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Abstract. In this paper, we establish several local and global gradient estimates for positive solutions of Porous Medium Equations
(PMEs) and Fast Diffusion Equations (FDEs). Our proof is probabilistic and uses martingale techniques.

Résumé. Dans cet article, nous établissons plusieurs estimées (locales et globales) des gradients des solutions positives des équa-
tions aux milieux poreux et des équations de la diffusion rapide. Notre preuve est probabiliste et utilise des techniques de martin-
gales.
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1. Introduction

The present paper is devoted to a study of gradient estimates for solutions of partial differential equations (PDEs) of
the form

∂u

∂t
= �um, (1)

where m ∈ (0,∞) is a given exponent. The problem (1) is posed on (0,∞) × Rn, and � is the Laplace operator
with respect to space variables. If m = 1, it is the celebrated heat equation, which is linear and parabolic, hence its
solutions possess many nice properties. In the case that m �= 1, the situation becomes quite different. Let us focus on
non-negative solutions to the Cauchy problem related to the equation (1) with initial condition

u(0, x) = u0(x).

Let us collect some results and discuss some phenomena that do not appear in the case of the heat equation.
There are two critical values of the exponent m, namely m = 1 and m = n−2

n
. By rewriting (1) as

∂u

∂t
= mum−1�u + m(m − 1)um−2|∇u|2 (2)

one can see that the coefficient of the second order derivative is mum−1. If m < 1, this takes the value of infinity
where u = 0, which means the parabolicity is singular. While if m > 1, the diffusion coefficient vanishes where u = 0,
which means the parabolicity is degenerate. If we interpret (1) as a differential equation describing a diffusion, this
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means when m < 1, the diffusion is very fast at places where u is small. Therefore in this case (1) is called the fast
diffusion equation (FDE). If m > 1, the diffusion slows down wherever u is small, and in this case it is called the
porous medium equation (PME). Notice that since we only consider non-negative solution u, from (2) it is clear that
(1) is always formally parabolic.

Due to the different behaviors of PME and FDE at u = 0, theories about existence and uniqueness of Cauchy
problems for these two types of equations have been studied separately. The commonly used framework for PME
is the L1(Rn) space. By Theorem 9.12 and Proposition 9.13 in [32], if u0 ∈ L1(Rn), then there is a unique strong
solution which is continuous on (0,∞) × Rn. Moreover, if u0 ∈ L1(Rn) is strictly positive and continuous, then the
solution must be smooth. If we move beyond the scope of L1(Rn) setting and impose a weaker growth condition on
u0 such as

sup
R≥1

R−(n+ 2
m−1 )

∫
|x|≤R

∣∣u0(x)
∣∣dx < ∞, (3)

then by [5] a unique solution in distribution sense exists on (0, T (u0)) × Rn, where T (u0) ∈ (0,∞] depending on
u0. By Theorem 3.1 in [3], the previous growth condition is necessary for any continuous non-negative solution.
Therefore, condition (3) is optimal for the class of continuous non-negative solutions. If the initial datum is allowed
to be measure-valued, [13] gives a result which requires similar growth condition as (3). As for FDE, no requirement
on the growth of initial datum is needed. In fact, by Theorems 2.1 and 2.3 in [16], there exists a unique solution
u ∈ C([0,∞);L1

loc(R
n)) in distribution sense if u0 ∈ L1

loc(R
n). Alternatively, if we impose some growth and decay

conditions on u0, by Theorem 1 in [6] there will be a classical solution in [0, T̄ ] ×Rn, and T̄ is finite.
The degeneracy of parabolicity of PME leads to finite propagation of its solution, which is one of the special feature

of PME. In particular, by Theorem 14.6 in [32], if u(t1, ·) is compactly supported in Rn, so is u(t2, ·) for any t2 > t1.
Consequently, for this kind of solutions, there is a set in (0,∞) ×Rn that separates the region on which u is positive
and the region where u is zero. According to Theorem 3.3 in [10], this set, or the so-called free boundary, is locally
Hölder continuous on (0,∞) × Rn. Moreover, in viewing it as a family of boundaries in Rn indexed by t ∈ (0,∞),
those boundaries expand to infinity as t → ∞ [10]. When the solution overflows the support of the initial datum at
some finite time t�, we see an improvement in the regularity of the free boundary. More precisely, Theorem 3 in [11]
asserts that the free boundary is locally Lipschitz continuous on (t�,∞) ×Rn.

Although m = 1 is a crucial value when talking about finite propagation and existence theories of equation (1), it is
not a significant value in the study of extinction in finite time and smoothing effect, where the value m = n−2

n
becomes

decisive. The extinction in finite time of a solution is the phenomenon that arises only when m < n−2
n

. On page 174 in

[4], it is proved that any solution with initial value u0 ∈ Lp�(Rn) ∩ L1(Rn), where p� = n(1−m)
2 , becomes identically

zero after a finite time. More generally, by Theorem 5.2 in [29], the same result holds for u0 ∈ Mp� , where

Mp� =
{
f ∈ L1

loc

(
Rn

) :
∫

K

∣∣f (x)
∣∣dx ≤ C|K|1− 1

p� ,∀K with |K| < ∞
}
.

According to Lemma 5.6 in [29], this is already very close to the sufficient condition for a solution to extinct in
finite time. One can see from these results that even a positive initial datum may produce a solution that vanishes
completely in finite time, which is quite striking. The reason behind, is the failure of conservation of mass when
m < n−2

n
, as explained in Section 5.5 in [29].

Next, let us describe regularities of solutions in terms of boundedness, positivity and smoothness. In general, for
any m ∈ (0,∞) and p ∈ [1,∞], the solution decreases in Lp(Rn) norm as it evolves in time, according to Theorem 7.2
in [30]. Moreover, if m > n−2

n
, then by Section 3.4 in [29], for any p and q such that 1 ≤ p ≤ q ≤ ∞,

∥∥u(t, ·)∥∥
q

≤ c(m,n,p,q)‖u0‖σ
pt−α, (4)

where

α = n(q − p)

q(n(m − 1) + 2p)
, σ = p(n(m − 1) + 2q)

q(n(m − 1) + 2p)
.
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In particular, from this result we see that initial data in L1(Rn) produce solutions u(t, ·) ∈ L∞(Rn) for any time
t > 0, which is termed as smoothing effect. When m = n−2

n
, this is no longer true. Appendix A.3 in [12] constructed

a solution which is not bounded at any time while still having an initial value in L1(Rn). Moreover, when m < n−2
n

and n ≥ 3, Theorem 5.14 in [29] shows that (4) holds for q = 1 and 1 < p < p�. This means that Lp(Rn) data yield
solutions only in L1(Rn), a somehow backward smoothing effect. Nevertheless, we are still able to get a bounded
solution in the case of m < n−2

n
if the initial datum belongs to a better space. By Theorem 6.7 in [29], if m <

n−2
n

, p ≥ p� and u0 ∈ Lp(Rn) + L∞(Rn), then u(t, ·) is locally bounded and smooth for any t > 0. Quantitatively,
Theorem 2.1 in [9] gives a local upper bound for u(t, ·) in terms of the Lp(Rn) (p > p�) norm of u0 over a larger
local region.

As for positivity and smoothness, Theorem 3.1 in [3], Theorem 1.1 in [8] and Theorem 1.1 in [9] give local lower
bounds for solutions to (1) in terms of local L1(Rn) norm of initial datum in the cases of m > 1, m ∈ ( n−2

n
,1) and

m ∈ (0, n−2
n

) respectively. These lead to results about the positivity of solutions. For example, Proposition 1.1 in [11]
gave a necessary and sufficient condition for the positivity of u(t, x) when m > 1 which read as

sup
R>0

R−(n+ 2
m−1 )

∫
|y−x|≤R

∣∣u0(y)
∣∣dy = ∞.

Besides positivity, if the solution is also locally bounded, then standard quasilinear theory [21] implies the smoothness
of the solution on that region. In particular, when m ∈ ( n−2

n
,1), non-negative locally integrable initial data always

produce positive and smooth global solutions, according to the remark after Theorem 2.3 in [16]. This is not true when
m ∈ (0, n−2

n
), as non-negative locally integrable initial datum is not enough for local boundedness of solutions, which

can be seen from solution (0.2) in [9]. Moreover, when m is in this range, extinction in finite time may occur, which
kills positivity of solutions in a global scale. As for PME, in general, solutions are only locally Hölder continuous.
Theorem 4.1 in [10] states that when u0 is non-negative, bounded and belongs to L2(Rn), um is uniformly Hölder
continuous in every set (η0,∞)×Rn, η0 > 0. Theorem 7.17 in [32] tells us that u is locally Hölder continuous on the
region where u is bounded.

During the development of the above works, one of the main tools is the comparison principle for equation (1),
which is established in Theorem 7.3 in [30]. Generally speaking, the comparison is in terms of mass concentration of
radially symmetric functions. Once this comparison of mass concentration is obtained, comparison in terms of Lp(Rn)

(p ∈ [1,∞]) norm follows. There are several special explicit solutions to (1) that are often used in combination with
the comparison principle. Let us only mention three of them here. The first one is a source-type solution, also known
as the Zel’dovich–Kompanyeets–Barenblatt (ZKB) solution, which takes the form

U(t, x) = t−α
(
c − k|x|2t−2β

) 1
m−1+ ,

with

α = n

n(m − 1) + 2
, β = α

n
, k = α(m − 1)

2mn

and a positive constant c. For m > n−2
n

,

lim
t→0

U(t, x) = C(c,n,m)δ0(x)

in the sense of measures. So it is a solution to (1) with Dirac delta as initial trace. One can see that it reproduces the
heat kernel as m → 1. Since the ZKB solution has compact support when m > 1, it plays an important role in the study
of finite propagation speed. When m ≤ n−2

n
, U(t, x) is no longer integrable in space variables. Therefore, although

still solving (1), it is not a solution to any Cauchy problem related to (1). The second type of solution is a family of
self similar solutions, which has the form

U(t, x) = t−λ1F
(|x|t−λ2

)
.
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By a scaling argument, it is shown in Section 3.2.1 of [31] that any solution to (1) on (0,∞) ×Rn with initial datum
|x|−λ3 must have the above form. Notice that in fact the ZKB solution also belongs to this type. The third type of
solutions we would like to mention is a variant of the self similar solutions. It has the form

U(t, x) = (T − t)−λ1 F̄
(|x|(T − t)−λ2

)
with T > 0. Usually it satisfies (1) only for t < T , after which it blows up or vanishes. For this type of solutions,
probably the most popular and explicit one is

U(x, t;T ) = 2

(
n − 2

1 − m

)(
T − t

|x|2
) 1

1−m

with m < n−2
n

, which is a good example of solutions that extinct in finite time.
As frequently seen in the field of PDE, a crucial step in the study of equation (1) is to derive various types of

estimates for solutions. In [2], Aronson and Bénilan established the following gradient estimate for solutions to (1). If
m ∈ ( n−2

n
,∞), u is a positive smooth solution to (1) and v = m

m−1um−1 (note that v is negative when m < 1), then

�v ≥ − α

(m − 1)t
,

where α = n(m−1)
n(m−1)+2 , which is equivalent to

|∇v|2
v

− vt

v
≤ α

t
.

This fundamental estimate is then employed in [5] for the study of existence theory, in [16] for L∞
loc(R

n) estimate for
solutions, and in [11] for obtaining regularity results for the free boundary of solutions, to name but a few. Later in
[23], a local version of Aronson–Bénilan estimate was obtained by P. Lu, L. Ni, J. L. Vazquez and C. Villani. They
studied the same problem posed on a local ball of a Riemannian manifold. Let B(O,2R) denote a ball with center
O and radius 2R > 0. Assume that u is a positive solution to (1) on B(O,2R) × [0, T ] and the Ricci curvature Ric
≥ −(n−1)K2 on B(O,2R) for some K ≥ 0. They showed that for any m > 1 and β > 1, it holds on B(O,R)×[0, T ]
that

|∇v|2
v

− β
vt

v
≤ αβ2

(
1

t
+ C2K

2v2R,T
max

)
+ αβ2 v

2R,T
max

R2
C1,

where

v2R,T
max = max

B(O,2R)×[0,T ]
v.

For m ∈ (1 − 2
n
,1), they proved that on B(O,R) × [0, T ], for any γ ∈ (0,1),

|∇v|2
v

− γ
vt

v
≥ αγ 2

C3

(
1

t
+ C4

√
C3K

2v̄2R,T
max

)
+ αγ 2

C3

v̄
2R,T
max

R2
C5,

where

v̄2R,T
max = max

B(O,2R)×[0,T ]
(−v).

Later in [18] several results of similar type were obtained by G. Huang, Z. Huang and H. Li. Note that these gradient
bounds do not depend on the initial datum. While in [34], S. T. Yau established a similar type of gradient bounds
depending on derivatives of initial datum for degenerate parabolic equations of the form

∂u

∂t
= �

(
F(u)

)
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with F ∈ C2(0,∞) and F ′ > 0. In particular, as explained in [24], Yau’s result implies that for any function c(t) ∈
C1(0,∞) satisfying

⎧⎨
⎩

c(t) ≤ 0,

c′(t) ≥ 0,

|∇v|2 − 2vt + 2m(m−1
m

v)
m−2
m−1 ≤ c(t) at t = 0,

it holds for all t > 0 that

|∇v|2 − 2vt + 2m

(
m − 1

m
v

)m−2
m−1 ≤ c(t).

Besides gradient estimates of Aronson–Bénilan type, the Hamilton type estimate also plays an important role. It
originates from Hamilton [15] where it was proved that a positive smooth solution u to the heat equation on a compact
manifold without boundary and with Ric ≥ −k, k > 0, we have

|∇u|2
u2

≤
(

1

t
+ 2k

)
ln

‖u‖∞
u

. (5)

This is an upper bound on the gradient of space variables only, hence leading to a different type of Harnack inequal-
ities. As proved by Kotschwar [20], the same result holds for complete noncompact manifolds as well. Later a local
version was obtained by Souplet and Zhang in [27]. As for PME and FDE, L. A. Caffarelli, J. L. Vázquez and N. I.
Wolanski [11] discussed the case where the initial datum is compactly supported. Namely, under the assumption that
the initial datum u0 ≥ 0 is integrable and compactly supported, they established that for m > 1, there exists a time
T = T (u0) > 0 and a constant c = c(m,n) > 0 such that

∣∣∇v(x, t)
∣∣ ≤ c

((
v

t

) 1
2 + |x|

t

)

for any t > T and almost every x ∈ Rn. Later X. Xu [33] derived a local result on a complete Riemannian manifold
with Ric ≥ −k for some k ≥ 0. For m > 1, if there exists a constant δ ∈ (0, 4

n−1 ] such that

1 ≤ v
2R,T
max

v
2R,T
min

<
1

1 + δ

(
4m

(n − 1)(m − 1)
+ 1

)

then on B(x0,R) × [t0 − T
2 , t0]

|∇v|
v

2R,T
max (1 + δ) − v

≤ C6(m,n)

(
1 + δ

2ρδR
+ 1√

m−1
m

v
2R,T
max δρT

+
√

k

δ

)

where

ρ = 2m − (n − 1)(m − 1)

2

v
2R,T
max (1 + δ) − v

2R,T
min

v
2R,T
min

,

v2R,T
max = sup

B(x0,2R)×[t0−T ,t0]
v, v

2R,T
min = inf

B(x0,2R)×[t0−T ,t0]
v.

For m ∈ (1 − 4
n+3 ,1), they obtained that on B(x0,R) × [t0 − T

2 , t0],
|∇v|
−v

≤ C7(m,n)

(
1

2R
+ 1√

1−m
m

v̄
2R,T
min T

+ √
k

)
,
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where

v̄
2R,T
min = inf

B(x0,2R)×[t0−T ,t0]
(−v).

This is a generalization of Li Ma et al. [24], where the same estimate was derived only for n = 2 or 3 with m ∈
(1 − 1√

n
,1). In X. Zhu [36], it was proved that for m ∈ (1,1 + 1√

2n+1
), on B(x0,R) × [t0 − T

2 , t0]

v
1
4

2−m
m−1 |∇v| ≤ C8

(
v2R,T

max

)1+ 1
4

2−m
m−1

(
1

2R
+ 1√

T
+ √

k

)

with

v2R,T
max = sup

B(x0,2R)×[t0−T ,t0]
v.

In X. Zhu [35], a gradient bound for m ∈ (1 − 2
n
,1) was obtained. On B(x0,R) × [t0 − T

2 , t0]
|∇v|√−v

≤ C9

√
v̄

2R,T
max

(
1

2R
+ 1√

T
+ √

k

)
,

where

v̄2R,T
max = sup

B(x0,2R)×[t0−T ,t0]
(−v).

In this paper, let us denote by AR,ε
x0 the annulus B(x0,R + ε) \ B(x0,R). Set

L = 8

ε2

(
nε

2R + ε
+ 8(R + ε)2

(2R + ε)2

)
,

h− = m −
√

1 − (n − 1)(m − 1)2, h+ = m +
√

1 − (n − 1)(m − 1)2. (6)

We derived several local and global gradient estimates as follows.

Theorem 1. If u is a positive and bounded solution to (1) on [0, t1]×B(x0,R + 2ε) with m ∈ (1 − 1√
n−1

,1 + 1√
n−1

),

then for any h ∈ (h−, h+) \ {0}, ρ ∈ (0,m| 2m+h
2h

|−1), and (T , x) ∈ (0, t1) × B(x0,R), we have

um+h−3|∇u|2(T , x)

≤ ‖IB(x0,R+ε)u
h
0‖∞ − uh(T , x)

hm(m − ρ| 2m+h
2h

|)T + (ρ + | 2m+h
2 |)LM2

|h|ρ(m − ρ| 2m+h
2h

|)

+ (|2m − h|l−3 + 6l−1)mM1L
2 T

8
, (7)

where IB(x0,R+ε) is the indicator function of B(x0,R + ε) and

l = (h − h−)(h+ − h)

3|m − h
2 | + 3

, M1 = sup
[0,T ]×AR,ε

x0

u2m+h−2, M2 = sup
[0,T ]×AR,ε

x0

um+h−1.

Comparing to the existing work, our result is essentially about estimating the gradient at time t0 with the informa-
tion of u during [t0 − T , t0], while the other results we listed above are using information of u during [t0 − 2T , t0].
Therefore, we have an extra term linear in T . In terms of the constraint on m, one can see that when the dimension
n = 1, m can take any positive real number. When n > 1, comparing to all the existing results we are aware of, our
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bound is valid for a wider range of m when m < 1. As for the case when m > 1, our range of m is larger than that in
[36]. If we look for a bound on the pressure variable, by taking h = 0, the restriction on m becomes identical to the
one in [35].

Corollary 2. If u is a positive and bounded solution to (1) on [0, t1] × B(x0,R + 2ε) with m ∈ (1 − 2
n
,1), and the

pressure variable v = um−1

m−1 , then for any ρ ∈ (0,m), and (T , x) ∈ (0, t1) × B(x0,R), we have

|∇v|2
(m − 1)v

(T , x) ≤ ‖IB(x0,R+ε) logu0‖∞ − logu(T , x)

m(m − ρ)T

+ LM3

ρ(m − ρ)
+

(
m

2
l−3 + 3

2
l−1

)
mM1L

2 T

2
,

where

l = −n(m − 1)2 − 2(m − 1)

3(m + 1)
, M1 = sup

[0,T ]×AR,ε
x0

u2m−2,

M3 = sup
[0,T ]×AR,ε

x0

(
ρ logu + (m logu + 1)2)um−1.

As for the global case, by letting ε = R, then R → ∞ and ρ → 0 in (7), we obtain a very neat gradient bound.

Corollary 3. If u is a positive and bounded solution to (1) on (0,∞) ×Rn and m ∈ (1 − 1√
n−1

,1 + 1√
n−1

), then for

any h ∈ [h−, h+] and (T , x) ∈ (0,∞) ×Rn, it holds that

um+h−3|∇u|2(T , x) ≤ ‖uh
0‖∞ − uh(T , x)

T hm2
. (8)

First of all, this bound does not depend on the dimension n explicitly. This is because the information about
dimension has been incorporated into the initial value and the constraint on h. In fact, [7] derived a gradient bound
which is independent of the initial datum, but dependent on dimension n. Secondly, it naturally shows that when a
function touches its maximum, its gradient vanishes. In this sense it is a tight gradient bound. Moreover, when m = 1
(then h ∈ [0,2], the right hand side of h = 0 means the limit of h → 0+) and h → 0+, our results recovers Hamilton’s
gradient bound for heat equation.

Corollary 4 (Hamilton’s gradient estimate). If u is a solution to the heat equation on (0,∞) × Rn with positive
and bounded initial datum, then for any (T , x) ∈ (0,∞) ×Rn, it holds that

|∇u|2
u2

(T , x) ≤ 1

T
log

‖u0‖∞
u(T , x)

. (9)

Remark. When m ∈ [1 − 2
n
,1], h− ≤ 0 and h+ > 0. In this case, when h → 0+, the estimate becomes

um−3|∇u|2(T , x) ≤ 1

T m2
log

‖u0‖∞
u(T , x)

.

Our last result is an extension of Corollary 3, where the condition that

(h − h−)(h − h+) < 0,

is essential.
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We next consider the case where m and h satisfy the condition that

(h − h−)(h − h+) > 0.

The previous inequality is equivalent to that m ∈ (0,1 − 1√
n−1

) ∪ (1 + 1√
n−1

,∞) and h ∈ R, or m ∈ [1 − 1√
n−1

,

1 + 1√
n−1

] but h ∈ (−∞, h−) ∪ (h+,∞). For such m and h, let us define

U± = mh ± |h|√m2 + (h − h−)(h − h+)

(h − h−)(h − h+)
. (10)

When |m − 1| > 1√
n−1

,

h− = m − i
√

(n − 1)(m − 1)2 − 1, h+ = m + i
√

(n − 1)(m − 1)2 − 1,

where i2 = −1. Hence (h − h−)(h − h+) is still real valued.

Theorem 5. Let u be a positive and bounded solution to (1) on (0,∞) × Rn with m > 0. Let h ∈ R satisfy the
condition

(h − h−)(h − h+) > 0,

and

U ≡ ‖uh
0‖∞

(minuh
0)

− 1 ∈ (U−,U+).

Then

um+h−3|∇u|2(T , x)

≤ 2
‖uh

0‖∞ − uh(T , x)

mT (h − h−)(h − h+)U−1(U − U−)(U+ − U)
.

This result, together with Corollary 3 shows that when

m ∈
(

1 − 1√
n − 1

,1 + 1√
n − 1

)
,

a gradient bound only depending on the maximum of initial datum can be established. While when m is outside of this
range, the gradient bound will depend on the ratio of the maximum and minimum of u as well. A similar phenomenon
has been shown in [33], but only for m > 1. Nevertheless, the meaning behind this phenomenon is not clear to us yet,
which is worthy of exploring.

We would like to mention that employing martingale theory to derive gradient estimate is not new, and there is
a large number of papers devoted to the study of solutions of PDEs by using stochastic differential equations, for
example [1,25] and literature therein for a small sample. On the other hand, to the best of authors’ knowledge, there
are few papers dealing with the kind of nonlinear PDEs by using martingale methods. We also use the change of
probability (this method is new in establishing the gradient estimates for nonlinear PDEs) in order to get gradient
estimates for larger range of m. Our method combines the martingale method and the change of probability in order
to treat nonlinear PDEs. This method seems to be new.
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The rest of the paper is organized as follows. In Section 2, we illustrate our main idea by establishing the gradient
estimate for solution to the heat equation. In Section 3, we prove our local and global estimates.

2. Gradient estimate for solutions to the heat equation

To illustrate the main idea, let us consider the heat equation in this chapter. Assume that u solves

∂u

∂t
= �u on (0,∞) ×Rn,

(11)
u(x,0) = u0(x) on Rn.

To avoid technical difficulties, we also assume that u is smooth, bounded and has bounded derivatives with respect to
space variables up to the second order. It is known that there is a close link between a large class of parabolic PDEs and
diffusion processes, in the sense that the differential operator for a PDE can be identified as a generator for a diffusion
process. Once this one-to-one correspondence has been established, we are given a way to study a PDE through its
diffusion process counterpart, or the other way around. For example, the solution to a PDE can be expressed in terms
of the expectation of a diffusion process at a certain time, the so-called path integration, and the transition probability
density function of a diffusion process is the kernel of a PDE. For a more comprehensive account of this area, we
refer to the book [28] by Stroock and Varadhan. Here we also relates our PDE, (11), to a diffusion process in the way
that we have just explained. For a given point (T , x) ∈ (0,∞) × Rn, define an n-dimensional stochastic process Xt

by solving the stochastic differential equation

dXα
t = √

2dWα
t ,

Xα
0 = xα,

where α ∈ {1, . . . , n} and W = (W 1, . . . ,Wn) is a standard n-dimensional Brownian motion on the probability space
(�,F,P). Then we have a progressively measurable function X from ((0,∞) × �,B((0,∞)) ⊗F) to Rn. Bearing
in mind that the aim is to get an upper bound for |∇u|2(T , x), let us consider the process |∇u|2(T − t,Xt ) with index
t ∈ [0, T ], that is, the gradient running backward on diffusion process X. The way we composite |∇u|2 with X is
commonly seen. In terms of computation, this will lead to the disappearance of terms containing the time derivative
when using Ito formula. Intuitively, this is because on the one hand our diffusion process always starts at the deter-
ministic point that we are interested in and then evolves in a certain random way as t increases, but on the other hand,
due to the nature of parabolic PDEs, we need to use the information about the solution before T . So we need the time
variable to decrease when t increases.

One can observe that |∇u|2(T − t,Xt ) is a semimartingale. Hence we are encouraged to turn to the theory of
martingales, a concept introduced by Paul Lévy in 1930s and greatly developed by J. L. Doob in his book [14]. First
of all, let us decompose the semimartingale (|∇u|2(T − t,Xt ))0≤t≤T into a sum of a local martingale and a process
with finite variation. From now on, when there is no potential confusion, we omit the specification of variables in
functions, as we always consider functions running backward on diffusion X. Taking derivatives with respect to xα

on both sides of (11) yields

∂2u

∂t ∂xα
= �

∂u

∂xα
. (12)

Since u is smooth by our assumption, we can apply Ito formula on ∂u
∂xα (T − t,Xt ) and obtain

d
∂u

∂xα
= − ∂2u

∂t ∂xα
dt + �

∂u

∂xα
dt + √

2
∂2u

∂xα ∂xβ
dW

β
t

= √
2

∂2u

∂xα ∂xβ
dW

β
t ,
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where the last equality results from (12). Then, again by Ito formula,

d|∇u|2 = 2
∂u

∂xα
d

∂u

∂xα
+

∑
α

d

〈
∂u

∂xα

〉

= 2
√

2
∂u

∂xα

∂2u

∂xα ∂xβ
dW

β
t + 2

n∑
α,β=1

(
∂2u

∂xα ∂xβ

)2

dt. (13)

This is the decomposition we are looking for. It can be seen that the finite variation term is non-negative, and the local

martingale part is a true martingale under P, a consequence of the boundedness of ∂u
∂xα and ∂2u

∂xα ∂xβ , ∀α,β ∈ {1, . . . , n}.
This means that |∇u|2(T − t,Xt ) is a submartingale, which implies that

E
[|∇u|2(T − t,Xt )

] ≥ E
[|∇u|2(T ,X0)

] = |∇u|2(T , x)

for any t ∈ [0, T ], where the equality results from the fact that X0 = x P-almost surely. By integrating both sides on t

from 0 to T , we have

∫ T

0
E

[|∇u|2(T − t,Xt )
]
dt ≥ T |∇u|2(T , x). (14)

On the other hand, through a scaling argument, one can see that a bound on |∇u|2(T , x) involving T and ‖u‖∞ should

have the order O(
‖u‖2∞

T
). Therefore, let us consider the process u2(T − t,Xt ). By Ito formula,

u2(0,XT ) − u2(T ,X0) = 2
√

2
∫ T

0
u

∂u

∂xα
dWα

t + 2
∫ T

0
|∇u|2 dt. (15)

Since u and ∂u
∂xα , α ∈ {1, . . . , n}, are bounded by our assumption,

∫ ·
0 u ∂u

∂xα dWα
t is a true martingale. Hence

E[∫ T

0 u ∂u
∂xα dWα

t ] = 0. It then follows from (15) that

E
[
u2(0,XT )

] − u2(T , x) = 2E

[∫ T

0
|∇u|2 dt

]
. (16)

By Fubini’s theorem, E[∫ T

0 |∇u|2 dt] = ∫ T

0 E[|∇u|2]dt . Therefore, (14) and (16) together yields

|∇u|2(T , x) ≤ E[u2(0,XT )] − u2(T , x)

2T
.

Since the law of XT is absolutely continuous with respect to Lebesgue measure, u2(0,XT ) ≤ ‖u0‖2∞ P-almost surely,
where ‖ · ‖∞ denotes the essential supremum. Hence we have the following result.

Theorem 6. If u solves the Cauchy problem (11) and u is smooth, bounded and has bounded derivatives with respect
to space variables up to the second order, then for any (T , x) ∈ (0,∞) ×Rn, we have

|∇u|2(T , x) ≤ ‖u0‖2∞ − u2(T , x)

2T
≤ ‖u0‖2∞

T
. (17)

We want to remark here that this method also applies to estimates of gradients of higher orders. To see this, first
observe that by considering the function ū(t, x) = u(t + ε, x) where ε > 0 in the above argument, we get

|∇u|2(T , x) ≤ ‖u(ε, ·)‖2∞
T − ε

.
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Since ∂u
∂xi also satisfies the heat equation, it holds that

∣∣∣∣∇ ∂u

∂xi

∣∣∣∣
2

(T , x) ≤ ‖ ∂u
∂xi (ε, ·)‖2∞

T − ε
.

Summing over the index i yields that

n∑
i,j=1

∣∣∣∣ ∂2u

∂xi ∂xj

∣∣∣∣
2

(T , x) ≤ ‖|∇u|2(ε, ·)‖∞
T − ε

≤ ‖u0‖2∞
ε(T − ε)

,

where the last inequality results from (17). Then we can minimize the right hand side by choosing ε = T
2 , hence

obtaining

n∑
i,j=1

∣∣∣∣ ∂2u

∂xi ∂xj

∣∣∣∣
2

(T , x) ≤ 4‖u0‖2∞
T 2

.

Remark. An approach based on the link between Backward Stochastic Differential Equation (BSDE) and PDE to
establish gradient estimates for positive solutions to the heat equation of elliptic or subelliptic operators on Euclidean
spaces or on Riemannian manifolds is developed in [17].

3. Gradient estimate for positive solutions to PME and FDE

3.1. Local gradient estimate

Now we move to the equation (1). In this section we study the problem on a local scale. Denote by B(x0,R + ε)

a closed ball in Rn with center x0 and radius R + ε, where R, ε > 0. Let u be a positive and bounded solution
to (1) on [0, t1] × B(x0,R + 2ε). The positivity of u ensures that no degeneracy of parabolicity would happen in
[0, t1] × B(x0,R + 2ε). Hence we can use theory about non-degenerate quasilinear parabolic PDE to obtain that
u is smooth in (0, t1] × B(x0,R + ε). Note that at this moment u is defined only on [0, t1] × B(x0,R + ε). This
brings difficulty to our martingale method, as we will consider u running backward on a stochastic process, which
takes values on the whole space Rn at any time. To get around this obstacle, let ũ be a positive function defined on
[0, t1] ×Rn, such that ũ is smooth on (0, t1] × B(x0,R + ε) and

u = ũ on [0, t1] × B(x0,R + ε).

Note that as u is positive and smooth on (0, t1]×B(x0,R + ε), such ũ exists. It is worthwhile to point out here that the
behavior of the extended function ũ outside [0, t1] × B(x0,R + ε) will not enter into our computation in the sequel,
as Li–Yau’s localization technique will be adopted. Next, we take a transformation on ũ by setting

f = ũh

h
(18)

for some h ∈ R \ {0}. This is a generalization of the transform v = um−1

m−1 , which repeatedly appears in literature
concerning PME and FDE, such as [2,11,23,33] and [35]. From (1) one can derive that the so-called pressure variable
v satisfies

∂v

∂t
= m(m − 1)v�v + m|∇v|2. (19)

We can see that the exponent m in (1) comes down into coefficients in (19), and both terms on the right hand side of
(19) are quadratic, which facilitates many computations. However, this feature is not crucial to our method. Hence we
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attempt to generalize this transform with (18). It turns out that the flexibility in choosing h results in an enlargement
of the range of m that our gradient bound is valid for.

As we are looking for a gradient bound on a local scale, we are keen to only use the local information about f .
For this purpose, we adopt the localization technique of Li and Yau [22] to introduce a cut-off function φ ∈ C2(Rn)

satisfying

φ(x) =
{

1 on B(x0,R),
0 on B(x0,R + ε)c,

(20)
|�φ| ≤ Lφ

1
2

and

|∇φ|2 ≤ Lφ
3
2 , (21)

for some L > 0. Note that such cut-off function exists. One possible choice is

φ(x) =
⎧⎨
⎩

1 on B(x0,R),
0 on B(x0,R + ε)c,
((R+ε

R
)2 − 1)−4((R+ε

R
)2 − | x−x0

R
|2)4 otherwise,

and

L = 8

ε2

(
nε

2R + ε
+ 8(R + ε)2

(2R + ε)2

)
.

Then function φf , the multiplication of functions φ and f , cuts all the information of f outside [0, t1]×B(x0,R +ε),
while faithfully preserving its behavior in [0, t1]×B(x0,R). Therefore, it is this function that we are going to consider
in the sequel.

3.1.1. From PDE to SDE
Just as the case of heat equation, let us begin by fixing a point (T , x) ∈ (0, t1) × B(x0,R). From (1) and the definition
of f , we have on (0, t1] ×Rn,

∂(φf )

∂t
= m(hf )

m−1
h φ�f + m(m − h)(hf )

m−h−1
h φ|∇f |2

= m(hf )
m−1

h �(φf ) − m(hf )
m−1

h f �φ

− 2m(hf )
m−1

h ∇f · ∇φ + m(m − h)(hf )
m−h−1

h φ|∇f |2. (22)

Then let us link PDE (22) with the diffusion process X = (Xt )0≤t<T , whose generator L is given by

Ltw(y) = m(hf )
m−1

h (T − t, y)�w(y), ∀w ∈ C2
0

(
Rn

)
.

L corresponds to the principle part of the differential operator in (22). Note that by the definition of f , (hf )
m−1

h ≥ 0
since u ≥ 0. By [28] the way to obtain X is to solve the stochastic differential equation (SDE)

dXα
t = √

2m(hf )
m−1

2h (T − t,Xt ) dWα
t ,

X0 = x

for t ∈ [0, T ), where W = (W 1, . . . ,Wn) is a standard n-dimensional Brownian motion on a probability space

(�,F,P) and the stochastic integral is in Ito’s sense. By our assumption on u, (hf )
m−1

2h is bounded, smooth and
has bounded derivatives. Therefore, by [19] this SDE has a unique strong solution on the time interval [0, T ).
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3.1.2. Fundamental decompositions
The next step is to consider various functions running backward on process X. They are f (T − t,Xt ), φ(Xt ),
|∇f |2(T − t,Xt ) and so on. In fact, we will omit the specification of variables in functions, as all the functions
below are compositions on (T − t,Xt ). t will always take values in [0, T ), which is exactly the time interval where
X lives. One can see that these processes are all semimartingales, waiting for us to decompose and then releasing
information. But unlike the heat equation, (22) is not linear, a consequence of the non-linearity of (1). Therefore, we
should be very careful in choosing semimartingales for decomposition. To begin with, let us consider

Yt � (φf )(T − t,Xt ).

By Ito formula,

dYt = √
2m(hf )

m−1
2h

∂(f φ)

∂xα
dWα

t − m(m − h)(hf )
m−h−1

h φ|∇f |2 dt

+
(

�φm(hf )
m−1

h f + 2m(hf )
m−1

h
∂f

∂xα

∂φ

∂xα

)
dt. (23)

It is readily seen that

YT = φf (0,XT ) = φ
uh

0

h
(XT ). (24)

Observe that in the finite variation part of (23), the term with highest degree in ∇f is

−m(m − h)(hf )
m−h−1

h φ|∇f |2(T − t,Xt ) dt.

This means that it can be controlled in terms of ‖u0‖∞ with the help of (23). Therefore, it is this term that worth
investigation. Define

Ht = (hf )
m−h−1

h φ|∇f |2(T − t,Xt ), t ∈ [0, T ).

The function (hf )
m−h−1

h φ|∇f |2 is smooth on (0, t1] × Rn. Its dynamic only depends on the behavior of u within
(0, t1] × B(x0,R + ε), which is governed by (1). Therefore, we can use Ito formula and decompose H into local
martingale part and finite variation part as follows.

dHt = d

(
(hf )

m−h−1
h φ

∑
α

∣∣∣∣ ∂f

∂xα

∣∣∣∣
2)

= 2
√

2m(hf )
3m−2h−3

2h φ
∂2f

∂xα ∂xβ

∂f

∂xα
dW

β
t

+ √
2m(m − h − 1)(hf )

3m−4h−3
2h φ|∇f |2 ∂f

∂xβ
dW

β
t

+ √
2m(hf )

3m−2h−3
2h

∂φ

∂xβ
|∇f |2 dW

β
t

− m(2m − h + 1)(m − h − 1)(hf )
2m−3h−2

h φ|∇f |4 dt

+ 2m(m − h − 1)(hf )
2m−2h−2

h
∂φ

∂xα

∂f

∂xα
|∇f |2 dt

+ m(hf )
2m−h−2

h �φ|∇f |2 dt

− 2m(m − 1)(hf )
2m−2−2h

h φ�f |∇f |2 dt
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− 4m(hf )
2m−2h−2

h φ
∂f

∂xβ

∂2f

∂xβ ∂xα

∂f

∂xα
dt

+ 4m(hf )
2m−2−h

h
∂φ

∂xβ

∂2f

∂xα ∂xβ

∂f

∂xα
dt

+ 2m(hf )
2m−h−2

h φ
∑
α,β

(
∂2f

∂xα ∂xβ

)2

dt. (25)

This is the decomposition under measure P for semimartingale H . But in order to get more flexibility, we need to take
advantage of an important tool in stochastic analysis-the change of measure. Let us introduce a family of probability
measures on (�,F) depending on a parameter λ ∈R. Define a measure Q on (�,F) by

dQ

dP

∣∣∣∣
Ft

= exp

(∫ t

0

√
2mλ(hf )

m−2h−1
2h

∂f

∂xβ
dWβ − mλ2

∫ t

0
(hf )

m−2h−1
h |∇f |2 dt

)
. (26)

Since (hf )
m−2h−1

2h
∂f

∂xβ = u
m−3

2 ∂u
∂xβ , β ∈ {1, . . . , n} are bounded by our assumption, Novikov’s condition [26] is met. So

the right hand side of (26) is a true martingale under P, which ensures that measure Q is well defined. According to
Girsanov’s theorem [19], under measure Q, the process W̃ = (W̃ 1, . . . , W̃ n) given by

dW̃
β
t = dW

β
t − √

2mλ(hf )
m−2h−1

2h
∂f

∂xβ
dt

is an n-dimensional Brownian motion. So from (25), we easily get the decomposition for H under measure Q, which
is

dHt = 2
√

2m(hf )
3m−2h−3

2h φ
∂2f

∂xα ∂xβ

∂f

∂xα
dW̃

β
t

+ √
2m(m − h − 1)(hf )

3m−4h−3
2h φ|∇f |2 ∂f

∂xβ
dW̃

β
t

+ √
2m(hf )

3m−2h−3
2h

∂φ

∂xβ
|∇f |2 dW̃

β
t

− m(2m − h + 1 − 2λ)(m − h − 1)(hf )
2m−3h−2

h φ|∇f |4 dt

+ 2m(m − h − 1 + λ)(hf )
2m−2h−2

h
∂φ

∂xα

∂f

∂xα
|∇f |2 dt

+ m(hf )
2m−h−2

h �φ|∇f |2 dt

− 2m(m − 1)(hf )
2m−2−2h

h φ�f |∇f |2 dt

+ 4m(λ − 1)(hf )
2m−2h−2

h φ
∂2f

∂xα ∂xβ

∂f

∂xα

∂f

∂xβ
dt

+ 4m(hf )
2m−2−h

h
∂φ

∂xβ

∂2f

∂xα ∂xβ

∂f

∂xα
dt

+ 2m(hf )
2m−h−2

h φ
∑
α,β

(
∂2f

∂xα ∂xβ

)2

dt. (27)

While from (23), it is easy to see that under measure Q,

dYt = √
2m(hf )

m−1
2h

∂(f φ)

∂xα
dW̃α

t

+ m(2λ − m + h)(hf )
m−h−1

h φ|∇f |2 dt
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+ �φmh−1(hf )
m−1+h

h dt

+ 2m
(
1 + λh−1)(hf )

m−1
h

∂f

∂xα

∂φ

∂xα
dt. (28)

Now we have (28) and (27) at hand, which are the fundamental decompositions we are looking for.

3.1.3. Gradient bound for solution u

In contrast to (13) which appears in the case of global estimate for the heat equation, (27) is more complicated, thanks
to the nonlinearity of PDE (1) and the introduction of cut-off function φ. To make use of it, recall that we aim to
estimate the first order derivatives of f . Therefore, it is reasonable to get rid off the second order derivatives of f

appearing in the decomposition (27). This is done in the following lemma. For simplicity, denote by AR,ε
x0 the annulus

B(x0,R + ε) \ B(x0,R).

Lemma 7. H satisfies

dHt ≥ At dW̃t − 1

2
mn(m − 1)2(hf )

2m−3h−2
h φ|∇f |4 dt

− m
(
(2m − h + 1 − 2λ)(m − h − 1) + 2(λ − 1)(λ − m)

)
(hf )

2m−3h−2
h φ|∇f |4 dt

+ 2m(2m − h − λ)(hf )
2m−2h−2

h
∂φ

∂xα

∂f

∂xα
|∇f |2 dt + m(hf )

2m−h−2
h �φ|∇f |2 dt

− 2m(hf )
2m−2−h

h φ−1IAR,ε
x0

|∇φ|2|∇f |2 dt, (29)

where

A = 2
√

2m(hf )
3m−2h−3

2h φ
∂2f

∂xα ∂xβ

∂f

∂xα

+ √
2m(m − h − 1)(hf )

3m−4h−3
2h φ|∇f |2 ∂f

∂xβ

+ √
2m(hf )

3m−2h−3
2h

∂φ

∂xβ
|∇f |2. (30)

Proof. From (27), let us write

dHt � At dW̃t + (B + C + D)dt,

where

A = 2
√

2m(hf )
3m−2h−3

2h φ
∂2f

∂xα ∂xβ

∂f

∂xα

+ √
2m(m − h − 1)(hf )

3m−4h−3
2h φ|∇f |2 ∂f

∂xβ

+ √
2m(hf )

3m−2h−3
2h

∂φ

∂xβ
|∇f |2

and by Cauchy–Schwartz inequality,

B =
∑
α

(
2m(hf )

2m−h−2
h φ

(
∂2f

∂xα ∂xα

)2

− 2m(m − 1)(hf )
2m−2−2h

h φ
∂2f

∂xα ∂xα
|∇f |2
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+ 4m(λ − 1)(hf )
2m−2h−2

h φ
∂2f

∂xα ∂xα

∂f

∂xα

∂f

∂xα

+ 4m(hf )
2m−2−h

h
∂φ

∂xα

∂2f

∂xα ∂xα

∂f

∂xα

)

≥ −2m(hf )
2m−2−h

h φ−1IAR,ε
x0

∑
α

(
∂φ

∂xα

)2(
∂f

∂xα

)2

− 2m(λ − 1)2(hf )
2m−3h−2

h φ
∑
α

(
∂f

∂xα

)4

− 4m(λ − 1)(hf )
2m−2h−2

h

∑
α

∂φ

∂xα

(
∂f

∂xα

)3

+ 2m(m − 1)(hf )
2m−2−2h

h |∇f |2 ∂φ

∂xα

∂f

∂xα

+
(

λ − 1 − 1

4
n(m − 1)

)
2m(m − 1)(hf )

2m−2−3h
h φ|∇f |4,

C =
∑
α �=β

(
2m(hf )

2m−h−2
h φ

(
∂2f

∂xα ∂xβ

)2

+ 4m(λ − 1)(hf )
2m−2h−2

h φ
∂2f

∂xα ∂xβ

∂f

∂xα

∂f

∂xβ

+ 4m(hf )
2m−2−h

h
∂φ

∂xβ

∂2f

∂xα ∂xβ

∂f

∂xα

)

≥
∑
α �=β

(
−2m(λ − 1)2(hf )

2m−3h−2
h φ

(
∂f

∂xα

∂f

∂xβ

)2

− 2m(hf )
2m−2−h

h φ−1IAR,ε
x0

(
∂φ

∂xβ

∂f

∂xα

)2

− 4m(λ − 1)(hf )
2m−2h−2

h
∂φ

∂xβ

∂f

∂xα

∂f

∂xα

∂f

∂xβ

)

and

D = −m(2m − h + 1 − 2λ)(m − h − 1)(hf )
2m−3h−2

h φ|∇f |4

+ m(hf )
2m−h−2

h �φ|∇f |2

+ 2m(m − h − 1 + λ)(hf )
2m−2h−2

h
∂φ

∂xα

∂f

∂xα
|∇f |2.

Then adding these three inequalities gives us (29). �

To deal with the finite variation part in (29), let us assume that

1

2
n(m − 1)2 + (2m − h + 1 − 2λ)(m − h − 1) + 2(λ − 1)(λ − m) < 0. (31)

This allows us to get the following estimate.
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Lemma 8. Under assumption (31), we have

EQ

[∫ T

0
Hs ds

]
≥ H0T −

(
1

2
|2m − h − λ|l−3 + 3

2
l−1

)
mM1L

2 T 2

2
, (32)

where

l =
1
2n(m − 1)2 + (2m − h + 1 − 2λ)(m − h − 1) + 2(λ − 1)(λ − m)

− 3
2 |2m − h − λ| − 3

2

(33)

and

M1 = sup
[0,T ]×AR,ε

x0

u2m+h−2(t, y).

Proof. By Cauchy–Schwartz inequality, for any positive l1, l2, l3 and l4,
∣∣∣∣(hf )

2m−2h−2
h

∂φ

∂xα

∂f

∂xα
|∇f |2

∣∣∣∣
≤ 1

2
l1(hf )

2m−3h−2
h φ|∇f |4 + 1

2
l−1
1 (hf )

2m−h−2
h φ−1|∇φ|2|∇f |2

≤ 1

2
l1(hf )

2m−3h−2
h φ|∇f |4 + 1

4
l−1
1 l2(hf )

2m−3h−2
h φ|∇f |4

+ 1

4
l−1
1 l−1

2 (hf )
2m+h−2

h φ−3|∇φ|4,
∣∣(hf )

2m−h−2
h φ−1|∇φ|2|∇f |2∣∣

≤ 1

2
l3(hf )

2m−3h−2
h φ|∇f |4 + 1

2
l−1
3 (hf )

2m+h−2
h φ−3|∇φ|4

and

∣∣(hf )
2m−h−2

h �φ|∇f |2∣∣
≤ 1

2
l4(hf )

2m−3h−2
h φ|∇f |4 + 1

2
l−1
4 (hf )

2m+h−2
h φ−1|�φ|2.

Plugging them into (29) in the above lemma yields

dHt ≥ At dW̃t

− 1

2
mn(m − 1)2(hf )

2m−3h−2
h φ|∇f |4 dt

− m
(
(2m − h + 1 − 2λ)(m − h − 1) + 2(λ − 1)(λ − m)

)
(hf )

2m−3h−2
h φ|∇f |4 dt

− 2m|2m − h − λ|
(

1

2
l1 + 1

4
l−1
1 l2

)
(hf )

2m−3h−2
h φ|∇f |4 dt

− ml3(hf )
2m−3h−2

h φ|∇f |4 dt

− 1

2
ml4(hf )

2m−3h−2
h φ|∇f |4 dt

− 1

2
ml−1

4 (hf )
2m+h−2

h φ−1|�φ|2 dt
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− 1

2
m|2m − h − λ|l−1

1 l−1
2 (hf )

2m+h−2
h φ−3|∇φ|4 dt

− ml−1
3 (hf )

2m+h−2
h φ−3|∇φ|4 dt.

For simplicity, set l2
1 = l2 = l2

3 = l2
4 = l2. Then we have

dHt ≥ At dW̃t

− 1

2
mn(m − 1)2(hf )

2m−3h−2
h φ|∇f |4 dt

− m
(
(2m − h + 1 − 2λ)(m − h − 1) + 2(λ − 1)(λ − m)

)
(hf )

2m−3h−2
h φ|∇f |4 dt

− 3

2
m|2m − h − λ|l(hf )

2m−3h−2
h φ|∇f |4 dt

− 3

2
ml(hf )

2m−3h−2
h φ|∇f |4 dt

− 1

2
m

(|2m − h − λ|l−3 + 2l−1)(hf )
2m+h−2

h φ−3|∇φ|4 dt

− 1

2
ml−1(hf )

2m+h−2
h φ−1|�φ|2 dt.

By estimates for the cut-off function φ in (20) and (21),

dHt ≥ At dW̃t

− 1

2
mn(m − 1)2(hf )

2m−3h−2
h φ|∇f |4 dt

− m
(
(2m − h + 1 − 2λ)(m − h − 1) + 2(λ − 1)(λ − m)

)
(hf )

2m−3h−2
h φ|∇f |4 dt

− 3

2
m|2m − h − λ|l(hf )

2m−3h−2
h φ|∇f |4 dt

− 3

2
ml(hf )

2m−3h−2
h φ|∇f |4 dt

− 1

2
m

(|2m − h − λ|l−3 + 3l−1)(hf )
2m+h−2

h IAR,ε
x0

L2 dt.

Now, by assumption (31), we can choose a positive l small enough such that

−1

2
mn(m − 1)2 − m

(
(2m − h + 1 − 2λ)(m − h − 1) + 2(λ − 1)(λ − m)

)

=
(

3

2
|2m − h − λ| + 3

2

)
ml.

Hence we have for any t ∈ [0, T ),

dHt ≥ At dW̃t −
(

1

2
|2m − h − λ|l−3 + 3

2
l−1

)
mM1L

2 dt,

where

M1 = sup
[0, T ] ×AR,ε

x0

∣∣(hf )
2m+h−2

h (t, y)
∣∣ = sup

[0,T ]×AR,ε
x0

u2m+h−2(t, y).
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This gives

Hs − H0 ≥
∫ s

0
At dW̃t −

(
1

2
|2m − h − λ|l−3 + 3

2
l−1

)
mM1L

2s (34)

for any s ∈ [0, T ). According to our assumption on u, A, defined by (30), is bounded. So
∫ ·

0 As dW̃s is a true martingale
under Q. Therefore we can take expectation on both sides of (34) and obtain

EQ[Hs] ≥ H0 −
(

1

2
|2m − h − λ|l−3 + 3

2
l−1

)
mM1L

2s. (35)

Integrating both sides with respect to s on [0, T ] yields (32). �

On the other hand, by using (23), we have an upper bound on the left hand side of (32).

Lemma 9. Assume

2λ − m + h > 0. (36)

Then for any ρ > 0 such that

2λ − m + h − ρ
∣∣1 + λh−1

∣∣ > 0, (37)

we have

EQ

[∫ T

0
Ht dt

]
≤ EQ[YT ] − Y0 + (|h−1| + ρ−1|1 + λh−1|)mLM2T

m(2λ − m + h − ρ|1 + λh−1|) (38)

with

M2 = sup
[0,T ]×AR,ε

x0

um+h−1(t, y).

Proof. Recall (28), which is the fundamental decomposition of Y under measure Q. Then by property (20) of cut-off
function φ and Cauchy–Schwartz inequality, for any ρ > 0,

dYt ≥ √
2m(hf )

m−1
2h

∂(f φ)

∂xα
dW̃α

t

+ m(2λ − m + h)(hf )
m−h−1

h φ|∇f |2 dt

− Lφ
1
2 IAR,ε

x0
m

∣∣h−1
∣∣(hf )

m−1+h
h dt

− ρm
∣∣1 + λh−1

∣∣(hf )
m−1−h

h φ|∇f |2 dt

− ρ−1m
∣∣1 + λh−1

∣∣(hf )
m−1+h

h IAR,ε
x0

φ−1|∇φ|2 dt

≥ √
2m(hf )

m−1
2h

∂(f φ)

∂xα
dW̃α

t

+ m
(
2λ − m + h − ρ

∣∣1 + λh−1
∣∣)Ht dt

− (∣∣h−1
∣∣ + ρ−1

∣∣1 + λh−1
∣∣)mLM2 dt, (39)

where

M2 = sup
[0,T ]×AR,ε

x0

(hf )
m+h−1

h (t, y) = sup
[0,T ]×AR,ε

x0

um+h−1(t, y).
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According to our assumption on u, (hf )
m−1

2h
∂(f φ)
∂xα , α ∈ {1, . . . , n} are all bounded, which ensures that∫ ·

0(hf )
m−1

2h
∂(f φ)
∂xα dW̃α

t is a Q martingale. Hence

EQ[YT −t1 ] − Y0

≥ m
(
2λ − m + h − ρ

∣∣1 + λh−1
∣∣)EQ

[∫ T −t1

0
Ht dt

]

− (∣∣h−1
∣∣ + ρ−1

∣∣1 + λh−1
∣∣)mLM2(T − t1).

Dividing both sides by m(2λ − m + h − ρ|1 + λh−1|) yields (38). �

Now, based on (32) and (38), we are ready to obtain a gradient bound for u.

Proposition 10. Let the assumptions in Lemma 8 and Lemma 9 be satisfied, then for any (T , x) ∈ (0, t1) × B(x0,R),

um+h−3|∇u|2(T , x)

≤ EQ[φuh
0(XT )] − uh(T , x)

hm(2λ − m + h − ρ|1 + λh−1|)T + (|h−1| + ρ−1|1 + λh−1|)LM2

2λ − m + h − ρ|1 + λh−1|

+
(

1

2
|2m − h − λ|l−3 + 3

2
l−1

)
mM1L

2 T

2
. (40)

Proof. Combining (32) with (38), we have

H0 ≤ EQ[YT ] − Y0 + (|h−1| + ρ−1|1 + λh−1|)mLM2T

m(2λ − m + h − ρ|1 + λh−1|)T

+
(

1

2
|2m − h − λ|l−3 + 3

2
l−1

)
mM1L

2 T

2
.

Then we arrive at (40) by noting that

H0 = (hf )
m−h−1

h φ|∇f |2(T , x),

Y0 = φf (T , x) = φ
uh

h
(T , x)

and

EQ[YT ] = EQ

[
φ

uh
0

h
(XT )

]
. �

Let us revise the assumptions we have made, that is, (31) and (36). They impose a restriction on the choice of m.
Let us look at (31) first. It is equivalent to

2λ2 − 2(2m − h)λ + 1

2
n(m − 1)2 + (2m − h + 1)(m − h − 1) + 2m < 0. (41)

To let the left hand side attain the minimum, we take λ = 2m−h
2 . Then (41) is reduced to

h2 − 2mh + n(m − 1)2 + 2(m − 1) < 0. (42)

Notice that after setting λ = 2m−h
2 , condition (36) is automatically satisfied. Moreover, (42) holds if and only if

m ∈ (1 − 1√
n−1

,1 + 1√
n−1

), and

h ∈ (
m −

√
1 − (n − 1)(m − 1)2,m +

√
1 − (n − 1)(m − 1)2

)
.
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Then we arrive at Theorem 1 by substituting λ = 2m−h
2 into (37) and (33), and noting that EQ[φuh

0(XT )] ≤
‖IB(x0,R+ε)u

h
0‖∞.

3.1.4. Gradient bound for pressure variable v = um−1

m−1

Since most of the existing results are in terms of |∇v|2
v

, we are tempted to work out a bound on it with our method.

Notice that |∇v|2
v

= (m− 1)um−3|∇u|2, which corresponds to the LHS of (7) in Theorem 1 when h = 0. However, the
RHS of (7) will explode when h → 0. Therefore, we can not use the result in Theorem 1 directly.

Let us modify the estimate we obtained from the decomposition of Y , so that the bound does not explode when
h → 0. The idea is to decompose Yt − φ

h
(Xt ) instead of Yt . This is because

Yt − φ

h
(Xt ) = φ

uh − 1

h
→ φ logu,

which is finite.

Lemma 11. Assume

2λ − m + h > 0. (43)

Then for any ρ > 0 such that

2λ − m + h − ρ > 0, (44)

we have

EQ

[∫ T

0
Ht dt

]
≤ EQ[YT − φ

h
(XT )] − Y0 + φ

h
(x) + Lmρ−1M3T

m(2λ − m + h − ρ)
, (45)

where

M3 = sup
[0,T ]×AR,ε

x0

(
ρ

∣∣∣∣u
h − 1

h

∣∣∣∣uh +
(

λ

(
uh − 1

h

)
+ uh

)2)
um−h−1(t, y).

Proof. From (28),

d

(
Yt − φ

h
(Xt )

)
= √

2m(hf )
m−1

2h

(
φ

∂f

∂xα
+

(
f − 1

h

)
∂φ

∂xα

)
dW̃α

t

+ m(2λ − m + h)(hf )
m−h−1

h φ|∇f |2 dt

+ �φm

(
f − 1

h

)
(hf )

m−1
h dt

+ 2m

(
λ

(
f − 1

h

)
+ hf

)
(hf )

m−h−1
h

∂f

∂xα

∂φ

∂xα
dt. (46)

Then by Cauchy–Schwartz inequality, for any ρ > 0,

d

(
Yt − φ

h
(Xt )

)

≥ √
2m(hf )

m−1
2h

(
φ

∂f

∂xα
+

(
f − 1

h

)
∂φ

∂xα

)
dW̃α

t

+ m(2λ − m + h)(hf )
m−h−1

h φ|∇f |2 dt
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− Lφ
1
2 IAR,ε

x0
m

∣∣∣∣f − 1

h

∣∣∣∣(hf )
m−1

h dt

− ρm(hf )
m−h−1

h φ|∇f |2 dt

− ρ−1m

(
λ

(
f − 1

h

)
+ hf

)2

(hf )
m−h−1

h IAR,ε
x0

φ−1|∇φ|2 dt

≥ √
2m(hf )

m−1
2h

(
φ

∂f

∂xα
+

(
f − 1

h

)
∂φ

∂xα

)
dW̃α

t

+ m(2λ − m + h − ρ)Ht dt

− Lmρ−1
(

ρ

∣∣∣∣f − 1

h

∣∣∣∣hf +
(

λ

(
f − 1

h

)
+ hf

)2)
(hf )

m−h−1
h dt.

Let

M3 = sup
[0,T ]×AR,ε

x0

(
ρ

∣∣∣∣u
h − 1

h

∣∣∣∣uh +
(

λ

(
uh − 1

h

)
+ uh

)2)
um−h−1(t, y).

According to our assumption on u, (hf )
m−1

2h (φ
∂f
∂xα + (f − 1

h
)

∂φ
∂xα ), α ∈ {1, . . . , n} are all bounded, which ensures that

the local martingale part of Yt − φ
h
(Xt ) is a true Q martingale. Hence

EQ

[
YT − φ

h
(XT )

]
− Y0 + φ

h
(x) ≥ m(2λ − m + h − ρ)EQ

[∫ T

0
Ht dt

]
− Lmρ−1M3T ,

which completes the proof. �

By combining (45) with (32) in the way as in the proof of Theorem 1 and also taking λ = 2m−h
2 , we are able to get

the following gradient bound.

Theorem 12. If u is a positive and bounded solution to (1) on [0, t1]×B(x0,R+2ε) with m ∈ (1− 1√
n−1

,1+ 1√
n−1

),
then for any

h ∈ (
m −

√
1 − (n − 1)(m − 1)2,m +

√
1 − (n − 1)(m − 1)2

)
,

ρ ∈ (0,m), and (T , x) ∈ (0, t1) × B(x0,R), we have

um+h−3|∇u|2(T , x)

≤ EQ[φ(uh
0 − 1)(XT )] − (uh(T , x) − 1)

hm(m − ρ)T

+ LM3

ρ(m − ρ)
+

(
1

4
|2m − h|l−3 + 3

2
l−1

)
mM1L

2 T

2
,

where

l = − 1
2n(m − 1)2 + (h − 1)(m − 1) − 1

2h2 + h

3
4 |2m − h| + 3

2

, M1 = sup
[0,T ]×AR,ε

x0

u2m+h−2,

M3 = sup
[0,T ]×AR,ε

x0

(
ρ

∣∣∣∣u
h − 1

h

∣∣∣∣uh +
(

2m − h

2

(
uh − 1

h

)
+ uh

)2)
um−h−1(t, y),

and L is a constant depending on the cut-off function φ by (20) and (21).
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Let us now suppose that m ∈ (1 − 2
n
,1). This ensures that the interval of the variation of h,

(
m −

√
1 − (n − 1)(m − 1)2,m +

√
1 − (n − 1)(m − 1)2

)
contains 0.

By letting h → 0, we immediately get Corollary 2.

3.2. Global gradient estimate

In this section, we consider a positive and bounded solution u to (1) on (0,∞) × Rn. First of all, as a direct conse-
quence of the main result in the last section, we can get a global gradient bound from the local bound by letting the
radius of the local ball tend to infinity.

3.2.1. From local bound to global bound
Since u is positive and bounded on (0,∞)×Rn, the local result in Theorem 1 holds for any t1, R and ε. By substituting
ε = R into (7), and then taking R → ∞ on both sides, we obtain

um+h−3|∇u|2(T , x) ≤ EQ[uh
0(XT )] − uh(T , x)

T hm(m − ρ| 2m+h
2h

|) ,

where we have used the fact that when ε = R

lim
R→∞L = lim

R→∞
8

R2

(
nR

2R + R
+ 8(2R)2

(3R)2

)
= 0 and lim

R→∞φ = 1.

By letting ρ = 0, we have

um+h−3|∇u|2(T , x) ≤ EQ[uh
0(XT )] − uh(T , x)

T hm2
. (47)

Note that in the local case, due to the existence of l−1 in (7), h is not allowed to touch the boundary of the open
interval

(
m −

√
1 − (n − 1)(m − 1)2,m +

√
1 − (n − 1)(m − 1)2

)
.

But now we can take limit of h to

m −
√

1 − (n − 1)(m − 1)2 or m +
√

1 − (n − 1)(m − 1)2

on both sides of (47). Since

EQ
[
uh

0(XT )
] = EQ

[
uh

0(XT )I{u0(XT )≥1}
] + EQ

[
uh

0(XT )I{u0(XT )<1}
]
,

we can apply monotone convergence theorem and bounded convergence theorem on these two terms respectively.
Therefore, (47) holds also for

h = m −
√

1 − (n − 1)(m − 1)2 and h = m +
√

1 − (n − 1)(m − 1)2.

Hence we obtained Corollary 3.
Note that when m = 1 in Corollary 3, h ∈ [0,2]. Since u0 > 0, it holds that

lim
h→0+

‖uh
0‖∞ − uh(T , x)

T h
= lim

h→0+
‖uh

0‖∞ − 1

T h
− lim

h→0+
uh(T , x) − 1

T h

= 1

T
log

‖u0‖∞
u(T , x)

.

Therefore, by letting h → 0+ in (8), we have Corollary 4.
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3.2.2. Negative finite variation part
Now we proceed from fundamental decompositions in a different way in order to get a global gradient bound valid
for a wider class of m. From (29) and (28), we have the global version of two fundamental decompositions.

dHt ≥ At dW̃t

− 1

2
mn(m − 1)2(hf )

2m−3h−2
h |∇f |4 dt

− m
(
(2m − h + 1 − 2λ)(m − h − 1) + 2(λ − 1)(λ − m)

)
(hf )

2m−3h−2
h |∇f |4 dt, (48)

dYt = √
2m(hf )

m−1
2h

∂f

∂xα
dW̃α

t + m(2λ − m + h)(hf )
m−h−1

h |∇f |2 dt. (49)

For simplicity, set

L1 = m
(
(2m − h + 1 − 2λ)(m − h − 1) + 2(λ − 1)(λ − m)

) + 1

2
mn(m − 1)2.

Then (48) becomes

dHt ≥ At dW̃t − L1(hf )
2m−3h−2

h |∇f |4 dt

= At dW̃t − L1h
−1Y−1

t H 2
t dt. (50)

Previously, in order to obtain the submartingale property of H , we always assume L1 ≤ 0, resulting in a constraint
on m. In this section, we consider the situation when

L1 > 0.

Instead of deriving a gradient bound directly, we seek for an integral inequality satisfied by the gradient bound as a
function of t . The arguments are based on the following estimate.

Lemma 13. H·e
∫ ·

0 L1h
−1Y−1

r Hr dr is a submartingale. Moreover,

m(2λ − m + h)EQ

[∫ T

s

Ht |Fs

]
= EQ[YT |Fs] − Ys. (51)

Now let us define

g(t) = ∥∥Y−1
t Ht

∥∥∞.

Lemma 14. Let u be a positive and bounded solution to (1) on (0,∞) × Rn. Assume L1 ≥ 0 and 2λ − m + h > 0.
Then

g(s) ≤ ‖EQ[YT

Ys
|Fs] − 1‖∞

m(2λ − m + h)
∫ T

s
e− ∫ t

s L1h
−1g(u)du dt

. (52)

Proof. Since (e
∫ t

0 L1h
−1Y−1

r Hr drHt )t∈[0,T ] is a submartingale by Lemma 13, for any 0 ≤ s < t ≤ T

EQ
[
e
∫ t

0 L1h
−1Y−1

r Hr drHt |Fs

] ≥ e
∫ s

0 L1h
−1Y−1

r Hr drHs,

which implies

EQ
[
e
∫ t
s L1h

−1Y−1
r Hr drHt |Fs

] ≥ Hs.
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Hence

EQ[Ht |Fs] ≥ e− ∫ t
s L1h

−1g(r) drHs.

Then we have

EQ

[∫ T

s

Ht dt |Fs

]
≥ Hs

∫ T

s

e− ∫ t
s L1h

−1g(r) dr dt.

Together with (51), it follows that

m(2λ − m + h)Hs

∫ T

s

e− ∫ t
s L1h

−1g(r) dr dt ≤ EQ[YT |Fs] − Ys

which leads to

g(s) ≤ ‖EQ[YT

Ys
|Fs] − 1‖∞

m(2λ − m + h)
∫ T

s
e− ∫ t

s L1h
−1g(u)du dt

.

�

Let us solve this integral inequality. Set

G(s) =
∫ T

s

e− ∫ t
s L1h

−1g(u)du dt.

Then

g(0) ≤ EQ[YT

Y0
] − 1

m(2λ − m + h)G(0)
, (53)

G(T ) = 0. Moreover, for any s ∈ (0, T )

G′(s) = −1 + L1h
−1g(s)

∫ T

s

e− ∫ t
s L1h

−1g(u)du dt

≤ −1 + L1h
−1

‖EQ[YT

Ys
|Fs] − 1‖∞

m(2λ − m + h)
.

As a consequence,

G(0) = G(T ) −
∫ T

0
G(s)′ ds

≥ G(T ) +
∫ T

0

m(2λ − m + h) − L1h
−1‖EQ[YT

Ys
|Fs] − 1‖∞

m(2λ − m + h)
ds

= 1

m(2λ − m + h)

∫ T

0

(
m(2λ − m + h) − L1h

−1
∥∥∥∥EQ

[
YT

Ys

∣∣∣Fs

]
− 1

∥∥∥∥∞

)
ds.

This, together with (53) yields

g(0) ≤ EQ[YT

Y0
] − 1∫ T

0 (m(2λ − m + h) − L1h−1‖EQ[YT

Ys
|Fs] − 1‖∞) ds
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as long as

∫ T

0
m(2λ − m + h) − L1h

−1
∥∥∥∥EQ

[
YT

Ys

∣∣∣Fs

]
− 1

∥∥∥∥∞
ds > 0.

This means

um+h−3|∇u|2(T , x) ≤ EQ[uh
0(XT )] − uh(T , x)∫ T

0 mh(2λ − m + h) − L1‖EQ[ uh
0(XT )

uh(T −s,Xs)
|Fs] − 1‖∞ ds

.

Define

u
h,T
min = inf

(t,x)∈[0,T ]×Rn
uh(t, x).

It then follows that when

mh(2λ − m + h) − L1

(‖uh
0‖∞

u
h,T
min

− 1

)
> 0, (54)

we have

um+h−3|∇u|2(T , x) ≤ ‖uh
0‖∞ − uh(T , x)

T (mh(2λ − m + h) − L1(
‖uh

0‖∞
u

h,T
min

− 1))

. (55)

To maximize mh(2λ−m+h)−L1(
‖uh

0‖∞
u

h,T
min

− 1), we should take λ = 2m−h
2 + h

2 (
‖uh

0‖∞
u

h,T
min

− 1)−1. With this choice for λ,

the conditions in Lemma 14 are met. To see this, note that

L1 = m

2
(h − h−)(h − h+) + mh2

2
U−2,

which is positive since (h − h−)(h − h+) > 0. Then (55) becomes

um+h−3|∇u|2(T , x)

≤ ‖uh
0‖∞ − uh(T , x)

mT (mh + (mh − m + 1 − h2

2 − 1
2n(m − 1)2)(

‖uh
0‖∞

u
h,T
min

− 1) + h2

2 (
‖uh

0‖∞
u

h,T
min

− 1)−1)

,

and the constraint (54) becomes

mh +
(

mh − m + 1 − h2

2
− 1

2
n(m − 1)2

)(‖uh
0‖∞

u
h,T
min

− 1

)
+ h2

2

(‖uh
0‖∞

u
h,T
min

− 1

)−1

> 0.

By rewriting them in terms of U , U± and h±, we have Theorem 5.

Acknowledgements

The authors would like to thank the referees and the associate editor for their careful reading and for their helpful
comments.



Gradient estimates for PDEs by martingale method 1819

References

[1] M. Arnaudon and A. Thalmaier. Li–Yau type gradient estimates and Harnack inequalities by stochastic analysis. In Probabilistic Approach
to Geometry 29–48. Adv. Stud. Pure Math. 57. Math. Soc. Japan, Tokyo, 2010. MR2605409

[2] D. G. Aronson and P. Bénilan. Régularité des solutions de l’équation des milieux poreux dans RN . C. R. Acad. Sci. Paris Sér. A–B 288 (2)
(1979) A103–A105. MR0524760

[3] D. G. Aronson and L. A. Caffarelli. The initial trace of a solution of the porous medium equation. Trans. Amer. Math. Soc. 280 (1) (1983)
351–366. MR0712265

[4] P. Bénilan and M. G. Crandall. The continuous dependence on ϕ of solutions of ut − �ϕ(u) = 0. Indiana Univ. Math. J. 30 (2) (1981)
161–177. MR0604277

[5] P. Bénilan, M. G. Crandall and M. Pierre. Solutions of the porous medium equation in RN under optimal conditions on initial values. Indiana
Univ. Math. J. 33 (1) (1984) 51–87. MR0726106

[6] G. Bernard. Existence theorems for fast diffusion equations. Nonlinear Anal. 43 (5) (2001) 575–590. MR1804858
[7] M. Bertsch and M. Ughi. Positivity properties of viscosity solutions of a degenerate parabolic equation. Nonlinear Anal. 14 (7) (1990)

571–592. MR1044287
[8] M. Bonforte and J. L. Vazquez. Global positivity estimates and Harnack inequalities for the fast diffusion equation. J. Funct. Anal. 240 (2)

(2006) 399–428. MR2261689
[9] M. Bonforte and J. L. Vázquez. Positivity, local smoothing, and Harnack inequalities for very fast diffusion equations. Adv. Math. 223 (2)

(2010) 529–578. MR2565541
[10] L. A. Caffarelli and A. Friedman. Regularity of the free boundary of a gas flow in an n-dimensional porous medium. Indiana Univ. Math. J.

29 (3) (1980) 361–391. MR0570687
[11] L. A. Caffarelli, J. L. Vázquez and N. I. Wolanski. Lipschitz continuity of solutions and interfaces of the N -dimensional porous medium

equation. Indiana Univ. Math. J. 36 (2) (1987) 373–401. MR0891781
[12] E. Chasseigne and J. L. Vazquez. Theory of extended solutions for fast-diffusion equations in optimal classes of data. Radiation from singu-

larities. Arch. Ration. Mech. Anal. 164 (2) (2002) 133–187. MR1929929
[13] B. E. J. Dahlberg and C. E. Kenig. Nonnegative solutions of generalized porous medium equations. Rev. Mat. Iberoam. 2 (3) (1986) 267–305.

MR0908054
[14] J. L. Doob. Stochastic Processes. Wiley, New York; Chapman & Hall, London, 1953. MR0058896
[15] R. S. Hamilton. A matrix Harnack estimate for the heat equation. Comm. Anal. Geom. 1 (1) (1993) 113–126. MR1230276
[16] M. A. Herrero and M. Pierre. The Cauchy problem for ut = �um when 0 < m < 1. Trans. Amer. Math. Soc. 291 (1) (1985) 145–158.

MR0797051
[17] Y. Hu and Z. Qian. BMO martingales and positive solutions of heat equations. Math. Control Relat. Fields 5 (3) (2015) 453–473. MR3371951
[18] G. Huang, Z. Huang and H. Li. Gradient estimates for the porous medium equations on Riemannian manifolds. J. Geom. Anal. 23 (4) (2013)

1851–1875. MR3107682
[19] I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus, 2nd edition. Graduate Texts in Mathematics 113. Springer-Verlag,

New York, 1991. MR1121940
[20] B. L. Kotschwar. Hamilton’s gradient estimate for the heat kernel on complete manifolds. Proc. Amer. Math. Soc. 135 (9) (2007) 3013–3019.

MR2317980
[21] O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural’ceva. Linear and Quasi-Linear Equations of Parabolic Type. Izdat. “Nauka”, Moscow,

1967. MR0241821
[22] P. Li and S. T. Yau. On the parabolic kernel of the Schrödinger operator. Acta Math. 156 (3–4) (1986) 153–201. MR0834612
[23] P. Lu, L. Ni, J. L. Vázquez and C. Villani. Local Aronson–Bénilan estimates and entropy formulae for porous medium and fast diffusion

equations on manifolds. J. Math. Pures Appl. (9) 91 (1) (2009) 1–19. MR2487898
[24] L. Ma, L. Zhao and X. Song. Gradient estimate for the degenerate parabolic equation ut = �F(u) + H(u) on manifolds. J. Differential

Equations 244 (5) (2008) 1157–1177. MR2392508
[25] J. Picard. Gradient estimates for some diffusion semigroups. Probab. Theory Related Fields 122 (4) (2002) 593–612. MR1902192
[26] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion, 3rd edition. Grundlehren der Mathematischen Wissenschaften [Fun-

damental Principles of Mathematical Sciences] 293. Springer-Verlag, Berlin, 1999. MR1725357
[27] P. Souplet and Q. S. Zhang. Sharp gradient estimate and Yau’s Liouville theorem for the heat equation on noncompact manifolds. Bull. Lond.

Math. Soc. 38 (6) (2006) 1045–1053. MR2285258
[28] D. W. Stroock and S. R. S. Varadhan. Multidimensional Diffusion Processes. Grundlehren der Mathematischen Wissenschaften [Fundamental

Principles of Mathematical Sciences] 233. Springer-Verlag, Berlin, 1979. MR0532498
[29] J. L. Vázquez. Smoothing and decay estimates for nonlinear parabolic equations of porous medium type, 2005.
[30] J. L. Vázquez. Symmetrization and mass comparison for degenerate nonlinear parabolic and related elliptic equations. Adv. Nonlinear Stud.

5 (1) (2005) 87–131. MR2117623
[31] J. L. Vázquez. Smoothing and Decay Estimates for Nonlinear Diffusion Equations Equations of Porous Medium Type. Oxford Lecture Series

in Mathematics and Its Applications 33. Oxford University Press, Oxford, 2006. MR2282669
[32] J. L. Vázquez. The Porous Medium Equation. Mathematical Theory. Oxford Mathematical Monographs. The Clarendon Press, Oxford Uni-

versity Press, Oxford, 2007. MR2286292
[33] X. Xu. Gradient estimates for ut = �F(u) on manifolds and some Liouville-type theorems. J. Differential Equations 252 (2) (2012) 1403–

1420. MR2853544
[34] S. T. Yau. On the Harnack inequalities of partial differential equations. Comm. Anal. Geom. 2 (3) (1994) 431–450. MR1305712

http://www.ams.org/mathscinet-getitem?mr=2605409
http://www.ams.org/mathscinet-getitem?mr=0524760
http://www.ams.org/mathscinet-getitem?mr=0712265
http://www.ams.org/mathscinet-getitem?mr=0604277
http://www.ams.org/mathscinet-getitem?mr=0726106
http://www.ams.org/mathscinet-getitem?mr=1804858
http://www.ams.org/mathscinet-getitem?mr=1044287
http://www.ams.org/mathscinet-getitem?mr=2261689
http://www.ams.org/mathscinet-getitem?mr=2565541
http://www.ams.org/mathscinet-getitem?mr=0570687
http://www.ams.org/mathscinet-getitem?mr=0891781
http://www.ams.org/mathscinet-getitem?mr=1929929
http://www.ams.org/mathscinet-getitem?mr=0908054
http://www.ams.org/mathscinet-getitem?mr=0058896
http://www.ams.org/mathscinet-getitem?mr=1230276
http://www.ams.org/mathscinet-getitem?mr=0797051
http://www.ams.org/mathscinet-getitem?mr=3371951
http://www.ams.org/mathscinet-getitem?mr=3107682
http://www.ams.org/mathscinet-getitem?mr=1121940
http://www.ams.org/mathscinet-getitem?mr=2317980
http://www.ams.org/mathscinet-getitem?mr=0241821
http://www.ams.org/mathscinet-getitem?mr=0834612
http://www.ams.org/mathscinet-getitem?mr=2487898
http://www.ams.org/mathscinet-getitem?mr=2392508
http://www.ams.org/mathscinet-getitem?mr=1902192
http://www.ams.org/mathscinet-getitem?mr=1725357
http://www.ams.org/mathscinet-getitem?mr=2285258
http://www.ams.org/mathscinet-getitem?mr=0532498
http://www.ams.org/mathscinet-getitem?mr=2117623
http://www.ams.org/mathscinet-getitem?mr=2282669
http://www.ams.org/mathscinet-getitem?mr=2286292
http://www.ams.org/mathscinet-getitem?mr=2853544
http://www.ams.org/mathscinet-getitem?mr=1305712


1820 Y. Hu, Z. Qian and Z. Zhang

[35] X. Zhu. Hamilton’s gradient estimates and Liouville theorems for fast diffusion equations on noncompact Riemannian manifolds. Proc. Amer.
Math. Soc. 139 (5) (2011) 1637–1644. MR2763753

[36] X. Zhu. Hamilton’s gradient estimates and Liouville theorems for porous medium equations on noncompact Riemannian manifolds. J. Math.
Anal. Appl. 402 (1) (2013) 201–206. MR3023250

http://www.ams.org/mathscinet-getitem?mr=2763753
http://www.ams.org/mathscinet-getitem?mr=3023250

	Introduction
	Gradient estimate for solutions to the heat equation
	Gradient estimate for positive solutions to PME and FDE
	Local gradient estimate
	From PDE to SDE
	Fundamental decompositions
	Gradient bound for solution u
	Gradient bound for pressure variable v=um-1/m-1

	Global gradient estimate
	From local bound to global bound
	Negative ﬁnite variation part


	Acknowledgements
	References

