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Abstract. In this note we identify the distributional limits of non-negative, ergodic stationary processes, showing that
all are possible. Consequences for infinite ergodic theory are also explored and new examples of distributionally stable
– and α-rationally ergodic – transformations are presented.

Résumé. Dans cette note, on identifie les limites distributionnelles des processus stationaires, ergodiques et positives. On montre
que toutes se produisent. Les conséquences pour la théorie ergodique infinie sont également explorées et nouveaux exemples de
transformations distributionnellement stables – et α-rationnellement ergodiques – sont présentées.
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0. Short introduction

Classical central limit theory is concerned with the distributional convergence of normalized partial sums 1
an

∑n
k=1 Xn

of independent, identically distributed random variables (X1,X2, . . . ).
Here, we consider this asymptotic distributional behavior of normalized partial sums 1

an

∑n
k=1 Xn of random vari-

ables (X1,X2, . . . ) generated by a stationary process (SP) by which we mean a quintuple (�,F,P ,T ,f ) where
(�,F,P ,T ) is a probability preserving transformation (PPT) and f : � → R is measurable; the “generated random
variables” being the sequence of random variables (Xn = f ◦ T n)n≥0 defined on the sample space (�,F,P ).

The stationary process (�,F,P ,T ,f ) is non-negative if f ≥ 0; and ergodic (ESP) if the underlying PPT
(�,F,P ,T ) is an ergodic PPT (EPPT).

For independent processes, the possible probability distributions (or laws) occurring as limits were determined by
Paul Lévy in [21]. They are the stable laws (including the normal distribution of the central limit theorem).

For a general ESP, it was shown in [28] that any probability distribution on R is a possible limit.
This paper is about what happens when the stationary process is non-negative.
Our main result on stationary processes is
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Theorem 2. Let (�,F,P ,T ) be a EPPT and let Y ∈ RV(R+), then ∃ 1-regularly varying function b : R+ →R+ and
a positive measurable function f : � →R+ so that

1

b(n)

n−1∑
k=0

f ◦ T k d−−−→
n→∞ Y. (R)

Here and throughout,

• R+ := (0,∞),
• for a metric space Z, RV(Z) denotes the collection of Z-valued random variables, and

• d−−−→
n→∞ denotes strong distributional convergence as defined in Section 1 below.

Given a random variable, we’ll first construct (Theorem 1) a specific ESP satisfying inter alia (R). This will be
done by stacking. We’ll then show that a general EPPT induces an extension of the given underlying EPPT and
that this enables transference of (R).

Previous work on distributional limits of stochastic processes over arbitrary EPPTs can be found in [14,28,30].
We then apply our results to give new examples of distributionally stable MPTs (measure preserving transforma-

tions).
In Theorem 3 we show (inter alia) that: for any Y ∈ RV(R+), ∃ a MPT (X,B,m,T ) and a 1-regularly varying

function a :R+ → R+ satisfying

1

a(n)

n∑
k=1

f ◦ T k d−−−→
n→∞ Y

∫
X

f dm ∀f ∈ L1(m)+.

A full statement of Theorem 3 is given in Section 1 below.

Remarks.

(1) It is natural to ask what would be the possible limit laws of the the partial sums of nonnegative ESP which are
scaled and also centered by positive constants.

That is, what are the possible limit laws of Sn−a(n)
b(n)

where Sn is the nth partial sum of a nonnegative ESP, and
b(n), a(n) > 0 (n ≥ 1) are constants?

Our result shows that any probability distribution with support bounded from below can be obtained in this
fashion. It is likely that our proof can be modified so as to obtain all distributions as limits of these normalized
and “centered” sums. We thank the referee for raising this issue.

(2) It is also natural to ask about the stochastic processes ocurring as distributional limits of the random step functions
�n ∈ D([0,1]) (as in [11], Chapter 3) generated by the partials sums of an ESP and defined by �n(t) := S[nt]

b(n)
.

For example, if Sn

b(n)

d−−−→
n→∞ Y as in Theorem 2, then, due to the 1-regular variation of b, �n

d−−−→
n→∞ LY in

D([0,1]) where LY (t) := tY .

Glossary of abbreviations

The following abbreviations are used throughout the paper: SP for stationary process, ESP for ergodic,
stationary process, PPT for probability preserving transformation, EPPT for ergodic,
probability preserving transformation, MPT for measure preserving transformation
and CEMPT for conervative, ergodic, measure preserving transformation.
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1. Longer introduction

Distributional convergence

Consider the compact metric space ([0,∞], ρ) with

ρ(x, y) := ∣∣tan−1(x) − tan−1(y)
∣∣.

For x, y ∈R+, ρ(x, y) ≤ |x − y|. We’ll use the

• ρ-uniform distance on RV(R+) defined by

u(Y1, Y2) := min
{
supρ(Z1,Z2) : Z = (Z1,Z2) ∈ RV(R+ ×R+),Zi

d= Yi (i = 1,2)
};

and the
• ρ-Vasershtein distance on RV(R+) defined (as in [29]) by

v(Y1, Y2) := min
{
E

(
ρ(Z1,Z2)

) : Z = (Z1,Z2) ∈ RV(R+ ×R+),Zi
d= Yi (i = 1,2)

}
.

Evidently v(Y1, Y2) ≤ u(Y1, Y2) and, if v(Y1, Y2) < ε, then ∃Z = (Z1,Z2) ∈ RV(R+ ×R+),Zi
d= Yi (i = 1,2) so that

Prob
(
ρ(Z1,Z2) >

√
ε
)
<

√
ε.

For Yn,Y ∈ RV(R+),

E
(
g(Yn)

) −−−→
n→∞ E

(
g(Y )

) ∀g ∈ CB(R+) ⇐⇒ v(Yn,Y ) −−−→
n→∞ 0.

See the Skorohod representation theorem in [26] and [11].

Strong distributional convergence

For (X,B) be a measurable space, we denote the collection of probability measures on (X,B) by P(X,B).
Now let (X,B,m) be a measure space, Z be a metric space, Fn : X → Z be measurable, Y ∈ RV(Z) and P ∈

P(X,B),P 
 m. We’ll write

Fn
P−d−→
n→∞ Y

if ∫
X

g(Fn)dP −−−→
n→∞ E

(
g(Y )

) ∀g ∈ CB(Z)

and say (as in [3,4] and [27]) that Fn converges strongly in distribution (written Fn
d−→

n→∞ Y) if

Fn
P−d−→
n→∞ Y ∀P ∈P(X,B),P 
 m.

This is called mixing distributional convergence in [22] and [17].
In ergodic situations, strong distributional convergence of normal partial sums is an automatic consequence of

distributional convergence. Namely:
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Eagleson’s theorem ([17], see also [3,9] and [4]). If (X,B,m,T ,f ) is an R-valued, ESP, a(n) → ∞ and ∃P ∈
P(X,B),P 
 m so that∫

X

g

(
Sn

a(n)

)
dP −−−→

n→∞ E
(
g(Y )

) ∀g ∈ C
([0,∞]),

where Sn := ∑n
k=1 f ◦ T k , then Sn

a(n)

d−−−→
n→∞ Y .

Examples.

(1) Let γ ∈ (0,1] and let (�,A,P ,S,f ) be a positive SP where (f ◦ Sn : n ≥ 1) are independent random variables
satisfying

E(f ∧ t) ∝
t→∞

t

A(t)
,

where A(t) γ -regularly varying in the sense that A(xt)
A(t)

−−−→
t→∞ xγ ∀x > 0 (see [12]).

By the stable limit theorem ([21], also e.g. XIII.6 in [18])

1

A−1(n)

n∑
k=1

f ◦ Sk d−−−→
n→∞ Zγ , (SLT)

where Zγ is normalized, γ -stable in the sense that E(e−pZγ ) = e−cγ pγ
where cγ > 0 and E(Z

−γ
γ ) = 1. Note that

Z1 ≡ 1. For generalizations of this to weakly dependent SPs, see [7] and references therein.
(2) In [5] positive ESPs (�,F,P ,R,f ) were constructed so that

1

b(n)

n−1∑
k=0

f ◦ Rk d−−−→
n→∞ e

1
2N (0,1)2

,

where b(n) ∝ n
√

logn and N (0,1) is standard normal. For example R = τf where τ is the dyadic adding ma-
chine on {0,1}N and f (x) := min{n ≥ 1 : ∑k≥1[(τnx)k − xk] = 0} is the exchangeability waiting time.

The following is the main construction enabling Theorem 2. It is a specific construction tailored to the target
random variable.

Theorem 1. Let Y ∈ RV(R+), then ∃
• an odometer (X,B,m,T ),
• an increasing, 1-regularly varying function b :R+ → R+,
• a positive measurable function f : X →R+ so that

1

b(n)

n−1∑
k=0

f ◦ T k d−−−→
n→∞ Y (R)

∃M > 1, r > 0 and N0 ≥ 1 such that

P

([
n−1∑
k=0

f ◦ T k < xb(n)

])
≤ P(Y ≤ Mx) ∀x ∈ (0, r), n ≥ N0. (®)

The (R) condition (repeated from page 880) is used in the proofs of Theorems 2 and 3. The (®) condition will be
used in Theorem 3 in Section 6 to obtain examples of α-rational ergodicity.

The next proposition explains why the normalizing constants are necessarily 1-regularly varying when the support
of Y is compact in R+.
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Normalizing constant proposition. Suppose that (�,F,P ,R,f ) is a positive ESP, b(n) > 0, and Y ∈ RV(R+) with
minsuppY =: a > 0 and maxsuppY =: b < ∞.

If Sn

b(n)

d−−−→
n→∞ Y where Sn := ∑n

k=1 f ◦ T k , then b is 1-regularly varying.

Proof. It suffices to show that b(2n)
b(n)

−−−→
n→∞ 2. To see this, suppose otherwise, then there exist ε > 0 and a subsequence

K ⊂N, so that∣∣∣∣b(2n)

b(n)
− 2

∣∣∣∣ ≥ ε ∀n ∈ K. (‡)

Next, by compactness, there is a further subsequence K ′ ⊂ K and a random variable Z = (Z1,Z2) ∈ RV([0,∞]2)

so that(
Sn

b(n)
,
Sn ◦ T n

b(n)

)
d−−−→

n→∞ Z.

By assumption, we have that distZi = distY (i = 1,2). Thus,

2a ≤ Z1 + Z2 ≤ 2b.

Now fix K ′′ ⊂ K ′ so that b(2n)
b(n)

−−−−−−−→
n→∞,n∈K ′′ c ∈ [0,∞].

By assumption,

Y
d←−−−−−−−

n→∞,n∈K ′′
S2n

b(2n)

= b(n)

b(2n)

(
Sn

b(n)
+ Sn ◦ T n

b(n)

)
d−−−−−−−→

n→∞,n∈K ′′ c−1(Z1 + Z2).

It follows that c ∈ R+ and that Z1 + Z2
dist= cY . So on the one hand minsupp cY = ca and maxsupp cY =: cb < ∞

and on the other hand,

ca = minsupp(Z1 + Z2) ≥ 2a and cb = maxsupp(Z1 + Z2) ≤ 2b

with the conclusion that c = 2 which contradicts (‡). �

Distributional convergence in infinite ergodic theory

Let (X,B,m,T ) be a conservative, ergodic MPT (CEMPT) and let Y ∈ RV([0,∞]). Let nk ↑ ∞ be a subsequence and
let dk > 0 be constants. As in [3] and [4], we’ll write

S
(T )
nk

dk

d−−−→
k→∞ Y

if

S
(T )
nk

(f )

dk

d−−−→
k→∞ Y

∫
X

f dm ∀f ∈ L1+.

Call the random variable Y ∈ RV([0,∞]) appearing a subsequence distributional limit of T and let

LT := {subsequence distributional limits of T }.



884 J. Aaronson and B. Weiss

The collection{
T ∈ MPT(R) : LT = RV

([0,∞])}
is residual in MPT(R), the group of invertible transformations of R preserving Lebesgue measure, equipped with the
weak topology (see [6]).

We call the CEMPT (X,B,m,T ) distributionally stable if there are constants a(n) = an,Y (T ) > 0 and a random
variable Y on (0,∞) (called the ergodic limit) so that

S
(T )
n

a(n)

d−−−→
n→∞ Y. (o)

The sequence of constants (an,Y (T ) : n ≥ 1) is determined up to asymptotic equality and we call it the Y -distributional
return sequence. Note that an,cY (T ) ∼ 1

c
an,Y (T ). For distributionally stable CEMPTs which are also weakly rationally

ergodic, we have that an,Y (T ) ∝ an(T ) the usual return sequence (see [1]).
Classic examples of distributionally stable CEMPTs are obtained via the Darling–Kac theorem ([16]): pointwise

dual ergodic transformations (e.g. Markov shifts) with regularly varying return sequences are distributionally stable
with Mittag–Leffler ergodic limits (see also [3,4]).

More recently, it has been shown that certain “random walk adic” transformations have exponential chi-square
distributional limits (see [5,10] and [13]).

Our main result about infinite, ergodic transformations is

Theorem 3. For each Y ∈ RV(R+), there is a distributionally stable CEMPT (X,B,m,T ) with ergodic limit Y with
an,Y (T ) 1-regularly varying and � ∈ B,m(�) = 1 so that

m
(
� ∩ [

Sn(1�) ≥ xa(n)
]) ≤ 2P(Y ≥ x) ∀x > 1 and n ≥ 1 large. (a)

The (a) condition (which is an inversion of the (®) condition on page 882) will be used in the construction of
α-rationally ergodic MPTs in Section 6.

By Proposition 3.6.3 in [4], distributional stability of a CEMPT entails existence of a law of large numbers
(as in [3] and [4]) for it. An example in Section 6 shows it does not entail α-rational ergodicity.

Plan of the paper

In Section 2, we recall the stacking method used to construct the odometer in Theorem 1. This odometer is
constructed together with a sequence of step functions and in Section 3, we formulate the step function
extension lemma needed for the proof of Theorem 1 where the limit is a rational random variable
(taking finitely many values, each with rational probability). In Section 4 we prove the step function extension lemma
and Theorem 1 in this (rational random variable) case. In Section 5, we prove Theorem 1 in general, developing the
necessary approximations of random variables by rational ones. We conclude in Section 6 by proving Theorem 3 and
considering some of its consequences in infinite ergodic theory.

2. The stacking constructions

Stacking as in [15] (aka the stacking method [19] and cutting and stacking in [24,25]) is a construction procedure
yielding a piecewise translation of an almost open subset X ⊂ R. This transformation is invertible and preserves
Lebesgue measure.

As in [15] and [19], a column is a finite sequence of disjoint intervals W = (I1, I2, . . . , Ih). with equal lengths. The
width of the column is the length of Ik . The height of the column is h and we’ll sometimes call W = (I1, I2, . . . , Ih)

an h-column.
The base of the column W = (I1, I2, . . . , Ih) is B(W) := I1, its top is A(W) := Ih and its union is U(W) =⊍h

k=1 Ik .
The measure of a column is the length of its union. Columns W and W ′ are disjoint if their unions are disjoint.
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The column W is equipped with the periodic map T = TW : U(W) → U(W) defined by the translations T : Ik →
Ik+1 (1 ≤ k ≤ h − 1) and T : Ih → I1.

A castle (tower in [15] and [19]) is a finite collection of disjoint columns.
A castle consisting of a single column is known as a Rokhlin tower.
A castle is called homogeneous if all the columns have the same height and width. As before, an homogeneous

castle consisting of h-columns is called an h-castle.
The base of the castle W = {W1,W2, . . . ,Wn} is B(W) = ⊍n

k=1 B(Wk), its top is A(W) = ⊍n
k=1 A(Wk) and its

union is U(W) =⊍n
k=1 U(Wk).

It is equipped with the periodic transformation TW : U(W) → U(W) defined by

TW|U(Wk) ≡ TWk
.

Refinements of castles

The castle W′ refines the castle W (written W′ � W) if

(i) each interval of W is a union of intervals of W′;
(ii) A(W′) ⊂ A(W) and B(W′) ⊂ B(W);

(iii) TW′ |U(W)\A(W) ≡ TW.

If W′ � W, then U(W′) ⊃ U(W).
All castle refinements W′ � W considered here are mass preserving in the sense that U(W′) = U(W) (no “spac-

ers” are added).
Call the refinement W′ �W transitive if

m
(
U

(
W ′) ∩ U(W)

)
> 0 ∀W ′ ∈W′ and W ∈W.

A sequence (Wn)n≥1 of castles is a nested sequence if each Wn+1 refines Wn.
Let (Wn)n≥1 be a nested sequence of castles and consider the measure space (X,B,m) with X := ⋃∞

n=1 U(Wn)

equipped with Borel sets B and Lebesgue measure m.
As shown in [15] and [19],

© There is a measure preserving transformation (X,B,m,T ) defined by

T (x) = lim
n→∞TWn

(x) for m-a.e. x

iff m(A(Wn)) −−−→
n→∞ 0.

It is standard to show that if infinitely many of the refinements Wn+1 � Wn are transitive, then (X,B,m,T ) is
ergodic.

The transformation (X,B,m,T ) is aka the inverse limit of (Wn)n≥1 and denoted T = lim←−n→∞ Wn.

Odometers

An odometer is an inverse limit of a (mass preserving) nested sequence of Rokhlin towers. Odometers are ergodic
because if W′,W are Rokhlin towers and W′ � W, then the refinement is clearly transitive. The odometers are the
ergodic transformations with rational, pure point spectrum.

Induced transformation (as in [20]). Let (X,B,m,T ) be a CEMPT and let � ∈ B,0 < m(�) < ∞. The first return
time to � is the function ϕ� : � →N∪ {∞} defined by ϕ�(x) := min{n ≥ 1 : T nx ∈ �} which is finite for a.e. x ∈ �

by conservativity.
The induced transformation is (�,B∩�,m�,T�) where T� : � → � is defined by T�(x) := T ϕ�(x) and m�(·) :=

m(·‖�). It is a PPT.

Odometer factor proposition. Let R be an odometer and let (X,B,m,T ) be an aperiodic PPT, then ∃� ∈
B,m(�) > 0 so that R is a factor PPT of T�.
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Proof. Let R = lim←−n→∞ Wn where (Wn)n≥1 is a nested sequence of Rokhlin towers. Let the height of Wn be Hn,
then there is a sequence a1, a2, . . . ∈N, an ≥ 2 so that H1 = a1,Hn+1 = an+1Hn.

By the basic Rokhlin lemma, for any ε1 ∈ (0,1) there is some B1 of positive measure such that the sets {T i(B1) :
i = 0,1, . . . , a1 − 1} are disjoint and

X =
a1−1

⊍
i=0

T i(B1) ⊍E1,

where E1 ∈ B and m(E1) = ε1m(B1).
Next apply the Rokhlin lemma again to the induced transformation TB1 with ε2 ∈ (0,1) to get a base B2 ⊂ B1 with

the sets {T i
B1

B2 : 0 ≤ i < a2} disjoint and

B1 =
a2−1

⊍
i=0

T i
B1

(B2) ⊍E2,

where E2 ∈ B(B1) and m(E2) = ε2m(B2).
This process is continued to obtain Bk ∈ B,Bk ⊂ Bk−1 with the sets {T i

Bk−1
Bk : 0 ≤ i < ak} disjoint and

Bk−1 =
ak−1

⊍
i=0

T i
Bk−1

(Bk) ⊍Ek,

where Ek ∈ B(Bk−1) and m(Ek) = εkm(Bk−1). If
∑

k≥1 εk < 1, then

� :=
⋂
k≥1

Hk−1⋃
i=0

T i(Bk)

is as advertised. �

We’ll need a condition for an inverse limit of castles to be isomorphic to an odometer.
If W = (I1, I2, . . . , Ik) and W ′ = (I ′

1, I
′
2, . . . , I

′
k′) are disjoint columns of intervals with equal width, the stack of

W and W ′ is the column

W ⊚W ′ := (
I1, I2, . . . , Ik, I

′
1, I

′
2, . . . , I

′
k′
)
.

Let q ∈N. The column W can be sliced into q subcolumns

qW1,
qW2, . . . ,

qWq

of equal width and the same height.
For a column W and q ∈ N, W�q denotes the column obtained from W by slicing the column into q disjoint

subcolumns of equal width and then stacking. That is

W�q =
q

⊚
k=1

qWk.

Let W= {Wk : 1 ≤ k ≤ K} and W′ = {W ′

 : 1 ≤ 
 ≤ L} be homogeneous castles.

The refinement W′ � W is uniform if ∃Q ≥ 1, κ1, κ2, . . . , κQ ∈ {1,2, . . . ,K} with {κq : 1 ≤ q ≤ Q} =
{1,2, . . . ,K} and s1, s2, . . . , sQ ∈ N so that

W ′

 = L

(
Q

⊚
q=1

W
�sq
κq

)



.
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Note that a uniform refinement is transitive.
The nested sequence of homogeneous castles (Wn)n≥1 is called uniformly nested if each refinement Wn+1 � Wn

is uniform.

Proposition. Let (Wn)n≥1 be a uniformly nested sequence of homogeneous castles, then the EPPT (X,B,m,T ) :=
lim←−n→∞ Wn is an odometer.

Proof. Let Wn = {W(n)
j : 1 ≤ j ≤ kn} and suppose that

W
(n+1)

 = kn+1

(
Qn+1

⊚
q=1

W
(n)�s

(n+1)
q

κq

)



,

then

W
(n+1)

 = kn+1

(
W̃ (n)

)


,

where

W̃ (n) :=
Qn+1

⊚
q=1

W
(n)�s

(n+1)
q

κq .

The Rokhlin tower W̃(n) := {W̃ (n)} is refined by W̃(n+1) and

(X,B,m,T ) = lim←−
n→∞

W̃(n).
�

3. Step functions, labeled castles and block arrays

Here we introduce the framework for the proof of Theorem 1.
We’ll construct recursively a nested sequence of homogeneous, unit measure castles (Wn)n≥1 and set (X,B,m,

T ) = lim←−n→∞ Wn.

The advertised function f : X → R+ will be defined as f = limn→∞ f (n) where f (n) : Wn → R+ is a step function
in the sense that it is constant on each of the intervals making up each column in the castle Wn.

If Wn = {W(n)
j : 1 ≤ j ≤ kn} where each W

(n)
j = (I

(n)
j,k )1≤k≤hn is a column of height hn, then

f (n) ∼= (
w

(n)
j : 1 ≤ j ≤ kn

) ⊂ (
R

hn+
)kn ,

where

f (n) ≡ w
(n)
j (k) on I

(n)
j,k .

Formally, let a J -block be a positive vector w ∈RJ+ (where J ∈N). The length of J -block w is |w| := J .
A block w ∈ RJ+ determines a labeled column: an underlying column W = (I1, I2, . . . , IJ ) together with a step

function FW : U(W) →R+ defined by

FW =
J∑

k=1

wk1Ik
.

A block array is an ordered collection of blocks of the same length (called J -block array when all the blocks have
length J ).

The block array w = (w1,w2, . . . ,wN) ∈ (Rh+)N determines a labeled castle:
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an underlying castle W = (W1,W2, . . . ,WN) of height h, together with a step function Fw : U(w) → R+ defined
by

Fw :=
N∑

k=1

1U(Wk)FWk
.

We’ll say that the block array y refines the block array x written y � x if the castle determined by y refines that
determined by x.

Blocks can be concatenated. If w ∈RJ and w′ ∈ RJ ′
, the concatenation of w and w′ is

w � w′ := (
w1,w2, . . . ,wJ ,w′

1,w
′
2, . . . ,w

′
J ′

) ∈RJ+J ′
.

The concatenation of blocks corresponds to the stacking of their underlying columns.
If W and W ′ are columns of height J and J ′ respectively and with the same width, and w ∈RJ and w′ ∈RJ ′

, then

Fw�w′ ≡ F{w,w′} on U
(
W ⊚W ′) = U

({
W,W ′}) = U(W) ⊍U

(
W ′).

Similarly, self concatenation w�q of the same block w corresponds to cutting and stacking W⍟q of the correspond-
ing column W .

We call a sequence of block arrays nested if the underlying sequence of castles is nested.
We’ll obtain the required ESP by producing a nested sequence (wn)n≥1 of block arrays whose associated sequence

of step functions (Fwn)n≥1 is convergent.

Block statistics

Distributional convergence will be achieved by controlling the empirical distributions of the various short-term partial
sums over the tall block arrays.

Given a block w ∈Rh+, define

Sk(Fw) :=
k−1∑
j=0

Fw ◦ T j
w,

where Tw is the periodic transformation defined on the column underlying w. We have

Sk(Fw) =
h∑

ν=1

Sk(w)(ν)1Iν ,

where, for 1 ≤ ν ≤ h,

Sk(w)(ν) :=
k−1∑
j=0

wν+j .

Here translation is considered mod h that is ν + j := ν + j mod h.
For a block array w = {wj : 1 ≤ j ≤ K}, set

Sk(Fw) =
K∑

j=1

1U(wj )Fwj

and Sk(w)(ν, j) := Sk(wj )(ν).
We study the distributions of Sk(w) and Sk(w) considered as R+-valued random variables on the symmetric prob-

ability spaces {1,2, . . . , h} and {1,2, . . . , h} × {1,2, . . . ,K} respectively.
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If w ∈Rh and m ∈ N, then

Sk

(
w�m

)
(ν) = Sk(w)(ν mod h)

whence Sk(w
�m) and Sk(w) are equidistributed.

In a similar manner, we consider partial sums on a block array w = {wk : 1 ≤ k ≤ n} : {1, . . . , h} × {1, . . . , n} →
R+:

Sk(w)(j, 
) := Sk(w
)(j).

Before starting the construction, we need some notions of block normalization.

Block normalizations

Suppose that h ∈N and w ∈Rh+ is a block.
Write

|h| := h, M(w) := max
1≤j≤h

wj , 
(w) :=
∑

1≤j≤h

wj and E(w) := 
(w)

|w| .

Note that

E(w) =
∫

[1,h]∩N
w dP[1,h]∩N.

The block w ∈Rh+ is ε-normalized if

Sk(w) = kE(w)(1 ± ε) ∀k ≥ ε
(w)

M(w)
.

We call the block array w⊂ Rh+ ε-normalized if each block w ∈ w is ε-normalized.

Block array distributions

Let X be a metric space. We’ll identify the collection P(X) of Borel probabilities on X with

RV(X) := {random variables with values in X}
by

Y ∈ RV(X) ↔ dist(Y ) ∈P(X),

where

dist(Y ) := P ◦ Y−1 ∈P(X)

in case Y is defined on the probability space (�,F ,P ).
A symmetric representation of Y ∈ RV(X) is an ordered pair (�,f ) where � is a finite set and f : � → X is so

that

Prob(Y = x) = 1

|�|#
{
ω ∈ � : f (ω) = x

} ∀x ∈ X.

Evidently, the random variable Y ∈ RV(X) has a symmetric representation iff Y is rational in the sense that there is a
finite set V ⊂ X so that Y ∈ V a.s. and

Prob(Y = x) ∈ Q+ ∀x ∈ F.
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Let Y ∈ RV(R+) be rational. A Y -distributed, h-block array is a h-block array of form

w ⊂Rh+

with respect to which, block averaging is a symmetric representation for c · Y for some c = c(w) ∈R+. Specifically,

Prob(c · Y = x) = 1

|w|#
{
w ∈ w : E(w) = c · x} ∀x ∈ R+.

Definition: Relative Y -distribution
Let Y ∈ RV(R+) be rational, let � > E > 0, h,Q ∈N and let w⊂Rh+ and w′ ⊂R

Qh
+ be Y -distributed block arrays

with w′ refining w, w �-normalized and w′ E -normalized.
We’ll say that the pair (w,w′) is relatively, Y − (�,E)-distributed if

(i) m([Fw′ �= Fw]) < �,
(ii) ∃c(w) = γ (h) ≤ γ (h + 1) ≤ · · · ≤ γ (h′) = c(w′) and � ≥ εh > εh+1 > · · · > εQh = E so that γ (k + 1) − γ (k) ≤

� and

u

(
Sk(w

′)
kγ (k)

,Y

)
< εk ∀h ≤ k ≤ Qh.

The proof of Theorem 1 for rational random variables is based on the:

Step function extension lemma. Let Y ∈ RV(R+) be rational, let � > 0 and h ∈ N. If w ⊂ Rh+ is a �-normalized,
Y -distributed block array, then for any 0 < E < � and Q ∈ N large enough, there is a homogeneous Qh-block array
w′ refining w uniformly so that Fw′ ≥ Fw and so that (w,w′) is relatively Y − (�,E)-distributed.

4. Proof of Theorem 1 in the rational case

We first prove this case of Theorem 1 assuming the step function extension lemma.
Fix Y ∈ RV(R+). Given �n ↓ 0, with �1 < 1

9 minY , we build using the step function extension lemma iteratively,
a refining sequence of block arrays (wn)n≥1 with each refinement transitive and each (wn,wn+1) is relatively, Y −
(�n,�n+1)-distributed. This gives an ESP with distributional limit Y establishing (R) as on page 880.

To see (®) as on page 882, we note that by the extension lemma, for |w| ≤ k ≤ |wn+1|, we have a coupling of

Sk(wn+1)

kγ (k)
and Y

so that

Sk(wn+1)

kγ (k)
≥ Y − 1

9
minY ≥ 8

9
Y.

By monotonicity,

Sk(wν)

kγ (k)
≥ 8

9
Y ∀ν ≥ n + 1

whence

Sk(f )

kγ (k)
≥ 8

9
Y,

where Fwν → f a.s. Thus

P

([
Sk(f )

kγ (k)
< t

])
≤ P

(
Y ≤ 9

8
t

)
∀t > 0. �



Distributional limits 891

The rest of this section is a proof of the step function extension lemma.
The proof is via block concatenation and perturbation.

Basic Lemma I. Let 0 < � < 1 and let w ∈Rh+ be �-normalized. For each

0 ≤ κ ≤ �E(w), δ > 0 and q >
1

�
,

then for μ ∈N large enough: if m := μq and w′ ∈Rmh+ is defined by

w′ = w(μ) := w�m + κqh1[1,mh]∩qhZ,

then

w′ is δ-normalized; (i)

E
(
w′) = E(w) + κ; (ii)

P
(
SJ

(
w′) �= SJ

(
w�m

)) ≤ J

qh
∀1 ≤ J ≤ qh; (iii)

P
(
Sk

(
w′) = Sk

(
w�m

) ∀1 ≤ k ≤ √
�qh

) ≥ 1 − √
�; (iii′)

Sk

(
w′) = kE(w)(1 ± 2

√
�) ∀√

�qh ≤ k ≤ qh; (iv)

Sk

(
w′) = k

(
E(w) + κ

)(
1 ±

(
� ∧ 1

k
+ �qh

k

))
∀k > qh. (v)

Remarks.

(a) Note that Fw′ ≥ Fw .
(b) There is no contradiction between (iv) and (v) for k ∼ qh as the error in (iv) is at least κ

E(w)
which is the increment

in (v).

Proof for κ > 0.

Proof of (i). Let v ∈RH+ be a block. We claim that

Sk(v)

kE(v)
−−−→
k→∞ 1. (K)

To see this, let k = JH + r where J ≥ 1 and 0 ≤ r < H , then

Sk(v) = SJH (v) ± HM(v) = JE(v) ± HM(v) = kE(v) ± 2HM(v)

whence

Sk(v)

kE(v)
= 1 ± 2HM(v)

kE(v)

−−−→
k→∞ 1.

We have,

w′ = w(μ) := (
w′′)�μ

,

where

w′′ := w�q + κqh1{qh}.
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It follows that

E
(
w(μ)

) = E
(
w′′) and M

(
w(μ)

) = M
(
w′′).

By (K), δ-normalization of w′ is obtained by enlarging μ. �

Proof of (ii). We have

Sk

(
w′)(ν) = Sk

(
w�m

)
(ν) + κqh#

([ν, ν + k − 1] ∩ qhZ
) ∀ν ∈ [1,mh].

Therefore

SJqh

(
w′) = Jq
(w) + Jκqh, 


(
w′) = m
(w) + μκqh and E

(
w′) = E(w) + κ. �

Also

Sk

(
w′) ≤ Sk

(
w�m

) + κqh

⌈
k

qh

⌉
≤ Sk

(
w�m

) + kκ

(
1 + qh

k

)
;

and

Sk

(
w′) ≥ Sk

(
w�m

) + κqh

⌊
k

qh

⌋
≥ Sk

(
w�m

) + kκ

(
1 − qh

k

)
.

Proof of (iii) and (iii′).

Sk

(
w′) = Sk

(
w�m

)
on [1,mh] ∖ ⋃

1≤J≤ m
q

(Jhq − k, Jhq] ∴

P
(
SK

(
w′) �= SK

(
w�m

)) ≤ K

qh
; and

P
(
Sk

(
w′) = Sk

(
w�m

) ∀1 ≤ k ≤ √
�qh

) ≥ 1 − √
�. �

Proof of (iv) and (v). We begin with an estimate of Sk(w
�m) for k ≥ �h.

Sk

(
w�m

) = kE(w)

(
1 ± � ∧ h

k

)
∀k ≥ �h. (§)

Proof of (§). For �h ≤ k ≤ h, we have � ∧ h
k

= � and (§) follows from the �-normalization of w.
Let h ≤ k, then k = Jh + r with J ≥ 1 and r < h and

Sk

(
w�m

)
(ν) = JhE(w) +

ν+Jh+r−1∑
i=ν+Jh

wi

= kE(w) − rE(h) +
ν+Jh+r−1∑

i=ν+Jh

wi

=: kE(w) + E .

Thus

−
(w) < −rE(h) ≤ E ≤ Sr(w)(ν mod h) ≤ 
(w)
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and

|E |
kE(w)

≤ 
(w)

kE(w)
= h

k
.

To see the other estimation, we use the �-normalization of w.
If r ≤ �hE(w)

M(w)
, then

|E | ≤ Mr ≤ �hE(w);
and if r >

�hE(w)
M(w)

, then by �-normalization of w,

E = −rE(w) + Sr(ν + Jh) = −rE(w) + rE(w)(1 ± �) = ±�E(w). �

We have

Sk

(
w′)(ν) − Sk

(
w�m

)
(ν) = κqh#

([ν, ν + k − 1] ∩ qhZ
)
.

For
√

�qh ≤ k < qh,#([ν, ν + k − 1] ∩ qhZ) = 0,1

Sk

(
w′) − Sk

(
w�m

) ≤ κqh ≤ �E(w)qh <
√

� · kE(w)

and by (§),

Sk

(
w′) = kE(w)

(
1 ±

(
� ∧ h

k
+ √

�

))
= kE(w)(1 ± 2

√
�).

For k ≥ qh,

Sk

(
w′)(ν) − Sk

(
w�m

)
(ν) = κqh#

([ν, ν + k − 1] ∩ qhZ
)

= κqh

(
k

qh
± 1

)
= κk ± κqh.

Therefore

Sk

(
w′) = Sk

(
w�m

) + κk ± κqh

= kE(w)

(
1 ± � ∧ h

k

)
+ κk ± κqh

= k
(
E(w) + κ

)(
1 ±

(
� ∧ h

k
+ κqh

kE(w)

))
= k

(
E(w) + κ

)(
1 ±

(
� ∧ h

k
+ �qh

k

))
. �

This proves the basic lemma. �

Example 1. Constant limit random variable

To see how the basic lemma works, we build a sequence of (trivial) block arrays (wn)n≥1 with each wn = {w(n)} a
single block. This will give Y ≡ 1 as distributional limit.

We’ll define f (n) := w(n) : Zbn →R+ where bn = |w(n)|.
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Suppose that each block w(n) is constructed from w(n−1) using the basic lemma with parameters

�n,κn, qn,μn,mn, δn = �n+1.

(1) ∃ lim
n→∞f (n) =: f ∈R+ a.s.

Proof.

P
([

w(n) �= w(n−1)
]) = 1

qn|w(n−1)| .

Since
∑∞

n=1
1

qn|w(n−1)| < ∞, ∃N : � → N so that a.s., f (k) ≡ f (N) ∀k ≥ N . �

(2) If
∑∞

n=1 κn = ∞, then as n → ∞,

E
(
w(n)

) ∼
n∑

k=1

κk.

Now let (�,F,P ,T ) be the corresponding odometer and let f := limn→∞ f (n) : � →R+.
Define b :N→ R+ by

b(N) := NE
(
w(n)

)
for

∣∣w(n−1)
∣∣ < N ≤ ∣∣w(n)

∣∣, n ≥ 1.

(3) If κn → 0 and
∑∞

n=1 κn = ∞, then

b(n)

n
↑ ∞,

b(2n)

b(n)
−−−→
n→∞ 2

and

1

b(n)

n−1∑
k=0

f ◦ T k δ−−−→
n→∞ 1.

In Example 1, the normalizing constants were directly determined by the sequence (E(w(n)))n≥1 of block expec-
tations, which increased slowly.

For more complicated limit random variables (e.g. Y ∈ RV(R+) given by P(Y = 1) = P(Y = 2) = 1
2 ) this is no

longer the case as the distributions of the block expectations need to be considered. A more elaborate construction
procedure is necessary.

We’ll need the following simultaneous version of Basic Lemma I which is an immediate consequence of it.

Basic Lemma II. Let w ⊂Rh+ be a �-normalized h-block array and let κ : w→ R+ satisfy 0 ≤ κ(w) ≤ �E(w).
For each δ > 0 and q > 1

�
, and μ ∈N large enough: if m := μq and the mh-block array w′ := {v(w) ∈Rmh+ : w ∈

w} is defined by

v(w) = w(μ) := w�m + κ(w)qh1[1,mh]∩qhZ (w ∈w),

then w′ �w and Fw′ ≥ Fw and for w ∈w,

v(w) is δ-normalized; (i)

E
(
v(w)

) = E(w) + κ(w); (ii)

P
(
SJ

(
v(w)

) �= SJ

(
w�m

)) ≤ J

qh
∀1 ≤ J ≤ qh; (iii)
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P
(
Sk

(
v(w)

) = Sk

(
w�m

) ∀1 ≤ k ≤ √
�qh

) ≥ 1 − √
�; (iii′)

Sk

(
v(w)

) = kE(w)(1 ± 2
√

�) ∀√
�qh ≤ k ≤ qh; (iv)

Sk

(
v(w)

) = k
(
E(w) + κ(w)

)(
1 ±

(
� ∧ 1

k
+ �qh

k

))
∀k > qh. (v)

The next lemma is an iteration of the procedure in Basic Lemma II to achieve larger, but gradual changes of the
block averages E(w). We’ll use it to prove both the step function extension lemma and the step function straightening
lemma.

Compound lemma. Let 0 < � < 1, h ∈ N and let w ⊂ Rh+ be a �-normalized h-block array. Let t : w → (1,∞),
then ∀β > 0 and E > 0, and Q ∈N large enough, there is an E -normalized, Qh-block array

w′ := {
v(w) : w ∈ w

} ⊂R
Qh
+ ,

numbers

δk ≥ δk+1, δQh < E and 0 = ph < ph+1 < · · · < pQh = 1, 0 ≤ pk+1 − pk ≤ β

so that w′ � w and Fw′ ≥ Fw for each w ∈w,

E
(
v(w)

) = t(w)E(w); (ii)

P
(
Sk

(
v(w)

) = Sk

(
w�Q

) ∀1 ≤ k ≤ √
�h

)
> 1 − 2

√
�; (iii)

∀k > �h, Sk

(
v(w)

) ≥ kE(w)
(
(1 − pk) + pkt(w)

)
(1 − δk) and (iv)

P
([

Sk

(
v(w)

) = kE(w)
(
(1 − pk) + pkt(w)

)
(1 ± δk)

]) ≥ 1 − δk.

Proof of the step function extension lemma. Suppose that that Y ∈ RV(R+) is rational. Let:

• (�,f ) be a symmetric representation of Y with |�| ≥ 2,
• w = {w(ω) : s ∈ �} ⊂Rh+ be a �-normalized block array, where � > 0 and h ∈N so that

E
(
w(ω)

) = c · f (ω) (ω ∈ �),

where c = c(w) > 0.

Fix 0 < E < �. We’ll construct for any Q ∈ N large enough, a Qh-block array w′ = {w′(s) : s ∈ �} ⊂R
Qh
+ so that

E
(
w′(s)) = c′ · f (s) (ω ∈ �),

where c′ = c(w′) > c(w); w′ � w is a transitive, homogeneous extension and (w,w′) is relatively, Y − (�,E)-
distributed.

The construction is via auxiliary, intermediary block arrays w(1),w(2), . . . ,w(N) where N > 1
E is arbitrary and

fixed.
Let V ⊂R+ be the value set of Y and let

K >
2 maxV

minV
and N ′ := 2

(|�| − 1
)
N.

We have that mins,t
Kf (t)
f (s)

> 1 and so, using the compound lemma, we can find J1 > 1 and for each s, t ∈ � find
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E -normalized w(s,t)(1) ∈R
J1h+ so that

E
(
w(s,t)(1)

) = Kcf (t) = Kf (t)

f (s)
E

(
w(s)

); (o)

P
(
Sk

(
w(s,t)(1)

) = Sk

(
w(s)�J1

) ∀1 ≤ k ≤ �J1h
)
> 1 − �; (i)

c = γ (k0) ≤ γ (k0 + 1) ≤ · · · ≤ γ (qh) = Kc; (ii)

P
([

Sk

(
w(s,s)(1)

) = kγ (k)f (s)(1 ± �)
]) ≥ 1 − � ∀k > k0. (iii)

Here γ (k) = E(w(s))((1 − pk) + pkK) is as in the compound lemma with t≡ K .
The first intermediary block array is

w(1) = {
w(s,s)(1, k) : 1 ≤ k ≤ |�|(N ′ − |�| + 1

)
, s ∈ �

} ∪ {
w(u,v)(1) : u,v ∈ �,u �= v

}
,

where w(s,s)(1, k) (1 ≤ k ≤ N − 1) is a copy of w(s,s)(1).
Next, find J2 ≥ 1 and for each s, t, u ∈ �,s �= t find w(s,t,u)(2) ∈ R

J2J1h+ so that

E
(
w(s,t,u)(ν)

) = cK2f (u) = Kf (u)

f (t)
E

(
w(s,t)(1)

); (iii′)

P
(
Sk

(
w(s,t,u)(2)

) = Sk

(
w(s,t)(1)�J2

) ∀1 ≤ k ≤ �J2J1h
)
> 1 − �; (iv)

Kc = γ (k0) ≤ γ (k0 + 1) ≤ · · · ≤ γ (qh) = K2c; (v)

P
([

Sk

(
w(s,t,t)(ν)

) = kγ (k)f (t)(1 ± �)
]) ≥ 1 − � ∀k > k0. (vi)

The second intermediary block array is

w(2) = {
w(s,s,s)(2, k) : 1 ≤ k ≤ |�|(N ′ − 2

(|�| − 1
))

, s ∈ �
} ∪ {

w(s,t,t)(2),w(s,s,t)(2) : s, t ∈ �,s �= t
}
,

where w(s,s,s)(2, k) (1 ≤ k ≤ N − 2) is a copy of w(s,s,s)(2).
Recurse this, to find J2, J3, . . . , JN and for each 2 ≤ ν ≤ N,s1, s2, . . . , sν ∈ �, w(s1,s2,...,sν )(ν) ∈ Rh(ν−1)

+ where
h(ν) := hJ1J2 · · ·Jν ; so that

E
(
w(s1,s2,...,sν )(ν)

) = cKνf (sν) = Kf (sν)

f (sν−1)
E

(
w(s1,s2,...,sν−1)(ν − 1)

)
, (iii′)

P
(
Sk

(
w(s1,s2,...,sν )(ν)

) = Sk

(
w(s1,s2,...,sν−1)(ν − 1)

)�Jν ∀1 ≤ k ≤ �h(ν)
)
> 1 − �; (iv)

Kν−1c = γ (k0) ≤ γ (k0 + 1) ≤ · · · ≤ γ (qh) = Kνc; (v)

P
([

Sk

(
w(s1,s2,...,sν−2,t,t)(ν)

) = f (t)kγ (k)(1 ± �)
]) ≥ 1 − � ∀k > k0. (vi)

The νth intermediary block array is

w(ν) = {
w(sν)(ν, k) : 1 ≤ k ≤ |�|(N ′ − ν

(|�| − 1
))

, s ∈ �
} ∪

ν−1⋃
j=1

{
w(sj ,tν−j )(ν) : s, t ∈ �,s �= t

}
,

where w(sν)(ν, k) (1 ≤ k ≤ N − ν) is a copy of w(sν)(ν). In particular,

w(N) = {
w(sN )(N, k) : 1 ≤ k ≤ |�|(N ′ − N

(|�| − 1
))

, s ∈ �
} ∪

N−1⋃
j=1

{
w(sj ,tN−j )(N) : s, t ∈ �,s �= t

}
,

where w(sN )(N, k) (1 ≤ k ≤ N − N ) is a copy of w(sN )(N).
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Now set w′ = {w′(s) : s ∈ �} where

w′(s) :=
(

N(|�|−1)⊙
k=1

w(sN )(N, k) �
⊙

t∈�\{s}

N⊙
j=1

w(tN−j ,sj )(N)

)�T

,

where T is chosen large enough to ensure E -normalization.
This is as advertised. �

5. General case of Theorem 1 and Theorem 2

We now complete the proof of Theorem 1 by constructing an ESP with an arbitrary Y ∈ RV(R+) as distributional
limit.

For this, we need to approximate an arbitrary Y ∈ RV(R+) with rational random variables in a controlled manner.

Splittings

A splitting of the finite set � is a surjection π : � → � defined on another finite set � so that P� = P� ◦ π−1.
Equivalently, #π−1{x} = #�

#�
∀x ∈ �.

Let the compact metric space ([0,∞], ρ) be as before, let π : � → � be a splitting and let (�,f ), (�,g) be
symmetric representations.

We’ll say, for ε > 0, that (�,g) ε-splits (�,f ) via π : � → � if

E�

(
ρ(g,f ◦ π)

) := 1

#�

∑
u∈�

ρ
(
g(u), f

(
π(u)

))
< ε

and we’ll call π : � → � the (associated) ε-splitting.
Note that if Z has a symmetric representation which ε-splits some symmetric representation of Y , then v(Y,Z) < ε.

Splitting approximation lemma. Let Y ∈ RV(R+), then ∀εk ↓ 0 there is a sequence (Y1, Y2, . . . ) of rational random
variables on R+ with a nested sequence of symmetric representations (�k,fk) so that

(o) v(Yk,Y ) < εk ∀k ≥ 1;
(i) (�k+1, fk+1) εk-splits (�k,fk) ∀k ≥ 1.

(ii) ∃R > 0 so that P�k
(Yk < t) ≤ Prob(Y < t) ∀t ∈ (0,R), k ≥ 1.

Proof. Considering Y as a random variable on the compact metric space ([0,∞], ρ), we let μ := dist(Y ) ∈
P([0,∞]). There is a non-decreasing map � : [0,1] → [0,∞] so that μ = λ ◦ �−1 where λ is Lebesgue measure on
[0,1]. Let � ⊂ [0,1] be the collection of discontinuity points of �. By monotonicity, this set is at most countable.

Let Z := {0,1}N equipped with the product, discrete topology, and let B : Z → [0,1] be the “binary expansion
map”

B
(
(x1, x2, . . . )

) :=
∞∑

k=1

xk

2k
.

It follows that the collection of discontinuity points of � := �◦B : Z → [0,∞] is �̃ = B−1�. This set is also at most
countable.

We have

μ = ν ◦ �−1,

where ν = ∏
( 1

2 , 1
2 ) ∈P(Z).
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By the above,

�

(
n−1∑
k=1

xk

2k
+ 1

2n

)
−−−→
n→∞ �(x1, x2, . . . ) for ν-a.e. (x1, x2, . . . ) ∈ Z

(indeed ∀(x1, x2, . . . ) /∈ �̃).
Now, for n ≥ 1, let Zn := {0,1}n, define ψn : Zn → [0,1] by

ψn(x1, x2, . . . , xn) := �

(
n−1∑
k=1

xk

2k
+ 1

2n

)
.

We have that for ν-a.e. (x1, x2, . . . ) ∈ Z,

ψn(x1, x2, . . . , xn) −−−→
n→∞ �(x1, x2, . . . ).

Define the restriction maps πn : Z → Zn and πn+m
n : Zn+m → Zn by

πn(x1, x2, . . . ) = (x1, x2, . . . , xn) and πn+m
n (x1, x2, . . . , xn+m) = (x1, x2, . . . , xn),

then πn+m
n : Zn+m → Zn is a splitting and, along a sufficiently sparse subsequence nk ↑ ∞, we have∫
Z

ρ(ψnk
◦ πnk

,�)dν <
εk

2

whence

EZnk+1

(
ρ
(
ψnk

◦ π
nk+1
nk

,ψnk+1

))
< εk.

Thus

�k := Znk
, fk := ψnk

and dist(Yk) := P�k
◦ f −1

k ∈P(R+)

are as required for (i), which entails (o).
To see (ii) we note that

ψn(x1, x2, . . . , xn) ≥ �(x1, x2, . . . )

whenever (x1, x2, . . . , xn) �= 1. Let

R := �

(
n1−1∑
j=1

1

2j

)
= �

(
1 − 1

2n1

)
≤ �

(
nk−1∑
j=1

1

2j

)
∀k ≥ 1.

If k ≥ 1 and ψnk
(x1, x2, . . . , xnk

) < R then (x1, x2, . . . , xnk
) �= 1 and ψnk

(x1, x2, . . . , xnk
) ≥ �(x1, x2, . . . ).

Since fk = ψnk
, for t ∈ (0,R)

P�k

([fk ≤ t]) ≤ ν
([� ≤ t]) = P(Y ≤ t). �

Step function straightening lemma. Let Y,Z ∈ RV(R+) be rational with symmetric representations (�,f ) and
(�,g) respectively.

Suppose that E,� > 0 and that (�,g) E-splits (�,f ) with E -splitting � : � → �.
Let w = {w(ω) : ω ∈ �} ⊂ Rh+ be a �-normalized, Y -distributed, h-block array with E(w(ω)) = c(w)f (ω)

∀ω ∈ �.
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Then for each Q ∈ N large enough and η > 0, ∃ a E-normalized, (�,g)-distributed, Qh-block array

b= {
b(ξ) : ξ ∈ �

} ⊂ R
Qh
+ ,

so that

Fb ≥ Fw and m
([Fb �= Fw]) < E,

and

β(h) ≤ β(h + 1) ≤ · · · ≤ β(Qh), β(k + 1) − β(k) ≤ η,

0 = qh < qh+1 < · · · < qQh = 1, δh ≥ δk+1 ≥ · · · ≥ δQh, δQh < E
so that for h ≤ k ≤ Qh,

Sk

(
b(ξ)

) ≥ kβ(k)
(
(1 − qk)f

(
�(ξ)

) + qkg(ξ)
)
(1 − δk),

P
([

Sk

(
b(ξ)

) = kβ(k)
(
(1 − qk)f

(
�(ξ)

) + qkg(ξ)
)
(1 ± δk)

]) ≥ 1 − δk,

v

(
Sk(b)

kβ(k)
,Z

)
< E + �.

Proof. Let � : � → � be so that

P� ◦ �−1 = P� and E�

(
ρ(f ◦ �,g)

)
< E .

For ξ ∈ �, let v(ξ) := w(�(ξ)) ∈ w and consider the block array

w̃ := {
v(ξ) : ξ ∈ �

}
.

Note that E(v(ξ)) = cf (�(ξ)). In order to use the compound lemma, define t : � → (1,∞) by

t(ξ) := Kg(ξ)

f (�(ξ))
where K > max

ξ∈�

f (�(ξ))

g(ξ)

so that t> 1.
By the compound lemma for Q ≥ 1 large enough, there is an E -normalized, Qh-block array

b= {
b(ξ) : ξ ∈ �

} ⊂ R
Qh
+ ,

numbers

δk ≥ δk+1, δQh < E and 0 = ph < ph+1 < · · · < pQh = 1, pk+1 − pk < η

so that for each ξ ∈ �,

E
(
b(ξ)

) = t(ξ)E
(
v(ξ)

) = c(w)f
(
�(ξ)

);
P

(
Sk

(
b(ξ)

) = Sk

(
v(ξ)�Q

) ∀1 ≤ k ≤ �h
)
> 1 − 2�

and ∀k > �h,

P
([

Sk

(
b(ξ)

) = kE
(
b(ξ)

)(
(1 − pk) + pkt(ξ)

)
(1 ± δk)

]) ≥ 1 − δk.

Next, for ξ ∈ �,

E
(
b(ξ)

)(
(1 − pk) + pkt(ξ)

) = c(w)((1 − pk)f
(
�(ξ)

) + Kpkg(ξ)).
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Let

β(k) := c(W)
(
pk + (1 − pk)K

)
,

qk := Kpk

pk + (1 − pk)K
,

then

0 = qh < qh+1 < · · · < qQh = 1

and

E
(
b(ξ)

)(
(1 − pk) + pkt(ξ)

) = β(k)
(
(1 − qk)f

(
�(ξ)

) + qkg(ξ)
)
.

Thus, with probability ≥ 1 − δk ,

ρ

(
Sk(b(ξ))

kγ (k)
, (1 − qk)f

(
�(ξ)

) + qkg(ξ)

)
< δk

and

E�

(
ρ

(
Sk(b(ξ))

kγ (k)
, g(ξ)

))
≤ 2δk + E�

(
ρ(f ◦ �,g)

)
≤ δk + E .

The inequality Fb ≥ Fw follows from monotonicity. �

It is not hard to see that the refinement w ≺ b above has the property that if b ≺ w′ is a uniform refinement, then
so is w≺ w′.

Proof of Theorem 1. Fix εn ↓ 0,
∑∞

n=1 εn < ∞ and use the splitting approximation lemma to obtain a sequence
(Y1, Y2, . . . ) of rational random variables on R+ with a nested sequence of symmetric representations (�k,fk) so
that

(o) v(Yk,Y ) < εk ∀k ≥ 1;
(i) (�k+1, fk+1) εk-splits (�k,fk) ∀k ≥ 1.

(ii) ∃R > 0 so that P�k
(Yk < t) ≤ Prob(Y < t) ∀t ∈ (0,R), k ≥ 1.

Using the step function extension- and straightening lemmas (respectively), we next, construct sequences (vn)n and
(en)n of Yn-distributed hn- and kn-block arrays (respectively) so that

vn ≺ wn ≺ vn+1 and Fvn ≤ Fwn ≤ Fvn+1

with each wn ≺wn+1 a uniform refinement;
and a slowly varying sequence (γ (k))k, γ (k + 1) − γ (k) → 0 so that with b(k) := kγ (k), for some r > 0

(iii) m([Fvn �= Fwn ]) < εn and m([Fwn �= Fvn+1 ]) < εn+1;

(iv) Sk(wn)(ξ)
b(k)

≥ rfn(ξ) ∀hn < k ≤ hn+1 where wn = {w(ξ) : ξ ∈ �n},
(v) v(

Sk(wn)
b(k)

, g) < εn ∀hn < k ≤ hn+1.

Let

(X,B,m,T ) := lim←−
n→∞

Wn and f := lim
n→∞FWn,wn

,

then (X,B,m,T ,f ) is an ESP over an odometer with distributional limit Y .
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Moreover, if hn < k ≤ hn+1, and t ∈ (0,R) then Sk(f ) ≥ Sk(Fwn) whence[
Sk(f ) ≤ tb(k)

] ⊂ [
Sk(Fwn) ≤ tb(k)

]
whence by (iv),

P
([

Sk(f ) ≤ tb(k)
]) ≤ P

([
Sk(wn)(ξ)

b(k)
≤ t

])
≤ P

(
Yn ≤ t

r

)
≤ P

(
Y ≤ t

r

)
. �

Proof of Theorem 2. We use the odometer construction of Theorem 1 to prove Theorem 2.
Let Y ∈ RV(R+) and let (�,F,P , τ ) be an EPPT. We must exhibit a measurable function φ : � → R+ so that the

ESP (�,F,P , τ,φ) has distributional limit Y .
Now fix as above, an odometer (X,B,m,T ) with f : X → R+ measurable so that (X,B,m,T ,f ) satisfies (R) in

Theorem 1 (on page 880) with distributional limit Y and 1-regularly varying normalizing constants b(n)n≥1.
By the odometer factor proposition, there is a set �0 ∈ F,P (�0) > 0 so that the induced EPPT (�0,F ∩

�0,P�0 , τ�0) has (X,B,m,T ) as a factor.
Let π : (�0,F ∩ �0,P�0 , τ�0) → (X,B,m,T ) be the factor map and define φ : � →R by

φ = f ◦ π on �0 and φ ≡ 0 off �0.

We have that

1

b(n)

n−1∑
k=0

φ ◦ τ k
�0

P�0 −d−−−−→
n→∞ Y.

Now let κ : �0 → N be the first return time of τ to �0 and let κn := ∑n−1
j=0 κ ◦ τ

j
�0

(the nth return time of τ to �0),
then on �0,

n−1∑
k=0

φ ◦ τ k
�0

≡
κn−1∑
j=0

φ ◦ τ j .

By Birkhoff’s theorem, κn ∼ n
P (�0)

a.s. on �0 and so by monotonicity and 1-regular variation of b : R+ →R+,

1

b(n)

n−1∑
k=0

φ ◦ τ k
P�0 −d−−−−→
n→∞ P(�0)Y

whence by Eagleson’s theorem,

1

b(n)

n−1∑
k=0

φ ◦ τ k d−−−→
n→∞ P(�0)Y.

�

6. New examples in infinite ergodic theory

We begin by reviewing:



902 J. Aaronson and B. Weiss

Kakutani skyscrapers and inversion

As in [20], the skyscraper over the N-valued SP (�,F,P ,S,f ) is the MPT (X,B,m,T ) defined by

X = {
(x,n) : x ∈ �,1 ≤ n ≤ f (x)

}
,

B = σ
{
A × {n} : n ∈ N,A ∈F ∩ [f ≥ n]}, m

(
A × {n}) = P(A),

and

T (x,n) =
{

(Sx,f ) if n = f (x),

(x,n + 1) if 1 ≤ n ≤ f (x) − 1.

The skyscraper MPT is always conservative as
⋃

n≥1 T −n� × {1} = X and its ergodicity is equivalent to that of
(�,F,P ,S). Any invertible CEMPT (X,B,m,T ) is isomorphic to the skyscraper over a first return time SP (�,B ∩
�,m�,T�,ϕ�) where ϕ�(x) := min{n ≥ 1 : T nx ∈ �} is the first return time which is finite for a.e. x ∈ � by
conservativity, T�(x) := T ϕ�(x) is the induced transformation on � which is a PPT.

Let (X,B,m,T ) be an invertible CEMPT let � ∈ B,m(�) = 1 and consider the return time stochastic
process on �:(

�,B ∩ �,m�,T�,ϕ�

)
where ϕ�(x) := min

{
n ≥ 1 : T nx ∈ �

}
.

Distributional limits with regularly varying normalizing constants are transferred between the return time SP and
the Kakutani skyscraper by means of the following

Inversion proposition ([3]). Let a(n) be γ -regularly varying with γ ∈ (0,1] and fix � ∈F , then for Y a rv on (0,∞):

1

a(n)
Sn(1�)

d−→ Ym(�) ⇐⇒ ϕn

a−1(n)

d−→
(

1

m(�)Y

) 1
γ

,

where ϕn = ∑n−1
k=0 ϕ� ◦ T k

�.

Proof of Theorem 3. Fix Y ∈ RV(R+), let (�,F,P ,S,f ) be a N-valued ESP and let b(n) be 1-regularly varying so
that

1

b(n)

n−1∑
k=0

f ◦ T k d−−−→
n→∞

1

Y
,

P

([
n−1∑
k=0

f ◦ T k < xb(n)

])
≤ P

(
1

Y
≤ t

)
∀t > 0 small and n ≥ 1 large.

These exist by Theorem 1. Now let (X,B,m,T ) be the Kakutani skyscraper over (�,F,P ,S,f ). By inversion,

S
(T )
n

b−1(n)

d−−−→
n→∞ Y and (o)

m�

([
S(T )

n (1�) > xb−1(n)
]) ≤ P(Y ≥ x) ∀y > 1, n ≥ 1 large. (a)

�



Distributional limits 903

Rational ergodicity properties

Now let α > 0 and let K ⊂N be a subsequence.
We’ll say that the CEMPT (X,B,m,T ) is α-rationally ergodic along K if for some � ∈ B,0 < m(�) < ∞, we

have ∫
A

(
Sn(1B)

a(n)

)α

dm −−−−−−→
n→∞,n∈K

m(A)m(B)α ∀A,B ∈ B(�), (α-REK )

where a(n) = aα,�(n) := 1

m(�)1+ 1
α

(
∫
�

Sn(1�)α dm)
1
α .

We’ll say that (X,B,m,T ) is α-rationally ergodic if it is α-rationally ergodic along N and subsequence α-
rationally ergodic if it is α-rationally ergodic along some K ⊂N.

Properties like this have been considered in [8] and [23].
Standard techniques show that � ∈ B,0 < m(�) < ∞ satisfies (α-REK ) iff{(

Sn(1�)

aα,�(n)

)α

: n ∈ K

}
is uniformly integrable on �, and, if nonempty, the collection

Rα,K(T ) := {
� ∈ B : 0 < m(B) < ∞ satisfying (α-REK)

}
is a dense T -invariant hereditary ring.

Moreover aα,�(n) ∼ aα,�′(n) along K whenever �,�′ ∈ Rα,K(T ).
We’ll call the CEMPT (X,B,m,T ) ∞-rationally ergodic along K if for some � ∈ B,0 < m(�) < ∞, we have

sup
n∈K

∥∥∥∥ Sn(1�)

a1,�(n)

∥∥∥∥
L∞(�)

< ∞. (BREK )

Analogously to as above, if nonempty, the collection

R∞,K(T ) := {
� ∈ B : 0 < m(B) < ∞ satisfying (BREK)

}
is a dense T -invariant hereditary ring. It is contained in Rα,K(T ) ∀α > 0.

The condition ∞-rational ergodicity along N is aka bounded rational ergodicity. For
more information and examples, see [2].

α-return sequence

We define the α-return sequence of an α-rationally ergodic CEMPT (X,B,m,T ) as the growth rate

an,α(T ) ∼ aα,�(n), � ∈ Rα(T ).

It is also possible to define “subsequence α-return sequence” for a subsequence α-rationally ergodic CEMPT.
Note that

• 1-rational ergodicity is equivalent to weak rational ergodicity as in [1] with R1(T ) = R(T ) and an,1(T ) ∼ an(T );
• 2-rational ergodicity implies rational ergodicity;
• for 0 < α ≤ ∞, α-rational ergodicity implies β-rational ergodicity for each β ∈ (0, α);
• pointwise dual ergodic transformations are α-rationally ergodic ∀0 < α < ∞ (this follows from the existence of

moment sets).

Let (X,B,m,T ) be distributionally stable with limit Y ∈ RV(R+).

For α ∈ R+, set ‖Y‖α := E(Yα)
1
α ≤ ∞ and

‖Y‖∞ := sup{t > 0 : P(Y > t) > 0} = lim
α→∞‖Y‖α ≤ ∞.
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• For 0 < α ≤ ∞, if T is α-rationally ergodic, then ‖Y‖α < ∞ and if α ∈ R+, then an,α(T ) ∼ ‖Y‖αan,Y (T ).
• If ‖Y‖α = ∞, then T is not subsequence, α-rationally ergodic.

Example: Distributional stability � α-rational ergodicity

Let Y ∈ RV(R+) be so that E(Yα) = ∞ ∀α > 0. By Theorem 3, there is a distributionally stable CEMPT (X,B,m,T )

with ergodic limit Y with an,Y (T ) 1-regularly varying. By the above ∀α > 0, T is not subsequence, α-rationally
ergodic.

For a given CEMPT (X,B,m,T ), we consider the collection

I (T ) := {α > 0 : T is α-rationally ergodic}.

It follows from the above that I (T ) must be an interval, either empty, or R, or of form (0, a) or (0, a] for some
a ∈ (0,∞].

We conclude this paper by showing that all possibilities occur.

Lemma. Let (X,B,m,T ) be distributionally stable with ergodic limit Y ∈ RV(R+) and an,Y (T ) 1-regularly varying.
Suppose that � ∈ B,m(�) = 1 satisfies (a) as on page 884, then T is α-rationally ergodic iff ‖Y‖α < ∞ and in this
case, when α < ∞, an,α(T ) ∼ E(Yα) 1

a
an,Y (T ).

Proof of ‖Y‖α < ∞ =⇒ α-RE. We only consider the case 0 < α < ∞. The case where α = ∞ is easy. We claim first
that {

�n :=
(

Sn(1�)

an,Y (T )

)α

: n ≥ 1

}
is a uniformly integrable family in L1(�).

Now, since E(Yα) < ∞, we have by monotone convergence and Fubini’s theorem that

ρ(t) :=
∫ ∞

t

P
(
Yα > s

)
ds = E

(
1[Yα>t]Yα

) −−−→
t→∞ 0.

By (a) (page 884),∫
�

1[�n>t]�n dm =
∫ ∞

t

m
([�n > s])ds

≤ 28
∫ ∞

t

P
(
Yα > s

)
ds

=: ρ(t)

whence

sup
n≥1

∫
�

1[�n>t]�n dm ≤ ρ(t) −−−→
t→∞ 0

and the family is uniformly integrable.
Next by (o) as on page 884, for A,B ∈ B(�) and x > 0,∫

A

(
Sn(1B)

an,Y (T )

)α

∧ x dm −−−→
n→∞ m(A)E

((
m(B)Y

)α ∧ x
)
.
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Moreover, E((m(B)Y )α ∧ x) −−−→
x→∞ m(B)αE(Yα). To estimate the error,

0 ≤
∫

A

(
Sn(1B)

an,Y (T )

)α

dm −
∫

A

(
Sn(1B)

an,Y (T )

)α

∧ x dm

≤
∫

A

(
Sn(1B)

an,Y (T )

)α

1[( Sn(1B)

an,Y (T )
)α>x] dm

≤
∫

�

1[�n>x]�n dm

≤ ρ(x) −−−→
x→∞ 0.

Standard arguments now show that∫
A

(
Sn(1B)

an,Y (T )

)α

dm −−−→
n→∞ m(A)m(B)αE

(
Yα

)
. �

Note that a boundedly rationally ergodic transformation T has I (T ) = (0,∞] and a pointwise, dual ergodic trans-
formation T with return sequence which is regularly varying with index γ < 1 has as ergodic limit a γ -Mittag–Leffler
random variable (see [3]) which is unbounded but has moments of all orders, whence I (T ) = (0,∞).

The following completes the picture (and is also a strengthening of [8]):

Proposition. For each a ∈R+ there are distributionally stable MPTs To and Tc with I (To) = (0, a) or I (Tc) = (0, a].

Proof. To construct To with I (To) = (0, α) fix a Y ∈ RV(R+) so that E(Y t ) < ∞ ∀t < α but E(Yα) = ∞ and
construct T as in Theorem 3.

To construct Tc with I (Tc) = (0, α] the same but using a Z ∈ RV(R+) so that E(Zα) < ∞ but E(Zt) = ∞
∀t > α. �
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