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Abstract. We show that the order of the L∞-mixing time of simple random walks on a sequence of uniformly bounded degree
graphs of size n may increase by an optimal factor of �(log logn) as a result of a bounded perturbation of the edge weights. This
answers a question and a conjecture of Kozma.

Résumé. Nous montrons que le temps de mélange pour la distance L∞ d’une marche aléatoire sur une suite de graphe de taille n

et de degré uniformément borné peut être multiplié par un facteur d’ordre log logn (optimal) en perturbant le poids des arrêtes du
graphe de manière uniformément bornée. Ceci résout une question et une conjecture de Kozma.
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1. Introduction

An important question is whether mixing times are robust under small changes to the geometry of the Markov chain.
For instance, can bounded perturbations of the edge weights change the mixing time by more than a constant factor?
Similarly, how far apart can the mixing times of lazy simple random walks on two roughly-isometric graphs of
bounded degree be? A related question is whether mixing times can be characterized up to universal constants (perhaps
only under reversibility) using geometric quantities or extremal characterizations which are robust.2 Different variants
of this question were asked by various authors such as Pittet and Saloff-Coste [16], Kozma [11, p. 4], Diaconis and
Saloff-Coste [6, p. 720] and Aldous and Fill [2, Open Problem 8.23] (the last two references ask for an extremal
characterization of the L∞-mixing time in terms of the Dirichlet form).

Denote the Lp mixing time of lazy simple random walk on a finite connected simple graph G by τp(G) (see (1.3)).
Kozma [11] made the following conjecture:

Conjecture 1.1 ([11]). Let G and H be two finite K-roughly isometric graphs (see Definition 1.6) of maximal de-
gree ≤ d . Then for some C(K,d) depending only on (K,d),

τ∞(G) ≤ C(K,d)τ∞(H).

Our main result, Theorem 1, asserts that this conjecture is false. We shall only consider the following particularly
simple type of rough isometries. Let G1 := (V1,E1) be some graph. Let G2 = (V2,E2) be a graph obtained from G1
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2That is, using quantities which can change by at most some bounded factor under a bounded perturbation of the edge weights, or for lazy simple
random walk on a bounded degree graph, under rough-isometries.
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by “stretching” some of the edges of G1 by a factor of at most K (we say that G2 is a K-stretch of G1). That is, for
some E ⊂ E1 we replace each edge {u,v} ∈ E by a path of length at most K (whose end-points are still denoted by u

and v). Note that V1 ⊂ V2. The identity map is a K-rough isometry of G1 and G2.

Theorem 1. There exist two families of uniformly bounded degree simple connected graphs (Gn = (Vn,En))n≥0 and
(G′

n)n≥0 and some c > 0 such that |Vn| → ∞ and for each n, G′
n is a 2-stretch of Gn and

τ1
(
G′

n

)≥ cτ∞(Gn) log log |Vn|. (1.1)

Remark 1.2. The log log |Vn| term in (1.1) is optimal. This follows from the fact that the Log-Sobolev constant, and
as shown in [11], also the spectral-profile, provide bounds on τ∞(G) for a graph G = (V ,E) of maximal degree d

which are sharp up to a Cd log log |V | factor. These bounds are robust (i.e. invariant, up to a constant factor) under
rough isometries in the bounded degree setup ([6, Lemmas 3.3 and 3.4]).

Remark 1.3. Denote the upper bound on τ∞(G) given by the spectral profile [8, Theorem 1.1] by ρ(G) (see (2.6)).
Kozma [11] asked whether it is possible for a sequence of bounded degree graphs Hn = (V (Hn),E(Hn)) with
|Vn| → ∞ to satisfy ρ(Hn)/τ∞(Hn) ≥ c log log |V (Hn)| for some absolute constant c > 0. Until now, there was
no known example exhibiting this behavior (or even one in which ρ(Hn)/τ∞(Hn) diverges). Since in the bounded
degree setup the spectral profile is robust (i.e. invariant, up to a constant factor) under rough isometries, for the graphs
from Theorem 1 it must be the case that for all n

ρ(Gn) ≥ c1ρ
(
G′

n

)≥ c1τ∞
(
G′

n

)≥ c2τ∞(Gn) log log |Vn|.
In other words, to prove Theorem 1 one must first construct a sequence of bounded degree graphs for which the

spectral profile bound overshoots the order of the L∞ mixing time by an optimal factor. It follows from the analy-
sis in [11] that such example must have �(log log |Vn|) disjoint sets, whose stationary probabilities are of different
logarithmic scales, so that each of which makes roughly the same contribution to ρ(Gn).

We believe that in general, for such example, the aforementioned sets can be chosen so that: (1) the walk can
visit only one (or at most some constant number) of them before it is mixed in L∞, and (2) after stretching some of
the edges by a bounded factor, the walk has to pass through at least some fraction of these sets in order to mix in
total-variation.

We say that a family of graphs is robust if for every C > 0 there exists some K > 0 such that if we multiply the
edge weights of some of the edges by a factor of at most C on these graphs, the corresponding L∞ mixing times are
preserved up to a factor of K . In [7] Ding and Peres studied robustness of L1 mixing (see Section 1.3). We note that
the L∞ case is much harder (see the discussion in Section 1.3).

Remark 1.4. Loosely speaking, stretching an edge by a factor of K has the same effect as decreasing its weight to
1/K . Indeed, in Theorem 1 instead of considering a 2-stretch of Gn we could have considered a bounded perturbation
of the edge weights (i.e. the same example works for both setups).

There are numerous works aiming at sharp geometric bounds on the L∞-mixing time, τ∞, such as Morris and
Peres’ evolving sets bound [14], expressed in terms of the expansion profile. The sharpest geometric bounds on τ∞
are given in terms of the Log-Sobolev constant (see [6] for a survey on the topic) and the spectral profile bound, due
to Goel et al. [8]. Both of which determine τ∞ up to a multiplicative factor of order log log[max(ee,1/minπ(x))],
where throughout π shall denote the stationary distribution.

These type of geometric bounds on mixing-times are robust under bounded perturbations (and in the bounded
degree setup, also under rough isometries). That is, changing some of the edge weights by at most some multiplicative
constant factor can change these geometric bounds only by a constant factor. Theorem 1 serves as a cautionary note
on the possibility of developing sharp geometric bounds on mixing times.

In contrast with Theorem 1, many well-known families of graphs are robust. Robustness of the L1 and L∞ mixing
times for all reversible Markov chains under changes to the holding probabilities (i.e. under addition of weighted
loops) was established in [15] (by Peres and Sousi) and in [9] (by Peres and the author), respectively. Boczkowski,
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Peres and Sousi [5] constructed an example demonstrating that this may fail without reversibility. Robustness of
the L1 and L∞ mixing times for general (weighted) trees under bounded perturbations of the edge weights was
established in [15] (by Peres and Sousi) and in [9] (by Peres and the author), respectively. Robustness of L1 mixing
times for general trees under rough-isometries was recently established in [1] by Addario-Berry and Roberts. Some
other examples, which we borrow from [7] (where robustness of the L1 mixing time is considered, however apart
from example (2) below, the analysis of the L∞ mixing time is identical) are collected in the next proposition.

Proposition 1.5. The following families of graphs are robust: (1) Tori {Zd
n : n ≥ 1} for every fixed d ; (2) The gi-

ant component of a supercritical Erdős–Rényi random graph G(n, c/n) for a fixed c > 1; (3) Maximal connected
component of a critical Erdős–Rényi random graph G(n, c/n); (4) The hypercube {0,1}n.

1.1. Definitions

Given a (weighted) network (V ,E, (ce)e∈E), where each edge {u,v} ∈ E is endowed with a conductance (weight)
cu,v = cv,u > 0 (with the convention that cu,v = 0 if {u,v} /∈ E), a lazy random walk on G = (V ,E), (Xt ), repeatedly
does the following: when the current state is v ∈ V , the random walk will stay at v with probability 1/2 and move
to vertex u (such that {u,v} ∈ E) with probability cu,v/(2cv), where cv :=∑

w cv,w . The default choice for cu,v is 1
(in which case, we say that the random walk is unweighted), which corresponds to lazy simple random walk on G (in
which at each step the walk with equal probability either stays put or moves to a new vertex, chosen from the uniform
distribution over the neighbors of its current position). Its stationary distribution is given by π(x) := cx/cV , where
cV := ∑

v∈V cv = 2
∑

e∈E ce. This is a reversible Markov chain, i.e. π(u)P (u, v) = π(v)P (v,u) for all u,v ∈ V ,
where throughout P denotes the transition matrix of the walk.

We denote by Pt
x (resp. Px ) the distribution of Xt (resp. (Xt )t≥0), given that the initial state is x. Let μ,ν be two

distributions on the state space �. Denote aμ,ν,π := |μ(x)−ν(x)|
π(x)

. The family of Lp distances is defined as follows.

‖μ − ν‖p,π :=
{

(
∑

x π(x)a
p
μ,ν,π )1/p, 1 ≤ p < ∞,

maxx∈� aμ,ν,π , p = ∞ (1.2)

(p = 1 gives twice the total-variation distance, i.e. ‖μ − ν‖1,π = 2‖μ − ν‖TV). The ε-Lp-mixing-time of the chain is
defined as

τp(ε) := min
{
t : max

x

∥∥Pt
x − π

∥∥
p,π

≤ ε
}
. (1.3)

When ε = 1/2 we omit it from the notation and terminology (i.e. the Lp mixing time is defined as the 1/2-Lp mixing
time).

Definition 1.6. Let Gi := (Vi,Ei) (i = 1,2) be two finite graphs. For u,v ∈ Vi , let di(u, v) be graph distance (w.r.t.
Gi ) between u and v (i.e. the number of edges along the shortest path in Gi between u and v). We say that f : V1 → V2

is a K-rough isometry of G1 and G2 if

(1)

∀u,v ∈ V1,
(
d1(u, v) − 1

)
/K ≤ d2

(
f (u), f (v)

)≤ K
(
d1(u, v) + 1

)
.

(2) For every w ∈ V2, there exists some v ∈ V1 such that d2(f (v),w) ≤ K .

We say that G1 and G2 are K-roughly isometric if there exists such f as above.

We use the convention that C,C′,C1, . . . (resp. c, c′, c1, . . .) denote positive absolute constants which are suf-
ficiently large (resp. small). Different appearances of the same constant at different places may refer to different
numeric values.
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1.2. The transitive case

The following question is re-iterated from [7] (over there it is asked for the L1 mixing time) and essentially also
from [16].

Question 1.7. Are transitive graphs robust?

Let G = (V ,E) be a finite connected transitive graph. Denote the eigenvalues of I − P (where P is the transition
matrix of lazy simple random walk on G) by 0 = λ1 < λ2 ≤ · · · ≤ λ|V |. Since for transitive graphs the mixing time is
the same from all initial states, averaging over the starting position yields that (cf. [2, p. 284]) for all x and t ≥ 0

∥∥P2t
x − π

∥∥∞,π
= ∥∥Pt

x − π
∥∥2

2,π
=
∑
y

π(y)
∥∥Pt

y − π
∥∥2

2,π
=

|V |∑
i=2

λ2t
i

(transitivity is used only in the middle equality). Since the eigenvalues of I − P are robust (e.g. [2, Corollary 8.4]), it
follows that transitive graphs are robust under bounded perturbations which preserve transitivity. A positive answer to
Question 1.7 will be obtained by a positive answer to the following question. Is it the case that for transitive graphs,
also after a bounded perturbation, the ratio of the L2 mixing time starting from the worst initial point with that starting
from the best initial point is bounded?

1.3. Related work

It is classical that under reversibility the L1 mixing time can be characterized using hitting times of sets which are
“worst” in some sense (e.g. [12, Ch. 24]). Thus in order to show that it is not robust, it suffices to construct an example
in which hitting times are not robust. As we explain below, this is somewhat easier.

Recently, the author and Peres obtained a characterization of the L2 mixing time in terms of hitting time distri-
butions. Namely, Theorem 1.1 in [13] asserts that under reversibility the L2 mixing time is within some universal
constant from the minimal time t such that for every set A of stationary probability at most 1/2, the probability that
A is not escaped from by time t is at most π(A) + 1

2

√
π(A)(1 − π(A)). While we do not use this characterization as

part of our analysis of the example from the proof of Theorem 1, it guided us in its construction and in the choices of
certain parameters.

Ding and Peres [7] constructed a sequence of bounded degree graphs satisfying that the order of the total-variation
mixing times strictly increases as a result of a certain sequence of bounded perturbations of the edge weights. Their
construction was refined by the author and Peres in [10] (Theorem 3), which contains various additional results
concerning sensitivity of mixing times and of the cutoff phenomenon under small changes to the geometry of the
chain.

Our construction from the proof of Theorem 1 uses a key observation from [7]. Namely, that the harmonic measure
of the walk on a tree may change drastically as a result of a bounded perturbation, and that this can be used to create
examples in which hitting times are not robust in the following sense. The order of the expected hitting time of some
large set A which is “worst” in some sense (both before and after the perturbation), starting from the worst initial
state, may change as a result of the perturbation. The idea of exploiting the non-robustness of the harmonic measure
was originally used by Benjamini [4] to study instability of the Liouville property.

Both in Ding and Peres’ construction and in our construction the chain mixes rapidly (there in total-variation and
here in L2) once it reaches a certain “huge” expander, H (and because H carries most of the stationary probability
of the walk, the walk cannot mix before reaching it). We use the fact that the harmonic measure is sensitive (in the
sense mentioned in the previous paragraph) in order to create “shortcuts” to H for the walk on the original graph, Gn,
which are essentially “invisible” for the walk on the 2-stretched graph, G′

n.
In order to change the mixing time in total-variation it suffices to change the order of the expected hitting time of H ,

starting from the worst initial state. However, this does not suffice in order to change the order of the L∞ mixing time.
Thus we will work much harder and show that for every initial vertex x the following holds. The probability that the
walk on the original graph does not reach H in some t � τ1(G

′
n) steps (through one of the aforementioned shortcuts)

is much smaller than the L∞ distance from stationarity of the distribution of the walk at time t , conditioned to not
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reach H by that time. In order to achieve this, we will plant more shortcuts to H in regions in which the chain mixes
slower.

In [11] Kozma constructed a sequence of reversible Markov chains satisfying that ρ(n) ≥ cτ
(n)∞ log log(1/

minx πn(x)), for all n, where ρ(n) is the spectral profile bound (see (2.6)) on the L∞ mixing time of the nth chain in
the sequence, τ

(n)∞ . In Kozma’s construction there are n−logn�+ 1 “islands” Hlogn�, . . . ,Hn, each of size 22n
. The

weights are chosen so that the stationary distribution is the uniform distribution. In his example the only way for the
chain to “escape” from some Hi is by moving to a random state picked according to the uniform distribution on the
state space, which occurs in each step w.p. n2−n.

As in Kozma’s construction there is a weighted edge between all pairs of vertices, it is not clear that such a
construction is possible in the bounded degree setup. Nevertheless, our example uses several ideas from Kozma’s
construction.

• In Kozma’s construction, each Hi has vertex set Ai × Bi . The network on Hi can be described as a “Cartesian
product” of the complete graphs on Ai and Bi , in which the walk updates its Bi co-ordinate at a rate αi(n) = o(1).

In our construction we use a bounded degree analog of the aforementioned network, which we denote by Ui .
Namely, we replace the complete graphs by expanders. In order to delay the rate of transitions along the expander
on the co-ordinate corresponding to Bi in Kozma’s construction, while keeping the graph unweighted, we stretch
each of its edges by a factor �i(n) → ∞.

• In Kozma’s example, for all i, |Ai | = 22n−2i
and so π(Ai+1) ≈ π(Ai)

2. Moreover, each Ai has roughly the same
contribution to the spectral profile bound (see (2.6)). This is achieved by tuning the rates αi(n) in an appropriate
manner. Namely, by setting αi+1(n) = 2αi(n), for all i. As noted in Remark 1.3, in some sense, such behavior of
the spectral profile is necessary in order for it to overshoot τ∞ by an optimal factor (of order log log |V |). In our
construction we will take �2

i (n) = 2�2
i+1(n) in order to obtain the same effect.

• Recall that in Kozma’s construction each pair of vertices are connected by a weighted edge, which has the effect
of bringing the chain to stationary “at once” at a fixed rate, and this is the only way the chain can escape from
the “island,” Hi , it started at. In our construction we need to somehow imitate this behavior (in a bounded degree,
unweighted fashion). At the same time, as noted in Remark 1.3, we need that after stretching some of the edges by
a factor of two, the walk must sequentially move through all of the islands in order to mix in total variation.

In order to achieve this behavior, we “stitch” the “islands” together so that the walk can escape from each of
them either to a huge expander H (once it is reached, the walk mixes rapidly) or to an island with adjacent index.
The islands are glued to each other and to the expander H in a way that allows us to manipulate (by stretching some
edges) the probability of escaping an “island” by reaching the expander H .

2. Preliminaries

Recall that the spectral gap of a reversible Markov chain with transition matrix P on a finite state space is defined as
the smallest non-zero eigenvalue of I − P . We say that a graph G is a λ-expander if the spectral gap of lazy simple
random walk on G, denoted by λ(G), is at least λ. We say that a sequence of graphs (Gn)n∈I is an expander family
if infn∈I λ(Gn) > 0. As mentioned in Section 1.3, we shall use expanders as building blocks in our construction. By
abuse of terminology, below we often refer to a single graph as an “expander.” What we actually mean by that is that
all of the graphs we refer to as expanders in the construction of the family of graphs we construct form together an
expander family.

Definition 2.1. Consider a Markov chain chain on a finite state space � with transition matrix P and stationary
distribution π . We define the Cheeger constant of the chain as

� := min
A:0<π(A)≤1/2

Q(A)/π(A), where Q(A) :=
∑

x∈A,y /∈A

π(x)P (x, y).

The following is the well-known discrete analog of Cheeger inequality.
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Theorem 2.2 (e.g. [12, Theorem 13.14]). If P is reversible then

�2/2 ≤ λ ≤ 2�. (2.1)

By (2.1) a sequence of graphs (Gn)n∈I is an expander family iff infn∈I �(Gn) > 0.
The following proposition will be useful in what comes.

Proposition 2.3. There exists a constant cd > 0 (depending only on d) such that if H is a simple graph of maximal
degree d and G is a K-stretch of H , then

�(G) ≥ cd�(H)/K and so λ(G) ≥ c2
d�2(H)/

(
2K2). (2.2)

Proof. The argument in [13, Claim 2.2] covers the case in which |V (G)| ≤ 3
2 |V (H)|. We shall reduce the general

case to this case. It is easy to see that the minimum in the definition of � is always attained by a connected set. For
e = {u,v} ∈ E(H) let γe be the collection of internal vertices along the segment from u to v in G which replaced
the edge e (if e was not stretched, then γe is empty). Let πG be the stationary distribution of the walk on G. Similar
reasoning as in [13, Claim 2.2] shows that for some connected set B

(i) QG(B)/πG(B) ≤ Cd�(G) (where QG(B) denotes Q w.r.t. the graph G).
(ii) There is at most one e ∈ E(H) so that γe \B an γe ∩B are both non-empty. However, even if such e exists, γe ∩B

is connected.

The operation of contracting a set of vertices D is defined as follows. Replace all of D by a single vertex x and for
every edge {u,v} with u in D and v /∈ D, replace it with an edge {x, v} and if also v ∈ D replace it by a loop at x of
weight 2. Let G2 be the network obtained by contracting each γe′ , for all e′ ∈ E(H), apart from γe for the e so that
γe \ B an γe ∩ B are both non-empty (if such e exists). If such e exists, we contract γe ∩ B and also (γe \ B) ∪ {v},
where v is the endpoint of e incident to (γe \ B).

Let G3 be the graph obtained by deleting all loops from G2. It is straightforward to check that �(G2) ≥
�(G3)/(2K) ≥ c′

d�(H)/K (where the second inequality follows from [13, Claim 2.2]). Conversely, by (i)–(ii),
�(G2) ≤ QG(B)/πG(B) ≤ Cd�(G) (where the first inequality is obtained by considering the set B ′ in G2 obtained
from B by replacing each γe′ ⊂ B by the corresponding vertex in G2) and so indeed �(G) ≥ cd�(H)/K . �

The Poincaré (spectral gap) inequality asserts that when time is scaled according to the inverse of the spectral gap,
the L2 distance from stationarity of every distribution decays exponentially in the number of (scaled) time units.

Lemma 2.4. Let (�,P,π) be a finite lazy irreducible reversible Markov chain with spectral gap λ. Let μ be a
distribution on �. Then∥∥Pt

μ − π
∥∥

2,π
≤ e−λt‖μ − π‖2,π , for all t ≥ 0. (2.3)

Definition 2.5. Let (�,P,π) be reversible. Let A � �. We define λ(A) (“the spectral gap of the set A”) to be
the smallest eigenvalue of the substochastic matrix obtained by restricting I − P to A. Similarly, define �(A) =
minB⊂A Q(B)/π(B).

The following extension of (2.1) is due to Goel et al. [8, (1.4) and Lemma 2.4]. For every irreducible reversible
chain, and every set A with π(A) ≤ 1/2 we have that

�2(A)/4 ≤ λ(A) ≤ �(A). (2.4)

The hitting time of a set D is defined as TD := inf{t : Xt ∈ D}. Using the spectral decomposition of PA, the
restriction of P to the set A (e.g. [3, Lemma 3.8]), it is easy to show that for every set A and a, a′ ∈ A we have that

P t
A(a, a′) ≤

√
π(a′)
π(a)

e−λ(A)t and so

∀a ∈ A, Pa[T�\A > t] =
∑
b∈A

P t
A(a, b) ≤ |A|max

b∈A

√
π(b)

π(a)
e−λ(A)t . (2.5)
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Finally, we recall that the spectral profile upper bound on τ∞ is [8]

ρ := 8λ−1 log 2 +
∫ 1/2

minx π(x)

4dv

v�(v)
, where �(v) := inf

A⊂�:π(A)≤v
λ(A). (2.6)

3. Proof of Theorem 1

3.1. The construction

For notational convenience we often omit ceiling signs. As described in Section 1.3 we shall construct graphs
Un, . . . ,U1. For all i we will have

223n+5n ≤ ∣∣V (Ui)
∣∣≤ C223n+6n.

We will then “stitch” them together to obtain the ultimate graph Gn = (Vn,En). Hence

n223n+5n ≤ |Vn| ≤ Cn223n+6n. (3.1)

For all i, the graph Ui will be a Cartesian product of an expander Hi = (V (Hi),E(Hi)) with a graph Wi (obtained
by making a small modification to a certain tree Ti ), of sizes

223n−22n+i ≤ ∣∣V (Hi)
∣∣≤ 223n−22n+i+n−i , 222n+i+5n ≤ ∣∣V (Wi)

∣∣≤ C222n+i+5n. (3.2)

Step 1.1 Let 1 ≤ i ≤ n. We now construct the tree Ti which shall have roughly 222n+i
good leafs GLi and roughly

222n+i−1
bad leafs BLi (apart from i = 1 which only has good leafs). It will be obtained by stretching the

edges of a tree Tbs,i (bs stands for “before stretching”) which is a “binary tree,” rooted at oi , whose good
leafs, GLi , are of depth 22n+i , while its bad leafs, BLi , are all of some other depth, ji . The sets of good
leafs of the two trees Tbs,i and Ti are the same, and likewise for the sets of bad leafs. Note that usually a
finite binary tree is defined so that all of its leafs are of the same depth, while here, crucially, the leaf set is
partitioned into two sets of different depths. By abuse of terminology, we still refer to such a tree as a finite
binary tree.

• We first describe the construction of T1 as it is simpler. Take a binary tree, Tbs,1, of depth 22n+1 rooted at o1.
Denote its leafs by GL1. Then stretch each of its edges by a factor of 25n.

• We now construct Ti for 1 < i ≤ n in several steps. Before describing Tbs,i we consider a binary tree of depth
22n+i−2, rooted at oi , denoted by Tfh,i (fh stands for “first half,” as Tfh,i is the “first half” of Tbs,i ).

Step 1.2 For every vertex u which is not a leaf of Tfh,i we distinguish its two children by left and right child. For
every vertex u ∈ Tfh,i let Left(u) (resp. Right(u)) be the number of left (resp. right) children along the path
from oi to u. Let

g(u) = Left(u) − Right(u). (3.3)

Denote the kth level of a rooted tree T by Lk(T ). We partition the leaf set of Tfh,i L22n+i−2(Tfh,i ), into two
parts: GMPi , the set of good middle points and BMPi , the set of bad middle points (they are “middle points”
w.r.t. Tbs,i ) defined as follows:

GMPi := {
u ∈ L22n+i−2(Tfh,i ) : g(u) ≤ 22n+i−6} and BMPi := L22n+i−2(Tfh,i ) \ GMPi .

We now extend Tfh,i so that the good leafs, GLi (resp. bad leafs BLi ), of the resulting tree, Tbs,i , will be the
leafs which are decedents of GMPi (resp. BMPi ).

• Attach to each vertex in GMPi a binary tree of depth 22n+i − 22n+i−2. This makes the total number of leafs
that have a vertex in GMPi as an ancestor 222n+i

(1 − o(1)).
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• Attach to each vertex in BMPi a binary tree of depth log2(2
22n+i−1

/|BMPi |)� so that the set of leafs that
have a vertex in BMPi as an ancestor, BLi , is of size

222n+i−1 ≤ |BLi | ≤ 222n+i−1+1. (3.4)

Call the resulting tree Tbs,i .
Step 1.3 Denote the union of GMPi with the collection of vertices of Tbs,i which have an ancestor in GMPi by GSi

(a shorthand for “good side”).
• For each 1 < i ≤ n, stretch each edge of Tbs,i that both of its end-points lie in GSi by a factor of 25n. Stretch

each of the rest of the edges of Tbs,i by a factor of

qi := ⌈
28n− i

2
⌉
. (3.5)

Call the resulting tree Ti .
Step 2 We now modify the tree Ti in the region close to its leafs in order to make it an expander. We note that

for i = 1 the below modification is done only to the region close to GL1 as T1 only has good leafs. Let
GEi = (V (GEi ),E(GEi )) and BEi = (V (BEi ),E(BEi )) (E stands for expander) be 3-regular expanders of
size |GLi |/2 and |BLi |/2, resp. Let PGLi (resp. PBLi ) (a shorthand for “parents of good (resp. bad) leafs”
w.r.t. Tbs,i ), be the collection of the |GLi |/2 (resp. |BLi |/2) vertices of distance 25n (resp. qi ) w.r.t. Ti from
GLi (resp. BLi ). We naturally identify PGLi (resp. PBLi ) with the collection of parents w.r.t. Tbs,i of the
vertices in GLi (resp. BLi ). Identify each vertex of PGLi (resp. PBLi ) with a vertex of GEi (resp. BEi ) in
a bijective manner. Let Tv = (V (Tv),E(Tv)) be the induced tree at v w.r.t. Ti (i.e. the induced tree on the
set of vertices that the path from them to oi goes through v). For each u,v ∈ PGLi (resp. PBLi ) such that
{u,v} ∈ E(GEi ) (resp. E(BEi )), we connect each vertex w ∈ V (Tu) to φu,v(w) ∈ V (Tv) by an edge, where
φu,v is the trivial isomorphism of Tu and Tv . Call the resulting graph Wi = (V (Wi),E(Wi)).

Step 3 Let 1 ≤ i ≤ n − 1. Denote si :=∏n
j=i+1 |BLi |. Note that by (3.4)

223n−22n+i ≤ si ≤ 223n−22n+i+n−i .

Let Hi = (V (Hi),E(Hi)) be a 3-regular expander of size si . Let Ui = Wi ×Hi (a Cartesian product of Wi

and Hi ). That is, V (Ui) = V (Wi)×V (Hi) and {(u,h), (u′, h′)} ∈ E(Ui) if either u = u′ and {h,h′} ∈ E(Hi)

or h = h′ and {u,u′} ∈ E(Wi).
We now “stitch” together the graphs Un, . . . ,U1. We refer to

Ri := {oi} × V (Hi)

(for i = n, Rn := {on}) as the roots of Ui . We refer to the set

Badi := BLi × V (Hi) (for i = n,Badn := BLn)

as the bad leafs of Ui (even though it is not a tree). Similarly, we refer to

Goodi := GLi × V (Hi)

(for i = n, Goodn := GLn) as the good leafs of Ui .
Note that |Badi+1| = |Ri | = si , for all i. We shall connect Ui+1 to Ui for all 1 ≤ i < n, by identifying

Badi+1 with Ri (step 4). We shall also connect all of the Ui ’s “at once” by connecting Good :=⋃n
i=1 Goodi

using one “huge” expander H of size |Good| (step 5).
Step 4 For all i < n, we take an arbitrary bijection φ : Badi+1 → Ri . We then replace each u ∈ Badi+1 and φ(u)

with a new vertex, u′, that the set of edges which are incident to it is the union of the edges which are
incident to u (in Ui+1) and to φ(u) (in Ui ). By abuse of notation we shall not distinguish between the set
{u′ : u ∈ Badi+1} and the sets Badi+1 and Ri .

Step 5 We identify the set Good with a 3-regular expander H = (V (H),E(H)) of size |Good| as follows. We label
Good by the set V (H) and connect u,v ∈ Good if {u,v} ∈ E(H). Call the obtained graph Gn = (Vn,En).
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Step 6 We now describe G′
n = (V ′

n,E
′
n). The only difference between it and Gn is that for all 1 < i ≤ n we perform

the following step in between step 1.1 and step 1.2:
• For every non-leaf (w.r.t. Tfh,i ) vertex u ∈ V (Tfh,i ) and its right child v, we stretch the edge {u,v} by a factor

of 2. Call the obtained graph T ′
fh,i . The remaining steps are analogous to the ones in the construction of Gn.

We spell them out for the sake of concreteness.
• The leaf set of T ′

fh,i can be identified with that of Tfh,i . Hence we may partition the leaf set of T ′
fh,i into the

same two sets GMPi and BMPi defined in step 1.2 using the function g, taken again w.r.t. the tree Tfh,i .
• After this is done, we can proceed with step 1.2 and obtain the tree T ′

bs,i .• We denote the tree of index i obtained at the end of step 1.3 (when before step 1.2 one performs the afore-
mentioned intermediate step) by T ′

i . The only difference between T ′
i and Ti is that the edges that were

stretched by a factor 2 in T ′
fh,i will be stretched ultimately by a total factor of 2qi rather than just qi (as in

Ti ).
• The construction of G′

n is concluded by completing the remaining steps of the construction of Gn with T ′
i

now playing the role of Ti in construction of Gn.

3.2. Analysis of the construction

We start with the analysis of G′
n. We write P′ and E′ to denote probabilities and expectations w.r.t. the walk on either

G′
n, or T ′

i , for some i (where the identity of the graph will be clear from context, and otherwise specified). Denote the
stationary distribution of the walk on G′

n by π ′. We will show that (for all sufficiently large n)

τ1
(
G′

n

)≥ (n − 1)218n−2 =: τ. (3.6)

Denote Nicei = GMPi × V (Hi) for 2 ≤ i ≤ n and Nice1 = R1. Denote the connected component of on w.r.t. the
cut Nice :=⋃n

i=1 Nicei of the graph G′
n by Small. Recall that for every distribution μ on the state space we have that

1
2‖μ−π ′‖1,π ′ = ‖μ−π ′‖TV = maxA μ(A)−π ′(A), where ‖μ−π ′‖TV is the total variation distance. It follows that∥∥P′

on
(Xτ ∈ ·) − π ′(·)∥∥TV ≥ P′

on
[Xτ ∈ Small] − π ′(Small) ≥ P′

on
[TNice > τ ] − C02−2n/2

,

where we have used the following estimate in the last inequality

π ′(Small) ≤ max
u,v

deg(u)

deg(v)

|Small|
|V (G′

n)|
≤ 15|Small|/∣∣V (G′

n

)∣∣≤ C02−2n/2
.

Hence, in order to prove (3.6) it suffices to show that

P′
on

[TNice ≥ τ ] = 1 − o(1). (3.7)

In order to establish (3.7) we use the following lemma.

Lemma 3.1. Uniformly in 2 ≤ i ≤ n and r ∈ Ri , we have that

P′
r

[
TBadi

≤ 218n−2 | TBadi
< TNice

]≤ P′
oi

[
TBLi

≤ 218n−2 | TBLi
< TGMPi

]= o(1/n), (3.8)

P′
r [TNice < TBadi

] ≤ P′
oi

[TGMPi
< TBLi

] + o(1/n) = o(1/n), (3.9)

where in the l.h.s of both (3.8)–(3.9) the probability is taken w.r.t. the walk on G′
n and in the middle terms w.r.t. the

walk on T ′
i .

As Ri = Badi+1 for all 1 ≤ i < n, it follows from Lemma 3.1 that w.p. 1 − o(1), started from on, before the walk
on G′

n reaches Nice it has to make its way from Ri+1 to Ri , for all 1 ≤ i < n, and each of these n − 1 “stages” will
take it at least 218n−2 steps (in which case, it must be the case that τ1(G

′
n) ≥ (n − 1)218n−2, as desired). We believe

that the assertion of Lemma 3.1 is intuitive and that from a high level perspective the proof is not complicated. For the
sake of completeness we choose to present a relatively detailed proof of Lemma 3.1.
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Proof of Lemma 3.1. The first inequalities in both (3.8)–(3.9) are obtained via a straightforward coupling argument
and symmetry (of the sets Nicei ,Badi and Ri w.r.t. the Hi co-ordinate of the walk). The additive o(1/n) term in the
middle term of (3.9) is there to cover the following two scenarios w.r.t. the walk on G′

n, started from r ∈ Ri :

• T⋃n
j=i+1 Nicej

< TNicei∪Badi
.

• TPBLi
< TNice < TBadi

.

Working out the details of the aforementioned couplings is left as an exercise.
We now prove the equality in (3.8). Recall the notation from step 6 of the construction. Let (Xi

s)s≥0 be lazy
simple random walk on T ′

i . We may view the walk (Xi
s)s≥0 only when it visits distinct vertices of Tbs,i (recall that

V (Tbs,i ) ⊂ V (T ′
bs,i ) ⊂ V (T ′

i )). That is, consider the walk Yj = Xi
Sj

, for j ≥ 0, where S0 = TV (Tbs,i ) and for j ≥ 1

Sj = inf
{
s > Sj−1 : Xi

s ∈ V (Tbs,i ) \ {Xi
Sj−1

}}
.

For a set D ⊂ V (Tbs,i ) denote its hitting time w.r.t. (Ys) by

τD := inf{s : Ys ∈ D}.
Recall that V (Tbs,i ) \ GSi (where GSi is defined at step 1.3 of the construction) is the set of vertices of Tbs,i which

are connected in T ′
i to their neighbors w.r.t. Tbs,i by paths of length either qi or 2qi . It is easy to see that

(a) If Yj−1 ∈ V (Tbs,i ) \ GSi , then the law of Sj − Sj−1 stochastically dominates the law of the time it takes lazy
simple random walk on Z to reach distance qi from its starting position (call this law ξ̄ ). Moreover, started from
oi , conditioned on τGMPi

≥ j , we have that Sj stochastically dominates

S′
j :=

j∑
k=1

ξk,

where ξ1, ξ2, . . . are i.i.d. random variables with law ξ̄ .
(b) Started from oi , conditioned on τBLi

< τGMPi
we have that the law of τBLi

stochastically dominates the law of the
hitting time of the 22n+i−2th level of a binary tree, by simple random walk started from its root.

(c) The law of the last hitting time is highly concentrated around 3 × 22n+i−2. Hence

Poi
[τBLi

≤ bi | τBLi
< τGMPi

] ≤ 2−c022n+i = o(1/n), where bi := 3 × 22n+i−3.

Note that (using (3.5))

218n−2 ≤ 2

3
biq

2
i = 2

3
E
[
S′

bi

]
.

Using (a)–(c) above, it is not hard to verify that, for all 2 < i ≤ n,

P′
oi

[
TBLi

≤ 218n−2 | TBLi
< TGMPi

]
≤ P′

oi
[τBLi

≤ bi | τBLi
< τGMPi

] + P′
oi

[
Sbi

≤ 218n−2 | τBLi
< τGMPi

]
≤ 2−c022n + P

[
S′

bi
≤ 2

3
E
[
S′

bi

]]= o(1/n),

where the first probability is taken w.r.t. the walk on T ′
i and P′

oi
[Sbi

≤ 218n−2 | τBLi
< τGMPi

] w.r.t. (Xi
s)s≥0 (in the

sense that (Sj ) and the walk (Yj ) are both determined by (Xi
s)s≥0). This concludes the proof of (3.8). We now prove

the equality in (3.9).
Fix 1 < i ≤ n. Consider an infinite tree T ′ obtained by starting with T , an infinite binary tree, rooted at o, and

stretching every edge between each vertex and its left (resp. right) child by a factor of qi (resp. 2qi ). Let vk (resp. uk)
be the last (resp. first) vertex in Lk(T ) to be visited by a simple random walk on T ′ started from o.
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As before, for every v ∈ V (T ) let g(v) = Left(v) − Right(v) (this function is defined w.r.t. T ). Using a network
reduction and the well-known connection between random walks and electrical networks (cf. [12, Example 9.9] for a
similar but simpler network reduction), we argue that

Lemma 3.2. (g(vk+1) − g(vk))k≥0 is a sequence of i.i.d. random variables, each equals to 1 w.p.
√

2
1+√

2
and to −1

w.p. 1
1+√

2
.

We do not care so much about the exact value of the constant
√

2
1+√

2
. The important point is that it is larger than

1/2. Before proving the lemma, we explain how it implies (3.9). It follows from Lemma 3.2 that g(v22n+i−2) is highly

concentrated around 22n+i−2(
√

2
1+√

2
). It is not hard to verify that this implies that g(u22n+i−2) ≥ 22n+i−5 w.p. 1−o(1/n)

(uniformly in i).
Using a coupling argument (in which the walks on T ′ and on T ′

i , started from o and oi , resp., are coupled so
that they follow the same trajectory until they reach the 22n+i−2th level of the corresponding non-stretched trees) we
obtain (3.9) (we leave the details as an exercise). This concludes the proof of τ1(G

′
n) ≥ (n − 1)218n−2.

Proof of Lemma 3.2. The fact that (g(vk+1)−g(vk))k≥0 is a sequence of i.i.d. random variables follows by symmetry
and the definition of the sequence (vi)i≥0. Let w be the effective conductance (e.g. [12, Ch. 9]) from the root of T ′ to
“infinity” (i.e. the limit of the effective conductance between the root and L�(T ′) as � → ∞). Similarly, let wR and wL

be the effective conductances between the root and infinity in the right and left subtrees of T ′ (where the right subtree
is obtained by deleting from T ′ the left child of the root and all of its descendants, and the left subtree is similarly
defined), resp.. Then w = wR + wL and by symmetry 1

wR
= 2qi + 1

w
and 1

wL
= qi + 1

w
. The proof is concluded by

solving these equations (which yields w = 1√
2qi

and wL = 1
(1+√

2)qi
) and noting that P[g(v1) − g(v0) = 1] = wL

w
,

where the probability is taken w.r.t. SRW on T ′, started at its root. �

We now show that τ∞(Gn) ≤ C1218n. By standard results it suffices to show that there exist C > 0 and � > 1 such
that for all n,

τ�(Gn) ≤ ⌈
C218n

⌉=: t
(C shall and � shall be determine later, and throughout we assume that C is sufficiently large and � − 1 is sufficiently
small so that all of the equations involving them below are satisfied). This follows from the following standard fact
(e.g. [17, Lemma 2.4.6]).

Fact 3.3. For every reversible Markov chain we have that for all a > 0

2τ2(
√

a) = τ∞(a),
(3.10)

∀1 < � < 2, τ2
(
am�

)≤ m�τ�(a), where m� := 1 + ⌈
(2 − �)/(2� − 2)

⌉
.

We argue that the spectral gap of Gn, denoted by λ(Gn), satisfies

λ(Gn) ≥ c1
/(

max
i

qi

)2 = c1q
−2
2 ≥ c22−16n. (3.11)

This follows from Proposition 2.3, as Gn is a q2-stretch of a bounded degree expander.
We start with an elementary observation which shall be used below repeatedly. Let x ∈ Vn and t > 0. Let A be

some event (which is determined by (X0, . . . ,Xt )). Denote its complement by Ac. Then for all 1 < � ≤ 2∥∥Pt
x − π

∥∥
�,π

= Px[A]∥∥Pt
x[· | A] − π(·)∥∥

�,π
+ Px

[
Ac
]∥∥Pt

x

[· | Ac
]− π(·)∥∥

�,π
. (3.12)

In particular (using the fact that for every distribution μ on Vn and every � > 1 we have that ‖μ − π‖�,π ≤
C′|Vn|(�−1)/�) if Px[Ac] � |Vn|−(�−1)/�, we may neglect the second term in the r.h.s. above, and concentrate on
bounding Px[A]‖Pt

x[· | A] − π(·)‖�,π from above.
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We now argue that starting from a vertex in the expander H the walk mixes in L2 in at most 217n steps (this is
a wasteful estimate, but it suffices for our purposes). Hence, by the Markov property and the triangle inequality, it
suffices to show that for t = C218n�,

∀x, Px[TV (H) > t]∥∥Pt
x[· | TV (H) > t] − π(·)∥∥

�,π
≤ 1/4. (3.13)

Lemma 3.4.

lim
n→∞ max

x∈V (H)

∥∥P217n

x − π
∥∥

2,π
= 0.

Proof. Let

J := PGLn ∪
(

n−1⋃
i=1

PGLi × V (Hi)

)

be the collection of vertices of distance (w.r.t. Gn) 25n from V (H). Each vertex in J is connected to two vertices
in V (H) by a path of length 25n. Note that (started from V (H)) by time 214n the walk reaches J w.p. at least
1 − C2|Vn|−2. Hence (by the above discussion regarding (3.12)) we can neglect the case this fails. Let i be the index
such that XTJ

∈ V (Ui). Trivially, by the time the walk can cross a path of length 25n it must make at least 25n steps.
But this means that, w.p. at least 1 − C2|Vn|−2, the walk will make at least 25n−6 steps along each of the expanders
Hi and GEi between the last visit to V (H) prior to TJ and TJ . Using (3.1)–(3.2) and (2.3) it is not hard to show that
this means that at time 214n the L2 distance of the walk (started from H ) from π is O(n26n) (as we later perform
a similar more subtle calculation, we leave this as an exercise). Finally, the claim is obtained using (3.11) and the
Poincaré (spectral gap) inequality (2.3). �

To conclude the proof we now verify (3.13). The case that x ∈ V (U1) can be treated separately in a similar manner
to the analysis below. The following lemma asserts that w.l.o.g. we may assume that the initial position of the walk is
in Ri for some i.

Lemma 3.5. Provided that � − 1 is sufficiently small and C is sufficiently large, for all 1 < i ≤ n and x ∈ V (Ui)

(uniformly)

Px[TV (H) > t/2, TRi∪Ri−1 > t/2]∥∥Pt/2
x [· | TV (H) > t/2, TRi∪Ri−1 > t/2] − π(·)∥∥

�,π
= o(1). (3.14)

Proof. We first argue that for all 1 < i ≤ n and x ∈ V (Ui) (provided that C is taken to be sufficiently large)

Px[TV (H) > t/2, TRi∪Ri−1 > t/2] ≤ C32−22n+i

. (3.15)

Let Zi (resp. Z̄i ) be the number of steps the walk made by time t/2 along the Wi (resp. Hi ) co-ordinate of Ui .
As Px[Zi < t/30] < C2|V (Gn)|−2, in order to prove (3.15) it suffices to show that (provided that C is taken to be
sufficiently large)

max
u∈V (Wi)

Pu[TGLi∪BLi∪{oi } > t/30] ≤ 2−22n+i

, (3.16)

where the probability is taken w.r.t. the walk on Wi . Let P̃i and π̃i be the transition matrix and stationary distribution
(resp.) of lazy simple random walk on Wi . Let λ̃i be the smallest eigenvalue of the substochastic matrix obtained by
restricting I − P̃i to V (Wi) \ (GLi ∪ BLi ∪ {oi}). Using (2.4) and an obvious extension of Proposition 2.3 it is not
hard to verify that

λ̃i ≥ c̃2−(16n−i).

The proof of (3.16) (and so also of (3.15)) can now be concluded using (2.5).
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Our next goal is to show that∥∥Px[Xt/2 ∈ · | TV (H) > t/2, TRi∪Ri−1 > t/2] − π(·)∥∥
�,π

≤ C72(�−1)22n+i+2
. (3.17)

Observe that this, in conjunction with (3.15), implies the assertion of the lemma.
For every (u,h) ∈ V (Wi) × V (Hi) denote

pu,h := Px

[
Xt/2 ∈ (u,h) | TV (H) > t/2, TRi∪Ri−1 > t/2

]
.

As before, since Px[Z̄i < t/20] < C2|V (Gn)|−2 we can neglect the case that Z̄i < t/20. Hence we can make the
following estimate: for every h ∈ V (Hi) we have that for all 1 < i ≤ n and x ∈ V (Ui)∑

u∈V (Wi)

pu,h ≤ C′
4

∑
u∈V (Wi)

Px

[
Xt/2 ∈ (u,h) | TV (H) > t/2, TRi∪Ri−1 > t/2, Z̄i ≥ t/20

]
.

Note that the conditioning on TV (H) > t/2, TRi∪Ri−1 > t/2, does not affect the projection of the walk onto its
Hi co-ordinate, given the number of steps made on that co-ordinate. Also observe that conditioned on TV (H) >

t/2, TRi∪Ri−1 > t/2, the aforementioned projection (up to time t/2, viewed in times in which the Hi co-ordinate
changes) is itself a random walk on the expander Hi . This, in conjunction with the fact that the L∞ mixing time of
SRW on Hi is at most t/20 (to see this, use (2.3), (3.10) and the fact that |V (Hi)| = |Ri | ≤ 223n−22n+i+n−i ), implies
that ∑

u∈V (Wi)

Px

[
Xt/2 ∈ (u,h) | TV (H) > t/2, TRi∪Ri−1 > t/2, Z̄i ≥ t/20

]≤ C̄4/
∣∣V (Hi)

∣∣.
Combining the last two inequalities, we get that for every h ∈ V (Hi), for all 1 < i ≤ n and x ∈ V (Ui)∑

u∈V (Wi)

pu,h ≤ C4/
∣∣V (Hi)

∣∣. (3.18)

Since
∑k

i x�
i subject to the constraints xi ∈ R+, for all i, and

∑k
i=1 xi = a > 0 is at most a�, provided that � ≥ 1,

using (3.18) we get that for all 1 < i ≤ n and x ∈ V (Ui)∥∥Px[Xt/2 ∈ · | TV (H) > t/2, TRi∪Ri−1 > t/2] − π(·)∥∥�

�,π

≤ C5

∑
h∈V (Hi)

1/
∣∣V (Gn)

∣∣ ∑
u∈V (Wi)

p�
u,h/

(
1/
∣∣V (Gn)

∣∣)�
≤ C6

∣∣V (Gn)
∣∣�−1 ∑

h∈V (Hi)

∣∣V (Hi)
∣∣−� = C6

( |V (Gn)|
|V (Hi)|

)�−1

≤ C72(�−1)22n+i+2
, (3.19)

as desired. �

Using (3.14), in order to prove (3.13) it suffices to show that for all i and all x ∈ Ri we have (provided that � − 1
is sufficiently small and C is sufficiently large) that

Px[TV (H) > t/2]∥∥Pt/2
x [· | TV (H) > t/2] − π(·)∥∥

�,π
≤ 1/8. (3.20)

The case i = 1 can be treated separately in a similar manner to the analysis below. Hence below we assume that
i > 1 and x ∈ Ri .

We argue that (provided that C is sufficiently large) for all i > 1 and x ∈ Ri ,

c3Px

[
TV (H) >

t

2

]
≤ Px[TRi−1 < TV (H)] ≤ |BMPi|

|GMPi ∪ BMPi| = |BMPi|
222n+i−2 ≤ 2−c222n+i

. (3.21)
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The proof of the first inequality in (3.21) is similar to the proof of (3.15) and hence omitted. The last inequality in
(3.21) is trivial. Finally, using a coupling argument, the second inequality in (3.21) can be proven by noting that started
from oi , the hitting distribution of GMPi ∪ BMPi = L22n+i−2×qi

(Ti ) = L22n+i−2(Tbs,i ) w.r.t. simple random walk on Ti

is the uniform distribution on this set. We omit the details.
It is easy to verify that starting at x ∈ Ri , the walk will make by time t/2 at least 25n consecutive steps on either Ui

or Ui+1 w.p. at least 1 − C8|V (Gn)|−2. On this event, as before, the walk will make by time t/2 at least 25n−6 steps
on either Hi or on both of Hi+1 and BEi+1 (in one of its visits to either Ui or Ui+1, resp., in which it stays in it for at
least 25n steps) w.p. at least 1 − C9|V (Gn)|−2. Using the same reasoning as in (3.18)–(3.19), we get that for all i ≥ 1
and x ∈ Ri ,∥∥Pt/2

x [· | TV (H) > t/2] − π(·)∥∥�

�,π
≤ C72(�−1)22n+i+2

. (3.22)

We leave the verification of (3.22) as an exercise. Using (3.21)–(3.22) we get that for all i > 1 and x ∈ Ri (provided
that � − 1 is sufficiently small and C is sufficiently large),

Px[TV (H) > t/2]∥∥Pt/2
x [· | TV (H) > t/2] − π(·)∥∥

�,π
≤ 1/8. (3.23)

This concludes the proof of τ2(Gn) ≤ C218n�. �

4. Proof of Proposition 1.5

(1) Torus Zd
n (the argument is almost identical to that in [7]): The lower bound follows from the fact that the inverse

of the spectral gap (which is robust and up to a log 2 factor, bounds τ1 from below) is at least cdn2, while the upper
bound can be deduced from the Morris and Peres’ Evolving sets bound [14], which is also robust. (2) The giant
component of an Erdős–Rényi supercritical random graph G(n, c/n): the existence of paths of length �(logn) implies
that the inverse of the Log-Sobolev constant, is at least c log3 n (this can be derived using Lemma 4.2 in [8]). This
provides a robust lower bound on τ∞. The upper bound follows from the fact that in this case the spectral gap satisfies
λ := �(1/ log2 n) and so τ∞ ≤ Cλ−1 logn (since c is fixed, the average degree is uniformly bounded). Finally, for
example (3) and (4) the argument is identical to that in [7] and hence omitted.
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