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Abstract. We show Green’s function asymptotic upper bound for the two-point function of weakly self-avoiding walk in d > 4,
revisiting a classic problem. Our proof relies on Banach algebras to analyse the lace-expansion fixed point equation and is simpler
than previous approaches in that it avoids Fourier transforms.

Résumé. Nous montrons une domination asymptotique de la fonction à deux points de la marche faiblement auto-évitante en di-
mension d > 4 par la fonction de Green, revisitant ainsi un problème classique. Notre preuve s’appuie sur des techniques d’algèbres
de Banach pour analyser le point fixe de l’équation de développement en lacets. Elle est plus simple que les approches précédentes
car elle ne passe pas par la transformée de Fourier.
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1. Introduction

The lace expansion made its debut in 1985 with a proof by Brydges and Spencer that weakly self-avoiding walk
(WSAW) has “Gaussian behaviour” in dimensions 5 and above [4]. It proved to be useful way beyond its initial
application, primarily in work by Hara and Slade. The technique was applied to percolation [7], lattice trees and
animals [8], the contact process [12], the Ising model [13] and ϕ4 [14]. Further, it was extended to finite graphs [3]
and to long-range models [5]. Despite all this progress, weakly self-avoiding walk remains the simplest example to
which the technique applies: lace expansion is a “perturbative” technique and it requires a small parameter. Weakly
self-avoiding walk has such a small parameter naturally built-in, while for most models, the small parameter is more
hidden. Consequently, it was used as a test bed for several new techniques, for example in [10], where the lace
expansion was analysed using induction in time, and [2] where a Banach fixed point theorem was used. Interestingly,
neither of these papers uses the so-called bootstrap analysis introduced in [15]. In our opinion, the bootstrap analysis
is the most important simplification to lace expansion, replacing the difficult “moving single pole” analysis of [4]. The
bootstrap analysis applies to generating functions such as the WSAW Green’s function, while [2,10] prove results for
WSAW with a fixed number of steps instead. Green’s function asymptotics in x-space as derived here were proved
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previously in technically more challenging settings in [9] for spread-out models and in [6] for nearest-neighbour
settings. Brydges and Spencer [4] prove Gaussian limit laws for the end-to-end displacement for WSAW after n steps.

Our starting point was also an attempt to generalise lace expansion, rather than to simplify it. We wished to apply it
to problems on Cayley graphs of non-commutative groups. Most of the existing approaches rely heavily on the Fourier
transform, which is of course no longer available in this new setting. The approach of [1,2], though, turned out to be
applicable. We realised that it can be simplified and generalised by working in an appropriate Banach algebra.

In this paper, we expose our Banach-algebra approach in the simplest possible setting: weakly self-avoiding walk
on Z

d , with the result being an upper bound on the critical Green’s function. We repeat that related results have been
proved previously, only our proof is novel.

2. Precise definitions and statement of the theorem

For a nearest-neighbour path γ : {0, . . . , n} → Z
d and a β ∈ [0,1], we define its weight by

W(γ ) = Wβ(γ ) = (1 − β)|{0≤s<t≤n : γ (s)=γ (t)}|, (1)

i.e., the path is “penalised” by 1 −β for every self-intersection of γ . We define the weakly self-avoiding walk Green’s
function to be

Gsaw
λ (x) = G

β,saw
λ (x) =

∑
γ : 0→x

λlen(γ )Wβ(γ ),

where the notation γ : 0 → x means that γ : {0,1, . . . , n} → Z
d is a nearest-neighbour path with γ (0) = 0, γ (n) = x,

while len(γ ) = n. We define λc to be the critical value for the finiteness of the spatial sum of Gsaw
λ , i.e.,

λc = sup

{
λ :

∑
x∈Zd

Gsaw
λ (x) < ∞

}
.

Finally denote by Grw(x) the (critical) Green’s function of simple random walk (SRW) on Z
d , i.e.,

Grw(x) =
∞∑

n=0

pn(x),

where pn(x) is the probability that simple random walk on Z
d starting from 0 is at x at time n. When d > 2 the sum

converges and

Grw(x) = (
a + o(1)

)|x|2−d as |x| → ∞ (2)

with a > 0. See e.g. [17]. The result is that the WSAW Green’s function is bounded by the SRW Green’s function for
d > 4:

Theorem (Green’s function upper bound). Let d > 4. Then there exists a β0 such that for all β < β0, β-weakly self
avoiding walk satisfies

Gsaw
λc

(x) ≤ 2Grw(x) ∀x ∈ Z
d .

Remark. We will also show a lower bound, Gsaw
λc

≥ 1
2Grw, and further that

Gsaw
λc

(x) = (
1 + O(β)

)
Grw(x) as β → 0, uniformly in x ∈ Z

d . (3)

See the remarks on page 152. We find the upper bound to be the more interesting and we prefer to focus on it.

The remainder of this paper is devoted to the proof of this theorem.
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3. Proof

For μ ∈R we denote by �rw
μ : Zd →R the following function

�rw
μ (x) =

⎧⎪⎨
⎪⎩

1, x = 0,

−μ, x is a neighbour of 0,

0, otherwise.

(4)

We say that a function f : Zd → R is “symmetric to coordinate permutations and flipping” if for any σ ∈ Sd (the
group of permutations on d elements) and for any ε1, . . . , εd ∈ {±1},

f (x1, . . . , xd) = f (ε1xσ(1), . . . , εdxσ(d)).

We further write f ∗ g for the convolution of two functions f,g : Zd →R and δ0(x) = 1{x=0}, x ∈ Z
d .

Lemma 1 (Lace expansion analysis). Let d > 4. Then there exists a β0 such that for all β < β0 and for all λ < λc

the following holds. If Gsaw
λ (x) ≤ 3Grw(x) for all x ∈ Z

d , then there exists a function �saw
λ : Zd → R such that

Gsaw
λ ∗ �saw

λ = δ0 and such that

(i) �saw
λ is symmetric to coordinate permutations and flipping;

(ii)
∑

x �saw
λ (x) ≥ 0;

(iii) There exists λ′ ∈ [0, 1
2d

] such that

∣∣�saw
λ (x) − �rw

λ′ (x)
∣∣ ≤ Cβ|x|−d−4.

A somewhat abusive convention we adopt here and below is that |x|−α = 1 when x = 0, so condition (iii) in fact
implies that |�saw

λ (0) − �rw
λ′ (0)| ≤ Cβ . C and c are used for constants that depend only on the dimension. Let us

remark that in fact we simply take λ′ = min(λ, 1
2d

), though we will not use this fact. Another remark worth making is
that in (iii) we will in fact prove, |�saw

λ (x)−�rw
λ′ (x)| ≤ Cβ|x|6−3d which is of course stronger than the stated estimate

when d ≥ 5. However, it will be convenient to formulate the lemma as above.
We remark that it is tempting to think about �saw

λ as a generator of some random walk (with killing), but it is
missing one important property of a generator: it is not true that �saw

λ (x) < 0 for all x 
= 0. This means that a lot of
deconvolution techniques for random walk generators are inapplicable. The next lemma is the required deconvolution:

Lemma 2 (Deconvolution). Let d > 2. Then there exists β0 such that for all β < β0 and for any � : Zd →R satisfy-
ing conditions (i)–(iii) of Lemma 1, there exists a function G such that G ∗ � = δ0 and |G(x)| ≤ 2Grw(x).

We postpone the proof of both lemmas and first show how they imply the theorem:

Proof of the theorem given Lemmas 1 and 2. Fix β to be some value sufficiently small so that both Lemmas 1 and
2 hold with this value of β . The following argument, known as a bootstrap argument, goes back to Slade [15]. Define

f (λ) = sup
x∈Zd

Gsaw
λ (x)

Grw(x)
.

We first examine f (0). Gsaw
0 = δ0 and of course Grw ≥ δ0 so f (0) ≤ 1. Next we note that f is continuous in the

interval [0, λc). Indeed, λc is the radius of convergence of
∑

x Gsaw
λ (x) and hence is a lower bound for the radius

of convergence of Gsaw
λ (x) for any x. Hence each term Gsaw

λ (x)/Grw(x) is continuous on our interval. On the other
hand, because the sum defining Gsaw

λ (x) contains only paths of length at least |x|, it also decays exponentially in x,
uniformly on [0, λ], for all λ < λc. Using (2), the same is true for the quotient Gsaw

λ (x)/Grw(x). This means that on
any [0, λ] with λ < λc , f can be written as the supremum of a finite collection of continuous functions, and hence is
continuous. Since λ can be taken arbitrarily close to λc, f is continuous on [0, λc).
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We now claim that it is not possible that f (λ) ∈ (2,3] for any λ < λc. Indeed, if f (λ) ≤ 3 then Gsaw
λ (x) ≤ 3Grw(x)

for all x and the condition of Lemma 1 is satisfied. We use Lemma 1 to find some �saw
λ with Gsaw

λ ∗ �saw
λ = δ0

satisfying conditions (i)–(iii), and then Lemma 2 to find some G such that G ∗ �saw
λ = δ0 and G(x) ≤ 2Grw(x). We

now claim that Gsaw
λ = G. Indeed, both functions are in �2(Zd), Gsaw

λ by the assumption Gsaw
λ (x) ≤ 3Grw(x) and G

by the conclusion of Lemma 2 – and so is �saw
λ by condition (iii). In �2, deconvolution can be performed by Fourier

transform and hence is unique. We get that Gsaw
λ (x) = G(x) ≤ 2Grw(x) so f (λ) ≤ 2. We conclude that f (λ) /∈ (2,3]

for any λ < λc.
Now, if f is continuous, starts below 1 and cannot traverse the interval (2,3], then it must be that f (λ) ≤ 2

for all λ < λc, i.e., Gsaw
λ (x) ≤ 2Grw(x) for all x and all λ < λc. Finally, by monotone convergence, Gsaw

λc
(x) =

limλ↗λc Gsaw
λ (x), so that also Gsaw

λc
(x) ≤ 2Grw(x) for all x ∈ Z

d . �

We move to the proofs of Lemmas 1 and 2. Lemma 1 essentially relies on the same lace-expansion argument as
performed by Brydges and Spencer [4] – we include the proof for completeness, but we will be a little brief. Lemma 2
is the new ingredient of our paper.

Proof of Lemma 1. We follow [10, Appendix A] closely for the derivation of the lace expansion, and [9] for the
analysis of the coefficients arising in it. As β and λ are fixed, let us remove them from the notation and denote our
functions by Gsaw and �saw. We start by finding a formula for �saw (or rather, a representation as an infinite sum).
Recall the weight W(γ ) defined in (1). We define

Ust (γ ) =
{

0, when γ (s) 
= γ (t),

−β, when γ (s) = γ (t),
∀0 ≤ s < t ≤ len(γ ),

so that

W(γ ) =
∏
s<t

(
1 + Ust (γ )

)
.

Given an interval I = [a, b] of integers with 0 ≤ a ≤ b, we refer to a pair {s, t} (s < t ) of elements of I as an edge.
To abbreviate the notation, we write st for {s, t}. A set of edges is called a graph. A graph � on [a, b] is said to be
connected if both a and b are endpoints of edges in � and if, in addition, for any c ∈ (a, b) there is an edge st ∈ �

such that s < c < t (note that this is unrelated to the usual definition of graph connectivity). The set of all graphs on
[a, b] is denoted B[a, b], and the subset consisting of all connected graphs is denoted G [a, b].

For integers 0 ≤ a < b, define

K[a, b](γ ) =
∏

a≤s<t≤b

(
1 + Ust (γ )

)
so that Gsaw(x) =

∑
γ : 0→x

λlen(γ )K
[
0, len(γ )

]
(γ ), (5)

where the sum is over all simple random walk paths from 0 to x. Expanding the product in the definition of K[a, b](γ ),
we get

K[a, b](γ ) =
∑

�∈B[a,b]

∏
st∈�

Ust (γ ). (6)

For 0 ≤ a < b we define an analogous quantity, in which the sum over graphs is restricted to connected graphs, namely,

J [a, b](γ ) =
∑

�∈G [a,b]

∏
st∈�

Ust (γ ). (7)

We claim that, for n ≥ 1,

K[0, n] = K[1, n] +
n∑

m=2

J [0,m]K[m,n]. (8)
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To see this, we note from (6) that the contribution to K[0, n] from all graphs � for which 0 is not in an edge is exactly
K[1, n]. To resum the contribution from the remaining graphs, we proceed as follows. When � does contain an edge
ending at 0, we let m(�) > 0 denote the smallest number that is not crossed by an edge, i.e., there is no st ∈ � such
that s < m(�) < t . We lose nothing by taking m ≥ 2, since Ua,a+1 = 0 for all a. Resummation over graphs on [m,n]
and (7) proves (8).

Let us now define the key quantities in the lace expansion, which are

λ(x) =
∑

γ : 0→x

λlen(γ )J
[
0, len(γ )

]
(γ ) (9)

and

�saw
λ (x) := �rw

λ (x) − λ(x). (10)

λ will be fixed through the rest of the proof of Lemma 1 and we usually drop it from the notation. The key to the proof
of the lemma is the estimate

∞∑
n=0

∑
γ :0→x

lenγ=n

∣∣λnJ [0, n](γ )
∣∣ < Cβ|x|6−3d , (11)

which we will prove below. We first prove that it implies the claims in the lemma. Of course it implies∣∣(x)
∣∣ ≤ Cβ|x|6−3d . (12)

To conclude from the definitions and estimate above that Gsaw ∗ �saw = δ0 note that, by (8),

Gsaw(x)
(5)=

∑
γ :0→x

λlen(γ )K
[
0, len(γ )

]
(γ )

(8)= δ0 +
∑

γ : 0→x

λlen(γ )

(
K

[
1, len(γ )

]
(γ ) +

len(γ )∑
m=2

J [0,m](γ )K
[
m, len(γ )

]
(γ )

)

= δ0 + λ
∑

y : ‖y‖=1

Gsaw(x − y) +
∑
y

(y)Gsaw(x − y), (13)

where the last equality is derived as follows: the K[1, len(γ )](γ ) terms we separate according to γ (1), which we
denote by y. Translation invariance gives that each term is exactly Gsaw(x − y). The terms containing J are split
according to γ (m), which we denote by y, and again by translation invariance the sum over K gives Gsaw(x − y).
Finally, the change of order of summation is justified by (11) and Gsaw(x) ≤ C|x|2−d . This proves (13). Rearranging
(13) gives Gsaw ∗ �rw

λ = δ0 + Gsaw ∗ , i.e. Gsaw ∗ �saw
λ = δ0, as required.

We move to prove properties (i)–(iii) of �saw. The symmetry of �saw is immediate from the construction, and the
property that

∑
�saw(x) ≥ 0 comes from summing the relation (Gsaw ∗ �saw)(x) = δ0(x) over x ∈ Z

d , which gives
that ∑

x∈Zd

�saw(x) = 1∑
x∈Zd Gsaw(x)

, (14)

and the last term is clearly non-negative as well as finite since λ < λc which means that Gsaw(x) decays exponentially
as x → ∞.

For (iii), we need to choose λ′ ∈ (0, 1
2d

] and estimate �saw
λ − �rw

λ′
(10)= �rw

λ − �rw
λ′ − λ. Observe first that by (12),

we can take λ′ = λ if λ ≤ 1/2d . If λ > 1/2d , we obtain from (12) and the already proved (ii)

1 − 2dλ =
∑
x

�rw
λ (x)

(10)=
∑
x

(
λ(x) + �saw

λ (x)
) (ii)≥

∑
x

λ(x)
(12)≥ −

∑
x

Cβ|x|6−3d = −Cβ,
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Fig. 1. Laces.

and therefore λ − 1/2d ≤ Cβ/2d , and so we can take λ′ = 1/2d in this case. Therefore, λ′ = min(λ, 1
2d

) is doing the
job.

It remains to prove (11).
We next rewrite (9) in a form that can be used to obtain good bounds on (x). For this, we start by introducing the

laces that give the lace expansion its name. A lace is a minimally connected graph, i.e., a connected graph for which
the removal of any edge would result in a disconnected graph. The set of laces on [a, b] is denoted L [a, b], and the
set of laces on [a, b] consisting of exactly N edges is denoted L (N)[a, b]. Given a connected graph �, the following
prescription associates to � a unique lace L� : The lace L� consists of edges a1b1, a2b2, . . . , with a1, b1, b2, a2, . . .

determined, in that order, by

b1 = max{t : at ∈ �}, a1 = a,

bi = max{t : ∃z < bi−1 such that zt ∈ �}, ai = min{z : zbi ∈ �}.
See Figure 1. Given a lace L, the set of all edges st /∈ L such that LL∪{st} = L is denoted C (L). Edges in C (L) are
said to be compatible with L. Now, L� = L if and only if L ⊂ � and all edges in � \ L are compatible with L. This
allows to write∑

�:L�=L

∏
st∈�\L

Ust =
∏

st∈C (L)

(1 + Ust )

and then partially resum the right-hand side of (7), to obtain

J [a, b] =
∑

L∈L [a,b]

∑
� : L�=L

∏
st∈L

Ust

∏
s′t ′∈�\L

Us′t ′ =
∑

L∈L [a,b]

∏
st∈L

Ust

∏
s′t ′∈C (L)

(1 + Us′t ′). (15)

For 0 ≤ a < b, we define J (N)[a, b] to be the contribution to (15) coming from laces consisting of exactly N edges:

J (N)[a, b] =
∑

L∈L (N)[a,b]

∏
st∈L

(−Ust )
∏

s′t ′∈C (L)

(1 + Us′t ′), N ≥ 1. (16)

Then, by (9),

J [a, b] =
∞∑

N=1

(−1)NJ (N)[a, b] and (x) =
∞∑

N=1

(−1)N(N)(x), (17)

where we define

(N)(x) =
∑

γ : 0→x

λlen(γ )J (N)
[
0, len(γ )

]
(γ )

=
∑

γ : 0→x

λlen(γ )
∑

L∈L (N)[0,len(γ )]

∏
st∈L

(−Ust (γ )
) ∏

s′t ′∈C (L)

(
1 + Us′t ′(γ )

)
. (18)

We will now show that the sum over N converges absolutely, which will show (11) and finish the lemma. The
product over st ∈ C (L) will be easier to handle when we restrict it. Let therefore D(L) be the set of edges st such
that the open interval (s, t) does not contain an ai or bi for any (ai, bi) ∈ L. Clearly D(L) ⊆ C (L) and therefore
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∏
C (L)(1 + Ust ) ≤ ∏

D(L)(1 + Ust ). Once we restrict, the sum over γ becomes independent between any two con-
secutive elements of L. For a lace L = {a1b1, a2b2, . . . , aNbN } we write c1, c2, . . . , c2N for the ordered sequence of
vertices of the bonds of L, i.e. c1 = a1, c2 = a2, c3 = b1, . . . . There can be matches among the c’s, e.g. for N = 3, b1

can be equal to a3. We denote by γi,1 ≤ i ≤ 2N − 1, the γ -path restricted to the interval {ci, ci + 1, . . . , ci+1}, and
we get, for N ≥ 2,

∏
st∈D(L)

(
1 + Ust (γ )

) =
2N−1∏
i=1

W(γi).

For N = 1, the left-hand side misses the bond from 0 to len(γ ), so that in this case, the right-hand side has to be
devided by (1 − β). Inserting this into the definition of (N) gives

(1)(x)

{
≤ β

1−β
Gsaw(0) for x = 0,

= 0 for x 
= 0,
(19)

∣∣(2)(x)
∣∣ ≤ β2Gsaw(x)3,

and, for N ≥ 2,

∣∣(N)(x)
∣∣ ≤ βN

∑
x2,...,xN−1

Gsaw(x1 − x2)

N∏
j=2

[
Gsaw(xj − xj−1)G

saw(xj+1 − xj−1)
]
, (20)

with x1 = 0, xN = xN+1 = x (see again Figure 1).
To derive (20), observe that the terms Ust in (18) give the factor βN as well as restrictions γ (ai) = γ (bi) for all i.

Under this restrictions γ breaks into paths γi which are independent given their endpoints, so their sum gives Gsaw.
This implies (20).

With these estimates in hand, we can bound .
(1) clearly poses no problems. For (2) we have |(2)(x)| ≤ β2Gsaw(x)3. By our assumptions Gsaw(x)3 ≤

27Grw(x)3 ≤ C|x|6−3d , as required. For the terms with N ≥ 3, we need the following lemma:

Lemma 3. Let d > 4. For any u,v ∈ Z
d ,

∑
w∈Zd

|w|4−2d |w − u|2−d |w − v|2−d ≤ C|u|2−d |v|2−d .

Proof. By Cauchy–Schwarz

( ∑
w∈Zd

|w|4−2d |w − u|2−d |w − v|2−d

)2

≤
( ∑

w∈Zd

|w|4−2d |w − u|4−2d

)( ∑
w∈Zd

|w|4−2d |w − v|4−2d

)
. (21)

For d > 4, each term can be estimated simply by splitting the sum to |w| > |u|/2 and |w| ≤ |u|/2, see a detailed
calculation in [9, Proposition 1.7(i)]. We get

∑
w∈Zd

|w|4−2d |w − u|4−2d ≤ C|u|4−2d .
�

To use this lemma, define A(N)(x) by the right-hand side of (20) without the factor βN , and G(z) replaced by
|z|2−d . We prove by induction on N ≥ 2 that

A(N)(x) ≤ CN |x|6−3d . (22)
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As A(2)(x) = (|x|2−d)3, the statement is true for N = 2. Let N > 3. In the expressions which are summed in A(N),
we take out everything which depends on x2 which is the factor

|x2|4−2d |x3 − x2|2−d |x4 − x2|2−d . (23)

The rest of the product is

|x3|2−d
N∏

j=4

[|xj − xj−1|2−d |xj+1 − xj−1|2−d
]
. (24)

For N = 3, the product
∏N

j=4 is absent and x3 = x. Summing over x2 in (23) we can estimate this part with Lemma 3

by C|x3|2−d |x4|2−d which together with (24) and summed over the other variables is CAN−1(x). (Remember that we
had xN+1 = xN = x.) This proves (22).

Using (22) together with Gsaw(x) ≤ 3Grw(x) ≤ C|x|2−d proves |(N)(x)| ≤ (Cβ)N |x|6−3d for N ≥ 2. Together
with (19), and summing over N , for sufficiently small β , this proves Lemma 1. �

4. Proof of Lemma 2, with Banach algebras

We start by defining a norm on f : Zd → R by

‖f ‖ = max

{ ∑
x∈Zd

∣∣f (x)
∣∣, sup

x∈Zd

∣∣f (x)
∣∣ · |x|d

}
∈ [0,∞],

where |x| denotes, say, the �2 norm in Z
d . Our norm is a Banach algebra norm with respect to convolution, up to a

constant. Indeed, let f and g satisfy that ‖f ‖,‖g‖ < ∞. Then

∑
x∈Zd

∣∣(f ∗ g)(x)
∣∣ ≤

(∑
x

∣∣f (x)
∣∣)(∑

x

∣∣g(x)
∣∣) ≤ ‖f ‖ · ‖g‖, (25)

and for every x ∈ Z
d ,

∣∣(f ∗ g)(x)
∣∣ ≤

∑
y∈Zd

∣∣f (y)
∣∣∣∣g(x − y)

∣∣ =
∑

|y|>|x−y|

∣∣f (y)
∣∣∣∣g(x − y)

∣∣ +
∑

|y|≤|x−y|

∣∣f (y)
∣∣∣∣g(x − y)

∣∣.
For the first term, whenever |y| > |x − y|, we have |y| > |x|/2 and hence

∑
|y|>|x−y|

∣∣f (y)
∣∣∣∣g(x − y)

∣∣ ≤ sup
|y|> 1

2 |x|

∣∣f (y)
∣∣ ·

∑
|y|>|x−y|

∣∣g(x − y)
∣∣ ≤

(
1

2
|x|

)−d

‖f ‖ · ‖g‖.

A similar estimate holds for the other term, now using that |x − y| ≥ |x|/2 when |y| ≤ |x − y|, and we get∣∣(f ∗ g)(x)
∣∣ ≤ 2d+1|x|−d‖f ‖‖g‖.

With (25) we get

‖f ∗ g‖ ≤ 2d+1‖f ‖ · ‖g‖.
In particular B = {f : ‖f ‖ < ∞} has a Banach algebra structure. In fact, if we define ‖f ‖′ = 2d+1‖f ‖ then B

equipped with ‖ · ‖′ is a Banach algebra (see also [11, Theorem VIII.1.4] for a proof that there exists an equivalent
norm satisfying that the norm of the unit element is 1). But let us stick to using the norm ‖ · ‖. The only property of



Lace expansion for dummies 149

Banach algebras that we will use is that if ‖f − δ0‖ < 2−d−1, then f is invertible. This follows because the inverse
can be defined by the convergent Neumann series

f −1 =
∞∑

n=0

(δ0 − f )n.

In addition we get the norm estimate

∥∥f −1 − δ0
∥∥ ≤

∞∑
n=1

∥∥(δ0 − f )n
∥∥ ≤

∞∑
n=1

(
2d+1)n−1‖δ0 − f ‖n = ‖δ0 − f ‖

1 − 2d+1‖δ0 − f ‖ . (26)

We will not need anything else from the theory of Banach algebras.
The following lemma forms the heart of our analysis:

Lemma 4. Fix d > 2. Assume ρ : Zd → R satisfies

(i) ρ is symmetric to coordinate permutations and flipping,
(ii)

∑
x ρ(x) = 0,

(iii) |ρ(x)| ≤ |x|−d−4.

Then ‖ρ ∗ Grw‖ ≤ C.

Proof. By [17], the random walk Green’s function has an expansion of the form

Grw(x) = a|x|2−d + b|x|−d + O
(|x|−d−2) (27)

(such an expansion is sometimes called an “Edgeworth expansion”). Therefore, using (iii) and (27) (in fact here the
simpler (2) is enough), the sum defining (ρ ∗ Grw)(x) converges absolutely for every x ∈ Z

d so this function is well
defined. Write(

ρ ∗ Grw)
(x) =

∑
y

ρ(y)Grw(x − y) =
∑

|y|< 1
2 |x|

ρ(y)Grw(x − y) +
∑

|y|≥ 1
2 |x|

ρ(y)Grw(x − y) = I + II.

We start with I and write it as I = I1 + I2 + I3, Ij from the three parts on the RHS of (27). For I1 we Taylor expand
|x − y|2−d around x to order 3 and get

1

a
I1 =

∑
|y|< 1

2 |x|
ρ(y)|x − y|2−d =

∑
|y|< 1

2 |x|
ρ(y)

[
|x|2−d +

d∑
i=1

yi · (2 − d)xi |x|−d

+
d∑

i,j=1

yiyj

(−(2 − d)d · xixj |x|−d−2 + δij (2 − d)|x|−d
) + O

(|y|3|x|−d−1)].

We now bound these terms. For the first we write∣∣∣∣ ∑
|y|< 1

2 |x|
ρ(y)|x|2−d

∣∣∣∣ = |x|2−d

∣∣∣∣ ∑
|y|≥ 1

2 |x|
ρ(y)

∣∣∣∣ ≤ |x|2−d
∑

|y|≥ 1
2 |x|

|y|−d−4 ≤ C|x|−d−2,

where in the equality we have used that
∑

x ρ(x) = 0. For the second, we use the symmetry of ρ to flipping of yi to
conclude that∑

|y|< 1
2 |x|

ρ(y)yi = 0
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and similarly for the off-diagonal second-order terms, i.e., for
∑

|y|< 1
2 |x|ρ(y)yiyj for i 
= j . The on-diagonal terms

are equal to

d∑
i=1

∑
|y|< 1

2 |x|
ρ(y)y2

i

(
(2 − d)|x|−d − (2 − d)d · x2

i |x|−d−2),

and the symmetry of ρ to coordinate permutations shows that
∑

|y|< 1
2 |x|ρ(y)y2

i does not depend on i. We take it out
of the sum and see that

d∑
i=1

(
(2 − d)|x|−d − (2 − d)d · x2

i |x|−d−2) = 0. (28)

Finally, the third order terms are bounded by∑
|y|< 1

2 |x|

∣∣ρ(y)
∣∣|y|3|x|−d−1 ≤ |x|−d−1

∑
|y|< 1

2 |x|
|y|−d−4|y|3 ≤ C|x|−d−1.

Putting all these estimates together gives that

|I1| ≤ C|x|−d−1.

The estimates of I2, I3 and II are much simpler. To estimate |I2|, we Taylor expand |x − y|−d to first order, i.e.
|x − y|−d = |x|−d +O(|y||x|−d−1). A similar argument shows that |I2| ≤ C|x|−d−1. (We don’t need the harmonicity
of |x|2−d which is the true reason for the cancellation in (28) above.) For I3, we bound, again using that |x −y| > 1

2 |x|
when |y| < 1

2 |x|,

|I3| ≤ C
∑

|y|< 1
2 |x|

∣∣ρ(y)
∣∣|x − y|−d−2 ≤ C|x|−d−2

∑
y∈Zd

∣∣ρ(x)
∣∣ ≤ C|x|−d−2.

For II, we split II = II1 + II2, depending on whether |x −y| ≤ |x| or |x −y| > |x| and use |y| ≥ 1
2 |x|, |ρ(y)| ≤ |y|−d−4

together with Grw(x) ≤ C|x|2−d to bound

|II1| ≤ 2d+4|x|−d−4
∑

y : |x−y|≤|x|
Grw(x − y) ≤ C|x|−d−2,

while for |x − y| > |x|,

|II2| ≤ C|x|2−d
∑

|y|≥ 1
2 |x|

∣∣ρ(y)
∣∣ ≤ C|x|2−d |x|−4 = C|x|−d−2.

We conclude that |(ρ ∗ Grw)(x)| ≤ C|x|−d−1. This proves the lemma. �

Remark. It seems as if Lemma 4 makes a stringent requirement on the types of random walks for which the argument
can be applied, as Edgeworth expansions are not easy to get. For example, if one wishes to apply the argument for the
Cayley graph of, say, the Heisenberg group, then the natural analog of an Edgeworth expansion is not known. We have
a more roundabout proof of Lemma 4 that only uses the local central limit theorem. This argument will be presented
elsewhere.

In the following lemma, we extend Lemma 4 to the subcritical SRW Green’s function Grw
μ , i.e., Grw

μ (x) =∑
n≥0(2dμ)npn(x). Note that Grw

μ ∗ �rw
μ = δ0.
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Lemma 5. Let d > 2. Let ρ be as in Lemma 4 and let μ ∈ [− 1
4d

, 1
2d

]. Then

∥∥ρ ∗ Grw
μ

∥∥ ≤ C,

where C does not depend on μ.

Proof. Write

ρ ∗ Grw
μ = ρ ∗ Grw ∗ �rw ∗ Grw

μ

(recall that Grw = Grw
1/(2d) and �rw = �rw

1/(2d)). Notice that we do not need to put any parenthesis in this expression as
associativity follows from the fact that all sums converge absolutely, which can be easily seen from the upper bounds
for the various terms. Since we already know that ‖ρ ∗ Grw‖ ≤ C by Lemma 4, we need only bound ‖Grw

μ ∗ �rw‖
(note again that this is not �rw

μ but rather �rw
1/(2d)). Noting that pn ∗ pm = pn+m, we get

Grw
μ ∗ �rw =

( ∞∑
n=0

(2dμ)npn

)
∗ (δ0 − p1) = δ0 − (1 − 2dμ)

∞∑
n=1

(2dμ)n−1pn.

For μ = 1/(2d), this is identically equal to δ0, and there is nothing to prove. Thus, we can assume that μ ∈ [− 1
4d

, 1
2d

).

Now, since pn(x) ≤ Cn−d/2e−c|x|2/n we get that ‖pn‖ ≤ C. Hence,

∥∥Grw
μ ∗ �rw

∥∥ ≤ 1 + (1 − 2dμ)

∞∑
n=1

(2dμ)n−1‖pn‖ ≤ C,

and the lemma is proved. �

Proof of Lemma 2. Recall that the input of the lemma is a function � satisfying conditions (i)–(iii) of Lemma 1.
These conditions are quite close to the conditions on ρ in Lemmas 4 and 5, only a linear map is required to pass from
one to the other. We define μ by

μ = 1

2d

(
1 −

∑
x∈Zd

�(x)

)
,

which implies that∑
x∈Zd

(
� − �rw

μ

)
(x) = 0. (29)

(This choice is closely related to the choice of constants λ,μ in [9, (2.29)].) To use Lemma 5 we need to justify
μ ∈ [− 1

4d
, 1

2d
]. The upper bound μ ≤ 1

2d
is automatic since

∑
x �(x) ≥ 0. For the lower bound μ ≥ − 1

4d
, we need

to show that
∑

x �(x) ≤ 3
2 . This follows for small enough β by our assumption that � satisfies (iii) of Lemma 1 and∑

x �rw
λ′ (x) ≤ 1.

Next we note that∣∣�(x) − �rw
μ (x)

∣∣ ≤ C2β|x|−d−4. (30)

Indeed, at every x that is not a neighbour of 0 this is an immediate corollary from our condition (iii) of Lemma 1. For
the neighbours, we note that

∣∣λ′ − μ
∣∣ = 1

2d

∣∣∣∣ ∑
x∈Zd

(
�rw

λ′ − �rw
μ

)
(x)

∣∣∣∣ (29)= 1

2d

∣∣∣∣ ∑
x∈Zd

(
�rw

λ′ − �
)
(x)

∣∣∣∣ ≤ Cβ

2d
, (31)
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where the last inequality is again from condition (iii) of Lemma 1. Thus, for x a neighbour of the origin, we conclude
that

�(x) − �rw
μ (x) = μ − λ′ + �(x) − �rw

λ′ (x) = O(β),

by (31) and condition (iii) of Lemma 1. This shows (30).
We next define

ρ = 1

C2β

(
� − �rw

μ

)
,

with C2 being the constant from (30). This ρ has the properties (i)–(iii) of Lemma 4, so that∥∥ρ ∗ Grw
μ

∥∥ ≤ C.

In turn, this implies∥∥(
� − �rw

μ

) ∗ Grw
μ

∥∥ ≤ Cβ.

But this is exactly � ∗ Grw
μ − δ0. This means that � ∗ Grw

μ is invertible if β is sufficiently small (recall (26)), and
further that we have (� ∗ Grw

μ )−1 = δ0 + E with ‖E‖ ≤ Cβ . Our required function is now

G = (
� ∗ Grw

μ

)−1 ∗ Grw
μ ,

which is clearly an inverse for �. To see that G(x) ≤ 2Grw(x) write

G = Grw
μ + E ∗ Grw

μ . (32)

Since Grw
μ (x) ≤ Grw(x), because μ ≤ 1/(2d), we need only estimate E ∗ Grw

μ . We write

(
E ∗ Grw

μ

)
(x) =

∑
y

Grw
μ (y)E(x − y) =

∑
|y|< 1

2 |x|
Grw

μ (y)E(x − y) +
∑

|y|≥ 1
2 |x|

Grw
μ (y)E(x − y) = I + II. (33)

For I , we use that |y| < 1
2 |x| implies that |x − y| ≥ 1

2 |x| so |E(x − y)| ≤ Cβ|x|−d and hence

|I | ≤ Cβ|x|−d
∑

|y|< 1
2 |x|

∣∣Grw
μ (y)

∣∣ ≤ Cβ|x|−d
∑

|y|< 1
2 |x|

|y|2−d ≤ Cβ|x|2−d . (34)

For II, we have

|II| ≤
(

max
|y|≥ 1

2 |x|
∣∣Grw

μ (y)
∣∣) ·

∑
y

∣∣E(x − y)
∣∣ ≤ C

(
1

2
|x|

)2−d

· Cβ = Cβ|x|2−d . (35)

We get that |(E ∗ Grw
μ )| ≤ Cβ|x|2−d , which means that for β sufficiently small, it is less than Grw. This shows that

G(x) ≤ 2Grw(x), and thus completes the proof of Lemma 2. �

Remarks

(1) Examining (32)–(35) in the proof of the last lemma shows that in fact we got that

Gsaw
λ (x) = Grw

μ (x) + O
(
β|x|2−d

)
.

Together with (27), this would prove (3), if only we could show that μ = 1
2d

for λc, the critical λ. This is a classical
fact, let us sketch its proof for the convenience of the reader. Since μ = 1

2d
(1 − ∑

x �(x)), it is equivalent to showing
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that χ(λ) → ∞ as λ ↗ λc where χ(λ) = ∑
x Gsaw

λ (x) (recall (14)). Let cn = ∑
len(γ )=nW

β(γ ) so χ(λ) = ∑
n λncn.

Then, cn is submultiplicative i.e. cn ≤ cmcn−m, so cn ≥ λn
c . Summing gives χ(λ) ≥ 1/(λc −λ). (The reader who finds

this sketch too dense may see more details in, say, [16, Theorem 2.3].)
(2) The result of the theorem is known as an “infrared bound.” It implies the finiteness of the so-called bubble

diagram, which in turn implies various critical exponents. See again [16, Theorem 2.3].
(3) Let us remark on the exponent −d −4 appearing in the inequality |�rw −�saw| ≤ Cβ|x|−d−4 of Lemma 1. We

in fact prove a stronger bound with exponent −3(2−d), recall (12). Most of the proof of Lemma 2 actually needs less,
|x|−d−2−ε would have been enough. The only place where the stronger estimate |x|−d−4 is used is in Lemma 5, in
order to justify the associativity of the convolution in the expression ρ ∗ Grw ∗ �rw ∗ Grw

μ . There are certainly ways to
justify associativity at that point under the weaker assumption |ρ(x)| ≤ |x|−d−2−ε , but an additional argument would
be needed.
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