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Abstract. We investigate level-set percolation of the Gaussian free field on transient trees, for instance on super-critical Galton–
Watson trees conditioned on non-extinction. Recently developed Dynkin-type isomorphism theorems provide a comparison with
percolation of the vacant set of random interlacements, which is more tractable in the case of trees. If h∗ and u∗ denote the respec-
tive (non-negative) critical values of level-set percolation of the Gaussian free field and of the vacant set of random interlacements,
we show here that h∗ <

√
2u∗ in a broad enough set-up, but provide an example where 0 = h∗ = u∗ occurs. We also obtain some

sufficient conditions ensuring that h∗ > 0.

Résumé. Nous étudions la percolation de niveau pour le champ libre gaussien sur des arbres transients, par exemple sur des
arbres de Galton–Watson surcritiques conditionnés à survivre. Des théorèmes de type isomorphisme de Dynkin récemment obtenus
offrent un outil de comparaison avec la percolation de l’ensemble vacant pour les entrelacs aléatoires, qui se trouve être plus simple
à étudier dans le cas des arbres. Si h∗ et u∗ désignent les valeurs critiques respectives de la percolation de niveau du champ
libre gaussien, et de l’ensemble vacant des entrelacs aléatoires, nous montrons dans un cadre assez général que h∗ <

√
2u∗, mais

présentons un exemple pour lequel on a les égalités 0 = h∗ = u∗. Nous obtenons aussi des conditions suffisantes qui impliquent
que h∗ > 0.
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0. Introduction

In this work we investigate level-set percolation of the Gaussian free field on a transient tree. Recently, over the last
couple of years, various versions of Dynkin-type isomorphism theorems have related Gaussian free fields to random
interlacements, see for instance [9,14–17,21]. They have fostered an interplay between level-set percolation of the
Gaussian free field and percolation of the vacant set of random interlacements. In the case of transient trees, the
vacant cluster of random interlacements at a given site can be expressed in terms of Bernoulli site percolation, see
[20]. This makes percolation of the vacant set of random interlacements more tractable, in particular with the help of
the methods developed in [10–12]. In view of the above mentioned interplay, this feature raises the hope of gaining
further insight into the more intricate level-set percolation of the Gaussian free field on a transient tree. This strategy
was implemented in [17] in the case of (d + 1)-regular trees when d ≥ 2. In particular, it was shown there that
0 < h∗ <

√
2u∗, if h∗ and u∗ stand for the respective critical values of level-set percolation of the Gaussian free field

and of percolation of the vacant set of random interlacements. Here, we resume this approach in the broader context of
transient trees, in particular for super-critical Galton–Watson trees conditioned on non-extinction. Whereas we provide
an example showing that 0 = h∗ = √

2u∗ may occur, we prove under rather general assumptions that h∗ <
√

2u∗, and
derive sufficient conditions ensuring that h∗ > 0.

http://www.imstat.org/aihp
http://www.imstat.org/aihp
https://doi.org/10.1214/16-AIHP799
mailto:angelo.abaecherli@math.ethz.ch
mailto:alain-sol.sznitman@math.ethz.ch


174 A. Abächerli and A.-S. Sznitman

Let us now describe the set-up and our results in more detail. We consider a locally finite tree (that is, a locally
finite connected graph without loops) with vertex set T , such that each edge has unit weight and the corresponding
weighted graph is transient. The discrete time random walk on T , when located in x, jumps to any given neighbor with
probability deg(x)−1, where deg(x) stands for the degree of x. We write Px for the canonical law of the walk starting
in x, Ex for the corresponding expectation and (Xk)k≥0 for the walk. The Green function is symmetric, positive, and
equals

g(x, y) = 1

deg(y)
Ex

[ ∞∑
k=0

1{Xk = y}
]
, for x, y ∈ T . (0.1)

We write P
G for the canonical law on R

T of the Gaussian free field on T , and denote by (ϕx)x∈T the canonical field,
so that under PG

(ϕx)x∈T is a centered Gaussian field with covariance g(·, ·). (0.2)

The critical value of the level-set percolation of ϕ is defined as

h∗ = inf
{
h ∈R;PG-a.s., all connected components of {ϕ ≥ h} are finite

}
(0.3)

(here {ϕ ≥ h} = {x ∈ T ;ϕx ≥ h} and infφ = ∞).
By a general argument of [2], recalled in the Appendix, one knows that

0 ≤ h∗ ≤ ∞. (0.4)

Further, given u ≥ 0, we consider the vacant set Vu of random interlacements at level u. This random subset of T is
governed by a probability P

I (see (1.32)) and Vu becomes thinner as u increases. The critical value for the percolation
of Vu is defined as

u∗ = inf
{
u ≥ 0;PI -a.s., all connected components of Vu are finite

}
. (0.5)

To describe our results we introduce some base point x0 of T , and define for any x in T , the sub-tree Tx of descendents
of x, consisting of those y in T for which the geodesic path between x0 and y goes through x (see the beginning of
Section 1). We then write, see (1.4),

R∞
x = the effective resistance between x and ∞ in Tx. (0.6)

As an application of the cable graph methods initiated in [9], we show in Corollary 2.3 of Section 2 that when

for some A > 0, the (deterministic) set {x ∈ T ; R∞
x > A} only has finite components, (0.7)

then one has

0 ≤ h∗ ≤ √
2u∗. (0.8)

We also present in Remark 2.4(2) an example where

0 = h∗ =√
2u∗. (0.9)

As an aside one may wonder whether PG[x0
ϕ≥0←→ ∞] > 0 holds under (0.7). This issue is linked to the geometry of

the sign-clusters of the Gaussian free field on the cable system, see Remark 2.4(3).
Getting hold of strict inequalities strengthening (0.8) is more delicate. We provide in Theorem 3.4 a rather general

sufficient condition, which ensures that h∗ <
√

2u∗. This result comes as an application of the special coupling be-
tween random interlacements and the Gaussian free field, which appears in Corollary 2.3 and was constructed in [17]
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as a refinement of [9]. More precisely, we show in Theorem 3.4 that when 0 < u∗ < ∞, and conditions (3.1) and (3.2)
hold, that is, for some A,B,M,δ > 0, for all distant vertices x in T having an infinite line of descent∑

y∈(x0,x)

1
{
R∞

y ≤ A,dy− ≤ M
}≥ δ|x|, (0.10)

∑
y∈(x0,x]

1

R∞
y (1 + R∞

y )
≤ B|x| (0.11)

(with |x| the distance of x to x0, and y− the parent of y, see the beginning of Section 1 for notation), then, one has

h∗ <
√

2u∗. (0.12)

Importantly, to take advantage of the above mentioned special coupling, we show in Proposition 3.2 that (0.10) implies

an exponential decay in |x| of PG[x0
ϕ≥0←→ x]. The proof is based on an idea of “entropic repulsion” in the spirit of [7],

p. 13, 14.
In Proposition 4.2 we give a sufficient condition for h∗ > 0, namely the existence of an infinite binary sub-tree of

sites having uniformly bounded degree. As an application of Theorem 3.4 and Proposition 4.2, we see for instance
that

0 < h∗ <
√

2u∗ < ∞, when T has bounded degree and outside

a finite subset of T , each site has degree at least 3. (0.13)

Incidentally, in the case of Zd , d ≥ 3, the inequality h∗ ≤ √
2u∗ is known, see [9], but the strict inequality h∗ <

√
2u∗

is presently open, and h∗ > 0 is only known when d is sufficiently large, see [5,13].
Our results also apply to typical realizations of super-critical Galton–Watson trees conditioned on non-extinction.

In this case, one knows from [19] that u∗ is deterministic and 0 < u∗ < ∞. There is even a reasonably explicit
formula characterizing u∗, which is recalled in (5.4). We show in Lemma 5.1 that h∗ is deterministic as well. In the
more challenging Proposition 5.2 we show that (3.1) (or (0.10)) holds almost surely on non-extinction. In particular,
as by-product, we deduce that

0 ≤ h∗ ≤√
2u∗ < ∞, and almost surely on non-extinction

P
G[x0

ϕ≥0←→ x] has exponential decay in |x|. (0.14)

When the offspring distribution has in addition some finite exponential moment (used to check (3.2)) we show in
Theorem 5.4 that

h∗ <
√

2u∗. (0.15)

We also provide a sufficient condition for h∗ > 0 in Theorem 5.5. We show in Theorem 5.5 that h∗ > 0 when the
offspring distribution has mean m > 2. Whereas Proposition 4.2 relies on the existence of an infinite binary sub-tree
of sites having uniformly bounded degree, Theorem 5.5 follows a strategy in the spirit of Tassy [19] for random
interlacements on Galton–Watson trees, but the situation is more complicated in the case of the Gaussian free field.
One can naturally wonder whether h∗ > 0 holds generally when m > 1, see also Remark 5.6.

We now explain the organization of this article. In Section 1 we introduce further notation and recall various
facts concerning the Gaussian free field and random interlacements. In Section 2 we consider the Gaussian free field
ϕ̃ on the cable system attached to T . We introduce condition (2.3) (see also (0.7)), which enables us to prove in
Proposition 2.2 that {ϕ̃ > 0} only has bounded components, and hence to apply the results of [9] and [17]. We show
(0.8) in Corollary 2.3. In Section 3 we introduce the conditions (3.1), (3.2) (see (0.10), (0.11)), and show in Theo-
rem 3.4 that together with the assumption 0 < u∗ < ∞, they imply that h∗ <

√
2u∗. An important step established in

Proposition 3.2 shows the exponential decay of PG[x0
ϕ≥0←→ x] under (3.1) (i.e. (0.10)). Section 4 provides a sufficient
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condition for h∗ > 0 in Proposition 4.2 and the proof of (0.13) follows from Corollary 4.5, as explained in Remark 4.6.
In Section 5 applications to super-critical Galton–Watson trees conditioned on non-extinction are discussed. The fact
that h∗ is deterministic (i.e. almost surely constant conditioned on non-extinction) appears in Lemma 5.1. The key
Proposition 5.2 establishes that (3.1) holds almost surely on non-extinction, and (0.14) comes as a by-product, see
also Theorem 5.4. Then, Proposition 5.3 shows that under the finiteness of some exponential moment of the offspring
distribution, condition (3.2) holds almost surely on non-extinction. From that (0.15) readily follows in Theorem 5.4.
In Theorem 5.5 we give sufficient conditions for h∗ > 0. Finally, the Appendix contains the proof of the inequality
h∗ ≥ 0 in the general set-up of transient weighted graphs, along similar arguments as in [2].

1. Some preliminaries

In this section we introduce further notation and collect useful results concerning transient trees, random walks, level-
set percolation of the Gaussian free field, and percolation of the vacant set of random interlacements.

We consider a locally finite tree T with root x0 such that each edge has unit weight and the resulting network is
transient. We write x ∼ y when x and y are neighbors in T , we let d(·, ·) stand for the geodesic distance on the tree
and |x| = d(x, x0) stand for the height of x in T . Given U ⊆ T , we let ∂U = {y ∈ T \ U ; d(y, x) = 1, for some
x ∈ U} and ∂iU = {x ∈ U ; d(y, x) = 1, for some y ∈ T \ U} respectively denote the outer and inner boundary of U .
We let |U | stand for the cardinality of U . For x in T we write d(x,U) = inf{d(x, y); y ∈ U} for the distance of x

to U . Given x, y in T , we let [x, y] stand for the collection of sites on the geodesic path from x to y. We also use
the notation (x, y], [x, y), or (x, y) when we exclude one or both endpoints. When x �= x0 we let x− stand for the
last point before x on the geodesic path from x0 to x. Given x ∈ T , we denote by dx = |{y ∈ T ;y− = x}| the number
of descendants of x, so that deg(x), the degree at x, equals dx0 when x = x0 and dx + 1 when x �= x0. We let Tx

stand for the sub-tree of descendents of x, i.e. consisting of those y in T for which x belongs to [x0, y]. As far as
dependence on the choice of the root is concerned, note that if a new root x′

0 is chosen, then Tx remains unchanged as
soon as x /∈ [x0, x

′
0]. Finally, a cut-set C separating x0 from infinity (we will write cut-set for short) is a finite subset of

T \ {x0}, such that x �= y in C implies that x /∈ Ty (and y /∈ Tx), and the connected component UC of x0 after deletion
of the edges {x−, x}, x ∈ C, is finite. We write BC = UC ∪ C.

We now introduce some notation concerning simple random walk and potential theory on T . Given U ⊆ T , we
write TU = inf{k ≥ 0; Xk /∈ U} for the exit time of U , HU = inf{k ≥ 0;Xk ∈ U} for the entrance time in U , and
H̃U = inf{k ≥ 1; Xk ∈ U} for the hitting time of U of the canonical walk (Xk)k≥0 on T .

With similar notation as in (0.1), the Green function killed outside U is

gU(x, y) = 1

deg(y)
Ex

[ ∑
0≤k<TU

1{Xk = y}
]
, for x, y ∈ T . (1.1)

It is symmetric and vanishes when x or y does not belong to U . When U = T , we recover the Green function g(x, y)

from (0.1).
For K finite subset of T , the equilibrium measure of K is defined as

eK(x) = deg(x)Px[H̃K = ∞]1K(x), for x ∈ T . (1.2)

It is concentrated on the inner boundary of K and satisfies the identity

Px[HK < ∞] =
∑
y

g(x, y)eK(y), for x ∈ T . (1.3)

The total mass of eK is the capacity cap(K) of K .
As mentioned in the Introduction, an important quantity for x in T is the positive (possibly infinite) quantity

R∞
x = the effective resistance between x and ∞ in Tx (1.4)

(in particular R∞
x = ∞ when |Tx | < ∞, and R∞

x is the non-decreasing limit in N of the effective resistance in Tx

between x and {x′ ∈ Tx ; d(x, x′) = N}, when |Tx | = ∞).



Level-set percolation for the Gaussian free field on a transient tree 177

As an aside, note that by the observation made above (1.1) moving the root x0 to a different location x′
0 will only

change finitely many of the R∞
x , x ∈ T . We then define

αx = R∞
x

1 + R∞
x

∈ (0,1], for x ∈ T , (1.5)

as well as for 0 < α ≤ 1 the operator

Qαf (a) = EY
[
f (αa + √

αY)
]
, for a ∈ R, (1.6)

where Y stands for a standard normal variable, EY for the corresponding expectation, and f for a bounded measurable
function. Note that for α = 1, the above Qα coincides with the Brownian transition kernel at time 1.

We now turn to the Gaussian free field ϕ on T . For U ⊆ T we denote by σU the σ -algebra

σU = σ(ϕx, x ∈ U). (1.7)

From the Markov property of the Gaussian free field, one knows that for x, y in T with y− = x,(
ϕy′ − Py′ [Hx < ∞]ϕx

)
y′∈Ty

is a centered Gaussian field with

covariance gU=Ty (·, ·) independent of σT \Ty . (1.8)

The next lemma relates the objects we have now introduced, and will be recurrently used in this work ((1.15) will be
used in the proof of Proposition 2.2 in Section 2).

Lemma 1.1. For x in T , one has

g(x, x) ≤ R∞
x ,with equality when x = x0, (1.9){

(i) g(x, x) ≥ 1/deg(x),

(ii) R∞
x ≥ 1/dx.

(1.10)

For x, y in T with y− = x,

Py[Hx < ∞] = αy, Py[Hx = ∞] = (
1 + R∞

y

)−1
, (1.11)

gU=Ty (y, y) = αy, (1.12)

and for any bounded measurable function f on R one has

E
G
[
f (ϕy)|σT \Ty

]= Qαy f (ϕx). (1.13)

When C is a cut-set, one has the identities

eC(x) = 1

R∞
x

when x ∈ C, and (1.14)

1 =
∑
x∈C

g(x0, x)
1

R∞
x

. (1.15)

Proof. The claims (1.9) and (1.10) follow from the fact that g(x, x) is the effective resistance between x and infinity
in T , whereas R∞

x is the effective resistance between x and infinity in Tx . As for (1.11), set T ′
y = {x} ∪ Ty , then the

effective conductance between x and infinity in the sub-tree T ′
y coincides with the escape probability Py[Hx = ∞], see

also [12], above Proposition 17.26, so that Py[Hx = ∞] = (1 + R∞
y )−1 and Py[Hx < ∞] = αy . Concerning (1.12),

note that gU=Ty (y, y) coincides with the effective resistance between y and {x} ∪ {∞} in T ′
y , so that gU=Ty (y, y) =

(1 + 1
R∞

y
)−1 = αy , whence (1.12).
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We now turn to (1.13). By (1.8) we know that ϕy − Py[Hx < ∞]ϕx is a Gaussian variable with variance
gU=Ty (y, y). By (1.11), (1.12), and the formula (1.6) defining Qα the claim (1.13) readily follows. Concerning (1.14),
we recall the notation BC for C a cut-set, see above (1.1). One has the equality

eBC
= eC, (1.16)

so that

eC(x)
(1.2)=

∑
y−=x

Py[Hx = ∞] (1.11)=
∑

y−=x

(
1 + R∞

y

)−1 = 1

R∞
x

, for x ∈ C. (1.17)

Moreover, (1.15) is now the direct application of (1.3) (with the choice x = x0, K = BC ) together with (1.14). This
concludes the proof of Lemma 1.1. �

Remark 1.2. Incidentally, when yn, 0 ≤ n < N , with N < ∞ or N = ∞, is a finite or semi-infinite geodesic path in
T moving away from the root x0, and R∞

yn
= ∞ for each 1 ≤ n < N , it follows from (1.13) and from the observation

made below (1.6) that (ϕyn)0≤n<N under PG is distributed as a Brownian motion with the initial law N(0, g(y0, y0)),
sampled at the integer times 0 ≤ n < N .

We now continue with level-set percolation of the Gaussian free field. Given x in T , and h in R, we denote by

{x ϕ≥h←→ ∞} the event that the connected component of {ϕ ≥ h} containing x is infinite. If PG[x ϕ≥h←→ ∞] > 0 and y is

neighbor of x, it is straightforward with (1.8) (where x plays the role of x0) to infer that PG[y ϕ≥h←→ ∞] > 0 (one can

also use the FKG-Inequality, see the Appendix of [7]). In other words, if PG[x ϕ≥h←→ ∞] vanishes for some x in T , it
vanishes for all x in T , and so we can express the critical value h∗ defined in (0.3) as

h∗ = inf
{
h ∈R;PG[x0

ϕ≥h←→ ∞] = 0
}

(with x0 the root). (1.18)

By an argument of [2] one knows (actually, in the general set-up of transient weighted graphs, see Proposition A.2 of
the Appendix) that

0 ≤ h∗ ≤ ∞. (1.19)

Incidentally, in the case of Zd , d ≥ 3, one knows that h∗ < ∞ for all d ≥ 3, see [2,13], but h∗ > 0 has only been
proved when d is large enough, see [5,13].

To further characterize h∗, we will now construct for each h ∈ R and x in T a [0,1]-valued function qx,h(·), which

is a “good version” of the conditional expectation P
G[x Tx,ϕ≥h←→/ ∞ |ϕx = ·], where {x Tx,ϕ≥h←→/ ∞} refers to the event that

the connected component of x in Tx ∩ {ϕ ≥ h} is finite.
For the definition we will now give, it is convenient to broaden the set-up, so that T is a tree with root x0, which is

possibly recurrent or even finite. If T is recurrent then we set R∞
x = ∞ and αx = 1, for all x ∈ T .

For each n ≥ 0, we write

Tn = {
x ∈ T ; |x| = n

}
, Bn = {

x ∈ T ; |x| ≤ n
}

(1.20)

(so Tn is possibly empty, when T is finite).
Then, for each n ≥ 0, h ∈R, x ∈ Bn, we define the functions qn

x,h(·) by recursion towards the root x0, starting from
the boundary Tn, via{

qn
x,h(a) = 1(−∞,h)(a), for x ∈ Tn,

qn
x,h(a) = 1(−∞,h)(a) + 1[h,∞)(a)

∏
y−=x Qαy (qn

y,h)(a), for |x| < n,
(1.21)

and an empty product (when x has no descendent) is understood as equal to 1.
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Note that when T is finite and n ≥ 1 such that Tn = φ, then

qn
x,h(·) = 1, for all x ∈ T . (1.22)

Lemma 1.3 (T a possibly finite or recurrent tree with root x0). The functions qn
x,h(a), for n ≥ |x|, are non-

increasing in a, [0,1]-valued, equal to 1 on (−∞, h), with only possible discontinuity at h. For a fixed x ∈ T , they
increase with n ≥ |x|, and converge to a function qx,h(a) with similar properties, and such that

qx,h = 1(−∞,h) + 1[h,∞)

∏
y−=x

Qαy (qy,h), for all x ∈ T (1.23)

(and an empty product is understood as equal to 1).
When T is finite, then

qx,h = 1, for all h ∈ R, x ∈ T . (1.24)

When T is transient, then for any h ∈R, x ∈ T , one has

qn
x,h(ϕx)

P
G-a.s.= P

G[x Tx,ϕ≥h
� Tn|ϕx], for n ≥ |x|, (1.25)

qx,h(ϕx)
P

G-a.s.= P
G[x Tx,ϕ≥h

� ∞|ϕx]. (1.26)

In addition, one has the dichotomy{
(i) qx0,h = 1 for h > h∗,
(ii) qx0,h is not identically 1 for h < h∗.

(1.27)

Proof. From the definition of Qα in (1.6) and the recursion from the boundary (1.21), it is immediate that qn
x,h(·) are

non-increasing, [0,1]-valued functions, equal to 1 on (−∞, h), with only possible discontinuity at h. When x ∈ Tn,
qn
x,h(·) ≤ qn+1

x,h (·) by (1.21) and this gets propagated inside Bn by the recursion (1.21), so that qn
x,h(·) ≤ qn+1

x,h (·)
for x ∈ Bn (when Tn = φ, actually (1.22) holds). Setting qx,h(a) = limn ↑ qn

x,h(a), we obtain (1.23) from (1.21) by
monotone convergence. It also follows that qx,h(·) is non-increasing [0,1]-valued, with value 1 on (−∞, h) and only
possible discontinuity at h (due to (1.23) and (1.6)). The claim (1.24) for finite T is immediate from (1.22).

Let us now assume that T is transient and prove (1.25). We fix n and use induction on n − |x|. When x ∈ Tn, then
(1.25) is immediate from the first line of (1.21). When |x| < n, then one has the P

G-a.s. equality

P
G[x Tx,ϕ≥h

� Tn|ϕx] = 1(−∞,h)(ϕx) + 1[h,∞)(ϕx)P
G

[ ⋂
y−=x

{y Ty,ϕ≥h
� Tn}

∣∣∣ϕx

]
. (1.28)

If one first conditions on ϕx and ϕy , for y− = x it follows from the Markov property (1.8) and induction that we have
P

G-a.s.,

P
G

[ ⋂
y−=x

{y Ty,ϕ≥h
� Tn}

∣∣∣ϕx

]
= E

G

[ ∏
y−=x

qn
y,h(ϕy)

∣∣∣ϕx

]
(1.8),(1.13)=

∏
y−=x

Qαy
(
qn
y,h

)
(ϕx).

Inserting this identity in the last expression of (1.28), and using (1.21), we see that (1.25) holds for x as well. This
completes the proof of (1.25) by induction. The claim (1.26) readily follows by monotone convergence.

Finally, let us prove (1.27). We know that for h > h∗, PG[x0
ϕ≥h
� ∞] = 1, cf. (1.18). By (1.26) we see that qx0,h(·) =

1 almost everywhere and hence everywhere due to the fact that qx0,h(·) is non-increasing. This proves (1.27)(i). On

the other hand, for h < h∗, PG[x0
ϕ≥h
� ∞] < 1, and by (1.26), qx0,h(·) is not identically 1, whence (1.27)(ii). This

completes the proof of Lemma 1.3. �
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Remark 1.4. Note that the recursion (1.21) used in the construction of the functions qn
x,h only involves the coefficients

αy , for y ∈ Tx . If we write qT
x,h for qx,h, with x ∈ T and h ∈ R, to underline the dependence in T , it is straightforward

to infer from (1.21) and the above observation that for all x ∈ T and h ∈ R

qT
x,h = q

Tx

x,h. (1.29)

This identity combined with (1.27) will be useful when proving that h∗ is almost surely constant for a super-critical
Galton–Watson tree conditioned on non-extinction.

We now return to the case where T is a transient tree with root x0, and consider the sub-tree (with same root x0) of
vertices with an infinite line of descent

T ∞ = {
x ∈ T ; |Tx | = ∞}

. (1.30)

Then, the connected components of T \T ∞ consist of finite sub-trees, and T ∞ is a transient tree with Green’s function
equal to the restriction of g(·, ·) to T ∞, see for instance Proposition 1.11 of [18]. Thus, the law of (ϕx)x∈T ∞ under PG

equals the law of the Gaussian free field on T ∞. Note also that for any h ∈ R one has {x0
ϕ≥h←→ ∞} = {x0

T ∞,ϕ≥h←→ ∞}
(where this last notation refers to the event that the connected component of x0 in T ∞ ∩ {ϕ ≥ h} is infinite), so that
with hopefully obvious notation

h∗(T ) = h∗
(
T ∞)

, (1.31)

i.e. the critical values for level-set percolation of the Gaussian free field on T and on T ∞ coincide.
We now briefly turn to the topic of random interlacements on T and recall some facts concerning the percolation of

the vacant set of random interlacements. We refer to the monographs [3] and [4] for further material and references.
The vacant set of random interlacements at level u ≥ 0 on T is a random subset Vu of T , governed by a probability
P

I , with law characterized by

P
I
[
Vu ⊇ K

]= exp
{−u cap(K)

}
, for any finite K ⊆ T (1.32)

(with cap(K) the capacity of K , see below (1.3)).
As u increases, Vu becomes thinner, and to classify the percolative properties of Vu, one defines u∗ as in (0.5).

Actually, one has regardless of the choice of the base point x0, see Corollary 3.2 of [20],

u∗ = inf
{
u ≥ 0;PI [x0

Vu←→ ∞] = 0
} ∈ [0,∞]. (1.33)

One also knows by Theorem 5.1 of [20] (the bounded degree assumption stated there can be removed) that

the connected component CVu
(x0) of x0 in Vu has the same law as the

open cluster of x0 in an independent site Bernoulli percolation on T ,

for which each site x ∈ T is open with probability px,u, (1.34)

where{
px0,u = e−u cap({x0}), and for x �= x0,

px,u = e−udeg(x)Px [d(Xn,x0)>d(x,x0), for all n>0]·Px [d(Xn,x0)≥d(x,x0), for all n≥0].
(1.35)

Taking into account that cap({x0}) = g(x0, x0)
−1 as well as (1.9), (1.11), we see that for u ≥ 0,

px0,u = e
− u

R∞
x0 and for x �= x0, px,u = e

− u

R∞
x (1+R∞

x ) . (1.36)
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Remark 1.5. If T ∞ stands for the sub-tree of vertices with an infinite line of descent, see (1.30), then with hopefully
obvious notation

R∞
x (T ) = R∞

x

(
T ∞)

for all x ∈ T ∞ (1.37)

(all components of T \T ∞ are finite, and (1.37) can be seen by replacing in the approximation of R∞
x (T ) below (1.4)

the set {x′ ∈ Tx ; d(x, x′) = N} by the set {x′ ∈ T ∞
x ; d(x, x′) = N}). In particular, in view of (1.36), we find that with

similar notation as in (1.37) one has

px,u(T ) = px,u

(
T ∞)

for all x ∈ T ∞, (1.38)

and in view of (1.33), (1.34),

u∗(T ) = u∗
(
T ∞)

, (1.39)

i.e. the critical values for the percolation of the vacant set of random interlacements on T and on T ∞ coincide.

Let us close this section by mentioning that percolation of Vu can be re-expressed in terms of the transience of T

endowed with certain weights. More precisely, if one introduces on the edges e = {x−, x}, for x ∈ T \ {x0} the weights

cu(e) = e
−u

∑
y∈(x0,x] 1

R∞
y (1+R∞

y )
(
1 − e

−u 1
R∞

x (1+R∞
x )

)−1
, (1.40)

then, when u > 0 and R∞
x < ∞ for each x ∈ T , one knows from Theorem 2.1 of [11], see also Corollary 5.25 of [12],

and (1.34), (1.36) that

P
I [x0

Vu←→ ∞] > 0 if and only if T endowed with the weights (1.40) is transient. (1.41)

2. Some consequences of the cable methodology

In this section we consider the Gaussian free field ϕ̃ on the cable system T̃ attached to T . We use it to infer as an
application of the results of [9] and [17] the inequality h∗ ≤ √

2u∗, as well as a coupling, which relates the level sets of
the Gaussian free field and the vacant set of random interlacements on T , see Corollary 2.3. This coupling will be the
main tool in the next section to derive (under suitable assumptions) the strict inequality h∗ <

√
2u∗. In Remark 2.4(2)

we also provide an example where h∗ and u∗ vanish.
As in the previous section, T is a transient tree with base point x0, such that each edge has unit conductance. The

cable tree T̃ is obtained by attaching to each edge e = {x, y} of the tree a compact interval with length 1
2 and endpoints

respectively identified to x and y. One defines on T̃ a continuous diffusion behaving as a standard Brownian motion
in the interior of each such segment. It has a continuous symmetric Green function g̃(z, z′), z, z′ ∈ T̃ with respect to
the Lebesgue measure on T̃ , which extends the Green function g(·, ·) of the discrete time walk on T , see (0.1). We
refer to Section 2 of [9], Section 2 of [6], and Section 3 of [21] for more details.

We now turn to the Gaussian free field on the cable tree T̃ . On the canonical space �̃ of continuous real-valued
functions on T̃ endowed with the σ -algebra generated by the canonical coordinates ϕ̃z (we also sometimes write
ϕ̃(z)), z ∈ T̃ , we denote by P̃

G the probability, with corresponding expectation Ẽ
G, such that

under P̃G, (ϕ̃z)z∈T̃ is a centered Gaussian field with covariance Ẽ
G[ϕ̃zϕ̃z′ ] = g̃(z, z′). (2.1)

In particular, looking at the restriction of ϕ̃ to T , we see that

the law of (ϕ̃x)x∈T under P̃G is equal to P
G. (2.2)

An important issue in this context is to establish that P̃G-a.s., {ϕ̃ > 0} only has bounded components in T̃ . As shown
in [9], see also (1.33) of [17], when this condition holds, then for u > 0 one can couple {ϕ >

√
2u} and Vu so that

{ϕ >
√

2u} ⊆ Vu, a.s.. It then follows that h∗ ≤ √
2u∗.
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We will introduce a condition, see (2.3), which implies the above condition, but also enables us to apply the results
of Section 2 of [17] (see Corollary 2.5 and Remark 2.6 therein), and construct a strengthened coupling between
{ϕ >

√
2u} and Vu, see (2.20) below.

We thus introduce the condition, see (1.4) for notation,

for some A > 0, the set
{
x ∈ T ; R∞

x > A
}

only has bounded components. (2.3)

Remark 2.1.

(1) The condition (2.3) as we now explain is equivalent to the existence of a sequence of cut-sets Cn, n ≥ 1, and
A > 0, such that (see above (1.1) for notation){

(i) BCn ⊆ UCn+1 for each n ≥ 1,

(ii) supn≥1 supx∈Cn
R∞

x ≤ A.
(2.4)

Indeed, (2.4) readily implies (2.3). Conversely, when (2.3) holds, one defines U1 consisting of x0 and the points linked
to x0 by a path where R∞

x > A prior to reaching x0, and sets C1 = ∂U1. By induction one then defines Un+1 as the
union of Un,Cn and the collection of points linked to Cn by a path where R∞

x > A prior to reaching Cn, and sets
Cn+1 = ∂Un+1. Then BCn = Un ∪ Cn, for each n ≥ 1, and (2.4) holds.

Let us also mention that when Cn is a sequence of cut-sets as in (2.4), then by (i)

BCn ⊆ BCn+1 and d(x0,Cn) ≥ n, for all n ≥ 1. (2.5)

(2) As a result of the observation above (1.5), condition (2.3) does not depend on the choice of the base point x0
in T .

The main result established in this section comes in the next proposition. Its consequences appear in Corollary 2.3.

Proposition 2.2. Assume that (2.3) holds, then

P̃
G-a.s., {ϕ̃ > 0} only has bounded components in T̃ . (2.6)

Proof. For x, y in T , we write [x̃, y] for the geodesic segment in T̃ between x and y. One has the following identities,
which are consequences of the strong Markov property of (ϕ̃z)z∈T̃ , see Lemma 3.1 and Proposition 5.2 of [9]: for
x ∈ T ,

P̃
G
[
ϕ̃ does not vanish on [x̃0, x]]= 2

π
arcsin

(
g(x0, x)√

g(x0, x0)g(x, x)

)
, (2.7)

ẼG
[
ϕ̃x0 ϕ̃x, ϕ̃ does not vanish on [x̃0, x]]= g(x0, x) (2.8)

(and the notation in (2.8) refers to the product with the indicator function of the event following the comma).
We consider A > 0 and a sequence of cut-sets Cn, n ≥ 1, as in (2.4). We will first work under the additional

assumption that

dx = 1, for all x ∈ Cn and n ≥ 1 (2.9)

(where dx stands for the number of descendents of x in T , see the beginning of Section 1). We will then treat the
general case. We thus assume (2.9) and define for each n ≥ 1,

Z̃n = {
x ∈ Cn; ϕ̃ > 0 on [x̃0, x]}. (2.10)

In what follows, constants will possibly depend on dx0 , R∞
x0

, A, and will change from line to line. Additional depen-
dence will appear in the notation. By (1.9), (1.10) and (2.4)(ii) and (2.9), we see that

c ≤ g(x, x) ≤ c′ for x = x0 and x ∈
⋃
n≥1

Cn. (2.11)
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Thus, by (2.7) and (2.8), we see that for n ≥ 1,

Ẽ
G

[∑
x∈Cn

(1 + ϕ̃x0 ϕ̃x)1
{
ϕ̃ > 0 on [x̃0, x]}]≤ c

∑
x∈Cn

g(x0, x)

(2.4)(ii)≤ c′ ∑
x∈Cn

g(x0, x)
1

R∞
x

(1.15)= c′.
(2.12)

As a result, it follows from Fatou’s lemma that

Ẽ
G

[
lim inf

n

∑
x∈Cn

(1 + ϕ̃x0 ϕ̃x)1
{
ϕ̃ > 0 on [x̃0, x]}]≤ c′. (2.13)

This bound implies that the event⋃
L≥1

lim sup
n

{
|Z̃n| ≤ L, |ϕ̃x0 |

∑
x∈Z̃n

ϕ̃x ≤ L

}

has full P̃G-probability. Since |ϕ̃x0 | > 0, P̃G-a.s., we find that

P̃
G

[⋃
M≥1

lim sup
n

{
|Z̃n| ≤ M and

∑
x∈Z̃n

ϕx ≤ M

}]
= 1. (2.14)

Note that for any 0 < α ≤ 1, we have for any 0 ≤ a ≤ M (see (1.6) for notation)

Qα1(−∞,0)(a) = P Y [αa + √
αY < 0] = P Y [Y < −√

αa]
a≤M,α≤1≥ P Y [Y < −M] = c(M).

(2.15)

We now introduce for n,M ≥ 1 the event AM,n = {∑x∈Z̃n
(1 + ϕ̃x) ≤ M} as well as the σ -algebra

F̃n = σ

(
ϕ̃z, z ∈

⋃
x∈Cn

[x̃0, x]
)

. (2.16)

It now follows from the Markov property of ϕ̃, see (1.8) of [17], that on AM,n

P̃
G
[|Z̃n+1| = 0|F̃n

] ≥ P̃
G
[
ϕ̃y < 0, for all y ∈ T with y− ∈ Z̃n|F̃n

]
=

∏
x∈Z̃n

∏
y−=x

Qαy (1(−∞,0))(ϕ̃x)
(2.9),(2.15)≥ c(M)M (on AM,n). (2.17)

By Borel–Cantelli’s lemma it then follows that

P̃
G-a.s., on lim sup

n
AM,n, |Z̃k| = 0 for large k.

Since P̃
G[⋃M≥1 lim supn AM,n] = 1 by (2.14), we find that

P̃
G-a.s., |Z̃n| = 0, for large n.

We have thus shown that under (2.9)

P̃
G-a.s., the connected component of x0 in {ϕ̃ > 0} is bounded. (2.18)
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We will now remove assumption (2.9). In essence, we use a scaling argument. We denote by T ∗ the tree with vertex
set consisting of T and the mid-points of the intervals in T̃ linking neighboring vertices in T , and edges of unit weight
linking each mid-point to the two end-points of the interval where it lies. If T̃ ∗ denotes the corresponding cable graph,
there is a natural bijection s from T̃ ∗ onto T̃ , which, in essence, “scales by 1

2 ” each interval linking neighbors in T ∗.
The effective resistance between two points in T̃ ∗ is then twice the effective resistance between their images in T̃ .
Then, looking at Green functions, g̃∗(z∗

1, z
∗
2) = 2g̃(s(z∗

1), s(z∗
2)), for z∗

1, z
∗
2 in T̃ ∗. It now follows that (

√
2ϕ̃s(z∗))z∗∈T̃ ∗

under P̃G has the same law as the Gaussian free field on T̃ ∗.
Now consider a sequence Cn ⊆ T , n ≥ 1, as in (2.4), and denote by C∗

n ⊆ T ∗, the collection of mid-points x∗ of the
intervals attached to {x, x−}, with x ∈ Cn, for n ≥ 1. Note that R∞

x∗ (T ∗) = 1 + 2R∞
x (T ), for such x and x∗, and C∗

n ,
n ≥ 1 is a sequence of cut-sets of T ∗ satisfying (2.4) with 1 + 2A in place of A. Moreover, (2.9) holds for C∗

n , n ≥ 1.
By (2.18) we see that P̃G-a.s. the connected component of x0 in {z∗ ∈ T̃ ∗;

√
2ϕ̃s(z∗) > 0} is bounded. This proves that

(2.18) holds under (2.3).
Now, as observed in Remark 2.1(2), (2.3) remains true for any choice of the base point x0. Hence, under (2.3),

P̃
G-a.s. the connected components of all x ∈ T in {ϕ̃ > 0} are bounded. This implies (2.6) and concludes the proof of

Proposition 2.2. �

We can now apply the results of [17].

Corollary 2.3. Assume that (2.3) holds, then

0 ≤ h∗ ≤ √
2u∗. (2.19)

Moreover, for any u > 0, one can couple independent copies (ϕx)x∈T and Vu of the Gaussian free field on T and the
vacant set of random interlacements at level u on T , with (ηx)x∈T a Gaussian free field on T , so that

for all B ⊆ (0,∞), {x ∈ T ; ηx ∈ √
2u + B} ⊆ {x ∈ T ; ϕx ∈ B} ∩ Vu. (2.20)

Proof. Since g(x, x) ≤ R∞
x , cf. (1.9), condition (2.3) ensures that (1.43) of [17] holds. Moreover, Proposition 2.2

shows that condition (1.32) of [17] holds as well. The claims follow from Corollary 2.5 and Remark 2.6 of [17].
Actually, (2.19) follows from (2.6) alone by the argument of [12], see also (1.33) of [17]. �

Remark 2.4.

(1) Note that an infinite self-avoiding path in T starting at the root x0 only visits the sub-tree T ∞ of vertices with
an infinite line of descent. Since R∞

x (T ) = R∞
x (T ∞) for all x ∈ T ∞, cf. (1.37), we thus see that

condition (2.3) holds for T if and only if (2.3) holds for T ∞. (2.21)

(2) As the present example shows, it is possible that all terms coincide in (2.19). For instance, consider a tree
T with root x0, such that dx = 1 ∨ |x|, for all x ∈ T . This tree is transient (it contains a binary tree rooted at the
descendents of x0). As we now explain, for this tree one has

0 = h∗ =√
2u∗. (2.22)

To this end, note that for all y ∈ T , R∞
y ≤ R∞

x0
< ∞. Thus, one finds that for all x in T (with c a positive constant

changing from place to place)

1

R∞
x

=
∑

y−=x

1

1 + R∞
y

≥ dx

(
1 + R∞

x0

)−1 ≥ c|x|,

so that

1

R∞
x (1 + R∞

x )
≥ c|x|. (2.23)
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If for n ≥ 1 we set Cn = {x ∈ T ; |x| = n}, we obtain a sequence of cut-sets of T with |Cn| ≤ nn, for which (2.4) holds.
It then follows that 0 ≤ h∗ ≤ √

2u∗. Moreover, for any u > 0 we have for large n∑
x∈Cn

e
−u

∑
y∈(x0,x] 1

R∞
y (1+R∞

y )
(
1 − e

− u

R∞
x (1+R∞

x )
)−1 ≤ nne−uc′n2(

1 − e−ucn
)−1 −→

n→∞ 0. (2.24)

This implies that T endowed with the weights cu(e) in (1.40) is a recurrent weighted graph (see for instance Corol-

lary 4.2 of [10]). By (1.41), this implies that PI [x0
Vu

←→ ∞] = 0, and therefore that u∗ ≤ u. Since u > 0 is arbitrary,
we see that u∗ = 0 and (2.22) follows.

(3) In light of the above example one may still wonder whether PG[x0
ϕ≥0←→ ∞] > 0 holds under (2.3). As we

now briefly explain this issue is closely connected to a question concerning the geometry of the sign-clusters of ϕ̃ the
Gaussian free field on the cable system.

We first explain how the positivity of PG[x0
ϕ≥0←→ ∞] can be expressed in terms of the sign clusters of ϕ̃. Observe

that the law of (sign(ϕx))x∈T under PG can be generated by first considering the connected components of {|ϕ̃| > 0}
that meet T (they are P̃G-a.s. bounded by (2.6)), and then by drawing independent symmetric random signs for each of
these components. Such a representation can for instance be deduced from the strong Markov property of ϕ̃, combined
with an exploration starting from x0 of the successive components of {|ϕ̃| > 0} that meet T , see also Lemma 3.1 of [9].

Then, denote by T ′ the random tree obtained by collapsing the sites of T that belong to a same component of

{|ϕ̃| > 0}. From the above representation, the positivity of PG[x0
ϕ≥0←→ ∞] means that with positive P̃

G-measure, the
Bernoulli site percolation with parameter 1/2 on T ′ percolates (incidentally, this is indeed the case in the example
in (2) above, due to the massive branching of T ′ in this example).

From the above and Theorem 6.2 of [10], see also Theorem 5.15 of [12], the positivity of PG[x0
ϕ≥0←→ ∞] now

implies that with positive P̃
G-measure, the so-called branching number of T ′ (measuring the growth of T ′) is at

least 2.

Thus, as a companion to the above question concerning the positivity of PG[x0
ϕ≥0←→ ∞] under (2.3), one may also

wonder whether under (2.3) the branching number of the random tree T ′ is necessarily bigger or equal to 2.

3. A sufficient condition for h∗ <
√

2u∗

In this section, we introduce two conditions, cf. (3.1), (3.2) below, and we show in Theorem 3.4 that when u∗ is
non-degenerate these conditions imply that h∗ <

√
2u∗. An important step is contained in Proposition 3.2, where an

exponential decay of the point to root connection probability in {ϕ ≥ 0} is derived. As in the previous section, T is a
transient tree with root x0, and T ∞ stands for the sub-tree of vertices with an infinite line of descent, cf. (1.30).

We now introduce the two conditions mentioned above. The first condition states that

there exists A,M,δ > 0 such that for large n and all x ∈ T ∞ with |x| = n,∑
y∈(x0,x)

1
{
R∞

y ≤ A,dy− ≤ M
}≥ δn (3.1)

(recall the beginning of Section 1 for notation). The second condition is:

there exists B > 0 such that for large n and all x ∈ T ∞ with |x| = n,∑
y∈(x0,x]

1

R∞
y (1 + R∞

y )
≤ Bn. (3.2)

Remark 3.1.

(1) Note that when (3.1) holds, {y ∈ T ,R∞
y > A} cannot contain an infinite geodesic path in T , so that (3.1)

implies (2.3). In particular Corollary 2.3 holds as a consequence of (3.1).
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(2) As a result of the observations made above (1.1) and below (1.4) concerning the effect of moving the location
of the root, one sees that when (3.1) holds relative to x0, it will also hold relative to any different root x′

0 with possibly
different A′,M ′, δ′ > 0. The same observation applies to condition (3.2).

Our first main result consists in the derivation of an upper bound showing the exponential decay of PG[x0
ϕ≥0←→ x]

for large x in T ∞, when (3.1) holds. In essence we will use a strategy of “entropic repulsion” to prove this exponential
decay, see [7], p. 13, 14, with however a special twist, see Remark 3.3.

Proposition 3.2. Assume (3.1). Then, there exists κ(A,M,δ) > 0 such that

for large n and all x ∈ T ∞ with |x| = n, PG[x0
ϕ≥0←→ x] ≤ 2e−κn. (3.3)

Proof. For x ∈ T with |x| = n, we write x0, x1, . . . , xn for the geodesic path in T from x0 to x. Looking at (3.1), we
see that when x ∈ T ∞ and |x| is large, one of the two sums corresponding to y ∈ (x0, x) with y = xk , k even, or k

odd, is at least δ
2 |x|. Hence, we can find n0 ≥ 10, such that for all x ∈ T ∞ with |x| ≥ n0,

there is a subset Ix ⊆ [x2, x) with |Ix | ≥ δ

3
n, and y �= y′ ∈ Ix =⇒ d

(
y, y′)≥ 2,

and for each y ∈ Ix , R∞
y ≤ A and dy− ≤ M. (3.4)

Further, note that for x ∈ T ∞ with |x| = n ≥ n0

for all y ∈ Ix and y′ = (
y−)− (

so |y′| = |y| − 2
)
,R∞

y′ ≤ A + 2. (3.5)

Then, for x in T ∞, with |x| ≥ n0, we define the subsets in [x0, x]
Jx = Ix ∪ {(

y−)−;y ∈ Ix

}
and Kx = {

y−;y ∈ Ix

}
. (3.6)

The sites in Ix are at mutual distance at least 2, and we thus see that for x ∈ T ∞, with |x| = n ≥ n0⎧⎪⎪⎪⎨⎪⎪⎪⎩
(i) Jx ∩ Kx = φ, |Jx | ≥ δ

3n, |Kx | ≥ δ
3n,

(ii) for all y ∈ Jx , R∞
y ≤ A + 2,

(iii) for all y ∈ Kx , both neighbors of y in [x0, x] belong to Jx,

(iv) for all y ∈ Kx , dy ≤ M.

(3.7)

We now use a strategy in the spirit of the proof of “entropic repulsion estimates” in p. 13, 14 of [7] to bound

P
G[x0

ϕ≥0←→ x].
We consider x ∈ T ∞ with |x| = n ≥ n0 and introduce the event

Fx =
{

for at least
δ

6
n sites y ∈ Kx,ϕy− ≤ 1 and ϕy+ ≤ 1

}
, (3.8)

where y+ stands for the only descendant of y ∈ Kx in [x0, x] (so y−, y+ are the two neighbors of y in [x0, x]). We

will show that the probabilities of {x0
ϕ≥0←→ x} ∩ Fx and of {x0

ϕ≥0←→ x} \ Fx decay exponentially in |x|, see (3.16) and
(3.22). Note that by (3.7)(iii) the event Fx only depends on the restrictions of ϕ to Jx :

Fx ∈ σJx

(
see (1.7) for notation

)
. (3.9)

By the Markov property of the Gaussian free field, we find that

under PG, conditionally on σJx , (ϕy)y∈Kx are independent and (3.10)

distributed as ay + ξy , where
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ay = Ey

[
HJx < ∞, ϕ(XHJx

)
]
, and (3.11)

ξy is a centered Gaussian variable with variance (3.12)

gT \{y−,y+}(y, y) = the effective resistance from y to
{
y−, y+}∪ {∞} (3.7)(iv)≥ (1 + M)−1.

We introduce the shorthand notation

Ax = {
ϕy ≥ 0; for all y ∈ [x0, x]}(= {x0

ϕ≥0←→ x}). (3.13)

Then, as an application of (3.10)–(3.12), we find that

P
G[Ax] = P

G[Ax \ Fx] + P
G[Ax ∩ Fx] with

P
G[Ax ∩ Fx]

(3.10)−(3.12)≤ E
G

[
Fx,

∏
y∈Kx

P ξy [ay + ξy ≥ 0]
]
, (3.14)

where ξy has the distribution from (3.12) under P ξy .
Note that for each y ∈ Kx for which ay ≤ 1 holds, we have

P ξy [ay + ξy ≥ 0] ≤ P ξy [1 + ξy ≥ 0] = 1 − P ξy [ξy ≤ −1]
(3.12)≤ 1 − P Y [Y ≥ √

1 + M], where Y is N(0,1)-distributed. (3.15)

By definition of the event Fx in (3.8), on Fx there are at least δ
6n sites y ∈ Kx such that ay ≤ 1. Hence, we see that

P
G[Ax ∩ Fx] ≤ (

1 − P Y [Y ≥ √
1 + M]) δ

6 n
. (3.16)

We will now bound P
G[Ax \ Fx], i.e. the first term in the right-hand side of the first line of (3.14). On Ax \ Fx , there

are at least |Kx | − δ
6n ≥ δ

6n sites y ∈ Kx where max{ϕy− , ϕy−} ≥ 1 (both y−, y+ belong to Jx , cf. (3.7)(iii)). Since on
Ax , ϕ ≥ 0 on [x0, x], we see that

Ax \ Fx ⊆
{∑

y∈Jx

ϕy ≥ δ

12
n

}
(3.17)

(two “consecutive” y in Kx might share the same neighbor in Jy , whence the term δ
12n).

Note that
∑

y∈Jx
ϕy is a centered Gaussian variable under PG, hence we have

P
G[Ax \ Fx]

(3.17)≤ P
G

[∑
y∈Jx

ϕy ≥ δ

12
n

]
≤ exp

{
−1

2

(
δ

12

)2
n2

var(
∑

y∈Jx
ϕy)

}
, (3.18)

and we can express the variance in the last term as

var

(∑
y∈Jx

ϕy

)
=

∑
y∈Jx

g(y, y) + 2
∑

y<y′inJx

g
(
y, y′)

(1.11)=
∑
y∈Jx

g(y, y)

(
1 + 2

∑
y′>y,y′∈Jx

∏
y<y′′≤y′

αy′′
)

, (3.19)

where the notation y < y′ means that y ∈ [x0, y
′) and y < y′′ ≤ y′ is defined in a similar fashion. Note that for y′′ ∈ Jx ,

by (3.7)(ii) we have R∞
y′′ ≤ A + 2 and therefore

αy′′ ≤ αA
def= A + 2

A + 3
, for all y′′ ∈ Jx. (3.20)
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Since αy′′ ≤ 1, we can restrict the product in the last term of (3.19) to the y′′ ∈ Jx and obtain the upper bound

var

(∑
y∈Jx

ϕy

)
≤

∑
y∈Jx

g(y, y)

(
1 + 2

∑
≥1

α
A

)
, and since R∞

y ≤ A + 2 on Jx

(1.9)≤ |Jx |(A + 2)

(
1 + 2

αA

1 − αA

)
≤ n(A + 2)(2A + 5). (3.21)

Coming back to (3.18) we find

P
G[Ax \ Fx] ≤ exp

{
−1

2

δ2

144

n

(A + 2)(2A + 5)

}
. (3.22)

Collecting (3.16) and (3.22), and coming back to (3.14), we see that for all x ∈ T ∞ with |x| = n ≥ n0, we have

P
G[x0

ϕ≥0←→ x] ≤ (
1 − P Y [Y ≤ −√

1 + M]) δ
6 n + exp

{
−1

2

δ2

144

n

(A + 2)(2A + 5)

}
. (3.23)

The claim (3.3) readily follows. �

Remark 3.3. In the first inequality of (3.18), it is important that we bound P
G[Ax \ Fx] in terms of a deviation of∑

Jx
ϕy and not of

∑
(x0,x) ϕy . The point is the following. Whereas the variance of

∑
Jx

ϕy grows at most linearly
in n, as crucially shown in (3.21), the variance of

∑
(x0,x) ϕy may grow faster than linearly in n, due to the presence

of long stretches where, for instance, dy = 1 and αy is close to 1. A faster than linear growth of the variance would
destroy the exponential decay we obtain in (3.22).

We now come to the main result of this section. The proof uses the coupling between the Gaussian free field and
random interlacements stated in (2.20) of Corollary 2.3.

Theorem 3.4. Assume that 0 < u∗ < ∞ and (3.1), (3.2) hold, then

(0 ≤)h∗ <
√

2u∗. (3.24)

Proof. In view of (1.31), (1.39) and (1.37), we can assume that T = T ∞. With κ as in (3.3) and B as in (3.2), we
consider

0 < u < u∗ where u = u∗ − ρ with ρ = min

(
u∗
2

,
κ

8B

)
. (3.25)

We will show that

h∗ ≤ √
2u(<

√
2u∗), (3.26)

and the claim (3.24) will follow.
We use the same notation CVu

(x0) as in (1.34). Since u < u∗, the event

Px0,u = {x0
Vu←→ ∞}= {∣∣CVu

(x0)
∣∣= ∞}

has positive P
I -measure. (3.27)

On the event Px0,u, CVu
(x0) is an infinite sub-tree of T , rooted at x0. However, CVu

(x0) is “thin.” Specifically, if we
perform an independent Bernoulli site percolation on the tree CVu

(x0) with parameter px,2ρ , for x ∈ CVu
(x0), in the

notation of (1.35), (1.36), the resulting connected component of x0 under the joint law of Vu and the above Bernoulli
percolation is that of the cluster CVu+2ρ

. Since u + 2ρ > u∗, cf. (3.25), this cluster is a.s. finite. As a consequence,

on an event P̃x0,u ⊆Px0,u with P
I (Px0,u \ P̃x0,u) = 0, a.s. for the above

Bernoulli site percolation the open cluster of x0 in CVu
(x0) is finite. (3.28)
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Let us describe how the proof now proceeds. We will use the above statement expressing the thinness of CVu
(x0)

when P̃x0,u occurs, to construct a sequence of cut-sets Cn of CVu
(x0) tending to infinity, along which

∑
x∈Cn

e− 3
4 κ|x|

tends to 0, see (3.32). By the exponential decay shown in (3.3) of Proposition 3.2 and a union bound, this will imply
that on P̃x0,u the connected component of x0 in {ϕ ≥ 0} ∩ CVu

(x0) is P
G-a.s. finite, see (3.33). With the help of the

coupling in (2.20), it will then be a simple matter to infer that PG-a.s., the connected component of x0 in {ϕ >
√

2u}
is finite and the claim (3.26) will follow. With this strategy in mind, we now proceed with the proof.
As mentioned in (1.41), by Corollary 5.25 of [12], we know that on P̃x0,u,

CVu

(x0) endowed with the weights c2ρ(e), for e = {
x−, x

}
, x ∈ CVu

(x0) \ {x0},
is a recurrent network. (3.29)

By Corollary 4.2 of [10], it then follows that on P̃x0,u for any summable sequence of positive numbers wm > 0, m ≥ 1,

one can find a sequence of cut-sets Cn,n ≥ 1, of CVu
(x0), with d(x0,Cn) −→

n
∞, such that

lim
n

∑
x∈Cn

w|x|e
−2ρ

∑
y∈(x0,x] 1

R∞
y (1+R∞

y )
(
1 − e

−2ρ 1
R∞

x (1+R∞
x )

)−1 = 0. (3.30)

We apply this observation with the choice

wm = e− κ
2 m, m ≥ 1

(
and κ as in (3.3)

)
, (3.31)

and consider the corresponding sequence of cut-sets Cn, n ≥ 1 of CVu
(x0). By (3.2) and (3.30) we see that on P̃x0,u

lim
n

∑
x∈Cn

e− κ
2 |x|−2ρB|x| = 0

(
record for later use that

κ

2
+ 2ρB

(3.25)≤ 3

4
κ

)
. (3.32)

Thus, on P̃x0,u, for large n,

P
G
[
x0

ϕ≥0←→ ∞ in CVu

(x0)
]≤

∑
x∈Cn

P
G[x0

ϕ≥0←→ x] (3.3)≤ 2
∑
x∈Cn

e−κ|x| (3.32)−→
n→∞ 0. (3.33)

This shows that

E
I
[
Px0,u,P

G
[
x0

ϕ≥0←→ ∞ in CVu

(x0)
]]= 0. (3.34)

As observed in Remark 3.1(1), condition (3.1) implies that (2.20) holds. Choosing B = (0,∞) in (2.20), we see that

P
G[x0

ϕ>
√

2u←→ ∞] (2.20)≤ P
I ⊗ P

G[x0
Vu∩{ϕ>0}←→ ∞]

= EI
[
Px0,u,P

G
[
x0

ϕ≥0←→ ∞ in CVu

(x0)
]] (3.34)= 0. (3.35)

This proves that (3.26) holds and concludes the proof of the theorem. �

We will later apply Theorem 3.4 in Section 5 when T is the typical realization of a super-critical Galton–Watson
process conditioned on non-extinction, see Theorem 5.4.

4. A sufficient condition for h∗ > 0

In this section we provide a sufficient condition which ensures that h∗ > 0. The main result appears in Proposition 4.2.
We provide a first application of the results of this and the previous section in Corollary 4.5 and in Remark 4.6.
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We begin with some notation and a lemma that will be useful in the proof of Proposition 4.2. For h ∈R, we denote
by πh the multiplication operator by 1[h,∞), so that for f function on R, one has

πhf = 1[h,∞)f. (4.1)

We recall the notation Qα from (1.6).

Lemma 4.1. If f is a bounded, non-decreasing, right-continuous function on R, which vanishes on (−∞,0), then

for any 0 < α ≤ 1, π0Q
αf has the same properties as noted above for f , (4.2)

for any a ∈R, π0Q
αf (a) is a non-decreasing function of α ∈ (0,1]. (4.3)

Proof. The claim (4.2) is immediate by direct inspection of (1.6). We now prove (4.3). We can find a positive measure
with finite mass, supported on [0,∞), such that f (a) = μ([0, a]), for a ≥ 0 (and f (a) = 0, for a < 0). Hence, we see
that for a ∈R,

Qαf (a)
(1.6)= EY

[
f (aα + √

αY)
]= EY

[∫
[0,∞)

1{aα + √
αY ≥ b}dμ(b)

]
=

∫
[0,∞)

P Y

[
Y ≥ b√

α
− √

αa

]
dμ(b). (4.4)

Now, when a ≥ 0, b ≥ 0, the function α > 0 �→ P Y [Y ≥ b√
α

−√
αa] is non-decreasing, and the claim (4.3) follows. �

The main result of this section comes next.

Proposition 4.2. Assume that the tree T contains an infinite binary sub-tree T rooted at x0, such that for some M > 0,

sup
x∈T

dx ≤ M. (4.5)

Then, T is transient and

h∗ > 0. (4.6)

Remark 4.3. The example in Remark 2.4(2), where one moves the root to its second neighbor, shows that the sole
existence of an infinite binary tree rooted at x0 does not guarantee that h∗ > 0 (in this example we have 0 = h∗ =√

2u∗).

Proof of Proposition 4.2. The transience of T is immediate. We introduce by analogy with (1.20), (1.21), T n = {x ∈
T ; |x| = n} = Tn ∩ T , Bn = {x ∈ T ; |x| ≤ n} = Bn ∩ T , as well as the function qn

x,h, for n ≥ 0, x ∈ Bn, h ∈ R, via{
qn

x,h = 1(−∞,h), for x ∈ T n,

qn
x,h = 1(−∞,h) + 1[h,∞)

∏
y−=x,y∈T Qα(qn

y,h), for x ∈ Bn−1,
(4.7)

where

α = 1

M + 1
≥ αx = R∞

x

1 + R∞
x

, for x ∈ T (4.8)

(since R∞
x ≥ 1

M
, by (1.10)(ii) and (4.5)).
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As in Lemma 1.3, we see that for any x ∈ T , h ∈R, the functions qn
x,h increase in n ≥ |x| to a function qx,h, which

is non-increasing, [0,1]-valued, equal to 1 on (−∞, h), with only possible discontinuity at h, and such that

qx,h = 1(−∞,h) + 1[h,∞)

∏
y−=x,y∈T

Qα(qy,h) (4.9)

(although we will not explicitly need it, it is also straightforward to see that qx,h = qx0,h
for all x ∈ T ).

As we now explain, when h ≥ 0,

qx,h(a) ≥ qx,h(a), for all a ∈ R and x ∈ T . (4.10)

Indeed, for any n ≥ 1,

qx,h ≥ 1(−∞,h) = qn
x,h, when x ∈ T n, (4.11)

and for x ∈ Bn−1,

qn
x,h

(1.21)= 1(−∞,h) + 1[h,∞)

∏
y−=x

Qαy
(
qn
y,h

)
≤ 1(−∞,h) + 1[h,∞)

∏
y−=x,y∈T

Qαy
(
qn
y,h

)
≤ 1(−∞,h) + 1[h,∞)

∏
y−=x,y∈T

Qα
(
qn
y,h

)
, (4.12)

where in the last step we have used the fact that α ≤ αy , for y ∈ T , see (4.8), and applied (4.3) of Lemma 4.1 to deduce
that π0Q

α(1 − qn
y,h) ≤ π0Q

αy (1 − qn
y,h), whence πhQ

αy (qn
y,h) ≤ πhQ

α(qn
y,h) (recall that h ≥ 0).

Combining (4.11), with (4.9), (4.12), we see that the inequality qx,h ≥ qn
x,h for x ∈ T n gets propagated to all

x ∈ Bn. By Lemma 1.3, letting n tend to infinity we obtain (4.10).
By (1.26) we know that

P
G[x0

ϕ≥h←→ ∞] = 1 −E
G
[
qx0,h(ϕx0)

]
. (4.13)

We will show that for small h > 0, the right-continuous non-increasing function qx0,h
is not identically equal to 1, so

that the same holds for qx0,h by (4.10), and hence the probability in (4.13) is positive. In essence, the proof that qx0,h

is not identically equal to 1 will rely on the fact that the largest eigenvalue λh of the Hilbert–Schmidt operator Lh

defined in (4.16) below, is bigger than 1 for small h > 0, see (4.20). This operator is defined on L2(ν), where ν is a
centered Gaussian law on R, which we now introduce.

We denote by ν the centered Gaussian law on R with variance

σ 2 = α

1 − α2
. (4.14)

Note that (see also (3.10)–(3.16) of [17])

Qα is a self-adjoint, non-negative Hilbert–Schmidt operator on L2(ν). (4.15)

We then consider the self-adjoint, non-negative, Hilbert–Schmidt operator on L2(ν) defined by

Lh = 2πhQ
απh, for h ∈R, (4.16)

as well as its largest eigenvalue (which coincides with its operator norm)

λh = ‖Lh‖L2(ν)→L2(ν). (4.17)
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The proof of Proposition 3.1 of [17] shows that

h → λh is a decreasing homeomorphism from R onto (0,2). (4.18)

Moreover, π0Q
απ0(1[0,∞))(a) = P Y [αa + √

αY ≥ 0] > 1
2 for a > 0, so that

λ0 ≥ (L01[0,∞),1[0,∞))L2(ν)/‖1[0,∞)‖2
L2(ν)

> 1. (4.19)

It thus follows that

λh > 1 for small h > 0. (4.20)

One can then proceed as in the proof of (3.33) of [17] to deduce that

γ h = 1 −
∫ ∞

h

dν(a)qx0,h
(a) > 0, when λh > 1. (4.21)

This shows that for small h > 0, qx0,h
and hence qx0,h by (4.10), are not identically equal to 1. As explained below

(4.13), it follows that PG[x0
ϕ≥h←→ ∞] > 0 for small h > 0, and hence h∗ > 0. This proves (4.6). �

Remark 4.4. When M in (4.5) is chosen as an integer bigger or equal to 2, the quantity γ h in (4.21) can be interpreted
as the probability that the Gaussian free field ϕ on an (M + 2)-regular tree, when restricted to a given “forward binary
tree” rooted at some point, is such that the root belongs to an infinite connected component of {ϕ ≥ h} (see also
Section 3 of [17]).

As an application of Theorem 3.4 and Proposition 4.2 we have

Corollary 4.5. Assume that the rooted tree T has bounded degree, contains an infinite binary sub-tree, and
supx∈T R∞

x < ∞, then

0 < h∗ <
√

2u∗ < ∞. (4.22)

Proof. By the observation below (1.4), moving the root of T if necessary, we can assume that the infinite binary tree
is rooted at x0, the root of T . The R∞

x , x ∈ T , are uniformly bounded, and bounded away from 0 by (1.10)(ii). It is
now straightforward from (1.34), (1.36) to infer that 0 < u∗ < ∞, see also Theorem 5.1 of [20]. Conditions (3.1) and
(3.2) are immediate and the assumptions of Proposition 4.2 are fulfilled as well. The claim (4.22) now follows from
Theorem 3.4 and Proposition 4.2. �

Remark 4.6. In particular, when T is an infinite tree of bounded degree such that outside a finite set, all vertices have
degree at least 3, the assumptions of the above corollary are fulfilled by T ∞, and in view of (1.31), (1.39) one has

0 < h∗ <
√

2u∗ < ∞. (4.23)

5. Application to super-critical Galton–Watson trees

We will now apply the results of the previous sections to the case where T is a super-critical Galton–Watson tree
conditioned on non-extinction, and the root x0 is the initial ancestor. Our main results appear in Theorems 5.4 and
5.5. An important step is carried out in Proposition 5.2 where it is checked that condition (3.1) holds almost surely.

Theorem 5.4 establishes the inequality h∗ <
√

2u∗ and the exponential decay in |x| of P
G[x0

ϕ≥0←→ x] in a broad
enough generality. Theorem 5.5 provides a sufficient condition for h∗ > 0.
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We first introduce some notation and recall various known facts. We denote by ν the offspring distribution and
assume that

m =
∞∑

k=0

kν(k) ∈ (1,∞) (5.1)

(we are in the super-critical regime). We denote by P ν the probability governing the Galton–Watson tree and by f the
generating function of ν, which is strictly convex and equals

f (s) =
∞∑

k=0

skν(k), 0 ≤ s ≤ 1. (5.2)

If q stands for the extinction probability P ν[|T | < ∞], then q ∈ [0,1) is the smallest fixed point of f on [0,1], the
only other fixed point being s = 1. Moreover, conditioned on non-extinction, i.e. under P ν∗ [·] = P ν[·||T | = ∞], the
sub-tree T ∞ of sites with an infinite line of descent corresponds to a Galton–Watson tree with offspring distribution
ν∞ having the generating function

f∞(s) = f (q + s(1 − q)) − q

1 − q
, 0 ≤ s ≤ 1, (5.3)

so that ν∞(0) = 0, and ν∞ has same mean m as ν, see for instance Proposition 5.28 of [12]. In addition, one knows
that P ν∗ -a.s., T (and T ∞) are transient, see Theorem 3.5 and Corollary 5.10 of [12].

It is further known from Section 3 of [19], that u∗ is P ν∗ -a.s. constant and by Theorem 1 and (1.5)′ of [19], that

u∗ ∈ (0,∞) is characterized as the unique solution of f ′∞
(
L(u)

)= 1, where

L(u) = Eν∗
[
e−u(1−αx0 )

](= Eν∞[
e−u(1−αx0 )

])
, for u ≥ 0 (5.4)

(Eν∗ , Eν∞ stand for the respective P ν∗ and P ν∞ -expectations).
As we now explain, conditioned on non-extinction, h∗ is almost surely constant. We will later see, cf. (5.8), that

this constant is finite.

Lemma 5.1. h∗(T ) ≥ 0 is almost everywhere constant under P ν∗ + P ν∞ .

Proof. By (1.31) and the observation below (5.2), h∗(T ) has same law under P ν∗ and P ν∞ . We thus only need to
consider P ν∗ . For h ∈ R, we introduce the event (see Remark 1.4 for the notation)

Ah = {
T ;qT

x0,h
is identically 1

}
.

This event (in the space of Galton–Watson trees) is hereditary (or in the terminology of [12], p. 136, the property
it describes is inherited). Namely, all finite Galton–Watson trees belong to Ah (by (1.24)), and when T ∈ Ah, the
equation

qT
x0,h

(1.23)= 1(−∞,h) + 1[h,∞)

∏
|x|=1

Qαx
(
qT
x,h

)
implies that qT

x,h are identically equal to 1 for all |x| = 1 in T , and by (1.29) we see that Tx ∈ Ah for all |x| = 1 in T .
It now follows by Proposition 5.6 of [12] that P ν∗ [Ah] ∈ {0,1} for all h ∈ R.

By (1.27) we know that for any h in R

P ν∗ -a.s.,
{
h∗(T ) < h

}⊆ Ah and
{
h∗(T ) > h

}⊆ Ac
h. (5.5)

The random variable h∗(T ) is non-negative, see (1.19), so that P ν∗ [Ac
h] = 1 for all h < 0. If one sets

h0 = inf
{
h ∈R;P ν∗ [Ah] = 1

}
(with the convention infφ = ∞), (5.6)

it is now routine to see with (5.5) and the above 0-1 law that P ν∗ -a.s., h∗(T ) = h0. This proves Lemma 5.1. �
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We will now see that condition (3.1) is P ν∗ -a.s. fulfilled. In particular, this implies that P ν∗ -a.s. the conclusions of
Corollary 2.3 (see Remark 3.1(1)) and of Proposition 3.2 hold.

Proposition 5.2. There exist A,M,δ > 0 such that P ν∗ -a.s., for large n and all x ∈ T ∞ with |x| = n,∑
y∈(x0,x)

1
{
R∞

y ≤ A,dy− ≤ M
}≥ δn. (5.7)

In particular, the P ν∗ -a.s. constant quantities h∗ and u∗ satisfy

0 ≤ h∗ ≤ √
2u∗ < ∞. (5.8)

Proof. Once we prove (5.7), the second claim is by Remark 3.1(1) a direct consequence of Corollary 2.3, together
with Lemma 5.1 and (5.4). We thus only need to prove (5.7), which pertains to T ∞. By the observation below (5.2)
we can work with P ν∞ in place of P ν∗ , so that T = T ∞, P ν∞ -a.s.. We are going to show that

for all η > 0, there exists M > 0 such that P ν∞ -a.s., for large n and all

x ∈ T with |x| = n,
∑

y∈[x0,x)

1{dy ≥ M} ≤ ηn, (5.9)

there exists η′ ∈ (0,1) and A > 0 such that P ν∞ -a.s., for large n and all

x ∈ T with |x| = n,
∑

y∈(x0,x)

1
{
R∞

y ≤ A
}≥ (

1 − η′)n. (5.10)

Then, choosing δ, η > 0 such that η′ + η + δ < 1, it will follow that (5.7) holds with P ν∞ in place of P ν∗ and, as
mentioned above, this will prove our claim.

We start with the proof of (5.9). We denote by P the measure on Galton–Watson trees endowed with a spine
denoted by wi , i ≥ 0 (so w0 = x0 and w−

i+1 = wi , for each i ≥ 0), such that under P the individuals on the spine
reproduce with the size-biased distribution (recall that ν and ν∞ have same mean m)

ν(k) = k

m
ν∞(k), k ≥ 1, (5.11)

the individuals off the spine reproduce with distribution ν∞, and at each step, the next element wi+1 on the spine is
chosen uniformly among the offspring of wi (we refer to Chapter 1 Section S3 of [1], or to Chapter 12 Section 1 of
[12] for details).

Then, for M,η,λ > 0 and n ≥ 1, we have

P ν∞
[

for some x in T with |x| = n,
∑

y∈[x0,x)

1{dy ≥ M} > ηn

]

≤ Eν∞
[∑

|x|=n

1

{ ∑
y∈[x0,x)

1{dy ≥ M} > ηn

}]

= mnP

[
n−1∑
i=0

1{dwi
≥ M} > ηn

] exponential
Chebyshev≤ mne−ληnE

[
eλ

∑n−1
i=0 1{dwi

≥M}] (5.12)

and we made use of Lemma 1.3.2 of [1] for the equality on the third line. The dwi
, i ≥ 0, are i.i.d. and distributed as

ν under P . Hence, we have (E stands for the P -expectation):

E
[
eλ

∑n−1
i=0 1{dwi

≥M}]= E
[
e
λ1{dx0 ≥M}]n (5.11)= m−n

(
m + (

eλ − 1
)
Eν∞[dx0, dx0 ≥ M])n. (5.13)
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If we now choose λ0 > 0 such that

e
λ0
2 η > m, (5.14)

and M0 (large) such that

e
λ0
2 η > m + (

eλ0 − 1
)
Eν∞[dx0 , dx0 ≥ M0], (5.15)

we find after insertion in the last line of (5.12) that

P ν∞
[

for some x in T with |x| = n,
∑

y∈[x0,x)

1{dy ≥ M0} > ηn

]
≤ e− λ0

2 ηn. (5.16)

The claim (5.9) follows by Borel–Cantelli’s lemma.
We then turn to the proof of (5.10). We note that if x ∈ T and y ∈ (x0, x), we can set

R̃y =
{

∞, if dy = 1,

min{1 + R∞
y′ ;y′ ∈ Ty and y′ /∈ [y, x]} otherwise.

(5.17)

Then, clearly R∞
y ≤ R̃y . If we now choose A large enough such that P ν∞[1 + R∞

x0
≤ A] > 0, it follows from (2.16) in

Lemma 1 of [8], that for some η′ ∈ (0,1)

P ν∞
[

min|x|=n

∑
y∈(x0,x)

1{R̃y ≤ A} ≤ (
1 − η′)n] decays geometrically in n. (5.18)

By Borel–Cantelli’s lemma, we see that

P ν∞-a.s. for large n and all x ∈ T with |x| = n,∑
y∈(x0,x)

1
{
R∞

y ≤ A
}≥

∑
y∈(x0,x)

1{R̃y ≤ A} ≥ (
1 − η′)n. (5.19)

The claim (5.10) follows. This completes the proof of Proposition 5.2. �

We will now see that the existence of some finite exponential moment of the offspring distribution ν ensures
that (3.2) holds P ν∗ -almost surely. This is the last step before Theorem 5.4, which is in essence an application of
Theorem 3.4 to the present set-up.

We introduce the condition

for some γ > 0,
∑
k≥0

eγ kν(k) < ∞. (5.20)

Under (5.20) the generating function f in (5.2) has an analytic extension to a disc in the complex plane centered at
the origin with radius bigger than 1. In view of (5.3) a similar property holds for f∞, and hence

for some γ∞ > 0,
∑
k≥1

eγ∞kν∞(k) < ∞. (5.21)

Proposition 5.3. When (5.20) holds, then there exists B > 0, such that P ν∗ -a.s., for large n and all x ∈ T ∞ with
|x| = n,∑

y∈(x0,x]

1

R∞
y (1 + R∞

y )
≤ Bn. (5.22)
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Proof. As in the proof of Proposition 5.2, we can work with P ν∞ in place of P ν∗ , so that P ν∞ -a.s., T = T ∞. We first
observe that for B > 0 and n ≥ 1,

P ν∞
[

for some x with |x| = n,dx ≥ B

2
n

]
≤ mnP ν∞

[
dx0 ≥ B

2
n

]
≤ mne−γ∞ B

2 nEν∞[
eγ∞dx0

]
. (5.23)

Moreover, with P as below (5.10), and wi, i ≥ 0, the spine, we have

P ν∞
[

for some x with |x| = n,
∑

y∈[x0,x)

dy ≥ B

2
n

]

≤ Eν∞
[∑

|x|=n

1

{ ∑
y∈[x0,x)

dy ≥ B

2
n

}]
= mnP

[
n−1∑
i=0

dwi
≥ B

2
n

]
. (5.24)

Under P the variables dwi
, i ≥ 0, are i.i.d. ν-distributed, with ν the size-biased distribution in (5.11). By the exponen-

tial Chernov bound, we find that

P

[
n−1∑
i=0

dwi
≥ B

2
n

]
≤ exp

{
−nI

(
B

2

)}
, where for a ≥ 0,

I (a) = sup
λ≥0

{
λa − logE

[
eλdx0

]}≥ γ∞
2

a − b,

with b = logE
[
e

γ∞
2 dx0

](
< ∞ by (5.21)

)
. (5.25)

If we now choose B0 large enough so that γ∞
2 B0 > logm and I (

B0
2 ) > logm, then we see that the probabilities in

(5.23) and (5.24) are summable in n. Hence, by Borel–Cantelli’s lemma, we find that P ν∞ -a.s., for large n and all
x ∈ T with |x| = n,∑

y∈(x0,x]
dy ≤ B0n. (5.26)

Since (R∞
y (1 + R∞

y ))−1 ≤ dy by (1.10)(ii), this proves Proposition 5.3. �

We now come to one of the main results of this section, which states that for a super-critical Galton–Watson tree
conditioned on non-extinction if the offspring distribution has some finite exponential moment then h∗ <

√
2u∗. More

precisely, one has

Theorem 5.4. The deterministic critical values h∗ and u∗ attached to a super-critical Galton–Watson tree conditioned
on non-extinction, for which the offspring distribution satisfies (5.1), (5.20), are such that

0 ≤ h∗ <
√

2u∗ < ∞. (5.27)

In addition, under (5.1) alone, there exists β > 0 such that P ν∗ -a.s.,

for large n and all x ∈ T with |x| = n, P
G[x0

ϕ≥0←→ x] ≤ e−βn. (5.28)

Proof. As recalled in (5.4), we know that 0 < u∗ < ∞. Moreover, by Propositions 5.2 and 5.3, we see that P ν∗ -a.s.,
the conditions (3.1) and (3.2) are fulfilled. The claim (5.27) now follows from Theorem 3.4.

Let us now prove (5.28). By Propositions 5.2 and 3.2 we know that (5.28) holds with T replaced by T ∞ and e−βn by
2e−κn. When the extinction probability q ∈ [0,1) vanishes, (5.28) readily follows. Otherwise, we set m′ = f ′(q) < 1
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and choose η ∈ (0,1) so that m = m′(1−η)mη < 1. For n ≥ 1, we set ñ = [ηn] and for x ∈ T such that |x| = n, we

write x̃ for the site in [x0, x] such that |̃x| = ñ. Clearly, PG[x0
ϕ≥0←→ x] ≤ P

G[x0
ϕ≥0←→ x̃], and by the above mentioned

exponential decay along T ∞, the claim (5.28) will follow (with say β = 1
2ηκ) once we show that

P ν∗ -a.s. for large n and all x ∈ T with |x| = n, x̃ ∈ T ∞. (5.29)

To see this last point, we note that the Galton–Watson tree conditioned on extinction has mean offspring m′, see
Lemma 1.2.5 of [1] or Proposition 5.28 of [12], and

P ν
[
for some x ∈ T with |x| = n, x̃ /∈ T ∞]

≤ Eν

[∑
|y|=ñ

(
1
{|Ty | < ∞} ∑

|x|=n

1{x ∈ Ty}
)]

= mñqm′n−ñ ≤ qmn.

This last geometric series is convergent and (5.29) follows by Borel–Cantelli’s lemma. This concludes the proof of
Theorem 5.4. �

We will now introduce a sufficient condition which implies that h∗ > 0 for the super-critical Galton–Watson tree
conditioned on non-extinction under consideration. The argument we use is somewhat in the spirit of [19] for random
interlacements on Galton–Watson trees, but the situation is more complicated in the case of the Gaussian free field.

Theorem 5.5. Assume that the mean m of the offspring distribution ν satisfies

m > 2, (5.30)

then, almost surely on non-extinction, i.e. P ν∗ -a.s.,

h∗ > 0. (5.31)

Proof. By (1.31) it suffices to consider T ∞ in place of T , and by the observation below (5.2) to replace ν by ν∞, so
that P ν∞ -a.s., T ∞ = T , noting that ν∞ has the same mean m as ν.

In essence, the strategy of the proof is to obtain for small h > 0, uniformly in n, a positive lower bound for the
quantity γ n

h defined below (5.35), which involves the function rn
x0,h

(·). From this lower bound we will infer that P ν∞ -
a.s., the function qn

x0,h
(·) is not identically equal to 1, so that h∗ ≥ h(> 0). The above mentioned lower bound will

stem from an inequality based on the branching property (see (5.4) for the definition of L(·))

m′γ n
h > f∞,M

(
L
(

h2

2

))
− f∞,M

(
L
(

h2

2

)
− γ n

h

)
,

where m′ ∈ (2,m), and h > 0 is such that the derivative of the truncated generating function f∞,M (see (5.33)) is
bigger than m′ in a neighborhood of L(h2/2).

Let us now proceed with the proof. Our first objective is to establish the key identity that appears in (5.36) below.
For h ∈ R, n ≥ 0, and x in T with |x| ≤ n (from now on we assume that T ∞ = T ), we consider in the notation of
(1.21) the function rn

x,h(a) = 1 − qn
x,h(a), for a ∈ R, so that

{
rn
x,h = 1[h,∞), for x ∈ Tn,

rn
x,h = 1[h,∞)(1 −∏

y−=x(1 − Qαy (rn
y,h))), for x in T , with |x| < n(

and rn
x,h decreases with n and tends to rx,h = 1 − qx,h, as n → ∞, by Lemma 1.3

)
.
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Multiplying both members of the last equality by e
− a2

2R∞
x = ∏

y−=x e
− a2

2(1+R∞
y ) , we obtain for x in T with |x| < n and

a in R,

e
− a2

2R∞
x rn

x,h(a) = 1[h,∞)(a)

( ∏
y−=x

e
− a2

2(1+R∞
y ) −

∏
y−=x

(
e
− a2

2(1+R∞
y ) − e

− a2

2(1+R∞
y ) Qαy

(
rn
y,h

)
(a)

))
. (5.32)

Recall that (1 + R∞
x0

)−1 = 1 − αx0 and L(u) = Eν∞[e−u(1−αx0 )] in the notation of (5.4). For M ≥ 1, we write

f∞,M(s) =
∑
k≤M

skν∞(k), 0 ≤ s ≤ 1. (5.33)

Choosing x = x0, and n + 1 in place of n in (5.32), and multiplying both members by the indicator function of the
event {dx0 ≤ M}, after P ν∞ -integration and using the branching property, we see that for h,a ∈ R, n ≥ 0, and M ≥ 1

Eν∞[
e
− a2

2R∞
x0 rn+1

x0,h
(a), dx0 ≤ M

]
= 1[h,∞)(a)

{
f∞,M

(
L
(

a2

2

))
− f∞,M

(
L
(

a2

2

)
− Eν∞[

e
− a2

2(1+R∞
x0

)
Qαx0

(
rn
x0,h

)
(a)

])}
. (5.34)

By (5.30) we can now choose a large M , s0 ∈ [0,1), and m′ ∈ (2,m) such that

f ′∞,M(s) > m′, for s0 ≤ s ≤ 1. (5.35)

With this choice of M , when a = h ≥ 0, we denote by γ̃ n
h the expectation on the left-hand side of (5.34) and by γ n

h

the expectation on the right-hand side so that

γ̃ n
h = f∞,M

(
L
(

h2

2

))
− f∞,M

(
L
(

h2

2

)
− γ n

h

)
, for n ≥ 0 and h ≥ 0. (5.36)

In addition (since rn
x0,h

(·) is non-decreasing)

γ n
h ≥ e− h2

2 Eν∞[
Qαx0

(
rn
x0,h

)
(h)

] (1.6)≥ e− h2
2 Eν∞[

rn
x0,h

(h)P Y [αx0h + √
αx0

Y ≥ h]]
≥ e− h2

2 Eν∞
[
dx0 ≤ M,rn+1

x0,h
(h)�

((
1√
αx0

− √
αx0

)
h

)]
> 0, (5.37)

with �(t) = P Y [Y > t], for t ∈R, and we have used that rn+1
x0,h

> 0 on [h,∞).

When {dx0 ≤ M}, we have α
−1/2
x0 ≤ c(M) by (1.10), (1.5). Note also that �(0) = 1/2 > 1/m′. We can thus find by

the definition of γ̃ n
h and (5.37) a small h > 0, such that

γ n
h >

1

m′ γ̃
n
h , for all n ≥ 0, as well as L

(
h2

2

)
≥ 1 + s0

2
. (5.38)

Since f ′∞,M(s) > m′ for s0 ≤ s ≤ 1 it follows from (5.36), (5.38) that γ n
h ≥ 1−s0

2 , for all n ≥ 0. Hence, by monotone
convergence, we find that

Eν∞[
e
− h2

2(1+R∞
x0

)
Qαx0 (rx0,h)(h)

]≥ 1 − s0

2
> 0. (5.39)

This proves that with positive P ν∞ -measure, qx0,h is not identically 1, and by the 0–1 law stated above (5.5) this
happens P ν∞ -almost surely. By the comment below (5.6) we see that that h∗ ≥ h. This proves (5.31), and concludes
the proof of Theorem 5.5. �
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Remark 5.6. Incidentally, Proposition 4.2 implies that h∗ > 0 for a binary branching, a case corresponding to
m = 2, which is not covered by Theorem 5.5. One can thus wonder about the nature of broader assumptions un-
der which Theorem 5.5 continues to hold. For instance, does h∗ > 0 hold almost surely on non-extinction as soon as
m > 1?

Appendix

In this appendix we provide for the reader’s convenience a proof along the argument of Theorem 2 of [2] showing that
h∗ ≥ 0 in the general set-up of transient weighted graphs.

We consider a locally finite, connected, transient weighted graph, with vertex set E, and symmetric weights cx,y =
cy,x ≥ 0, which are positive exactly when x ∼ y, i.e. when x and y are neighbors. We denote by g(x, y), x, y ∈ E, the
Green function, by (ϕx)x∈E the canonical Gaussian free field, and by P

G its distribution. The discrete time walk on
the weighted graph when located in x jumps to a neighbor y with probability cx,y/λx , where λx = ∑

x′∼x cx,x′ . It is
governed by the law Px . We use otherwise similar notation as in Section 1.

We consider a base point x0 ∈ E. We say that C ⊆ E is a contour surrounding x0 (in the terminology of [2]), when
there exists a finite connected set K ⊆ E containing x0 such that C = ∂K , or when C = {x0} and we set {x0} = ∂φ by
convention. Given a contour C surrounding x0, we write IntC = K for the unique finite connected set K containing
x0, such that C = ∂K , when C �= {x0}, or K = φ, when C = {x0} (when C �= {x0}, IntC is the connected component
of E \ C containing x0).

Given a finite family of contours Ci,1 ≤ i ≤ n surrounding x0, we define the maximal contour via

max{C1, . . . ,Cn} = ∂

(
n⋃

i=1

IntCi

)
, (A.1)

and observe that

max{C1, . . . ,Cn} ⊆
n⋃

i=1

Ci. (A.2)

We now consider a finite connected set U � x0, � = ∂U and U = U ∪�. Given h ∈ R, we introduce the disconnection
event

Dh
x0,U

= {x0 is not connected to � by a path in U where ϕ ≥ h}. (A.3)

Lemma A.1.

Dh
x0,U

= {ϕ, there is a contour C surrounding x0, with IntC ⊆ U , where ϕ < h}. (A.4)

Proof. Denote by D̃ the event on the right-hand side of (A.4). First note that D̃ ⊆ Dh
x0,U

. Indeed, if C is a contour

surrounding x0, with IntC ⊆ U and where ϕ < h, any path in U from x0 to � = ∂U will exit IntC at a point of
C where ϕ < h. Conversely, one has Dh

x0,U
⊆ D̃. Indeed, when Dh

x0,U
occurs, the connected component of {ϕ ≥ h}

containing x0 is contained in U and its outer boundary (understood as {x0} when this component is empty) yields a
contour C with IntC ⊆ U where ϕ < h. This proves the lemma. �

On the disconnection event Dh
x0,U

, we can thus define with (A.1)

Cmax
<h (U) = the maximal contour of the family of contours C surrounding x0 with

IntC ⊆ U, where ϕ < h. (A.5)

We recall the definition (0.3) of the critical value h∗.



200 A. Abächerli and A.-S. Sznitman

Proposition A.2.

h∗ ≥ 0. (A.6)

Proof. We will show that for any ε > 0,

sup
U

P
G
[
D−ε

x0,U

]
< 1 (A.7)

(U runs over the collection of finite connected sets containing x0).
This will imply that for any ε > 0, with positive P

G-probability the connected component of x0 in {ϕ ≥ −ε} is
infinite, and (A.6) will follow.

We thus prove (A.7). For C a contour surrounding x0, with IntC ⊆ U , we have by the Markov property of ϕ under
P

G (see for instance Proposition 2.3 of [18])

ϕx0 = hC + ξC where hC = Ex0

[
ϕ(XHC

)
]

and

ξC is N
(
0, g(IntC)(x0, x0)

)
-distributed and independent of σ(IntC)c (A.8)

(the notation is similar as in (1.7)).
By Lemma A.1 and (A.5), we see that for h = −ε and Cmax

<−ε a shorthand for Cmax
<−ε(U)

D−ε
x0,U

=
⋃
C

{
Cmax

<−ε = C
}
,

where C runs over the collection of contours surrounding x0, with IntC ⊆ U. (A.9)

We thus find that

0 = E
G
[
sign(ϕx0)

] (A.9)=
∑
C

E
G
[
sign(ϕx0),C

max
<−ε = C

]+E
G
[
sign(ϕx0),

(
D−ε

x0,U

)c]
, (A.10)

where C runs over the same family as in (A.9).
Note that the event {Cmax

<−ε = C} is σ(IntC)c -measurable, and by (A.8) we find that

E
G
[
sign(ϕx0),C

max
<−ε = C

]= E
G
[
sign(hC + ξC),Cmax

<−ε = C
]

= E
G

[(
2�

(
hC√

g(IntC)(x0, x0)

)
− 1

)
,Cmax

<−ε = C

]

≤ −
(

2�

(
ε√

g(x0, x0)

)
− 1

)
P

G
[
Cmax

<−ε = C
]
, (A.11)

where �(t) = P Y [Y ≤ t], for t ∈ R, with Y a N(0,1)-distributed variable, and we have used that hC ≤ −ε on
{Cmax

<−ε = C} and g(IntC)(x0, x0) ≤ g(x0, x0) for the last inequality of (A.11).
Coming back to (A.10), we see that

0 ≤ −
(

2�

(
ε√

g(x0, x0)

)
− 1

)∑
C

P
G
[
Cmax

<−ε = C
]+ 1 − P

G
[
D−ε

x0,U

]
(A.9)= −2�

(
ε√

g(x0, x0)

)
P

G
[
D−ε

x0,U

]+ 1. (A.12)

This shows that

P
G
[
D−ε

x0,U

]≤
(

2�

(
ε√

g(x0, x0)

))−1

(< 1), (A.13)

and proves (A.7). Our claim (A.6) follows. �



Level-set percolation for the Gaussian free field on a transient tree 201

Acknowledgements

We thank an anonymous referee for pointing out reference [8], which led to a simplification of the proof of Proposi-
tion 5.2.

References

[1] R. Abraham and J.-F. Delmas. An introduction to Galton–Watson trees and their local limits, 2015. Available at https://hal.archives-
ouvertes.fr/hal-01164661.

[2] J. Bricmont, J. L. Lebowitz and C. Maes. Percolation in strongly correlated systems: The massless Gaussian field. J. Stat. Phys. 48 (5/6)
(1987) 1249–1268. MR0914444
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