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Abstract. We give an elementary proof that Talagrand’s sub-Gaussian concentration inequality implies a limit shape theorem for

first passage percolation on any Cayley graph of Zd , with a speed of convergence � (
logn

n )1/2. Our approach, which does not use

the subadditive theorem, is based on proving that the average distance Edω on Z
d is close to being geodesic. Our key observation,

of independent interest, is that the problem of estimating the rate of convergence for the average distance is equivalent (in a precise
sense) to estimating its “level of geodesicity”.

Résumé. Nous démontrons de manière élémentaire que l’inégalité de concentration sous-Gaussienne de Talagrand implique le
théorème de forme limite en percolation de premier passage sur un graphe de Cayley quelconque de Z

d , avec un terme d’erreur

� (
logn

n )1/2. Au lieu de nous baser sur le théorème sous-additif comme dans les approches classiques, notre preuve repose sur le
fait de montrer que la distance moyenne est en un sens quantitatif, presque géodésique. Notre observation centrale, qui présente
un intérêt indépendant, est que le problème d’estimer la vitesse de convergence de la distance moyenne vers la norme limite est
équivalent (en un sens précis) à celui d’estimer son «niveau de géodécisité. »
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1. Introduction

First passage percolation (FPP) is a way to randomly perturb the distance on a connected graph. Let us recall how this
random process is defined.

Consider a connected non-oriented graph X, whose set of vertices (resp. edges) is denoted by V (resp. E). We first
define the notion of weighted graph metric on V . For every function ω : E → (0,∞), we equip V with the weighted
graph metric dω, where each edge e has weight ω(e). In other words, for every x, y ∈ V , dω(x, y) is defined as the
infimum over all path p = (e1, . . . , em) joining x to y of �f (p) := ∑m

i=1 ω(ei). Denote by d the graph metric on V ,
corresponding to the constant function ω = 1.

Let ν be a probability measure supported on [0,∞). The random metric of first passage percolation consists in
choosing the weight ω(e) independently according to ν. Note that Edω(x, y) defines a distance on V , that we call the
average distance and denote by d̄(x, y).

A central result in FPP is the following Gaussian concentration inequality due to Talagrand.

Theorem ([13, Proposition 8.3]). Suppose that ω(e) has an exponential moment: i.e. there exists c > 0 such that
E exp(cω(e)) < ∞. Then there exists C1 and C2 such that for every graph X = (V ,E), for every pair of vertices x, y,
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and for every u ≥ 0,

P
(∣∣dω(x, y) − d̄(x, y)

∣∣ ≥ u
) ≤ C1 exp

(
−C2 min

{
u2

d(x, y)
, u

})
. (1.1)

1.1. A quantitative limit shape theorem for Cayley graphs of Zd

Basic assumptions
In order to avoid useless repetitions, let us once and for all list the technical assumptions on the edge’s length distri-
bution ν, that will be required in most of our statements.

(A1) We assume that ν has an exponential moment, and therefore satisfies (1.1) for some constants C1 and C2 (this
assumption can probably be relaxed but we choose not to focus on this aspect here).

(A2) We also suppose that there exists a > 0 such that d̄(x, y) ≥ ad(x, y) for all x, y ∈ V .

Recall that given a group G and a generating subset S ⊂ G, the Cayley graph (G,S) is the graph whose vertices are
elements of G and whose edges are pairs of elements g,h ∈ G such that g = hs±1 for some s ∈ S. Note that the G

action on itself by left-translations induces an action on (G,S) by automorphisms which is transitive on the set of
vertices. The standard Cayley graph of Zd , sometimes called the euclidean grid is (Zd , S), where S is the standard
basis of Zd .

When one works with the standard Cayley graph of Z
d , the second assumption is satisfied exactly when

ν({0}) < pc , where pc is the critical probability of percolation on Z
d [9]. For more general graphs, we show that

the second condition is fulfilled provided that ν({0}) < 1/k, where k is an upper bound on the degree of the graph
(see Corollary A.2).

Observe that d̄ ≤ (Eω(e))d . In the sequel we denote b := Eω(e). It follows that under our second assumption, d

and d̄ are actually bi-Lipschitz equivalent, more precisely,

ad ≤ d̄ ≤ bd. (1.2)

We shall adopt the following notation: given v ∈ V and r > 0, let B̄(v, r) (resp. Bω(v, r)) denote the ball of radius
r for the average distance d̄ (resp. for the random distance dω).

We give a new proof of the following theorem, which in the case of the euclidean grid in Z
d can be attributed to

Alexander (see the discussion below).

Theorem 1.1 (Quantitative asymptotical shape theorem). We consider a Cayley graph of Zd , associated to some
finite generating subset. We assume (A1) and (A2) are satisfied. There exists a norm ‖ · ‖ on R

d such that for a.e. ω,
there exists C > 0 and n0 such that for all n ≥ n0,

B‖·‖
(
0, n − C(n logn)1/2) ∩Z

d ⊂ Bω(0, n) ⊂ B‖·‖
(
0, n + C(n logn)1/2). (1.3)

The fact that the rescaled ball converges to a convex body was first proved by Kesten [9], extending previous work
by Richardson [12] and Cox-Durrett [5] (for background see [1,8,9]). The first quantitative estimates, given by Kesten
[10], depended on the dimension. These estimates were later improved by Alexander [2] who proved an error term in
O(n1/2 logn).

More recently, a Gaussian estimate for the lower tail has recently been obtained under a quadratic moment condition
in [6] (see also [7,15,16]). Following the strategy of proof of [2] (itself inspired from [10]) they manage to deduce the
right-hand side inequality of (1.3) under this low moment condition.

Actually, Alexander’s bounds rely on a sub-exponential concentration inequality due to Kesten. If one replaces the
latter by Talagrand’s sub-Gaussian’s concentration inequality (1.1), his proof yields (1.3).

Finally let us mention that Theorem 1.1 is likely to remain far from optimal. Indeed, we recall that physicists
believe that the error term for Z

2 should be n1/3. However, it is not clear what rate should be expected in higher
dimensions (see [10] for a more detailed account and the relevant references).

The proof of Theorem 1.1 is quite different from Alexander’s approach. On the one hand, it breaks down the main
result into two independent statements that we shall describe below: one is a straightforward bound on the fluctuations
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about the average distance, while the other one bounds the speed of convergence of the rescaled average distance to
the limit norm. This last step can also be decomposed into two independent results: an easy one which is based on
(A1) and is valid for any graph with polynomial growth, and a more subtle, purely geometric statement that explicitly
uses the abelian group structure of Zd .

Another interesting feature of this new approach is the fact that it does not use the subadditive ergodic theorem,
unlike the previous ones. In [3], we exploit this to obtain a limit shape theorem for any Cayley graphs of polynomial
growth, which did not seem to be approachable by previous methods.

1.2. Fluctuations around the average metric / speed of convergence for the average metric

We now describe the two main estimates that are needed in our proof of Theorem 1.1. Let us start with the following
straightforward consequence of Talagrand’s concentration inequality.

Proposition 1.2 (Fluctuations about the average distance). Let d > 0 and K > 0. Then there exists C > 0 only
depending on d and K such that the following holds. Let X = (V ,E) be a graph. We assume (A1) and (A2) are
satisfied. Let rn ∈ N be an increasing sequence, and let on be a sequence of vertices such that |B(on, rn)| ≤ Krd

n .
Then for a.e. ω, there exists n0 such that for n ≥ n0,

sup
x,y∈B(on,rn)

∣∣dω(x, y) − d̄(x, y)
∣∣ ≤ C(rn log rn)

1/2. (1.4)

We deduce from the previous proposition that there exists C′ such that for a.e. ω there exists n0 such that for all
n ≥ n0, one has

B̄
(
0, rn − C′(rn log rn)

1/2) ⊂ Bω(0, rn) ⊂ B̄
(
0, rn + C′(rn log rn)

1/2).
The complementary (and main) step in the proof of Theorem 1.1 therefore consists in estimating the speed of

convergence of the rescaled ball for the average distance on Z
d .

Theorem 1.3 (Asymptotical shape theorem for the average distance). We consider a Cayley graph of Zd . We
assume (A1) and (A2) are satisfied. There exist a norm ‖ · ‖ on R

d , C > 0 and n0 such that for all n ≥ n0,

B‖·‖
(
0, n − C(n logn)1/2) ∩Z

d ⊂ B̄(0, n) ⊂ B‖·‖
(
0, n + C(n logn)1/2).

1.3. On how to quantify being geodesic “in an asymptotical way”

In order to explain the strategy behind the proof of Theorem 1.3, we need to introduce the notion of strong asymptotical
geodesicity. Before giving a formal definition, let us review two important properties of a (discrete) geodesic metric
space. Recall that given a connected graph (V ,E), the vertex set V equipped with graph distance satisfies the following
two (equivalent) properties:

• for any x, y ∈ V , such that d(x, y) = n, there exists a sequence of vertices x = x0, x1, . . . , xn = y such that
d(xi, xi+1) = 1 for all 0 ≤ i < n;

• for every n < n′ and every x ∈ V , the distance from any vertex in B(x,n′) to B(x,n) is at most n′ − n. This can
also be formulated as

B
(
x,n′) ⊂ [

B(x,n)
]
n′−n

,

where [A]t denotes the t -neighborhood of the subset A.

This suggests at least two ways of defining being geodesic “in an asymptotical way”:
The first one is called “inner metric” in [11], or “asymptotical geodesic metric” [4]. A metric space X is

called asymptotically geodesic if for all ε > 0 there exists α such that for all x, y ∈ X, there exists a sequence
x = x0, . . . , xm = y such that d(xi, xi+1) ≤ α, and

∑m−1
i=0 d(xi, xi+1) ≤ (1 + ε)d(x, y).
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The second one is “monotone geodesic metric” as defined by the author in [14]. Monotone geodesicity is defined
by requiring the existence of a constant T such that for all x and all r , B(x, r + 1) ⊂ [B(x, r)]T . One can relax this
assumption by letting T depend on r .

Asymptotical geodesicity was used by Pansu to obtain a limit shape theorem for Cayley graphs of nilpotent groups
[11], while monotone geodesicity was used to bound the size of the spheres in graphs with the Doubling Property.1

In some sense both notions have to do with controlling the error terms when estimating the size of large balls. It is
therefore not surprising that the notion that we need here is a quantitative combination of these two.

Definition 1.4 (Strongly Asymptotically Geodesic spaces). Let N : R+ → R+ be an increasing function such that
limα→∞ N(α) = ∞. A metric space X is called SAG(N) if there exists α0 ≥ 0 such that for all integer m ≥ 1, and for
all x, y ∈ X such that d(x, y)/m ≥ α0, there exists a sequence x = x0 . . . , xm = y satisfying, for all 0 ≤ i ≤ m − 1,

d(xi, xi+1) ≤ α

(
1 + 1

N(α)

)
, (1.5)

where α = d(x, y)/m; and for all large enough r ,

B

(
x,

(
1 + 1

N(r)

)
r

)
⊂ [

B(x, r)
]

6r
N(r)

. (1.6)

It turns out that the SAG property can be deduced (for a large class of functions N ) from the following much
simpler property (suggested to me by Xuan Wang).

Definition 1.5. Given a increasing function N : R+ → R+ such that limα→∞ N(α) = ∞, we say a metric space X

is SAG*(N) if there exists α0 > 0 such that the following holds: for all x, y ∈ X satisfying d(x, y) = r ≥ α0, and
λ ∈ [0,1], we can find z ∈ X such that(

λ − 1

N(r)

)
d(x, y) ≤ d(x, z) ≤

(
λ + 1

N(r)

)
d(x, y),

and (
1 − λ − 1

N(r)

)
d(x, y) ≤ d(y, z) ≤

(
1 − λ + 1

N(r)

)
d(x, y).

The connection between these two notions is given by the following proposition.

Proposition 1.6 (SAG* implies SAG). Let ε, δ > 0 and consider an increasing function N : (0,∞) → (0,∞) such
that:

• for all large enough x and t ≥ 1/2,

N(xt) ≥ δN(x)tε,

• for large enough x, the function x → x(1 + 1
N(x)

) is non decreasing.

If a metric space X is SAG*(N), then it is SAG(cN) for some c > 0.

Note that the above condition (for t = 1/2) implies that there is a constant K such that that N(2y) ≤ KN(y) for all
large enough y. Observe that any function of the form N(α) = αu(logα)v with u > 0 and v ∈ R satisfies the condition
of the proposition.

1A graph satisfies the Doubling Property if there exists a constant C > 0 such that for all x ∈ V and all r > 0, |B(x,2r)| ≤ C|B(x, r)|.
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1.4. Strong asymptotic geodesicity of the average metric

The proof of Theorem 1.3 relies on the following result, of independent interest. Observe that the only geometric
property of the graph that is required is some sub-polynomial volume growth condition. It applies for instance to first
passage percolation on fractal graphs, Cayley graphs of nilpotent groups (see [3]), or random environments such as
the infinite cluster of supercritical percolation on Z

d .

Proposition 1.7 (The average metric is SAG*((α/ logα)1/2)). Let X = (V ,E) be a graph. Suppose that there exists
K > 0 and d > 0 such that for all o ∈ V and all r > 0, |B(o, r)| ≤ Krd . We assume (A1) and (A2) are satisfied. Then
there exists a constant c > 0 such that the metric d̄ is SAG*(N) with

N(α) = c

(
α

logα

)1/2

.

In particular it is SAG(c′N) for some c′ > 0.

The idea behind the proof of Proposition 1.7 is relatively simple: it consists in exploiting the concentration inequal-
ity due to Talagrand to show that d̄ being close to dω with large probability, since dω is geodesic, then d̄ cannot be too
far from being geodesic.

Let us be more precise about what we mean by “dω is geodesic”: by definition, for all x, y ∈ V and all ε > 0,
there exists a simple path p = (e1, . . . , ek) in X joining x to y, and such that

∑
i ω(ei) ≤ dω(x, y) ≤ ∑

i ω(ei) + ε. If
ε = 0, then such a path is called an ω-geodesic between x and y. Although this is not used in this paper, one can easily
deduce from Proposition 1.2 that the polynomial growth assumption is enough to ensure that every pair of points is
almost surely joined by some ω-geodesic (see Claim 3.2).

1.5. A geometric statement about invariant metrics on Z
d

So far we have not used any specific feature of Z
d . It turns out that the connection between strong asymptotical

geodesicity of the average metric and the limit shape theorem follows from a very general result about invariant
metrics on Z

d .
In the sequel, an increasing function φ : R+ → R+ is called sublinearly doubling if there exists a function η :

R+ → R+ satisfying limλ→∞ η(λ)/λ = 0 such that for all λ > 0 and r > 0, φ(λr) ≤ η(λ)φ(r). A distance d on a
group G is called left-invariant if d(gh,gk) = d(h, k) for all g,h, k ∈ G. If the group is abelian, then we simply say
that the distance is invariant.

Proposition 1.8 (Strong Asymptotical Geodesicity versus Limit Shape). We let δ be some invariant metric on
Z

d . We let φ : R+ → [1,+∞) be an increasing, sublinearly doubling function. The following two assertions are
equivalent.

(i) There exists a constant c > 0 such that δ is SAG(N) with

N(α) ≥ cφ(α),

for α large enough.
(ii) There exists a norm ‖ · ‖ on R

d and C > 0 such that for all large enough n,

B‖·‖
(

0, n − Cn

φ(n)

)
∩Z

d ⊂ Bδ(0, n) ⊂ B‖·‖
(

0, n + Cn

φ(n)

)
.

It is now clear that Theorem 1.3 results from Proposition 1.8 (for δ = d̄ , and φ(α) = (α/ logα)1/2) and Proposi-
tion 1.7.

We hope that Proposition 1.8 will be useful for future attempts to improve the known estimates –both from above
and from below – on the speed of convergence in Theorem 1.3.
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Organization

In Section 2 we provide the quick proof of Proposition 1.2. Section 3 is dedicated to the proof of Proposition 1.7.
These first two short sections are the only ones concerned with probabilistic arguments (recall that these statements
are proved for general graphs with a sub-polynomial growth condition). Section 4 is dedicated to the proof of Propo-
sition 1.6, which holds for any metric space. In the last two sections (Section 5 and Section 6) we prove both im-
plications of Proposition 1.8, which is a statement about invariant metrics on Z

d . The different sections can be read
independently.

2. Proof of Proposition 1.2

Let D be a constant to be determined later. Applying Talagrand’s theorem, we obtain that for all large enough r , and
all x, y such that d(x, y) ≤ r ,

P
(∣∣dω(x, y) − d̄(x, y)

∣∣2 ≥ Dr log r
) ≤ C1 exp(−C2D log r).

Now, letting D = (2d + 2)/C2, we deduce that for all large enough r , and all x, y such that d(x, y) ≤ r ,

P
(∣∣dω(x, y) − d̄(x, y)

∣∣2 ≥ Dr log r
) ≤ C1r

−2d−2.

Hence for n large enough,

P
(

sup
x,y∈B(on,rn)

∣∣dω(x, y) − d̄(x, y)
∣∣2 ≥ Drn log rn

)
≤ C1r

−2d−2
n

∣∣B(on, rn)
∣∣2 ≤ C1Kr−2

n ≤ C1Kn−2,

the last inequality following from the fact that rn is an increasing sequence of non-negative integers. Proposition 1.2
now follows from the fact that

∑
n n−2 < ∞ (with C = D).

3. The average metric is SAG

The goal of this section is to prove Proposition 1.7, which immediately follows from the following proposition.

Proposition 3.1. Let d > 0 and K > 0, and let rn ∈N be an increasing sequence. Then there exists c > 0 and n0 such
that the following holds. Let X = (V ,E) be a graph. We assume (A1) and (A2) are satisfied, and that there exists
a sequence of vertices on such that |B(on, rn)| ≤ Krd

n . Then, for n ≥ n0, for all x, y ∈ B(on, arn/(32b)) and for all
0 ≤ λ ≤ 1, there exists a vertex z ∈ B(on, rn) such that

∣∣λd̄(x, y) − d̄(x, z)
∣∣ ≤ rn

N(rn)
,

and ∣∣(1 − λ)d̄(x, y) − d̄(z, y)
∣∣ ≤ rn

N(rn)
,

where

N(r) = c

(
r

log r

)1/2

.

Proof. In the proof of Proposition 1.2, we established that

P
(

sup
x,y∈B(on,rn)

∣∣dω(x, y) − d̄(x, y)
∣∣2 ≥ Drn log rn

)
≤ C1Kr−2

n ,
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with D = (2d + 2)/(C2b
2) (remember that C1 and C2 are the constants appearing in the conclusion of Talagrand’s

theorem). Let n0 be the smallest integer so that C1Kr−2
n0

< 1. Then for all n ≥ n0, there exists ω (depending on n)
such that

sup
z1,z2∈B(o,rn)

∣∣dω(z1, z2) − d̄(z1, z2)
∣∣ ≤ D(rn log rn)

1/2. (3.1)

Assume in addition that n0 is large enough so that D(rn log rn)
1/2 ≤ arn/16 for all n ≥ n0.

Claim 3.2. Let γ be some path between x and y whose ω-length is ≤ dω(x, y) + arn/16. Then γ is contained in the
ball B(on, rn) (in particular there exists an ω-geodesic between x and y).

Proof. Indeed, suppose there is 1 ≤ i ≤ k such that d(on, γ (i)) = rn, then by triangular inequality,

d
(
x, γ (i)

) ≥ d
(
on, γ (i)

) − d(on, x) ≥ rn/2,

hence d̄(x, γ (i)) ≥ arn/2. So (3.1) implies that

dω

(
x, γ (i)

) ≥ d̄
(
x, γ (i)

) − D(rn log rn)
1/2 ≥ arn/2 − arn/16 ≥ arn/4.

which contradicts the fact that

dω

(
x, γ (i)

) ≤ dω(x, y) + arn/16 ≤ d̄(x, y) + arn/8 ≤ arn/8 + arn/16 < arn/4.

This proves the claim. �

By (3.1), the maximum of ω(e) over all edges on γ is at most b + D(rn log rn)
1/2 ≤ D′(rn log rn)

1/2 for some
D′ > 0. Therefore, one can find a vertex z in γ such that∣∣λdω(x, y) − dω(x, z)

∣∣ ≤ D′(rn log rn)
1/2,

and ∣∣(1 − λ)dω(x, y) − dω(z, y)
∣∣ ≤ D′(rn log rn)

1/2.

But then combining these inequalities with (3.1), we get∣∣λd̄(x, y) − d̄(x, z)
∣∣ ≤ 4D′(rn log rn)

1/2,

and ∣∣(1 − λ)d̄(x, y) − d̄(z, y)
∣∣ ≤ 4D′(rn log rn)

1/2,

so that the proposition follows with c = 1/(4D′). �

4. Proof of Proposition 1.6

The proof of (1.6) only relies on the assumption that N is increasing and unbounded. We assume that r ≥ 1 is large
enough so that N(r) ≥ 1. Let y ∈ B(x, (1 + 1

N(r)
)r). Applying SAG*(N) with λ = 1 − 2/N(r) yields some z ∈ X

such that

d(x, z) ≤
(

1 − 1

N(r)

)
d(x, y) ≤

(
1 − 1

N(r)

)(
1 + 1

N(r)

)
r ≤ r;
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and

d(y, z) ≤ 3d(x, y)

N(r)
≤ 6r

N(r)
.

Hence (1.6) follows.
Let us turn to the proof of (1.5). There, we assume that N satisfies the condition of Proposition 1.6. The following

proposition implies (1.5) for the function N/C′ and α0 = β . Indeed, (1.5) corresponds to the case of a uniform
subdivision of [0,1], where λi = i/m, in which case α = αi = d(x, y)/m.

Proposition 4.1. Assuming that X is SAG*(N), there exists β ≥ 0 and C′ such that for every sequence λ0 = 0 <

λ1 < · · · < λm = 1 and for all x, y ∈ X such that α := min0≤i<m(λi+1 − λi)d(x, y) ≥ β , there exists a sequence
x = x0 . . . , xm = y satisfying, for all 0 ≤ i ≤ m − 1,

d(xi, xi+1) ≤
(

1 + C′

N(α)

)
αi,

where αi = (λi+1 − λi)d(x, y).

We start by proving a stronger version of (1.5) where m = 2k .

Lemma 4.2. Assuming that X is SAG*(N), there exists β ≥ 0, and C such that for all integer q ≥ 1, and for
all x, y ∈ X such that d(x, y)/2q ≥ β , there exists a sequence x = x0 . . . , x2q = y satisfying, for all 0 ≤ i ≤
2q − 1,

d(x, y)

2q

(
1 − C

N(d(x, y)/2q)

)
≤ d(xi, xi+1) ≤ d(x, y)

2q

(
1 + C

N(d(x, y)/2q)

)
.

Proof. On rescaling the metric by some number in [1/2,1], we can assume without loss of generality that d(x, y) = 2n

for some n ∈N. We let r0 = r ′
0 := d(x, y). Assuming that n is large enough so that 2n ≥ α0, where α0 is the parameter

appearing in the definition SAG*, there exists z such that2

min
{
d(x, z), d(z, y)

} ≥ r0

2

(
1 − 1

N(r0)

)

and

max
{
d(x, z), d(z, y)

} ≤ r0

2

(
1 + 1

N(r0)

)
,

for some constant C. We let r1 = max{d(x, z), d(z, y)} and r ′
1 = min{d(x, z), d(z, y)} and apply SAG* to (x, z) and

(z, y). Continuing this subdivision process as long as r ′
k−1 ≥ α0, and using that r → r(1 + 1/N(r)) is non-decreasing,

we find a sequence r1, . . . , rk, . . ., satisfying

rk ≤ rk−1

2

(
1 + 1

N(rk−1)

)
, (4.1)

and

r ′
k ≥ r ′

k−1

2

(
1 − 1

N(r ′
k−1)

)
, (4.2)

2Strictly speaking 1
N(r0)

should be 2
N(r0)

but this additional factor 2 will be absorbed in the constant C, so we prefer to get rid of it.
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and a sequence of finite sequences of vertices x = z0(k), . . . , z2k (k) = y such that

r ′
k ≤ d

(
zi(k), zi+1(k)

) ≤ rk,

for all 0 ≤ i < 2k − 1.

Claim 4.3. There exists n0 ≥ 0 such that for all k ≤ n − n0, r ′
k ≥ α0, and

α0 ≤ 2−k−1r0 ≤ r ′
k ≤ rk ≤ 2−k+1r0.

Proof. Note that the condition on N implies that there exists c > 0 such that for r ≥ α0, N(r) ≥ crε . On enlarging α0
and reducing ε, we can assume that3 c = 1 and ε ≤ 1.

Let k ≥ 2, and observe that (4.1) and (4.2) respectively imply

rk ≤ rk−1

2

(
1 + r−ε

k−1

)
, (4.3)

and

r ′
k ≥ r ′

k−1

2

(
1 − r ′−ε

k−1

)
. (4.4)

We do the following change of variable: Ak = 2k−nrk and Bk = 2k−nr ′
k . Note that B0 = A0 = 1. We deduce from (4.3)

and (4.4) that

Ak ≤ Ak−1 + 2ε(k−n)A1−ε
k−1, (4.5)

and

Bk ≥ Bk−1 − 2ε(k−n)B1−ε
k−1 ≥ Bk−1 − 2ε(k−n)A1−ε

k−1. (4.6)

We will prove by induction on k that

1 − 2
ε
2 (k−n) ≤ Bk ≤ Ak ≤ 1 + 2

ε
2 (k−n) (4.7)

as long as k ≤ n − n0, where4

n0 = max
{�2/ε�, �log2 α0� + 1, n1

}
,

where n1 is the smallest integer such that 2− ε
2 + 2

−εn1
2 +1 ≤ 1. This will prove the claim as this choice of n0 implies

1

2
≤ Bk ≤ Ak ≤ 2,

and r ′
k ≥ 2n0−1 ≥ α0 (since n0 ≥ log2 α0 + 1).

Let 1 ≤ k ≤ n − n0, and assume that (4.7) is satisfied for k − 1. Since n0 ≥ 2/ε, we have that Bk−1 ≥ 1/2. Then,
using that n0 ≥ log2 α0, we have that r ′

k−1 ≥ 2n0 ≥ α0. Therefore, rk and r ′
k are both well-defined. Then, using (4.5)

and the fact that Ak−1 ≤ 2, we obtain

Ak ≤ 1 + 2
ε
2 (k−n−1) + 2ε(k−n)+1.

Hence,

2
ε
2 (n−k)(Ak − 1) ≤ 2− ε

2 + 2
ε
2 (k−n)+1 ≤ 2− ε

2 + 2
−εn0

2 +1 ≤ 1,

3This is only to simplify notation.
4We take n to be large enough so that n > n0.
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which proves the right-hand inequality of (4.7). Then, by (4.6), we have

Bk ≥ 1 − 2
ε
2 (k−n−1) − 2ε(k−n)+1,

and we conclude similarly that

2
ε
2 (n−k)(1 − Bk) ≤ 1,

proving the left-hand inequality of (4.7) and therefore the claim. �

In what follows, we assume that k ≤ n − n0. By (4.1), (4.2) and the claim, we have

rk ≤ rk−1

2
+ 2n−k+1

N(2n−k)
,

and

r ′
k ≥ r ′

k−1

2
− 2n−k+1

N(2n−k)

iterating these inequalities and using the property of N , one gets

rk ≤ 2n−k +
k∑

j=1

2n−k+1

N(2n−k+j−1)

≤ 2n−k + 2n−k

N(2n−k)

k∑
j=1

2−ε(j−1)+1

δ
,

hence writing C = ∑∞
j=1

2−ε(j−1)+1

δ
, we obtain

rk ≤ 2n−k + C
2n−k

N(2n−k)
(4.8)

and similarly,

r ′
k ≥ 2n−k − C

2n−k

N(2n−k)
. (4.9)

Assuming that k ≥ n0, if we let x = x0 = z0(k), . . . , x2k = z2k (k) = y, then we deduce from (4.8) and (4.9) that for
every 0 ≤ i ≤ 2k − 1,(

1 − C

N(d(x, y)/2k)

)
d(x, y)/2k ≤ d(xi, xi+1) ≤

(
1 + C

N(d(x, y)/2k)

)
d(x, y)/2k.

Hence Lemma 4.2 follows (with β = 2n0 ). �

Before proving Proposition 4.1, we first state the following immediate consequence of the definition of strong
N -asymptotic geodesicity.

Lemma 4.4. Assuming that X is SAG*(N), then for all λ0 ∈ (0,1/2], all λ ∈ [λ0,1 − λ0], and all x, y ∈ X with
d(x, y) ≥ α0, there exists z ∈ X such that(

1 − 1

λ0N(r)

)
λr ≤ d(x, z) ≤

(
1 + 1

λ0N(r)

)
λr,
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and (
1 − 1

λ0N(r)

)
(1 − λ)r ≤ d(z, y) ≤

(
1 + 1

λ0N(r)

)
(1 − λ)r,

where r = d(x, y).

Proof of Proposition 4.1. We now show how to deduce Proposition 4.1 from Lemma 4.2. Choose q such that
2−q+2d(x, y) ≤ α ≤ 2−q+3d(x, y) and assume that a sequence x0 = x, x1, . . . , x2q = y as in Lemma 4.2 has been
constructed. In particular, one has that for all 0 ≤ i ≤ j ≤ 2q ,

d(xi, xj ) ≤
(

1 + C

N(d(x, y)/2q)

)
(j − i)d(x, y)/2q . (4.10)

Let 0 = ν0 < μ1 < ν1 < μ2 < ν2 < · · · < νm−1 < μm = 1 be an increasing sequence of elements of 2−q
N such that

for every 1 ≤ i ≤ m − 1, λi is a convex combination (1 − ti )νi + tiμi , with 1/3 ≤ ti ≤ 2/3 (it is easy to see that this
can be done). We let z0 = x and zm = y. For every 1 ≤ i ≤ m − 1, we apply Lemma 4.4 with x = x2qμi

, y = x2qνi
and

λ = ti , yielding a constant C1 and zi ∈ X such that

d(x2qνi
, zi) ≤

(
1 + C1

N(α)

)
tid(x2qμi

, x2qνi
),

and

d(zi, x2qμi
) ≤

(
1 + C1

N(α)

)
(1 − ti )d(x2qμi

, x2qνi
).

Three cases must be considered: the boundary values d(z0, z1) and d(zm−1, zm), and the generic case d(zi, zi+1) for
1 ≤ i ≤ m − 2. We shall focus on the generic case, as the other two can be treated similarly.

We deduce from (4.10), from the choice of α (and the property of N ) that there exists C2 such that

d(x2qμi
, x2qνi

) ≤ (νi − μi)d(x, y)

(
1 + C2

N(α)

)
,

and

d(x2qνi
, x2qμi+1) ≤ (μi+1 − νi)d(x, y)

(
1 + C2

N(α)

)
.

We deduce that there exists C3 such that

d(zi, x2qνi
) ≤ (νi − μi)tid(x, y)

(
1 + C3

N(α)

)
, (4.11)

d(x2qμi+1 , zi+1) ≤ (νi+1 − μi+1)(1 − ti+1)d(x, y)

(
1 + C3

N(α)

)
. (4.12)

By triangular inequality, we have

d(zi, zi+1) ≤ d(zi, x2qνi
) + d(x2qνi

, x2qμi+1) + d(x2qμi+1 , zi+1),

which combined with the previous inequalities gives

d(zi, zi+1) ≤ (
(νi − μi)ti + μi+1 − νi + (νi+1 − μi+1)(1 − ti+1)

)
d(x, y)

(
1 + C′

N(α)

)

= (λi+1 − λi)d(x, y)

(
1 + C′

N(α)

)
,
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where C′ = max{C2,C3}. Hence the sequence x = z0, z1, . . . , zm−1, zm = y satisfies the conclusion of Proposi-
tion 4.1. �

5. Strong asymptotical geodesicity implies limit shape

This section is dedicated to the proof of “(i) implies (ii)” in Proposition 1.8.

5.1. Notation and conventions

Given a subset A of Rd , and t ∈ R, we denote tA = {ta, a ∈ A}, and AB = {a + b, a ∈ A,b ∈ B}. So in particular
An = {a1 + · · · + an, ai ∈ A}. We fix a norm ‖ · ‖0 on R

d . In the sequel, we consider the Hausdorff distance with
respect to this norm: i.e. the Hausdorff distance between two compact subsets A and A′ of Rn is defined as

dH

(
A,A′) = sup

{
r > 0,A ⊂ A′B‖·‖0(0, r),A′ ⊂ AB‖·‖0(0, r)

}
.

Observe that AB‖·‖0(0, r) is the set of points of Rd lying at distance at most r from some point of A.
For every x ∈ Z

d , we shall denote B(x, r) the ball of center x and radius r for the distance δ. Denote B̂(0, r) the
convex hull of B(0, r).

Note that since δ is bi-Lipschitz equivalent to ‖ · ‖0, (ii) is equivalent to the existence of a norm ‖ · ‖, and of C > 0
and n2 such that for all n ≥ n2,

dH

(
1

n
B(0, n),B‖·‖(0,1)

)
≤ C

φ(n)
.

Finally, on replacing the distance δ by δ/α0, we can assume that the constant α0 appearing in the definition of
SAG(N) equals 1, which we shall do in the sequel.

5.2. Preliminary lemmas

In what follows, we suppose that (i) is satisfied. The following lemma is the only place where we actually use this
assumption.

Lemma 5.1. There exists C′ such that for all M ∈N
∗ and all r ≥ M ,

dH

(
1

r
B(0, r/M)M,

1

r
B(0, r)

)
≤ C′

φ(r/M)
.

Proof. First, note that

B(0, r/M)M ⊂ B(0, r) ⊂ B
(
0, (1 + ε)r/M

)M
,

where

ε = 1

N(r/M)
≤ 1

cφ(r/M)
.

The left inclusion simply follows5 from triangular inequality, while the right inclusion results from (1.5). Recall that
in restriction to Z

d , ‖ · ‖0 and δ are bi-Lipschitz equivalent, so there exists a constant G > 0 such that ‖x − y‖0 ≤

5We also use (as we will throughout) the invariance of δ.
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Gδ(x, y) for all x, y ∈ Z
d . Then, using (1.6), we have

B
(
0, (1 + ε)r/M

)M ⊂ ([
B(0, r/M)

]
6εr/M

)M

⊂ (
B(0, r/M)B‖·‖0(0,6Gεr/M)

)M

= (
B(0, r/M)

)M
B‖·‖0(0,6Gεr),

where the notation [B(0, r/M)]6εr/M stands for the 6εr/M-neighborhood of the ball B(0, r/M) for the metric δ.
Hence the lemma follows with C′ = 6G/c. �

We let L be an integer ≥ 2 to be determined later. Let k ∈N such that Lk ≤ r < Lk+1.

Corollary 5.2. There exists C′′ (depending on L) such that for all r,m ∈ N with m ≥ 1 and r ≥ L (i.e. k ≥ 1),

dH

(
1

mr
B(0, r/L)mL,

1

mr
B(0,mr)

)
≤ C′′

φ(Lk)
.

Proof. Applying Lemma 5.1 yields that the left-hand term is at most C′
φ(Lk−1)

. Using that φ(Lk) ≤ Lφ(Lk−1), we

deduce the corollary with C′′ = LC′. �

We now proceed with a innocent-looking lemma, that nevertheless concentrates the main feature of Z
d that is

needed for the proof.

Lemma 5.3. Let K be a compact symmetric subset of Rd , and let K̂ be its convex hull. Then, for all n ≥ d , we have

K̂n = Kn−dK̂d .

In particular, for all n ≥ 1,

dH

(
K̂n, K̂n

) ≤ dH

(
Kn, K̂n

) ≤ d · dH (K, K̂).

Proof. One inclusion is clear, so let us prove the other one. Let x ∈ K̂n. By convexity, K̂n = nK̂ , so that there exists
y ∈ K̂ such that x = ny. Now y can be written as a convex combination y = t0y0 + · · · + tdyd of d + 1 elements
of K . Write nti = ni + si , where si ∈ [0,1), and ni = [nti]. Observe that the integer m := ∑

i si = n − ∑
i ni satisfies

m < d + 1. Since, 1
m

∑
i siyi is a convex combination of the yi , it belongs to K̂ . So we have

∑
i siyi ∈ mK̂ = K̂m.

On the other hand, since
∑

i ni = n − m, the element
∑

i niyi belongs to Kn−m. We deduce that K̂n ⊂ Kn−mK̂m ⊂
Kn−dK̂d . To deduce the second inequality, we let t = dH (K, K̂) so that K̂ ⊂ KB‖·‖0(0, t). It follows (since R

d is
abelian) that

K̂n ⊂ Kn−dK̂d ⊂ Kn−dKdB‖·‖0(0, dt),

so that dH (Kn, K̂n) ≤ dt . �

Applying the second half of Lemma 5.3 with K = B(0, r/L), and n = Lm, we deduce following corollary.6

Corollary 5.4. For all L > 1, and r,m ∈N with m ≥ 1,

dH

(
1

mr
B(0, r/L)Lm,

1

mr
B̂(0, r/L)Lm

)
≤ d · dH

(
1

r
B(0, r/L),

1

r
B̂(0, r/L)

)
.

6In the right-hand side, we could have 1
mr instead of 1

r , however the latter is enough for our purposes.
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On the other hand, combining Corollary 5.2 and Lemma 5.3, we obtain:

Corollary 5.5. For all L > 1, and r,m ∈N with m ≥ 1 and r ≥ L,

dH

(
1

mr
B̂(0, r/L)mL,

1

mr
B̂(0,mr)

)
≤ C′′

φ(Lk)
+ d · dH

(
1

r
B(0, r/L),

1

r
B̂(0, r/L)

)
.

Proof. By Lemma 5.3, denoting V for the convex hull of B(0, r/L)mL, we have

dH

(
1

r
V,

1

r
B̂(0, r/L)mL

)
≤ d · dH

(
1

r
B(0, r/L),

1

r
B̂(0, r/L)

)
.

On the other hand for every pair A,A′ of compact subsets of Rn, we have that dH (Â, Â′) ≤ dH (A,A′). Hence taking
the convex hull in Corollary 5.2 yields

dH

(
1

mr
V,

1

mr
B̂(0,mr)

)
≤ C′′

φ(Lk)
.

These two inequalities now give the corollary. �

5.3. Proof of (i) implies (ii) in Proposition 1.8

We let L > 1 to be determined later. We will prove by induction on k the following Cauchy criterion for the sequence
1
r
B(0, r): there exists C such that for all k, all r ∈ N such that r ≥ Lk and all positive integer m,

dH

(
1

r
B(0, r),

1

mr
B̂(0,mr)

)
≤ C

φ(Lk)
. (5.1)

Note that by triangular inequality, this implies that for all t ∈ Q such that t ≥ 1,

dH

(
1

r
B(0, r),

1

tr
B(0, tr)

)
≤ 2C

φ(Lk)
,

but since d̄ takes values in a discrete set, we deduce that for all r ′, r ′′ ≥ r ,

dH

(
1

r ′ B
(
0, r ′), 1

r ′′ B
(
0, r ′′)) ≤ 4C

φ(Lk)
. (5.2)

Observe that this both implies a Cauchy criterion for 1
r
B(0, r) and the fact that the limit is a convex body (as

it is also the limit of the sequence of convex bodies 1
r
B̂(0, r)). Since φ is doubling, it also gives the right rate of

convergence.
Note that since δ is bilipschitz equivalent to ‖ · ‖0, there exists r0 such that for all r ≥ 1,

1

r
B(0, r) ⊂ B‖·‖0(0, r0). (5.3)

So in particular,

C0 := sup
1≤r≤L;r≤r ′

dH

(
1

r
B(0, r),

1

r ′ B̂
(
0, r ′)) < ∞.

Recall that η :R+ → R+ is a function that satisfies limλ→∞ η(λ)/λ = 0 and for all λ > 0, φ(λr) ≤ η(λ)φ(r). We can
then choose L such that

dη(L)

L
≤ 1/4,

and we let C = max{C0φ(1),4C′′}, where C′′ is the constant of Corollary 5.2.
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Initial step: Since C ≥ C0φ(1), we have that (5.1) holds for k = 0.
Induction hypothesis: We let k ≥ 1, we assume that (5.1) holds for all k′ < k, all Lk′ ≤ r ′ < Lk′+1 and all m ≥ 1,

and we let r ∈N such that r ≥ Lk .
We have, by triangular inequality,

dH

(
1

r
B(0, r),

1

mr
B̂(0,mr)

)
≤ dH

(
1

r
B(0, r),

1

r
B(0, r/L)L

)

+ dH

(
1

r
B(0, r/L)L,

1

r
B̂(0, r/L)L

)

+ dH

(
1

r
B̂(0, r/L)L,

1

mr
B̂(0, r/L)mL

)

+ dH

(
1

mr
B̂(0, r/L)mL,

1

mr
B̂(0,mr)

)
.

Note that the third term is zero. The first term is taken care of by Corollary 5.2 (with m = 1):

dH

(
1

r
B(0, r),

1

r
B(0, r/L)L

)
≤ C′′

φ(Lk)
≤ C

4φ(Lk)
.

To deal with the second term, we apply Corollary 5.4 and the induction hypothesis (with m = 1) as follows:

dH

(
1

r
B̂(0, r/L)L,

1

r
B(0, r/L)L

)
≤ d · dH

(
1

r
B̂(0, r/L),

1

r
B(0, r/L)

)

≤ d

L
dH

(
1

(r/L)
B̂(0, r/L),

1

(r/L)
B(0, r/L)

)

≤ dC

Lφ(Lk−1)

≤ dCη(L)

Lφ(Lk)

≤ C

4φ(Lk)
.

To treat the fourth term, we apply Corollary 5.5 and once again the induction hypothesis:

dH

(
1

mr
B̂(0, r/L)mL,

1

mr
B̂(0,mr)

)
≤ d · dH

(
1

r
B̂(0, r/L),

1

r
B(0, r/L)

)
+ C

4φ(Lk)

≤ C

2φ(Lk)
.

Combining these three inequalities proves (5.1), i.e.

dH

(
1

r
B(0, r),

1

mr
B̂(0,mr)

)
≤ C

φ(Lk)
,

which ends the proof that (i) implies (ii).

6. Limit shape implies strong asymptotical geodesicity

The aim of this section is to prove that (ii) implies (i) in Proposition 1.8. The proof is rather straightforward, so we
will only prove (1.5), leaving (1.6) to the reader.
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Observe that since δ is an invariant distance on Z
d , (ii) is equivalent to the fact that there exists C > 0 and α > 0,

such that for all x, y ∈ Z
d such that δ(x, y) ≥ α,

‖x − y‖
(

1 − C

φ(δ(x, y))

)
≤ δ(x, y) ≤ ‖x − y‖

(
1 + C

φ(δ(x, y))

)
.

Since φ is doubling, and since for δ(x, y) large enough, ‖x − y‖/2 ≤ δ(x, y) ≤ 2‖x − y‖, on changing the constant
C, we have

‖x − y‖
(

1 − C

φ(‖x − y‖)
)

≤ δ(x, y) ≤ ‖x − y‖
(

1 + C

φ(‖x − y‖)
)

. (6.1)

Now, fix two elements x, y ∈ Z
d and consider the segment [x, y] in R

d . We let m ∈ N and consider x =
z0, . . . , zm = y such that for all 0 ≤ i ≤ m, zi = x + i(y − x)/m. The zi are not necessarily in Z

d , so we pick
for each 1 ≤ i ≤ m − 1, some xi ∈ Z

d such that ‖xi − zi‖ ≤ K , where K = supz∈Rd infv∈Z ‖v − z‖. We now have a
sequence x0 = x, . . . , xm = y of points in Z

d such that

‖zi − zi+1‖ − 2K ≤ ‖xi − xi+1‖ ≤ ‖zi − zi+1‖ + 2K.

Let us assume that α = ‖y − x‖/m is large enough, so that

2K

‖zi − zi+1‖ = 2K

α
≤ C

φ(α)
.

This is possible thanks to the fact that limr→∞ φ(r)/r = 0. We deduce that(
1 − C

φ(α)

)
‖zi − zi+1‖ ≤ ‖xi − xi+1‖ ≤

(
1 + C

φ(α)

)
‖zi − zi+1‖. (6.2)

Since φ is increasing, we deduce from (6.1) that(
1 − C

φ(α)

)
‖x − y‖ ≤ δ(x, y) ≤

(
1 + C

φ(α)

)
‖x − y‖,

and (
1 − C

φ(α)

)
‖xi − xi+1‖ ≤ δ(xi, xi+1) ≤

(
1 + C

φ(α)

)
‖xi − xi+1‖.

Combining these two inequalities with (6.2), and assuming α large enough so that C/φ(α) ≤ 1/2, we deduce

(
1 − C

φ(α)

)2(
1 + C

φ(α)

)−1

δ(x, y)/m ≤ δ(xi, xi+1) ≤
(

1 + C

φ(α)

)2(
1 − C

φ(α)

)−1

δ(x, y)/m.

Hence,(
1 − 4

C

φ(α)

)
δ(x, y)/m ≤ δ(xi, xi+1) ≤

(
1 + 5

C

φ(α)

)
δ(x, y)/m,

so (1.5) follows.

Appendix: Lower bound on d̄

In this section, we prove that a mild assumption on ν implies (A2).
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Lemma A.1. Let X = (V ,E) be a graph of degree ≤ q . Assume that ν is supported on [a,∞) and that ν({a}) <

1/(q − 1). Then there exists a′ > a and r0 such that d̄(x, y) ≥ a′d(x, y) for all x, y ∈ V such that d(x, y) ≥ r0.

Proof. For simplicity, let us assume that a = 0. The assumption implies that there exists δ > 0 such that λ := ν([0,0+
δ]) < 1/(q − 1). Let ε > 0 to be determined later. Let γ be a path of length n between two vertices x and y. Assume
that �ω(γ ) ≤ εd(x, y) and let N be the number of edges of γ whose ω-lengths are ≥ δd(x, y). It follows that

δN ≤ εn,

so we deduce that N ≤ εn/δ. This imposes that at least (1 − ε/δ)n edges of γ have ω-length ≤ δ. Recall that by
Stirling’s formula, given some 0 < α < 1, the number of ways to choose αn edges in a path of length n is

∼ nn

(αn)αn((1 − α)n)(1−α)n
= (1/α)αn(1/(1 − α)(1−α)n.

Thus the probability that γ has ω-length at most εn is less than a universal constant times

λ(1−ε/δ)n

(ε/δ)(ε/δ)n(1 − ε/δ)(1−ε/δ)n
=

(
λ1−ε/δ

(ε/δ)ε/δ(1 − ε/δ)1−ε/δ

)n

.

Note that

lim
ε→0

λ1−ε/δ

(ε/δ)ε/δ(1 − ε/δ)1−ε/δ
= λ.

We now pick ε so that

λ′ := λ1−ε/δ

(ε/δ)ε/δ(1 − ε/δ)1−ε/δ
≤ 1

2

(
λ + 1

q − 1

)
.

On the other hand, the number of self-avoiding paths of length ≤ n is at most q(q −1)n. We deduce that for this choice
of ε, the probability that dω(x, y) ≤ εd(x, y) is at most a constant times

∑
n≥d(x,y)(λ

′(q − 1))n, which converges to
0 as d(x, y) → ∞. Let r0 be such that this probability is less than 1/2 as soon as d(x, y) ≥ r0. It follows that for all
x, y ∈ V such that d(x, y) ≥ r0,

d̄(x, y) ≥ εd(x, y)/2,

which proves the lemma. �

Corollary A.2. Let X = (V ,E) be a graph of degree ≤ q . We assume that (A1) is satisfied, and that ν({0}) < 1/q .
Then there exists a′′ > 0 such that d̄(x, y) ≥ a′′d(x, y) for all x, y ∈ V .

Proof. By the previous lemma, applied with a = 0, there exists r0, and some a′ > 0 such that d̄(x, y) ≥ a′d(x, y) as
soon as d(x, y) ≥ r0. On the other hand, the assumption implies that there exists δ > 0 such that c := ν([0, δ]) < 1.
Since the degree is at most k, the probability that the ω-length of all vertices issued from a given vertex is at least δ,
is at least (1 − c)k . Hence the average distance between two distinct points is ≥ (1 − c)kδ. The corollary follows by
taking a′′ = min{a′, (1 − c)kδ/r0}. �
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