stands for the nth Hermite polynomial given by the recursive formula{
H−1(X,C)= 0, H0(X,C)= 1,

Hn(X,C)=XHn−1(X,C)− (n− 1)CHn−2(X,C).
(2.10)

The first three Hermite polynomials are given by H1(X,C)=X, H2(X,C)=X2 −C, H3(X,C)=X3 − 3CX.

Proposition 2.3. Let α,α′ > 0. Then for every n≥ 1 and p ≥ 2 we have that

lim
ε→0+

E sup
0≤t≤T

∥∥ ε

−∞,s+t − −∞,s+t

∥∥p

C−α = 0,

lim
ε→0+

E sup
0≤t≤T

t(n−1)α′p∥∥ ε

s,s+t − s,s+t

∥∥p

C−α = 0,

for every s >−∞. In particular, s,s+· is independent of Fs and for s1, s2 �= −∞, s1,s1+·
law= s2,s2+·.

Proof. See Appendix E. �

An immediate consequence of the above proposition is the following corollary which we later use in Section 4 to
prove the Markov property.

Corollary 2.4. For every n≥ 1 and t, h > 0 the following identity holds P-almost surely,

0,t+h =
n∑

k=0

(
n

k

)(
S(h) 0,t

)k
t,t+h. (2.11)

Proof. It suffices to check (2.11) for
ε

0,t+h. The result then follows from the previous proposition. �

3. Solving the equation

3.1. Analysis of the problem

We are interested in solving the following renormalized stochastic partial differential equation,{
∂tX =�X−X−∑n

k=0 ak :Xk : +ξ, in R+ ×T
2,

X(0, ·)= x, on T
2,

(3.1)
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where : Xk : stands for the kth Wick power of X and x ∈ C−α0 . Motivated by the Da Prato–Debussche method (see
[5]) we search for solutions to (3.1) by writing X = 0,· + v, where 0,· is the solution to (2.2) and the remainder v is
a mild solution of the following random partial differential equation,{

∂tv =�v − v −∑n
k=0 ak

∑k
j=0

(
k
j

)
vj

0,·,
v(0, ·)= x.

(3.2)

Remark 3.1. In [15] 0,· is started from x and consequently there (3.2) is solved with zero initial condition. Our
approach of starting 0,· from 0 and the remainder v from x has the advantage that the strong non-linear damping
in (3.2) acts directly on the initial condition, yielding a strong dissipative bound for v that is independent of x (see
Proposition 3.7).

We can rewrite (3.2) as{
∂tv =�v − v −∑n

j=0 vjZ(n−j),

v(0, ·)= x,
(3.3)

where

Z(n−j) =
n∑

k=j

ak

(
k

j

)
0,·,

for all 0≤ j ≤ n−1 and Z(0) = an. For the rest of this section Z always denotes a vector of this form. This convention
will not be used in the other sections.

Notice that for every α ∈ (0,1), Z ∈ Cn,−α(0;T ) (see (1.7) for the definition of the space), for every T > 0, and
by (2.8) for every α′ > 0 there exists θ > 0 such that

E|||Z|||p
α;α′;t ≤ Ctpθ (3.4)

for every t ≤ T , p ≥ 2.
We now fix α < α0 small enough (the precise value is fixed below in the proof of Theorem 3.3) and Z ∈

Cn,−α(0;T ), for every T > 0, and a norm ||| · |||α;α′;T , for some α′ > 0 but still sufficiently small. We furthermore
let

F(v,Z) :=
n∑

j=0

vjZ(n−j). (3.5)

3.2. Short time existence

We are interested in solutions to the PDE problem (3.3).

Definition 3.2. Let T > 0 and x ∈ C−α0 . We say that a function v is a mild solution of (3.3) up to time T if v ∈
C((0, T ];Cβ) and

vt = S(t)x −
∫ t

0
S(t − s)F (vs,Zs)ds, (3.6)

for every t ≤ T .

The next theorem implies the existence of local in time solutions to (3.3).
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Theorem 3.3 ([5, Proposition 4.4], [15, Theorem 6.2]). Let x ∈ C−α0 and R > 0 such that ‖x‖C−α0 ≤ R. Then for
every β,γ > 0 satisfying (1.6) and T > 0 there exists T ∗ ≡ T ∗(R, |||Z|||α;α′;T )≤ T such that (3.3) has a unique mild
solution on [0, T ∗] and

sup
0≤s≤T ∗

sγ ‖vs‖Cβ ≤ 1.

If we furthermore assume that |||Z|||α;α′;T ≤ 1, then there exists θ > 0 and a constant C > 0 independent of R such
that

T ∗ =
(

1

C(R + 1)

) 1
θ

. (3.7)

Proof. This theorem is (essentially) proved in [15, Theorem 6.2], but the expression (3.7) is not made explicit there;
we give a sketch. It is sufficient to prove that for T ∗ as in (3.7) the operator

MT ∗vt = S(t)x +
∫ t

0
S(t − s)F (vs,Zs)ds

is a contraction on the set BT ∗ := {sup0≤s≤T ∗ sγ ‖vs‖Cβ ≤ 1}, i.e. we need to show that MT ∗ maps BT ∗ into itself
and that for v, ṽ ∈BT ∗ we have sup0≤s≤T ∗ sγ ‖MT ∗vs −MT ∗ ṽs‖Cβ ≤ (1 − λ) sup0≤s≤T ∗ sγ ‖vs − ṽs‖Cβ for some
λ > 0. We only show the first property. First notice that using the explicit form of F (see (3.5))

‖MT ∗vt‖Cβ �
∥∥S(t)x

∥∥
Cβ +

∫ t

0

∥∥S(t − s)vn
s

∥∥
Cβ ds +

n−1∑
j=0

∫ t

0

∥∥S(t − s)v
j
s Z

(n−j)
s

∥∥
Cβ

� t−
β+α0

2 ‖x‖C−α0 +
∫ t

0
s−nγ ds +

∫ t

0
(t − s)−

α+β
2 s−(n−j−1)γ s−jγ ds

� t−
β+α0

2 ‖x‖C−α0 +
∫ t

0
s−nγ ds +

∫ t

0
(t − s)−

α+β
2 s−(n−1)γ ds,

where we use Proposition A.5 and we furthermore assume that α′ < γ . By (1.6) if we choose α > 0 sufficiently small
so that α+β

2 + (n− 1)γ < 1 we get

‖MT ∗vt‖Cβ � t−
β+α0

2 ‖x‖C−α0 + t1−nγ + t1− α+β
2 −(n−1)γ

and multiplying both sides by tγ we obtain that

tγ ‖MT ∗vt‖Cβ � tγ−
β+α0

2 R + t1−(n−1)γ + t1− α+β
2 −(n−2)γ � tθ (R + 1).

Then, for T ∗ ≡ T ∗(R) as in (3.7) and every t ≤ T ∗ we get that

sup
0≤s≤t

sγ ‖MT ∗vs‖Cβ ≤ 1,

which implies that indeed MT ∗ maps BT ∗ into itself. �

The next proposition is a stability result which we use later on in Section 5. We first introduce some extra notation.
Let {Zε}ε∈(0,1) take values in Cn,−α(0;T ) such that

lim
ε→0+

∣∣∣∣∣∣Zε −Z
∣∣∣∣∣∣

α;α′;T = 0.

Furthermore, let Fε = �̂εF , where �̂ε is a linear smooth approximation such that the following properties hold for
every λ ∈R:
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(i) ‖�̂ε‖Cλ→Cλ ≤ C, for every ε ∈ (0,1).
(ii) For every δ > 0 there exists θ ≡ θ(λ, δ) such that

‖�̂εx − x‖Cλ−δ ≤Cεθ‖x‖Cλ .

One can check that �̂ε =∑
−1≤κ<log2 ε−1 δκ is such a linear smooth approximation.

Denote by vε the corresponding mild solution of (3.3) with F replaced by Fε , Z by Zε and initial condition
xε = �̂εx (short time existence of vε is ensured by the same arguments as in the proof of [15, Theorem 6.1]). We then
have the following proposition.

Proposition 3.4. Let v be the unique solution to (3.3) on a closed interval [0, T ∗] (i.e. the solution does not explode
at T ∗). Then for every ε ∈ (0,1) there exists a unique solution vε to the approximate equation up to some (possibly
infinite) explosion time T ∗ε . Furthermore, there exists ε0 > 0 such that for every ε < ε0, T ∗ε ≥ T ∗, and we have

lim
ε→0+

sup
0≤t≤T ∗ε ∧T ∗

tγ
∥∥vt − vε

t

∥∥
Cβ = 0.

Proof. By (1.6) it is possible to find δ > 0 such that

δ

2
+ nγ < 1,

α0 + δ+ β

2
+ (n− 1)γ < 1.

For ε ∈ (0,1) we notice that

vt − vε
t = S(t)

(
x − xε

)− ∫ t

0
S(t − s)

(
F(vs,Zs)− Fε

(
vε
s ,Z

ε
s

))
ds

and using (A.7) and property (ii) of �̂ε we get

∥∥vt − vε
t

∥∥
Cβ � t−

α0+δ+β

2 εθ‖x‖C−α0 +
∫ t

0
(t − s)

δ
2
∥∥vn

s − �̂ε

(
vε
s

)n∥∥
Cβ−δ ds

+
∫ t

0
(t − s)−

α+δ+β
2

∥∥R(vs,Zs)−Rε

(
vε
s ,Z

ε
s

)∥∥
C−α−δ ds,

where R(v,Z)=∑n−1
j=0 vjZ(n−j) and Rε = �̂εR. Using the triangle inequality as well as the properties (i) and (ii) of

�̂ε we have that∥∥vn
s − �̂ε

(
vε
s

)n∥∥
Cβ−δ � εθ

∥∥(vε
s

)n∥∥
Cβ +

∥∥vn
s −

(
vε
s

)n∥∥
Cβ

and ∥∥R(vs,Zs)−Rε

(
vε
s ,Z

ε
s

)∥∥
C−α−δ � εθ

∥∥R(vs,Zs)
∥∥
C−α +

∥∥R(vs,Zs)−R
(
vε
s ,Zs

)∥∥
C−α

+ ∥∥R
(
vε
s ,Zs

)−R
(
vε
s ,Z

ε
s

)∥∥
C−α .

Let M = supt≤T ∗ tγ ‖vt‖Cβ , N = |||Z|||α;α′;T and τ ε = inf{t > 0, t ≤ T ∗ε : tγ ‖vt − vε
t ‖Cβ > 1}. Then, for every t ≤

τ ε ∧ T ∗, we have the bounds∥∥(vε
s

)n∥∥
Cβ ≤Cs−nγ ,∥∥vn

s −
(
vε
s

)n∥∥
Cβ ≤ Cs−nγ sup

t≤τ ε∧T ∗
tγ

∥∥vt − vε
t

∥∥
Cβ ,
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as well as∥∥R(vs,Zs)
∥∥
C−α ≤ Cs−(n−1)γ ,∥∥R(vs,Zs)−R

(
vε
s ,Zs

)∥∥
C−α ≤ Cs−(n−1)γ sup

t≤τ ε∧T ∗
tγ

∥∥vt − vε
t

∥∥
Cβ ,

∥∥R
(
vε
s ,Zs

)−R
(
vε
s ,Z

ε
s

)∥∥
C−α ≤ Cs−(n−1)γ

∣∣∣∣∣∣Z −Zε
∣∣∣∣∣∣

α;α′;T ,

where the constant C depends on M and N . Thus∥∥vt − vε
t

∥∥
Cβ ≤ C

(
εθ t−

α0+δ+β

2 ‖x‖C−α0 + εθ t1− δ
2−nγ + sup

t≤τ ε∧T ∗
tγ

∥∥vt − vε
t

∥∥
Cβ t1− δ

2−nγ

+ εθ t1− α+δ+β
2 −(n−1)γ + sup

t≤τ ε∧T ∗
tγ

∥∥vt − vε
t

∥∥
Cβ t1− α+δ+β

2 −(n−1)γ

+ ∣∣∣∣∣∣Z −Zε
∣∣∣∣∣∣

α;α′;T t1− α+δ+β
2 −(n−1)γ

)
.

Multiplying by tγ and choosing T̃ ∗ ≡ T̃ ∗(M,N) > 0 sufficiently small we can assure that

sup
t≤T̃ ∗

tγ
∥∥vt − vε

t

∥∥
Cβ ≤ εθ‖x‖C−α0 +

∣∣∣∣∣∣Z −Zε
∣∣∣∣∣∣

α;α′;T + εθ .

Iterating the procedure if necessary we find N∗ > 0, independent of ε since τ ε ∧ T ∗ ≤ T ∗, and C > 0 such that

sup
t≤τ ε∧T ∗

tγ
∥∥vt − vε

t

∥∥
Cβ ≤

(
N∗C + 1

)(
εθ‖x‖C−α0 +

∣∣∣∣∣∣Z −Zε
∣∣∣∣∣∣

α;α′;T + εθ
)
. (3.8)

Let ε0 > 0 such that for every ε < ε0

εθ‖x‖C−α0 +
∣∣∣∣∣∣Z −Zε

∣∣∣∣∣∣
α;α′;T + εθ <

1

(N∗C + 1)
.

Then for every ε < ε0

sup
t≤τ ε∧T ∗

tγ
∥∥vt − vε

t

∥∥
Cβ < 1

and the definition of τ ε implies that τ ε ∧ T ∗ = T ∗, which proves the first claim. For the second claim we just let
ε→ 0+ in (3.8). �

3.3. Testing the equation

Proposition 3.5 ([15, Proposition 6.8]). Let v ∈ C((0, T ];Cβ) be a mild solution to (3.3). Then for all s0 > 0 and all
even integers p ≥ 2

1

p

(‖vt‖pLp − ‖vs0‖pLp

)= ∫ t

s0

(−(p− 1)
〈∇vs, v

p−2
s ∇vs

〉− 〈
vs, v

p−1
s

〉− 〈
F(vs,Zs), v

p−1
s

〉)
ds, (3.9)

for all s0 ≤ t ≤ T . In particular, if we differentiate with respect to t ,

1

p
∂t‖vt‖pLp =−(p− 1)

〈∇vt , v
p−2
t ∇vt

〉− 〈
vt , v

p−1
t

〉− 〈
F(vt ,Zt ), v

p−1
t

〉
, (3.10)

for every t ∈ (0, T ).



Spectral gap for the stochastic quantization equation 1215

Remark 3.6. This proposition involves spatial derivatives of v up to first order and the proof of (3.9) requires some
time regularity on v. Our local existence theory implies that v ∈ C((0, T ];Cβ) for some β < 1 (see (1.6)) due to the
fact that we start (3.3) with initial condition in C−α0 . This is the reason we state (3.9) for s0 > 0. However one can
prove that for fixed t > 0 v is almost a C2 function (see [15, Theorem 6.2]), as well as a Hölder continuous function
from (0, T ] to L∞(T2) (see [15, Proposition 6.5]) for some exponent strictly greater that 1

2 .

3.4. A priori estimates

Global existence of (3.3) for x ∈ Cβ was already established in [15] based on a priori estimates of the Lp norm of v.
Here we derive a stronger bound which does not depend on the initial condition x and we use later on to prove the
main results of Sections 4 and 6.

Proposition 3.7. Let v ∈ C((0, T ];Cβ) be a solution of (3.3) with initial condition x ∈ C−α0 and p ≥ 2 be an even
integer. Then for every 0 < t ≤ T and λ= p+n−1

p

‖vt‖pLp ≤ C

[
t−

1
λ−1 ∨

(∑
j,i

t−α′pj
i sup

0≤r≤t

(
rα′pj

i

∥∥Z
(n−j)
r

∥∥p
j
i

C−α

)) 1
λ
]
, (3.11)

for some p
j
i > 0. In particular, the bound is independent from ‖x‖C−α0 and the randomness outside of the interval

[0, t].

Proof. Let

α <
1

(p+ n− 1)(n− 1)
(3.12)

and recall that F(vs,Zs)=
∑n

j=0 v
j
s Z

(n−j)
s . Thus

〈
F(vs,Zs), v

p−1
s

〉= n∑
j=0

〈
v

p+j−1
s ,Z

(n−j)
s

〉= an

∥∥v
p+n−1
s

∥∥
L1 +

〈
gs, v

p−1
s

〉
,

where gs =∑n−1
j=0 v

j
s Z

(n−j)
s , and we rewrite (3.10) as

1

p
∂s‖vs‖pLp =−(

(p− 1)
∥∥v

p−2
s |∇vs |2

∥∥
L1 + an

∥∥v
p+n−1
s

∥∥
L1 +

∥∥v
p
s

∥∥
L1

)− 〈
gs, v

p−1
s

〉
, (3.13)

for all 0 < s ≤ t , where we use that p is an even integer. Let

Ks :=
∥∥v

p−2
s |∇vs |2

∥∥
L1 , Ls := an

∥∥v
p+n−1
s

∥∥
L1 . (3.14)

The idea is to control the terms of 〈gs, v
p−1
s 〉 by Ks and Ls .

We start with the leading term of 〈gs, v
p−1
s 〉, 〈vp+n−2

s ,Z
(1)
s 〉. By Proposition A.8∣∣〈vp+n−2

s ,Z(1)
s

〉∣∣� ∥∥v
p+n−2
s

∥∥
Bα

1,1

∥∥Z(1)
s

∥∥
C−α . (3.15)

Using (A.10)∥∥v
p+n−2
s

∥∥
Bα

1,1
�

∥∥v
p+n−2
s

∥∥1−α

L1

∥∥v
p+n−3
s |∇vs |

∥∥α

L1 +
∥∥v

p+n−2
s

∥∥
L1 . (3.16)
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We handle each term of (3.16) separately. First we notice, using Jensen’s inequality, that ‖vp+n−2
s ‖L1 � L

p+n−2
p+n−1
s . For

the gradient term, using the Cauchy–Schwarz inequality we obtain∥∥v
p+n−3
s |∇vs |

∥∥
L1 �

∥∥v
p+2(n−2)
s

∥∥ 1
2
L1K

1
2
s . (3.17)

Recall the Sobolev inequality

‖f ‖Lq �
(‖f ‖2

L2 + ‖∇f ‖2
L2

) 1
2 ,

for every q <∞ (see [16, Section 6], [8, Section 5.6] for Sobolev inequalities in the same spirit). In particular, for
q = 2(p+2(n−2))

p
, we have that

∥∥v
p
2
s

∥∥ q
2
Lq �

∥∥v
p
2
s

∥∥ q
2
L2 +

∥∥∇(vs)
p
2
∥∥ q

2
L2 ,

which implies

∥∥v
p+2(n−2)
s

∥∥ 1
2
L1 �

∥∥v
p
s

∥∥ 1
2+ n−2

p

L1 +K
1
2+ n−2

p
s , (3.18)

where ‖vp
s ‖

1
2+ n−2

p

L1 � L

p
2 +n−2
p+n−1
s by Jensen’s inequality. Combining (3.16), (3.17) and (3.18)

∥∥v
p+n−2
s

∥∥
Bα

1,1
�K

α
2
s L

(p+n−2)− p
2 α

p+n−1
s +K

(1+ n−2
p

)α

s L

(p+n−2)(1−α)
p+n−1

s +L

p+n−2
p+n−1
s . (3.19)

By (3.12) we notice that

α

2
+ (p+ n− 2)− p

2 α

p+ n− 1
< 1

and (
1+ n− 2

p

)
α+ (p+ n− 2)(1− α)

p+ n− 1
< 1,

thus we can find γ1, γ2, γ3, γ4 < 1 such that

α

2γ1
+ (p+ n− 2)− p

2 α

(p+ n− 1)γ2
= 1

and (
1+ n− 2

p

)
α

γ3
+ (p+ n− 2)(1− α)

(p+ n− 1)γ4
= 1.

In particular, we choose γ1 = (p+n−1)α
2 , γ2 = (p+n−2)− p

2 α

p+n−2 , γ3 = (p+n−2)(p+n−1)α
p

and γ4 = (1− α), apply the classi-
cal Young inequality to (3.19) and combine with (3.15) to obtain

∣∣〈vp+n−2
s ,Z(1)

s

〉∣∣� (
K

γ1
s +L

γ2
s +K

γ3
s +L

γ4
s +L

p+n−2
p+n−1
s

)∥∥Z(1)
s

∥∥
C−α .

Using Young’s inequality once more, now in the form

aζ γ ≤ γ
ζ

N
1
γ

+ (1− γ )(Na)
1

1−γ ,
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for a = ‖Z(1)
s ‖C−α , ζ ∈ {Ks,Ls}, N = (Cn)γ and γ ∈ {γ1, . . . , γ5}, where γ5 = p+n−2

p+n−1 , we obtain the final bound

∣∣〈vp+n−2
s ,Z(1)

s

〉∣∣≤ 1

n

(
Ks + 1

2
Ls

)
+C

5∑
i=1

(∥∥Z(1)
s

∥∥ 1
1−γi

C−α

)
, (3.20)

where C is a constant depending only on γi , i ∈ {1,2, . . . ,5}, and n.
For the remaining terms of 〈gs, v

p−1
s 〉 we need to estimate 〈vp+j−1

s ,Z
(n−j)
s 〉, for all 0≤ j ≤ n− 2. Proceeding in

the same spirit of calculations as above we first obtain that

∥∥v
p+j−1
s

∥∥
Bα

1,1
�K

α
2
s L

(p+j−1)− p
2 α

p+n−1
s +K

(1+ j−1
p

)α

s L

(p+j−1)(1−α)
p+n−1

s +L

p+j−1
p+n−1
s .

We define the exponents γ
j

1 = (p+n−1)α
2 , γ

j

2 = (p+j−1)− p
2 α

p+n−2 , γ
j

3 = (p+j−1)(p+j)α
p

and γ
j

4 = (p+j)(1−α)
p+n−1 . Note that

(3.12) implies that γ
j

1 , γ
j

2 , γ
j

3 , γ
j

4 < 1 and we also have that

α

2γ
j

1

+ (p+ j − 1)− p
2 α

(p+ n− 1)γ
j

2

= 1

and (
1+ j − 1

p

)
α

γ
j

3

+ (p+ j − 1)(1− α)

(p+ n− 1)γ
j

4

= 1.

Applying Young’s inequality once more

∣∣〈vp+j−1
s ,Z

(n−j)
s

〉∣∣� (
K

γ
j
1

s +L
γ

j
2

s +K
γ

j
3

s +L
γ

j
4

s +L

p+j−1
p+n−1
s

)∥∥Z
(n−j)
s

∥∥
C−α .

As before (see (3.20)), we obtain the bound

∣∣〈vp+j−1
s ,Z

(n−j)
s

〉∣∣≤ 1

n

(
Ks + 1

2
Ls

)
+C

5∑
i=1

(∥∥Z
(n−j)
s

∥∥ 1

1−γ
j
i

C−α

)
, (3.21)

for all 0≤ j ≤ n− 2, where γ
j

5 = p+j−1
p+n−1 . Thus, by (3.20) and (3.21),

∣∣〈gs, v
p−1
s

〉∣∣≤ (
Ks + 1

2
Ls

)
+C

n−1∑
j=0

5∑
i=1

(∥∥Z
(n−j)
s

∥∥ 1

1−γ
j
i

C−α

)
, (3.22)

where γ n−1
i = γi , for all i ∈ {1, . . . ,5}.

Finally, for p
j
i = 1

1−γ
j
i

, combining (3.13) and (3.22) we obtain

1

p
∂s‖vs‖pLp + ‖vs‖pLp + (p− 2)Ks + 1

2
Ls ≤ C

∑
j,i

∥∥Z
(n−j)
s

∥∥p
j
i

C−α .

Let t > s and notice that by (3.4), for r ∈ (s, t),

∑
j,i

∥∥Z
(n−j)
r

∥∥p
j
i

C−α ≤
∑
j,i

r−α′pj
i sup

s≤r≤t

(
rα′pj

i

∥∥Z
(n−j)
r

∥∥p
j
i

C−α

)
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for every α′ > 0. Thus for r ∈ [s, t]
1

p
∂r‖vr‖pLp + 1

2
Lr ≤C

∑
j,i

s−α′pj
i sup

s≤r≤t

(
rα′pj

i

∥∥Z
(n−j)
r

∥∥p
j
i

C−α

)
.

By Jensen’s inequality, for λ= p+n−1
p

, we get that

∂r‖vr‖pLp +C1
(‖vr‖pLp

)λ ≤C2

∑
j,i

s−α′pj
i sup

s≤r≤t

(
rα′pj

i

∥∥Z
(n−j)
r

∥∥p
j
i

C−α

)
,

and if we let f (r)= ‖vr‖pLp , r ≥ s, by Lemma 3.8

f (r) ≤ f (s)

(1+ (r − s)f (s)λ−1(λ− 1)C̃1)
1

λ−1

∨
(

2C2

C1

∑
j,i

s−α′pj
i sup

s≤r≤t

(
rα′pj

i

∥∥Z
(n−j)
r

∥∥p
j
i

C−α

)) 1
λ

, (3.23)

where C̃1 = C1/2. In particular for r = t and s = t/2 we have the bound

‖vt‖pLp ≤ C

[
t−

1
λ−1 ∨

(∑
j,i

t−α′pj
i sup

0≤r≤t

(
rα′pj

i

∥∥Z
(n−j)
r

∥∥p
j
i

C−α

)) 1
λ
]
,

which completes the proof. �

Lemma 3.8 (Comparison test). Let λ > 1 and f : [0, T ]→ [0,∞) differentiable such that

f ′(t)+ c1f (t)λ ≤ c2,

for every t ∈ [0, T ]. Then for t > 0

f (t)≤ f (0)

(1+ tf (0)λ−1(λ− 1) c1
2 )

1
λ−1

∨
(

2c2

c1

) 1
λ ≤ t−

1
λ−1

(
(λ− 1)

c1

2

)− 1
λ−1 ∨

(
2c2

c1

) 1
λ

.

Proof. Let t > 0. Then one of the following holds:

(I) There exists s0 ≤ t such that f (s0)≤ ( 2c2
c1

)
1
λ .

(II) For every s ≤ t , f (s) > ( 2c2
c1

)
1
λ .

In the second case, using the assumption we have that for every s ≤ t

f ′(s)+ c1

2
f (s)λ ≤ 0

and solving the above differential inequality on [0, t] implies that

f (t)≤ f (0)

(1+ tf (0)λ−1(λ− 1) c1
2 )

1
λ−1

.

In the first case, assume for contradiction that f (t) > ( 2c2
c1

)
1
λ and let

s∗ = sup

{
s < t : f (s)≤

(
2c2

c1

) 1
λ
}
.
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Then f (s) > ( 2c2
c1

)
1
λ , for every s ∈ (s∗, t], while f (s∗)= ( 2c2

c1
)

1
λ by continuity. However, the assumption implies

f ′(s)+ c1

2
f (s)λ ≤ 0

and in particular f ′(s)≤ 0. But then

f (t)= f
(
s∗
)+ ∫ t

s∗
f ′(s)ds ≤

(
2c2

c1

) 1
λ

,

which is a contradiction. �

The next theorem implies global existence of (3.3). Though it was already established in [15], we present it here
for completeness.

Theorem 3.9. For every initial condition x ∈ C−α0 and β > 0 as in (1.6) there exists a unique solution v ∈
C((0,∞);Cβ) of (3.3).

Proof. Let T > 0. First fix any even integer p ≥ 2 such that Lp ↪→ C−α0 (for example p ≥ 2
α0

is enough; see also
Proposition A.3 and (A.6)). Then the a priori estimate (3.11) (which depends only on |||Z|||α;α′;T ) provides an a priori
estimate on ‖vt‖C−α0 . Thus by Theorem 3.3 there exists T ∗ ≤ T bounded form below (by a constant depending only
on the a priori estimate on ‖vt‖C−α0 ) and a unique solution up to time T ∗ of (3.3). Using again Theorem 3.3 we
construct a solution of (3.3) on [T ∗,2T ∗ ∧ T ] with initial condition vT ∗ which satisfies the same a priori bounds
depending on |||Z|||α;α′;T . We then proceed similarly until the whole interval [0, T ] is covered. To prove uniqueness
we proceed as in the proof of Theorem [15, Theorem 6.2]. �

Corollary 3.10. For x ∈ C−α0 let X(·;x)= 0,· + v, where v is the solution to (3.2). Then for every α > 0 and p ≥ 2

sup
x∈C−α0

sup
t≥0

(
t

p
n−1 ∧ 1

)
E
∥∥X(t;x)

∥∥p

C−α <∞. (3.24)

Remark 3.11. Notice that the bound (3.24) does not follow immediately by taking the expectation of the a priori

bound (3.11) on vt . In fact the expectation of the supremum sup0≤r≤t (r
α′pj

i ‖Z(n−j)
s ‖p

j
i

C−α ) on the right-hand side of
this estimate is finite for every t <∞ but it is not uniformly bounded in t . However, as (3.11) does not depend on the
initial condition we can just restart (3.1) at time t − 1 for t > 1 and apply Proposition 3.7 for the restarted solution to
obtain a bound which depends only on the randomness inside the interval [t − 1, t]. Given that the diagrams have the
same law on intervals of the same size (see Proposition 2.3) we then obtain a bound which is independent of t .

Proof. Let t > 1 and notice that by Lemma 4.1 (see Section 4.2 for statement and proof) X(t;x) = t−1,t + ṽt−1,t

where ṽt−1,r , r ≥ t − 1, solves (3.2) with initial condition X(t − 1;x) and

Z(n−j) =
n∑

k=j

ak

(
k

j

)
t−1,t−1+·,

for every 0≤ j ≤ n− 1. Applying Proposition 3.7 on ṽt−1,· we then have

‖ṽt−1,t‖pLp � 1∨
(∑

j,i

sup
t−1≤r≤t

((
r − (t − 1)

)α′pj
i
∥∥Z

(n−j)
r

∥∥p
j
i

C−α

)) 1
λ

, (3.25)

for every p ≥ 2. To prove (3.24) we fix α > 0 and using the embedding Lp ↪→ C−α for p ≥ 2
α

(see (A.6) and
Proposition A.3) we first notice that for t > 1

E
∥∥X(t;x)

∥∥p

C−α � E‖ t−1,t‖pC−α +E‖ṽt−1,t‖pC−α � E‖ t−1,t‖pC−α +E‖ṽt−1,t‖pLp .



1220 P. Tsatsoulis and H. Weber

Combining with (3.25) and given that for every k ≥ 1 the law of t−1,t+· does not depend on t we obtain that

sup
t≥1

E
∥∥X(t;x)

∥∥p

C−α <∞.

Finally, using (3.11) (and by possibly tuning down α′ in the same equation) for t ≤ 1 we get

E
∥∥X(t;x)

∥∥p

C−α � E‖ −∞,t‖pC−α +E‖vt‖pLp � 1+ t−
p

n−1 ,

which completes the proof. �

4. Existence of invariant measures

4.1. Markov property

For x ∈ C−α0 we write X(·;x) = 0,· + v where v is the solution to (3.2) with initial condition x. We introduce a
variant of the notation (3.5) and set

F̃
(
v, ( 0,·)nk=1

)= n∑
k=0

ak

k∑
j=0

(
k

j

)
vj

0,·. (4.1)

We denote by Bb(C−α0) and Cb(C−α0) the spaces of bounded and continuous functions from C−α0 to R, both
endowed with the norm

‖�‖∞ := sup
x∈C−α0

∣∣�(x)
∣∣.

For every � ∈ Bb(C−α0) and t ∈ [0,∞) we define the map Pt :� �→ Pt� by

Pt�(x) := E�
(
X(t;x)

)
, (4.2)

for every x ∈ C−α0 .
In this section we prove that {X(t; ·) : t ≥ 0} is a Markov process with transition semigroup {Pt : t ≥ 0}with respect

to the filtration {Ft : t ≥ 0} defined in (2.1).
We first prove the following lemma.

Lemma 4.1. Let X(·;x)= 0,· + v. Then, for every h > 0,

X(t + h;x)= t,t+h + ṽt,t+h,

where the remainder ṽt,t+· solves (3.2) driven by the vector ( t,t+·)nk=1 and initial condition X(t;x), i.e.

ṽt,t+h = S(h)X(t;x)−
∫ h

0
S(h− r)F̃

(
ṽt,t+r , ( t,t+r )

n
k=1

)
dr.

Proof. Notice that for h > 0

X(t + h;x)= 0,t+h + vt+h = t,t+h + ṽt,t+h,

where

ṽt,t+h = S(h)X(t;x)−
∫ h

0
S(h− r)F̃

(
vt+r , ( 0,t+r )

n
k=1

)
dr.
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By (2.11) we have that

F̃
(
vt+r , ( 0,t+r )

n
k=1

)= n∑
k=0

ak

k∑
j=0

(
k

j

)
v

j
t+r 0,t+r

=
n∑

k=0

ak

k∑
i=0

(
k

i

)
ṽi
t,t+r t,t+r ,

where we use a binomial expansion of v
j
t+r and a change of summation. Hence

F̃
(
vt+r , ( 0,t+r )

n
k=1

)= F̃
(
ṽt,t+r , ( t,t+r )

n
k=1

)
,

which completes the proof. �

The fact that {X(t; ·) : t ≥ 0} is a Markov process is an immediate consequence of the following theorem.

Theorem 4.2. Let X(·;x) be as in the lemma above with x ∈ C−α0 . Then for every � ∈ Bb(C−α0) and t ≥ 0

E
(
�
(
X(t + h;x)

)|Ft

)= Ph�
(
X(t;x)

)
,

for all h≥ 0.

Proof. Let h≥ 0 and � ∈ Bb(C−α0) and write

T
(
X(t;x);h; ( t,t+·)nk=1

)
to denote the solution of (3.2) at time h, driven by the vector ( t,t+·)nk=1 and initial condition X(t;x). By Proposi-
tion 2.4 and [6, Proposition 1.12]

E
(
�
(
X(t + h;x)

)|Ft

)= �̄
(
X(t;x)

)
,

where for w ∈ C−α0

�̄(w)= E�
(

t,t+h +T
(
w;h; ( t,t+·)nk=1

))
.

Here we use the fact that X(t;x) is Ft -measurable and that the vector ( t,t+·)nk=1 is Ft -independent (see Propo-

sition 2.3). Given that ( t,t+·)nk=1
law= ( 0,·)nk=1 (see again Proposition 2.3) and the fact that (3.2) has a unique

solution driven by any vector Y ∈Cn,−α(0;T ), for T > 0, and any initial condition w ∈ C−α0 , we have that

�̄(w)= Ph�(w),

which completes the proof if we set w =X(t;x). �

The theorem above implies that {Pt : t ≥ 0} is a semigroup. We finally prove that it is Feller.

Proposition 4.3. Let � ∈Cb(C−α0). Then, for every t ≥ 0, Pt� ∈ Cb(C−α0).

Proof. It suffices to prove that the solution to (3.2) is continuous with respect to its initial condition. Fix T > 0 and
x ∈ C−α0 . Let y ∈ C−α0 such that ‖x − y‖C−α0 ≤ 1 and

vt = S(t)x −
∫ t

0
S(t − r)F̃

(
vr , ( 0,r )

n
k=1

)
dr,
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ut = S(t)y −
∫ t

0
S(t − r)F̃

(
ur, ( 0,r )

n
k=1

)
dr,

as well as τ = inf{t > 0 : tγ ‖vt − ut‖Cβ > 1} and

M = sup
t≤T

tγ ‖vt‖Cβ , N = ∣∣∣∣∣∣( 0,·)nk=1

∣∣∣∣∣∣
α;α′;T .

Notice that

F̃
(
vr , ( 0,r )

n
k=1

)− F̃
(
ur, ( 0,r )

n
k=1

)= n∑
k=0

ak

k∑
j=0

(
k

j

)(
uk

r − vk
r

)
0,r

and by Propositions A.5 and A.7 we obtain that for all T∗ ≤ T ∧ τ

sup
t≤T∗

tγ ‖vt − ut‖Cβ ≤ sup
t≤T∗

tγ ‖vt − ut‖Cβ

n∑
m=1

λmT αm∗

+ ‖x − y‖C−α0

2n∑
m=n+1

λmT αm∗ ,

where λm ≡ λm(M,N,‖x‖C−α0 ) and αm ∈ (0,1]. Choosing T∗ ≡ T∗(M,N,‖x‖C−α0 )≤ 1/2 we obtain that

sup
t≤T∗

tγ ‖vt − ut‖Cβ ≤ ‖x − y‖C−α0 .

Iterating the procedure we find N∗ ∈ Z≥0 and C > 0 such that

sup
t≤T∧τ

tγ ‖vt − ut‖Cβ ≤ (
N∗C + 1

)‖x − y‖C−α0 ,

for every y ∈ C−α0 such that ‖x − y‖C−α0 ≤ 1. At this point we should notice that for every y ∈ C−α0 such that
‖x − y‖C−α0 ≤ 1/2(N∗C + 1) the above estimate implies that

sup
t≤T∧τ

tγ ‖vt − ut‖Cβ ≤ 1

2
,

thus T ∧ τ = T because of the definition of τ . Hence, for all such y ∈ C−α0 ,

sup
t≤T

tγ ‖vt − ut‖Cβ ≤ (
N∗C + 1

)‖x − y‖C−α0 ,

which implies convergence of ut to vt in Cβ for every t ≤ T . Since T was arbitrary, the last implies continuity of the
solution map of (3.2) with respect to its initial condition. The Feller property is then an immediate consequence of the
above combined with the dominated convergence theorem. �

4.2. Invariant measures

We denote by {P ∗t : t ≥ 0} the dual semigroup of {Pt : t ≥ 0} acting on the set of all probability Borel measures on
C−α0 denoted by M1(C−α0). In the next proposition we prove existence of invariant measures of {Pt : t ≥ 0} as a
semigroup acting on Cb(C−α0).

Proposition 4.4. For every x ∈ C−α0 there exists a measure νx ∈M1(C−α0) and a sequence tk ↗∞ such that

1

tk

∫ tk

0
P ∗s δx ds

w−→ νx.
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In particular the measure νx is invariant for the Markov semigroup {Pt : t ≥ 0} on C−α0 .

Proof. For t > 0 and α > 0 using Markov’s and Jensen’s inequality there exists a constant C > 0 such that

P
(∥∥X(t;x)

∥∥
C−α > K

)≤ C

K

(
E
∥∥X(t;x)

∥∥p

C−α

) 1
p ,

for every K > 0 and p ≥ 2. Thus∫ t

0
P
(∥∥X(s;x)

∥∥
C−α > K

)
ds ≤ C

K

∫ t

0

(
E
∥∥X(s;x)

∥∥p

C−α

) 1
p ds

≤ C

K

[∫ 1

0
s−

1
n−1 ds +

∫ t

1
ds

]
= C

K
t,

where in the second inequality we use (3.24). If we let Rt = 1
t

∫ t

0 P ∗s δx ds, for Kε = C
ε

we get

Rt

({
f ∈ C−α : ‖f ‖C−α > Kε

})≤ ε.

Choosing α < α0 we can ensure that {f ∈ C−α : ‖f ‖C−α ≤ Kε} is a compact subset of C−α0 since the embedding
C−α ↪→ C−α0 is compact for every α < α0 (see Proposition A.4 and (A.2)). This implies tightness of {Rt }t≥0 in C−α0

and by the Krylov–Bogoliubov existence Theorem (see [7, Corollary 3.1.2]) there exist a sequence tk ↗∞ and a
measure νx ∈M1(C−α0) such that Rtk → νx weakly in C−α0 and νx is invariant for the semigroup {Pt : t ≥ 0} in
C−α0 . �

5. Strong Feller property

In this section we show that the Markov semigroup {Pt : t ≥ 0} satisfies the strong Feller property. The strong Feller
property is to be expected when we deal with SPDEs where the noise forces every direction in Fourier space. However,
the fact that the process X does not solve a self-contained equation forces us to translate everything onto the level
of the remainder v. The most important step is to obtain a Bismut–Elworthy–Li formula (see Theorem 5.5) which
captures enough information to provide a good control of the linearization of the remainder equation.

On the technical level, we work with a finite dimensional approximation Xε for X. This choice and the fact that the
equation is driven by white noise imply that the solution is Fréchet differentiable with respect to the (finite dimensional
approximation of the) noise, so we can avoid working with Malliavin derivatives. This is expressed in Proposition 5.1
below, and in fact this proposition could even be established without splitting Xε into vε and

ε

0,·. We make strong use
of the splitting in Proposition 5.4 where the local solution theory is used to obtain deterministic bounds on vε and its

linearization for small t provided that we control the diagrams
ε

0,·. This control is uniform in ε and enters crucially
the proof of Proposition 5.8.

From now on we fix 0 < α < α0 sufficiently small. For ε ∈ (0,1) let �ε[L2(T2)] be the finite dimensional sub-
space of L2(T2) spanned by {em}|m|< 1

ε
(recall that we deal with real-valued functions and the symmetry condition

(1.3) is always valid) and denote by �ε the corresponding orthogonal projection. We also let �̂ε be a linear smooth
approximation taking values in �ε[L2(T2)] and having the properties (i) and (ii) introduced in the discussion before
Proposition 3.4.

Let �ε be the renormalization constant defined in (2.9) and consider a finite dimensional approximation of (3.1)
given by{

dXε(t)= (�Xε(t)−Xε(t)−∑n
k=0 ak�̂εHk(X

ε(t),�ε))dt + dWε(t, ·),
Xε(0, ·)= �̂εx,

(5.1)
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for some initial condition x ∈ C−α0 . Here Wε(t, z)=∑
|m|< 1

ε
Ŵm(t)em(z), where (Ŵm)m∈Z2 is a family of complex

Brownian motions such that Ŵ−m = Ŵm and independent otherwise. We furthermore assume that Wε is defined on
the same probability space � as ξ via the identity

Ŵm(t) := ξ(1[0,t] × em), m ∈ Z
2,

which also makes it adapted with respect to the filtration (Ft )t≥0. It is convenient to write Wε =Gε(Ŵm)m∈Z2∩[−d,d]2
for Gε : C([0,∞);R(2d−1)2

)→C([0,∞);�ε[L2(T2)]) such that

Gε(Ŵm)m∈Z2∩[−d,d]2 =
∑
|m|< 1

ε

Ŵmem

and d = � 1
ε
� + 1

2 . The Cameron–Martin space of Wε is given by

CM :=W
1,2
0

([0,∞)
)= {

w : ∂tw ∈L2([0,∞);R(2d−1)2)
,w(0)= 0

}
.

Last, we have the identity

ε

0,t =
∑
|m|< 1

ε

∫ t

0
e−(1+4π2|m|2)(t−s) dŴm(s)em, (5.2)

where
ε

0,· is the finite dimensional approximation defined in Section 2.2.
For v ∈ Cβ and Z ∈ (C−α)n, α < β , we use the notation

F̃ (v,Z)=
n∑

k=0

ak

k∑
j=0

(
k

j

)
vjZ(k−j)

with the convention that Z(0) ≡ 1. Recall that F̃ (see (4.1)) is a variant of F in (3.5). Here and for the rest of this

section Z is a shortcut for ( 0,·)nk=1 (notice that this differs from the convention used in Section 3). We also let

F̃ ′(v,Z)=
n∑

k=1

kak

k−1∑
j=0

(
k − 1

j

)
vjZ(k−1−j).

Formally, F̃ ′ stands for the derivative of
∑n

k=0 ak :Xk : with respect to X, with :Xk : replaced by
∑k

j=0

(
k
j

)
vjZ(k−j).

From now on we also denote by D the Fréchet derivative with respect to elements in C([0, t];R(2d−1)2
) (i.e. with

respect to the noise), for t > 0, and by D the Fréchet derivative with respect to elements in C−α0 (i.e. with respect to
the initial condition).

Existence and uniqueness of local in time solutions to (5.1) up to some random explosion time T ∗ε > 0 can be
proven following the same method as in Section 3, i.e. using the ansatz Xε = ε

0,· + vε and solving the PDE problem{
∂tv

ε =�vε − vε − �̂εF̃ (vε,Zε),

vε(0, ·)= �̂εx,
(5.3)

where Zε = (
ε

0,·)nk=1 (see Section 2.2 for definitions).

Notice that for fixed v, F̃ is Fréchet differentiable with respect to any Z ∈ (C−α)n as a function taking values in

C−α . Recall that
ε

0,· =Hk(
ε

0,·,�ε), for every 1≤ k ≤ n, so that the map

(
v,Z(1)

) �→ S(t)�̂εx −
∫ t

0
S(t − s)�̂εF̃

(
vs,

(
Hk

(
Z(1),�ε

))n
k=1

)
ds, (5.4)
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for (v,Z(1)) ∈ C([0, t];Cβ)×C([0, t];�ε[L2(T2)]) and t > 0, is Fréchet differentiable as a composition of F̃ with a
linear operator shifted by a constant, since the mapping

C
([0, t];�ε

[
L2(

T
2)]) �Z(1) �→ (

Hk

(
Z(1),�ε

))n
k=1 ∈ Cn,−α(0; t)

is Fréchet differentiable for any α > 0, with respect to any ||| · |||α;α′;t , for α′ > 0 fixed. Thus, for fixed x ∈ C−α0 and
ε

0,· ∈ C([0, t];�ε[L2(T2)]) the implicit function theorem for Banach spaces (see [23, Theorem 4E]) can be applied

up to time T ∗ε ≡ T ∗ε (x,
ε

0,·) where existence of vε is ensured. Hence, for t ∈ (0, T ∗ε ) there exists an open neighborhood

U ε

0,·
⊂ C([0, t];�ε[L2(T2)]) of

ε

0,· such that the solution map T ε,x
t : U ε

0,·
→ Cβ of (5.3) is Fréchet differentiable at

ε

0,·.
Using Itô’s formula the stochastic integrals in (5.2) can be written as∫ ·

0
e−(1+4π2|m|2)(·−s) dŴm(s)= Ŵm(·)− (

1+ 4π2|m|2)∫ ·

0
e−(1+4π2|m|2)(·−s)Ŵm(s)ds. (5.5)

Notice that the right-hand side in the above equation is well-defined if we replace (Ŵm)m∈Z2∩[−d,d]2 by any

w ∈ C([0, t];R(2d−1)2
), therefore (5.5) is a continuous linear function on C([0, t];R(2d−1)2

). Thus
ε

0,· as a func-

tion from C([0, t];R(2d−1)2
) to C([0, t];�ε[L2(T2)]) is Fréchet differentiable. Combining all the above we finally

obtain Fréchet differentiability of vε
t from C([0, t];R(2d−1)2

) to Cβ .

We let Ŵε = (Ŵm)|m|< 1
ε

and for w ∈ C([0, t];R(2d−1)2
) we write∫ t

0
S(t − s)Gε dw(s) :=

∑
|m|< 1

ε

∫ t

0
e−(1+4π2|m|2)(t−s) dwm(s),

where the right-hand side is defined as in (5.5) with Ŵm replaced by wm.
In the next proposition we summarize the results of the previous discussion.

Proposition 5.1. Fix x ∈ C−α0 , Ŵε ∈ C([0,∞);R(2d−1)2
) and

ε

0,· ≡ ε

0,·(Ŵε) ∈ C([0,∞);�ε[L2(T2)]) and let
T ∗ε ≡ T ∗ε (x,

ε

0,·) > 0 be the explosion time of vε . Then for all t < T ∗ε there exists an open neighborhood O
Ŵε
⊂

C([0, t];R(2d−1)2
) of Ŵε such that Xε(t;x)(= ε

0,t + vε
t ) is Fréchet differentiable as a function from O

Ŵε
to C−α0 and

for any w ∈ C([0, t];R(2d−1)2
) its directional derivative DXε(t;x)(w) is given in mild form as

DXε(t;x)(w)=−
∫ t

0
S(t − s)�̂ε

[
F̃ ′

(
vε
s ,Z

ε
s

)
DXε(s;x)(w)

]
ds +

∫ t

0
S(t − s)Gε dw(s). (5.6)

Remark 5.2. We expect that T ∗ε =+∞, which we already established in the limiting case ε = 0 in Section 3. However
we only use the local solution theory to control the semigroup associated to Xε(t;x) (see Proposition 5.8), thus we
do not insist on proving a global existence theorem. We then pass to the limit using the fact that T ∗ε →∞ (see the
discussion above Remark 5.9).

Proof. The Fréchet differentiability of Xε(t;x) follows by the discussion above and (5.6) by differentiating (5.4).
�

For h ∈ C−α0 , we let hε = �̂εh and for t ≥ s we also consider the following linear equation,{
∂tJ

ε
s,thε =�Jε

s,thε − J ε
s,thε − �̂ε[F̃ ′(vε

t ,Z
ε
t )J

ε
s,thε],

J ε
s,shε = hε.

(5.7)

Then J ε
0,t hε =DXε(t;x)(h), i.e. it is the derivative of Xε(t; ·) in the direction h, and its existence for every t ≤ T ∗ε is

ensured by a similar argument as the one discussed before Proposition 5.1.
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At this point we should comment on the relation between (5.6) and (5.7). Given that (5.7) has a unique solution
for every hε ∈ �ε[L2(T2)] up to time t > 0, then for w ∈ CM, i.e. w(0) = 0 and ∂tw ∈ L2([0,∞);R(2d−1)2

), by
Duhamel’s principle

DXε(t;x)(w)=
∫ t

0
J ε

s,tGε∂sw(s)ds, (5.8)

where J ε
s,t : C−α0 → Cβ is the solution map of (5.7).

Remark 5.3. In the framework of Malliavin calculus DsX
ε(t;x)= J ε

s,tGε as an element of the dual of L2([0,∞);
R

(2d−1)2
) is the Malliavin derivative (see [18, Section 1.2]) in the sense that the latter coincides with the former when

it acts on Xε(t;x). In our case, the presence of additive noise implies Fréchet differentiability with respect to the noise
as an element in C([0, t];R(2d−1)2

) (see Proposition 5.1), which is of course stronger than Malliavin differentiability
with respect to the noise.

For r ∈ [ 1
4 ,1] (the precise value of r will be fixed below) and 0 < α′ < α we consider the stopping times

τ ε,r := inf
{
t > 0 : ∥∥ ε

0,t

∥∥
C−α ∨ tα

′∥∥ ε

0,t

∥∥
C−α ∨ · · · ∨ tα

′(n−1)
∥∥ ε

0,t

∥∥
C−α > r

}
,

τ r := inf
{
t > 0 : ‖ 0,t‖C−α ∨ tα

′‖ 0,t‖C−α ∨ · · · ∨ t (n−1)α′ ‖ 0,t‖C−α > r
}
.

(5.9)

Let B̄1(x) be the closed unit ball centered at x in C−α0 . The next proposition provides local bounds on vε and J ε
0,·

given deterministic control on Zε (see also Theorem 3.3).

Proposition 5.4. Let x ∈ C−α0 and let R = 2‖x‖C−α0 + 1. Then there exists a deterministic time T ∗ ≡ T ∗(R) > 0,
independent of ε, such that for all t ≤ T ∗ ∧ τ ε,r and initial conditions y ∈ B̄1(x),

sup
s≤t

sγ
∥∥vε

s

∥∥
Cβ ≤ 1 and sup

s≤t
sγ

∥∥J ε
0,shε

∥∥
Cβ ≤ 2‖hε‖C−α0 ,

for β,γ as in (1.6), uniformly in ε, for every hε ∈ �̂ε[L2(T2)].

Proof. Let t ≤ τ ε,r ∧ T ∗ where T ∗ ≡ T ∗(R) is defined as in (3.7). We can also assume that t ≤ 1. Then, from
Theorem 3.3, we have that

sup
s≤t

sγ
∥∥vε

s

∥∥
Cβ ≤ 1,

for every y ∈ B̄1(x). Using Proposition A.5, (A.3) and (A.4) we get that∥∥S(t − s)�̂ε

[
F̃ ′

(
vε
s ,Z

ε
s

)
J ε

0,shε

]∥∥
Cβ �

(
s−(n−1)γ + (t − s)−

β+α
2 s−(n−2)γ

)∥∥J ε
0,shε

∥∥
Cβ , (5.10)

where we also use the fact that ‖�̂εf ‖C−α � ‖f ‖C−α , for every f ∈ C−α . We are now ready to retrieve the appropriate
bounds on the operator norm of J ε

0,·. For hε ∈�ε[L2(T2)] we have in mild form,

J ε
0,t hε = S(t)hε −

∫ t

0
S(t − s)�̂ε

[
F̃ ′

(
vε
s ,Z

ε
s

)
J ε

0,shε

]
ds.

Thus for s ≤ t ≤ τ ε,r ∧T ∗ and α > 0 sufficiently small (to ensure integrability of powers of s and t− s; see also (1.6))
by (5.10)∥∥J ε

0,shε

∥∥
Cβ ≤ Cs−

β+α0
2 ‖hε‖C−α0 +C

(
s1−nγ + s1− β+α

2 −(n−1)γ
)

sup
s≤t

sγ
∥∥J ε

0,shε

∥∥
Cβ .
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Multiplying the above inequality by sγ we get

sup
s≤t

sγ
∥∥J ε

0,shε

∥∥
Cβ ≤ Ctγ−

β+α0
2 ‖hε‖C−α0 +Ctθ sup

s≤t
sγ

∥∥J ε
0,shε

∥∥
Cβ ,

for some θ ≡ θ(α,β, γ,n) > 0. Using that γ − β+α0
2 > 0 (see (1.6)) by possibly increasing the value of the constant

C in (3.7) we finally obtain the bound

sup
s≤t

sγ
∥∥J ε

0,shε

∥∥
Cβ ≤ 2‖hε‖C−α0 , (5.11)

which completes the proof. �

We denote by C1
b(C−α0) the set of continuously differentiable functions on C−α0 . We furthermore let χ ∈ C∞(R)

such that χ(ζ ) ∈ [0,1], for every ζ ∈R, and

χ(ζ )=
{

1, if |ζ | ≤ r
2 ,

0, if |ζ | ≥ r,

for r as in (5.9). For simplicity we also let ||| · |||t := ||| · |||α;α′;t , t ≥ 0. Inspired by [17], we prove the following version
of the Bismut–Elworthy–Li formula.

Theorem 5.5 (Bismut–Elworthy–Li Formula). Let x ∈ C−α0 , � ∈C1
b(C−α0) and let t > 0. Let w be a process taking

values in the Cameron-Martin space CM with ∂sw adapted. Furthermore, assume that there exists a deterministic
constant C ≡ C(t) > 0 such that ‖∂sw‖2

L2([0,t];R(2d−1)2 )
≤C P-almost surely. Then we have that

E
(
D�

(
Xε(t;x)

)(
DXε(t;x)(w)

)
χ
(∣∣∣∣∣∣Zε

∣∣∣∣∣∣
t

)) = E

(
�
(
Xε(t;x)

)∫ t

0
∂sw(s) · dŴε(s)χ

(∣∣∣∣∣∣Zε
∣∣∣∣∣∣

t

))
−E

(
�
(
Xε(t;x)

)
∂+χ

(∣∣∣∣∣∣Zε
∣∣∣∣∣∣

t

)
(w)

)
, (5.12)

where

∂+χ
(∣∣∣∣∣∣Zε

∣∣∣∣∣∣
t

)
(w)= ∂ζ χ

(∣∣∣∣∣∣Zε
∣∣∣∣∣∣

t

)
∂+

∣∣∣∣∣∣Zε
∣∣∣∣∣∣

t

(
Qw(·),2

ε

0,·Qw(·), . . . , n
ε

0,·Qw(·)), (5.13)

∂+||| · |||t :Cn,−α(0; t)→ Cn,−α(0; t)∗ is the one-sided derivative of ||| · |||t given by

∂+
∣∣∣∣∣∣Zε

∣∣∣∣∣∣
t
(Y )= lim

δ→0+
|||Zε + δY |||t − |||Zε|||t

δ
,

for every direction Y ∈Cn,−α(0; t), and

Qw(·) :=
∫ ·

0
S(· − s)Gε∂sw(s)ds.

Remark 5.6. It is worth mentioning that the usual Bismut–Elworthy–Li formula (see [17]) gives an explicit rep-
resentation of derivatives with respect to the initial condition rather than the noise. Below we also prove such a
representation (see (5.19)). However the core of our argument is (5.12) which is slightly more general than (5.19).

Remark 5.7. The presence of ∂+||| · |||t in the theorem above is based on the fact that norms are not in general Fréchet
differentiable functions. However, their one-sided derivatives always exist (see [6, Appendix D]) and they behave
nicely in terms of the usual rules of differentiation.
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Proof. Let δ > 0 and u= ∂tw, which is an L2([0,∞);R(2d−1)2
) function. For every n≥ 1, we define the shift Tδu by

Tδu

ε

0,t =
n∑

k=0

(
n

k

)(
δQw(t)

)k ε

0,t

and we let TδuZ
ε = (Tδu

ε

0,·)nk=1.

Let Xε,δ(·;x)= Tδu
ε

0,· + vε,δ , where the remainder vε,δ solves the equation{
∂tv

ε,δ =�vε,δ − vε,δ − �̂εF̃ (vε,δ, TδuZ
ε),

vε,δ(0, ·)= �̂εx.

As in [17], our aim is to construct a probability measure P
δ such that the law of Tδu

ε

0,· under Pδ is the same as the

law of
ε

0,· under P. That way we obtain the identity

∂δ+EPδ

(
�
(
Xε,δ(t;x)

)
χ
(∣∣∣∣∣∣TδuZ

ε
∣∣∣∣∣∣

t

))|δ=0 = 0, (5.14)

since
ε

0,· is a continuous function of
ε

0,· for every k ≥ 2, the solution map to (5.3) is a continuous function of the
ε

0,·, and χ is a continuous function of
ε

0,·. Above ∂δ+ stands as a shortcut of the directional derivative of a function
as δ→ 0+. We will then show below that the result follows by an expansion of the derivative in the above expression.

We start with the construction of Pδ . Let Bδ(r) := − ∫ r

0 δu(s) · dŴε(s) where · is the scalar product on R
(2d−1)2

,
and define the exponential process

Aδ(r) := exp

{
Bδ(r)− 1

2

∫ r

0

∣∣δu(s)
∣∣2 ds

}
.

Notice that by the assumptions on w Novikov’s condition is satisfied, i.e.

E exp

{
1

2

∫ t

0

∣∣δu(s)
∣∣2 ds

}
<∞,

thus by [20, Chapter 8, Proposition 1.15] Aδ is a strictly positive martingale and we have that EAδ(t)= 1. We define
P

δ by its Radon–Nikodym derivative with respect to P

dPδ

dP
= Aδ(t).

By Girsanov’s Theorem (see [20, Chapter 4, Theorem 1.4]) Ŵ δ
ε (r) := Ŵε(r)− [Ŵε(·),Bδ(·)]r , r ≤ t , under Pδ has

the same law as Ŵε under P, where [·, ·]r stands for the quadratic variation at time r . We furthermore have that
[Ŵε(·),Bδ(·)]r =−

∫ r

0 δu(s)ds as well as
ε

0,t =
∫ t

0 S(t− s)Gε dŴε(s) and Tδu
ε

0,t =
∫ t

0 S(t− s)Gε dŴ δ
ε (s). Since the

law of Ŵ δ
ε under Pδ is the same as the law of Ŵ ε under P, this is also the case for Tδu

ε

0,· and
ε

0,· (recall that
ε

0,· is a

continuous function of Ŵε , when the latter is seen as an element in C([0, t];R(2d−1)2
) endowed with the supremum

norm because of (5.5)). Thus Pδ is the required measure and (5.14) in the form

∂δ+E
(
�
(
Xε,δ(t;x)

)
χ
(∣∣∣∣∣∣TδuZ

ε
∣∣∣∣∣∣

t

)
Aδ(t)

)|δ=0 = 0 (5.15)

follows. Using the chain rule,

∂δ�
(
Xε,δ(x; t))=D�

(
Xε,δ(x; t))(∂δX

ε,δ(x; t))
and

∂δAδ(t)=−Aδ(t)

(∫ t

0
u(s) · dŴε(s)+ δ

∫ t

0

∣∣u(s)
∣∣2 ds

)
.
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For the directional derivative of χ(|||TδuZ
ε|||t ) at δ+ = 0 it suffices to check the existence of the limit

lim
δ→0+

|||TδuZ
ε|||t − |||Zε|||t

δ
.

We claim that the above limit is the same as

∂+
∣∣∣∣∣∣Zε

∣∣∣∣∣∣
t

(
Y ε

) := lim
δ→0+

|||Zε + δY ε|||t − |||Zε|||t
δ

,

where Y ε = (Qw(·),2
ε

0,·Qw(·), . . . , n
ε

0,·Qw(·)). Using the fact that ||| · |||t is a norm, we have that

|||TδuZ
ε|||t − |||Zε|||t

δ
= |||Z

ε + δY ε||| − |||Zε|||t
δ

+ Errorδ,

where Errorδ → 0 as δ→ 0+. Subtracting ∂+|||Zε|||t (Y ε) from both sides of the above equation and letting δ→ 0+ we
get

lim sup
δ→0+

( |||TδuZ
ε|||t − |||Zε|||t

δ
− ∂+

∣∣∣∣∣∣Zε
∣∣∣∣∣∣

t

(
Y ε

))≤ 0. (5.16)

In a similar way we can prove that the reverse inequality of (5.16) is valid with the lim sup replaced by a lim inf, which
makes ∂+|||Zε|||t (Y ε) the appropriate limit.

We now argue on how to pass the derivative inside the expectation in (5.15). The argument is similar to [17]. For
any function f = f (δ) we introduce the difference operator �δf (·)= f (δ)− f (0).

We first show that the family of random variables

�δ(�(Xε,·(t;x))χ(|||T·uZε|||t )A·(t))
δ

, δ ∈ (0,1], (5.17)

are uniformly integrable. We first write

�δ

(
�
(
Xε,·(t;x)

)
χ
(∣∣∣∣∣∣T·uZε

∣∣∣∣∣∣
t

)
A·(t)

) = �δ�
(
Xε,·(t;x)

)
χ
(∣∣∣∣∣∣TδuZ

ε
∣∣∣∣∣∣

t

)
Aδ(t)

+�
(
Xε,δ(t;x)

)�δ χ
(∣∣∣∣∣∣T·uZε

∣∣∣∣∣∣
t

)
Aδ(t)

+�
(
Xε,δ(t;x)

)
χ
(∣∣∣∣∣∣TδuZ

ε
∣∣∣∣∣∣

t

)�δ A·(t),

and then treat each term on the right-hand side separately. For the first term, we first use that � ∈ C1
b(C−α0) which

prompts us to bound ‖Xε,δ(t;x)−Xε(t;x)‖C−α0 . By the mean value theorem we get

∥∥Xε,δ(t;x)−Xε(t;x)
∥∥
C−α0 ≤

∫ δ

0

∥∥DXε,λ(t;x)(w)
∥∥
C−α0 dλ,

where DXε,λ(t;x)(w) solves (5.6) with Zε replaced by TλuZ
ε . By (5.6) we get a bound on the quantity

‖DXε,λ(t;x)(w)‖C−α0 as soon as we have a bound on |||TλuZ
ε|||. The presence of the smooth indicator function

yields a bound on |||TδuZ
ε||| which then by definition of the shift as well as the assumed boundedness of w yields a

uniform bound on |||TλuZ
ε||| for all 0≤ λ≤ 1. Hence we obtain a bound of the form∣∣�δ�

(
Xε,·(t;x)

)
χ
(∣∣∣∣∣∣TδuZ

ε
∣∣∣∣∣∣

t

)
Aδ(t)

∣∣≤ Cδ‖D�‖∞Aδ(t),

where the constant C depends on w, χ and t . Arguing in the same way we get for the second term∣∣�(
Xε,δ(t;x)

)�δ χ
(∣∣∣∣∣∣T·uZε

∣∣∣∣∣∣
t

)
Aδ(t)

∣∣≤ Cδ‖�‖∞Aδ(t).
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Finally, for the third term we get using the mean value theorem for �δA·(t) that

∣∣�(
Xε,δ(t;x)

)
χ
(∣∣∣∣∣∣TδuZ

ε
∣∣∣∣∣∣

t

)�δ A·(t)
∣∣≤ C‖�‖∞

∫ δ

0

∣∣∂λAλ(t)
∣∣dλ.

All the above imply that for every p ≥ 1

E

∣∣∣∣�δ(�(Xε,·(t;x))χ(|||T·uZε|||t )A·(t))
δ

∣∣∣∣p � sup
δ∈(0,1]

EAδ(t)p + sup
δ∈(0,1]

E
∣∣∂δAδ(t)

∣∣p.

The key observation is now that Aδ(t)p = Aδp(t) exp{p2−p
2

∫ t

0 |δu(s)|2 ds}, where Aδp(t) is also an exponential mar-

tingale of expectation 1, while exp{p2−p
2

∫ t

0 |δu(s)|2 ds} is uniformly bounded in δ because of the almost sure bound
on w. This implies that supδ∈(0,1]EAδ(t)p is bounded for any p ≥ 1. Recalling the identity

∂δAδ(t)=−Aδ(t)

(∫ t

0
u(s) · dŴε(s)+ δ

∫ t

0

∣∣u(s)
∣∣2 ds

)
and using again the almost sure bound on w as well as the Cauchy–Schwarz inequality we have that

E
∣∣∂δAδ(t)

∣∣p �
(
EAδ(t)2p

) 1
2p

((
E

∣∣∣∣∫ t

0
u(s) · dŴε(s)

∣∣∣∣2p) 1
2p + 1

)
.

The first term on the right-hand side of the above inequality is uniformly bounded in δ as we discussed earlier while
the second term can be bounded uniformly in δ using the Burkholder–Davis–Gundy inequality (see [20, Chapter 4,
Theorem 4.1]) and the almost sure bound on w. Hence

E

∣∣∣∣�δ(�(Xε,·(t;x))χ(|||T·uZε|||t )A·(t))
δ

∣∣∣∣p <∞,

uniformly in δ ∈ (0,1], for every p ≥ 1, which implies uniform integrability of (5.17).
Using Vitali’s convergence theorem (see [3, Theorem 4.5.4]), we can now pass the derivative inside the expectation

and differentiate by parts to obtain the identity

E
(
D�

(
Xε,δ(t;x)

)(
∂δX

ε,δ(t;x)
)
χ
(∣∣∣∣∣∣TδuZ

ε
∣∣∣∣∣∣

t

)
Aδ(t)

)|δ=0

=−E(�(
Xε,δ(t;x)

)
χ
(∣∣∣∣∣∣TδuZ

ε
∣∣∣∣∣∣

t

)
∂δAδ(t)

)|δ=0

−E
(
�
(
Xε,δ(t;x)

)
∂δ+χ

(∣∣∣∣∣∣TδuZ
ε
∣∣∣∣∣∣

t

)
(w)Aδ(t)

)|δ+=0.

The result follows since ∂δX
ε,δ(x; t)|δ=0 =DXε(t;x)(w) and ∂δAδ(t)|δ=0 =−

∫ t

0 u(s) · dŴε(s). �

Let {P ε
t : t ≥ 0} defined via the identity

P ε
t �(x) := E�

(
Xε(t;x)

)
1{t<T ∗ε (x)}

for every � ∈ Cb(C−α0), where we write T ∗ε (x) for the explosion time of vε (see Proposition 5.1) dropping the
dependence on

ε

0,·. We use (5.12) to prove the following proposition.

Proposition 5.8. There exist a universal constant C and θ1 > 0 such that∣∣P ε
t �(x)− P ε

t �(y)
∣∣≤ C

1

tθ1
‖�‖∞‖x − y‖C−α + 2‖�‖∞P

(
t ≥ τ ε, r

2
)

(5.18)

for every x ∈ C−α0 , y ∈ B̄1(x), � ∈ C1
b(C−α0) and t ≤ T ∗ ≡ T ∗(R) (defined in Proposition 5.4), where R =

2‖x‖C−α0 + 1.
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Proof. Let � ∈ C1
b(C−α) and t ≤ T ∗. Then∣∣P ε

t �(x)− P ε
t �(y)

∣∣= ∣∣E[�(
Xε(t;x)

)
1{t<T ∗ε (x)} −�

(
Xε(t;y)

)
1{t<T ∗ε (y)}

]∣∣
and the latter term is bounded by I1 + I2, where

I1 :=
∣∣E[(�(

Xε(t;x)
)−�

(
Xε(t;y)

))
χ
(∣∣∣∣∣∣Zε

∣∣∣∣∣∣
t

)]∣∣,
I2 :=

∣∣E[(�(
Xε(t;x)

)
1{t<T ∗ε (x)} −�

(
Xε(t;y)

)
1{t<T ∗ε (y)}

)(
1− χ

(∣∣∣∣∣∣Zε
∣∣∣∣∣∣

t

))]∣∣.
For the second term we have that I2 ≤ 2‖�‖∞P(t ≥ τ ε, r

2 ) while by the mean value theorem we get that

I1 =
∣∣∣∣E(∫ 1

0
D�

(
Xε

(
t;x + λ(y − x)

))
(y − x)dλχ

(∣∣∣∣∣∣Zε
∣∣∣∣∣∣

t

))∣∣∣∣
=

∣∣∣∣∫ 1

0
E
(
D�

(
Xε

(
t;x + λ(y − x)

))
(y − x)χ

(∣∣∣∣∣∣Zε
∣∣∣∣∣∣

t

))
dλ

∣∣∣∣.
For any hε ∈�ε[L2(T2)] let w be such that ∂sw(s)= (〈J ε

0,shε, em〉)|m|< 1
ε

for s ≤ τ ε,r and 0 otherwise. Then ∂sw is

an adapted process and by Proposition 5.4 there exists C ≡ C(t) > 0 such that ‖∂sw‖2
L2([0,t];R(2d−1)2 )

≤ C, P-almost

surely, for every initial condition zλ = x + λ(y − x) (recall that J ε
0,· depends on the initial condition and that zλ ∈

B̄1(x), for every λ ∈ [0,1], thus the estimates in Proposition 5.4 hold uniformly in λ). Furthermore, DXε(t; zλ)(w)=
tDXε(t; zλ)(hε), for every t ≤ τ ε,r , and as in [17] we can use (5.12) for this particular choice of w to obtain the
following identity,

E
(
D
[
�
(
Xε(t; zλ)

)]
(hε)χ

(∣∣∣∣∣∣Zε
∣∣∣∣∣∣

t

)) = 1

t
E

(
�
(
Xε(t; zλ)

)∫ t

0

〈
J ε

0,shε,dWε(s)
〉
χ
(∣∣∣∣∣∣Zε

∣∣∣∣∣∣
t

))
− 1

t
E
(
�
(
Xε(t; zλ)

)
∂+χ

(∣∣∣∣∣∣Zε
∣∣∣∣∣∣

t

)
(w)

)
, (5.19)

where we slightly abuse the notation since, as we already mentioned, the operator J ε
0,· depends on the initial condi-

tion zλ. In particular this is true for hε = �̂ε(y − x), hence

I1 ≤ 1

t
‖�‖∞

∫ 1

0
E

∣∣∣∣∫ t

0

〈
J ε

0,s�̂ε(y − x),dWε(s)
〉
χ
(∣∣∣∣∣∣Zε

∣∣∣∣∣∣
t

)∣∣∣∣dλ

+ 1

t
‖�‖∞

∫ 1

0
E
∣∣∂+χ

(∣∣∣∣∣∣Zε
∣∣∣∣∣∣

t

)
(w)

∣∣dλ.

Estimating the first term above we get

E

∣∣∣∣∫ t

0

〈
J ε

0,s�̂ε(y − x),dWε(s)
〉
χ
(∣∣∣∣∣∣Zε

∣∣∣∣∣∣
t

)∣∣∣∣≤ E

∣∣∣∣∫ t∧τ ε,r

0

〈
J ε

0,s�̂ε(y − x),dWε(s)
〉∣∣∣∣

≤
(
E

∫ t∧τ ε,r

0

∥∥J ε
0,s�̂ε(y − x)

∥∥2
L2 ds

) 1
2

≤ Ct
1
2−γ ‖x − y‖C−α0 ,

where we use a Cauchy–Schwarz inequality and Itô’s isometry in the second step and Proposition 5.4 in the third step.
Here we use crucially, that the deterministic bound on J ε

0,s provided in Proposition 5.4 holds uniformly in ε > 0 (and
in λ). Using the explicit form (5.13) of ∂+χ(|||Zε|||t ) we also have the uniform in λ bound

E
∣∣∂+χ

(∣∣∣∣∣∣Zε
∣∣∣∣∣∣

t

)
(w)

∣∣≤ Ct1−γ ‖x − y‖C−α0 ,
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since

∂+
∣∣∣∣∣∣Zε

∣∣∣∣∣∣
t

(
Qw(·),2

ε

0,·Qw(·), . . . , n
ε

0,·Qw(·))≤C
∣∣∣∣∣∣Zε

∣∣∣∣∣∣
t
t1−γ ‖x − y‖C−α0

and the fact that |||Zε|||t multiplied by ∂ζ χ(|||Zε|||t ) is bounded by 1. Thus

I1 ≤ C
1

tγ
‖�‖∞‖x − y‖C−α0

and using both the bounds on I1 and I2 we get that for every t ≤ T ∗

∣∣P ε
t �(x)− P ε

t �(y)
∣∣≤ C

1

tγ
‖�‖∞‖x − y‖C−α0 + 2‖�‖∞P

(
t ≥ τ ε, r

2
)
,

which completes the proof. �

Given that the vector (
ε

0,·)nk=1 converges in law to ( 0,·)nk=1 on Cn,−α(0;T ), for every α > 0 and with respect

to every norm ||| · |||α;α′;T , for every T > 0, we have that τ ε, r
2 converges in law to τ

r
2 when the mapping

Z �→ inf

{
t > 0 : ∥∥Z

(1)
t

∥∥
C−α ∨ tα

′∥∥Z
(2)
t

∥∥
C−α ∨ · · · ∨ t (n−1)α′∥∥Z

(n)
t

∥∥
C−α >

r

2

}
(5.20)

is P-almost surely continuous on the path ( 0,·)nk=1. But if

L := {
r ∈ (0,1] : P((5.20) is discontinuous on ( 0,·)nk=1

)
> 0

}
and M : [0,∞)→[0,∞) is the mapping

t �→ ‖ 0,t‖C−α ∨ tα
′ ‖ 0,t‖C−α ∨ · · · ∨ t (n−1)α′ ‖ 0,t‖C−α ,

then

L⊂ {
r ∈ (0,1] : P(M has a local maximum at height r) > 0

}
and the latter set is at most countable (see [14, proof of Theorem 6.1]), thus we can choose r ∈ [ 1

4 ,1] in (5.9) such

that (5.20) is P-almost surely continuous on ( 0,·)nk=1. This implies convergence in law of τ ε, r
2 to τ

r
2 , thus

lim sup
ε→0+

P
(
t ≥ τ ε, r

2
)≤ P

(
t ≥ τ

r
2
)
.

Notice that global existence of vt (see Theorem 3.9) implies global existence of X(t;x) and in particular exis-
tence for every t ≤ T ∗(R). Using Propositions 2.3 and 3.4, lim infε→0+ T ∗ε ≥ T ∗(R) and supt≤T ∗ε ∧T ∗(R) ‖Xε(t;xε)−
X(t;x)‖C−α0 → 0 P-almost surely, for every x ∈ C−α . By the dominated convergence theorem P ε

t �(x) converges to
Pt�(x), for every � ∈ C1

b(C−α0), and we retrieve (5.18) for the limiting semigroup Pt , for every t ≤ T ∗(R), in the
form ∣∣Pt�(x)− Pt�(y)

∣∣≤C
1

tθ1
‖�‖∞‖x − y‖C−α0 + 2‖�‖∞P

(
t ≥ τ

r
2
)
. (5.21)

Remark 5.9. The above argument can be modified to retrieve (5.21) without the knowledge of global existence for
the limiting process. In this case, one can define the semigroup Pt by introducing a cemetery state for the process
X(t;x).
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We finally prove the following theorem. Below we denote by ‖μ1 − μ2‖TV the total variation distance of two
probability measures μ1,μ2 ∈M1(C−α0) given by

‖μ1 −μ2‖TV := 1

2
sup

‖�‖∞≤1
|Eμ1�−Eμ2�|.

Theorem 5.10. There exists θ ∈ (0,1) and σ > 0 such that for every x ∈ C−α0 and y ∈ B̄1(x)∥∥P ∗t δx − P ∗t δy

∥∥
TV ≤ C

(
1+ ‖x‖C−α0

)σ‖x − y‖θC−α0 ,

for every t ≥ 1. In particular, for every t ≥ 1, Pt is locally uniformly θ -Hölder continuous with respect to the total
variation norm in C−α0 .

Proof. Let R = 2‖x‖C−α0 + 1. By a density argument (see [7, Lemma 7.1.5]) (5.21) is equivalent to∥∥P ∗t δx − P ∗t δy

∥∥
TV ≤

C

2

1

tθ1
‖x − y‖C−α0 + P

(
t ≥ τ

r
2
)
,

for every t ≤ T ∗ and y ∈ B̄1(x). Notice that

P
(
t ≥ τ

r
2
)≤ P

(
|||Z|||α;α′;t >

r

2

)
and by Theorem 2.1

P
(|||Z|||α;α′;t > r

)≤C
1

r
tθ2,

for some θ2 ∈ (0,1). Since we can assume that T ∗ ≤ 1, we have that∥∥P ∗1 δx − P ∗1 δy

∥∥
TV ≤

∥∥P ∗T ∗δx − P ∗T ∗δy

∥∥
TV,

where∥∥P ∗T ∗δx − P ∗T ∗δy

∥∥
TV ≤ inf

t≤T ∗

{
C1

1

tθ1
‖x − y‖C−α0 +C2

1

r
tθ2

}
.

Let f (t) := C1
1

tθ1
‖x − y‖C−α0 +C2

1
r
tθ2 , t > 0, and notice that for

t0 =
(

θ1C1r‖x − y‖C−α0

θ2C2

) 1
θ1+θ2

,

f (t0)= inft>0 f (t). If t0 ≤ T ∗, then there exists C ≡ C(θ1, θ2, r) such that

∥∥P ∗T ∗δx − P ∗T ∗δy

∥∥
TV ≤ f (t0)= C‖x − y‖

θ2
θ1+θ2
C−α0

.

Otherwise t0 ≥ T ∗ and using∥∥P ∗T ∗δx − P ∗T ∗δy

∥∥
TV ≤ C1

1

(T ∗)θ1
‖x − y‖C−α0 +C2

1

r

(
T ∗

)θ2

≤ C1
1

(T ∗)θ1
‖x − y‖C−α0 +C2

1

r
t
θ2
0

= C1
1

(T ∗)θ1
‖x − y‖C−α0 + C̃2

1

r
‖x − y‖

θ2
θ1+θ2
C−α0
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and the explicit estimate of T ∗ (see (3.7)) we get

∥∥P ∗T ∗δx − P ∗T ∗δy

∥∥
TV ≤ C̃1(1+R)3

θ1
θ ‖x − y‖C−α0 + C̃2

1

r
‖x − y‖

θ2
θ1+θ2
C−α0

≤ C(1+R)
3

θ1
θ
+ θ1

θ1+θ2 ‖x − y‖
θ2

θ1+θ2
C−α0

for a constant C ≡ C(θ1, θ2, r) and some θ > 0 as in (3.7). Combining all the above we finally get

∥∥P ∗1 δx − P ∗1 δy

∥∥
TV ≤ C(1+R)

3
θ1
θ
+ θ1

θ1+θ2 ‖x − y‖
θ2

θ1+θ2
C−α0

,

which completes the proof. �

6. Exponential mixing of �4
2

From now on we restrict ourselves in the case n = 3 (see Remark 6.2). In this section following [4] we first prove
a support theorem for the solution to the �4

2 equation. After that we combine this result with Corollary 3.10 and
Theorem 5.10 and prove exponential convergence to a unique invariant measure with respect to the total variation
norm.

6.1. A support theorem

We consider Y = ( −∞,·)3
k=1 as an element of C([0, T ];C−α)3 endowed with the norm ||| · |||α;0;T , for some α ∈

(0,1), given by

|||Y |||α;0;T := max
k=1,2,3

{
sup
t≤T

‖ 0,t‖C−α

}
.

Here we are allowed to use a non-weighted norm since there is no blow up of −∞,· at zero. We furthermore let

H (T ) :=
{
h|[0,T ] : h(t)=

∫ t

−∞
S(t − r)f (r)dr, t ≥ 0, and f ∈L2(

R×T
2)}.

It is worth mentioning that H (T ) consists of those L2-integrable space-time functions with zero initial datum and
with one derivative in time and two derivatives in space in L2.

Lemma 6.1. Let {Cm}m≥1 be a sequence of positive numbers such that Cm ≤ C(m+ 1). Then there exists a sequence
of smooth functions {fm}m≥1 such that

(i) fm ∈ C−α , for every α ∈ (0,1).
(ii) E|〈fm, el〉|2 = Cm if l = 2m or l =−2m and 0 otherwise.

(iii) For every n= 1,2,3, Hn(fm,Cm)→ 0 in C−α , for every α ∈ (0,1).

Proof. Let

fm(z) := e2π i2mz0·z + e−2π i2mz0·z

21/2
C

1/2
m ,

where z0 = (1,1) ∈ Z
2, z ∈ T

2. Then for κ ≥−1

δκfm(z)= C
1/2
m

21/2
1{m=κ}

(
e2π i2mz0·z + e−2π i2mz0·z),
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δκfm(z)2 −Cm = Cm

2
1{m+1=κ}

(
e2π i2m+1z0·z + e−2π i2m+1z0·z),

δκfm(z)3 = C
3/2
m

23/2

[
χκ

(
2m3z0

)(
e2π i2m3z0·z + e−2π i2m3z0·z)

+ 1{m=κ}3
(
e2π i2mz0·z + e−2π i2mz0·z)].

Notice here we have used the convenient fact that the particular choice of z0 has the property that χκ(2mz0)= 1{m=κ}.
Thus we have

‖fm‖C−α � C
1/2
m 2−αm,∥∥f 2

m −Cm

∥∥
C−α � Cm2−αm,∥∥f 3

m − 3Cmfm

∥∥
C−α � C

3/2
m 2−αm.

Given that Cm �m+ 1 all the above quantities tend to 0 as m→∞, which completes the proof. �

Remark 6.2. The sequence {fm}m≥1 introduced in the lemma above satisfies property (iii) for every odd n. For such
n every term appearing in Hn(fm,Cm) is a multiple of C

k1
m e2mk2z0 for a k2 �= 0 and the fast (exponential) decay of

‖e2mk2z0‖C−α compensates the slow (polynomial) growth of C
k1
m . However, for even n this property fails, because for

such n the Hn(fm,Cm) contains a multiple of Cn
m which does not need to vanish. We suspect, that a first step in order

to generalize Theorem 6.3 to the case of general n would be the construction of a sequence {fm}m≥1 with Fourier
support on an annulus and such that∫

T2
fm(z)k dz=Hk

(
0,Cm

)
,

for every k ≥ 1.

We now prove the following support theorem.

Theorem 6.3. Let PY be the law of Y in C([0, T ];C−α)3 endowed with the norm ||| · |||α;0;T . Then

suppPY =
{(
Hk(h,�)

)3
k=1 : h ∈H (T ),�≥ 0

}|||·|||α;0;T
.

Proof. For h ∈H (T ) and Y ∈C3,−α(0;T ) let Th be the shift

ThY
(k) =

k∑
j=0

(
k

j

)
hjY (k−j), k = 1,2,3,

where we use again the convention that Y (0) ≡ 1, and write ThY = (ThY
(k))3

k=1. Here we slightly abuse the notation
since the action of Th on Y (k) needs information on the lower order terms.

As in [4], it suffices to prove that (0,−�,0) ∈ suppPY , for every � ≥ 0. Then, given that shifts of the initial
probability measure in the direction of the Cameron–Martin space generate equivalent probability measures, for every
h ∈H (T ), Th(0,−�,0) ∈ suppPY , which completes the proof since by the definition of Th the latter is equal to
(Hk(h,�))3

k=1 (see also [4, Corollary 3.10]).
For λ > 0 and ρλ2m(z)=∑

|m̄|<λ2m em̄(z) we let

m

−∞,t (z) := −∞,t

(
ρλ2m(z− ·)), �m := E

m

−∞,t (0)2,

where
m

−∞,t coincides with
ε

−∞,t in Section 2.2 for m= 1
ε

. Notice that for �≥ 0 there exists m0 ≡m0(�) > 1 such
that �m −�> 0, for every m≥m0 (recall that �m ∼ logm). Thus if we set Cm = 0 for m≤m0 and Cm =�m −�
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otherwise, then Cm ≥ 0 and Cm � m+ 1. We consider fm as in Lemma 6.1 for this particular choice of Cm and for
λm = 1+ 4π222m|z0|2 we let

hm(t) := (
1− e−λm(t+1)

)
fm,

for t ∈ [0, T ]. Then hm ∈H (T ) since hm(t) = 1
λm

∫ t

−1 S(t − r)fm dr and we furthermore have the uniform in t

estimates∥∥hm(t)
∥∥
C−α ≤ ‖fm‖C−α ,∥∥hm(t)2 −Cm

∥∥
C−α ≤

∥∥f 2
m −Cm

∥∥2
C−α + 2e−λmCm,∥∥hm(t)3

∥∥
C−α ≤

∥∥f 3
m

∥∥
C−α .

Finally, we define

wm := − m

−∞,· − hm.

We prove that the following convergences hold in every stochastic Lp space of random variables taking values in
C([0, T ];C−α),

Twm −∞,· → 0, Twm −∞,· →−�, Twm −∞,· → 0.

By the same argument as in [4, Lemma 3.13] this implies the result. For the reader’s convenience, we sketch the
argument here. Since wm ∈H (T ), by Lemma [4, Corollary 3.10] there exists a subset �′ of � of probability one
such that for every ω ∈�′(

Twm(ω) −∞,·(ω), Twm(ω) −∞,·(ω), Twm(ω) −∞,·(ω)
) ∈ suppPY ,

for every m≥ 1. Given that suppPY is closed under the norm ||| · |||α;0;T , we can conclude that (0,−�,0) ∈ suppPY

as soon as the above convergence holds for a single element ω ∈�′. The stochastic Lp convergence implies almost
sure convergence along a subsequence which is sufficient.

The convergence of Twm −∞,· to 0 is an immediate consequence of Proposition 2.3 and Lemma 6.1.

If we compute the corresponding shift for −∞,t we get

Twm −∞,t = −∞,t +
(( m

−∞,t

)2 −�m
)− 2

(
−∞,t

m

−∞,t −�m
)

+ 2
m

−∞,t hm(t)+H2
(
hm(t),�m

)
,

where we also add and subtract 2�m where necessary. If we choose λ sufficiently small we can ensure that

m

−∞,t ◦ hm(t)≡ 0,

where
m

−∞,t ◦ hm(t) is the resonant term define in (A.9). Using the Bony estimates (see Proposition A.6), Lemma 6.1
and the fact that

m

−∞,· is bounded in every stochastic Lp space taking values in C([0, T ];C−α) we get that
m

−∞,t hm(t)→ 0. For the term

−∞,t +
(( m

−∞,t

)2 −�m
)− 2

(
−∞,t

m

−∞,t −�m
)

by Proposition 2.3 it suffices to compute the limit of −∞,t
m

−∞,t −�m. We only give a sketch of the proof since the

idea is similar to the one in the proof of Proposition 2.3. Notice that for m′ > m, E
m′
−∞,t

m

−∞,t =�m, thus using [18,
Proposition 1.1.2] we have that

m′
−∞,t

m

−∞,t −�m = m′
−∞,t ⊗ m

−∞,t ,
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where ⊗ denotes the renormalized product given by

m′

−∞,t ⊗
m

−∞,t (z)

:=
∫
{(−∞,t]×T2}j+i

∏
1≤j ′≤j

1≤i′≤i

Hm′(t − ri′ , z− zi′)Hm(t − rj ′ , z− zj ′)ξ

(
i+j⊗
k=1

dzk,

i+j⊗
k=1

drk

)
,

for every z ∈ T
2 and i, j ≥ 1. In the same spirit as in the proof of Proposition 2.3 (see Appendix E) we can prove that

lim
m→∞ lim

m′→∞
E sup

t≤T

∥∥ m′
−∞,t ⊗ m

−∞,t − −∞,t

∥∥p

C−α = 0,

for every p ≥ 2. Combining the above with the fact that supt≤T ‖hm(t)2 − (�m −�)‖C−α converges to 0, we obtain

that Twm −∞,· →−�.
For the term Twm −∞,t , by adding and subtracting multiples of �m m

−∞,t and �m where necessary we have that

Twm −∞,t = −∞,t −
(( m

−∞,t

)3 − 3�m m

−∞,t

)− 3
( m

−∞,t −∞,t − 2�m m

−∞,t

)
+ 3

(
−∞,t

( m

−∞,t

)2 − 3�m m

−∞,t

)
+ 3hm(t)

(
−∞,t +

(( m

−∞,t

)2 −�m
)− 2

(
−∞,t

m

−∞,t −�m
))

+ 3hm(t)2( −∞,t − m

−∞,t

)+H3
(
hm(t),�m

)
.

For the terms
m

−∞,t −∞,t − 2�m m

−∞,t , −∞,t (
m

−∞,t )
2 − 3�m m

−∞,t using again [18, Proposition 1.1.2] for m′ > m

we have that

m

−∞,t

m′
−∞,t − 2�m m

−∞,t = m

−∞,t ⊗
m′
−∞,t + 2�m

( m′
−∞,t − m

−∞,t

)
,

m′
−∞,t

( m

−∞,t

)2 − 3�m m

−∞,t = m′
−∞,t ⊗

m

−∞,t +�m
( m′
−∞,t − m

−∞,t

)
.

If we proceed again in the spirit of the proof of Proposition 2.3 (see Appendix E) we obtain that

lim
m→∞ lim

m′→∞
E sup

t≤T

∥∥ m

−∞,t ⊗
m′
−∞,t − −∞,t

∥∥p

C−α = 0,

lim
m→∞ lim

m′→∞
E sup

t≤T

∥∥ m′
−∞,t ⊗

m

−∞,t − −∞,t

∥∥p

C−α = 0,

lim
m→∞ lim

m′→∞
(�m

)p
E sup

t≤T

∥∥ m′
−∞,t − m

−∞,t

∥∥p

C−α = 0,

for every p ≥ 2. It remains to handle the terms

hm(t)
(
−∞,t −

(
−∞,t

m

−∞,t −�m
))

, (6.1)

hm(t)
(( m

−∞,t

)2 −�m − (
−∞,t

m

−∞,t −�m
))

(6.2)

and

hm(t)2( −∞,t − m

−∞,t

)
. (6.3)
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We only show that (6.1) converges to 0 since (6.2) and (6.3) can be handled in a similar way. In particular due to Bony
estimates (see Proposition A.6) it suffices to prove that the resonant term

hm(t) ◦ ( −∞,t −
(
−∞,t

m

−∞,t −�m
))= ∑

|κ1−κ2|≤1

δκ1hm(t)δκ2

[
−∞,t −

(
−∞,t

m

−∞,t −�m
)]

converges to 0. Since the Fourier modes of hm are localized at the points 2mz0 and −2mz0 we have that

hm(t) ◦ ( −∞,t −
(
−∞,t

m

−∞,t −�m
))= hm(t)

∑
i=−1,0,1

δm+i

[
−∞,t −

(
−∞,t

m

−∞,t −�m
)]

.

Let κ ≥−1 and Ym(t)= −∞,t − ( −∞,t
m

−∞,t −�m). Then, for i =−1,0,1,

Eδκ

[
hm(t1)δm+iYm(t1)

]
(z1)δκ

[
hm(t2)δm+iYm(t2)

]
(z2)

=
∫
T2×T2

Cm,i(t1 − t2, z̄1 − z̄2)ηκ(z1 − z̄1)ηκ(z2 − z̄2)hm(t1, z̄1)hm(t2, z̄2)dz̄1 dz̄2,

where

Cm,i(t1 − t2, z̄1 − z̄2)= Eδm+i

[
Ym(t1)

]
(z̄1)δm+i

[
Ym(t2)

]
(z̄2).

For m′ > m using [18, Proposition 1.1.2] we have that
m′
−∞,t

m

−∞,t −�m = m′
−∞,t ⊗ m

−∞,t . Let Ym,m′(t)= −∞,t −
m′
−∞,t ⊗ m

−∞,t and notice that

Eδm+i

[
Ym,m′(t1)

]
(z̄1)δm+i

[
Ym,m′(t2)

]
(z̄2)= C

∑
|l1|>λ2m′
|l2|>λ2m

∏
j=1,2

1− e−Ilj
|t2−t1|

2Ilj

∣∣χm+i (l1 + l2)
∣∣2el1+l2(z̄1 − z̄2),

for some constant C independent of m and m′ and Ilj = 1 + 4π2|lj |2. Then for every γ ∈ (0, 1
2 ) by a change of

variables∫
T2×T2

Cm,m′,i (t1 − t2, z̄1 − z̄2)ηκ(z1 − z̄1)ηκ(z2 − z̄2)hm(t1, z̄1)hm(t2, z̄2)dz̄1 dz̄2

� (m+ 1)|t1 − t2|2γ

( ∑
l∈A2m+i

l+2mz0∈A2κ

Kγ �2
>λ2m Kγ (l)+

∑
l∈A2m+i

l−2mz0∈A2κ

Kγ �2
>λ2m Kγ (l)

︸ ︷︷ ︸
I

)
,

where Kγ (l)= 1
(1+|l|2)1−γ and Cm,m′,i is defined as Cm,i with Ym replaced by Ym,m′ . By Corollary C.3

I �
∑

l∈A2m+i

l+2mz0∈A2κ

1

(1+ |l|2)1−2γ
+

∑
l∈A2m+i

l−2mz0∈A2κ

1

(1+ |l|2)1−2γ
,

thus for every ε > 2γ

I � 22εk
∑
l∈Z2

1

(1+ |l|2)1−2γ

1

(1+ |l + 2mz0|2)ε .
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Using Corollary C.3 we obtain

Eδκ

[
hm(t1)δm+iYm,m′(t1)

]
(z1)δκ

[
hm(t2)δm+iYm,m′(t2)

]
(z2) �

22εκ (m+ 1)

(1+ |2mz0|2)ε−2γ
|t1 − t2|2γ ,

for every γ ∈ (0, 1
2 ) and ε > 2γ . Using Nelson’s estimate (B.3) for every p ≥ 2, the usual Kolmogorov’s criterion and

the embedding B
−α+ 2

p
p,p ↪→ C−α we finally obtain that

lim
m→∞ lim

m′→∞
E sup

t≤T

∥∥hm(t) ◦ ( −∞,t −
(
−∞,t

m

−∞,t −�m
))∥∥p

C−α = 0.

Convergence of hm( −∞,· − ( −∞,·
m

−∞,· − �m)) to 0 then follows by Bony estimates (see Proposition A.6). �

For x ∈ C−α0 , f ∈ L2(R×T
2) and �≥ 0, let T (x;f ;�) be the solution map of the equation{

∂tX =�X−X−∑3
k=0 akHk(X,�)+ f,

f (0, ·)= x.
(6.4)

The following corollary is an immediate consequence of Theorem 6.3.

Corollary 6.4. Let X(·;x) be the solution to (3.2) for n = 3 and x ∈ C−α0 and denote by PX(·;x) its law in
C([0, T ];C−α0). Then

suppPX(·;x) =
{
T (x;f ;�) : f ∈L2

(
R×T2

)
,�≥ 0

}C([0,T ];C−α0 )
.

Proof. See the proof of [4, Theorem 1.1]. �

Using the above corollary we prove that for every y ∈ C−α0 and every ε > 0

P
(
X(T ;x) ∈ Bε(y)

)
> 0. (6.5)

To do so, it suffices to prove that for every y ∈ C∞(T2) there exist f ∈ L2(T2) and � ≥ 0 such that T (x;f ;
�)(T )= y. But if we set

X(t)= S(t)x + t

T

(
y − S(T )x

)
,

for any choice of �≥ 0 and

f (t)=
3∑

k=0

akHk

(
X(t),�)+ 1

T

(
y − S(T )x

)− t

T
(�− I )

(
y − S(T )

)
we have that X =T (x;f ;�). Then the result follows by Corollary 6.4 and the fact that C∞(T2) is dense in C−α0 .

6.2. Convergence rate

We recall that for any coupling M of probability measures μ1, μ2 and F , G measurable functions with respect to the
corresponding σ -algebras we have the identity∫ (

F(x)−G(y)
)
M(dx,dy)=

∫ ∫ (
F(x)−G(y)

)
μ1(dx)μ2(dy). (6.6)

We finally combine the results of the previous sections to prove the following theorem.
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Theorem 6.5. Let {Pt : t ≥ 0} be the Markov semigroup (4.2) associated to the solution of (3.2) for n= 3. Then there
exists λ ∈ (0,1) such that∥∥P ∗t δx − P ∗t δy

∥∥
TV ≤ 1− λ, (6.7)

for every x, y ∈ C−α0 , t ≥ 3.

Proof. Let 0 < α < α0 and for R > 0 consider the subset of C−α0

AR :=
{
x ∈ C−α0 : ‖x‖C−α ≤R

}
which is compact since the embedding C−α ↪→ C−α0 is compact (see Proposition A.4). By Theorem 5.10 for every
a ∈ (0,1) there exists r ≡ r(a) > 0 such that for every x, y ∈ B̄r (0) and t ≥ 1∥∥P ∗t δx − P ∗t δy

∥∥
TV ≤ 1− a.

By (6.5) for every x ∈AR

P1
(
x; B̄r (0)

)
> 0,

which combined with the strong Feller property (which implies the continuity of P1(x;A) as a function of x for fixed
measurable set A) and the fact that AR is compact implies that there exists b≡ b(R) > 0 such that

inf
x∈AR

P1
(
x; B̄r (0)

)≥ b.

For t ≥ 0 and x, y ∈AR \ B̄r (0), let Px,y
t ∈M1(C−α0 × C−α0) be the product coupling of Pt (x) and Pt(y) given by

P
x,y
t (A×B)= Pt (x;A)Pt (y;B),

for every measurable sets A,B ⊂ C−α0 . Then, for x, y ∈AR , t ≥ 2 and � ∈Cb(C−α0),∣∣Pt�(x)− Pt�(y)
∣∣= ∣∣E[Pt−1�

(
X(1;x)

)− Pt−1�
(
X(1;y)

)]∣∣
=

∣∣∣∣∫ [
Pt−1�(x̃)− Pt−1�(ỹ)

]
P

x,y

1 (dx̃,dỹ)

∣∣∣∣,
where in the first equality we use the Markov property and in the second (6.6). This implies that∥∥P ∗t δx − P ∗t δy

∥∥
TV ≤ P

x,y

1

((
B̄r (0)× B̄r (0)

)c)+ (1− a)P
x,y

1

(
B̄r (0)× B̄r (0)

)
= 1− aP

x,y

1

(
B̄r (0)× B̄r (0)

)
≤ 1− ab2.

By (3.24) we can choose R > 0 sufficiently large such that

inf
x∈C−α0

inf
t≥1

P
(∥∥X(t;x)

∥∥
C−α ≤R

)
>

1

2
.

Then for any x, y ∈ C−α0 and t ≥ 3, using the same coupling argument as above we get

∥∥P ∗t δx − P ∗t δy

∥∥
TV ≤ 1− ab2

4
,

which completes the proof if we set λ= ab2

4 . �

The following corollary contains our main result, the exponential convergence to a unique invariant measure.
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Corollary 6.6. There exists a unique invariant measure μ ∈M1(C−α0) for the semigroup {Pt : t ≥ 0} associated to
the solution of (3.2) for n= 3 such that∥∥P ∗t δx −μ

∥∥
TV ≤ (1− λ)�

t
3 �‖δx −μ‖TV, (6.8)

for every x ∈ C−α0 , t ≥ 3.

Proof. We first notice that for μ1,μ2 ∈M1(C−α0) and every t ≥ 0 by (6.6) we have that∥∥P ∗t μ1 − P ∗t μ2
∥∥

TV ≤
1

2
sup

‖�‖∞≤1

∫ ∫ ∣∣Pt�(x)− Pt�(y)
∣∣M(dx,dy),

for any coupling M ∈M1(C−α0 × C−α0) of μ1 and μ2. Thus by (6.7) for t ≥ 3∥∥P ∗t μ1 − P ∗t μ2
∥∥

TV ≤ (1− λ)
(
1−M

({
(x, x) : x ∈ C−α0

}))
and using the characterization of the total variation distance given by

‖μ1 −μ2‖TV = inf
{
1−M

({
(x, x) : x ∈ C−α0

}) :M coupling of μ1 and μ2
}

we get that∥∥P ∗t μ1 − P ∗t μ2
∥∥

TV ≤ (1− λ)‖μ1 −μ2‖TV.

This implies that {Pt : t ≥ 0} has a unique invariant measure μ ∈M1(C−α0), since by Proposition [7, Proposi-
tion 3.2.5] any two distinct invariant measures are singular. Finally, for x ∈ C−α0 and t ≥ 3∥∥P ∗t δx −μ

∥∥
TV ≤ (1− λ)

∥∥P ∗t−3δx −μ
∥∥

TV,

which implies (6.8). �

Appendix A

The following three propositions can be found in [15, Section 3: pp. 11–12].

Proposition A.1. Let α1, α2 ∈R, p1,p2, q1, q2 ∈ [1,∞]. Then,

‖f ‖Bα1
p1,q1

≤C‖f ‖Bα2
p1,q1

, whenever α1 ≤ α2, (A.1)

‖f ‖Bα1
p1,q1

≤ ‖f ‖Bα1
p1,q2

, whenever q1 ≥ q2, (A.2)

‖f ‖Bα1
p1,q1

≤C‖f ‖Bα1
p2,q1

, whenever p1 ≤ p2, (A.3)

‖f ‖Bα1
p1,q1

≤C‖f ‖Bα2
p1,q2

, whenever α1 < α2. (A.4)

Proposition A.2. Let p ∈ [1,∞]. Then the space B0
p,1 is continuously embedded in Lp and

‖f ‖Lp ≤ ‖f ‖B0
p,1

. (A.5)

On the other hand, Lp is continuously embedded in B0
p,∞ and

‖f ‖B0
p,∞ ≤ C‖f ‖Lp . (A.6)
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Proposition A.3. Let α ≤ β and p,q ≥ 1 such that p ≥ q and β = α + d( 1
q
− 1

p
). Then

‖f ‖Bα
p,∞ ≤ C‖f ‖Bβ

q,∞
.

The following proposition can be found in [2, Corollary 2.96] and it is generally true for Besov spaces over compact
sets.

Proposition A.4. Let α < α′. Then the embedding Bα′∞,∞ ↪→ Bα
∞,1 is compact.

In the following proposition we describe the smoothing properties of the heat semigroup (et�)t≥0 with generator
� in space (see [15, Proposition 3.11]).

Proposition A.5. Let f ∈ Bα
p,q . Then, for all β ≥ α,∥∥et�f

∥∥
Bβ

p,q
≤Ct

α−β
2 ‖f ‖Bα

p,q
, (A.7)

for every t ≤ 1.

For f,g ∈ C∞(Td) we define the paraproduct f ≺ g and the resonant term f ◦ g by

f ≺ g :=
∑

ι<κ−1

διf δκg, (A.8)

f ◦ g :=
∑

|ι−κ|≤1

διf δκg. (A.9)

We also let f " g := g ≺ f . Notice that formally

fg = f ≺ g + f ◦ g + f " g.

We then have the following estimates due to Bony.

Proposition A.6. ([2, Theorems 2.82 and 2.85]) Let α,β ∈R and g ∈ Cβ .

(i) If f ∈ L∞, ‖f ≺ g‖Cβ ≤ C‖f ‖L∞‖g‖Cβ .
(ii) If α < 0 and f ∈ Cα , ‖f ≺ g‖Cα+β ≤ C‖f ‖Cα‖g‖Cβ .

(iii) If α + β > 0 and f ∈ Cα , ‖f ◦ g‖Cα+β ≤ C‖f ‖Cα‖g‖Cβ .

The above proposition allows us to define the product of a distribution and a function in a canonical way under
certain regularity assumptions (see [15, Corollary 3.21]).

Proposition A.7. Let f ∈ Cα and g ∈ Cβ , where α < 0 < β , α + β > 0. Then fg can be uniquely defined as an
element in Cα such that

‖fg‖Cα ≤ C‖f ‖Cα‖g‖Cβ .

Regarding the inner product on L2(Td) we have the following extension result (see [15, Proposition 3.23]).

Proposition A.8. Let p,q ≥ 1 and p′, q ′ their conjugate exponents. Then, for every 0 ≤ α < 1, the L2(Td) inner
product can be uniquely extended to a continuous bilinear form on Bα

p,q ×B−α
p′,q ′ such that∣∣〈f,g〉∣∣≤C‖f ‖Bα

p,q
‖g‖B−α

p′,q′
,

for all (f, g) ∈ Bα
p,q ×B−α

p′,q ′ .
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Finally we have the following gradient estimate for functions of positive regularity (see [15, Proposition 3.25]).

Proposition A.9. Let f ∈ Bα
1,1, α ∈ (0,1). Then

‖f ‖Bα
1,1
≤C

(‖f ‖1−α

L1 ‖∇f ‖α
L1 + ‖f ‖L1

)
. (A.10)

Appendix B

Definition B.1. Let {ξ(φ)}φ∈L2(R×Td ) be a family of centered Gaussian random variables on a probability space
(�,F,P) such that

E
(
ξ(φ)ξ(ψ)

)= 〈φ,ψ〉L2(R×Td ),

for all φ,ψ ∈ L2(R×T
d). Then ξ is called a space-time white noise on R×T

d .

The existence of such a family of random variables on some probability space (�,F,P) is assured by Kol-
mogorov’s extension theorem and by definition we can check that it is linear, i.e. for all λ, ν ∈R, φ,ψ ∈ L2(R×T

d)

we have that ξ(λφ + νψ)= λξ(φ)+ νξ(ψ) P-almost surely (see [18, Chapter 1]). We interpret ξ(φ) as a stochastic
integral and write∫

R×Td

φ(t, x)ξ(dt,dx) := ξ(φ),

for all φ ∈ L2(R× T
d). We use this notation, but stress that ξ is almost surely not a measure and that the stochastic

integral is only defined on a set of measure one which my depend on the specific choice of φ.
We also define multiple stochastic integrals (see [18, Chapter 1]) on R × T

d for all symmetric functions f in
L2((R× T

d)n), for some n ∈ N, i.e. functions such that f (z1, z2, . . . , zn) = f (zi1 , zi2, . . . , zin) for any permutation
(i1, i2, . . . , in) of (1,2, . . . , n). Here zj is an element of R×T

d , for all j ∈ {1,2, . . . , n}. For such a symmetric function
f we denote its nth iterated stochastic integral by

In(f ) :=
∫

(R×Td )n
f (z1, z2, . . . , zn)ξ(dz1 ⊗ dz2 ⊗ · · · ⊗ dzn).

The following theorem can be found in [18, Theorem 1.1.2].

Theorem B.2. Let Fξ be the σ -algebra generated by the family of random variables {ξ(φ)}φ∈L2(R×Td ). Then every

element X ∈ L2(�,Fξ ,P) can be written in the following form

X = E(X)+
∞∑

n=1

In(fn),

where fn ∈ L2((R×T
d)n) are symmetric functions, uniquely determined by X.

The above theorem implies that L2(�,Fξ ,P) can be decomposed into a direct sum of the form
⊕

n≥0 Sn, where
S0 :=R and

Sn :=
{
In(f ) : f ∈ L2((

R×T
d
)n) symmetric

}
, (B.1)

for all n≥ 1. The space Sn is called the nth homogeneous Wiener chaos and the element In(fn) the projection of X

onto Sn.
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Given a symmetric function f ∈ L2((R×T
d)n), we have the isometry

E(In)
2 = n!‖f ‖2

L2((R×Td )n)
. (B.2)

Furthermore, by Nelson’s estimate (see [18, Section 1.4]) for every n≥ 1 and Y ∈ Sn,

E|Y |p ≤ (p− 1)
n
2 p

(
E|Y |2) p

2 , (B.3)

for every p ≥ 2.

Appendix C

Definition C.1. For symmetric kernels K1,K2 : Z2 → (0,∞) we denote by K1 � K2 the convolution given by

K1 � K2(m) :=
∑
l∈Z2

K1(m− l)K2(l)

and for N ∈N we let

K1 �≤N K2(m) :=
∑
|l|≤N

K1(m− l)K2(l),

as well as

K1 �>N K2 := (K1 � K2)− (K1 �≤N K2).

We are interested in symmetric kernels K for which there exists α ∈ (0,1] such that

K(m)≤C
1

(1+ |m|2)α .

In the spirit of [9, Lemma 10.14] we have the following lemma.

Lemma C.2. Let α,β ∈ (0,1] such that α+ β − 1 > 0 and let K1,K2 : Z2 → (0,∞) be symmetric kernels such that

K1(m)≤ C
1

(1+ |m|2)α , K2(m)≤ C
1

(1+ |m|2)β .

If α < 1 or β < 1 then

K1 � K2(m)≤ C
1

(1+ |m|2)α+β−1
,

K1 �>N K2(m)≤ C

⎧⎨⎩
1

(1+|m|2)α+β−1 , if |m| ≥N,

1
(1+|N |2)α+β−1 , if |m|< N

and if α = β = 1

K1 � K2(m)≤ C
log |m| ∨ 1

1+ |m|2 ,

K1 �>N K2(m)≤ C

⎧⎨⎩
log |m|∨1
1+|m|2 , if |m| ≥N,

log |N |∨1
1+|N |2 , if |m|< N.
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Proof. We only prove the estimates for K1 � K2. The corresponding estimates for K1 �>N K2 can be proven in a
similar way. We consider the following regions of Z2,

A1 =
{
l : |l| ≤ |m|

2

}
,

A2 =
{
l : |l −m| ≤ |m|

2

}
,

A3 =
{
l : |m|

2
≤ |l| ≤ 2|m|, |l −m| ≥ |m|

2

}
,

A4 =
{
l : |l|> 2|m|}.

For every l ∈A1 we notice that |m− l| ≥ 3|m|
4 , which implies that∑

l∈A1

K1(m− l)K2(l) �
1

(1+ |m|2)α
∑
l∈A1

K2(l)

�

⎧⎨⎩
(1+|m|2)β−1

(1+|m|2)α , if β < 1,

log |m|∨1
(1+|m|2)α , if β = 1.

By symmetry we get that

∑
l∈A2

K1(m− l)K2(l) �

⎧⎨⎩
(1+|m|2)α−1

(1+|m|2)β , if α < 1,

log |m|∨1
(1+|m|2)β , if α = 1.

For the summation over A3 we notice that∑
l∈A3

K1(m− l)K2(l) �
1+ |m|2

(1+ |m|2)α+β
.

Finally, for l ∈A4 we have that |m− l| ≥ |l|
2 , which implies that∑

l∈A4

K1(m− l)K2(l) �
∑

|l|>2|m|

1

(1+ |l|2)α+β
� 1

(1+ |m|2)α+β
.

Combining all the above we thus obtain the appropriate estimate on K1 � K2(m). �

Because we are interested in nested convolutions of the same kernel we introduce the following recursive notation

K �1 K =K, K �n K =K �
(
K �n−1 K

)
,

for every n≥ 2, with the obvious interpretation for K �n≤N K and K �n
>N K . We then have the following corollary, the

proof of which is omitted since it is an immediate consequence of Lemma C.2.

Corollary C.3. Let K be a symmetric kernel as above for some α ∈ ( n−1
n

,1]. If α < 1 then

K �n K(m)≤ C
1

(1+ |m|2)nα−(n−1)
,

K �n
>N K(m)≤C

⎧⎨⎩
1

(1+|m|2)nα−(n−1) , if |m| ≥N,

1
(1+|N |2)nα−(n−1) , if |m|< N
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and if α = 1

K �n K(m)≤C
1

(1+ |m|2)1−ε
,

K �>N K(m)≤C

⎧⎨⎩
1

(1+|m|2)1−ε , if |m| ≥N,

1
(1+|N |2)1−ε , if |m|< N

for every ε ∈ (0,1).

Appendix D

Proof of Theorem 2.1. Let φ1, φ2 ∈L2(T2) and notice that for t1, t2 >−∞ by (B.2)

E −∞,t1(φ1) −∞,t2(φ2)

= n!
∫
T2

∫
T2

φ1(z1)φ2(z2)

(∫ t1∧t2

−∞
H(t1 + t2 − 2r, z1 − z2)dr

)n

dz1 dz2, (D.1)

where we also use the semigroup property∫
T2

H(t1 − r, z1 − z)H(t2 − r, z2 − z)dz=H(t1 + t2 − 2r, z1 − z2).

For Im = 1+ 4π2|m|2, m ∈ Z
2, we rewrite (D.1) as

E −∞,t1(φ1) −∞,t2(φ2)= n!
∑

mi∈Z2

i=1,2,...,n
m=m1+···+mn

n∏
i=1

e−Imi
|t1−t2|

2Imi

φ̂1(m)φ̂2(m),

and if we replace φ1, φ2 by ηκ(z1 − ·), ηκ(z2 − ·) respectively, for κ ≥−1, z1, z2 ∈ T
2, we have that

Eδκ −∞,t1(z1)δk −∞,t2(z2)= n!
∑

mi∈Z2

i=1,2,...,n
m=m1+···+mn

n∏
i=1

e−Imi
|t1−t2|

2Imi

∣∣χκ(m)
∣∣2em(z1 − z2).

By a change of variables we finally obtain

Eδκ −∞,t1(z1)δk −∞,t2(z2)≈ n!
∑

m1∈A2κ

∑
mi∈Z2

i=2,...,n

n∏
i=1

e−Imi−mi−1 |t1−t2|

2Imi−mi−1

em1(z1 − z2),

with the convention that m0 = 0. Let Kγ (m) = 1
(1+|m|2)1−γ , for γ ∈ [0,1), and write Kγ �n Kγ to denote the nth

iterated convolution of Kγ with itself (see Definition C.1). If we let z1 = z2 = z, for t1 = t2 = t we get an estimate of
the form

Eδκ −∞,t (z)
2 �

∑
m∈A2κ

K0 �n K0(m)

while for t1 �= t2 and every γ ∈ (0,1)

E
(
δκ −∞,t1(z)− δκ −∞,t2(z)

)2 � |t1 − t2|nγ
∑

m∈A2κ

Kγ �n Kγ (m).
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By Corollary C.3

Eδκ −∞,t (z)
2 �

∑
m∈A2κ

1

(1+ |m|2)1−ε
,

for every ε ∈ (0,1), and

E
(
δκ −∞,t1(z)− δκ −∞,t2(z)

)2 � |t1 − t2|nγ
∑

m∈A2κ

1

(1+ |m|2)1−nγ
.

Using the fact that m ∈A2κ we have that for every κ ≥−1

Eδκ −∞,t (z)
2 � 22λ1κ ,

E
(
δκ −∞,t1(z)− δκ −∞,t2(z)

)2 � |t1 − t2|nγ 22λ2κ

for every λ1 > 0 and every γ ∈ (0, 1
n
), λ2 > nγ , while for every p ≥ 2 by Nelson’s estimate (B.3) we finally get

Eδκ −∞,t (z)
p � 2pλ1κ ,

E
(
δκ −∞,t1(z)− δκ −∞,t2(z)

)p � |t1 − t2|n p
2 γ 2pλ2κ .

The result then follows from [15, Lemma 5.2, Lemma 5.3], the usual Kolmogorov’s criterion and the embedding

B
−α+ 2

p
p,p ↪→ C−α , for α > 2

p
. �

Appendix E

Proof of Proposition 2.3. For all n≥ 1, using the formula

Hn(X+ Y,C)=
n∑

k=0

(
n

k

)
XkHn−k(Y,C)

we have

ε

s,t =
n∑

k=0

(
n

k

)
(−1)k

(
S(t − s)

ε

−∞,s

)kHn−k

( ε

−∞,t ,�ε
)
.

Thus it suffices to prove convergence only for
ε

−∞,t , n≥ 1.
By [18, Proposition 1.1.4] for t1, t2 >−∞ and z1, z2 ∈ T

2

E
ε

−∞,t1
(z1)

ε

−∞,t2
(z2)= n!(E ε

−∞,t1
(z1)

ε

−∞,t2
(z2)

)n
.

Using (D.1) we get

E
ε

−∞,t1
(z1)

ε

−∞,t2
(z2)= n!

∑
|mi |≤ 1

ε
i=1,2,...,n

m=m1+···+mn

n∏
i=1

e−Imi
|t1−t2|

2Imi

em(z1 − z2),
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and by a change of variables the above implies that for κ ≥−1

Eδκ

ε

−∞,t1
(z1)δκ

ε

−∞,t2
(z2)≈ n!

∑
m1∈A2κ

∑
|mi |≤ 1

ε
i=2,...,n

n∏
i=1

e−Imi−mi−1 |t1−t2|

2Imi−mi−1

em1(z1 − z2). (E.1)

In a similar way

Eδκ −∞,t1(z1)δκ

ε

−∞,t2
(z2)≈ n!

∑
m1∈A2κ

∑
|mi |≤ 1

ε
i=2,...,n

n∏
i=1

e−Imi−mi−1 |t1−t2|

2Imi−mi−1

em1(z1 − z2) (E.2)

and for Kγ (m)= 1
(1+|m|2)1−γ combining (E.1) and (E.2) for z1 = z2 = z and t1 = t2 = t we have that

E
(
δκ −∞,t (z)− δκ

ε

−∞,t (z)
)2 �

∑
m∈A2κ

K0 �n

> 1
ε

K0(m),

while for t1 �= t2 and every γ ∈ (0,1)

E
[(

δκ −∞,t1(z)− δκ

ε

−∞,t1
(z)

)(
δκ −∞,t2(z)− δκ

ε

−∞,t2
(z)

)]
� |t1 − t2|nγ

∑
m∈A2κ

Kγ �n

> 1
ε

Kγ (m).

Proceeding as in the proof of Theorem 2.1 (see Appendix D) and using Corollary C.3 we obtain that

E
(
δκ −∞,t (z)− δκ

ε

−∞,t (z)
)2 � 22λ1κ

1

(1+ 1
ε2 )λ1/2

for every λ1 ∈ (0,1), and

E
[(

δκ −∞,t1(z)− δκ

ε

−∞,t1
(z)

)(
δκ −∞,t2(z)− δκ

ε

−∞,t2
(z)

)]
� |t1 − t2|nγ 22λ2κ

1

(1+ 1
ε2 )λ2−nγ

,

for every γ ∈ (0, 1
n
), λ2 > nγ . The result then follows by Nelson’s estimate (B.3) combined with the usual Kol-

mogorov’s criterion, as well as the embedding B
−α+ 2

p
p,p ↪→ C−α , for α > 2

p
. �
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