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Abstract. We prove noncommutative martingale inequalities associated with convex functions. More precisely, we obtain �-
moment analogues of the noncommutative Burkholder inequalities and the noncommutative Rosenthal inequalities for any convex
Orlicz function � whose Matuzewska–Orlicz indices p� and q� are such that 1 < p� ≤ q� < 2 or 2 < p� ≤ q� < ∞. These
results generalize the noncommutative Burkholder/Rosenthal inequalities due to Junge and Xu. The key ingredient in our approach
is a simultaneous version of the Burkholder inequality recently proved for the case of noncommutative Lp-spaces with 1 < p < 2.

Résumé. Nous prouvons des inégalités de martingales non commutatives associées à des fonctions convexes. Plus précisément,
nous obtenons des analogues des inégalités de Burkholder non commutatives et des inégalités de Rosenthal non commutatives pour
des �-moments associés à toute fonction convexe � dont les indices de Matuzewska–Orlicz p� et q� vérifient 1 < p� ≤ q� < 2
ou 2 < p� ≤ q� < ∞. Ces résultats généralisent les inégalités de Burkholder/Rosenthal non commutatives obtenues par Junge et
Xu. L’ingrédient clé de notre approche est une version simultanée de l’inégalité de Burkholder récemment demontrée dans le cas
des espaces Lp non commutatifs pour 1 < p < 2.
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1. Introduction

The theory of noncommutative martingales has enjoyed considerable progress in recent years due to its interaction
with other field of mathematics such as operator spaces and free probability. Many classical martingale inequali-
ties have been extended to the noncommutative setting. We refer to [22–24,38,40,42] and the references therein for
more information on noncommutative martingales. This paper deals with moment inequalities associated with convex
functions for noncommutative martingales.

The study of convex function inequalities for martingales was initiated by Burkholder and Gundy in their seminal
paper [8]. The general theme of their work can be summarized as follows: let M be a family of martingales on a
probability space (�,�,P) and � be a nonnegative and increasing convex function on [0,∞) satisfying �(0) = 0
and limt→∞ �(t) = ∞. If U and V are operators on M with values in the set of nonnegative random variables on
(�,�,P), under what conditions on � and M does the inequality E[�(Vf )] ≤ CE[�(Uf )] hold for all martingales
f ∈ M. For the special case where �(t) = tp for 1 ≤ p < ∞, the above question reduces to comparisons of pth
moments of the nonnegative random variables Vf and Uf . For general convex function � satisfying the conditions
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described above, these types of inequalities are generally referred to as �-moment inequalities. Typical examples of
such operators U and V are, among others, square functions, maximal functions, martingale transforms, ect. Subse-
quently, many classical pth moment inequalities for martingales were extended to convex function inequalities. We
refer to [6,7,17] for more information on the development of �-moment inequalities from the classical martingale
theory.

Recently, several �-moment inequalities have been extended to the context of noncommutative martingales. This
was initiated by Bekjan and Chen in [1]. For instance, �-moment versions of the noncommutative Burkholder–
Gundy inequalities from [40] were treated in [1] (see also the work of Dirksen and Ricard [13]). Various maximal
type-inequalities for noncommutative martingales initially proved in [20] for the case of noncommutative Lp-spaces
are now known to be valid for a wider class of convex functions ([2,11]). In this paper, we are mainly interested on
inequalities involving conditioned square functions of noncommutative martingales. To better explain our motivation
and results, let us begin by recalling Rosenthal’s remarkable inequalities ([46]) which state that if 2 ≤ p < ∞ and
(gn)n≥1 is a sequence of independent mean-zero random variables in Lp(�,�,P), then the following holds:(

E

∣∣∣∣∑
n≥1

gn

∣∣∣∣p)1/p

�p

(∑
n≥1

E|gn|2
)1/2

+
(∑

n≥1

E|gn|p
)1/p

, (1.1)

where �p means equivalence of norms up to constants depending only on p. The equivalence (1.1) was initially
established in order to construct some new classes of Banach spaces but over the years it has been proven to have many
applications in other areas of mathematics. The martingale version of (1.1) was discovered almost simultaneously by
Burkholder in [6]. In fact, a �-moment version was obtained by Burkholder that takes the following form: if � is
a convex Orlicz function on [0,∞) that satisfies the so called �2-condition then for any martingale f = (fn)n≥1
adapted to a given filtration {�n}n≥1 of σ -subalgebras of � satisfying σ(

⋃
n≥1 �n) = �, the following holds (here,

we use the convention that �0 = �1):

sup
n≥1

E
[
�
(|fn|

)]≤ C�E
[
�
(
s(f )

)]+E
[
�
(
d∗)], (1.2)

where s(f ) = (
∑

n≥1 E[|dfn|2|�n−1])1/2 is the conditioned square function of the martingale f while d∗ =
supn≥1 |dfn| is the maximal function of its martingale difference sequence. On the other hand, noncommutative ana-
logues of the Burkholder/Rosenthal inequalities for the case of pth moments have been discovered by Junge and Xu
in [23,25]. More precisely, they obtained that if 2 ≤ p < ∞ and x = (xn)n≥1 is a noncommutative martingale that is
Lp-bounded then

‖x‖p �p max

{∥∥sc(x)
∥∥

p
,
∥∥sr (x)

∥∥
p
,

(∑
n≥1

‖dxn‖p
p

)1/p}
, (1.3)

where sc(x) and sr (x) denote the column version and the row version of conditioned square functions which we refer
to the next section for formal definitions. In addition, they also managed to formulate and prove the corresponding
inequalities for the range 1 < p < 2 which are dual to (1.3) that can be roughly stated as follows: if x = (xn)n≥1 is a
noncommutative martingale in L2(M) then

‖x‖p �p inf

{∥∥sc(y)
∥∥

p
+ ∥∥sr (z)∥∥p

+
(∑

n≥1

‖dwn‖p
p

)1/p}
, (1.4)

where the infimum is taken over all decompositions x = y + z + w with y, z, and w are martingales. Reasons behind
the fact that the two cases 1 < p < 2 and 2 ≤ p < ∞ have to be different are now well-understood in the field. As
shown in [23,25], the equivalences (1.3) and (1.4) have far reaching applications ranging from random matrices to op-
erator space classifications of some classes of subspaces of noncomutative Lp-spaces. We should also mention that a
recent work of Junge and Zeng on improved constants on the noncommutative Rosenthal inequalities [26] have appli-
cations in compressed sensing. Recently, equivalences (1.3) and (1.4) were extended to certain classes of martingales
in noncommutative symmetric spaces for which we refer to [45] for details. Motivated by these various results, we
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consider �-moments of conditioned square functions of noncommutative martingales in the spirit of (1.2). We obtain
natural extensions of the noncommutative Burkholder inequalities (1.3) and (1.4). We work with semifinite von Neu-
mann algebra equipped with normal semifinite faithful trace (M, τ ). In formulating the right versions of �-moments,
one needs to consider martingales that are bounded in the noncommutative Orlicz space L�(M). In addition, we also
require some conditions on the lower and upper Matuzewska–Orlicz indices p� and q� of the convex function �

which in some sense mimic the role of the index p in the noncommutative Burkholder/Rosenthal inequalities. Our
principal results may be viewed as common generalizations of (1.2), (1.3), and (1.4). We may summarize these results
as follow:

If 2 < p� ≤ q� < ∞, then for any L�(M)-bounded martingale x = (xn)n≥1,

sup
n≥1

τ
[
�
(|xn|

)]�� max

{
τ
[
�
(
sc(x)

)]
, τ
[
�
(
sr (x)

)]
,
∑
n≥1

τ
[
�
(|dxn|

)]}
. (1.5)

If 1 < p� ≤ q� < 2, then for any L�(M)-bounded martingale x = (xn)n≥1,

sup
n≥1

τ
[
�
(|xn|

)]�� inf

{
τ
[
�
(
sc(y)

)]+ τ
[
�
(
sr (z)

)]+
∑
n≥1

τ
[
�
(|dwn|

)]}
, (1.6)

where the infimum is taken over all decompositions x = y + z + w with y, z, and w are martingales. We refer to
Theorem 4.1 and Theorem 4.4 for more detailed explanations of the notation used in the formulations of (1.5) and
(1.6). These results complement the series of �-moment inequalities from [1,2,11,13]. We note that if �(t) = tp for
1 < p < ∞, then these results become exactly the Junge and Xu’s noncommutative Burkholder inequalities. It is also
important to note that the case of noncommutative symmetric spaces treated in [45] does not imply the corresponding
�-moment inequalities.

The original proof of (1.2) was primarily based on careful analysis of distribution functions which heavily relied
on stopping times and the so-called good λ-inequalities. Stopping times and good λ-inequalities are very powerful
techniques in the classical setting. Unfortunately, these techniques are not available in the noncommutative setting.
Therefore, our method of proof has to rely on new ideas. Our approach was primarily motivated by an observation
that singular values of measurable operators are closely connected to K-functionals from interpolation theory. Our
strategy is to focus first on (1.6). As noted earlier, we heavily employ results from interpolation theory. As in the case
of noncommutative symmetric spaces, a simultaneous decomposition version of (1.4) from [45] also plays a significant
role in our argument. The proof of (1.5) is a duality type-argument. Since �-moments are usually not defining a norm,
we had to provide the proper connection between any given Orlicz function and its complementary that is suitable for
moment inequalities. This connection appears as an operator equality that may be viewed as operator reverse to the
classical Young’s inequality. We refer to Proposition 2.3 for the exact statement. We should point out that for the case
of square functions, the proofs of the �-moment versions of the noncommutative Burkholder–Gundy in [1,13,18]
depend on some versions of �-moment extensions of the noncommutative Khintchine inequalities.

The paper is structured as follows. In Section 2, we setup some basic notation and present some preliminary
results concerning noncommutative Orlicz spaces and noncommutative martingales. We review the constructions
leading up to all relevant Hardy type spaces that we need for our presentation. In Section 3, we isolate and prove
some key inequalities involving �-moments, K-functionals, and J -functionals from interpolation theory. Section 4
is devoted to the statements and proofs of our �-moment versions of the noncommutative Burkholder inequalities.
In Section 5, we examine the case of sums of noncommuting independent sequences of mean zero in the sense of
[25]. In particular, we provide �-moment analogues of the noncommutative Rosenthal inequalities from [25]. We
also provide the corresponding Rosenthal inequalities for noncommuting independent sequences in noncommutative
symmetric spaces. In the last section, we discuss possible future direction for general �-moments and list some related
open problems.
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2. Preliminaries

2.1. Orlicz functions and noncommutative Orlicz spaces

Throughout this paper, M will always denote a semifinite von Neumann algebra equipped with a faithful normal
semifinite trace τ . Assume that M is acting on a Hilbert space H . A closed densely defined operator x on H is said
to be affiliated with M if x commutes with every unitary u in the commutant M′ of M. If a is a densely defined
self-adjoint operator on H and a = ∫∞

−∞ s dea
s is its spectral decomposition, then for any Borel subset B ⊆ R, we

denote by χB(a) the corresponding spectral projection
∫∞
−∞ χB(s) dea

s . An operator x affiliated with M is called τ -
measurable if there exists s > 0 such that τ(χ(s,∞)(|x|)) < ∞. It is known that the set of all τ -measurable operators
with respect to (M, τ ) is a topological ∗-algebra which we will denote by L0(M, τ ). We refer to [37,41,48] for
unexplained terminology. For x ∈ L0(M, τ ), define the distribution function of x by setting for s > 0,

λs(x) = τ
(
χ(s,∞)

(|x|)).
The generalized singular value of x is defined by

μt(x) = inf
{
s > 0;λs(x) ≤ t

}
, t > 0.

The function t �→ μt(x) from (0,∞) into [0,∞) is right-continuous and nonincreasing ([16]). We note that for the
case where M is the abelian von Neumann algebra L∞(0,∞) with the trace given by integration with respect to
the Lebesgue measure, L0(M, τ ) becomes the linear space of all measurable functions L0(0,∞) and μ(f ) is the
decreasing rearrangement of the function |f | in the sense of [31].

By an Orlicz function � on [0,∞), we mean a continuous, increasing, and convex function such that �(0) = 0
and limt→∞ �(t) = ∞. For examples and basic properties of Orlicz functions we refer to [29,34,35].

Given an operator x ∈ L0(M, τ ) and an Orlicz function �, we may define �(|x|) through functional calculus.
That is, if |x| = ∫∞

0 s de
|x|
s is the spectral decomposition of |x|, then

�
(|x|)=

∫ ∞

0
�(s)de|x|

s .

The operator �(|x|) is then a positive τ -measurable operator. It is important to observe that the trace of �(|x|) can
be calculated using either the distribution function of |x| or the singular value function of |x|. Indeed, one can easily
deduce from [16, Corollary 2.8] that if x ∈ L0(M, τ ), then we have the identities:

τ
[
�
(|x|)]=

∫ ∞

0
λs

(|x|)d�(s) =
∫ ∞

0
�
(
μt(x)

)
dt.

The quantity τ [�(|x|)] will be referred to as the �-moment of the operator |x|. Clearly, if we consider the power
function �(t) = tp for 1 ≤ p < ∞, then this reduces to the usual notion of pth moment of |x|. It is however important
to point out that in general �-moments do not necessarily define a norm and therefore many tools used for various
results on pth moments are no longer available when dealing with �-moments.

We will assume throughout that � satisfies a growth condition known as the �2-condition. That is, for some
constant C > 0,

�(2t) ≤ C�(t), t ≥ 0.

It is easy to check that � satisfies the �2-condition if and only if for every a > 0, there exists a constant Ca > 0 such
that �(at) ≤ Ca�(t) for all t > 0. More generally, by functional calculus, if 0 ≤ x ∈ L0(M, τ ) and a is a positive
scalar then the following operator inequality holds:

�(ax) ≤ Ca�(x).
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One can also deduce from the integral representation stated above and [16, Theorem 4.4(iii)] that if (xi)
n
i=1 is a finite

sequence in L0(M) and (αi)
n
i=1 ⊂ (0,1)n with

∑n
i=1 αi = 1 then

τ

[
�

(∣∣∣∣∣
n∑

i=1

αixi

∣∣∣∣∣
)]

≤
n∑

i=1

αiτ
[
�
(|xi |

)]
. (2.1)

As a consequence of (2.1) and the �2-condition, we have the quasi-triangle inequality:

τ
[
�
(|x + y|)]≤ C�

(
τ
[
�
(|x|)]+ τ

[
�
(|y|)]).

These inequalities will be used repeatedly throughout. Next, we introduce some standard indices for Orlicz functions.
For a given Orlicz function �, we let

M(t,�) = sup
s>0

�(ts)

�(s)
, t > 0,

and

p� = lim
t→0+

log(M(t,�))

log t
, q� = lim

t→∞
log(M(t,�))

log t
.

The two quantities p� and q� are known as Matuzewska–Orlicz indices of the Orlicz function �. For more infor-
mation on these indices and their connections with other indices, we refer to the monographs [34,35]. In general, we
have 1 ≤ p� ≤ q� ≤ ∞ and the �2-condition is equivalent to q� < ∞.

We now recall the definition of Orlicz spaces. For a given Orlicz function �, the Orlicz function space L�(0,∞)

is the set of all Lebesgue measurable functions f defined on (0,∞) such that for some constant c > 0,∫ ∞

0
�
(∣∣f (t)

∣∣/c)dt < ∞.

If we equip L�(0,∞) with the Luxemburg norm:

‖f ‖L� = inf

{
c > 0 :

∫ ∞

0
�
(∣∣f (t)

∣∣/c)dt ≤ 1

}
,

then L�(0,∞) is a fully symmetric Banach function space in the sense of [15]. Moreover, the Boyd indices of
L�(0,∞) coincide with the indices p� and q� (see [34]). We may define the noncommutative Orlicz space L�(M, τ )

following the general scheme of constructing noncommutative analogue of symmetric function spaces as described in
[14,15,28,49]. Note that under the �2-condition, x ∈ L�(M, τ ) if and only if τ [�(|x|)] < ∞. Also, it is clear that if
�(t) = tp with 1 ≤ p < ∞, then L�(M, τ ) = Lp(M, τ ) where Lp(M, τ ) is the usual noncommutative Lp-space
associated with (M, τ ).

We now gather some preliminary results on noncommutative Orlicz spaces that we will need in the sequel. We
assume that the next lemma is known but we could not find any specific reference. We feel that a proof is needed since
in general �-moments do not define a norm.

Lemma 2.1. Let (xn)n≥1 be a sequence in L�(M, τ ) and x ∈ L�(M, τ ).

(i) If limn→∞ ‖xn − x‖L�(M) = 0 then limn→∞ τ [�(|xn|)] = τ [�(|x|)].
(ii) If (xn)n≥1 converges to x weakly in L�(M, τ ) then τ [�(|x|)] ≤ lim infn→∞ τ [�(|xn|)].
Proof. Let us begin with the first item. Recall that since � satisfies the �2-condition, a sequence (fn)n≥1 in L� con-
verges in norm to f in L� if and only if limn→∞

∫∞
0 �(|fn(t)−f (t)|) dt = 0. Therefore, limn→∞ ‖xn −x‖L�(M) =

0 if and only if limn→∞
∫∞

0 �(μt(xn − x)) dt = 0. We have from [14, Theorem 3.4] that for every n ≥ 1, the function
|μ(xn) − μ(x)| is submajorized by μ(xn − x) in the sense that for every t > 0,∫ t

0

∣∣μs(xn) − μs(x)
∣∣ds ≤

∫ t

0
μs(xn − x)ds.
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Since L�(0,∞) is fully symmetric, it follows that limn→∞ ‖μ(xn) − μ(x)‖L� = 0. Next, we observe that
{�(μ(xn));n ≥ 1} is a uniformly integrable subset of L1(0,∞). This is the case since by the �2-condition, there
is a constant C� so that for every n ≥ 1, we have �(μ(xn)) ≤ C��(|μ(xn) − μ(x)|) + C��(μ(x)).

Now, fix an arbitrary subsequence (yn)n≥1 of (xn)n≥1. There exists a further subsequence (ynk
)k≥1 of (yn)n≥1 so

that μ(ynk
) → μ(x) a.e. By uniform integrability of {�(μ(xn));n ≥ 1}, we have

lim
k→∞

∫ ∞

0
�
(
μt(ynk

)
)
dt =

∫ ∞

0
�
(
μt(x)

)
dt.

This is equivalent to limk→∞ τ [�(|ynk
|)] = τ [�(|x|)]. Therefore, we have shown that every subsequence of

{τ [�(|xn|)]}n≥1 has further subsequences that converge to τ [�(|x|)]. This shows that limn→∞ τ [�(|xn|)] =
τ [�(|x|)] as claimed.

For the second item, assume now that xn → x weakly and let ξ be a limit point of the bounded sequence
{τ [�(|xn|)]}n≥1. Fix a subsequence (yn) of (xn) such that ξ = limn→∞ τ [�(|yn|)]. Next, we choose a sequence
(zn) consisting of block convex combinations of (yn) such that limn→∞ ‖zn − x‖L�(M) = 0. From the first item, we
have τ [�(|x|)] = limn→∞ τ [�(|zn|)]. For each n ≥ 1, write zn = ∑qn

j=pn
αjyj with 1 ≤ p1 < q1 < p2 < q2 < · · ·,

αi ∈ [0,1] for all i ≥ 1, and
∑qn

i=pn
αi = 1 for all n ≥ 1. It follows from (2.1) that

τ
[
�
(|x|)] = lim

n→∞ τ
[
�
(|zn|

)]
≤ lim

n→∞

qn∑
i=pn

αiτ
[
�
(|yi |

)]
= lim

n→∞ τ
[
�
(|yn|

)]= ξ.

The desired inequality follows from taking the infimum over all such limit points. �

We now discuss some background on complementary Orlicz functions. Let � be an Orlicz function. It is well-
known that � admits an integral representation

�(u) =
∫ u

0
ϕ(s) ds, u > 0,

where ϕ is a nondecreasing right-continuous function defined on the interval [0,∞). The function ϕ is usually re-
ferred to as the right derivative of �. Let ψ(t) = sup{s : ϕ(s) ≤ t} be the right inverse of ϕ. We observe that ψ is a
nondecreasing right-continuous function on [0,∞) and if ϕ is a continuous function then ψ is the usual inverse of ϕ.
We define the Orlicz complementary function to � by setting:

�∗(v) =
∫ v

0
ψ(t) dt, v > 0.

Clearly, �∗ is an Orlicz function and under some natural conditions on �, there is a canonical duality between the
noncommutative Orlicz spaces L�(M, τ ) and L�∗(M, τ ). We refer to [35, Chapter 9] for more detailed accounts of
such duality in the commutative case. It is worth mentioning that for the special case where �(u) = ur/r for some
1 < r < ∞ then �∗(v) = vr ′

/r ′ where r ′ denotes the index conjugate to r . Therefore, we may view �∗ as the Orlicz
function analogue of the concept of conjugate indices. In fact, from [35, Corollary 11.6], the indices of �∗ satisfy:

1/p� + 1/q�∗ = 1/p�∗ + 1/q� = 1.

We refer to [29, Chap. I] for more in depth discussion on connections between � and �∗. Another fact that is of
particular importance for our purpose is the so-called Young’s inequality which states that for every u,v ≥ 0, the
following inequality holds:

uv ≤ �(u) + �∗(v).
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As an elementary application of Young’s inequality, we record the following lemma for further use.

Lemma 2.2. For every x ∈ L�(M) and y ∈ L�∗(M), xy ∈ L1(M) and

‖xy‖1 ≤ τ
[
�
(|x|)]+ τ

[
�∗(|y|)].

Proof. First, we note from basic properties of generalized singular values that if xy ∈ L1(M) then using properties
of singular values ([16, Theorem 4.2]),

‖xy‖1 =
∫ ∞

0
μt(xy)dt ≤

∫ ∞

0
μt(x)μt (y) dt.

By Young’s inequality, we deduce that

‖xy‖1 ≤
∫ ∞

0
�
(
μt(x)

)
dt +

∫ ∞

0
�∗(μt(y)

)
dt,

which is clearly the desired inequality. �

Our next result may be viewed as an operator reverse Young’s inequality and could be of independent interest.

Proposition 2.3. Let � be an Orlicz function with 1 < p� ≤ q� < ∞. For every 0 ≤ x ∈ L�(M) there exists 0 ≤
y ∈ L�∗(M) such that y commutes with x and satisfies

xy = �(x) + �∗(y).

Proof. We note first that since p� > 1, we have q�∗ < ∞ and therefore �∗ satisfies the �2-condition. Let ϕ denote
the right derivative of �. The proposition is a consequence of the following fact which can be found in [29, p. 13] (see
also [35, p. 48]):

uv = �(u) + �∗(v) ⇐⇒ v = ϕ(u).

That is, at the function level, the following identity holds:

uϕ(u) = �(u) + �∗(ϕ(u)
)
, u ≥ 0.

We remark that since the function ϕ is monotone, it is Borel measurable. Using functional calculus on the positive
operator x, the preceding identity yields:

xϕ(x) = �(x) + �∗(ϕ(x)
)
.

It is enough to consider y = ϕ(x). Clearly, y ≥ 0 and commutes with x. To verify that y ∈ L�∗(M), we appeal to
another index of � defined as follows:

b� := sup
t>0

t�′(t)
�(t)

= sup
t>0

tϕ(t)

�(t)
.

In general, we only have q� ≤ b� but the relevant property we need is that the �2-condition is equivalent to b� < ∞.
These facts were taken from [34, Theorem 3.2]. The crucial observation we make is that for every t > 0,

tϕ(t) ≤ b��(t),

where the function on the right hand side is finite for all t > 0. Thus, by functional calculus and the definition of y,
the preceding inequality yields the operator inequality:

0 ≤ xy ≤ b��(x).
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This is equivalent to �∗(y) ≤ (b� − 1)�(x). Taking traces, we have

τ
[
�∗(y)

]≤ (b� − 1)τ
[
�(x)

]
.

Since x ∈ L�(M), the right hand side is finite and therefore, we have τ [�∗(y)] < ∞. As �∗ satisfies the �2-
condition, this is equivalent to y ∈ L�∗(M). The proof is complete. �

2.2. Noncommutative martingales

Let us now review the general setup for noncommutative martingales. For simplicity, we assume for the remaining of
the paper that M∗ is separable. In the sequel, we always denote by (Mn)n≥1 an increasing sequence of von Neumann
subalgebras of M whose union is weak*-dense in M. For n ≥ 1, we assume that there exists a trace preserving
conditional expectation En from M onto Mn. It is well-known that for 1 ≤ p ≤ ∞, En extends to a contractive
projection from Lp(M, τ ) onto Lp(Mn, τn), where τn denotes the restriction of τ on Mn. More generally, if � is an
Orlicz function, then since L�(0,∞) is fully symmetric, it follows that En is a contractive projection from L�(M, τ )

onto L�(Mn, τn) (see for instance, [12, Proposition 2.1]).

Definition 2.4. A sequence x = (xn)n≥1 in L1(M) + M is called a noncommutative martingale with respect to
(Mn)n≥1 if En(xn+1) = xn for every n ≥ 1.

If in addition, all xn’s belong to L�(M) for a given Orlicz function �, then x is called an L�(M)-martingale. In
this case, we may define

‖x‖L�(M) = sup
n≥1

‖xn‖L�(M).

For the case where ‖x‖L�(M) < ∞, then x is called a bounded L�(M)-martingale. We note that if the indices of �

satisfy 1 < p� ≤ q� < ∞, then L�(M) is a reflexive space. In this case, any bounded L�(M)-martingale (xn)n≥1
converges to some x∞ in L�(M) that satisfies En(x∞) = xn for all n ≥ 1. From this fact, whenever 1 < p� ≤ q� <

∞, we will not make any distinction between operators in L�(M) and bounded L�(M)-martingales.
Let x = (xn)n≥1 be a noncommutative martingale with respect to (Mn)n≥1. Define dxn = xn − xn−1 for n ≥ 1

with the usual convention that x0 = 0. The sequence dx = (dxn)n≥1 is called the martingale difference sequence of x.
In this paper, we will be mainly working with conditioned square functions and noncommutative conditioned Hardy

spaces. We refer the reader to [1,45] for noncommutative Hardy spaces associated with square functions. Recall that
if x = (xn)n≥1 is an L2(M) +M-martingale, then we can formally define:

sc(x) =
(∑

k≥1

Ek−1|dxk|2
)1/2

and sr (x) =
(∑

k≥1

Ek−1
∣∣dx∗

k

∣∣2)1/2

. (2.2)

These are called the column and row conditioned square functions of x, respectively. We want to emphasize that when
dxk /∈ L2(M) + M, then |dxk|2 may not be necessary in L1(M) + M. Therefore, Ek−1|dxk|2 is not necessarily a
well-defined object. Thus, extra cares are needed for martingales that do not belong to L2(M) +M. Since the main
topic of this paper is dealing with various inequalities involving conditioned square functions, we will review the
general construction which is based on the so-called conditioned spaces. These were formally introduced by Junge
in [20] for noncommutative Lp-spaces and were extensively used by Junge and Xu in [23,25]. Recently, these ideas
were adapted in [45] to the case of more general classes of noncommutative symmetric spaces. Below, we use the
usual convention that E0 = E1.

Let E : M → N be a normal faithful conditional expectation, where N is a von Neumann subalgebra of M. For
0 < p ≤ ∞, we define the conditioned space Lc

p(M,E) to be the completion of M ∩ Lp(M) with respect to the
(quasi) norm

‖x‖Lc
p(M,E) = ∥∥E(x∗x

)∥∥1/2
p/2.
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It was shown in [20] that for every n and 0 < p ≤ ∞, there exists an isometric right Mn-module map un,p :
Lc

p(M,En) → Lp(Mn;�c
2) such that if (ei,j )i,j≥1 is the family of unit matrices in B(�2(N)), then

un,p(x)∗un,q(y) = En

(
x∗y

)⊗ e1,1, (2.3)

for all x ∈ Lc
p(M;En) and y ∈ Lc

q(M;En) with 1/p + 1/q ≤ 1. We now consider the increasing sequence of expec-
tations (En)n≥1. Denote by F the collection of all finite sequences (an)n≥1 in L1(M) ∩ M. For 0 < p ≤ ∞, define
the space Lcond

p (M;�c
2) to be the completion of F with respect to the (quasi) norm:

∥∥(an)
∥∥

Lcond
p (M;�c

2)
=
∥∥∥∥(∑

n≥1

En−1|an|2
)1/2∥∥∥∥

p

. (2.4)

The space Lcond
p (M;�c

2) can be isometrically embedded into an Lp-space associated to a semifinite von Neumann
algebra by means of the following map:

Up : Lcond
p

(
M;�c

2

)→ Lp

(
M⊗B

(
�2
(
N

2)))
defined by setting

Up

(
(an)n≥1

)=
∑
n≥1

un−1,p(an) ⊗ en,1.

From (2.3), it follows that if (an)n≥1 ∈ Lcond
p (M;�c

2) and (bn)n≥1 ∈ Lcond
q (M;�c

2) for 1/p + 1/q ≤ 1 then

Up

(
(an)

)∗
Uq

(
(bn)

)=
(∑

n≥1

En−1
(
a∗
nbn

))⊗ e1,1 ⊗ e1,1. (2.5)

In particular, ‖(an)‖Lcond
p (M;�c

2)
= ‖Up((an))‖p and hence Up is indeed an isometry. We note that Up is independent

of p in the sense of interpolation. Below, we will simply write U for Up . We refer the reader to [20] and [22] for more
details on the preceding construction.

In [45], the notion of conditioned spaces were generalized to the general context of noncommutative symmetric
spaces. We will only need here the special case of noncommutative Orlicz spaces. We include the details for further
use.

We consider the algebraic linear map U restricted to the linear space F that takes its values in the intersection
L1(M⊗B(�2(N

2))) ∩M⊗B(�2(N
2)). For a given sequence (an)n≥1 ∈ F , we set:

∥∥(an)
∥∥

Lcond
� (M;�c

2)
=
∥∥∥∥(∑

n≥1

En−1|an|2
)1/2∥∥∥∥

L�(M)

= ∥∥U(
(an)

)∥∥
L�(M⊗B(�2(N

2)))
.

This is well-defined and induces a norm on the linear space F . We define the Banach space Lcond
� (M;�c

2) to be
the completion of F with respect to the above norm. Then U extends to an isometry from Lcond

� (M;�c
2) into

L�(M⊗B(�2(N
2))) which we will still denote by U .

Similarly, we may define the corresponding row version Lcond
� (M;�r

2) which can also be viewed as a subspace of
L�(M⊗B(�2(N

2))) as row vectors.
Now we define the column/row conditioned Orlicz–Hardy spaces. Let FM denote the set of all finite martingales in

L1(M)∩M. Define hc
�(M) (respectively, hr

�(M)) as the completion of FM under the norm ‖x‖hc
�

= ‖sc(x)‖L�(M)

(respectively, ‖x‖hr
�

= ‖sr (x)‖L�(M)). We observe that for every x ∈ FM , ‖x‖hc
�

= ‖(dxn)‖Lcond
� (M;�c

2)
. Therefore,

hc
�(M) may be viewed as a subspace of Lcond

� (M;�c
2). More precisely, we consider the map D : FM → F by setting

D(x) = (dxn)n≥1. Then D extends to an isometry from hc
�(M) into Lcond

� (M;�c
2) which we will denote by Dc . In

the sequel, we will make frequent use of the isometric embedding:

UDc : hc
�(M) → L�

(
M⊗ B

(
�2
(
N

2))).
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We can make similar assertions for the row case. That is, the space hr
�(M) embeds isometrically into L�(M ⊗

B(�2(N
2))). We also need the diagonal Hardy space hd

�(M) which is the space of all martingales whose martingale
difference sequences belong to L�(M ⊗ �∞) equipped with the norm ‖x‖hd

�
:= ‖(dxn)‖L�(M⊗�∞). As above, we

denote by Dd the isometric extension of D from hd
�(M) into L�(M ⊗ �∞). From boundedness of conditional

expectations, one can easily verify that Dd(hd
�(M)) is a closed subspace of L�(M⊗ �∞) which implies in turn that

hd
�(M) is a Banach space. As noted in [45], hd

�(M), hc
�(M), and hr

�(M) are compatible in the sense that they embed
into a larger Banach space. We now define the conditioned version of martingale Orlicz–Hardy spaces as follows. If
1 ≤ p� ≤ q� < 2, then

h�(M) = hd
�(M) + hc

�(M) + hr
�(M)

equipped with the norm

‖x‖h� = inf
{‖w‖hd

�
+ ‖y‖hc

�
+ ‖z‖hr

�

}
,

where the infimum is taken over all w ∈ hd
�(M), y ∈ hc

�(M), and z ∈ hr
�(M) such that x = w + y + z. If 2 ≤ p� ≤

q� < ∞, then

h�(M) = hd
�(M) ∩ hc

�(M) ∩ hr
�(M)

equipped with the norm

‖x‖h� = max
{‖x‖hd

�
,‖x‖hc

�
,‖x‖hr

�

}
.

The reason behind the consideration of different definitions according to q� < 2 or p� > 2 goes back to the non-
commutative Khintchine inequalities from [32,33]. For the particular case �(t) = tp then h�(M) = hp(M) where
hp(M) is the conditioned Hardy space as defined in [20,23]. The space h�(M) is the conditioned version of mar-
tingale Orlicz Hardy spaces constructed from square functions explicitly defined in [1]. As a particular case of the
extensions of the noncommutative Burkholder inequalities to general noncommutative symmetric spaces treated in
[45, Theorem 3.1], we have the following identification:

h�(M) ≈� L�(M) (2.6)

whenever 1 < p� ≤ q� < 2 or 2 < p� ≤ q� < ∞.
Let us now discuss �-moments of conditioned square functions for x /∈ L2(M) +M. The important fact revealed

by (2.5) is that if x is a martingale from FM then sc(x) (as defined above) can be identified to the modulus of the
measurable operator UDc(x) in the space L�(M⊗B(�2(N

2))). We extend this identity to all martingales x ∈ hc
�(M).

That is, for each x ∈ hc
�(M), we make the convention that the column conditioned square function of x is given by:

sc(x) = ∣∣UDc(x)
∣∣. (2.7)

Similarly, we may also define the corresponding row version by setting:

sr (y) = sc
(
y∗)= ∣∣UDc

(
y∗)∣∣, y ∈ hr

�(M).

Clearly, the definition of hc
�(M) allows the identification for the norms:∥∥sc(x)

∥∥
L�(M)

= ∥∥UDc(x)
∥∥

L�(M⊗B(�2(N
2)))

= ‖x‖hc
�
.

Accordingly, �-moments of column conditioned square functions are then understood as:

τ
[
�
(
sc(x)

)]= τ ⊗ Tr
[
�
(∣∣UDc(x)

∣∣)], (2.8)

where Tr denotes the usual trace on B(�2(N
2)). We should warn the reader that when x /∈ L2(M)+M, the �-moment

τ [�(sc(x))] is only a suggestive notation as sc(x) may not exist in the sense of (2.2). We also define τ [�(sr(x))] in a
similar way.
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We end this subsection by recording the following simultaneous decomposition result which is the essential key in-
gredient to our approach. Its main feature is that one of the inequalities in the noncommutative Burkholder inequalities
from [23] can be achieved with a single decomposition.

Theorem 2.5 ([45]). There exists a family {κp : 1 < p < 2} ⊂ R+ satisfying the following: if x ∈ L1(M) ∩ L2(M),
then there exist a ∈⋂

1<p<2 hd
p(M), b ∈⋂

1<p<2 hc
p(M), and c ∈⋂

1<p<2 hr
p(M) such that:

(i) x = a + b + c;
(ii) for every 1 < p < 2, the following inequality holds:

‖a‖hd
p

+ ‖b‖hc
p

+ ∥∥c‖hr
p

≤ κp‖x∥∥
p
.

3. Interpolations and some auxiliary inequalities

In this section, we recall some basic definitions from interpolation theory and provide four inequalities that are at the
core of our argument in the next section. These are stated in Proposition 3.3, Proposition 3.5, Proposition 3.6, and
Proposition 3.10. Although we only need these results in the special case of various noncommutative Lp-spaces, for
the sake of clarity, we chose to work with the abstract context of compatible couple of general Banach spaces. Our
main references for interpolation of general Banach spaces are [4,5,27].

Let X = (X0,X1) be a compatible couple of Banach spaces in the sense that X0 and X1 are continuously embedded
into a Hausdorff topological vector space. Then we can form the sum �(X) = X0 + X1 and the intersection �(X) =
X0 ∩ X1 which are Banach spaces under the norms

‖x‖�(X) = inf
{‖x0‖X0 + ‖x1‖X1 : x = x0 + x1, x0 ∈ X0, x1 ∈ X1

}
and

‖x‖�(X) = max
{‖x‖X0,‖x‖X1

}
,

respectively. A Banach space Z will be called an intermediate space with respect to X if �(X) ⊆ Z ⊆ �(X) with con-
tinuous embeddings. An intermediate space Z is called an interpolation space if whenever a bounded linear operator
T : �(X) → �(X) is such that T (X0) ⊆ X0 and T (X1) ⊆ X1, we have T (Z) ⊆ Z and

‖T : Z → Z‖ ≤ C max
{‖T : X0 → X0‖,‖T : X1 → X1‖

}
for some constant C. In this case, we write Z ∈ Int(X0,X1). Examples of interpolation spaces that are relevant to this
article are Orlicz spaces. Indeed, we have L� ∈ Int(Lp0 ,Lp1) whenever p0 < p� ≤ q� < p1. In fact, the following
noncommutative generalization of the classical Marcinkiewicz interpolation of operators was used in [1] as one of the
main tools for dealing with various �-moment inequalities. We only state here the version we need.

Theorem 3.1 ([1, Theorem 2.1]). Let M1 and M2 be two semifinite von Neumann algebras equipped with normal
semifinite faithful traces τ1 and τ2, respectively. Assume that 1 ≤ p0 < p1 ≤ ∞. Let T : Lp0(M1) + Lp1(M1) →
Lp0(M2) + Lp1(M2) be a linear operator that satisfies T (Lpi

(M1)) ⊆ Lpi
(M2) for i = 0,1. If � is an Orlicz

function with p0 < p� ≤ q� < p1, then there exists a constant C depending only on p0, p1, and � such that for every
x ∈ L�(M1),

τ2
[
�
(|T x|)]≤ Cτ1

[
�
(|x|)].

The following properties of conditioned Orlicz–Hardy spaces and diagonal Orlicz Hardy spaces are taken from
[45, Proposition 2.8].

Lemma 3.2. Assume that 1 < p0 < p� ≤ q� < p1 < ∞. Then:

(i) hd
�(M) is complemented in L�(M⊗ �∞);
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(ii) hc
�(M) is complemented in L�(M⊗ B(�2(N

2)));
(iii) for s ∈ {d, c, r}, we have hs

�(M) ∈ Int(hs
p0

(M),hs
p1

(M)).

The next proposition is the Hardy space versions of Theorem 3.1.

Proposition 3.3. Let N be a semifinite von Neumann algebra equipped with a normal semifinite faithful trace σ .
Assume that 1 < p0 < p1 < ∞. Let s ∈ {d, c} and T : hs

p0
(M) + hs

p1
(M) → Lp0(N ) + Lp1(N ) be a linear operator

that satisfies T (hs
pi

(M)) ⊆ Lpi
(N ) for i = 0,1. If � is an Orlicz function with p0 < p� ≤ q� < p1, then there exists

a constant C depending only on p0, p1, and � such that:

(i) If s = d and x ∈ hd
�(M), then σ [�(|T x|)] ≤ C

∑
n≥1 τ [�(|dxn|)].

(ii) If s = c and y ∈ hc
�(M), then σ [�(|Ty|)] ≤ Cτ [�(sc(y))].

Similarly, if S : Lp0(N )+Lp1(N ) → hs
p0

(M)+ hs
p1

(M) is a linear operator that satisfies S(Lpi
(N )) ⊆ hs

pi
(M) for

i = 0,1, then there exists a constant C depending only on p0, p1, and � such that:

(iii) If s = d and x ∈ L�(N ), then
∑

n≥1 τ [�(|dn(Sx)|)] ≤ Cσ [�(|x|)] where (dn(Sx))n≥1 denotes the martingale
difference sequence of the martingale associated with Sx.

(iv) If s = c and y ∈ L�(N ), then τ [�(sc(Sy))] ≤ Cσ [�(|y|)].

Proof. We begin with the diagonal part. Let � : Lp0(M⊗�∞)+Lp1(M⊗�∞) → hd
p0

(M)+hd
p1

(M) be the bounded
projection defined by: �((an)n≥1) = ∑

n≥1 En(an) − En−1(an). It is clear that T �[Lpi
(M ⊗ �∞)] ⊂ Lpi

(N ) for
i = 0,1. It follows from Theorem 3.1 that T �[L�(M⊗�∞)] ⊂ L�(N ) and there exists a constant C = C(p0,p1,�)

such that:

σ
[
�
(∣∣T �

(
(an)n

)∣∣)]≤ Cτ ⊗ γ
[
�
(∣∣(an)n

∣∣)],
where τ ⊗ γ is the natural trace of M⊗ �∞. Let x ∈ hd

�(M). When applied to the operator Dd(x) ∈ L�(M⊗ �∞),
the above inequality yields the desired inequality.

Now, we verify the column case. Let S = M ⊗ B(�2(N
2)) equipped with its natural trace τ ⊗ Tr. Define Π :

Lp0(S) + Lp1(S) → hc
p0

(M) + hc
p1

(M) be the projection guaranteed by Lemma 3.2. Then we have, T Π [Lpi
(S)] ⊂

Lpi
(N ) for i = 0,1. As above, we deduce from Theorem 3.1 that T Π [L�(S)] ⊂ L�(N ) and there exists a constant

C = Cp0,p1,� such that for every a ∈ L�(S),

σ
[
�
(∣∣T Π(a)

∣∣)]≤ Cτ ⊗ Tr
[
�
(|a|)].

Let y ∈ hc
�(M) and take a = UDc(y). For this special case, the preceding inequality clearly translates into the

inequality in item (ii).
Items (iii) and (iv) follow from composing S with the isometric embeddings Dd : hd

pi
(M) → Lpi

(M ⊗ �∞) and
UDc : hc

pi
(M) → Lpi

(S) for i = 0,1. �

We now turn our attention to specific types of interpolations. A fundamental notion for real interpolation theory is
the K-functional. This is given by setting:

K(t, x) = K(t, x;X) = inf
{‖x0‖X0 + t‖x1‖X1 : x = x0 + x1

}
, x ∈ �(X).

We will also need a dual notion known as the J -functional defined by

J (t, x) = J (t, x;X) = max
{‖x‖X0, t‖x‖X1

}
, x ∈ �(X).

These two notions will be heavily used in the sequel.
We recall that by a representation of x ∈ �(X) with respect to the couple X, we mean a measurable function

u : (0,∞) → �(X) satisfying

x =
∫ ∞

0
u(t)

dt

t
,
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where the convergence of the integral is taken in �(X). Similarly, a discrete representation of x with respect to the
couple X is a series

x =
∑
ν∈Z

uν

with uν ∈ �(X) for all ν ∈ Z and the convergence of the series taken in the Banach space �(X).

Definition 3.4. Given a compatible couple X and 0 ≤ θ ≤ 1, we say that an intermediate space Z of X belongs to

(i) the class CK(θ,X) if there exists a constant C1 such that for every x ∈ Z and t > 0, the following holds:

K(t, x) ≤ C1t
θ‖x‖Z.

(ii) the class CJ (θ,X) if there exists a constant C2 such that for every x ∈ �(X) and t > 0, the following holds:

‖x‖Z ≤ C2t
−θJ (t, x).

Examples of spaces belonging to the class CK(θ,X) are those real interpolation spaces constructed using the
K-method. Namely, the spaces (X0,X1)θ,p,K (we refer to [5] for the definition of ‖ · ‖θ,p,K ). The corresponding
statement is also valid for the class CJ (θ,X). That is, (X0,X1)θ,p,J belongs to CJ (θ,X). In particular, for θ = 1−p−1,
Lp belongs to both CK(θ) and CJ (θ) for the couple (L1,L∞). A noncommutative analogue of the latter statement
will be used in the sequel.

The next two propositions deal with reiteration type inequalities involving convex functions.

Proposition 3.5. Let X = (X0,X1) and Y = (Y0, Y1) be compatible couples of Banach spaces and 0 ≤ θ0 < θ1 ≤ 1.
Assume that Yi belongs to the class CK(θi,X) for i = 0,1. Then the following inequality holds:∫ ∞

0
�
[
t−1K(t, y;X)

]
dt ��,θ0,θ1

∫ ∞

0
�
[
t−1+θ0K

(
tθ1−θ0, y;Y )]dt, y ∈ �(Y ).

Proof. From the assumptions, there exist constants C0 and C1 such that if y = y0 + y1 ∈ �(Y ) then for every t > 0,

K(t, y0;X) ≤ C0t
θ0‖y0‖Y0 and K(t, y1;X) ≤ C1t

θ1‖y1‖Y1 .

It follows that K(t, y;X) ≤ C0t
θ0‖y0‖Y0 + C1t

θ1‖y1‖Y1 . Taking the infimum over all such decompositions of y, we
have for C = max{C0,C1} that

K(t, y;X) ≤ Ctθ0K
(
tθ1−θ0, y;Y ).

Since � is increasing and satisfies the �2-condition, we may conclude that∫ ∞

0
�
[
t−1K(t, y;X)

]
dt ≤

∫ ∞

0
�
[
Ct−1+θ0K

(
tθ1−θ0, y;Y )]dt

�
∫ ∞

0
�
[
t−1+θ0K

(
tθ1−θ0 , y;Y )]dt.

The fact that the constant depends only on �, θ0, and θ1 is clear from the argument. �

A dual version of the preceding proposition reads as follows:

Proposition 3.6. Let X = (X0,X1) and Y = (Y0, Y1) be compatible couples of Banach spaces and 0 ≤ θ0 < θ1 ≤ 1.
Assume that Yi belongs to the class CJ (θi,X) for i = 0,1. Let y ∈ �(Y ) and u(·) be a representation of y for the
couple X. If u(·) is also a representation of x for the couple Y then the following inequality holds:∫ ∞

0
�
[
t−1+θ0J

(
tθ1−θ0 , u(t);Y )]dt ��,θ0,θ1

∫ ∞

0
�
[
t−1J

(
t, u(t);X)]

dt.
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Proof. The argument is nearly identical to the one used earlier. We include the details for completeness. For the
inequality, we have from the assumptions that there exist constants C0 and C1 such that for every t > 0,∥∥u(t)

∥∥
Y0

≤ C0t
−θ0J

(
t, u(t);X)

and
∥∥u(t)

∥∥
Y1

≤ C1t
−θ1J

(
t, u(t);X)

.

The latter is equivalent to the inequality

tθ1−θ0
∥∥u(t)

∥∥
Y1

≤ C1t
−θ0J

(
t, u(t);X)

.

This implies that for C = max{C0,C1}, we have J (tθ1−θ0 , u(t), Y ) ≤ Ct−θ0J (t, u(t);X). That is,

t−1+θ0J
(
tθ1−θ0, u(t);Y )≤ Ct−1J

(
t, u(t);X)

.

Since � satisfies the �2-condition, we conclude as before that∫ ∞

0
�
[
t−1+θ0J

(
tθ1−θ0 , u(t);Y )]dt ≤

∫ ∞

0
�
[
Ct−1J

(
t, u(t);X)]

dt

�
∫ ∞

0
�
[
t−1J

(
t, u(t);X)]

dt.

As noted in the previous proposition, the constant involved depends only on �, θ0, and θ1. �

In preparation for the next proposition, let us review some basic facts about the following classical operators. For
f ∈ L0(0,∞), we define the Calderón’s operators by setting for 1 ≤ p < q < ∞,

Sp,qf (t) = t
− 1

p

∫ t

0
s

1
p f (s)

ds

s
+ t

− 1
q

∫ ∞

t

s
1
q f (s)

ds

s
, t > 0

and for 1 ≤ p < ∞,

Sp,∞f (t) = t
− 1

p

∫ t

0
s

1
p f (s)

ds

s
, t > 0.

Connections between Calderón operators and interpolation theory are well-established in the literature. It was noted
in [4, Proposition 5.5] that for 1 ≤ p < q ≤ ∞, the linear operator Sp,q is simultaneously of weak-types (p,p) and
(q, q). Thus, by standard use of Marcinkiewicz interpolation, we have the following well-known properties:

Lemma 3.7.

(i) For every 1 ≤ p < r < q , Sp,q is a bounded linear operator on Lr(0,∞);
(ii) for 1 ≤ p < r ≤ ∞, Sp,∞ is a bounded linear operator on Lr(0,∞).

As immediate consequences, we also have the following �-moment versions:

Lemma 3.8. If 1 ≤ p < p� < q� < q < ∞, then for every f ∈ L�(0,∞),∫ ∞

0
�
[∣∣Sp,∞f (t)

∣∣]dt ��,p

∫ ∞

0
�
[∣∣f (t)

∣∣]dt

and ∫ ∞

0
�
[∣∣Sp,qf (t)

∣∣]dt ��,p,q

∫ ∞

0
�
[∣∣f (t)

∣∣]dt.
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Proof. From Lemma 3.7, both Sp,∞ and Sp,q are bounded simultaneously on Lr1(0,∞) and Lr2(0,∞) whenever
p < r1 < p� ≤ q� < r2 < q . The two inequalities as stated follow immediately from applying Theorem 3.1 to the
abelian von Neumann algebra L∞(0,∞). �

The next result is a weighted version of the previous lemma. We only consider the special case that we will use.

Lemma 3.9. Let 1 < p < p� ≤ q� < q < ∞. If g is a nonnegative decreasing function defined in (0,∞) with
t �→ t−1/pg(t1/p−1/q) belongs to L�(0,∞), then∫ ∞

0
�
[
t−1/qS1,∞g

(
t1/p−1/q

)]
dt ��,p,q

∫ ∞

0
�
[
t−1/qg

(
t1/p−1/q

)]
dt.

Proof. Since g ≤ S1,∞g, one inequality is immediate. For the non trivial inequality, let θ = 1/p − 1/q and define the
function

ψ(t) = t−1/qS1,∞g
(
tθ
)= t−1/p

∫ tθ

0
g(s) ds, t > 0.

Using the substitution s = wθ , we have

ψ(t) = θt−1/p

∫ t

0
g
(
wθ

)
wθ−1 dw

= θt−1/p

∫ t

0
w1/pw−1/qg

(
wθ

)dw

w

= θSp,∞(hθ )(t),

where hθ is the function t �→ t−1/qg(tθ ). We may deduce that∫ ∞

0
�
[
t−1/qS1,∞g

(
tθ
)]

dt ≤
∫ ∞

0
�
[
θSp,∞(hθ )(t)

]
dt

≤
∫ ∞

0
�
[
Sp,∞(hθ )(t)

]
dt

�
∫ ∞

0
�
[
hθ (t)

]
dt,

where the last inequality comes from the first inequality in Lemma 3.8. This is the desired inequality. �

We now state the following weighted comparison between K-functionals and J -functionals.

Proposition 3.10. Assume that 1 < p < p� ≤ q� < q < ∞ and Y is an interpolation couple. Then for every y ∈
�(Y ),∫ ∞

0
�
[
t−1/pK

(
t1/p−1/q, y;Y )]dt ��,p,q inf

{∫ ∞

0
�
[
t−1/pJ

(
t1/p−1/q, u

(
t1/p−1/q

);Y )]dt

}
,

where the infimum is taken over all representations u(·) of y.

Proof. We will deduce the inequality in two steps. First, we recall the notion of j -functionals related to the interpo-
lation couple Y . Suppose that y ∈ �(Y) admits a representation u(·). We define

j (s, u) = j (s, u;Y ) =
∫ ∞

s

t−1J
(
t, u(t)

)
dt/t, s > 0.
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We will verify first that the inequality stated in the proposition holds for the j -functional in place of the J -functional.
That is, we claim that∫ ∞

0
�
[
t−1/pK

(
t1/p−1/q, y

)]
dt � inf

{∫ ∞

0
�
[
t−1/qj

(
t1/p−1/q, u

)]
dt

}
, (3.1)

where the infimum is taken over all representations u(·) of y in the couple Y .
To prove this assertion, we fix a representation u(·) of y. As above, we let θ = 1/p − 1/q . The crucial point of the

argument is given by the following inequality:

K
(
tθ , y

)≤
∫ tθ

0
j (s, u) ds, t > 0.

A verification of this fact can be found for instance in [3, p. 427]. Since t−1/p = t−1/q t−θ , the preceding inequality
can be rewritten in the following form:

t−1/pK
(
tθ , y

)≤ t−1/qS1,∞
(
j (·, u)

)(
tθ
)
, t > 0.

Since j (·, u) is a decreasing function, after applying the function � on both sides of the preceding inequality and
taking integrals, (3.1) follows immediately from Lemma 3.9.

Next, we will verify that for any representation u(·) of y, we have∫ ∞

0
�
[
t−1/qj

(
t1/p−1/q, u

)]
dt �

∫ ∞

0
�
[
t−1/pJ

(
t1/p−1/q, u

(
t1/p−1/q

))]
dt. (3.2)

Indeed, from the definition of j (·, u), we have j (tθ , u) = ∫∞
tθ

s−1J (s, u(s)) ds/s. Therefore, for every t > 0,

t−1/qj
(
tθ , u

)= t−1/q

∫ ∞

tθ
s−1J

(
s, u(s)

)
ds/s.

Using the substitution s = wθ , the preceding equality gives for every t > 0,

t−1/qj
(
tθ , u

) = θt−1/q

∫ ∞

t

J
(
wθ,u

(
wθ

))
w−2θwθ−1 dw

≤ t−1/q

∫ ∞

t

J
(
wθ,u

(
wθ

))
w−θ dw/w

≤ t−1/q

∫ ∞

t

w1/qw−1/pJ
(
wθ,u

(
wθ

))
dw/w

≤ Sp,q(ψθ )(t),

where ψθ(t) = t−1/pJ (tθ , u(tθ )). We deduce that∫ ∞

0
�
[
t−1/qj

(
tθ , u

)]
dt ≤

∫ ∞

0
�
[
Sp,q(ψθ )(t)

]
dt �

∫ ∞

0
�
[
ψθ(t)

]
dt,

where the second inequality comes from the second inequality in Lemma 3.8. This is the desired inequality. Combining
(3.1) and (3.2) clearly gives the proposition. �

Remark 3.11. By choosing a representation u(·) satisfying J (t, u(t)) ≤ CK(t, y) (for some absolute constant C),
the converse of the inequality stated in Proposition 3.10 clearly holds but this fact will not be needed.

We conclude this section with a discretization of the second integral appearing in Proposition 3.10.
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Lemma 3.12. Let 1 < p < q < ∞ and set θ = 1/p − 1/q . Fix y ∈ �(Y ).

(i) Assume that y = ∫∞
0 u(t) dt/t is a representation of y. If for every ν ∈ Z, we set uν = ∫ 2ν+1

2ν u(t) dt/t , then
y =∑

ν∈Z uν is a discrete representation of y and

∑
ν∈Z

2ν/θ�
[
2−ν/(θp)J

(
2ν, uν;Y

)]
��,p,q

∫ ∞

0
�
[
t−1/pJ

(
t1/p−1/q, u

(
t1/p−1/q

);Y )]dt.

(ii) Conversely, assume that y admits a discrete representation y = ∑
ν∈Z uν . If we set for t ∈ [2ν,2ν+1), u(t) =

uν/(log 2) then y = ∫∞
0 u(t) dt/t is a representation of y and∫ ∞

0
�
[
t−1/pJ

(
t1/p−1/q, u

(
t1/p−1/q

);Y )]dt ��,p,q

∑
ν∈Z

2ν/θ�
[
2−ν/(θp)J

(
2ν, uν;Y

)]
.

Sketch of the proof. Fix a representation u(·) of y. A simple use of substitution gives,∫ ∞

0
�
[
t−1/pJ

(
t1/p−1/q, u

(
t1/p−1/q

))]
dt = θ−1

∫ ∞

0
�
[
t−1/(θp)J

(
t, u(t)

)]
tθ

−1
dt/t.

Using the integral in the right hand side of the above equality, the verification of the two inequalities in the lemma is
a simple adaptation of standard arguments from interpolation theory which we leave for the reader. �

4. �-Moment versions of Burkholder inequalities

In this section, we present our primary objective. That is, to formulate �-moment extensions of the noncommuta-
tive Burkholder inequalities. The following theorem is the main result of this paper. It extends the noncommutative
Burkholder inequalities (for the case 1 < p < 2) from [23, Theorem 6.1] to moment inequalities involving Orlicz
functions.

Theorem 4.1. Let � be an Orlicz function satisfying 1 < p� ≤ q� < 2. There exist positive constants δ� and η�

depending only on � such that for every martingale x ∈ L�(M), the following inequalities hold:

δ−1
� S�(x) ≤ τ

[
�
(|x|)]≤ η�S�(x), (B�)

where S�(x) = inf{τ [�(sc(x
c))] + τ [�(sr(x

r))] + ∑
n≥1 τ [�(|dxd

n |)]} with the infimum being taken over all xc ∈
hc
�(M), xr ∈ hr

�(M), and xd ∈ hd
�(M) such that x = xc + xr + xd .

Throughout the proof, we fix p and q such that 1 < p < p� ≤ q� < q < 2. First, we prove the second inequality
of (B�). This will be deduced from interpolating the noncommutative Burkholder inequalities. Indeed, since 1 <

p,q < 2, the noncommutative Burkholder inequalities implies that for s ∈ {d, c, r}, hs
p(M) ⊂ Lp(M) and hs

q(M) ⊂
Lq(M). By Proposition 3.3, it follows that for every y ∈ hd

�(M), we have

τ
[
�
(|y|)]≤ C�

∑
n≥1

τ
[
�
(|dyn|

)]
. (4.1)

Similarly, for z ∈ hc
�(M), we have

τ
[
�
(|z|)]≤ C′

�τ
[
�
(
sc(z)

)]
. (4.2)

Considering adjoint operators, we may also state that for w ∈ hr
�(M), we have

τ
[
�
(|w|)]≤ C ′

�τ
[
�
(
sr (w)

)]
. (4.3)
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Now, let x = xc + xr + xd with xc ∈ hc
�(M), xr ∈ hr

�(M), and xd ∈ hd
�(M). We deduce from (4.2), (4.3), and (4.1)

that

τ
[
�
(|x|)] ≤ C

′′
�

{
τ
[
�
(∣∣xd

∣∣)]+ τ
[
�
(∣∣xc

∣∣)]+ τ
[
�
(∣∣xr

∣∣)]}
≤ C

′′
� max

{
C�,C′

�

}{
τ
[
�
(
sc
(
xc
))]+ τ

[
�
(
sr
(
xr
))]+

∑
n≥1

τ
[
�
(∣∣dxd

n

∣∣)]}.

Taking the infimum over all such decompositions completes the proof of the second inequality of (B�).
Now, we proceed with the proof of the first inequality of (B�). The proof will be done in several steps and

rests upon the fact noted earlier that the Orlicz space L�(M) is an interpolation space for the compatible couple
(Lp(M),Lq(M)). A fortiori, it is an interpolation space for the compatible couple (L1(M),M). Our approach was
motivated by the following formula on K-functionals: for x ∈ L1(M) +M,

K
(
t, x;L1(M),M

)=
∫ t

0
μs(x) ds, t > 0.

This fact can be found for instance in [41, Corollary 2.3]. We make the following crucial observation:

τ
[
�
(|x|)]=

∫ ∞

0
�
(
μt(x)

)
dt �

∫ ∞

0
�
[
t−1K(t, x)

]
dt, (4.4)

where the equivalence is taken from the property of Calderón’s operator stated in Lemma 3.8. Thus, proving the first
inequality in (B�) amounts to finding suitable estimate for the integral of the function t �→ �[t−1K(t, x)] from below.
However, as it will be clear from the steps taken below, the J -functionals computed with respect to the compatible
couple (Lp(M),Lq(M)) turn out to be the right framework for this stated goal. Below, C�,p,q denotes a positive
constant whose value may change from one line to the next.

• We assume first that x ∈ L1(M) ∩M.
Step 1. Choose a representation u(·) of x in the compatible couple (L1(M),M) such that:

J
(
t, u(t)

)≤ CK(t, x), t > 0, (4.5)

where C is an absolute constant. Thus, since � has the �2-condition, we have from (4.4) and (4.5) that∫ ∞

0
�
[
t−1J

(
t, u(t)

)]
dt ≤ C�τ

[
�
(|x|)]. (4.6)

Step 2. Changing into the compatible couple (Lp(M),Lq(M)). This is done through Proposition 3.6. Denote
by X the compatible couple (L1(M),M). If we set θ0 = 1 − p−1 and θ1 = 1 − q−1 then Lp(M) and Lq(M)

belong to the classes CJ (θ0,X) and CJ (θ1,X), respectively. We claim that u(·) is also a representation of x for
the compatible couple (Lp(M),Lq(M)). To verify this claim, fix p < r < q . Since x ∈ L1(M) ∩ M, it belongs
to Lr(M). Let θ = 1 − r−1. We recall that Lr(M) = (L1(M),M)θ,r,K (with equivalent norms) where (·, ·)θ,r,K

denotes the real interpolation using the K-method (see [5]). We have by the definition of (L1(M),M)θ,r,K that the
function t−θK(t, x;X) ∈ Lr(R+, dt/t). From (4.5), we also have t−θJ (t, u(t);X) ∈ Lr(R+, dt/t). It is implicit in
the proof of [9, Proposition 3.3.19, pp. 177–178] that the latter assertion implies that the integral

∫∞
0 u(t) dt/t is

convergent in Lp(M) + Lq(M). This verifies the claim.
With the above observations, it is clear that Proposition 3.6 applies to our situation. We should point out here that

the only reason for considering x ∈ L1(M) ∩ M is to insure that u(·) is a representation of x for both compatible
couples.

Putting (4.6) together with Proposition 3.6 yields:∫ ∞

0
�
[
t−1/pJ

(
t1/p−1/q, u(t);Lp(M),Lq(M)

)]
dt ≤ C�,p,qτ

[
�
(|x|)].
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For technical reasons that should be clear later, we need to modify the representation as follows: set 1/α = 1/p − 1/q

and define:

v(t) = αu
(
tα
)

for t > 0.

A simple use of substitution shows that v(·) is a representation of x in the compatible couple (L1(M),M) (also for
the compatible couple (Lp(M),Lq(M))). Using the representation v(·), the preceding inequality becomes:∫ ∞

0
�
[
t−1/pJ

(
t1/p−1/q, v

(
t1/p−1/q

);Lp(M),Lq(M)
)]

dt ≤ C�,p,qτ
[
�
(|x|)]. (4.7)

Next, we discretize the integral in (4.7). If we set vν = ∫ 2ν+1

2ν v(t) dt/t for every ν ∈ Z, then vν ∈ L1(M) ∩M and

x =
∑
ν∈Z

vν

(
convergence in Lp(M) + Lq(M)

)
. (4.8)

By Lemma 3.12(i), we deduce from (4.7) that if θ = 1/p − 1/q then∑
ν∈Z

2ν/θ�
[
2−ν/(θp)J

(
2ν, vν;Lp(M),Lq(M)

)]≤ C�,p,qτ
[
�
(|x|)]. (4.9)

Step 3. Use of the simultaneous decompositions. In this step, we use the simultaneous decomposition to generate
the appropriate decomposition of x. This is a reminiscent of an argument used in [43] (see also [44,45]).

For each ν ∈ Z, we note that since vν ∈ L1(M) ∩M, Theorem 2.5 applies to vν . That is, there exist aν , bν , and cν

in Lp(M) ∩ Lq(M) satisfying:

vν = aν + bν + cν (4.10)

and if s is equal to either p or q , then

‖aν‖hd
s
+ ‖bν‖hc

s
+ ‖cν‖hr

s
≤ κ(p,q)‖vν‖s , (4.11)

where κ(p,q) = max{κp, κq} with κp and κq are constants from Theorem 2.5. For convenience, we let

A := (
Lp(M⊗ �∞),Lq(M⊗ �∞)

)
and B := (

Lp

(
M⊗ B

(
�2
(
N

2))),Lq

(
M⊗ B

(
�2
(
N

2)))).
For any given ν ∈ Z, we consider the sequences Dd(aν) ∈ �(A), UDc(bν) ∈ �(B), and UDc(c

∗
ν) ∈ �(B). We

make the crucial observation that the inequalities in (4.11) can be reinterpreted using the J -functionals as follows:

J
(
t,Dd(aν);A

)≤ κ(p,q)J
(
t, vν;Lp(M),Lq(M)

)
, t > 0,

J
(
t,UDc(bν);B

)≤ κ(p,q)J
(
t, vν;Lp(M),Lq(M)

)
, t > 0, (4.12)

J
(
t,UDc

(
c∗
ν

);B)≤ κ(p,q)J
(
t, vν;Lp(M),Lq(M)

)
, t > 0.

We need the following properties of the three sequences {Dd(aν)}ν∈Z, {UDc(bν)}ν∈Z, and {UDc(c
∗
ν)}ν∈Z.

Sublemma 4.2.

(1)
∑

ν∈ZDd(aν) is (unconditionally) convergent in L�(M⊗ �∞).
(2)

∑
ν∈Z UDc(bν) is (unconditionally) convergent in L�(M⊗ B(�2(N

2))).
(3)

∑
ν∈Z UDc(c

∗
ν) is (unconditionally) convergent in L�(M⊗ B(�2(N

2))).
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The proof of Sublemma 4.2 is identical to that of [45, Sublemma 3.3]. Indeed, the argument used in [45] would
show that these series are weakly unconditionally Cauchy but since L� is reflexive these convergences are automati-
cally unconditional (see [10]). We leave the details to the reader. From Sublemma 4.2, we may deduce that there exist
a ∈ hd

�(M), b ∈ hc
�(M), and c ∈ hr

�(M) such that:

Dd(a) :=
∑
ν∈Z

Dd(aν) ∈ L�(M⊗ �∞);

UDc(b) :=
∑
ν∈Z

UDc(bν) ∈ L�

(
M⊗ B

(
�2
(
N

2))); (4.13)

UDc

(
c∗) :=

∑
ν∈Z

UDc

(
c∗
ν

) ∈ L�

(
M⊗ B

(
�2
(
N

2))).
The fact that the sum of the first series belongs to Dd(hd

�(M)) is clear since the terms of the series belong to the
closed subspace Dd(hd

�(M)) and thus the existence of a ∈ hd
�(M). Similar observations can be made for the other

two series. Now, combining (4.9) with (4.12) lead to the following inequalities:∑
ν∈Z

2ν/θ�
[
2−ν/(θp)J

(
2ν,Dd(aν);A

)]≤ C�,p,qτ
[
�
(|x|)];

∑
ν∈Z

2ν/θ�
[
2−ν/(θp)J

(
2ν,UDc(bν);B

)]≤ C�,p,qτ
[
�
(|x|)]; (4.14)

∑
ν∈Z

2ν/θ�
[
2−ν/(θp)J

(
2ν,UDc

(
c∗
ν

);B)]≤ C�,p,qτ
[
�
(|x|)].

Next, we go back to the continuous case. By setting for t ∈ [2ν,2ν+1),

Dd

(
a(t)

)= Dd(aν)

log 2
∈ �(A), UDc

(
b(t)

)= UDc(bν)

log 2
∈ �(B), and UDc

(
c(t)∗

)= UDc(c
∗
ν)

log 2
∈ �(B),

we obtain that Dd(a(·)) is a representation of Dd(a) in the couple A, UDc(b(·)) is a representation of UDc(b) in the
couple B , and UDc(c(·)∗) is a representation of UDc(c

∗) in the couple B . Moreover, Lemma 3.12(ii) and (4.14) give
integral estimates involving the J -functionals:∫ ∞

0
�
[
t−1/pJ

(
t1/p−1/q;Dd

(
a
(
t1/p−1/q

));A)]dt ≤ C�,p,qτ
[
�
(|x|)],∫ ∞

0
�
[
t−1/pJ

(
t1/p−1/q,UDc

(
b
(
t1/p−1/q

));B)]dt ≤ C�,p,qτ
[
�
(|x|)], (4.15)∫ ∞

0
�
[
t−1/pJ

(
t1/p−1/q,UDc

(
c
(
t1/p−1/q

)∗);B)]dt ≤ C�,p,qτ
[
�
(|x|)].

Step 4. Switching back to K-functionals. In this step, we rewrite (4.15) using K-functionals. Indeed, from Propo-
sition 3.10, we may state that:∫ ∞

0
�
[
t−1/pK

(
t1/p−1/q,Dd(a);A)]dt ≤ C�,p,qτ

[
�
(|x|)],∫ ∞

0
�
[
t−1/pK

(
t1/p−1/q,UDc(b);B)]dt ≤ C�,p,qτ

[
�
(|x|)], (4.16)∫ ∞

0
�
[
t−1/pK

(
t1/p−1/q,UDc

(
c∗);B)]dt ≤ C�,p,qτ

[
�
(|x|)].
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The final part of the argument is to convert the inequalities in (4.16) to the (L1,L∞) type interpolation couples.
This is necessary since our initial connections with �-moments are with the K-functionals relative to the couple
(L1,L∞). We use Proposition 3.5 for this task. We recall that if N is an arbitrary semifinite von Neumann algebra
equipped with a normal semifinite trace and θ0 = 1 − p−1 and θ1 = 1 − q−1 then Lp(N ) and Lq(N ) belong to
the class CK(θ0, (L1(N ),N )) and CK(θ0, (L1(N ),N )), respectively. Thus, if we set N1 := M ⊗ �∞ and N2 :=
M⊗ B(�2(N

2)), then we may deduce from (4.16) and Proposition 3.5 that:∫ ∞

0
�
[
t−1K

(
t,Dd(a);L1(N1),N1

)]
dt ≤ C�,p,qτ

[
�
(|x|)],∫ ∞

0
�
[
t−1K

(
t,UDc(b);L1(N2),N2

)]
dt ≤ C�,p,qτ

[
�
(|x|)], (4.17)∫ ∞

0
�
[
t−1K

(
t,UDc

(
c∗);L1(N2),N2

)]
dt ≤ C�,p,qτ

[
�
(|x|)].

Step 5. Converting (4.17) into �-moment inequalities. For this, we consider first the diagonal part. We observe that
if τ ⊗ γ denotes the natural trace of N1 and a =∑

n dan, then∑
n≥1

τ
(
�
(|dan|

)) = τ ⊗ γ
[
�
(∣∣Dd(a)

∣∣)]
=
∫ ∞

0
�
[
μt

(
Dd(a)

)]
dt

≤
∫ ∞

0
�
[
t−1K

(
t,Dd(a);L1(N1),N1

)]
dt

≤ C�,p,qτ
[
�
(|x|)],

where the singular-value in the 2nd line is taken with respect to (N1, τ ⊗γ ) and the last inequality comes from (4.17).
This establishes the diagonal part.

For the column version, we have the estimates:

τ
[
�
(
sc(b)

)] = τ ⊗ Tr
[
�
(∣∣UDc(b)

]∣∣)]
=
∫ ∞

0
�
[
μt

(
UDc(b)

)]
dt

≤
∫ ∞

0
�
[
t−1K

(
t,UDc(b);L1(N2),N2

)]
dt

≤ C�,p,qτ
[
�
(|x|)],

where the first equality comes from (2.8), the singular values are taken relative to (N2, τ ⊗ Tr), and the last inequality
is from (4.17). Similarly, we may also deduce that

τ
[
�
(
sr (c)

)]= τ
[
�
(
sc
(
c∗))]≤ C�,p,qτ

[
�
(|x|)].

By combining the last three estimates, we have

τ
[
�
(
sc(b)

)]+ τ
[
�
(
sr (c)

)]+
∑
n≥1

τ
[
�
(|dan|

)]≤ C�,p,qτ
[
�
(|x|)].

To conclude the proof, we note from (4.8), (4.10), and (4.13), that the identity x = a + b + c is clear from the
construction. This completes the proof for the case x ∈ L1(M) ∩M.

• Assume now that x ∈ L�(M). Since L�(M) is a reflexive space, L1(M) ∩ M is a dense subset of L�(M).
Fix a sequence (x(m))m≥1 in L1(M) ∩ M such that limm→∞ ‖x(m) − x‖L�(M) = 0. By Lemma 2.1, we also have
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limm→∞ τ [�(|x(m)|)] = τ [�(|x|)]. From the previous case, for every m ≥ 1, there exists a decomposition x(m) =
a(m) + b(m) + c(m) with a(m) ∈ hd

�(M), b(m) ∈ hc
�(M), and c(m) ∈ hr

�(M) that satisfy

τ
[
�
(
sc
(
b(m)

))]+ τ
[
�
(
sr
(
c(m)

))]+
∑
n≥1

τ
[
�
(∣∣da(m)

n

∣∣)]≤ C�,p,qτ
[
�
(∣∣x(m)

∣∣)].
From reflexivity, we may assume (by taking subsequence if necessary) that {(a(m), b(m), c(m))}m≥1 converges
to (a, b, c) for the weak topology in hd

�(M) ⊕∞ hc
�(M) ⊕∞ hr

�(M). Clearly, x = a + b + c. By Lemma 2.1,
we obtain the following inequalities:

∑
n≥1 τ [�(|dan|)] ≤ lim infm→∞

∑
n≥1 τ [�(|da

(m)
n |)], τ [�(sc(b))] ≤

lim infm→∞ τ [�(sc(b
(m)))], and τ [�(sr(c))] ≤ lim infm→∞ τ [�(sr(c

(m)))]. These yield the following estimates:

S(a, b, c;�) := τ
[
�
(
sc(b)

)]+ τ
[
�
(
sr (c)

)]+
∑
n≥1

τ
[
�
(|dan|

)]
≤ lim sup

m→∞

{
τ
[
�
(
sc
(
b(m)

))]+ τ
[
�
(
sr
(
c(m)

))]+
∑
n≥1

τ
[
�
(∣∣da(m)

n

∣∣)]}
≤ C�,p,q lim

m→∞ τ
[
�
(∣∣x(m)

∣∣)]
= C�,p,qτ

[
�
(|x|)].

The proof is complete. �

Remark 4.3. For the case where M is a finite von Neumann algebra, it is not necessary in our argument above to
separate the particular case where x ∈ L1(M) ∩ M from the general case. Indeed, when M is finite, L�(M) ⊂
Lr(M) whenever p < r < p�, thus the argument used in Step 2 applies directly to any element of L�(M).

Our next result deals with the case where the indices of the Orlicz function � are larger than 2. It may be viewed
as a common generalization of a �-moment result from classical martingale theory [36, Theorem 1] and the noncom-
mutative Burkholder inequalities from [23, Theorem 5.1].

Theorem 4.4. Let � be an Orlicz function satisfying 2 < p� ≤ q� < ∞. There exist positive constants δ� and η�

depending only on � such that for every martingale x ∈ L�(M), the following inequalities hold:

δ−1
� M�(x) ≤ τ

[
�
(|x|)]≤ η�M�(x), (B�)

where M�(x) = max{∑n≥1 τ [�(|dxn|)], τ [�(sc(x))], τ [�(sr (x))]}.

Proof. We begin with the first inequality. This is a simple application of Proposition 3.3 and the noncommutative
Burkholder inequalities. We leave the details to the reader.

The proof for the second inequality is more involved. Our approach is a duality type argument based on the first
inequality in Theorem 4.1 and Proposition 2.3. Let �∗ denote the Orlicz function complementary to �. First, we
note that since 2 < p� ≤ q� < ∞, it follows that 1 < p�∗ ≤ q�∗ < 2. In particular, Theorem 4.1 applies to bounded
martingales in L�∗(M).

Next, we observe that limt→0+ M(t,�∗) = 0. This fact can be easily seen from the definitions of the indices. We
may choose t� small enough so that

M
(
t�,�∗)≤ (2δ�∗)−1,

where δ�∗ is the constant from Theorem 4.1 applied to �∗. This is equivalent to

�∗(t�s) ≤ (2δ�∗)−1�∗(s), s > 0.
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Thus, by functional calculus, for any operator 0 ≤ z ∈ L�∗(M), we have

�∗(t�z) ≤ (2δ�∗)−1�∗(z). (4.18)

We are now ready to provide the proof. Assume first that x ∈ L1(M) ∩ M. By Proposition 2.3, we may choose
0 ≤ y ∈ L�∗(M) such that y commutes with |x| and

�
(|x|)+ �∗(y) = y|x|. (4.19)

If x = u|x| is the polar decomposition of x, we set y ′ := yu∗ ∈ L�∗(M). Applying Theorem 4.1 to y′, there exists a
decomposition y′ = yc + yr + yd with yc ∈ hc

�∗(M), yr ∈ hr
�∗(M), and yd ∈ hd

�∗(M) satisfying:

τ
[
�∗(sc(yc

))]+ τ
[
�∗(sr(yr

))]+
∑
n≥1

τ
[
�∗(∣∣dyd

n

∣∣)]≤ 2δ�∗τ
[
�∗(∣∣y′∣∣)]. (4.20)

Taking traces on (4.19) together with the decomposition of y′, we have

τ
[
�
(|x|)]+ τ

[
�∗(y)

] = τ
(
y|x|)

= τ
(
y ′x

)
= τ

(
xyd

)+ τ
(
xyc

)+ τ
(
xyr

)
:= I + II + III.

We estimate I , II, and III separately. First, by applying Lemma 2.2 and (4.18), we get the following estimates:

I =
∑
n≥1

τ
(
dxndyd

n

)
≤
∑
n≥1

τ
[
�
(
t−1
� |dxn|

)]+ τ
[
�∗(t�∣∣dyd

n

∣∣)]
≤
∑
n≥1

τ
[
�
(
t−1
� |dxn|

)]+ (2δ�∗)−1
∑
n≥1

τ
[
�∗(∣∣dyd

n

∣∣)].
To estimate II, we use the embedding of hc

�(M) into L�(M⊗ B(�2(N
2))). First, we note that since the conditional

expectations Ek’s are trace preserving, we have

II =
∑
n≥1

τ
(
En−1

(
dxn dyc

n

))= τ

(∑
n≥1

En−1
(
dxndyc

n

))
.

We should note here that since x ∈ L1(M) ∩ M, for every n ≥ 1, dxn dyc
n ∈ L1(M) + M and therefore∑

n≥1 En−1(dxn dyc
n) is a well-defined operator that belongs to L1(M). We claim that

II = τ ⊗ Tr
[
UDc

(
x∗)∗UDc

(
yc
)]

.

To verify this claim, we begin with the fact taken from Lemma 3.2 that hc
�∗(M) ⊆ hc

p(M) + hc
q(M) where 1 < p <

p�∗ ≤ q�∗ < q < 2. Write yc = αc + βc where αc ∈ hc
p(M) and βc ∈ hc

q(M). Then from (2.5), we have(∑
n≥1

En−1
(
dxn dαc

n

))⊗ e1,1 ⊗ e1,1 = UDc

(
x∗)∗UDc

(
αc
)

and (∑
n≥1

En−1
(
dxn dβc

n

))⊗ e1,1 ⊗ e1,1 = UDc

(
x∗)∗UDc

(
βc
)
.
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Taking the sum of the above two equalities clearly shows the claim.
As in the case of I , by applying Lemma 2.2 together with (4.18), we obtain the estimates

II = τ ⊗ Tr
[
UDc

(
x∗)∗UDc

(
yc
)]

≤ τ ⊗ Tr
[
�
(
t−1
�

∣∣UDc

(
x∗)∣∣)]+ τ ⊗ Tr

[
�∗(t�∣∣UDc

(
yc
)∣∣)]

= τ
[
�
(
t−1
� sr(x)

)]+ τ
[
�∗(t�sc

(
yc
))]

≤ τ
[
�
(
t−1
� sr(x)

)]+ (2δ�∗)−1τ
[
�∗(sc(yc

))]
.

By repeating the same argument with yr , we may also state that

III ≤ τ
[
�
(
t−1
� sc(x)

)]+ (2δ�∗)−1τ
[
�∗(sr(yr

))]
.

Taking the summation of the previous estimates and applying (4.20), we obtain that

τ
[
�
(|x|)]+ τ

[
�∗(y)

] ≤
∑
n≥1

τ
[
�
(
t−1
� |dxn|

)]+ τ
[
�
(
t−1
� sc(x)

)]
+ τ

[
�
(
t−1
� sr(x)

)]+ τ
[
�∗(∣∣y′∣∣)].

But since τ [�∗(|y′|)] = ∫∞
0 �∗(μt (yu∗)) dt ≤ ∫∞

0 �∗(μt (y)) dt = τ [�∗(y)], we deduce that

τ
[
�
(|x|)] ≤

∑
n≥1

τ
[
�
(
t−1
� |dxn|

)]+ τ
[
�
(
t−1
� sc(x)

)]+ τ
[
�
(
t−1
� sr(x)

)]
≤ 3 max

{∑
n≥1

τ
[
�
(
t−1
� |dxn|

)]
, τ
[
�
(
t−1
� sc(x)

)]
, τ
[
�
(
t−1
� sr(x)

)]}
.

The existence of the constant η� and the second inequality in (B�) now follow from the �2-condition. Thus, we have
shown the second inequality in (B�) for x ∈ L1(M) ∩ M. The proof for the general case follows the same line of
reasoning as in the last part of the proof of Theorem 4.1 so we omit the details. �

We should point out that the approach used in [23] for the pth moments was to establish the case 2 < p < ∞ first
and then deduce the case 1 < p < 2 by duality. At the time of this writing, we do not know of any direct proof of
Theorem 4.4. This is rather surprising since the case p > 2 is in general more accessible than the case 1 < p < 2.
It seems that the existing argument for pth moment (p > 2) from [23] can be adapted to �-moment only for the
case where the Orlicz function � satisfies a Hölder type inequality �(ts) ≤ C�(t2)1/2�(s2)1/2 for every t, s > 0
and C is an absolute constant. The above condition is clearly satisfied by power functions and functions of the type
�(t) = tαeβt with α > 1 and β > 0 among others. It is however a stronger condition than being just submultiplicative.
We also do not know whether Theorem 4.1 can be derived from Theorem 4.4 via Proposition 2.3.

5. �-Moments and noncommutative Rosenthal inequalities

In this section, we consider notions of noncommutative independences introduced in [25] and discuss corresponding
�-moment results for sums of independent sequences.

Throughout, we assume that N and An’s are von Neumann subalgebras of (M, τ ) with N ⊂An for all n ≥ 1. We
further assume that there exist trace preserving normal conditional expectations EN : M → N and EAn

: M → An

for all n ≥ 1. Following [25], we consider the following notions of independences:

Definition 5.1.

(i) We say that (An)n≥1 are independent over N (or with respect to EN ) if for every n ≥ 1, EN (xy) = EN (x)EN (y)

holds for all x ∈ An and y in the von Neumann algebra generated by (Aj )j �=n.
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(ii) We say that the sequence (An)n≥1 is order independent over N (or with respect to EN ) if for every n ≥ 2,

EV N(A1,...,An−1)(x) = EN (x), x ∈An,

where EV N(A1,...,An−1) denotes the normal conditional expectation onto the von Neumann subalgebra degener-
ated by A1, . . . ,An−1.

(iii) A sequence (an)n≥1 in L1(M) + M is called (order) independent with respect to EN if there is an (order)
independent sequence (An)n≥1 of von Neumann subalgebras of M such that an ∈ L1(An) +An for all n ≥ 1.

It was noted in [25] (Lemma 1.2) that independence implies order independence. We refer to [25] for extensive stud-
ies and examples on (order) independent sequences. Below we will simply write E for EN and En for EV N(A1,...,An).

It is important to observe that if (An)n≥1 is an order independent sequence of von Neumann subalgebras and
an ∈ Lp(An) with E(an) = 0 (n ≥ 1) then (an)n≥1 is a martingale difference sequence with respect to the increasing
filtration (V N(A1, . . . ,An))n≥1. In this case, one clearly see from the definition that when p ≥ 2, the row and column
conditioned square functions take the following simpler forms:

sc

(∑
n≥1

an

)
=
(∑

n≥1

E
(
a∗
nan

))1/2

and sr

(∑
n≥1

an

)
=
(∑

n≥1

E
(
ana

∗
n

))1/2

.

For the remaining of this section, any reference to martingales is understood to be with respect to the filtration de-
scribed above.

From the preceding discussion, for the special case of sums of order independent sequences, Theorem 4.4 reads as
follows:

Corollary 5.2. Let � be an Orlicz function satisfying 2 < p� ≤ q� < ∞. There exist positive constants δ� and η�

depending only on � such that for every order independent sequence (an)n≥1 ⊂ L�(M) with E(an) = 0, the following
inequalities hold:

δ−1
� M�(a) ≤ τ

[
�

(∣∣∣∣∑
n≥1

an

∣∣∣∣)]≤ η�M�(a),

where M�(a) = max{∑n≥1 τ [�(|an|)], τ [�((
∑

n≥1 E(a∗
nan))

1/2)], τ [�((
∑

n≥1 E(ana
∗
n))1/2)]}.

However, when 1 < p� ≤ q� < 2, the case of sums of independent sequences can not be directly read from Theo-
rem 4.1 since the decomposition we have in the statement of Theorem 4.1 is not necessarily made up of independent
sequences. Handling this case requires a way of modifying martingale difference sequences into independent se-
quences. Below, we adapt the approach of [25] for this reduction. In order to state our results, we need to formally
introduce some new notation.

For any finite sequence (an)1≤n≤N ∈F , we define

∥∥(an)1≤n≤N

∥∥
L�(M,E,�c

2)
:=

∥∥∥∥∥
(

N∑
n=1

E
(
a∗
k ak

))1/2∥∥∥∥∥
L�(M)

.

If we set a =∑N
n=1 en,1 ⊗ an ∈ L1(B(�N

2 ) ⊗M) ∩ (B(�N
2 ) ⊗M) and Ẽ = Id ⊗ E , then we have∥∥(an)1≤n≤N

∥∥
L�(M,E,�c

2)
= ‖a‖L�(B(�N

2 )⊗M,Ẽ),

where L�(B(�N
2 )⊗M, Ẽ) is the conditioned space introduced in Section 2. Therefore, ‖ · ‖L�(M,E,�c

2)
defines a norm

on the linear space F . We define L�(M,E, �c
2) to be the completion of the space (F,‖ · ‖L�(M,E,�c

2)
). The space

L�(M,E, �r
2) is defined in a similar way.

Now, we consider the subspace F (Ind) of F consisting of all sequences (an)n≥1 in F such that an ∈ L1(An) ∩An

and E(an) = 0 and let Rc
�(M) be the closure of F (Ind) in L�(M,E, �c

2). Similarly, we may define the corresponding
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subspaces of L�(M,E, �r
2) and L�(M ⊗ �∞) which will be denoted by Rr

�(M) and Rd
�(M), respectively. When

�(t) = tp , these are exactly the spaces Rc
p(M), Rr

p(M), and Rd
p(M) introduced in [23,25]. If we denote by J :

F (Ind) → FM the map defined by (an)n≥1 �→ ∑
n≥1 an, then for s ∈ {d, c, r}, it extends to an isometric embedding

Js
� : Rs

�(M) → hs
�(M). Next, we consider the linear map Θ : FM →F (Ind) defined by setting for any given x ∈FM ,

Θ(x)n :=
{

0 if n = 1,
EAn

(dxn) if n ≥ 2. (5.1)

It is clear that for every n ≥ 1, E(Θ(x)n) = 0 and therefore Θ(x) ∈ F (Ind). The following result is our main tool in
the proof of Theorem 5.6 below.

Proposition 5.3. Let � be an Orlicz function with 1 < p� ≤ q� < ∞. Then for s ∈ {d, c, r}, Θ : hs
�(M) → Rs

�(M)

is bounded. Moreover, there exists a constant C� such that for every x ∈ hd
�(M) (respectively, y ∈ hc

�(M)),∑
n≥2

τ
[
�
(∣∣Θ(x)n

∣∣)]≤ C�

∑
n≥1

τ
[
�
(|dxn|

)]
,

respectively,

τ

[
�

(
sc

(∑
n≥2

Θ(y)n

))]
≤ C�τ

[
�
(
sc(y)

)]
.

We begin with the verification of the following particular case:

Lemma 5.4. Let 1 < p < ∞. Then for s ∈ {d, c, r}, Θ : hs
p(M) →Rs

p(M) is a contraction.

Proof. The diagonal part is trivial from the boundedness of conditional expectations in Lp(M) so it suffices to verify
the statement for the column version. We use the fact that Lp(M,E, �c

2)
∗ = Lp′(M,E, �c

2) where p′ denotes the index
conjugate to p (see [25, Lemma 0.1]). Let x ∈ hc

p(M) and fix a sequence (vn) from the unit ball of Lp′(M,E, �c
2)

(with v1 = 0) so that∥∥Θ(x)
∥∥
Rc

p
= ∥∥Θ(x)

∥∥
Lp(M,E,�c

2)
=
∑
n≥2

τ
(
Θ(x)nv

∗
n

)=
∑
n≥2

τ
(
EAn

(dxn)v
∗
n

)
.

By trace invariance and duality between hc
p(M) and hc

p′(M), we have∥∥Θ(x)
∥∥
Rc

p
=
∑
n≥2

τ
(
dxn

[
EAn

(
v∗
n

)− E
(
v∗
n

)])
≤
∥∥∥∥∑

n≥2

dxn

∥∥∥∥
hc
p

.

∥∥∥∥∑
n≥2

EAn
(vn) − E(vn)

∥∥∥∥
hc
p′

.

One can easily see by independence that for any n ≥ 2, the following holds:

En−1
∣∣EAn

(vn) − E(vn)
∣∣2 = E

[
EAn

(vn)
∗EAn

(vn)
]− E(vn)

∗E(vn) ≤ E
(
v∗
nvn

)
.

This implies in particular that∥∥∥∥∑
n≥2

EAn
(vn) − E(vn)

∥∥∥∥
hc
p′

≤ ∥∥(vn)
∥∥

Lp′ (M,E,�c
2)

≤ 1.

We deduce that ‖Θ(x)‖Rc
p

≤ ‖∑n≥2 dxn‖hc
p

≤ ‖x‖hc
p

proving that Θ is a contraction. �
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Remark 5.5. In the proof of Lemma 5.4, it is crucial that v1 = 0. Otherwise, we only get the equality En−1|EAn
(vn)−

E(vn)|2 = |v1 −E(v1)|2 when n = 1. As a result, the estimate ‖∑n≥1 EAn
(vn)−E(vn)‖hc

p′ ≤ ‖(vn)‖Lp′ (M,E,�c
2)

would

not be achieved. This is the primary reason for choosing Θ(x)1 = 0 in the definition of Θ .

The proof of Proposition 5.3 is now a simple interpolation of Lemma 5.4 together with Proposition 3.3. We leave
the details to the reader. �

The next theorem is our main result for this section. It is a �-moment generalization of the noncommutative
Rosenthal inequalities from [25, Theorem 3.2].

Theorem 5.6. Let � be an Orlicz function satisfying 1 < p� ≤ q� < 2. There exist positive constants δ̃� and η̃�

depending only on � such that for every order independent sequence (xn)n≥1 ⊂ L�(M) with E(xn) = 0, the following
inequalities hold:

δ̃−1
� S̃�(x) ≤ τ

[
�

(∣∣∣∣∑
n≥1

xn

∣∣∣∣)]≤ η̃�S̃�(x),

where S̃�(x) = inf{τ [�(sc(
∑

n≥1 xc
n))] + τ [�((sr (

∑
n≥1 xr

n))] +∑
n≥1 τ [�(|xd

n |)]} with the infimum being taken

over all (xc
n) ∈Rc

�(M), (xr
n) ∈ Rr

�(M), and (xd
n ) ∈ Rd

�(M) such that for every n ≥ 1, xn = xc
n + xr

n + xd
n .

Proof. Since for s ∈ {d, c, r}, the map Js
� : Rs

�(M) → hs
�(M) is an isometric embedding, it is clear that S�(x) ≤

S̃�(x). Thus, the second inequality follows immediately from Theorem 4.1.
The proof of the first inequality is a combination of Theorem 4.1 and Proposition 5.3. First, by Theorem 4.1,

there exists a constant δ� such that if (xn) is as in the statement of the theorem then there exists a decomposition
xn = dαn + dβn + dγn where α ∈ hd

�(M), β ∈ hc
�(M), γ ∈ hr

�(M), and

τ
[
�
(
sc(β)

)]+ τ
[
�
(
sr (γ )

)]+
∑
n≥1

τ
[
�
(|dαn|

)]≤ 2δ�τ

[
�

(∣∣∣∣∑
n≥1

xn

∣∣∣∣)].
Let xd

1 = x1 and xd
n = Θ(α)n for n ≥ 2. Similarly, let xc = Θ(β) and xr = Θ(γ ). Then for every n ≥ 1, xn =

xd
n +xr

n +xr
n. From Proposition 5.3, xd ∈ Rd

�(M), xc ∈ Rc
�(M), and xr ∈Rr

�(M). Moreover, there exists a constant
C� such that:

τ

[
�

(
sc

(∑
n≥2

xc
n

))]
+ τ

[
�

(
sr

(∑
n≥2

xr
n

))]
+
∑
n≥1

τ
[
�
(∣∣xd

n

∣∣)]
≤ τ

[
�
(|x1|

)]+ C�

{
τ
[
�
(
sc(β)

)]+ τ
[
�
(
sr (γ )

)]+
∑
n≥1

τ
[
�
(|dαn|

)]}

≤ τ
[
�
(|x1|

)]+ 2C�δ�τ

[
�

(∣∣∣∣∑
n≥1

xn

∣∣∣∣)].
Since EA1 is bounded in L�(M), we have τ [�(|x1|)] ≤ D�τ [�(|∑n≥1 xn|)] for some constant D�. We conclude
that

τ

[
�

(
sc

(∑
n≥2

xc
n

))]
+ τ

[
�

(
sr

(∑
n≥2

xr
n

))]
+
∑
n≥1

τ
[
�
(∣∣xd

n

∣∣)]≤ (D� + 2C�δ�)τ

[
�

(∣∣∣∣∑
n≥1

xn

∣∣∣∣)].
This completes the proof. �

We take the opportunity to include noncommutative Rosenthal inequalities for the case of noncommutative sym-
metric spaces. Following [45], we let E denote a symmetric space on (0,∞) that satisfies the Fatou property. We
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denote by pE and qE the lower and upper Boyd indices respectively. We may repeat verbatim the construction above
and define the spaces Rc

E(M), Rr
E(M), and Rd

E(M) by simply replacing L� with E. Obvious modification of the
proof of Proposition 5.3 also gives that if E has nontrivial Boyd indices then Θ extends to a bounded linear map
from hs

E(M) into Rs
E(M) for s ∈ {d, c, r} whenever 1 < pE ≤ qE < ∞. Combining this result with the extension

of the Burkholder inequalities to noncommutative symmetric spaces from [45, Theorem 3.1], we may also state the
following generalization of [25, Theorem 3.2]:

Theorem 5.7. Let E be a symmetric function space defined on (0,∞) with the Fatou property and assume that
1 < pE ≤ qE < 2. Let xn ∈ E(An) such that E(xn) = 0. Then∥∥∥∥∑

n≥1

xn

∥∥∥∥
E(M)

�E inf
{∥∥(xd

n

)∥∥
Rd

E
+ ∥∥(xc

n

)∥∥
Rc

E
+ ∥∥(xr

n

)∥∥
Rr

E

}
,

where the infimum is taken over all decompositions xn = xd
n + xc

n + xr
n with (xd

n ) ∈ Rd
E(M), (xc

n) ∈ Rc
E(M), and

(xr
n) ∈ Rr

E(M).

A version of Theorem 5.7 for the case where the Boyd indices satisfy the condition 2 < pE ≤ qE < ∞ was first
obtained by Dirksen et al. (see [12, Theorem 6.3]). Similar line of result for martingale BMO-norms of sums of
noncommuting independent sequences were also considered in [44, Theorem 5.3]. Other Rosenthal-type inequalities
for sums of freely independent sequences can also be found in [18,21,47].

As illustrations, we observe that all examples treated in [25, Section 3] can be easily adapted to Corollary 5.2,
Theorem 5.6, and Theorem 5.7. As a sample result, we state the �-moment generalization of [25, Theorem 3.3]:

Theorem 5.8. Let � be an Orlicz function and (xij ) be a finite matrix with entries in L�(M). Assume that the xij ’s
are independent with respect to E and E(xij ) = 0. Then

• for 1 < p� ≤ q� < 2,

τ ⊗ tr

[
�

(∣∣∣∣∑
ij

xij ⊗ eij

∣∣∣∣)]

�� inf

{∑
ij

τ
[
�
(∣∣xd

ij

∣∣)]+
∑
j

τ

[
�

([∑
i

E
(∣∣xc

ij

∣∣2)]1/2)]
+
∑

i

τ

[
�

([∑
j

E
(∣∣xr

ij
∗∣∣2)]1/2)]}

,

where the infimum is taken over all decompositions xij = xd
ij + xc

ij + xr
ij with mean zero elements xd

ij , xc
ij , and xr

ij ,
which, for each couple (i, j), belong to the Orlicz space associated with the von Neumann algebra generated by
xij .

• for 2 < p� ≤ q� < ∞,

τ ⊗ tr

[
�

(∣∣∣∣∑
ij

xij ⊗ eij

∣∣∣∣)]

�� max

{∑
ij

τ
[
�
(|xij |

)]
,
∑
j

τ

[
�

([∑
i

E
(|xij |2

)]1/2)]
,
∑

i

τ

[
�

([∑
j

E
(∣∣x∗

ij

∣∣2)]1/2)]}
.

As in the case of pth moments, if the von algebra M is taken to be the L∞-space defined on a probability space,
then Theorem 5.8 becomes a statement about �-moment inequalities of random matrices.

We conclude this section by noting that by applying the reduction technique used above to the simultaneous de-
composition stated in Theorem 2.5, we may also achieve the following version for independent sequences:

Proposition 5.9. There exists a family of constants {κ ′
p : 1 < p < 2} ⊂ R+ satisfying the following: if (xn)n≥1 is an

order independent sequence in L1(M) ∩ L2(M) with E(xn) = 0 for all n ≥ 1, then there exist three independent
sequences (an)n≥1 ∈⋂

1<p<2 Rd
p(M), (bn)n≥1 ∈⋂

1<p<2 Rc
p(M), and (cn)n≥1 ∈⋂

1<p<2 Rr
p(M) such that:
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(i) xn = an + bn + cn, n ≥ 1,
(ii) for every 1 < p < 2, the following inequality holds:

∥∥(an)
∥∥
Rd

p
+ ∥∥(bn)

∥∥
Rc

p
+ ∥∥(cn)

∥∥
Rr

p
≤ κ ′

p

∥∥∥∥∑
n≥1

xn

∥∥∥∥
p

.

6. Concluding remarks and open problems

We recall two results about �-moment analogue of the Burkholder–Gundy inequalities.

Theorem 6.1 ([13, Corollary 3.3]). If 1 < p� ≤ q� < ∞, then there exists a constant C�, depending only on �,
such that for any x ∈ L�(M),

τ
[
�
(|x|)]≤ C� max

{
τ

[
�

((∑
n≥1

|dxk|2
)1/2)]

, τ

[
�

((∑
n≥1

∣∣dx∗
k

∣∣2)1/2)]}
.

Theorem 6.2 ([19, Theorem 7.2]). If � is p-convex for some 1 < p < 2 and 2-concave, then for every x ∈ L�(M),

τ
[
�
(|x|)]�� inf

{
τ

[
�

((∑
n≥1

|dyk|2
)1/2)]

+ τ

[
�

((∑
n≥1

∣∣dz∗
k

∣∣2)1/2)]}
,

where the infimum is taken over all decompositions xn = yn + zn with (yn) and (zn) are martingales.

Two natural questions that arise from these results are whether their conditioned versions hold. More precisely, we
may ask the following problems:

Problem 6.3. Does the second inequality in Theorem 4.4 hold under the weaker condition 1 < p� ≤ q� < ∞?

Problem 6.4. Does Theorem 4.1 remain valid under the weaker assumption that � is p-convex for some 1 < p < 2
and 2-concave?

As far as we know these questions are still open even for the particular case of independent sequences. First, we
should note that the restriction q� < 2 in Theorem 4.1 is due to our use of the simultaneous decompositions stated in
Theorem 2.5. Also, at the time of this writing, it is unclear if Proposition 3.10 remain true if we merely assume that
� is q-concave in place of q� < q .

In light of recent developments on theory of noncommutative maximal functions initiated in [20,39], it would be
desirable to have the exact noncommutative analogue of (1.2) by replacing the diagonal term

∑
n≥1 τ [�(|dxn|)] in

the statement of Theorem 4.4 by an appropriate “�-moment” maximal function term. Such noncommutative maximal
functions associated with Orlicz functions were already considered in [2, Definition 3.2] as follows:

τ
[
�
(

sup
n

+dxn

)]
:= inf

{
1

2

(
τ
[
�
(|a|2)]+ τ

[
�
(|b|2)]) sup

n
‖yn‖∞

}
,

where the infimum is taken over all decompositions dxn = aynb for a, b ∈ L0(M) and (yn) ⊂ M with |a|2, |b|2 ∈
L�(M) and supn ‖yn‖∞ ≤ 1. The following problem is still open.

Problem 6.5. Assume that 2 < p� ≤ q� < ∞ and x ∈ L�(M). Do we have

τ
[
�
(|x|)]�� max

{
τ
[
�
(

sup
n

+dxn

)]
, τ
[
�
(
sc(x)

)]
, τ
[
�
(
sr (x)

)]}
?
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As shown in [25], the answer to the above problem is positive for the case of pth moments when p ≥ 2. By
duality, the corresponding result involving some versions of �1-valued noncommutative Lp-spaces is also known for
the case 1 < p < 2. To this end, we recall that for 1 ≤ p < 2 and 1/p = 1/2 + 1/q , a sequence x = (xn)n≥1 belongs
to the space Lp(M;�c

1) if there exist bk,n ∈ L2(M) and ak,n ∈ Lq(M) such that xn = ∑
k b∗

k,nak,n for all n ≥ 1,∑
k,n |bn,k|2 ∈ L1(M), and

∑
k,n |ak,n|2 ∈ Lq/2(M). The space Lp(M;�c

1) is equipped with the norm

‖x‖Lp(M;�c
1)

= inf

{( ∑
k,n≥1

‖bk,n‖2
2

)1/2∥∥∥∥( ∑
k,n≥1

|ak,n|2
)1/2∥∥∥∥

q

}
,

where the infimum is taken over all factorizations of the xn’s above. Let h1c
p (M) be the subspace of Lp(M;�c

1)

consisting of martingale difference sequences. We refer to [22] for more in depth treatment of h1c
p (M). One of the

basic properties of h1c
p (M) is that it embeds into the diagonal space hd

p(M). Thus, the following result of Junge and
Perrin is an improvement of the noncommutative Burkholder inequalities:

Theorem 6.6 ([22, Theorem 5.7]). For 1 ≤ p < 2,

Hc
p(M) = h1c

p (M) + hc
p(M).

The above theorem is a column version that improved [25, Remark 4.8]. As dual to Problem 6.5, it would be
interesting to prove a �-moment extension of the above result. We believe that such �-moment inequalities should
lead to a positive solution of Problem 6.5. A first step towards this direction would be to prove if the decomposition
in Theorem 6.6 can be achieved simultaneously in the style of Theorem 2.5.

A new development that deserves attention is the noncommutative martingales with continuous filtrations. The
theory of Hardy spaces Hp(M) and hp(M) along with other related spaces that are associated with continuous
filtrations have been thoroughly studied by Junge and Perrin in [22]. All known results from the discrete case prior to
[22] were extended there to the continuous case and in some cases were improved as witnessed by Theorem 6.6. The
natural evolution of this theory would be to push the ideas of Junge and Perrin and develop versions of Hardy spaces
associated with noncommutative symmetric spaces and �-moments to the general case of continuous filtrations. This
is beyond the scope of this paper.

We conclude this paper by recalling that the original proofs of noncommutative Burkholder inequalities by Junge
and Xu were given for martingales in the general Lp-spaces associated with type III von Neumann algebras ([23]). As
is well-known no general theory of noncommutative symmetric spaces is available for type III von Neumann algebras.
However, in [30], a theory of Orlicz spaces has been developed for type III von Neumann algebras in the spirit of the
construction of the Haagerup Lp-spaces. Another interesting future direction would be to develop a �-moment theory
for the type III-case using [30].
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