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Abstract. We consider the limiting behaviour of the point processes associated with a branching random walk with supercritical
branching mechanism and balanced regularly varying step size. Assuming that the underlying branching process satisfies Kesten–
Stigum condition, it is shown that the point process sequence of properly scaled displacements coming from the nth generation
converges weakly to a Cox cluster process. In particular, we establish that a conjecture of (J. Stat. Phys. 143 (3) (2011) 420–446)
remains valid in this setup, investigate various other issues mentioned in their paper and recover the main result of (Z. Wahrsch.
Verw. Gebiete 62 (2) (1983) 165–170) in our framework.

Résumé. Nous étudions le comportement limite de processus ponctuels associés à la marche aléatoire branchante avec branche-
ment surcritique et une loi de déplacement à variation régulière. Si le processus de branchement sous-jacent satisfait une condition
de Kesten–Stigum, nous montrons que le processus ponctuel de la suite des déplacements changés d’échelle provenant de la n-ième
génération converge faiblement vers un processus de Cox. En particulier, nous prouvons qu’une conjecture de (J. Stat. Phys. 143
(3) (2011) 420–446) reste valable dans ce contexte, nous étudions plusieurs questions soulevées dans leur article et retrouvons le
résultat principal de (Z. Wahrsch. Verw. Gebiete 62 (2) (1983) 165–170) dans notre cadre.
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1. Introduction

Suppose {Zi}i≥0 is a supercritical Galton–Watson process with Z0 ≡ 1 (the root), branching random variable Z1 (size
of the first generation), and progeny mean μ := E(Z1) ∈ (1,∞). It is well-known that Zn/μ

n is a martingale sequence
that converges almost surely to a non-negative random variable W . We assume that the branching random variable
satisfies the Kesten–Stigum condition

E
(
Z1 log+ Z1

)
< ∞. (1.1)

We shall condition on the survival of this Galton–Watson process and (1.1) ensures that the limiting random variable
W is almost surely positive; see [31]. This rooted infinite Galton–Watson tree will be denoted in this article by
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T = (V ,E), where the collection of all vertices is denoted by V , the collection of all edges is denoted by E and the
root is denoted by o. Note that every vertex v is connected to the root o by a unique geodesic path which will be
denoted by Iv and the length of this path will be denoted by |v|.

We define a branching random walk with balanced regularly varying step size as follows. After obtaining the
entire infinite tree T, we assign independent and identically distributed random variables {Xe : e ∈ E} (that are also
independent of the Galton–Watson process {Zi}i≥0) on the edges satisfying the regular variation condition

P
(|Xe| > x

) = x−αL(x), (1.2)

where α > 0 and L(x) is a slowly varying function (i.e., for all x > 0, L(tx)/L(t) → 1 as t → ∞), and the tail
balance condition

P(Xe > x)

P(|Xe| > x)
→ p and

P(Xe < −x)

P(|Xe| > x)
→ q (1.3)

as x → ∞ for some p,q ≥ 0 with p + q = 1. For an encyclopaedic treatment of regularly varying and slowly varying
functions, see [12]. To each vertex v, we assign displacement labels Sv, which is the sum of all edge random variables
on the geodesic path from the root o to the vertex v, i.e.,

Sv =
∑
e∈Iv

Xe. (1.4)

The collection of displacement random variables {Sv : |v| = n} forms the nth generation of our branching random
walk.

Branching random walk has been of interest starting from the classical works of [9–11,27,32]. Recently, extremes
of branching random walk has gained much prominence due to its connection to tree indexed random walk and
Gaussian free field; see [1,2,13,14,16,17,29,36]. See also [3–6,15,18,34] for related results on extremes of branching
Brownian motion.

Heavy tailed edge random variables were introduced in branching random walks by [23,24]; see also [26,33], and
the recent works of [35] and [8]. It was shown in [24] that when the step sizes have regularly varying tails, then
the maximum displacement grows exponentially and converges (after scaling) to a W -mixture of Fréchet random
variables. This limiting behaviour is very different from the ones obtained by [9] and [18] in the light tailed case.

It was predicted in [19] that the limits of point processes of properly normalized displacements of branching random
walk and branching Brownian motion should be decorated Poisson point processes. This conjecture was proved to be
true for branching Brownian motion by [5,6] and [3], and for branching random walks with step sizes having finite
exponential moments by [36] relying on a work of [37].

A natural question arising out of the works of [24] and [36] is the following: where do the point processes based
on the scaled displacements converge in the regularly varying case? The main aim of this article is to show the
convergence of this point process sequence and also explicitly identify the limit as a Cox cluster process. We establish
that the prediction of [19] on this limit remains true for branching random walk with regularly varying step size even
though the finiteness of exponential moments fails to hold. In order to overcome this obstacle, we use a twofold
truncation technique based on multivariate extreme value theory.

We also discuss the superposability properties of our limiting point process in parallel to the recent works of [37]
and [42] and confirm the validity of a related prediction of [19] in our setup. As a consequence of our main result,
we give explicit formulae for the asymptotic distributions of the properly scaled order and gap statistics from which
various problems mentioned in [19] can be investigated. In particular, we recover Theorem 1 of [24] in our framework.

This paper is organized as follows. Section 2 contains the statements of the main result (Theorem 2.1) and its
consequences (Theorems 2.3 and 2.5). Since the proof of Theorem 2.1 is long and notationally complicated, we first
give a detailed outline of the main steps based on four lemmas in Section 3. These lemmas, and Theorems 2.3 and 2.5
are finally proved in Section 4.
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2. The results

We consider point processes as a random elements in the space M of all Radon point measures on a locally compact
and separable metric space E. Here M is endowed with the vague convergence (denoted by “

v−→”), which is metriz-
able by the metric ρ(μ, ν) = ∑∞

i=1 2−i min(|μ(hi) − ν(hi)|,1), where {hi}i≥1 is a suitably chosen subset (consisting
only of Lipschitz functions) of the collection C+

c (E) of all non-negative continuous real-valued functions on E with
compact support. (M, ρ) is a complete and separable metric space. Therefore the standard theory of weak conver-
gence is readily available for point processes and can be characterized by the pointwise convergence of corresponding
Laplace functionals on C+

c (E) (see Proposition 3.19 in [40]). For further details on point processes, see [25,30,40]
and [41].

Because of (1.2) and (1.3), we can choose scaling constants bn such that (see, e.g., [20,21,40])

μnP
(
b−1
n Xe ∈ ·) v−→ να (2.1)

on [−∞,∞] \ {0}, where

να(dx) = αpx−α−11(0,∞)(x) dx + αq(−x)−α−11(−∞,0)(x) dx. (2.2)

Note that one can write bn = μn/αL0(μ
n) for some slowly varying function L0. In this paper, conditioned on the

survival of the tree, we investigate the asymptotic behaviour of the sequence of point processes defined by

Nn =
∑
|v|=n

δ
b−1
n Sv

, n ≥ 1, (2.3)

where Sv is as in (1.4).
Let (�,F,P) be the probability space where all the random variables are defined and let P∗ denote the probability

obtained by conditioning P on the non-extinction of the underlying Galton–Watson tree. We shall denote by E and
E∗, the expectation operators with respect to P and P∗, respectively. We introduce two sequences of random variables
{Tl}l≥1 and {jl}l≥1 as follows. Suppose {Tl}l≥1 is a sequence of independent and identically distributed positive integer
valued random variables with probability mass function

γ (y) := P(T1 = y) = 1

r

∞∑
i=0

1

μi
P(Zi = y), y ∈N, (2.4)

where r = ∑∞
i=0

1
μi P(Zi > 0). Let {jl}l≥1 be a sequence of random variables such that

∑∞
l=1 δjl

∼ PRM(να), where
PRM(να) denotes Poisson random measure with mean measure as να . We also assume that the sequences {Tl}l≥1 and
{jl}l≥1 are independent of each other and are both independent of the martingale limit W .

Our main result says that the limiting point process is a Cox cluster process in which a typical Cox point (rW)1/αjl

appears with random multiplicity Tl . The clusters appear here due to the strong dependence structure of the dis-
placement random variables {Sv : |v| = n}. The randomness in the intensity measure arises from the martingale limit
W in contrast to the light tailed case, where similar randomness comes from the derivative martingale limit (see,
e.g., Theorem 1.1 in [2]). Note also that a W -mixture was already present in Theorem 1 of [24]; see Remark 2.6
below.

Theorem 2.1. With the assumptions (1.1), (1.2), (1.3) and {bn} as in (2.1), under P∗, the sequence of point processes
defined in (2.3) converges weakly in the space M of all Radon point measures on [−∞,∞] \ {0} to a Cox cluster
process with representation

N∗
L=

∞∑
l=1

Tlδ(rW)1/αjl
(2.5)
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and Laplace functional given by

�N∗(g) = E∗(e−N∗(g)
)

= E∗
[

exp

{
−W

∫
|x|>0

∞∑
i=0

1

μi
E

(
1 − e−Zig(x)

)
να(dx)

}]
(2.6)

for all g ∈ C+
c ([−∞,∞] \ {0}).

2.1. Scale-decorated Poisson point processes

For any point process P and any a > 0, we denote by saP the point process obtained by multiplying the atoms of P
by a. The following is an analogue of Definition 1 in [42] suitable for our framework.

Definition 2.2. A point process N is called a randomly scaled scale-decorated Poisson point process (SScDPPP) with

intensity measure ν, scale-decoration P and random scale 	 if N
L= s	

∑∞
i=1 sλi

Pi , where � = ∑∞
i=1 δλi

∼ PRM(ν)

on the space (0,∞) and Pi , i ≥ 1 are independent copies of the point process P and are independent of �, and 	 is
a positive random variable independent of � and {Pi}i≥1. We shall denote this by N ∼ SScDPPP(ν,P,	). If 	 ≡ 1,
we call N a scale-decorated Poisson point process (ScDPPP) and denote it by N ∼ ScDPPP(ν,P).

Our next result establishes that the limiting point process (2.5) admits an SScDPPP representation and confirms
that a prediction of [19] remains valid in our setup. Moreover, the scale-Laplace functional of N∗ (i.e., the left hand
side of (2.7) below) can always be expressed as a multiplicative convolution of an α-Fréchet distribution with some
measure. This is a scale-analogue of a property investigated in [42] (see property (SUS) therein).

Theorem 2.3. Under the assumptions of Theorem 2.1, the limiting point process N∗ ∼ SScDPPP(ν+
α , T δε, (rW)1/α),

where ε is a ±1-valued random variable with P(ε = 1) = p, ν+
α (dx) = αx−α−1 dx is a measure on (0,∞) and T is a

positive integer valued random variable (independent of ε) with probability mass function (2.4). Furthermore, for all
g ∈ C+

c ([−∞,∞] \ {0}), N∗ satisfies

E∗
(

exp

{
−

∫
g(x/y)N∗(dx)

})
= E∗(α

(
cgyW−1/α

))
, y > 0, (2.7)

where α denotes the distribution function of an α-Fréchet random variable, i.e. α(x) = exp{−x−α}, x > 0, and cg

is a positive constant that depends on g but not on y.

The scale-decoration in the SScDPPP representation of N∗ is the point process consisting of T many repetitions of
the random point ε. This is due to the fact that very few (more precisely, a W -mixture of Poisson many) edge random
variables survive the scaling by bn and the surviving ones come with random cluster-sizes that are independent copies
of T . The presence of ε in the scale-decoration can be justified by the fact that the surviving edge random variables
are positive and negative with probabilities p and q , respectively (see (1.3)).

Remark 2.4 (Superposability). Let N
(i)∗ = ∑∞

l=1 T
(i)
l δ

(rWi)
1/αj

(i)
l

, i = 1,2 be two independent copies of (2.5). Then

using Laplace functionals, it can easily be verified that for two positive constants a1 and a2, sa1N
(1)∗ + sa2N

(2)∗ ∼
SScDPPP(ν+

α , T δε, (r(a
α
1 W1 +aα

2 W2)
1/α)). In particular, when the underlying Galton–Watson tree is a d-regular tree

(i.e., Z1 ≡ d ≥ 2), then the limiting point process is the Poisson cluster process N∗,d ∼ ScDPPP(ν+
α , dGδε), where G

follows a Geometric(1/d) distribution (independently of ε) with probability mass function P(G = k) = (1−1/d)kd−1,
k ≥ 0, and N∗,d satisfies the superposability property described as follows. If N

(i)
∗,d , i = 1,2 are two independent copies

of N∗,d , then sa1N
(1)
∗,d + sa2N

(2)
∗,d

L= N∗,d for any two positive constants a1, a2 such that aα
1 + aα

2 = 1. Following [22],
N∗,d can be viewed as an strictly α-stable point process and hence is expected to have an ScDPPP representation (see
Section 3 of aforementioned reference). More generally, sW−1/αN∗ is an α-stable point process. For similar statements
in case of exp-1-stable point processes, see [19,37] and [42].
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2.2. Order and gap statistics

The point process convergence in Theorem 2.1 helps us to derive some properties of the order and gap statistics; see
also [38] for related works on branching Brownian motion. Let M

(k)
n denote the kth upper order statistic coming from

the nth generation, G
(k)
n = M

(k)
n − M

(k+1)
n be the kth gap statistic and M ′

n := min|v|=n Sv be the minima. In order to
study the asymptotic properties of these statistics, we need a few more notations as described below. We denote by
π a partition of an integer l of the form l = i1y1 + i2y2 + · · · + i|π |y|π |, where each ij repeats yj many times in the
partition, and i1 < i2 < · · · < i|π |. Here | · | denotes the number of distinct elements in a partition. Let �l be the set of
all such partitions of the integer l.

Theorem 2.5. With the assumptions of Theorem 2.1 and {bn} as in (2.1), the following asymptotic properties hold.

(a) (Minima) For all x > 0,

lim
n→∞ P∗(M ′

n > −bnx
) = E∗(exp

{−rWqx−α
})

.

(b) (kth upper order statistic) For all x > 0,

lim
n→∞ P∗(M(k)

n ≤ bnx
)

= E∗(exp
{−rWpx−α

}) +
k−1∑
l=1

∑
π∈�l

E∗
[ |π |∏

j=1

((
rWpx−αγ (ij )

)yj exp
{−rWpx−αγ (ij )

})]
. (2.8)

(c) (Joint distribution of kth and (k + 1)th upper order statistics) For all (u, v) such that 0 < u < v,

lim
n→∞ P∗(M(k+1)

n ≤ bnu,M(k)
n ≤ bnv

)

= E∗(ξ0,(u,∞](W)
) +

k∑
j=1

E∗(ξ0,(v,∞](W)ξj,(u,v](W)
) +

k−1∑
l=1

k−l∑
j=0

E∗(ξl,(v,∞](W)ξj,(u,v](W)
)
, (2.9)

where for all l ≥ 0 and for all A ⊂ [−∞,∞] \ {0} such that να(A) < ∞,

ξl,A(W) :=
{

e−rWνα(A) if l = 0,∑
π∈�l

∏|π |
j=1(rWνα(A)γ (ij ))

yj 1
yj !e

−rWνα(A)γ (ij ) if l ≥ 1.

(d) (kth gap statistic) Let L : R+ ×R
+ → R

+ be the map L(u, v) = v − u. Then P∗(b−1
n G

(k)
n ∈ ·) → ζk ◦ L−1 where

ζk is a probability measure on R
+ ×R

+ with joint cumulative distribution function (2.9).

The second term in (2.8) and the third term in (2.9) are both interpreted as zero when k = 1.

Remark 2.6 (Maxima). Note that putting k = 1 in (2.8), we recover Theorem 1 of [24] in our framework. By Theo-
rem 8.2 (page 15) of [28] (see also [7], Theorem 2, page 29), the limiting distribution function of the scaled maxima
of the nth generation can be written as

lim
n→∞ P∗(M(1)

n ≤ bnx
) = φ

(
rpx−α

)
, x > 0, (2.10)

where φ is the unique (up to a scale-change) completely monotone function on R
+ satisfying

φ(z) = f
(
φ(z/μ)

)
(2.11)

with f being the probability generating function of the branching random variable Z1.
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Example 2.1 (Maxima for geometric branching). Suppose that the offspring distribution of the underlying branching
process is geometric with parameter b ∈ (0,1) and probability mass function P(Z1 = k) = b(1 − b)k−1, k ≥ 1. It is
easy to check that the completely monotone function φ(u) = 1

1+du
, u > 0 satisfies the functional equation (2.11) for

any scaling constant d > 0. Therefore using (2.10) and the fact that E(W) = 1 (a consequence of Kesten–Stigum
condition (1.1); see [31]), it follows that d = 1 and

lim
n→∞ P(Mn ≤ bnx) = 1 − b

1 − b + px−α
, x > 0.

3. Outline of proof of Theorem 2.1

In this section, we outline the main result’s proof, which is based on a twofold truncation technique using extreme
value theory. We attain this via four lemmas, whose proofs will be given in the next section. For ease of presentation,
we shall use Ulam–Harris labeling system described recursively as follows. The ith descendant of the root o is denoted
by i and j th descendant of an (n − 1)th generation vertex (i1, . . . , in−1) is denoted by (i1, . . . , in−1, j). We abuse the
notation and denote an edge joining an (n − 1)th generation vertex and an nth generation vertex using the same label
as the latter vertex. Such an edge is assumed to belong to the nth generation. Let Dn denote the vertices (and hence
edges because of the abuse of notation) in the nth generation and Cn = ⋃n

i=1 Di denote the vertices (as well as edges)
up to the nth generation of the underlying Galton–Watson tree. With these notations, we describe below the mains
steps of the proof of Theorem 2.1.

3.1. One large jump

Following [24], it is easy to see that with very high probability, for every vertex v ∈ Dn, among all e ∈ Iv at most one
edge random variable Xe will be large enough to survive the scaling by bn. Hence we can expect that the asymptotic
behavior of Nn will be same as that of

Ñn =
∑
|v|=n

∑
e∈Iv

δ
b−1
n Xe

. (3.1)

More precisely, we shall establish the following lemma.

Lemma 3.1. Under the assumptions of Theorem 2.1, for every ε > 0,

lim sup
n→∞

P∗(ρ(Nn, Ñn) > ε
) = 0, (3.2)

where ρ is the vague metric introduced at the beginning of Section 2.

This lemma formalizes the well-known principle of one large jump (see, e.g., Steps 3 and 4 in Section 2 of [24]) at
the level of point processes and it can be shown by molding the proof of Theorem 3.1 in [39]. Because of Lemma 3.1,
it is enough to investigate the weak convergence of (3.1), which is much easier compared to that of (2.3).

3.2. Cutting the tree

The first truncation is a standard one that has been used in branching random walks. First fix a positive integer K .
Taking n > K , look at the tree T up to the nth generation and cut it at (n−K)th generation keeping last K generations
alive; see Figure 1. This means that after cutting the tree, we will be left with a forest containing K generations of
|Dn−K | many independent (under P) Galton–Watson trees with roots being the vertices at the (n−K)th generation of
the original tree T and the same offspring distribution as before. We label the new sub-trees in this forest as {Tj }|Dn−K |

j=1 .
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o

T1 T2 T3 T4 T5

Fig. 1. Cutting the Galton–Watson tree (n = 3,K = 1) at generation 2.

Each vertex v in the nth generation of the original tree T belongs to the K th generation of some sub-tree Tj and
we denote by IK

v the unique geodesic path from the root of Tj to the vertex v. We introduce another point process
generated by the i.i.d. heavy-tailed random variables attached to the edges of the forest as follows:

Ñ (K)
n :=

∑
|v|=n

∑
e∈IK

v

δ
b−1
n Xe

, (3.3)

where |v| denotes the generation of |v| in the original tree T. The following lemma asserts that as long as K is large,
(3.3) is a good approximation of (3.1).

Lemma 3.2. Under the assumptions of Theorem 2.1, for every ε > 0,

lim
K→∞ lim sup

n→∞
P∗(ρ(

Ñn, Ñ
(K)
n

)
> ε

) = 0. (3.4)

In light of the above lemma, it is enough to find the weak limit of (3.3) as n → ∞ keeping K fixed, and then letting
K → ∞. This can be achieved with the help of another truncation as mentioned below.

3.3. Pruning the forest

This is the second truncation step, which is also quite standard in branching process theory. Fix an integer K > 0 and

for each edge e in the forest
⋃|Dn−K |

j=1 Tj , define Ae to be the number of descendants of e at nth generation of T. Fix

another integer B > 1 large enough so that μB := E(Z
(B)
1 ) > 1, where Z

(B)
1 := Z11(Z1 ≤ B) + B1(Z1 > B). We

modify the forest according to the pruning algorithm mentioned below (see also Figure 2).

P1. Start with the sub-tree T1 and look at its root.
P2. If the root has more than B many children (edges), then keep the first B many edges according to our labeling,

and delete the others and their descendants. If the number of children (edges) of the root is less than or equal to
B , then do nothing.

P3. Now we can have at most B many vertices in the first generation of the sub-tree T1. Repeat Step P2 for chil-
dren (edges) of each of these vertices. Continue with this algorithm up to the children (edges) of the (K − 1)th
generation vertices (of the sub-tree T1).

P4. Repeat Steps P2 and P3 for the other sub-trees T2, . . . ,T|Dn−K |.
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T1 T2 T3 T4 T5

Fig. 2. Pruning of the forest obtained in Figure 1 with B = 2.

Note that under P, these |Dn−K | many pruned sub-trees are independent copies of a Galton–Watson tree (up to the
K th generation) with a bounded branching random variable Z

(B)
1 . For each j , we denote by T

(B)
j the pruned version

of Tj . For each edge e in
⋃|Dn−K |

j=1 T
(B)
j , we define A

(B)
e to be the number of descendants of e in the K th generation

of the corresponding pruned sub-tree. Observe that for every vertex e at the ith generation of any sub-tree T
(B)
j , A

(B)
e

is equal is distribution to Z
(B)
K−i , where {Z(B)

i }i≥0 denotes a branching process with Z
(B)
0 ≡ 1 and branching random

variable Z
(B)
1 . For each i = 1,2, . . . ,K , we denote by D

(B)
n−K+i the union of all ith generation vertices (as well as

edges) from the pruned sub-trees T(B)
j , j = 1,2, . . . , |Dn−K |. We introduce another point process as follows.

Ñ (K,B)
n :=

∑
v∈D

(B)
n

∑
e∈Iv

δ
b−1
n Xe

. (3.5)

The point processes Ñ
(K)
n and Ñ

(K,B)
n are not simple point processes since both of them have alternative represen-

tations as given below.

Ñ (K)
n =

K−1∑
i=0

∑
e∈Dn−i

Aeδb−1
n Xe

(3.6)

and

Ñ (K,B)
n =

K−1∑
i=0

∑
e∈D

(B)
n−i

A(B)
e δ

b−1
n Xe

. (3.7)

The set of all trees up to K th generation becomes a finite set due to pruning. This helps in the computation of the
limit (4.6) below. The next lemma encompasses this second truncation step and reduces our work to computation of
weak limit of (3.7) obtained by letting n → ∞, and then B → ∞, and finally K → ∞.

Lemma 3.3. Under the assumptions of Theorem 2.1, for each fixed positive integer K > 1 and for all ε > 0,

lim
B→∞ lim sup

n→∞
P∗(ρ(

Ñ (K)
n , Ñ (K,B)

n

)
> ε

) = 0. (3.8)

3.4. Computation of weak limit

We shall compute the weak limit of (3.7) by investigating its Laplace functional. This is carried out using a condi-
tioning argument and extreme value theory. The conditioning argument helps us to exploit the independence in the
underlying tree structure. This results in the following lemma, which should be regarded as the key step in proving
Theorem 2.1.

Lemma 3.4. Under the conditions of Theorem 2.1, the following weak convergence results hold in the space M of all
Radon point measures on [−∞,∞] \ {0} under the measure P∗.
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(a) For each positive integer K and each integer B > 1 with μB > 1, there exists a point process N
(K,B)∗ such that

Ñ
(K,B)
n ⇒ N

(K,B)∗ as n → ∞.
(b) For each positive integer K , there exists a point process N

(K)∗ such that N
(K,B)∗ ⇒ N

(K)∗ as B → ∞.
(c) As K → ∞, N

(K)∗ ⇒ N∗.

For detailed descriptions of the point processes N
(K,B)∗ and N

(K)∗ , see Section 4 below.

3.5. Proof of Theorem 2.1

It is easy to check that (2.5) is P∗-almost surely Radon and hence is a random element of M with E = [−∞,∞]\ {0}.
To compute the Laplace functional of N∗, take any g ∈ C+

c ([−∞,∞] \ {0}) and observe that

E∗(e−N∗(g)
) = E∗[E∗(e−N∗(g)|W )] = E∗[E∗(e−N(f )|W )]

, (3.9)

where f is the function f (t, x) = tg(x) defined on N × ([−∞,∞] \ {0}) and N is the Cox process N =∑∞
l=1 δ(Tl ,(rW)1/αjl)

. Using Propositions 3.6 and 3.8 in [40], we get

E∗(e−N(f )|W ) = exp

{
−rW

∫
|x|>0

E
(
1 − e−f (T1,x)

)
να(dx)

}
,

which can be shown to be equal to the random quantity inside the expectation in (2.6). Therefore, the second part of
Theorem 2.1 follows from (3.9).

Using Lemmas 3.2, 3.3 and 3.4 and applying twice a standard converging together argument (see, e.g., Theorem 3.5
in [41]), it follows that under P∗,

Ñn ⇒ N∗ as n → ∞, (3.10)

from which the weak convergence in Theorem 2.1 follows by a simple application of Theorem 3.4 of [41] combined
with Lemma 3.1 above.

4. Rest of the proofs

Throughout this section P∗
T

will denote the probability obtained by conditioning P∗ on the whole Galton–Watson
tree T and E will denote the space [−∞,∞] \ {0}. Also we will use the notation S to denote the event that the
Galton–Watson tree survives.

4.1. Proof of Lemma 3.2

Let g ∈ C+
c (E) with support(g) ⊆ {x : |x| > δ}, for some δ > 0. By definition of the vague convergence, it is enough

to show that for all ε > 0,

lim
K→∞ lim sup

n→∞
P∗(∣∣Ñn(g) − ÑK

n (g)
∣∣ > ε

) = 0. (4.1)

Recall that Cn−K = {v : |v| ≤ n − K}. Define Bn,K to be the event that all the random variables in the collection
{Xe : e ∈ Cn−K } are less than bnδ/2 in modulus. We claim that limK→∞ lim supn→∞ P∗(Bc

n,K) = 0, which will
follow provided we show that

lim
K→∞ lim sup

n→∞
P∗
T

(
Bc

n,K

) = 0 for P∗-almost all T. (4.2)
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To this end, note that conditioned on the tree T,
∑

e∈Cn−K
δ
b−1
n |Xe|(θ,∞] follows a Binomial(|Cn−K |,

P(|Xe| > bnθ)) distribution, and for each K ≥ 1, the following P∗-almost sure convergence holds:

|Cn−K |P(|Xe| > bnθ
) = |Cn−K |

μn−K

1

μK
μnP

(|Xe| > bnθ
)

n→∞→ μ

μ − 1
W

1

μK
θ−α =: λ(θ,K).

Therefore, for all K ≥ 1,
∑

e∈Cn−K
δ
b−1
n |Xe|(θ,∞] ⇒ P ∼ Poisson(λ(θ,K)) as n → ∞ under P∗

T
for P∗-almost

all T. Because of Kesten–Stigum condition (1.1), λ(θ,K) → 0 P∗-almost surely as K → ∞. In particular, we get
limn→∞ P∗

T
(Bc

n,K) = P∗
T
(P > 1), which tends to zero as K → ∞ for P∗-almost all T and hence (4.2) holds. To

finish the proof from here, observe that P∗
T
(|Ñn(g) − ÑK

n (g)| > ε,Bn,K) ≡ 0 since the support of g is contained in
{x : |x| > δ}. Hence (4.1) follows immediately from (4.2).

4.2. Proof of Lemma 3.3

Let g ∈ C+
c (E) be as in proof of Lemma 3.2 with support(g) ⊆ {x : |x| > δ} and ‖g‖∞ := supx∈E |g(x)| < ∞. To

show (3.8), it is enough to show that for such g ∈ C+
c (E) and ε > 0,

lim
B→∞ lim sup

n→∞
P∗[∣∣ÑK

n (g) − Ñ (K,B)
n (g)

∣∣ > ε
] = 0.

Noting that the points from the point process Ñ
(K,B)
n are contained in the point process ÑK

n , and using (3.6) and

(3.7), we have |Ñ (K)
n (g) − Ñ

(K,B)
n (g)| = ∑K−1

i=0 (S
(1)
i,n,B + S

(2)
i,n,B), where S

(1)
i,n,B = ∑

e∈Dn−i
(Ae − A

(B)
e )g(b−1

n Xe) and

S
(2)
i,n,B = ∑

e∈Dn−i\D(B)
n−i

A
(B)
e g(b−1

n Xe). Since P∗(·) ≤ (P(S))−1P(·), it is enough to show that for each i, both S
(1)
i,n,B

and S
(2)
i,n,B are negligible under P.

To this end, fix 0 ≤ i ≤ K − 1 and η > 0. Using Markov’s inequality, Wald’s identity and the bound |g| ≤
‖g‖∞1[−∞,−δ)∪(δ,∞], we get

P
(
S

(1)
i,n,B > η

) ≤ 1

η
E(Zn−i )E

(
Ae − A(B)

e
)
E

(
g
(
b−1
n Xe

))
≤ 1

ημi
‖g‖∞E

(
Ae − A(B)

e
)
μnP

(|Xe| > bnδ
)
,

from which first letting n → ∞ based on (2.1) and then letting B → ∞, it follows that

lim
B→∞ lim sup

n→∞
P
(
S

(1)
i,n,B > η

) = 0.

We can deal with S
(2)
i,n,B in a similar fashion and obtain

P
(
S

(2)
i,n,B > η

) ≤ ‖g‖∞
η

E
(
A(B)

e
)
P
(|Xe| > bnδ

)
E

(|Dn−i | −
∣∣D(B)

n−i

∣∣)
≤ ‖g‖∞

η
E(Ae)μ

nP
(|X| > bnδ

)( 1

μi
− μK

B

μi
B

μ−K

)
.

Therefore, limB→∞ lim supn→∞ P(S
(2)
i,n,B > η) = 0. This suffices.

4.3. Proof of Lemma 3.4

We shall first establish (a). To this end, we introduce an event Sn−K which is empty when |Dn−K | = 0, and on
(|Dn−K | > 0), it is the event that there is at least one infinite tree rooted at the (n − K)th generation of the
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underlying Galton–Watson tree. Using 1S = 1(|Dn−K |>0)1Sn−K
and dP∗ = P(S)−11S dP, we get that for every

g ∈ C+
c ([−∞,∞] \ {0}),

E∗[exp
{−Ñ (K,B)

n (g)
}] = 1

P(S)
E

[
1S exp

{−Ñ (K,B)
n (g)

}]
= 1

P(S)
E

[
1(|Dn−K |>0) exp

{−Ñ (K,B)
n (g)

}]
− 1

P(S)
E

[
1(|Dn−K |>0)1Sc

n−K
exp

{−Ñ (K,B)
n (g)

}]
. (4.3)

It is easy to see that the second term of the above is bounded by

1

P(S)
E(1{Zn−K>0}1Sc

n−K
) = 1

P(S)
E

(
1{Zn−K>0}pZn−K

e

)
,

where pe = P(Sc) denotes the probability of extinction of the underlying Galton–Watson tree. Since our tree is
supercritical, pe < 1 and P-almost surely, Zn−K → ∞ as n → ∞ on the event S . Using the P-almost sure convergence
1{Zn−K>0} → 1S , it is easy to see that second term of (4.3) tends to zero as n → ∞.

It is enough to study asymptotics of (4.3). We shall first condition on the Fn−K and then use the fact that condi-
tioned on Fn−K , {(Ae,Xe)e∈Tj

: j = 1, . . . , |Dn−K |} is a collection of independent and identically distributed random
variables under P. This will imply that (4.3) is equal to

1

P(S)
E

[
E

(
1(|Dn−K |>0) exp

{
−

|Dn−K |∑
j=1

∑
e∈T(B)

j

A(B)
e g

(
b−1
n Xe

)}∣∣∣Fn−K

)]

= 1

P(S)
E

[
1(|Dn−K |>0)

(
E

(
exp

{
−

∑
e∈T(B)

1

A(B)
e g

(
b−1
n Xe

)}))|Dn−K |]
. (4.4)

Define TK,B to be the set of all rooted trees having at most K generations and each vertex having at most B

branches. Then the inner expectation in (4.4) can be written as

1 − 1

μn

∑
t∈TK,B

P
(
T

(B)
1 = t

)
E

[
μn

(
1 − e−∑

e∈t A
(B)
e g(b−1

n Xe)
)|T(B)

1 = t
]
.

For each fixed t ∈ TK,B , we shall first compute the limit (as n → ∞) of the conditional expectation in the above
expression. To this end, we shall denote the edges of the tree by the pair (i, j), which will indicate the j th edge in the
ith generation of t. The corresponding A

(B)
e and Xe will be denoted by A

(B)
(i,j) and X(i,j), respectively. Also |t|i will

denote the total number of vertices in the ith generation of t and |t| := ∑K
i=1 |t |i . With these notations, we have

E
[
μn

(
1 − e−∑

e∈t A
(B)
e g(b−1

n Xe)
)|T(B)

1 = t
]

=
∫ (

1 − exp

{
−

K∑
i=1

|t|i∑
j=1

A
(B)
(i,j)g(x(i,j))

})
μnP

(
b−1
n X̃ ∈ dx̃|T(B)

1 = t
)
,

where, conditioned on the event {T(B)
1 = t}, X̃ denotes the vector

(X(1,1), . . . ,X(1,|t|1), . . . ,X(i,1), . . . ,X(i,|t|i ), . . . ,X(K,1), . . . ,X(K,|t|K))

and

Ã(B) = (
A

(B)
(1,1)

, . . . ,A
(B)
(1,|t|1), . . . ,A

(B)
(i,1)

, . . . ,A
(B)
(i,|t|i ), . . . ,A

(B)
(K,1)

, . . . ,A
(B)
(K,|t|K)

)
.
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Using the fact that Xe’s are independent and identically distributed random variables satisfying (2.1), we get

μnP
(
b−1
n X̃ ∈ ·|T(B)

1 = t
) v−→ τt(·) =

K∑
i=1

|t|i∑
j=1

τ t
(i,j)(·) (4.5)

on the space [−∞,∞]|t| \ {0}, where for all 1 ≤ i ≤ K and 1 ≤ j ≤ |t|i

τ t
(i,j) := δ0 × · · · × δ0 × να︸︷︷︸

(|t1|+···+|t|i−1+j)th position

×δ0 × · · · × δ0.

Note that on the event {T(B)
1 = t}, Ã(B) is a deterministic vector completely specified by t. Hence using (4.5), we get

that

∫ (
1 − exp

{
−

K∑
i=1

|t|i∑
j=1

A
(B)
(i,j)g(x(i,j))

})
μnP

(
b−1
n X̃ ∈ dx̃|T(B)

1 = t
)

→
K∑

i=1

|t|i∑
j=1

∫
|x|>0

(
1 − exp

{−A
(B)
(i,j)g(x)

})
να(dx).

Since TK,B is a finite set, it follows that as n → ∞,

∑
t

P
(
T

(B)
1 = t

)∫ (
1 − exp

{
−

K∑
i=1

|t|i∑
j=1

A
(B)
(i,j)g(x(i,j))

})
μnP

(
b−1
n X̃ ∈ dx̃|T(B)

1 = t
)

→
K∑

i=1

E

[|T(B)
1 |i∑

j=1

∫
|x|>0

(
1 − exp

{−A
(B)
(i,j)g(x)

})
να(dx)

]
. (4.6)

Let Z
(B)
i denote the number of particles in the ith generation of the Galton–Watson process with branching random

variable Z
(B)
1 . For every fixed i, |T(B)

1 |i and {A(B)
(i,j) : j ≥ 1} are independent, and {A(B)

(i,j) : j ≥ 1} is a sequence of i.i.d.

random variables with distribution as that of Z
(B)
K−i . Using Wald’s identity we get that (4.6) equals

K∑
i=1

μi
B

∫
|x|>0

(
1 − exp

{−Z
(B)
K−ig(x)

})
να(dx).

Combining this with the almost sure convergence μ−n|Dn−K | → μ−KW (as n → ∞) it follows that

(
E

(
exp

{
−

∑
e∈T(B)

1

A(B)
e g

(
b−1
n Xe

)}))|Dn−K |

=
(

1 − 1

μn

∑
t∈TK,B

P
(
T

(B)
1 = t

)
E

[
μn

(
1 − exp

{
−

∑
e∈t

A(B)
e g

(
b−1
n Xe

)})∣∣∣T(B)
1 = t

])μn |Dn−K |
μn

→ exp

{
− 1

μK
W

K∑
i=1

μi
B

∫
|x|>0

E
(
1 − exp

{−Z
(B)
K−ig(x)

})
να(dx)

}
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almost surely as n → ∞. Note that 1(|Dn−K |>0) → 1S as n → ∞. Therefore an application of dominated convergence
theorem yields, (4.4) converges to

E∗
[

exp

{
−W

1

μK

K∑
i=1

μi
BE

[∫
|x|>0

(
1 − e−Z

(B)
K−ig(x)

)
να(dx)

]}]

= E∗
[

exp

{
−W

μK
B

μK

K−1∑
i=0

μi
BE

[∫
|x|>0

(
1 − e−Z

(B)
i g(x)

)
να(dx)

]}]
.

This can easily be shown (using an argument similar to the one used in Section 3.5) to be the Laplace functional of
the point process

N(K,B)∗ :=
∞∑
l=1

T
(K,B)
l δ(rK,B(

μB
μ

)KW)1/αjl
,

where rK,B = ∑K−1
i=0

1
μi

B

P(Z
(B)
i > 0), {jl}l≥1 is a sequence of random variables such that

∑∞
l=1 δjl

∼ PRM(να) and

{T (K,B)
l }l≥1 is a sequence of i.i.d. random variables (independent of {jl}l≥1 and W ) with probability mass function

P(T1 = y) = 1

rK,B

K−1∑
i=0

1

μi
B

P
(
Z

(B)
i = y

)
, y ∈ N.

Thus (a) follows using Theorem 5.2 in [41].
To establish (b), fix a positive integer K and observe that applying dominated convergence theorem as B → ∞,

the Laplace functional of Ñ
(K,B)
n can be shown to converge to that of

N(K)∗ :=
∞∑
l=1

T
(K)
l δ(rKW)1/αjl

,

where rK = ∑K−1
i=0

1
μi P(Zi > 0) and {T (K)

l }l≥1 is a sequence of i.i.d. random variables (independent of {jl}l≥1 and W )
with probability mass function

P(T1 = y) = 1

rK

K−1∑
i=0

1

μi
P(Zi = y), y ∈ N.

In a similar fashion, (c) can be shown. This completes the proof of Lemma 3.4.

4.4. Proof of Lemma 3.1

To show (3.2), it is enough to take a Lipschitz function g ∈ C+
c (E) (with Lipschitz constant ‖g‖ and support(g) ⊆ {x :

|x| > δ} for some δ > 0) and show that for every ε > 0,

lim
n→∞ P∗(∣∣Nn(g) − Ñn(g)

∣∣ > ε
) = 0. (4.7)

This will be attained by slightly revamping the proof of the convergence in (3.14) of [39]. Some of the estimates
used therein will not work for us mainly because we are dealing with general regularly varying random variables as
opposed to stable ones with an inbuilt Poissonian structure. This hurdle will be overcome by use of Potter’s bound
and a mild modification of the event AMO(θ) defined in page 201 of the aforementioned reference.

For every θ > 0, let An(θ) denote the event that for all v ∈ Dn, at most one of the random variables in the collection
{Xe : e ∈ Iv} is bigger than bnθ/n in absolute value. We claim that

lim
n→∞ P∗(An(θ)c

) = 0. (4.8)
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As in the proof of Lemma 3.2, this follows easily if we can establish that limn→∞ P∗
T
(An(θ)c) = 0 for P∗-almost all T.

To this end, observe that conditioned on the tree T,
∑

e∈Iv
δ|Xe|(bn

θ
n
,∞] ∼ Binomial(n,P(n|Xe| > bnθ)) for each

v ∈ Dn. Hence using Potter’s bound (see, e.g., Proposition 0.8(ii) in [40]), (1.1), (2.1), and the fact that P(Un ≥ 2) =
O(n2p2

n) for any Un ∼ Binomial(n,pn) with pn = o(1/n), we get

P∗
T

(
An(θ)c

) ≤
∑
|v|=n

P∗
T

(∑
e∈Iv

δ|Xe|
(

bn

θ

n
,∞

]
≥ 2

)

≤ (const)|Dn|n2(P
(
n|Xe| > bnθ

))2 → 0

P∗-almost surely as n → ∞.
In light of (4.8), to prove (4.7), it is enough to show that

lim
n→∞ P∗(∣∣Nn(g) − Ñn(g)

∣∣ > ε,An(θ)
) = 0. (4.9)

Let us fix 0 < θ < δ/2. On the event An(θ), define Tv to be the largest (in absolute value) summand in
∑

e∈Iv
Xe. Note

that

P∗
T

(∣∣Nn(g) − Ñn(g)
∣∣ > ε,An(θ)

)
≤ P∗

T

( ∑
|v|=n

∣∣∣∣g(
b−1
n Sv

) −
∑
e∈Iv

g
(
b−1
n Xe

)∣∣∣∣ > ε,An(θ)

)

= P∗
T

( ∑
|v|=n

∣∣g(
b−1
n Sv

) − g
(
b−1
n Tv

)∣∣ > ε,An(θ)

)
. (4.10)

For every v ∈ Dn, |Sv − Tv| < bnθ < bnδ/2 on the event An(θ). So for fixed v ∈ Dn, |g(b−1
n Sv)− g(b−1

n Tv)| > 0 only
if b−1

n Tv > δ/2. Using the fact that g is Lipschitz, we get that for every v, |g(b−1
n Sv)−g(b−1

n Tv)| ≤ ‖g‖b−1
n |Sv −Tv| ≤

‖g‖θ . So (4.10) can be bounded by

P∗
T

(
‖g‖θ

∑
|v|=n

δ
b−1
n Tv

(δ/2,∞] > ε

)

≤ P∗
T

(
‖g‖θ

∑
|v|=n

∑
e∈Iv

δ
b−1
n Xe

([−∞, δ/2) ∪ (δ/2,∞]) > ε

)

= P∗
T

(‖g‖θÑn

([−∞, δ/2) ∪ (δ/2,∞]) > ε
)
.

Unconditioning the above expression and using the fact that Ñn ⇒ N∗ as n → ∞, we get that left hand side of (4.9)
converges to

P∗(‖g‖θN∗
([−∞, δ/2) ∪ (δ/2,∞]) > ε

)
.

Now let θ → 0 to get (4.7).

Remark 4.1. The proof of Lemma 3.1 uses (3.10), which is a consequence of Lemmas 3.2, 3.3 and 3.4; see Section 3.5.
However, this is not a problem because the latter lemmas are proved without using Lemma 3.1.

4.5. Proof of Theorem 2.3

Take two independent sequences of random variables {εi}i≥1 and {λi}i≥1 such that
∑∞

i=1 δλi
∼ PRM(ν+

α ) and
ε1, ε2, . . . are i.i.d. random variables with same distribution as that of ε. Straightforward applications of Proposi-
tions 5.2 and 5.3 of [41] yield that

∑∞
i=1 δεiλi

∼ PRM(να), which, together with (2.5), gives the SScDPPP represen-
tation of N∗.
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To show the second part of this theorem, we follow the computation of Laplace functional in Section 3.5 along
with the scaling property of να and express the left hand side of (2.7) as

E∗
(

exp

{
−W

∫
|x|>0

∞∑
i=0

1

μi
E

(
1 − e−Zif (y−1x)

)
να(dx)

})

= E∗
(

exp

{
−y−αW

∫
|x|>0

∞∑
i=0

1

μi
E

(
1 − e−Zig(x)

)
να(dx)

})
,

which equals the right hand side with

cg =
(∫

|x|>0

∞∑
i=0

1

μi
E

(
1 − e−Zig(x)

)
να(dx)

)−1/α

> 0.

4.6. Proof of Theorem 2.5

Using Theorem 3.1 and Theorem 3.2 of [41] and Theorem 2.1 above, it transpires that Nn([−∞,−x]) converges
weakly to N∗([−∞,−x]) under P∗. Therefore, for each x > 0,

P∗(M ′
n > −bnx

) = P∗(Nn

([−∞,−x]) = 0
) → P∗(N∗

([−∞,−x]) = 0
)
,

from which (a) follows because Tl > 0 for all l ≥ 1 and this implies

P∗(N∗
([−∞,−x]) = 0|W ) = P∗

( ∞∑
l=1

δ(rW)1/αjl

([−∞,−x]) = 0
∣∣∣W

)

= exp
{−rWqx−α

}
.

The k = 1 case of (b) follows similarly from the weak convergence of Nn((x,∞]) to N∗((x,∞]) under P∗. For
k ≥ 2, using the same weak convergence, we get

lim
n→∞ P∗(M(k)

n ≤ bnx
) = lim

n→∞ P∗(Nn

(
(x,∞]) ≤ k − 1

)

= E∗(exp
{−rWpx−α

}) +
k−1∑
l=1

P∗(N∗
(
(x,∞)

) = l
)
. (4.11)

We need to show that the second term of (4.11) is same as that of (2.8). To this end, considering the marked point
process N = ∑∞

l=1 δ(Tl,(rW)1/αjl )
∼ PRM(rW(γ ⊗ να)) conditioned on W , and analyzing exactly how each event

(N∗((x,∞)) = l) can occur, the second term in (4.11) becomes

k−1∑
l=1

∑
π∈�l

P∗
( |π |⋂

j=1

{
N

({ij } × (x,∞]) = yj

})

=
k−1∑
l=1

∑
π∈�l

E∗
[ |π |∏

j=1

((
rWpx−αγ (ij )

)yj 1

yj ! exp
{−rWpx−αγ (ij )

})]
.

This establishes (b).
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In order to verify (c), we need a similar (but slightly tedious) calculation as in the proof of (b) based on the following
observation: for 0 < u < v,

P∗(M(k+1)
n ≤ bnu,M(k)

n ≤ bnv
)

= P∗(Nn

(
(u,∞]) = 0

) + P∗(Nn

(
(v,∞]) = 0,1 ≤ Nn

(
(u, v]) ≤ k

)
+ P∗(1 ≤ Nn

(
(v,∞]) ≤ k − 1,Nn

(
(u,∞]) ≤ k

)
.

Finally, (d) follows from (c) using continuous mapping theorem (see, e.g., Theorem 3.1 in [41]).

Acknowledgements

The authors would like to thank Gregory Schehr for asking a question that resulted in Theorem 2.5(d) above. The
authors are also very grateful to the anonymous referees for their suggestions which have improved the paper signifi-
cantly.

References

[1] L. Addario-Berry and B. Reed. Minima in branching random walks. Ann. Probab. 37 (2009) 1044–1079. MR2537549
[2] E. Aïdékon. Convergence in law of the minimum of a branching random walk. Ann. Probab. 41 (3A) (2013) 1362–1426. MR3098680
[3] E. Aïdékon, J. Berestycki, É. Brunet and Z. Shi. Branching Brownian motion seen from its tip. Probab. Theory Related Fields 157 (1–2)

(2013) 405–451. MR3101852
[4] L.-P. Arguin, A. Bovier and N. Kistler. Genealogy of extremal particles of branching Brownian motion. Comm. Pure Appl. Math. 64 (12)

(2011) 1647–1676. MR2838339
[5] L.-P. Arguin, A. Bovier and N. Kistler. Poissonian statistics in the extremal process of branching Brownian motion. Ann. Appl. Probab. 22

(4) (2012) 1693–1711. MR2985174
[6] L.-P. Arguin, A. Bovier and N. Kistler. The extremal process of branching Brownian motion. Probab. Theory Related Fields 157 (3–4) (2013)

535–574. MR3129797
[7] K. B. Athreya and P. E. Ney. Branching Processes. Dover Publications Inc., Mineola, NY, 2004. Reprint of the 1972 original by Springer,

New York. MR0373040
[8] J. Bérard and P. Maillard. The limiting process of N -particle branching random walk with polynomial tails. Electron. J. Probab. 19 (2014)

Art. ID 22. MR3167886
[9] J. D. Biggins. The first- and last-birth problems for a multitype age-dependent branching process. Adv. in Appl. Probab. 8 (1976) 446–459.

MR0420890
[10] J. D. Biggins. Chernoff’s theorem in the branching random walk. J. Appl. Probab. 14 (3) (1977) 630–636. MR0464415
[11] J. D. Biggins. Martingale convergence in the branching random walk. J. Appl. Probab. 14 (1) (1977) 25–37. MR0433619
[12] N. H. Bingham, C. M. Goldie and J. L. Teugels. Regular Variation. Encyclopedia of Mathematics and Its Applications 27. Cambridge

University Press, Cambridge, 1987. MR0898871
[13] M. Biskup and O. Louidor. Extreme local extrema of two-dimensional discrete Gaussian free field. Comm. Math. Phys. 345 (1) (2016)

271–304. MR3509015
[14] M. Biskup and O. Louidor. Conformal symmetries in the extremal process of two-dimensional discrete Gaussian free field, 2014. Available

at arXiv:1410.4676.
[15] M. Bramson. Convergence of solutions of the Kolmogorov equation to travelling waves. Mem. Amer. Math. Soc. 44 (285) (1983) iv+190.

MR0705746
[16] M. Bramson and O. Zeitouni. Tightness of the recentered maximum of the two-dimensional discrete Gaussian free field. Comm. Pure Appl.

Math. 65 (1) (2012) 1–20. MR2846636
[17] M. Bramson, J. Ding and O. Zeitouni. Convergence in law of the maximum of the two-dimensional discrete Gaussian free field. Comm. Pure

Appl. Math. 69 (1) (2016) 62–123. MR3433630
[18] M. D. Bramson. Maximal displacement of branching Brownian motion. Comm. Pure Appl. Math. 31 (5) (1978) 531–581. MR0494541
[19] É. Brunet and B. Derrida. A branching random walk seen from the tip. J. Stat. Phys. 143 (3) (2011) 420–446. MR2799946
[20] R. Davis and S. Resnick. Limit theory for moving averages of random variables with regularly varying tail probabilities. Ann. Probab. 13 (1)

(1985) 179–195. MR0770636
[21] R. A. Davis and T. Hsing. Point process and partial sum convergence for weakly dependent random variables with infinite variance. Ann.

Probab. 23 (2) (1995) 879–917. MR1334176
[22] Y. Davydov, I. Molchanov and S. Zuyev. Strictly stable distributions on convex cones. Electron. J. Probab. 13 (11) (2008) 259–321.

MR2386734
[23] R. Durrett. Maxima of branching random walks vs. independent random walks. Stochastic Process. Appl. 9 (2) (1979) 117–135. MR0548832
[24] R. Durrett. Maxima of branching random walks. Z. Wahrsch. Verw. Gebiete 62 (2) (1983) 165–170. MR0688983

http://www.ams.org/mathscinet-getitem?mr=2537549
http://www.ams.org/mathscinet-getitem?mr=3098680
http://www.ams.org/mathscinet-getitem?mr=3101852
http://www.ams.org/mathscinet-getitem?mr=2838339
http://www.ams.org/mathscinet-getitem?mr=2985174
http://www.ams.org/mathscinet-getitem?mr=3129797
http://www.ams.org/mathscinet-getitem?mr=0373040
http://www.ams.org/mathscinet-getitem?mr=3167886
http://www.ams.org/mathscinet-getitem?mr=0420890
http://www.ams.org/mathscinet-getitem?mr=0464415
http://www.ams.org/mathscinet-getitem?mr=0433619
http://www.ams.org/mathscinet-getitem?mr=0898871
http://www.ams.org/mathscinet-getitem?mr=3509015
http://arxiv.org/abs/arXiv:1410.4676
http://www.ams.org/mathscinet-getitem?mr=0705746
http://www.ams.org/mathscinet-getitem?mr=2846636
http://www.ams.org/mathscinet-getitem?mr=3433630
http://www.ams.org/mathscinet-getitem?mr=0494541
http://www.ams.org/mathscinet-getitem?mr=2799946
http://www.ams.org/mathscinet-getitem?mr=0770636
http://www.ams.org/mathscinet-getitem?mr=1334176
http://www.ams.org/mathscinet-getitem?mr=2386734
http://www.ams.org/mathscinet-getitem?mr=0548832
http://www.ams.org/mathscinet-getitem?mr=0688983


818 A. Bhattacharya, R. S. Hazra and P. Roy

[25] P. Embrechts, C. Klüppelberg and T. Mikosch. Modelling Extremal Events for Insurance and Finance. Springer-Verlag, Berlin, 1997.
MR1458613

[26] N. Gantert. The maximum of a branching random walk with semiexponential increments. Ann. Probab. 28 (2000) 1219–1229. MR1797310
[27] J. M. Hammersley. Postulates for subadditive processes. Ann. Probab. 2 (1974) 652–680. MR0370721
[28] T. E. Harris. The Theory of Branching Processes. Die Grundlehren der Mathematischen Wissenschaften 119. Springer-Verlag, Berlin;

Prentice-Hall, Inc., Englewood Cliffs, NJ, 1963. MR0163361
[29] Y. Hu and Z. Shi. Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered

trees. Ann. Probab. 37 (2) (2009) 742–789. MR2510023
[30] O. Kallenberg. Random Measures, 4th edition. Akademie-Verlag, Berlin; Academic Press, Inc., London, 1986. MR0854102
[31] H. Kesten and B. P. Stigum. A limit theorem for multidimensional Galton–Watson processes. Ann. Math. Stat. 37 (1966) 1211–1223.

MR0198552
[32] J. F. C. Kingman. The first birth problem for an age-dependent branching process. Ann. Probab. 3 (1975) 790–801. MR0400438
[33] A. E. Kyprianou. A note on branching Lévy processes. Stochastic Process. Appl. 82 (1) (1999) 1–14. MR1695066
[34] S. P. Lalley and T. Sellke. A conditional limit theorem for the frontier of a branching Brownian motion. Ann. Probab. 15 (1987) 1052–1061.

MR0893913
[35] S. P. Lalley and Y. Shao. Maximal displacement of critical branching symmetric stable processes. Ann. Inst. Henri Poincaré Probab. Stat. 52

(3) (2016) 1161–1177. MR3531704
[36] T. Madaule. Convergence in law for the branching random walk seen from its tip. J. Theoret. Probab. 30 (1) (2017) 27–63. MR3615081
[37] P. Maillard. A note on stable point processes occurring in branching Brownian motion. Electron. Commun. Probab. 18 (2013) Art. ID 5.

MR3019668
[38] K. Ramola, S. N. Majumdar and G. Schehr. Universal order and gap statistics of critical branching Brownian motion. Phys. Rev. Lett. 112

(21) (2014) 210602.
[39] S. Resnick and G. Samorodnitsky. Point processes associated with stationary stable processes. Stochastic Process. Appl. 114 (2) (2004)

191–209. MR2101240
[40] S. I. Resnick. Extreme Values, Regular Variation, and Point Processes. Applied Probability. A Series of the Applied Probability Trust 4.

Springer-Verlag, New York, 1987. MR0900810
[41] S. I. Resnick. Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer Series in Operations Research and Financial Engi-

neering. Springer, New York, 2007. MR2271424
[42] E. Subag O. Zeitouni. Freezing and decorated Poisson point processes. Comm. Math. Phys. 337 (1) (2015) 55–92. MR3324155

http://www.ams.org/mathscinet-getitem?mr=1458613
http://www.ams.org/mathscinet-getitem?mr=1797310
http://www.ams.org/mathscinet-getitem?mr=0370721
http://www.ams.org/mathscinet-getitem?mr=0163361
http://www.ams.org/mathscinet-getitem?mr=2510023
http://www.ams.org/mathscinet-getitem?mr=0854102
http://www.ams.org/mathscinet-getitem?mr=0198552
http://www.ams.org/mathscinet-getitem?mr=0400438
http://www.ams.org/mathscinet-getitem?mr=1695066
http://www.ams.org/mathscinet-getitem?mr=0893913
http://www.ams.org/mathscinet-getitem?mr=3531704
http://www.ams.org/mathscinet-getitem?mr=3615081
http://www.ams.org/mathscinet-getitem?mr=3019668
http://www.ams.org/mathscinet-getitem?mr=2101240
http://www.ams.org/mathscinet-getitem?mr=0900810
http://www.ams.org/mathscinet-getitem?mr=2271424
http://www.ams.org/mathscinet-getitem?mr=3324155

	Introduction
	The results
	Scale-decorated Poisson point processes
	Order and gap statistics

	Outline of proof of Theorem 2.1
	One large jump
	Cutting the tree
	Pruning the forest
	Computation of weak limit
	Proof of Theorem 2.1

	Rest of the proofs
	Proof of Lemma 3.2
	Proof of Lemma 3.3
	Proof of Lemma 3.4
	Proof of Lemma 3.1
	Proof of Theorem 2.3
	Proof of Theorem 2.5

	Acknowledgements
	References

