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Abstract. The scaling limit of large simple outerplanar maps was established by Caraceni using a bijection due to Bonichon,
Gavoille and Hanusse. The present paper introduces a new bijection between outerplanar maps and trees decorated with ordered
sequences of edge-rooted dissections of polygons. We apply this decomposition in order to provide a new, short proof of the
scaling limit that also applies to the general setting of first-passage percolation. We obtain sharp tail-bounds for the diameter and
recover the asymptotic enumeration formula for outerplanar maps. Our methods also enable us to treat subclasses such as bipartite
outerplanar maps.

Résumé. La limite d’échelle des cartes planaires extérieures simples a été établie par Caraceni via une bijection de Bonichon,
Gavoille et Hanusse. Dans ce papier, nous construisons une nouvelle bijection entre les cartes planaires extérieures, et les arbres
décorés par des suites ordonnées de dissections de polygones enracinées. Nous utilisons cette décomposition pour obtenir une
nouvelle preuve, plus courte, du résultat de Caraceni, qui s’étend en outre au cadre général de la percolation de premier passage.
Nous obtenons des bornes précises sur la queue de distribution du diamètre des cartes planaires extérieures, et retrouvons les
formules d’énumération asymptotiques de ces cartes. Nos méthodes nous permettent également de traiter le cas de sous-classes
comme les cartes planaires extérieures biparties.

MSC: Primary 60F17; 60C05; secondary 05C80
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1. Introduction and main results

The continuum random tree (CRT) was constructed by Aldous [3–5] and shown to be the scaling limit of several
models of random trees. Since then, the study of scaling limits of random discrete structures such as trees, graphs and
planar maps has developed into a very active field with contributions by a wide variety of researchers [8,12,19,21,23].

Much of this progress was made possible by the use of appropriate combinatorial bijections that relate these objects
to trees endowed with additional structures such as vertex colourings. The reason for this is that trees are generally
easier to analyse and such bijections allow for a transfer of results for random trees to the objects under consideration.

The present paper concerns itself with rooted simple outerplanar maps. These planar maps may be encoded as
bicolored trees of a certain class by using a bijection due to Bonichon, Gavoille and Hanusse [9]. Their scaling limit
was established by Caraceni [11] using this bijection and relating the geodesics in the trees and planar maps:
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Theorem 1.1 ([11, Thm. 1.1]). Let Mn be the random map drawn uniformly among all rooted maps with n vertices
that are simple and outerplanar. As n becomes large,

(
Mn,

9

7
√

2
n−1/2dMn

)
(d)−→ (Te, dTe)

in the Gromov–Hausdorff sense. Here Te denotes the continuum-random tree constructed from Brownian excursion.

In the following we introduce a new bijective decomposition that identifies (rooted) simple outerplanar maps as
a certain class of trees decorated with ordered sequences of dissections of edge-rooted polygons. This allows us
to provide a new proof of Theorem 1.1 that is short and extends the result in two directions. First, we may treat
in a unified way subclasses of outerplanar maps that are stable under taking non-separable components, for example
bipartite outerplanar maps. Second, we prove a scaling limit for the more general first-passage percolation metric dFPP
obtained by assigning an independent random positive weight to each edge and letting the distance of two vertices be
the minimum of sums of weights along any joining paths. Here we allow unbounded link weights, but do require finite
exponential moments. Of course, this includes the classical case of the graph-metric. We obtain sharp exponential
tail-bounds for the dFPP-diameter of random outerplanar maps and precise asymptotic expressions for its moments.
Studying first-passage percolation on random planar maps has received some attention in recent literature, see for
example [6,13,14]. We also apply our decomposition to recover the asymptotic enumeration formula for outerplanar
maps given in [9] and obtain a similar formula for the bipartite case.

Let us make this precise. Recall that a planar map is a 2-cell embedding of a connected planar multigraph on the
sphere, considered up to orientation-preserving homeomorphism. If one of the edges is distinguished and given an
orientation, then the map is termed rooted. This oriented edge is called the root edge of the map and its origin is
termed the root vertex. We call the face to the left of the root edge the root face and the face to the right the outer face.
The outer face is taken as the infinite face in plane representations. By convention, we also consider the map consisting
of a single vertex as rooted, although it has no edges to be rooted at. We say a map is simple, if it has no loops nor
multiple edges. Finally, recall that a map is termed non-separable, if it has at least one edge and removing any vertex
does not disconnect the map. A simple rooted maps is termed outerplanar if every vertex lies on the boundary of the
outer face.

In order to describe the subclasses under consideration, suppose that we are given a non-empty class Cs of non-
separable rooted outerplanar maps, i.e. a set of dissections of edge-rooted polygons. We may form the class Ms of
all (rooted and simple) outerplanar maps whose maximal non-separable submaps are required to belong to Cs . For
example, in the case of bipartite outerplanar maps, Cs is given by the unique simple map with 2 vertices and all
dissections of (edge-rooted) polygons in which each face has even degree.

Roughly speaking, we will restrict ourself to subclasses of outerplanar maps having the property, that all non-
separable submaps of a typical large map are small compared to the total number of vertices. In order to describe this
requirement formally, we introduce the following notation. Let ϕ(z) denote the power series such that the coefficient
[zk]ϕ(z) of zk in ϕ(z) is given by the number of maps in the class Cs with k vertices. Set φ(z) = 1/(1−ϕ(z)/z) and let
ρφ denote the corresponding radius of convergence. Finally, set ν = limt↗ρφ ψ(t) ∈ [0,∞] with ψ(t) = tφ′(t)/φ(t)

and let s denote the greatest common divisor of all integers i with [zi]φ(z) �= 0.

Theorem 1.2. Let Ms
n be the uniformly at random drawn map from the subclass Ms with n vertices. Consider the

first passage percolation metric dFPP on Ms
n in which each edge receives an independent copy of a random positive

weight having finite exponential moments. If ν > 1, then there exists a constant κ > 0 such that

(
Ms

n, κn−1/2dFPP
) (d)−→ (Te, dTe)

with respect to the Gromov–Hausdorff topology, as n ≡ 1 mod s becomes large. Morever, there are constants C,c > 0
such that for all x ≥ 0 and n we have the following tailbound for the diameter

P
(
DFPP

(
Ms

n

) ≥ x
) ≤ C

(
exp

(−cx2/n
) + exp(−cx)

)
.

This applies to unrestricted and bipartite outerplanar maps, as in these cases we have ν = ∞.
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Note that if the link-weights are bounded, then DFPP(Ms
n) is bounded by a constant multiple of n and hence the

tail-bound may be simplified to

P
(
DFPP

(
Ms

n

) ≥ x
) ≤ D exp

(−dx2/n
)
.

The constant ν has a natural interpretation in terms of simply generated trees. Unless ρφ = 0 (which is equivalent to
ν = 0), ν is the supremum of the means of all probability weight sequences equivalent to the sequence of coefficients
of the series φ(z). See Section 4 and in particular Remark 4.3 of Janson’s survey [20] for details.

We calculate the scaling constants for the graph-metric case (i.e. each edge receives weight 1) for unrestricted and
bipartite outerplanar maps, recovering Theorem 1.1 and obtaining:

Theorem 1.3. Let Mbip
n denote the uniformly at random drawn (simple and rooted) bipartite outerplanar map with n

vertices. Then, in the Gromov–Hausdorff sense,

(
Mbip

n ,36

√√
3 − 1

69 − 7
√

3
n−1/2d

Mbip
n

)
(d)−→ (Te, dTe).

The scaling limit of arbitrary (i.e. not necessarily outerplanar) bipartite planar maps was established by Abraham
[1] and is given by the Brownian map rather than the CRT. The convergence towards the CRT implies that, under the
assumptions of Theorem 1.2, we have for every fixed r

κrn−r/2DFPP
(
Ms

n

)r (d)−→ D(Te)
r .

The exponential tail-bounds for the diameter ensure that DFPP(Ms
n) is arbitrarily high uniformly integrable and con-

sequently

E
[
DFPP

(
Ms

n

)r] ∼ nr/2κ−r
E

[
D(Te)

r
]
.

The distribution of the diameter D(Te) and its moments are known, see Section 1.1 below.
The bijective encoding of subclasses of outerplanar maps established in the present paper may also be used to

asymptotically count these maps by their number of vertices.

Theorem 1.4. If ν ≥ 1, then the number |Ms
n| of planar maps in the class Ms with n vertices is asymptotically given

by

∣∣Ms
n

∣∣ ∼ s
(
φ(τ)/

(
2πφ′′(τ )

))1/2(
τ/φ(τ)

)−n
n−3/2

as n ≡ 1 mod s becomes large. Here τ denotes the unique solution of the equation ψ(τ) = 1 in the interval ]0, ρφ].
As an application, we recover the asymptotic enumeration formula for outerplanar maps found by Bonichon,

Gavoille and Hanusse [9, Thm. 3], and establish a similar formula for the bipartite case.

Corollary 1.5. The numbers |Mout
n | and |Mbip

n | of (bipartite) rooted simple outerplanar maps with n vertices satisfy
the asymptotics

∣∣Mout
n

∣∣ ∼ 8nn−3/2/(36
√

π) and
∣∣Mbip

n

∣∣ ∼ (2
√

3 − 3)
√

2

9
√

π(
√

3 − 1)

(3
√

3 − 5)−nn−3/2.

1.1. Remarks on the diameter of the CRT

The distribution and moments of the diameter of the continuum random tree Te are known and given by

P
(
D(Te) > x

) =
∞∑

k=1

(
k2 − 1

)(2

3
k4x4 − 4k2x2 + 2

)
exp

(−k2x2/2
)

(1)



Scaling limits of random outerplanar maps with independent link-weights 903

and

E
[
D(Te)

] = 4

3

√
π

2
, E

[
D(Te)

2] = 2

3

(
1 + π2

3

)
, E

[
D(Te)

3] = 2
√

2π, (2)

E
[
D(Te)

r
] = 2r/2

3
r(r − 1)(r − 3)
(r/2)

(
ζ(r − 2) − ζ(r)

)
if r ≥ 4. (3)

The distribution of the diameter D(Te) and its first moment E[D(Te)] = 4/3
√

π/2 have been known since the con-
struction of the CRT by Aldous [4, Ch. 3.4], who used the convergence of random labelled trees to the CRT together
with results by Szekeres [26] regarding the diameter of these trees. Expression (1) was also recovered directly in the
continuous setting by Wang [27].

The higher moments could be obtained directly from (1) by tedious calculations, or more easily by building on
known results regarding random trees: Broutin and Flajolet studied in [10] the random tree Tn that is drawn uniformly
at random among all unlabelled trees with n leaves in which each inner vertex is required to have degree 3. Using
analytic methods [10, Thm. 8], they computed asymptotics of the form

E
[
D(Tn)

r
] ∼ crλ

−rnr/2

with λ an analytically given constant the constants cr given by

c1 = 8

3

√
π, c2 = 16

3

(
1 + π2

3

)
, c3 = 64

√
π,

cr = 4r

3
r(r − 1)(r − 3)
(r/2)

(
ζ(r − 2) − ζ(r)

)
if r ≥ 4.

By recent results of the author [25, Thm. 1.1] there is a constant g such that the rescaled tree gn−1/2Tn converges in the
Gromov–Hausdorff sense towards the CRT and there are constants c,C > 0 with P(D(Tn) > x) ≤ C exp(−cx2/n).
Thus

E
[
D(Tn)

r
] ∼ E

[
D(Te)

r
]
g−rnr/2

and hence

E
[
D(Te)

r
] = cr(g/λ)r .

It remains to calculate the ratio g/λ, which is given by

g/λ = E
[
D(Te)

]
/c1 = 1/(2

√
2),

since E[D(Te)] = 4/3
√

π/2. This yields the expressions in (2) and (3).

2. A bijection between outerplanar maps and decorated trees

The bijective encoding of outerplanar maps we are going to describe is best treated using the language of analytic
combinatorics by Flajolet and Sedgewick [18], or combinatorial species by Joyal [22].

Let Mout denote the class of rooted simple outerplanar maps and Cout the class of rooted non-separable simple
outerplanar maps, both times with vertices as atoms. Moreover, let Mout∗ and Cout∗ denote the corresponding classes
in which the root vertex does not contribute to the total number of vertices (and is hence depicted as a ∗-vertex in
illustrations).

In a similar way as for graphs (see for example Chapter 3.1 in Diestel’s book [15]), we may call a submap of a
planar map M a block, if it is non-separable and inclusion maximal with this property. Any two distinct blocks may
intersect in at most one vertex, because otherwise their union would also be non-separable. Moreover, each edge of M
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Fig. 1. The decomposition of Mout∗ -objects.

is a non-separable submap and hence contained in a unique block. Any non-separable simple outerplanar map with at
least 3 vertices has a unique Hamilton cycle given by the boundary of the outer face. Hence the class Cout consists of
edge-rooted dissections of polygons and the map consisting of two vertices connected by a root edge.

Let M ∈ Mout∗ be a given simple outerplanar map with root edge e1. As we assumed M to be outerplanar and
simple, the counter-clockwise ordered list e1, . . . , ed of edges incident to the root vertex has the property, that if ei

and ej are contained in the same block and i < j , then the edges ei, ei+1, . . . , ej are also contained in this block.
Consequently, the blocks of M that contain the root vertex may be ordered in a natural way, yielding a sequence of
elements (C1, . . . ,Ct ) in Cout∗ as illustrated in Figure 1: If M consists only of a single vertex, then the list is empty.
Otherwise, it starts with the unique block containing the root edge of M . This block inherits the root edge of M as
its own root edge and hence may be considered as an element of Cout∗ . If C1 already contains all edges incident to the
root vertex, then t = 1 and the list is complete. Otherwise, we may select the first edge after the edges belonging to
C1, orient it as pointing away from the root vertex, and let C2 be the unique block rooted at this edge. The remaining
blocks are selected and rooted in the same manner, until no edges incident to the root vertex are left.

We let R denote the class of ordered finite sequences of maps in Cout∗ . The size of an R-object is the sum of the
sizes of the individual planar maps, without counting the root vertices. Hence the blocks incident to the root vertex of
M may be interpreted as an R-object R. The non-root vertices of any map in Cout∗ may be ordered in a canonical way,
by starting with the vertex to which the root edge points and continuing in a counter-clockwise way. Consequently,
the non-root vertices of any R-object may also be ordered in a canonical way by concatenating the individual linear
orders.

Let r denote the size of the R-object R. If we delete the root vertex of M and all the edges of the blocks incident
to the root vertex, we are left with a sequence M1, . . . ,Mr of submaps of M , such that for each 1 ≤ j ≤ r the map Mj

intersects R only at its j th vertex vj . As illustrated in Figure 1, each of these submaps may be rooted at an oriented
edge in a natural way: For each j , we may consider the counter-clockwise ordered list of edges incident to vj in M ,
select the first that comes after the edges in Cj , and orient it as pointing away from vj . That is, unless Mj consists
only of a single vertex, in which case we consider Mj as edge-rooted by convention.

Summing up, we have established that any Mout∗ -object may be decomposed into an ordered (possibly empty)
sequence of Cout∗ -objects, where at each non-∗-vertex a Mout-object is inserted. Expressing this as a combinatorial
specification yields

Mout∗ (z) = SEQ
(
Cout∗

(
Mout(z)

))
with the variable z marking the number of vertices. Since the classes Mout and Mout∗ are related by

Mout(z) = zMout∗ (z),

this may be expressed as a recursive decomposition

Mout(z) = zR
(
Mout(z)

)
, (4)

with the class R satisfying

R(z) = SEQ
(
Cout∗ (z)

)
. (5)
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Fig. 2. The decomposition of simple outerplanar rooted maps into decorated trees.

Fig. 3. Construction of a map by gluing together the root vertices.

Let A denote the class of all pairs (T ,α) with T a plane tree and α a function that assigns to each vertex v of T

an R-object α(v) whose size equals the out-degree d+
A (v) of the vertex. We are going to construct a size-preserving

bijection between Mout and A by unwinding the recursive decomposition (4) as illustrated in Figure 2.
For each M ∈ Mout the corresponding decorated tree �(M) = (T ,α) is assembled as follows. According to the

decomposition (4), the map M corresponds to an R-object R where Mout-objects M1, . . . ,Mt are inserted at each of
its canonically ordered non-root vertices. We begin the construction by letting T be a plane tree consisting of a root
vertex u and t sons u1, . . . , ut , and setting α(u) = R. If t = 0, then the construction is complete, and the number of
vertices of T equals the number of vertices of the map M . If t ≥ 1, then for each 1 ≤ j ≤ t we may again decompose
the map Mj into an R-object Rj where Mout-objects Mj,1, . . . ,Mj,tj are inserted into each of its ordered non-root
vertices. For each j , we attach tj sons to the vertex uj and set α(uj ) = Rj . The full tree (T ,α) is then constructed
by proceeding in this way, until we have explored the whole map. In each step we explore the same amount of new
vertices as we add to the tree. Hence the number of vertices of the map M equals the number of vertices of the tree T .
We obtain a size-preserving function � :Mout →A.

The inverse function of � is constructed as follows. As illustrated in Figure 3, any R-object R corresponds to
a single planar map M(R) from Mout∗ , constructed by placing the individual maps in a counter-clockwise manner
and gluing their root vertices together. The root edge of the first Cout∗ -object becomes the root edge of the resulting
map. The map M corresponding to a decorated tree (T ,α) ∈A is constructed by taking the maps (M(α(v)))v∈T , and
identifying for each vertex v ∈ T and each offspring w of v the root vertex of M(α(w)) with the corresponding vertex
in M(α(v)). We have thus established the following result.

Theorem 2.1. The function � : Mout → A is a bijection between the class of simple outerplanar maps and the set
of all pairs (T ,α) with T a plane tree and α a function that assigns to each vertex v ∈ T an R-structure with size
d+
T (v). Here maps with n vertices correspond to decorated trees with n vertices.

The bijection of Theorem 2.1 is illustrated in Figure 2. Given a subclass Cs ⊂ Cout of non-separable maps we may
form the subclass Ms ⊂ Mout of all maps whose (canonically rooted) non-separable submaps are required to be
elements of Cs . For example, bipartite outerplanar maps fall into this setting, for which the corresponding class Cbip

of non-separable maps is given by all bipartite dissections of polygons with an even number of vertices. We define Rs
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as the class of all finite sequences of Cs -objects. That is,

Rs(z) = SEQ
(
Cs∗(z)

)
. (6)

The arguments of this section may easily be repeated to obtain

Ms(z) = zRs
(
Ms(z)

)
. (7)

Consequently, maps from Ms correspond to plane trees decorated with Rs -objects:

Lemma 2.2. The restriction � |Ms of the map in Theorem 2.1 is a size-preserving bijection between the subclass
Ms ⊂Mout and the subclass As ⊂A of all pairs (T ,α) ∈ A satisfying α(v) ∈ Cs for all v ∈ T .

3. Proofs of Theorems 1.2 and 1.4

3.1. Sampling and counting outerplanar maps

For any integer k let ωk denote the number of Rs -objects with k non-∗-vertices. This defines a weight-sequence
w = (ωk)k . To any plane tree T we may assign the weight

ω(T ) =
∏
v∈T

ωd+
T (v)

with d+
T (v) denoting the outdegree of a vertex v. A simply generated tree Tn with weight-sequence w is a random

plane tree with n vertices such that any tree gets drawn with probability proportional to its weight. The sum Zn of all
weights of plane trees with n vertices is called the partition function.

Lemma 3.1. Let n ∈N be an integer with Zn �= 0. Then the following procedure draws a random outerplanar simple
rooted map with n vertices from the class Ms uniformly at random.

1. Let Tn denote a simply generated tree with weight sequence w.
2. For any vertex v draw βn(v) uniformly at random from all Rs -structures with size d+

Tn
(v).

3. Apply the bijection of Theorem 2.1 to the decorated tree (Tn,βn) in order to obtain a rooted planar map.

Proof. For any decorated plane tree (T ,β) with n vertices it holds that

P
(
(Tn,βn) = (T ,β)

) = Z−1
n ω(T )P(βn = β | Tn = T ) = Z−1

n ω(T )
∏
v∈T

ω−1
d+
T (v)

= Z−1
n .

Hence (Tn,βn) is uniformly distributed among all Rs -decorated plane trees with n vertices. �

Note that the proof above also shows that the partition function Zn counts the number of maps from the class Ms

with n vertices. Applying the standard asymptotic expression [20, Thm. 18.11] yields

Zn ∼ span(w)
(
φ(τ)/

(
2πφ′′(τ )

))1/2(
τ/φ(τ)

)−n
n−3/2

with τ ∈ ]0, ρφ] the unique constant in that interval with ψ(τ) = 1 and span(w) the greatest common divisor of all
integers k with ωk �= 0. This proves Theorem 1.4.

By definition, the series φ(z) defined in the introduction and the series Rs(z) agree. We may apply standard results
on simply generated trees [20, Ch. 8] to see, that in our setting the tree Tn is distributed like a conditioned Galton–
Watson tree.
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Lemma 3.2. Suppose that ν > 1. Then there is a unique positive constant τ ∈ ]0, ρφ] with ψ(τ) = 1 and the simply
generated tree Tn is distributed like a Galton–Watson tree T conditioned on having size n with offspring distribution
ξ given by

P(ξ = k) = ωkτ
k/φ(τ).

Its first moment and variance are given by E[ξ ] = 1 and σ 2 = τψ ′(τ ). Moreover, ξ has finite exponential moments,
i.e. E[exp(tξ)] < 0 for all t in some intervall ]−δ, δ[ with δ > 0.

3.2. The size-biased Galton–Watson tree

We define the size-biased distribution ξ∗ by

P
(
ξ∗ = k

) = kP(ξ = k).

For any integer � ≥ 0, the size-biased Galton–Watson tree T (�) is a random plane tree together with a second or outer
root having height �. It is defined in [2, Ch. 3] as follows. For � = 0, the tree T (�) is distributed like the ξ -Galton–
Watson tree T and the second root coincides with the first. For � ≥ 1 there are two kinds of vertices, normal and
mutant, and we start with a single mutant root. Mutant nodes have offspring according to independent copies of ξ∗.
One of those is selected uniformly at random and declared its heir. If the heir has height strictly less than �, then it is
also declared mutant. If it has height �, then it is declared the outer root, but remains normal. Normal vertices have
offspring according to independent copies of ξ , all of whom are normal. The path connecting the two roots of the
resulting tree is called its spine.

Note that for any mutant node, the probability that it has offspring of size k and precisely the ith is selected as its
heir, is given by P(ξ∗ = k)/k = P(ξ = k). Thus for any plane tree T together with a vertex v of T having height � it
holds that

P
(
T (�) = (T , v)

) = P(T = T ). (8)

This equation is due to [2, Eq. (3.2)].

3.3. A deviation inequality

We will make use of the following well-known deviation inequality for one-dimensional random walk, found in most
books on the subject.

Lemma 3.3. Let (Xi)i∈N be an i.i.d. family of real-valued random variables with E[X1] = 0 and E[etX1] < ∞ for all
t in some open interval around zero. Then there are constants δ, c > 0 such that for all n ∈ N, x ≥ 0 and 0 ≤ λ ≤ δ it
holds that

P
(|X1 + · · · + Xn| ≥ x

) ≤ 2 exp
(
cnλ2 − λx

)
.

The proof is by observing that E[eλ|X1|] ≤ 1 + cλ2 for some constant c and sufficiently small λ, and applying
Markov’s inequality to the random variable exp(λ(|X1| + · · · + |Xn|)).

3.4. The scaling limit and tail-bounds for the diameter

We are now ready to prove Theorem 1.2. The idea will be to show that the dFPP-distances in the random map Ms
n

concentrate around a constant multiple of the distances of the decorated random plane tree Tn of Lemma 3.1. Using
the convergence of n−1/2Tn to a multiple of the CRT we are going to deduce the scaling limit of (Ms

n, κn−1/2dFPP) for
a suitable constant κ . Tail-bounds for the diameter of Tn will be used to obtain tail-bounds for the diameter DFPP(Ms

n).
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Proof of Theorem 1.2. Recall that by Lemma 3.2 we know that Tn is distributed like a Galton–Watson tree con-
ditioned on having n vertices with an offspring distribution ξ that is critical, not constant and has finite exponential
moments. In the following, we let σ 2 denote its variance.

By Lemma 3.1, the random map Ms
n is obtained from the plane tree Tn by drawing for each vertex v an Rs -

structure βn(v) with size d+
Tn

(v) uniformly at random and applying the bijection of Theorem 2.1. The edges of Ms
n then

correspond precisely to the edges of the Rs -structures. Let ι > 0 denote a random variable having finite exponential
moments. We would like to assign an independent copy of ι to each edge of Ms

n in order to form the first-passage
percolation metric. To this end, note that for each rooted planar map there is a canonical linear order of its edges. For
example, we could start with the root edge, continue in a counter-clockwise manner with the other edges adjacent
to the root vertex, and then proceed likewise in a breadth-first-search manner. Hence we may form the first-passage
percolation metric by taking an independent family (ιi)i∈N and assigning ι1, ι2, . . . to the edges of Ms

n in that order
until each edge of Ms

n has received a copy of ι.
Likewise, we may form random maps (corresponding to decorated trees) by starting with other plane trees instead

of Tn and decorating its offspring sets with independent, uniformly drawn Rs -structures. Let T denote a ξ -Galton–
Watson tree and T (�), � ≥ 0 the corresponding size-biased trees as described in Section 3.2. We are going to assume
that all random objects considered are defined on the same probability space. We may form the decorated trees (T , β)

and (T (�), β(�)). Hence (Tn,βn) is distributed like (T , β) conditioned on |T | = n. Moreover, we may then form the
first-passage percolation metric on the maps corresponding to these decorated trees by using the same family (ιi)i∈N
of independent copies of ι, that we used to form the metric on the tree (Tn,βn).

Let η be a random variable whose distribution is given by the first-passage percolation distance between the two
spine-vertices in the map corresponding to (T (1), β(1)) and set μ = E[η]. Given ε > 0 let E1 denote the event, that
there exists a vertex v of Ms

n having the property, that its tree height hTn
(v) is at least log2 n but the first-passage

percolation distance from the root to v in (Ms
n, dFPP) does not lie in the interval (1 ± ε)μhTn

(v). Similarly, let E2

denote the event that there exists a vertex v of Ms
n such that hTn

(v) ≤ log2 n and the dFPP-distance from the root to v

is at least log4 n. We are going to show:

1. The probability, that E1 or E2 take place, tends to 0 as n becomes large.
2. There are constants c,C > 0 such that for all n and x ≥ 0

P
(
DFPP

(
Ms

n

) ≥ x
) ≤ C

(
exp

(−cx2/n
) + exp(−cx)

)
.

3. There is a constant C > 0 such that with probability tending to 1 each maximal non-separable submap of Ms
n has

first-passage percolation diameter at most C logn.
4. For any ε > 0, it holds with probability tending to 1 as n becomes large, that for all vertices u and v of Ms

n∣∣dMn
(u, v) − μdTn

(u, v)
∣∣ ≤ dTn

(u, v)ε + log(n)5.

5. With respect to the Gromov–Hausdorff metric, we have that
(

Ms
n,

σ

2μ
n−1/2dFPP

)
(d)−→ (Te, dTe).

We start with claim 1: Conditional on the family (ιi)i∈N, there is a finite set H1 of Rs -decorated plane trees (T , γ )

with n vertices such that E1 takes place if and only if (Tn,βn) ∈ H1. Recall that (Tn,βn) is distributed like (T , β)

conditioned on having size n. Moreover,

P
(|T | = n

) ∼ cn−3/2

for some constant c > 0, since E[ξ ] = 1 and ξ has finite variance. Hence

P
(
E1 | (ιi)i

) = P
(
(Tn,βn) ∈ H1 | (ιi)i

) = O
(
n3/2)

P
(
(T , β) ∈H1 | (ιi)i

)
.

It follows from Equation (8), that for each Rs -decorated plane (T , γ ) and vertex v of T it holds that

P
((
T (hT (v)), β(hT (v))

) = (
(T , v), γ

)) = P
(
(T , β) = (T , γ )

)
.
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Setting

H̄1 = {(
(T , v(T ,γ )), γ

) | (T , γ ) ∈H1
}

we obtain the bound

P
(
E1 | (ιi)i

) = O
(
n3/2) ∑

log2 n≤�≤n

P
((
T (�), β(�)

) ∈ H̄1 | (ιi)i
)
.

The event (T (�), β(�)) ∈ H̄1 implies that the first-passage percolation distance between the ends of the spine in the
map corresponding to (T (�), β(�)) does not lie in the interval (1 ± ε)�μ. But this distance is distributed like the sum
η1 + · · · + η� of independent copies of the random variable η. Hence we obtain that

P(E1) ≤ O
(
n3/2) ∑

log2 n≤�≤n

P
(
η1 + · · · + η� /∈ (1 ± ε)�μ

)
. (9)

The random variable η has finite exponential moments: it is bounded by the first-passage percolation diameter of a ran-
dom Rs -object whose number of vertices is given by the size-biased random variable ξ∗ with P(ξ∗ = k) = kP(ξ = k).
The FPP-diameter of the Rs -object is bounded by the FPP-diameter of any fixed spanning tree and hence by the sum
of (ξ∗ − 1)-many independent copies of ι. Since ξ (and hence ξ∗) and ι have finite exponential moments, so has η.
Thus we may apply the deviation inequality from Lemma 3.3 and obtain that the bound in (9) converges to zero as n

becomes large.
Analogously, we may repeat precisely the same arguments for the event E2 in order to obtain

P(E2) ≤ O
(
n3/2) ∑

1≤�≤log2 n

P
(
η1 + · · · + η� ≥ log4 n

)
. (10)

Again, this bound tends to 0 by the deviation inequality from Lemma 3.3.
We continue with claim 2: It suffices to show such a bound for the height HFPP(Ms

n), i.e. the maximal dFPP-distance
of a vertex from the root vertex. Moreover, it suffices to consider parameters x ≥ √

n. With foresight, set s = 1/(2μ).
By tail-bounds for conditioned Galton–Watson trees provided in [2], there are constants C1, c1 > 0 (that do not depend
on n or x) such that

P
(
H(Tn) ≥ sx

) ≤ C1 exp
(−c1x

2/n
)
.

Hence

P
(
HFPP

(
Ms

n

) ≥ x
) ≤ C1 exp

(−c1x
2/n

) + P(E3)

with E3 the event, that there exists a vertex v in Tn having tree-height hTn
(x) ≤ sx but the first passage percolation

distance from the root to v in the map corresponding to (Tn,βn) is at least x. Using the same arguments as for the
event E1 and E2, we obtain

P(E3) ≤ O
(
n3/2) ∑

1≤�≤min(n,sx)

P(η1 + · · · + η� ≥ x) ≤ O
(
n5/2)

P(η1 + · · · + η�sx� ≥ x).

Recall that 1 − sμ > 0 by the choice of s. Applying the deviation inequality from Lemma 3.3 we obtain that there is
a constant c > 0 such that for all sufficiently small λ > 0

P(E3) ≤ O
(
n5/2) exp

(
x
(
csλ2 − λ(1 − sμ)

))
.

Taking λ sufficiently small and using x ≥ √
n we may bound this by C2 exp(−c2x) for some constants C2, c2 > 0 that

do not depend on n or x. Hence there are constants C3, c3 > 0 such that for all x ≥ √
n

P
(
HFPP

(
Ms

n

) ≥ x
) ≤ C3

(
exp

(−c3x
2/n

) + exp(−c3x)
)
.
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We proceed with claim 3: It suffices to show such a bound for the Rs -structures. Clearly, for any x ≥ 0

P
(
DFPP

(
βn(v)

) ≥ x for some vertex v
) ≤ O

(
n3/2)

P
(
DFPP

(
β(v)

) ≥ x for some vertex v
)
.

The diameters of the (maps corresponding to the) β(v) are independent and identically distributed, hence we may
bound this further by

O
(
n5/2)

P
(
DFPP

(
β(o)

) ≥ x
)

with o denoting the root vertex of the tree T . The diameter of (the map corresponding to) β(o) is bounded by the
diameter of any fixed spanning tree and hence by the sum of (ξ − 1)-distributed many independent copies of the
link-weight ι. Since ι and ξ have finite exponential moments, this bound converges to zero for x = C logn with C a
sufficiently large fixed constant.

We proceed with claim 4: Let ε > 0 be given. Let u and v be vertices of Tn and let w denote their lowest common
ancestor. Then the tree distance between these vertices may be expressed by their heights

dTn
(u, v) = hTn

(u) + hTn
(v) − 2hTn

(w). (11)

Moreover, using the fact that maximal non-separable submaps intersect only at articulation points, we obtain that

dFPP(u, v) = hFPP(u) + hFPP(v) − 2hFPP(w) − C(u, v) (12)

with an error term C(u, v) ≥ 0 that is bounded by the first-passage percolation diameter of some non-separable submap
of Ms

n.
By claim 3 we have with probability tending to 1 that C(u, v) ≤ C logn regardless of the choice of vertices u and v.

Moreover, the complimentary event Ec
2 implies that for any vertex x with hTn

(x) ≤ log2 n it holds that hFPP(x) ≤ log4 n

and consequently
∣∣hFPP(x) − μhTn

(x)
∣∣ ≤ log2 n + log4 n ≤ εhTn

(x) + 2 log(n)4.

The complimentary event Ec
1 for ε′ = ε/μ implies that, if hTn

(x) ≥ log2 n, then
∣∣hFPP(x) − μhTn

(x)
∣∣ ≤ εhTn

(x).

It follows by claim 1 that with probability tending to 1 as n becomes large that
∣∣dFPP(u, v) − μdTn

(u, v)
∣∣ ≤ εdTn

(u, v) + O
(
log4 n

)
for all vertices u and v.

It remains to deduce claim 5. By Lemma 3.2 we know that Tn is distributed like a Galton–Watson tree conditioned
on having n vertices with an offspring distribution ξ that is critical and has finite variance σ 2. Hence n−1/2σTn/2
converges towards the continuum random tree.

Claim (4) implies that for any ε > 0 it holds with probability tending to 1 that

dGH
((

Ms
n, n

−1/2dFPP
)
,
(
Tn, n

−1/2μdTn

)) ≤ εn−1/2D(Tn) + o(1).

The rescaled diameter n−1/2D(Tn) converges weakly towards a multiple of the diameter of the CRT, which is almost
surely finite. Hence

dGH
((

Ms
n, n

−1/2dFPP
)
,
(
Tn, n

−1/2μdTn

)) p−→ 0

and consequently
(

Ms
n,

σ

2μ
n−1/2dFPP

)
(d)−→ (Te, dTe). �
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4. Applications to the unrestricted and bipartite case

We are going to check that simple outerplanar maps in both the unrestricted and bipartite case fall into our setting
(with ν = ∞) and calculate the scaling constants for the graph metric. In particular, we recover Theorem 1.1 as a
consequence of Theorem 1.2. We also recover the asymptotic enumeration formula for the number of outerplanar
maps and give a similar result for the bipartite case, proving Corollary 1.5.

4.1. A formula for the scaling constant

Lemma 4.1. The scaling constant κ in Theorem 1.2 is given by κ = σ/(2μ′) with σ 2 = τψ ′(τ ) and μ′ the average
first-passage percolation distance between the ∗-vertex and the pointed vertex in a random (Cs∗)•-object drawn ac-
cording to a Boltzmann distribution with parameter τ . That is, (Cs∗)•-objects of the same size are equally likely and
the probability generating function for the size is given by

(
Cs∗

)•
(τz)/

(
Cs∗

)•
(τ ) = z

(
Cs∗

)′
(τz)/

(
Cs∗

)′
(τ ).

Proof. We established in the proof of Theorem 1.2 that

(
Ms

n, κn−1/2dFPP
) (d)−→ (Te, dTe)

with κ = σ/(2μ). Recall that σ 2 = τψ ′(τ ) is as defined in Lemma 3.2 the variance of a certain offspring distribution
ξ , with τ the unique number in ]0, ρφ] satisfying ψ(τ) = 1. The constant μ was given by the first moment μ = E[η]
of a random distance η defined as follows: Choose a size r according to the size-biased offspring distribution ξ∗ and
choose an Rs -structure R with r non-∗-vertices uniformly at random. Glue the Cs∗-objects of that structure together
at the ∗-vertices and let η denote the first-passage percolation distance between the resulting unique ∗-vertex and a
uniformly at random chosen non-∗-vertex uR .

We are going to argue that μ = μ′. The pointed object (R,uR) follows a Boltzmann-distribution for the class (Rs)•
with parameter τ . That is, (Rs)•-objects of the same size are equally like and the size has probability generating
function given by (Rs)•(zτ )/(Rs)•(τ ). The rules for the application of the pointing operator of combinatorial classes
imply that the pointed class (Rs)• given by (Rs)•(z) = z(Rs)′(z) may be decomposed into two factors

(
Rs

)•
(z) = SEQ′(Cs∗(z)

)(
Cs∗

)•
(z)

with the second factor corresponding to the Cs∗-object containing the pointed vertex. Let C̃ denote the Cs∗-object of R

containing the pointed vertex uR . The product rule for Boltzmann samplers [16] implies that the random (Cs∗)•-object
(C̃, uR) also follows a Boltzmann distribution with parameter τ . Hence η is distributed like the dFPP-distance from
the ∗-vertex to the distinguished vertex in a Boltzmann distributed (Cs∗)•-object and thus μ = E[η] = μ′. �

4.2. The class Mout of all simple rooted outerplanar maps

4.2.1. Enumeration constants
Recall that the class Cout consists of edge-rooted dissections of polygons and the map consisting of two vertices
connected by a root edge. By traversing the edges of the root face in clock-wise order, any edge-rooted dissection of a
polygon may be decomposed into an ordered sequence of Cout-objects. This decomposition was previously established
in [7]. In order for the sizes to add up correctly, we require the root vertex to be replaced by a ∗-vertex that does not
contribute to the total number of vertices. This yields a decomposition of the class Cout∗ illustrated in Figure 4. In the
language of analytic combinatorics, this may be expressed by the equation of generating series

Cout∗ (z) = z +
∞∑

k=2

Cout∗ (z)k = z + Cout∗ (z)2/
(
1 − Cout∗ (z)

)
.



912 B. Stufler

Fig. 4. The decomposition of edge-rooted dissections of polygons.

Solving for the series Cout∗ (z) yields

Cout∗ (z) = (
1 + z − (

z2 − 6z + 1
)1/2)

/4.

By Equation (5) the series corresponding to the R-objects is given by

R(z) = 1/
(
1 − Cout∗ (z)

)
.

For Ms =Mout, the generating function φ(x) =R(x) has positive radius of convergence ρφ = 3 − 2
√

2. The unique
solution of ψ(τ) = 1 on the interval [0, ρφ] with ψ(x) = xφ′(x)/φ(x) is given by τ = 1/6. The sum ν = ψ(ρφ) = ∞
is infinite. Hence by Lemma 3.2 the offspring distribution ξ has variance σ 2 = τψ ′(τ ) = 18. By Theorem 1.4 we
obtain that the number |Mout

n | of planar maps in Mout with n vertices is asymptotically given by

∣∣Mout
n

∣∣ ∼ 8nn−3/2/(36
√

π).

This proves the first half of Corollary 1.5.

4.2.2. The scaling constant
In order to compute the scaling constant κ = σ/2μ, it remains to compute the stretch factor μ. In Lemma 4.1, we
identified μ =: μ(τ) as the average distance between the ∗-vertex and a uniformly at random drawn root in a random
Cout∗ -object that is Boltzmann distributed with parameter τ . More generally, we may define the constant μ(y) for
arbitrary parameters y with 0 < Cout∗ (y) < ∞. This constant was computed in [24] in order to compute the scaling
constant of outerplanar graphs.

Lemma 4.2 ([24, Lem. 8.9]). With w := Cout∗ (y) it holds that

μ(y) = 8w4 − 16w3 + 4w − 1

(4w3 − 6w2 − 2w + 1)(2w − 1)
.

The parameters for outerplanar graphs are approximately given by y ≈ 0.17076 and μ(y) ≈ 5.46545 [24]. In
the setting for outerplanar maps, we have y = τ = 1/6 and therefore w = 1/4 and μ = μ(τ) = 7/3. Hence the
convergence in Theorem 1.2 now reads

(
Mn,

9

7
√

2
n−1/2dMn

)
(d)−→ (Te, dTe).

We have thus recovered Theorem 1.1.
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4.3. The class Mbip of bipartite outerplanar maps

4.3.1. Enumeration constants
We may treat this case in a very similar fashion. Let Mbip, Cbip and Cbip∗ denote the corresponding bipartite versions
of the classes. Any map from Cbip is either a single edge with distinct ends or a dissection of a polygon in which
each face has even degree. Using the decomposition illustrated in Figure 4, we obtain that any Cbip∗ -object either is the
simple map with 2 vertices or corresponds to a sequence of an uneven number of Cbip∗ -objects. Hence

Cbip∗ (z) = z +
∞∑

k=1

Cbip∗ (z)2k+1 = z + Cbip∗ (z)3/
(
1 − Cbip∗ (z)2).

We may solve this equation for Cbip∗ (z). Setting φ(z) = (1−Cbip∗ (z))−1and ψ(z) = zφ′(z)/φ(z) we obtain the parame-
ter τ = −2 + (4/3)

√
3 as the unique solution of ψ(τ) = 1 in the interval [0, ρφ]. The sum ν = ψ(ρφ) = ∞ is infinite.

The variance of the offspring distribution ξ is given by

σ 2 = τψ ′(τ ) = 9(
√

3 − 1).

Theorem 1.4 yields that the number |Mbip
n | of rooted bipartite simple outerplanar maps with n vertices is asymptoti-

cally given by

∣∣Mbip
n

∣∣ ∼ (−3 + 2
√

3)
√

2

9
√

π(
√

3 − 1)

(3
√

3 − 5)−nn−3/2.

This proves the second half of Corollary 1.5.

4.3.2. The scaling constant
In order to compute the scaling constant κ = σ/(2μ), it remains to calculate the stretch factor μ. This factor may be
obtained by adapting the proof of [24, Lem. 8.9]. We briefly sketch the calculation. We need to compute the expected
distance from the ∗-vertex to the distinguished vertex of a random (Cbip∗ )•-object that follows a Boltzmann-distribution
with parameter τ . The class (Cbip∗ )• is given by

(
Cbip∗

)•
(z) = z + (

Cbip∗
)•

(z)

∞∑
k=1

(2k + 1)
(
Cbip∗ (z)

)2k
. (13)

Hence by the construction-rules for Boltzmann samplers [16,17], the result of the following recursive procedure

(Cbip∗ )• is distributed according to this distribution.

1. Choose an integer s ≥ 0 with distribution given by

P(s = 0) = τ/
(
Cbip∗

)•
(τ )

and, for each k ≥ 1,

P(s = 2k) = (2k + 1)
(
Cbip∗ (τ )

)2k
.

2. If s = 0 then return a single oriented root edge from a ∗-vertex to a root vertex. Otherwise, proceed with the
following steps.

3. Let C1, . . . ,C2k be independent Boltzmann-distributed Cbip∗ -object with parameter τ .
4. Let (C, v) denote the result of recursively calling the sampler 
(Cbip∗ )•(τ ).
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5. Choose an integer 0 ≤ i ≤ 2k uniformly at random and assemble an outerplanar map with root face degree 2k + 2
from the ordered sequence of Cbip∗ -objects

(C1, . . . ,Ci,C,Ci+1, . . . ,C2k)

as illustrated in Figure 4. Return this map rooted at the vertex v.

For any integers �, r ∈ N0 with � + r ∈ 2N we let p�,r denote the probability for the event E�,r that, in the above
sampler, we have that s = � + r and i = �. Hence

p�,r = (
Cbip∗ (τ )

)�+r
. (14)

We let L denote the distance from the ∗-vertex to the distinguished vertex v and R the distance from the other root edge
vertex to v. Moreover, we let L�,r = (L ‖ E�,r ) and R�,r = (R ‖ E�,r ) denote the corresponding variables conditioned
on the event E�,r .

Any shortest path from a root edge vertex to the distinguished vertex must traverse the boundary of the root face in
one of the two directions, until it reaches the (Cbip∗ )•-object. Hence

L�,r
(d)= min{� + L,1 + r + R}, (15)

R�,r
(d)= min{1 + � + L, r + R}. (16)

Using Equation (13) we obtain

P(s = 0) = τ/
(
Cbip∗

)•
(τ ) = (

1 − w2 − w3)/(1 − w2) (17)

with w := (Cbip∗ )(τ ). Using the fact that |L − R| ≤ 1, we may deduce from Equations (14) to (17) that

E[L] =
∑

�+r∈2N

w�+r
(
1{�≤r}

(
� +E[L]) + 1{�≥r+2}

(
r + 1 +E[R])) + 1 − w2 − w3

1 − w2
,

E[R] =
∑

�+r∈2N

w�+r
(
1{�≤r−2}

(
� + 1 +E[L]) + 1{�≥r}

(
r +E[R])).

This system of linear equations fortunately admits a unique solution, yielding

μ = E[L] = 2w9 + 2w8 − 6w7 − 8w6 + 5w5 + 7w4 − w3 − 4w2 + 1

4w8 − 16w6 + 19w4 − 8w2 + 1
= 23

8
− 7

24

√
3.

Letting Mbip
n denote the uniform simple rooted bipartite outerplanar map with n vertices, we thus obtain

36

√√
3 − 1

69 − 7
√

3
n−1/2Mbip

n
(d)−→ Te.

This concludes the proof of Theorem 1.3.

Acknowledgements

I thank Nicolas Curien for discussions and feedback, an anonymous referee for helpful comments and suggestions,
and Emmanuel Jacob for providing the French translation of the abstract.



Scaling limits of random outerplanar maps with independent link-weights 915

References

[1] C. Abraham. Rescaled bipartite planar maps converge to the Brownian map. Ann. Inst. Henri Poincaré Probab. Stat. 52 (2) (2016) 575–595.
MR3498001

[2] L. Addario-Berry, L. Devroye and S. Janson. Sub-Gaussian tail bounds for the width and height of conditioned Galton–Watson trees. Ann.
Probab. 41 (2) (2013) 1072–1087. MR3077536

[3] D. Aldous. The continuum random tree. I. Ann. Probab. 19 (1) (1991) 1–28. MR1085326
[4] D. Aldous. The continuum random tree. II. An overview. In Stochastic Analysis (Durham, 1990) 23–70. London Math. Soc. Lecture Note Ser.

167. Cambridge Univ. Press, Cambridge, 1991. MR1166406
[5] D. Aldous. The continuum random tree. III. Ann. Probab. 21 (1) (1993) 248–289. MR1207226
[6] J. Ambjorn and T. Budd. Multi-point functions of weighted cubic maps, 2014. Available at http://arxiv.org/abs/1408.3040.
[7] N. Bernasconi, K. Panagiotou and A. Steger. On properties of random dissections and triangulations. Combinatorica 30 (6) (2010) 627–654.

MR2789731
[8] J. Bettinelli. Scaling limit of random planar quadrangulations with a boundary. Ann. Inst. Henri Poincaré Probab. Stat. 51 (2) (2015) 432–477.

MR3335010
[9] N. Bonichon, C. Gavoille and N. Hanusse. Canonical decomposition of outerplanar maps and application to enumeration, coding and gener-

ation. J. Graph Algorithms Appl. 9 (2) (2005) 185–204 (electronic). MR2185278
[10] N. Broutin and P. Flajolet. The distribution of height and diameter in random non-plane binary trees. Random Structures Algorithms 41 (2)

(2012) 215–252. MR2956055
[11] A. Caraceni. The scaling limit of random outerplanar maps. Ann. Inst. Henri Poincaré Probab. Stat. To appear.
[12] N. Curien, B. Haas and I. Kortchemski. The CRT is the scaling limit of random dissections. Random Structures Algorithms 47 (2) (2015)

304–327. MR3382675
[13] N. Curien and J.-F. Le Gall. Scaling limits for the peeling process on random maps. Ann. Inst. Henri Poincaré Probab. Stat. To appear.
[14] N. Curien and J.-F. Le Gall. First-passage percolation and local modifications of distances in random triangulations, 2015. Available at

http://arxiv.org/abs/1511.04264.
[15] R. Diestel. Graph Theory, 4th edition. Graduate Texts in Mathematics 173. Springer, Heidelberg, 2010. MR2744811
[16] P. Duchon, P. Flajolet, G. Louchard and G. Schaeffer. Random sampling from Boltzmann principles. In Automata, Languages and Program-

ming 501–513. Lecture Notes in Comput. Sci. 2380. Springer, Berlin, 2002. MR2062483
[17] P. Duchon, P. Flajolet, G. Louchard and G. Schaeffer. Boltzmann samplers for the random generation of combinatorial structures. Combin.

Probab. Comput. 13 (4–5) (2004) 577–625. MR2095975
[18] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge Univ. Press, Cambridge, 2009. MR2483235
[19] B. Haas and G. Miermont. Scaling limits of Markov branching trees with applications to Galton–Watson and random unordered trees. Ann.

Probab. 40 (6) (2012) 2589–2666. MR3050512
[20] S. Janson. Simply generated trees, conditioned Galton–Watson trees, random allocations and condensation. Probab. Surv. 9 (2012) 103–252.

MR2908619
[21] S. Janson and S. Ö. Stefánsson. Scaling limits of random planar maps with a unique large face. Ann. Probab. 43 (3) (2015) 1045–1081.

MR3342658
[22] A. Joyal. Une théorie combinatoire des séries formelles. Adv. in Math. 42 (1) (1981) 1–82. MR0633783
[23] K. Panagiotou and B. Stufler. Scaling limits of random Pólya trees, 2015. Available at http://arxiv.org/abs/1502.07180.
[24] K. Panagiotou, B. Stufler and K. Weller. Scaling limits of random graphs from subcritical classes. Ann. Probab. To appear.
[25] B. Stufler. The continuum random tree is the scaling limit of unlabelled unrooted trees, 2014. Available at http://arxiv.org/abs/1412.6333.
[26] G. Szekeres. Distribution of labelled trees by diameter. In Combinatorial Mathematics, X (Adelaide, 1982) 392–397. Lecture Notes in Math.

1036. Springer, Berlin, 1983. MR0731595
[27] M. Wang and Height and diameter of Brownian tree. Electron. Commun. Probab. 20 (2015) no. 88, 15. MR3434205

http://www.ams.org/mathscinet-getitem?mr=3498001
http://www.ams.org/mathscinet-getitem?mr=3077536
http://www.ams.org/mathscinet-getitem?mr=1085326
http://www.ams.org/mathscinet-getitem?mr=1166406
http://www.ams.org/mathscinet-getitem?mr=1207226
http://arxiv.org/abs/1408.3040
http://www.ams.org/mathscinet-getitem?mr=2789731
http://www.ams.org/mathscinet-getitem?mr=3335010
http://www.ams.org/mathscinet-getitem?mr=2185278
http://www.ams.org/mathscinet-getitem?mr=2956055
http://www.ams.org/mathscinet-getitem?mr=3382675
http://arxiv.org/abs/1511.04264
http://www.ams.org/mathscinet-getitem?mr=2744811
http://www.ams.org/mathscinet-getitem?mr=2062483
http://www.ams.org/mathscinet-getitem?mr=2095975
http://www.ams.org/mathscinet-getitem?mr=2483235
http://www.ams.org/mathscinet-getitem?mr=3050512
http://www.ams.org/mathscinet-getitem?mr=2908619
http://www.ams.org/mathscinet-getitem?mr=3342658
http://www.ams.org/mathscinet-getitem?mr=0633783
http://arxiv.org/abs/1502.07180
http://arxiv.org/abs/1412.6333
http://www.ams.org/mathscinet-getitem?mr=0731595
http://www.ams.org/mathscinet-getitem?mr=3434205

	Introduction and main results
	Remarks on the diameter of the CRT

	A bijection between outerplanar maps and decorated trees
	Proofs of Theorems 1.2 and 1.4
	Sampling and counting outerplanar maps
	The size-biased Galton-Watson tree
	A deviation inequality
	The scaling limit and tail-bounds for the diameter

	Applications to the unrestricted and bipartite case
	A formula for the scaling constant
	The class Mout of all simple rooted outerplanar maps
	Enumeration constants
	The scaling constant

	The class Mbip of bipartite outerplanar maps
	Enumeration constants
	The scaling constant


	Acknowledgements
	References

