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Abstract. We generalise the so-called Bismut–Elworthy–Li formula to a class of stochastic differential equations whose coeffi-
cients might depend on the law of the solution. We give some examples of where this formula can be applied to in the context of
finance and the computation of Greeks and provide a simple but rather illustrative simulation experiment showing that the use of
the Bismut–Elworthy–Li formula, also known as Malliavin method, is more efficient compared to the finite difference method.

Résumé. Nous généralisons la formule dite Bismut–Elworthy–Li à une classe d’équations différentielles stochastiques dont les
coefficients pourrait dépendre de la loi de la solution. Nous donnons quelques exemples où cette formule peut être appliquée dans
le contexte de la finance et le calcul des Grecs et de fournir une expérience de simulation simple mais significative montrant que
l’utilisation de la formule Bismut–Elworthy–Li, également connu comme méthode de Malliavin, est plus efficace que la méthode
des différences finies.
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1. Introduction

It is known that the spatial derivative of the solution to the (backward) Kolmogorov equation can be represented as an
expectation of a functional of the solution of an SDE with some weight, namely the so-called Bismut–Elworthy–Li
(BEL) formula as shown in [2] and extended in [5]. In [6] the authors use techniques from Malliavin calculus to prove
BEL formula and employ it for the computation of sensitivities of financial options, also known as Greeks. In the
classical setting where no dependence on the law of the process takes place, also the authors in their series of papers
[8–10] have made substantial contributions to the derivation of integration by parts formula using techniques from
Malliavin calculus and used them to study regularity of the associated semigroup.

In many applications, it is very natural to expect that the coefficients of a stochastic differential equation (SDE) may
depend on properties of the law of the solution, such as dependence on its moments. In this direction, the author in
[14] has studied such problems in detail and derived integration by parts formula for the case of so-called de-coupled
equations when the initial condition is taken as a random variable and the derivative is with respect to a measure.
Here, we want to extend the formula to mean-field type SDEs following the essence of [6] for equations where the
dependence on the law of the solution also depends on its initial condition and show that such generalisation is actually
non-trivial, requiring more regularity of the solution in the sense of Malliavin which is not needed in the classical
setting of [6]. First, we give a relationship between the Malliavin derivative and the spatial derivative of the solution
with respect to the initial condition. Already here we see that such generalisation involves an extra factor which is no
longer adapted, thus requiring more (Malliavin) regularity on the solution which is not immediate. Fortunately, if the
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coefficients are continuously differentiable with bounded Lipschitz derivatives, then the solution is twice Malliavin
differentiable and hence a formula using the Skorokhod integral may be expected. Using such relation one can find
the BEL formula in this context. Some merely illustrative examples are provided in order to give a better insight on
the effect of mean-field SDEs in the BEL formula. In the last examples we carry out some simulations to show that
the Malliavin method is more efficient compared to a finite difference method, especially when the function involved
is discontinuous.

The paper is organised as follows: In Section 2 we collect some summarised basic facts on Malliavin Calculus
needed for the derivation of the main results of the paper. In Section 3 we include all intermediate steps towards
the main result which is the Bismut–Elworthy–Li formula in the context of mean-field SDEs. Finally, Section 4 is
devoted to provide some illustrative examples of this generalised Bismut–Elworthy–Li formula with simulations. The
findings are similar to those in [6], the use of Bismut–Elworthy–Li’s formula serves as a much more efficient method
to compute sensitivities with respect to initial data, especially when the function involved in the expectation is highly
irregular.

Notations. Let R+ denote the non-negative real numbers. Denote by | · | the Euclidean norm in R
d , d ≥ 1. Given a

Banach space E, denote by ‖ ·‖E its associated norm. Let k,p ≥ 0 integers and D
k,p be the space of k times Malliavin

differentiable random variables with all p-moments. Denote by Ds , s ≥ 0 the Malliavin derivative as introduced in [15,
Chapter 1, Section 1.2.1] and δ its dual operator (Skorokhod integral). Denote by Dom δ the domain of δ (Skorokhod
integrable processes). Denote the trace of a matrix M ∈ R

d×d by Tr(M) := ∑d
j=1 Mj,j and by M∗ its transpose. For

a (weakly) differentiable function f : Rd × R
d → R

d , (x, y) �→ f (x, y), denote by ∂1, respectively by ∂2, (weak)
differentiation with respect to the first (space) variable x ∈R

d , respectively the second (space) variable y ∈R
d .

2. Framework

Our main results centrally rely on tools from Malliavin calculus. We here provide a concise introduction to the main
concepts in this area. For deeper information on Malliavin calculus the reader is referred to e.g. [4,11,12,15].

2.1. Malliavin calculus

Let W = {Wt, t ∈ [0, T ]} be a standard Wiener process on some complete filtered probability space (�,A,P ) where
F = {Ft }t∈[0,T ] is the P -augmented natural filtration. Denote by S the set of simple random variables F ∈ L2(�) in
the form

F = f

(∫ T

0
h1(s) dWs, . . . ,

∫ T

0
hn(s) dWs

)
, h1, . . . , hn ∈ L2([0, T ]), f ∈ C∞

0

(
R

n
)
.

The Malliavin derivative operator D acting on such simple random variables is the process DF = {DtF, t ∈ [0, T ]}
in L2(� × [0, T ]) defined by

DtF =
n∑

i=1

∂if

(∫ T

0
h1(s) dWs, . . . ,

∫ T

0
hn(s) dWs

)
hi(t).

Define the following norm on S :

‖F‖1,2 := ‖F‖L2(�) + ‖DF‖L2(�;L2([0,T ])) = E
[|F |2]1/2 + E

[∫ T

0
|DtF |2 dt

]1/2

. (1)

We denote by D
1,2 the closure of the family of simple random variables S with respect to the norm given in (1)

and we will refer to this space as the space of Malliavin differentiable random variables in L2(�) with Malliavin
derivative belonging to L2(�).

In the derivation of the probabilistic representation for the Delta, the following chain rule for the Malliavin deriva-
tive will be essential:
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Lemma 2.1. Let ϕ : Rm → R be continuously differentiable with bounded partial derivatives. Further, suppose that
F = (F1, . . . ,Fm) is a random vector whose components are in D

1,2. Then ϕ(F ) ∈D
1,2 and

Dtϕ(F ) =
m∑

i=1

∂iϕ(F )DtFi, P -a.s., t ∈ [0, T ].

The Malliavin derivative operator D : D1,2 → L2(� × [0, T ]) admits an adjoint operator δ = D∗ : Dom(δ) →
L2(�) where the domain Dom(δ) is characterised by all u ∈ L2(� × [0, T ]) such that for all F ∈ D

1,2 we have

E

[∫ T

0
DtFu(t) dt

]
≤ C‖F‖1,2,

where C is some constant depending on u.
For a stochastic process u ∈ Dom(δ) (not necessarily adapted to F ) we denote by

δ(u) :=
∫ T

0
u(t)δWt (2)

the action of δ on u. The above expression (2) is known as the Skorokhod integral of u and it is an anticipative
stochastic integral. It turns out that all F -adapted processes in L2(� × [0, T ]) are in the domain of δ and for such
processes u we have

δ(u) =
∫ T

0
u(t) dWt ,

i.e. the Skorokhod and Itô integrals coincide. In this sense, the Skorokhod integral can be considered to be an extension
of the Itô integral to non-adapted integrands.

As for the Itô integral, there is also a corresponding isometry property for the Skorokhod integral. The proof of this
can e.g. be found in [4, Theorem 6.17.].

Theorem 2.2. Let u be a process such that u(s) ∈ D
1,2 for a.e. s ∈ [0, T ] and

E

[∫ T

0
u(t)2 dt +

∫ T

0

∫ T

0

∣∣Dtu(s)Dsu(t)
∣∣ds dt

]
< ∞.

Then u is Skorokhod integrable and

E

[(∫ T

0
u(t)δWt

)2]
= E

[∫ T

0
u(t)2 dt +

∫ T

0

∫ T

0
Dtu(s)Dsu(t) ds dt

]
.

The dual relation between the Malliavin derivative and the Skorokhod integral implies the following important
formula:

Theorem 2.3 (Duality formula). Let F ∈D
1,2 be FT -measurable and u ∈ Dom(δ). Then

E

[
F

∫ T

0
u(t)δWt

]
= E

[∫ T

0
u(t)DtF dt

]
. (3)

The following is the corresponding integration by parts formula for the Skorokhod integral. See e.g. [4, Theo-
rem 3.15.].

Theorem 2.4 (Integration by parts). Let u ∈ Dom(δ) and F ∈D
1,2 such that Fu ∈ Dom(δ). Then

F

∫ T

0
u(t)δW(t) =

∫ T

0
Fu(t)δW(t) +

∫ T

0
u(t)DtF dt.
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3. The (mean-field) Bismut–Elworthy–Li formula

The object of study is a mean-field type stochastic differential equation (SDE) of the form

dXx
t = b

(
t,Xx

t , ρx
t

)
dt +

m∑
k=1

σk

(
t,Xx

t ,πx
t

)
dWk

t , X0 = x ∈R
d,

t ∈ [0, T ], ρx
t := E

[
ϕ
(
Xx

t

)]
,πx

t := E
[
ψ

(
Xx

t

)]
,

(4)

where T ∈R, T > 0, b : [0, T ]×R
d ×R

d → R
d , σk : [0, T ]×R

d ×R
d →R

d , k = 1, . . . ,m, ϕ :Rd →R
d , ψ :Rd →

R
d are measurable functions and W = {Wt, t ∈ [0, T ]} is an m-dimensional Brownian motion on some probability

space (�,A,P ) equipped with the natural filtration augmented by all P -null sets, denoted by F = {Ft }t∈[0,T ].
We will usually consider the solution as a function of x, therefore we write Xx

t to stress this fact. Moreover, we
will assume the following conditions as in [3]

Hypotheses (H).

(i) the functions (t, x, y) �→ b(t, x, y) and (t, x, y) �→ σk(t, x, y), k = 1, . . . ,m are continuously differentiable with
bounded Lipschitz derivatives.

(ii) Assume d ≤ m and the matrix (σ1, . . . , σm) admits a right-inverse.
(iii) The functions ϕ and ψ are continuously differentiable with bounded Lipschitz derivatives.

The above hypotheses will be assumed throughout the whole paper. Under these conditions, we know that there ex-
ists a pathwise unique global solution Xx = {Xx

t , t ∈ [0, T ]} for every initial condition x ∈ R
d . We will henceforward

denote by Xx the process solution.
By a result of Buckdahn, Li, Peng and Rainer in [3] we know that, under the hypotheses above, equation (4) admits

a stochastic flow of diffeomorphisms, in particular, the function x �→ Xx
t is P -a.s. classically differentiable. This

property is crucial to define the first variation process and relate it to the Malliavin derivative of the solution.
It is known that when the coefficients b and σ are globally Lipschitz continuous with linear growth, then the

solution Xx
t belongs to D

1,∞ for any t ∈ [0, T ] and x ∈ R
d , see e.g. [15, Theorem 2.2.1]. Also, if b and σ are

infinitely often differentiable with all derivatives being bounded, then Xx
t falls into the space

⋂
k≥1

⋂
p≥1 D

k,p for

any t ∈ [0, T ] and x ∈ R
d , see e.g. [15, Theorem 2.2.2]. The proof of the latter result is actually proved by induction

which then implies the following straight-forward regularity of our solution X under the hypotheses given in (H).

Proposition 3.1. The random variable ω �→ Xx
t (ω) belongs to the space

⋂
p≥1 D

2,p for any t ∈ [0, T ] and x ∈ R
d .

Proof. See [15, Theorem 2.2.2]. �

To relax notation let us introduce the following stochastic processes which will be used extensively throughout the
rest of this note. Let Ax = {Ax

t , t ∈ [0, T ]}, αx = {αx
t , t ∈ [0, T ]}, Bx,k = {Bx,k

t , t ∈ [0, T ]}, βx,k = {βk
t , t ∈ [0, T ]},

k = 1, . . . ,m be matrix-valued processes defined as:

Ax
t := ∂1b

(
t,Xx

t , ρx
t

)
, αx

t := ∂2b
(
t,Xx

t , ρx
t

) ∂

∂x
ρx

t

B
x,k
t := ∂1σk

(
t,Xx

t ,πx
t

)
, β

x,k
t := ∂2σk

(
t,Xx

t ,πx
t

) ∂

∂x
πx

t

(5)

for k = 1, . . . ,m.
Next proposition shows that the first variation process is invertible for every t > 0.

Proposition 3.2. Let Yx = {Yx
t , t ∈ [0, T ]} be the solution to the following matrix-valued linear SDE

dY x
t = Ax

t Y
x
t dt +

m∑
k=1

B
x,k
t Y x

t dWk
t , Y x

0 = I, t ∈ [0, T ].
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Then (
detYx

t

)−1 ∈
⋂
p≥1

Lp(�).

As a consequence, Yx
t is P -a.s. invertible for every t ∈ [0, T ].

Proof. We want to show that

E
[∣∣detYx

t

∣∣−p]
< ∞

for every integer p ≥ 1. Indeed, in virtue of (stochastic) Liouville’s formula, see e.g. [13, p.92], one has

detYx
t = exp

{∫ t

0

(
TrAx

u − 1

2

m∑
k=1

Tr
[(

Bx,k
u

)2])
du +

m∑
k=1

∫ t

0
TrBx,k

u dWk
u

}
, P -a.s.

Observe that since the processes TrBx,k are in L2([0, T ]) and F -adapted, the stochastic integrals appearing in the
exponent are martingales. Hence,

Mt := exp

{
m∑

k=1

∫ t

0
TrBx,k

u dWk
u − 1

2

m∑
k=1

∫ t

0

(
TrBx,k

u

)2
du

}

is an F -martingale with E[Mt ] = E[M0] = 1. Thus, using Cauchy–Schwarz’ inequality we have for every p ≥ 1,

E
[∣∣detYx

t

∣∣−p]
≤ E

[
exp

{
1

2
p

m∑
k=1

∫ t

0
Tr

[(
Bx,k

u

)2]
du + 2p

m∑
k=1

∫ t

0

(
TrBx,k

u

)2
du − 2p

∫ t

0
TrAx

u du

}]
.

In particular, a sufficient condition to prove the claim is reduced to showing that

sup
t∈[0,T ]

∣∣∣∣E[
exp

{
λ

∫ t

0
TrAx

u du

}]∣∣∣∣ < ∞,

and that

sup
t∈[0,T ]

∣∣∣∣∣E
[

exp

{
λ

∫ t

0

m∑
k=1

(
TrBx,k

u

)2
du

}]∣∣∣∣∣ + sup
t∈[0,T ]

∣∣∣∣∣E
[

exp

{
λ

∫ t

0

m∑
k=1

Tr
[(

Bx,k
u

)2]
du

}]∣∣∣∣∣ < ∞

for every λ ∈R which clearly holds since Ax and Bx,k , k = 1, . . . ,m are uniformly bounded. �

The following statement is one of the main observations for the derivation of the Bismut–Elworthy–Li formula in
the mean-field context. It can be seen as a generalisation of the well-known relation between the first variation process
Yx in the non mean-field context and the Malliavin derivative, see e.g. [15, Ch.2, Section 2.3.1].

Theorem 3.3. For every s, t ∈ [0, T ], s ≤ t one has the following relationship between the spatial derivative and the
Malliavin derivative of Xx

t

∂

∂x
Xx

t = DsX
x
t σ−1(s,Xx

s ,πx
s

)
Yx

s ux(t), s ≤ t, (6)
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where

ux(t) :=
(

I +
∫ t

0

(
Yx

u

)−1

(
αx

u −
m∑

k=1

Bx,k
u βx,k

u

)
du +

m∑
k=1

∫ t

0

(
Yx

u

)−1
βx,k

u dWk
u

)
,

σ−1 denotes the right-inverse of σ , Yx = {Yx
t , t ∈ [0, T ]} is the d × d fundamental matrix satisfying

dY x
t = Ax

t Y
x
t dt +

m∑
k=1

B
x,k
t Y x

t dWk
t , Y x

0 = I, t ∈ [0, T ]

and where Ax = {Ax
t , t ∈ [0, T ]}, αx = {αx

t , t ∈ [0, T ]}, Bx,k = {Bx,k
t , t ∈ [0, T ]}, βx,k = {βk

t , t ∈ [0, T ]}, k =
1, . . . ,m are the matrix-valued processes defined as in (5).

Proof. Differentiating with respect to x ∈R
d we have that ∂

∂x
Xx

t satisfies the following matrix-valued linear equation

∂

∂x
Xx

t = I +
∫ t

0

(
∂1b

(
u,Xx

u,ρx
u

) ∂

∂x
Xx

u + ∂2b
(
u,Xx

u,ρx
u

) ∂

∂x
ρx

u

)
du

+
m∑

k=1

∫ t

0

(
∂1σk

(
u,Xx

u,πx
u

) ∂

∂x
Xx

u + ∂2σk

(
u,Xx

u,πx
u

) ∂

∂x
πx

u

)
dWk

u , (7)

where we have used the regularity of the integrands to pull the differentiation operator inside the integrals. For the
Lebesgue integral the usual differentiation under the integral sign theorem follows, as for the Itô integral, which is not
a path-wise integral, we refer to [7, Theorem 2.2] to justify that this can be done.

Using the notations in the statement of the theorem, we can solve (7) and express ∂
∂x

Xx
t as

∂

∂x
Xx

t = Yx
t

(
I +

∫ t

0

(
Yx

u

)−1

(
αx

u −
m∑

k=1

Bx,k
u βx,k

u

)
du +

m∑
k=1

∫ t

0

(
Yx

u

)−1
βx,k

u dWk
u

)
.

By the well-known classical relation, see e.g. [15, Chapter 2, Section 2.3.1], it is true that,

Yx
t = DsX

x
t σ−1(s,Xx

s ,πx
s

)
Yx

s , s ≤ t,

where σ−1 denotes the right-inverse of σ and hence the relation follows. �

Remark 3.4. For the relation Yx
t = DsX

x
t σ−1(s,Xs,πs)Y

x
s , s ≤ t to hold in the mean-field setting one also needs the

property that x �→ Xx
t defines a stochastic semiflow. In the mean-field case we point out that the fact that b, σ , ϕ and

ψ are continuously differentiable with bounded Lipschitz derivative implies this fact in virtue of [3].

Remark 3.5. It is shown in [1] that SDE (4) is twice Malliavin differentiable when the vector field b is globally Lip-
schitz continuous with linear growth and does not depend on the law of Xx and one has additive noise. Nevertheless,
using the same method one can prove the same result since the dependence on E[ϕ(Xx

t )] and E[ψ(Xx
t )] does not

bring stochasticity to the equation. In the sense that the Malliavin derivative of Xx
t for every fixed t ∈ [0, T ] takes the

same form as in the usual linear setting. This fact alludes that relation (6) still holds whenever σ ≡ 1 and b is only
globally Lipschitz with linear growth.

Proposition 3.6. Let t ∈ [0, T ] and define the random variables

F :=
∫ t

0

(
Yx

u

)−1

(
αx

u −
m∑

k=1

Bx,k
u βx,k

u

)
du, G :=

m∑
k=1

∫ t

0

(
Yx

u

)−1
βx,k

u dWk
u ,

then F,G ∈ Dom δ.
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Proof. Since D
1,2 ⊂ Dom δ, see [15, Proposition 1.3.1.], it is enough show that F,G ∈ D

1,2. In both cases it suffices
to show that the integrands are Malliavin differentiable. For the Lebesgue integral it is immediate as for the Itô integral
one may justify this by [15, Lemma 1.3.4.].

Now, since Yx
t = DsX

x
t σ−1(s,Xx

s ,πx
s )Y x

s , s ≤ t and Xx
t ∈ D

2,2 for every t ∈ [0, T ] we have together with Propo-
sition 3.2 that (Y x

t )−1 ∈ D
1,2 for every t ∈ [0, T ]. The result follows since the processes αx , Bx,k and βx,k have

Malliavin differentiable marginals. That is, αx
t , B

x,k
t and β

x,k
t are Malliavin differentiable for every t ∈ [0, T ]. This is

a consequence of the fact that b and σk , k = 1, . . . ,m are continuously differentiable with bounded Lipschitz deriva-
tives and hence, since Xx

t has no atoms one can apply the chain rule for the Malliavin derivative, see [15, p.29]. �

Corollary 3.7. The process

s �→ σ−1(s,Xx
s ,πx

s

)
Yx

s

(
I +

∫ t

0

(
Yx

u

)−1

(
αx

u −
m∑

k=1

Bx,k
u βx,k

u

)
du +

m∑
k=1

∫ t

0

(
Yx

u

)−1
βx,k

u dWk
u

)
,

0 ≤ s ≤ t , is Skorokhod integrable.

Proof. Indeed, it is the product of an adapted process, hence Skorokhod integrable and by Proposition 3.6 a Skorokhod
integrable random variable. �

Theorem 3.8 (Bismut–Elworthy–Li formula). Let � : Rd → R+ be a measurable function such that �(Xx
t ) ∈

L2(�). Define the function

v(x) := E
[
�

(
Xx

t

)]
.

Then v is continuously differentiable and its derivative admits the following representation

∂

∂x
v(x) = E

[
�

(
Xx

t

)∫ t

0
a(s)

[
σ−1(s,Xx

s ,πx
s

)
Yx

s ux(t)
]∗

δWs

]∗
, (8)

where ∗ denotes transposition, Yx is the fundamental matrix obtained in Theorem 3.3 and

ux(t) := I +
∫ t

0

(
Yx

s

)−1

(
αx

s −
m∑

k=1

Bx,k
s βx,k

s

)
ds +

m∑
k=1

∫ t

0

(
Yx

s

)−1
βx,k

s dWk
s ,

here a : [0, T ] → R is a bounded integrable function such that
∫ t

0 a(s) ds = 1 and a ≡ 0 on [t, T ]. The processes αx ,
Bx,k , βx,k , k = 1, . . . ,m are defined as in Theorem 3.3.

Proof. We will carry out the proof in four steps. First, we will show the formula for smooth functions � with compact
support. Then extend it to any continuous and bounded function � by using a limit argument. We then get rid of the
continuity by employing a monotone class argument. Finally, we consider any general function with the property that
�(Xx

t ) ∈ L2(�).
Step 1: Assume first that � is infinitely differentiable with compact support. By Theorem 3.3 we have

∂

∂x
Xx

t = DsX
x
t σ−1(s,Xx

s ,πx
s

)
Yx

s ux(t), s ≤ t,P -a.s.

Then multiplying both sides by the function a and integrating over s ∈ [0, t] we have

∂

∂x
Xx

t =
∫ t

0
a(s)DsX

x
t σ−1(s,Xx

s ,πx
s

)
Yx

s ux(t) ds, P -a.s. (9)
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As a consequence,

∂

∂x
v(x) = E

[
�′(Xx

t

) ∂

∂x
Xx

t

]
= E

[
�′(Xx

t

)∫ t

0
a(s)DsX

x
t σ−1(s,Xx

s ,πx
s

)
Yx

s ux(t) ds

]
= E

[∫ t

0
a(s)Ds�

(
Xx

t

)
σ−1(s,Xx

s ,πx
s

)
Yx

s ux(t) ds

]
= E

[
�

(
Xx

t

)∫ t

0
a(s)

[
σ−1(s,Xx

s ,πx
s

)
Yx

s ux(t)
]∗

δWs

]∗
,

where we have used relation (9), the chain rule for the Malliavin derivative (backwards) and the duality formula for
the Malliavin derivative which is justified by Corollary 3.7.

Step 2: Assume � is bounded and continuous, in particular, �(Xx
t ) ∈ L2(�). We can approximate � by a sequence

of smooth functions {�n}n≥0 with compact support such that �n(x) → �(x) for every x ∈R
d as n → ∞. Define

v̄(x) := E

[
�

(
Xx

t

)∫ t

0
a(s)

[
σ−1(s,Xx

s ,πx
s

)
Yx

s ux(t)
]∗

δWs

]∗
.

To make reading clearer introduce the notation C := E[|�(Xx
t )|2]1/2 and the matrix-valued process ξs :=

a(s)σ−1(s,Xx
s ,πx

s )Y x
s ux(t), 0 ≤ s ≤ t . Then the objects v(x) := E[�(Xx

t )] and v̄(x) are well-defined since
�(Xx

t ) ∈ L2(�) and using Cauchy–Schwarz’ inequality we have

∣∣v̄(x)
∣∣ ≤ CE

[∫ t

0
Tr

[
ξsξ

∗
s

]
ds +

∫ t

0

∫ t

0
DsξrDrξs dr ds

]1/2

,

where we used Itô’s isometry property for Skorokhod integrals, see Theorem 2.2 or e.g. [4, Theorem 6.17.]. Observe
that the first term is bounded since a and σ−1 are uniformly bounded and ux has integrable trajectories. The second
term is bounded since ξs is Malliavin differentiable for every s ∈ [0, t] because Yx

s ux(t) is Malliavin differentiable for
every s ∈ [0, T ] in virtue of Proposition 3.2 in connection with Proposition 3.1 as for ux(t), due to Corollary 3.7.

Now, we approximate v by vn(x) := E[�n(X
x
t )]. It is clear that vn → v a.e. and now we can use the Bismut–

Elworthy–Li formula on ∂
∂x

vn in order to estimate | ∂
∂x

vn(x) − v̄(x)|. Indeed, again by Cauchy–Schwarz inequality
and Itô’s isometry for the Skorokhod integral we have∣∣∣∣ ∂

∂x
vn(x) − v̄(x)

∣∣∣∣ ≤ E
[∣∣�n

(
Xx

t

) − �
(
Xx

t

)∣∣2]1/2
E

[∣∣w(t)
∣∣2]1/2

,

where w(t) := ∫ t

0 ξ∗
s δWs denotes the Malliavin weight. Now since �n and � are continuous and bounded we have for

every compact subset K ⊂R
d

lim
n→∞ sup

x∈K

∣∣∣∣ ∂

∂x
vn(x) − v̄(x)

∣∣∣∣ = 0.

Hence, v is continuously differentiable with ∂
∂x

v = v̄.
Step 3: Let us denote

G := {
� : Rd → R+ continuous and bounded

}
.

It is clear that G is a multiplicative class, i.e. ψ1,ψ2 ∈ G then ψ1ψ2 ∈ G. Further, let H be the class of functions
� : Rd → R+ for which (8) holds. From Step 2 we have G ⊂ H. Then H is a monotone vector space on R

d , see
e.g. [16, p.23] for definitions. Indeed, from dominated convergence we have monotonicity. In fact, if {�n}n≥0 ⊂
H such that 0 ≤ �1 ≤ · · · ≤ �n ≤ · · · with limn �n = � and � is bounded then � ∈ H. Furthermore, denote by
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σ(G) := {f −1(B),B ∈ B(R+), f ∈ G} where B(R+) denotes the Borel σ -algebra in R+. Then we are able to apply
the monotone class theorem, see e.g. [16, Theorem 8] and conclude that H contains all bounded and σ(G)-measurable
functions � : Rd → R+. Nevertheless, σ(G) coincides with the Borel σ -algebra of Rd since G contains all continuous
bounded functions. So we conclude that H contains all bounded Borel measurable functions on R

d .
Step 4: The last step is then to approximate any B(Rd)-measurable function � : Rd → R+ such that �(Xx

t ) ∈
L2(�) by a sequence {�n}n≥0 of bounded B(Rd)-measurable functions. For example,

�n(x) = �(x)1{�(x)≤n}, x ∈R
d , n ≥ 0.

Then �n ∈ H for each n ≥ 0. Define ṽ(x) := E[�(Xx
t )w(t)]. Then by Cauchy–Schwarz’ inequality and Itô’s

isometry we know

sup
x∈K

∣∣∣∣ ∂

∂x
vn(x) − ṽ(x)

∣∣∣∣ ≤ C sup
x∈K

E
[∣∣�n

(
Xx

t

) − �
(
Xx

t

)∣∣]1/2
,

for any compactum K ⊂R
d and some finite constant C > 0. Finally, observe that clearly one has

sup
x∈K

E
[∣∣�n

(
Xx

t

) − �
(
Xx

t

)∣∣]1/2 n→∞−−−→ 0

thus proving the result. �

The following is an immediate corollary of Theorem 3.8 which provides a representation of the gradient of v in
terms of an Itô integral.

Corollary 3.9. Under the hypotheses of Theorem 3.8 we have the following representation for the derivative of v,

∂

∂x
v(x) = E

[
�

(
Xx

t

)(∫ t

0
a(s)

[
σ−1(s,Xx

s ,πx
s

)
Yx

s

]∗
dWsu

x(t)

−
∫ t

0
a(s)

[
σ−1(s,Xx

s ,πx
s

)
Yx

s Dsu
x(t)

]∗
ds

)]∗
. (10)

Proof. Indeed, the proof follows by observing that ux(t) ∈D
1,2. Then integration by parts for the Skorokhod integral,

see Theorem 2.4 or [4, Theorem 3.15], yields the result. �

4. Applications

In this section we wish to give a rather simple but illustrative example of how the dependence on the expectation of
the solution may give rise to more complicated terms when deriving the Bismut–Elworthy–Li formula. In one of the
examples we adopt the context of finance where the formula has a broad use for the computation of the so-called
Delta sensitivities which, in short, is the sensitivity of prices of contracts with respect to the initial value of the price
of the stock taken into consideration. We will consider the price of an option written on a stock whose dynamics
depend on the expectation of the price process. Then we provide two numerical examples in order to demonstrate
that the Bismut–Elworthy–Li formula, or the so-called Malliavin method for computing the Delta is numerically more
efficient than the usual finite difference method even when the function � is discontinuous.

Example 4.1 (Black–Scholes model with continuous dividend payments). Let Sx = {Sx
t , t ∈ [0, T ]} represent the

price dynamics of some asset with initial price x > 0 governed by the following SDE

dSx
t

Sx
t

= (
μ − qρx

t

)
dt + σ dWt, ρx

t := E
[
Sx

t

]
, t ∈ [0, T ], Sx

0 = x > 0, (11)
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where μ,q,σ ∈ R and σ > 0. Let S0
t = ert , t ∈ [0, T ], r ∈ R with r > 0 be the risk-less asset and � : R → [0,∞)

a pay-off function. Here, q represents the dividend yield, and the philosophy behind this model is that, the higher
the mean-price, the higher the dividend yield will get and thus, implying a decrease of speed in the drift and as a
by-product of the mean-price of the process Sx . This gives an endogenous way of including dividend yields into the
model depending on the average price of the stock.

Then the price of a European option at current time with maturity T > 0 (under the risk-neutral valuation approach)
is given by

pT (x) = e−rT EP̃

[
�

(
Sx

T

)]
, (12)

where P̃ is the risk-neutral measure, i.e.

dP̃

dP

∣∣∣∣
Ft

= Mx
t := e− ∫ t

0 θx
u dWu− 1

2

∫ t
0 (θx

u )2 du, t ∈ [0, T ],

where

θx
t := μ − r − qρx

t

σ
, t ∈ [0, T ]

is the market price of risk process.
It follows that ρx

t = xμeμt

qxeμt+μ−qx
obtained as the solution of a Riccati equation. Also, we have ∂

∂x
ρx

t = e−μt

x2 (ρx
t )2

and ∂
∂x

θx
t = − q

σ
e−μt

x2 (ρx
t )2.

The sensitivity of the price (12) with respect to the current value of the stock, also known as Delta denoted by �, is
then given by p′(x). This quantity gives the variation of the future contract price with respect to today’s value, hence,
it gives a measure of risk of the valuation of the contract, since a high value of � yields a higher uncertainty of the
price of the contract.

Nevertheless, observe that we are no longer under the setting of Theorem 3.8 since the expectation is taken under
a different measure which, actually, depends on x. Hence, we need to make the following observation

∂

∂x
EP̃

[
�

(
Sx

T

)] = ∂

∂x
E

[
Mx

T �
(
Sx

T

)] = E

[
∂

∂x
Mx

T �
(
Sx

T

)] + E

[
Mx

T

∂

∂x
�

(
Sx

T

)]
.

The aim is to obtain an expression independent of �′. In the first term this is not an issue whereas in the second term
Theorem 3.8 can now be applied, the only difference is that Mx

T goes into the Skorokhod integral appearing in the
Malliavin weight. As a consequence, the �-sensitivity of an option � written on Sx

T is given by

� = e−rT E

[
�

(
Sx

T

)( ∂

∂x
Mx

T + 1

x2σ
e−μT ρx

T

∫ T

0
a(s)Mx

T δWs

)]
.

Let us find a simpler expression for the stochastic integral. Using the integration by parts formula for the Skorokhod
integral, see Theorem 2.4, we find that∫ T

0
Mx

T δWs =
(

W(T ) −
∫ T

0
θx
s ds

)
Mx

T

and hence, taking a ≡ 1
T

we find that under the risk-neutral measure P̃ , the �-sensitivity is given by

� = e−rT EP̃

[
�

(
Sx

T

)
Zx

T

]
with Malliavin weight

Zx
T := 1

x2σ

(
q

∫ T

0
e−μs

(
ρx

s

)2
dWs + q

∫ T

0
θx
s e−μs

(
ρx

s

)2
ds + e−μT ρx

T

T

(
W(T ) −

∫ T

0
θx
s ds

))
.
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Finally, observe that if we ignore the dependence on E[Sx
t ], e.g. taking q = 0 then we obtain

� = e−rT EP̃

[
�

(
Sx

T

)W(T ) − ∫ T

0 θx
s ds

T xσ

]
= e−rT EP

[
�

(
Sx

T

)Ŵ (T )

T xσ

]
,

where Ŵ is a standard Brownian motion under P and hence the � coincides with the classical one.

Example 4.2. Consider now the following SDE,

dXx
t

Xx
t

= f
(
ρx

t

)
dt + σ dWt , ρx

t := E
[
Xx

t

]
, t ∈ [0, T ],Xx

0 = x > 0, (13)

for some suitable continuously differentiable function f :R →R. Let us compute the derivative of v(x) := E[�(Xx
T )]

for an irregular function �.
Using Theorem 3.8 with a(s) ≡ 1/T we have

v′(x) = E

[
�

(
Xx

T

) 1

T

∫ T

0

1

σXs

Xs

x
ux(T )δWs

]
= 1

σxT
ux(T )E

[
�

(
Xx

T

)
WT

]
,

where

ux(T ) = 1 + x

∫ T

0
f ′(ρx

s

) ∂

∂x
ρx

s ds.

This special “geometric-type” case shows that whenever u is deterministic then the delta v′ is an rescaled version
of the classical delta and they coincide when f is constant, indeed.

Let us then see what happens when we make the volatility coefficient depend on the expectation, which leads to a
stochastic u.

Example 4.3. Consider now

dXx
t

Xx
t

= μdt + σρx
t dWt , ρx

t := E
[
Xx

t

]
, t ∈ [0, T ],Xx

0 = x > 0. (14)

In this case according to Theorem 3.3 in connection with Theorem 3.8 the Malliavin weight, denoted by wx
T ,

becomes

wx
T := 1

σxT

∫ T

0

1

ρx
s

(
1 − σ 2

∫ T

0

(
ρx

s

)2
ds + σ

∫ T

0
ρx

s dWs

)
δWs.

Fortunately we can rewrite the above expression in terms of an Itô integral using integration by parts. Namely,

wx
T =

(
1 − σ 2

∫ T

0

(
ρx

s

)2
ds + σ

∫ T

0
ρx

s dWs

)∫ T

0

1

ρx
s

dWs − σT .

Denote the random variables Fx := ∫ T

0 ρx
s dWs and Gx := ∫ T

0
1
ρx

s
dWs . Then the vector (F x,Gx) is normally

distributed with zero mean and covariance matrix

� :=
(∫ T

0 (ρx
s )2 ds T

T
∫ T

0
1

(ρx
s )2 ds

)
.

Altogether we obtain

v′(x) = 1

σxT
E

[
�

(
Xx

T

)(
1 − σ 2

∫ T

0

(
ρx

s

)2
ds + σF

)
G

]
− 1

x
E

[
�

(
Xx

T

)]
.
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Fig. 1. Approximation of a Call Option: On top parameters set to σ = 0.8, μ = 1, x = 1, K = 2 and T = 1 with h = 0.1 to the right and h = 0.01
to the left. On bottom parameters set to σ = 1.2, μ = 1, x = 0.5, K = 0.7 and T = 1 with h = 0.1 to the right and h = 0.01 to the left.

Let us, for instance, take �(x) = (x − K)1{x≥K} for some fixed K > 0, also known as a European call option in
the context of finance. Then we use a Monte Carlo method to compute the above expression and compare it to the
following finite difference method scheme hereunder

v′(x) ≈ E[�(Xx+h
T )] − E[�(Xx

T )]
h

, h ≈ 0.

In Figure 1 (upper left picture), h = 0.1 for the finite difference method and the two methods are seemingly giving
similar accurate results, although the Malliavin method is more efficient in number of iterations. If one wishes to
decrease h in order to gain precision we can see how the finite difference method becomes unstable (Figure 1, upper
right and lower right pictures). In conclusion, the integration by parts formula seems to be a much more efficient tool
for the computation of sensitivities for mean-field SDEs, at least, in this setting.
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Fig. 2. Approximation of a Digital Option: On top parameters set to σ = 0.8, μ = 1, x = 1, K = 2 and T = 1 with h = 0.1 to the right and h = 0.01
to the left. On bottom parameters set to σ = 1.2, μ = 1, x = 0.5, K = 0.7 and T = 1 with h = 0.1 to the right and h = 0.01 to the left.

Let us now try a more irregular function �, namely �(x) = 1{x≥K} which has a discontinuity at x = K , also known
as a European digital option in the context of finance. Denote

d(x) := log K
x

− μT + 1
2σ 2

∫ T

0 (ρx
s )2 ds

σ
.

Then

v′(x) = 1

σxT
E

[
1{Fx≥d(x)}

((
1 − σ 2x2

2μ

(
e2μT − 1

) + σFx

)
Gx − σT

)]
.

We compare again the Malliavin method with a finite difference scheme (see Figure 2).

The conclusions here are clear. The regularity of the function � plays an important role. We see that the bias
in the finite difference method seems high and it becomes unstable when decreasing the values of h. On the con-
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trary, the Bismut–Elworthy–Li formula gives a better approximation of the sensitivity, even when the function � is
discontinuous.
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