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Abstract. In this paper we provide new conditions for the Malliavin differentiability of solutions of Lipschitz or quadratic BSDEs.
Our results rely on the interpretation of the Malliavin derivative as a Gâteaux derivative in the directions of the Cameron–Martin
space. Incidentally, we provide a new formulation for the characterization of the Malliavin–Sobolev type spaces D1,p .

Résumé. Dans cet article, nous donnons de nouvelles conditions nous assurant que les solutions d’EDSR à générateurs lipschit-
ziens ou à croissance quadratique sont différentiables au sens de Malliavin, en utilisant l’interprétation de la dérivée de Malliavin
comme dérivée de Gâteaux directionnelle par rapport à l’espace de Cameron–Martin. Ce résultat est en outre basé sur une nouvelle
caractérisation des espaces de Malliavin–Sobolev D

1,p que nous fournissons.
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1. Introduction

Backward Stochastic Differential Equations (BSDEs) have been studied extensively in the last two decades as they
naturally arise in the context of stochastic control problems (for instance in Finance see [9]), and as they provide a
probabilistic representation for solution to semi-linear parabolic PDEs, via a non-linear Feynman–Kac formula (see
[20]). Before going further let us recall that this class of equations has been introduced in [4,19,20] and that a BSDE
can be formulated as:

Yt = ξ +
∫ T

t

f (s, Ys,Zs) ds −
∫ T

t

Zs dWs, t ∈ [0, T ], (1.1)

where T is a fixed positive number, W := (Wt )t∈[0,T ] is a one-dimensional Brownian motion defined on a probability
space (�,FT ,P) with natural filtration (Ft )t∈[0,T ]. The data of the equation are the FT -measurable r.v. ξ , called the
terminal condition, and the mapping f : [0, T ]×�×R

2 →R which is a progressively measurable process and where
according to the notations used in the literature we write f (t, y, z) for f (t,ω, y, z). A solution to the BSDE (1.1) is
then a pair of predictable processes (Y,Z), with appropriate integrability properties, such that Relation (1.1) holds
P-a.s.

When dealing with applications, one needs to obtain regularity properties on the solution (Y,Z), such as the
Malliavin differentiability of the random variables Yt , Zt at a given time t in [0, T ]. Note that for the Z component
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this question needs to be clarified a little bit because of the definition of Z, cf. Theorem 5.1 for a precise statement.
More precisely, one needs to answer the following question:

Which conditions on the data ξ and f in (1.1) ensure that Yt , Zt are Malliavin differentiable?

This question was first addressed in the paper [20] in a Markovian setting, that is when ξ := g(XT ) and f (t,ω, y, z) :=
h(t,Xt (ω), y, z) where g : R → R and h : [0, T ] × R

3 → R are regular enough deterministic functions and X :=
(Xt )t∈[0,T ] is the unique solution to a SDE of the form:

Xt = X0 +
∫ t

0
σ(s,Xs) dWs +

∫ t

0
b(s,Xs) ds, t ∈ [0, T ],

with regular enough coefficients σ,b : [0, T ] ×R→ R. In that framework, Pardoux and Peng proved in [20, Proposi-
tion 2.2] that, under (essentially) the following conditions:

(PP1) g is continuously differentiable with bounded derivative.
(PP2) h is continuously differentiable in (x, y, z) with bounded derivatives uniformly in time,

Yt is Malliavin differentiable at any time t , with a similar statement for Z, and the Malliavin derivatives of Y and Z

provide a solution to an explicit linear BSDE. To be more precise, in [20] the authors make one assumption for the
whole paper which is stronger than (PP1)–(PP2) above. However a careful reading of the proof of [20, Proposition 2.2]
enables one to conclude that Conditions (PP1)–(PP2) are sufficient to obtain the Malliavin differentiability of the
solution. Assumptions (PP1)–(PP2) look pretty intuitive since they basically require the Malliavin differentiability of
the terminal condition ξ and of the generator f once the component (y, z) are frozen, i.e., of the process (t,ω) �→
f (t,ω, y, z) for given (y, z). Hence, it is natural to expect that the latter conditions can be easily generalized to the
non-Markovian framework. Unfortunately, the first result in that direction, given by El Karoui, Peng and Quenez in
[9], requires more stringent conditions than the aforementioned intuitive ones. More explicitly, the main result in
[9] concerning the Malliavin differentiability of the solution to the BSDE (1.1) (essentially) involves the following
conditions (see [9, Proposition 5.3] for a precise statement):

(EPQ1) ξ is Malliavin differentiable1 and E[|ξ |4] < +∞.
(EPQ2) At any time t ∈ [0, T ], the r.v. ω �→ f (t,ω,Yt ,Zt ) is Malliavin differentiable2 with Malliavin deriva-

tive denoted by D·f (t, Yt ,Zt ) such that there exists a predictable process Kθ := (Kθ
t )t∈[0,T ] with∫ T

0 E[(∫ T

0 |Kθ
s |2 ds)2]dθ < +∞, and such that for any (y1, y2, z1, z2) ∈R

4 it holds for a.e. θ ∈ [0, T ] that:∣∣Dθf (t,ω, y1, z1) − Dθf (t,ω, y2, z2)
∣∣ ≤ Kθ

t (ω)
(|y1 − y2| + |z1 − z2|

)
.

Roughly speaking, this means that ξ and ω �→ f (t,ω, y, z) have to be Malliavin differentiable, but in order to prove
that Y and Z are Malliavin differentiable, one needs to enforce an extra regularity conditions on each of the data:
that is ξ has a finite moment of order 4, and the Malliavin derivative of the driver f is Lipschitz continuous in (y, z)

with a sufficiently integrable stochastic Lipschitz constant K . Note that a careful reading of the proof allows one to
conclude that the moment conditions on ξ and Df can actually be relaxed to hold only in L2+ε for some ε > 0.
Besides, as noted in [9, Remark at the bottom of p. 59], if K is bounded then the proof can be modified so that the
extra integrability condition on ξ (i.e. E[|ξ |4] < +∞) can be dropped. However, even in this case, one can check that
in the Markovian framework, Conditions (EPQ1)–(EPQ2) are strictly stronger than Conditions (PP1)–(PP2).

Since these two seminal papers, the most notable extension was concerned with the study of the Malliavin differ-
entiability of (Y,Z) in a quadratic setting, that is to say when the generator f has quadratic growth in the z variable,
a problem addressed in [2,8,11,12]. Notice nonetheless that the proofs in these references are strongly influenced by
the ones in the Lipschitz setting of [9,20], as they all start by approximating the quadratic generators by Lipschitz ones,
to which they apply the results of [9,20]. The applications of the Malliavin differentiability of BSDEs also received a
lot of attention in the literature. Hence, it was used in the context of numerical schemes for BSDEs in, among others,

1That is, ξ is in D
1,2.

2In fact as an adapted process it belongs to D1,2, we refer to the space L
a
1,2 whose precise definition is recalled in [9, p. 58].
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[6,10], or to study the existence and regularity of densities for the marginal laws of (Y,Z) in [1,3,17]. However, in
all the above references, the authors always refer to either [9,20] in a Lipschitz context or [2] in a quadratic context,
when stating differentiability results in the Malliavin sense (see for instance the sentence before Theorem 2.2 in [3],
or Step 2 in the proof of Theorem 3.3 in [1], which refers to [3], or the proof of Part a) of Theorem 2.6 in [10], or
Proposition 3.2 in [17]).

The aim of this paper is to provide an alternative sufficient condition to (EPQ1)–(EPQ2) for the Malliavin differ-
entiability of the solution to a BSDE of the form (1.1) in the general non-Markovian setting. Our main result in that
direction is Theorem 5.1 below, using a fundamentally different approach from [9,20], as well as different type of as-
sumptions. Since they involve some notations concerning the analysis on the Wiener space, we refrain from detailing
them immediately, and rather explain informally what are the main differences between our approach and the one of
[9]. For the sake of simplicity in this introduction, we expose the problem under interest in the one dimensional case,
however the present paper handles also the higher dimensional case. A natural way to solve a BSDE of the form (1.1)
when the driver f is Lipschitz in (y, z) is to make use of a Picard iteration, that is to say a family (Y n,Zn) of solutions
to BSDEs satisfying

Yn
t = ξ +

∫ T

t

f
(
s, Y n−1

s ,Zn−1
s

)
ds −

∫ T

t

Zn
s dWs, t ∈ [0, T ], (1.2)

where Y 0 ≡ Z0 ≡ 0. Then, a fixed point argument allows one to construct, in appropriate spaces, a solution (Y,Z)

to Equation (1.1). If ξ and f (t, y, z) are Malliavin differentiable, then so is (Y n,Zn). Then, it just remains to prove
that this property extends to the limits Y and Z of respectively Yn and Zn, in appropriate spaces. More precisely this
is done by a uniform (in n) control of the Sobolev norms of Yn,Zn or equivalently by proving that the Malliavin
derivatives (DYn,DZn) of (Y n,Zn) converge to the solution of a linear BSDE whose solution will be the Malliavin
derivatives (DY,DZ) of Y and Z. This last step is exactly where the extra regularity (EPQ1)–(EPQ2) is needed. It
appears quite clearly that for this approach, the conditions of [9] cannot be optimized in the general case. Even though
this idea seems pretty natural, it is based on a choice somehow arbitrary. Indeed, a necessary condition for DYt to be
well defined at a given time t , is that there exists a sequence of random variables (F n)n converging to Yt in L2 such
that each variable Fn is Malliavin differentiable with derivative DFn and such that DFn converges, with respect to
a suitable norm, to DYt . As a consequence, in the approach described above, one believes that this sequence (F n)n
can be chosen to be the Picard iteration (Y n)n. Once again, this idea looks very natural, according to the same type of
proofs for SDEs, but then one sees that in the BSDE framework this intuitive idea leads to pretty heavy assumptions.
We elaborate a little bit more on this point in Section 6.3.

Regarding the discussion above, one could think of trying to find a sequence of processes known to approximate
the Malliavin derivative of Y (and Z) when Y is Malliavin differentiable. This approximation is provided by the
well-known interpretation of the Malliavin derivative as a Gâteaux derivative in the directions of the Cameron–Martin
space. More precisely, a necessary condition for Yt to belong to D

1,2, is that for any absolutely continuous function
h starting from 0 at 0 with derivative denoted ḣ, the difference quotient ε−1(Yt (ω + εh) − Yt (ω)) converges, in a
sense to be made precise, as ε goes to 0 to 〈DYt , ḣ〉L2([0,T ]). This fact was initially given by Malliavin and then
extended by Stroock, Shigekawa, Kusuoka and Sugita in a series of papers [15,16,22–24]. In addition, Sugita proved
in [24] that a r.v. F is Malliavin differentiable if it is ray absolutely continuous3 and if it is stochastically Gâteaux
differentiable. Using the main ideas of [24] we provide incidentally a new formulation of the characterization of the
Malliavin–Sobolev type spaces D

1,p in Theorem 4.1. Since we did not find explicitly this characterization in the
literature, we believe that this result is new and maybe interesting by itself. The main point is that this formulation
is especially handy when dealing with stochastic equations like BSDEs. With this result at hand, we obtain new
conditions (see Assumptions (D), (H1) and (H2) at the beginning of Section 5) for Y,Z to be Malliavin differentiable,
see Theorem 5.1. Our assumptions refine those of [9,20] in the Markovian case, and our approach is directly applicable
to quadratic growth BSDEs since we do not rely on any approximation procedure. We refer the reader to Section 6 for
some examples and a discussion on the differences between our approach and the one of [9,20].

The rest of the paper is organised as follows. We start below with some preliminaries. Then we turn in Section 3
to some elements of analysis on the Wiener space. Our characterization of the sets D1,p is given in Section 4, and the

3We refer to Section 4 where this notion is recalled.
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material on the Malliavin differentiability of BSDEs itself is contained in Section 5. We provide applications and a
comparison of the results in Section 6. Finally, we extend our approach to quadratic growth BSDEs in Section 7.

2. Preliminaries

2.1. Notations

We fix throughout the paper a time horizon T > 0 and d a positive integer. For any positive integer k, we denote by
‖ · ‖ the Euclidean norm in R

k and by · the inner product, without mention of k which will be clear in the context. For
any positive integers n and m, we identify R

n×m with the space of real matrices with n rows and m columns, endowed
with the Euclidean norm on R

n×m. Let M be in R
n×m, 1 ≤ j ≤ n and 1 ≤ � ≤ m, we denote by Mj,: ∈ R

1×m (resp.
M :,� ∈ R

n,1) its j th row (resp. its �th column). We set M� ∈ R
m×n to be the transpose of M . We also identify R

k with
R

1,k . Let now � := C0([0, T ],Rd) be the canonical Wiener space of continuous function ω := (ω1, . . . ,ωd)� from
[0, T ] to R

d such that ω(0) = (0, . . . ,0)�. Let W := (W 1
t , . . . ,Wd

t )�t∈[0,T ] be the canonical Wiener process, that is,

for any time t in [0, T ], Wt denotes the evaluation mapping: Wi
t (ω) := ωi

t for any element ω in � and i in {1, . . . , d}.
We set Fo the natural filtration of W . Under the Wiener measure P0, the process W is a standard Brownian motion
and we denote by F := (Ft )t∈[0,T ] the usual augmentation (which is right-continuous and complete) of Fo under P0.
Unless otherwise stated, all the expectations considered in this paper will have to be understood as expectations under
P0, and all notions of measurability for elements of � will be with respect to the filtration F or the σ -field FT .

For any Hilbert space K, for any p ≥ 1 and for any t ∈ [0, T ], we set Lp([t, T ];K) to be following space

Lp
([t, T ];K) :=

{
f : [t, T ] −→K,Borel-measurable, s.t.

∫ T

t

∥∥f (s)
∥∥p

K ds < +∞
}
,

where the norm ‖ · ‖K is the one canonically induced by the inner product on K. We denote, for simplicity, by
H := L2([0, T ];Rd) and by 〈·, ·〉H its canonical inner product, that is to say

〈f,g〉H :=
∫ T

0
f (s) · g(s) ds =

d∑
i=1

∫ T

0
f i(s)gi(s) ds, (f, g) ∈H2.

Let now H be the Cameron–Martin space that is the space of functions in � which are absolutely continuous with
square-integrable derivative and which start from 0 at 0:

H :=
{
h : [0, T ] −→R

d,∃ḣ ∈ H, h(t) =
∫ t

0
ḣ(x) dx,∀t ∈ [0, T ]

}
.

For any h in H , we will always denote by ḣ a version of its Radon–Nykodym density with respect to the Lebesgue
measure. Then, H is an Hilbert space equipped with the inner product 〈h1, h2〉H := 〈ḣ1, ḣ2〉H, for any (h1, h2) ∈
H × H , and with associated norm ‖h‖2

H := 〈ḣ, ḣ〉H. Define next Lp(K) as the set of all FT -measurable random
variables F which are valued in an Hilbert space K, and such that ‖F‖p

Lp(K)
< +∞, where

‖F‖Lp(K) := (
E

[‖F‖p

K
])1/p

.

Let now S be the set of cylindrical functionals, that is the set of R-valued random variables F of the form

F = f
(
W(h1), . . . ,W(hn)

)
, (h1, . . . , hn) ∈ Hn,f ∈ C∞

b

(
R

n
)
, for some n ≥ 1, (2.1)

where W(h) := ∫ T

0 ḣs · dWs := ∑d
i=1

∫ T

0 ḣi
s dWi

s for any h in H and where C∞
b (Rn) denotes the space of bounded

mapping which are infinitely continuously differentiable with bounded derivatives. For any F in S of the form (2.1),
the Malliavin derivative ∇F of F is defined as the following H -valued random variable:

∇F :=
n∑

i=1

fxi

(
W(h1), . . . ,W(hn)

)
hi, (2.2)
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where fxi
:= ∂f

∂xi
. It is then customary to identify ∇F with the stochastic process (∇tF )t∈[0,T ], where ∇tF ∈ Rd for

any t ∈ [0, T ]. More precisely, we define for any (t,ω) ∈ [0, T ] × �,

∇tF (ω) :=
n∑

i=1

fxi

(
W(h1)(ω), . . . ,W(hn)(ω)

)
hi(t).

Denote then by D
1,p the closure of S with respect to the Malliavin–Sobolev semi-norm ‖ · ‖1,p , defined as:

‖F‖1,p := (
E

[|F |p] +E
[‖∇F‖p

H

])1/p
.

We set D1,∞ := ⋂
p≥2 D

1,p . In order to link our notations with the ones of the related papers [9,20] we make use of
the notation DF to represent the derivative of ∇F as:

∇tF =
∫ t

0
DsF ds, t ∈ [0, T ].

We denote by δ : Lp(H) → Lp(R) the adjoint operator of ∇ by the following duality relationship:

E
[
Fδ(u)

] = E
[〈∇F,u〉H

]
, ∀u ∈ dom(δ),where

dom(δ) := {
u ∈ Lp(H),∃cu > 0,

∣∣E[〈∇F,u〉H
]∣∣ ≤ cu‖F‖Lp(R),∀F ∈D

1,p
}
.

δ is also known under the name of Skorohod (or divergence) operator. Recall that any element u of the form u := Gh

with G in S and h in H belongs to dom(δ) and that

δ(Gh) = GW(h) − 〈∇G,h〉H , (2.3)

see for example [18, Relation (1.46)]. Note that for any h in H , δ(h) = W(h).
Notice that in [24] the cylindrical space, that we will denote by P in the following, is the space of functionals F of

the form (2.1) with f a polynomial. More precisely let P be the set of polynomial cylindrical functionals, that is the
set of random variables F of the form

F = f
(
W(h1), . . . ,W(hn)

)
, (h1, . . . , hn) ∈ Hn,f ∈ R

n[X], for some n ≥ 1, (2.4)

where R
n[X] denotes the set of polynomials of degree less or equal to n. However, the closures of both S and P with

respect to any ‖ · ‖1,p coincide, as any polynomial together with its derivative can be approximated in Lp(Rn) (see
Lemma 2.1 below).

Lemma 2.1. Let G be in P . There exists a sequence (GN)N≥1 ⊂ S such that limN→+∞ GN = G in D
1,r for any

r ≥ 1.

Proof. Let G := f (W(h1), . . . ,W(hn)) with n ≥ 1, hi in H and f in R
n[X]. Without loss of generality, we assume

that the family (h1, . . . , hn) is orthonormal in H . Let θ be a cutoff function, that is a mapping θ : Rn →R
+ such that

θ(x) = 1 if ‖x‖ < 1, θ(x) = 0 for ‖x‖ ≥ 2, and such that θ ∈ C∞
b (Rn). For N ≥ 1, we set:

GN := f N
(
W(h1), . . . ,W(hn)

)
, f N(x) := f (x) × θ(x/N), x ∈R

n.

Note that each random variable GN belongs to S . Fix r ≥ 1. We aim at proving that limN→+∞ ‖GN − G‖1,r = 0. On
the one hand,

E
[∣∣GN − G

∣∣r] = E

[
|G|r

∣∣∣∣θ
(

W(h1)

N
, . . . ,

W(hn)

N

)
− 1

∣∣∣∣r
]

≤ E
[|G|2r

]1/2
E

[∣∣∣∣θ
(

W(h1)

N
, . . . ,

W(hn)

N

)
− 1

∣∣∣∣2r]1/2

≤ C

∫
Rn\Bn(0,N)

e−‖x‖2/2 dx,
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where C is a positive constant. Hence, limN→+∞ E[|GN − G|r ] = 0. We now turn to the proof of the convergence of
the derivatives. We have

∇GN =
n∑

i=1

∂f N

∂xi

(
W(h1), . . . ,W(hn)

)
hi,

with ∂f N

∂xi
(x) = ∂f

∂xi
θ(x/N) + N−1f (x) ∂θ

∂xi
(x/N). Hence:

E
[∥∥∇(

GN − G
)∥∥2r

H

] =
n∑

i=1

E

[∣∣∣∣∂f N

∂xi

− ∂f

∂xi

∣∣∣∣2r(
W(h1), . . . ,W(hn)

)]

≤ C

(
n∑

i=1

E

[∣∣∣∣ ∂f

∂xi

(
W(h1), . . . ,W(hn)

)∣∣∣∣2r ∣∣∣∣θ
(

W(h1)

N
, . . . ,

W(hn)

N

)
− 1

∣∣∣∣2r]

+ N−2r
E

[∣∣∣∣ ∂θ

∂xi

(
W(h1)

N
, . . . ,

W(hn)

N

)
× f

(
W(h1), . . . ,W(hn)

)∣∣∣∣2r])

−→
N→+∞ 0. �

We conclude this section by introducing the following norms and spaces which are of interest when studying
BSDEs. For any positive integers p,n, we set Sp

n the space of Rn-valued, continuous and F-progressively measurable
processes Y s.t.

|Y |p
S

p
n

:= E

[
sup

0≤t≤T

‖Yt‖p
]

< +∞.

We denote by H
p
n,d the space of Rn×d -valued and F-predictable processes Z such that

|Z|p
H

p
n,d

:= E

[(∫ T

0

n∑
j=1

∥∥Z
j
t

∥∥2
dt

)p/2]
< +∞.

We set Sp := S
p

1 and H
p
d := H

p

1,d .

3. Some elements of analysis on the Wiener space

One of the main tool that we will use throughout this paper is the shift operator along directions in the Cameron–
Martin space. More precisely, for any h ∈ H , we define the following shift operator τh : � → � by

τh(ω) := ω + h := (
ω1 + h1, . . . ,ωd + hd

)�
.

Note that the fact that h belongs to H ensures that τh is a measurable shift on the Wiener space. In fact, one can
be a bit more precise, since according to [25, Lemma B.2.1] for any FT -measurable r.v. F the mapping h �→ F ◦ τh

is continuous in probability from H to L0(Rd), the space of real-valued and FT -measurable random variables, see
Lemma 3.2 below. Taking F = Id, one gets that τh is a continuous mapping on � for any h in H . We list below some
other properties of such shifts.

Lemma 3.1 ([25, Appendix B.2]). Let X and Y be two FT -measurable random variables. If X = Y , P0-a.s., then for
any h in H ,

X ◦ τh = Y ◦ τh, P0-a.s.
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We recall, the quite surprising result that any r.v. is continuous in probability in the directions of the Cameron–
Martin space. More precisely:

Lemma 3.2 ([25, Lemma B.2.1]). Let F be a FT -measurable random variable. The mapping h �→ F ◦ τh is contin-
uous from H to L0(Rd) where the convergence is in probability.

One of the main technique when working with shifts on the path space is the famous Cameron–Martin formula.

Proposition 3.1 (Cameron–Martin formula, see e.g. [25, Appendix B.1]). Let F be a FT -measurable random
variable and let h be in H . Then, when both sides are well defined

E[F ◦ τh] = E

[
F exp

(∫ T

0
ḣ(s) · dWs − 1

2

∫ T

0

∥∥ḣ(s)
∥∥2

ds

)]
.

For further reference, we also emphasize that for any h ∈ H and for any p ≥ 1, the stochastic exponential E(
∫ ·

0 ḣ(s) ·
dWs) := exp(

∫ ·
0 ḣ(s) · dWs − 1

2

∫ ·
0 ‖ḣ(s)‖2 ds) verifies

E
(∫ ·

0
ḣ(s) · dWs

)
∈ S

p, ∀p ≥ 1. (3.1)

Lemma 3.3. Let t in [0, T ] and let F be a Ft -measurable random variable. For any h in H , it holds that

F ◦ τh = F ◦ τ
h̃t , P0-a.s.,

where

h̃t (s) :=
(∫ s

0
ḣ1(u)10≤u≤t du, . . . ,

∫ s

0
ḣd (u)10≤u≤t du

)�
.

In particular, F ◦ τh is Ft -measurable.

Proof. It is well known that by definition of P0, any Ft -measurable random variable admits a Fo
t -measurable version.

Therefore, there exists some measurable map ϕ : � → R, such that

F = ϕ(W·∧t ), P0-a.s.

Hence, we deduce by Lemma 3.1 that for P0-a.e. ω ∈ �

F ◦ τh(ω) = ϕ
(
W·∧t (ω)

) ◦ τh = ϕ
(
W·∧t ◦ τh(ω)

) = ϕ
(
ω(· ∧ t) + h(· ∧ t)

) = F ◦ τ
h̃t (ω). �

We conclude this section with the following lemma which might be known. However since we did not find it in the
literature we provide a proof in order to make this paper self-contained.

Lemma 3.4. Let Z ∈H
2
d and h in H . It holds that

∫ T

0
Zs · dWs ◦ τh =

∫ T

0
Zs ◦ τh · dWs +

∫ T

0
Zs ◦ τh · ḣ(s) ds, P0-a.s.

Proof. Let S be the class of simple processes X of the form

Xt := (
X1

t , . . . ,X
d
t

)�
, X

j
t =

nj∑
i=0

λ
j
i 1

(t
j
i ,t

j
i+1](t), j ∈ {1, . . . , d},
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where for any j ∈ {1, . . . , d}, nj ∈ N∗, t
j

0 = 0 < t
j

1 < · · · < t
j
n = T and where for any 0 ≤ i ≤ nj , (λ

j
i )i=1,...,nj

are
F

t
j
i

-measurable and in L2(R).

We start by proving the result for Z in S and then we prove the result for any element Z in H
2
d using a density

argument. Let Z ∈S with the decomposition

Zs = (
Z1

s , . . . ,Z
d
s

)�
, Z

j
s :=

nj∑
i=0

λ
j
i 1

(t
j
i ,t

j
i+1](s), s ∈ [0, T ], j ∈ {1, . . . , d}.

Then, for any h ∈ H and for every ω ∈ �,

(∫ T

0
Zs · dWs ◦ τh

)
(ω) =

(
d∑

j=1

nj∑
i=0

λ
j
i

(
W

j

t
j
i+1

− W
j

t
j
i

))
◦ τh(ω)

=
d∑

j=1

nj∑
i=0

λ
j
i (ω + h)

(
W

j

t
j
i+1

− W
j

t
j
i

)
(ω + h)

=
d∑

j=1

nj∑
i=0

λ
j
i ◦ τh(ω)

(
ωj

(
t
j

i+1

) − ω
(
t
j
i

) + hj
(
t
j

i+1

) − hj
(
t
j
i

))

=
∫ T

0
Zs ◦ τh · dWs(ω) +

∫ T

0
Zs ◦ τh(ω) · dhs,

which gives the desired result since h is absolutely continuous. We extend this result to processes Z in H
2
d . Let Z ∈H

2
d ,

then there exists a sequence (Zn)n∈N in S which converges to Z in H
2
d . Hence,

E

[∣∣∣∣
∫ T

0
Zs · dWs ◦ τh −

∫ T

0
Zs ◦ τh · dWs −

∫ T

0
Zs ◦ τh · dhs

∣∣∣∣
]

≤ E

[∣∣∣∣
∫ T

0
Zs · dWs ◦ τh −

∫ T

0
Zn

s · dWs ◦ τh

∣∣∣∣
]

+E

[∣∣∣∣
∫ T

0
Zn

s ◦ τh · dWs −
∫ T

0
Zs ◦ τh · dWs

∣∣∣∣
]

+E

[∣∣∣∣
∫ T

0
Zn

s ◦ τh · dhs −
∫ T

0
Zs ◦ τh · dhs

∣∣∣∣
]

≤ E

[∣∣∣∣
∫ T

0

(
Zs − Zn

s

) · dWs

∣∣∣∣ ◦ τh

]
︸ ︷︷ ︸

=:An

+E

[∣∣∣∣
∫ T

0

(
Zn

s − Zs

) ◦ τh · dWs

∣∣∣∣
]

︸ ︷︷ ︸
=:Bn

+E

[∣∣∣∣
∫ T

0

(
Zn

s − Zs

) ◦ τh · dhs

∣∣∣∣
]

︸ ︷︷ ︸
=:Cn

.

Let us estimate these three terms. First, using Proposition 3.1, Cauchy–Schwarz inequality, then Burkholder–
Davis–Gundy inequality, we have

An = E

[∣∣∣∣
∫ T

0

(
Zs − Zn

s

) · dWs

∣∣∣∣e∫ T
0 ḣ(s)·dWs−(1/2)

∫ T
0 ‖ḣ(s)‖2 ds

]

≤ E

[∫ T

0

∥∥Zs − Zn
s

∥∥2
ds

]1/2

E

[
E

(∫ ·

0
ḣ(s) · dWs

)2

T

]1/2

.
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By (3.1), this clearly goes to 0 as n goes to infinity. Similarly, using Burkholder–Davis–Gundy Inequality, we have

Bn ≤ E

[(∫ T

0

∥∥(
Zn

s − Zs

) ◦ τh

∥∥2
ds

)1/2]
= E

[(∫ T

0

∥∥Zn
s − Zs

∥∥2
ds

)1/2

◦ τh

]
.

Therefore, we can use Proposition 3.1 and Cauchy–Schwarz inequality, to also deduce that Bn →n→+∞ 0. Finally,
we have

Cn = E

[
E

(∫ T

0
ḣ(s) · dWs

)∣∣∣∣
∫ T

0

(
Zn

s − Zs

) · ḣ(s) ds

∣∣∣∣
]

≤ E

[
E

(∫ T

0
ḣ(s) · dWs

)2]1/2

E

[(∫ T

0

∥∥Zn
s − Zs

∥∥∥∥ḣ(s)
∥∥ds

)2]1/2

≤ E

[
E

(∫ T

0
ḣ(s) · dWs

)2]1/2

E

[∫ T

0

∥∥Zn
s − Zs

∥∥2
ds

]1/2(∫ T

0

∥∥ḣ(s)
∥∥2

ds

)1/2

,

which also goes to 0 as n goes to infinity. Therefore the proof is complete. �

This result entails the following useful consequence. Let t in (0, T ] and h in H such that ḣs = (0, . . . ,0) for s ≥ t .
Then for any Z in H

2
d , it holds that:

∫ T

t

Zs · dWs ◦ τh =
∫ T

t

Zs ◦ τh · dWs, P0-a.s., (3.2)

since
∫ T

t
Zs ◦ τh · ḣ(s) ds = 0.

4. A characterization of Malliavin differentiability

Before going further, we would like to recall the main finding of [24]. Any Malliavin–Sobolev type space D
1,p as

defined in Section 2 (originally defined by Malliavin [16] and Shigekawa [22]) agrees with the Sobolev space (due
to Stroock [23] and Kusuoka [15]) D̃1,p consisting in the set of Ray Absolutely Continuous (RAC) and Stochastically
Gâteaux Differentiable (SGD) r.v. F in Lp(R), where these notions are defined as follows:

(RAC) For any h in H , there exists a r.v. F̃h such that F̃h = F , P0-a.s., and such that for any ω in �, t ∈ R �→
F̃h(ω + th) is absolutely continuous, where th := (th1, . . . , thd).

(SGD) There exists DF in Lp(H) such that for any h in H ,

F ◦ τεh − F

ε
−→
ε→0

〈DF,h〉H , in probability. (4.1)

In addition, for any F in D
1,p , ∇F = DF , P0-a.s. Note that according to the statement of Step 1 in the proof of [24,

Theorem 3.1], if F is (RAC) and (SGD) then for any h in H and any ε > 0 it holds that

ε−1(F̃h ◦ τεh − F̃h) = ε−1
∫ ε

0
〈∇F ◦ τsh, h〉H ds, P0-a.s.

Furthermore, by Lemma 3.1, we have for any ε there exists a set Aε such that P0[Aε] = 0 and F ◦ τεh = F̃h ◦ τεh and
F = F̃h outside Aε . Hence, for any ε in (0,1), the relation above rewrites as:

ε−1(F ◦ τεh − F) = ε−1
∫ ε

0
〈∇F ◦ τsh, h〉H ds, P0-a.s. (4.2)
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Remark 4.1. It has actually been proved by Janson [14] that (4.2) is equivalent to (RAC) and (SGD), for any p > 1,
see Lemma 15.89. Notice that [14] also obtained a similar characterization for p = 1 (see Lemma 15.71). However,
as stated in Remark 4 of [24], the identification of the Kusuoka–Stroock and Shigekawa spaces when p = 1 is still an
open result, so that we never consider the case p = 1 in this paper.

The main result of this section is the following theorem whose proof is postponed to the end of the section.

Theorem 4.1. Let p > 1 and F ∈ Lp(R). The following properties are equivalent.

(i) F belongs to D
1,p .

(ii) There exists DF in Lp(H) such that for any h in H and any q ∈ [1,p)

lim
ε→0

E

[∣∣∣∣F ◦ τεh − F

ε
− 〈DF,h〉H

∣∣∣∣q
]

= 0.

(iii) There exists DF in Lp(H) and there exists q ∈ [1,p) such that for any h in H

lim
ε→0

E

[∣∣∣∣F ◦ τεh − F

ε
− 〈DF,h〉H

∣∣∣∣q
]

= 0.

(iv) There exists DF in Lp(H) such that for any h in H

lim
ε→0

E

[∣∣∣∣F ◦ τεh − F

ε
− 〈DF,h〉H

∣∣∣∣
]

= 0.

In that case, DF = ∇F .

Remark 4.2. The implication (ii) ⇒ (i) when q = p = 2 already appears in [5] (see Proposition 8.11.3). This is of
course contained in our result.

We now give the following lemma which characterizes the Malliavin derivative using the duality formula involving
the Skorohod operator (also called divergence operator).

Lemma 4.1. Let ε > 0 and 1 < p < +∞. Suppose that F ∈ L1+ε(R) and assume that there exists DF in Lp(H)

such that:

E
[
Fδ(Gh)

] = E
[
G〈DF,h〉H

]
,

for every G ∈ S and h ∈ H . Then, it holds that F ∈ D
1,p , and DF = ∇F,P0-a.s.

Proof. We know (see e.g. [24, Corollary 2.1]) that the result is true if S is replaced by P . Let G be in P . By Lemma 2.1
there exists (GN) in S such that GN approximates G in D

1,p . Let h in H . For any N ≥ 1, we have

E
[
Fδ(Gh)

] = E
[
F

(
GW(h) − 〈∇G,h〉H

)]
= E

[
F

(
GNW(h) − 〈∇GN,h

〉
H

)] −E
[(

GN − G
)
FW(h) − F

〈∇(
GN − G

)
, h

〉
H

]
= E

[
Fδ

(
GNh

)] −E
[(

GN − G
)
FW(h) − F

〈∇(
GN − G

)
, h

〉
H

]
= E

[
GN 〈DF,h〉H

] −E
[(

GN − G
)
FW(h) − F

〈∇(
GN − G

)
, h

〉
H

]
.

Furthermore, by Lemma 2.1∣∣E[(
GN − G

)
FW(h)

]∣∣ ≤ E
[∣∣FW(h)

∣∣p]1/p
E

[∣∣GN − G
∣∣p̄]1/p̄ −→

N→+∞ 0,
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with 1 < p < 1 + ε and where p̄ is the conjugate of p, and

∣∣E[
F

〈∇(
GN − G

)
, h

〉
H

]∣∣ ≤ E
[|F |p]1/p

E
[∥∥∇(

GN − G
)∥∥p̄

H

]1/p̄‖h‖H −→
N→+∞ 0,

by Lemma 2.1 again. Hence,

E
[
Fδ(Gh)

] = lim
N→+∞E

[
GN 〈DF,h〉H

]
= E

[
G〈DF,h〉H

] + lim
N→+∞E

[(
GN − G

)〈DF,h〉H
]
,

and

lim
N→+∞

∣∣E[(
GN − G

)〈DF,h〉H
]∣∣ ≤ lim

N→+∞E
[∣∣GN − G

∣∣p]1/p
E

[‖DF‖p̄
H

]1/p̄‖h‖H −→
N→+∞ 0.

Thus we have proved that for any G in P and for any h in H ,

E
[
Fδ(Gh)

] = E
[
G〈DF,h〉H

]
,

which gives the result by [24, Corollary 2.1]. �

We now prove the following lemma for the Malliavin differentiability of a given random variable.

Lemma 4.2. Let p > 1. Let F be in D
1,p . Then, for any q in [1,p) and for any h in H ,

F ◦ τεh − F

ε
−→
ε→0

〈∇F,h〉H in Lq(R).

Proof. Fix q in [1,p), h in H and η > 0 such that q + η < p. We know from [24, Theorem 3.1] that since F is in
D

1,p , F is (SGD), (RAC), and Relation (4.2) holds true. We thus have using Jensen’s inequality

E
[∣∣ε−1(F ◦ τεh − F)

∣∣q+η] = E

[
ε−(q+η)

∣∣∣∣
∫ ε

0
〈∇F ◦ τsh, h〉H ds

∣∣∣∣q+η]

≤ ε−1
E

[∫ ε

0

∣∣〈∇F ◦ τsh, h〉H
∣∣q+η

ds

]

= ε−1
∫ ε

0
E

[∣∣〈∇F,h〉H
∣∣q+η ◦ τsh

]
ds

= ε−1
∫ ε

0
E

[∣∣〈∇F,h〉H
∣∣q+ηE

(
s

∫ T

0
ḣr · dWr

)]
ds

≤ E
[∣∣〈∇F,h〉H

∣∣p](q+η)/p
sup

t∈(0,1)

E

[∣∣∣∣E
(

t

∫ T

0
ḣr · dWr

)∣∣∣∣p/(p−q−η)](p−q−η)/p

< +∞.

Hence by de La Vallée Poussin Criterion, we deduce that the family of random variables (|ε−1(F ◦ τεh − F)|q)ε∈(0,1)

is uniformly integrable which together with the convergence in probability (4.1) gives the result. �

Remark 4.3. Note that the conclusion of the previous lemma may fail for q = p.4

4After the first version of this paper, a counter example has been given in [13].
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We can now proceed with the proof of Theorem 4.1.

Proof of Theorem 4.1. From Lemma 4.2 we have (i) ⇒ (ii) and of course (ii) ⇒ (iii) ⇒ (iv). We turn to (iv) ⇒ (i).
Let F be such that there exists DF in Lp(H) such that

lim
ε→0

E

[∣∣∣∣F ◦ τεh − F

ε
− 〈DF,h〉H

∣∣∣∣
]

= 0.

The proof consists in applying Lemma 4.1 by proving the duality relationship

E
[
Fδ(Gh)

] = E
[
G〈DF,h〉H

]
, G ∈ S, h ∈ H. (4.3)

By Lemma A.1 (in the Appendix) with ε = 0,

E
[
Fδ(Gh)

] = d

dε
E[F ◦ τεhG]

∣∣∣∣
ε=0

= lim
η→0

1

η
E

[
(F ◦ τηh − F)G

]
= lim

η→0
E

[(
F ◦ τηh − F

η
− 〈DF,h〉H

)
G

]
+E

[〈DF,h〉H G
]

= E
[〈DF,h〉H G

]
, (4.4)

where the proof that the first term on the right-hand side goes to 0 is reported below.
Note that E[|〈DF,h〉H G|] < +∞ since G is bounded and DF belongs to Lp(H). Equality (4.4) is justified by

Hölder’s inequality since

E

[∣∣∣∣
(

F ◦ τηh − F

η
− 〈DF,h〉H

)
G

∣∣∣∣
]

≤ ‖G‖∞E

[∣∣∣∣F ◦ τηh − F

η
− 〈DF,h〉H

∣∣∣∣
]

−→
ε→0

0. �

Corollary 4.1. Let F be in D
1,p . For any ε > 0 and any h in H , F ◦τεh belongs to D

1,p and ∇(F ◦τεh) = (∇F)◦τεh.

Proof. Let F be in D
1,p . Using Theorem 4.1, we know that for any h in H and any q ∈ [1,p)

lim
ε→0

E

[∣∣∣∣F ◦ τεh − F

ε
− 〈∇F,h〉H

∣∣∣∣q
]

= 0.

By Lemma A.1 (in the Appendix) it holds that

E
[
F ◦ τεhδ(Gh)

] = d

dε
E[F ◦ τεhG]

= lim
η→0

1

η
E

[
(F ◦ τ(ε+η)h − F ◦ τεh)G

]
= lim

η→0
E

[(
F ◦ τ(ε+η)h − F ◦ τεh

η
− 〈

(∇F) ◦ τεh,h
〉
H

)
G

]
+E

[〈
(∇F) ◦ τεh,h

〉
H

G
]

= E
[〈
(∇F) ◦ τεh,h

〉
H

G
]
, (4.5)
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where the proof that the first term on the right-hand side goes to 0 is reported below.
Note that E[|〈(∇F) ◦ τεh,h〉H G|] < +∞ since 〈(∇F) ◦ τεh,h〉H = 〈∇F,h〉H ◦ τεh, P0-a.s., G belongs to all the

spaces Lr(R) for r ≥ 1 and

E
[∣∣〈∇F,h〉H

∣∣p] ≤ ‖h‖p
HE

[‖∇F‖p
H

]
< +∞.

Equality (4.5) is justified by Hölder’s inequality since

E

[∣∣∣∣
(

F ◦ τ(ε+η)h − F ◦ τεh

η
− 〈∇F ◦ τεh,h〉H

)
G

∣∣∣∣
]

≤ E

[∣∣∣∣F ◦ τ(ε+η)h − F ◦ τεh

η
− 〈∇F ◦ τεh,h〉H

∣∣∣∣r
]1/r

E
[|G|r̄]1/r̄

= E

[∣∣∣∣F ◦ τηh − F

η
− 〈∇F,h〉H

∣∣∣∣r ◦ τεh

]1/r

E
[|G|r̄]1/r̄

≤ E

[∣∣∣∣F ◦ τηh − F

η
− 〈∇F,h〉H

∣∣∣∣q
]1/q

E

[
E

(
ε

∫ T

0
ḣ(s) · dWs

)ᾱ]1/(rᾱ)

E
[|G|r̄]1/r̄

,

where 1 < r < q and α := q
r

and where r̄ (resp. ᾱ) is the Hölder conjugate of r (resp. α). Consequently, E[F ◦
τεhδ(Gh)] = E[〈∇F ◦ τεh,h〉H G], and from Lemma 4.1 ∇(F ◦ τεh) = (∇F) ◦ τεh. �

5. Malliavin’s differentiability of BSDEs

In this section we derive a sufficient condition ensuring that the solution to a BSDE is Malliavin differentiable. To
simplify the comparison of the results with the companion papers [9,20] we adopt the notations used in these papers
concerning the Malliavin calculus. More precisely, for any F in D

1,p (for p > 1) we have defined the Malliavin deriva-
tive ∇F as an H -valued random variable. Recall that denoting DF the derivative of ∇F that is ∇tF = ∫ t

0 DrF dr ,
DF coincides with the Malliavin derivative introduced in [9,18,20]. In particular 〈∇F,h〉H = 〈DF, ḣ〉H for any h

in H .
Let n be a positive integer, we consider now the following BSDE:

Yt = ξ +
∫ T

t

f (r, Yr ,Zr) dr −
∫ T

t

Zr dWr, t ∈ [0, T ],P0-a.s., (5.1)

where ξ := (ξ1, . . . , ξn)� is a FT -measurable R
n-valued r.v. and f : [0, T ] × � × R

n × R
n×d → R

n is a F-
progressively measurable process where as usual the ω-dependence is omitted.

The aim of this section is to show that for any t ∈ [0, T ], we can apply Theorem 4.1 under the following assump-
tions:

(L) The map (y, z) �→ f (·, y, z) is differentiable with uniformly bounded and continuous partial derivatives. We

denote by fy := (
∂f j

∂yk
)j∈{1,...,n},k∈{1,...,n} the Jacobian matrix of f with respect to y, where j (resp. k) indexes

the columns (resp. the rows) of fy and f
j
y denotes the gradient of f j . We denote by f

j
z , for any j ∈ {1, . . . , n}

the Jacobian matrix of f j with respect to z, that is f
j
z = (

∂f j

∂zk,l
)k∈{1,...,n},l∈{1,...,d}.

(D) ξ belongs to (D1,2)n, for any (y, z) ∈ R
n × R

n×d , the map (t,ω) �→ f (t,ω, y, z) is in L2([0, T ]; (D1,2)n),
f (·, y, z) and Df (·, y, z) are F-progressively measurable, and

E

[∫ T

0

n∑
j=1

∣∣D·f j (s, Ys,Zs)
∣∣2
H

ds

]
< +∞.
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(H1) There exists p ∈ (1,2) such that for any h ∈ H and for any j ∈ {1, . . . , n}

lim
ε→0

E

[(∫ T

0

∣∣∣∣f j (s, · + εh,Ys,Zs) − f j (s, ·, Ys,Zs)

ε
− 〈

Df j (s, ·, Ys,Zs), ḣ
〉
H

∣∣∣∣ds

)p]
= 0.

(H2) Let (εk)k∈N be a sequence in (0,1] such that limk→+∞ εk = 0, and let (Y k,Zk)k be a sequence of random
variables which converges in S

p
n × H

p
n,d for any p ∈ [1,2) to some (Y,Z). Then for all h ∈ H and for all

j ∈ {1, . . . , n}, the following convergences hold in probability∣∣f j
y

(·,ω + εkh,Y k· ,Z·
) − f

j
y (·,ω,Y·,Z·)

∣∣
L2([0,T ];Rn)

−→
k→+∞ 0,

(5.2)∣∣f j
z

(·,ω + εkh,Y k· ,Zk·
) − f

j
z (·,ω,Y·,Z·)

∣∣
L2([0,T ];Rn×d )

−→
k→+∞ 0,

or∣∣f j
y

(·,ω + εkh,Y k· ,Zk·
) − f

j
y (·,ω,Y·,Z·)

∣∣
L2([0,T ];Rn)

−→
k→+∞ 0,

(5.3)∣∣f j
z

(·,ω + εkh,Y·,Zk·
) − f

j
z (·,ω,Y·,Z·)

∣∣
L2([0,T ];Rn×d )

−→
k→+∞ 0.

Before turning to the main result of this section, we would like to comment on Assumption (H2). In this explana-
tion we set n = 1 for the sake of simplicity. On the one hand, by Lemma 3.2, at given (s, y, z), fy(s,ω + εkh, y, z)

converges in probability to fy(s,ω, y, z) as n goes to infinity. On the other hand, fy(s,ω, ·) is continuous by assump-
tion. Thus, Condition (H2) is just requiring joint continuity of fy in L2([0, T ]). The same comment holds for fz.
Note finally, that since fy is assumed to be bounded, a sufficient condition for (H2) to hold true is that fy(t, Y

k
t ,Zt )

converges in probability to fy(t, Yt ,Zt ) for dt-almost every t (and the same for fz).
Recall that for any M in R

n×d , 1 ≤ j ≤ n and 1 ≤ � ≤ d , we denote by Mj,: ∈ R
1×d (resp. M :,� ∈ R

n,1) its j th
row (resp. its �th column). We thus have

Theorem 5.1. Let t be in [0, T ]. Under Assumptions (L), (D), (H1) and (H2), Yt belongs to (D1,2)n and (Zj,:)� ∈
L2([t, T ]; (D1,2)d), j ∈ {1, . . . , n}.

Proof. We only consider the case where (5.2) holds in Assumption (H2), since the other one can be treated similarly.
We prove first that Y

j
t belongs to D

1,p for any j in {1, . . . , n} where p ∈ (1,2) is the exponent appearing in Assump-
tion (H1), and then we extend the result to D

1,2. To this end we aim at applying Theorem 4.1. Fix j in {1, . . . , n}. Let
h in H . Since Y j is F-progressively measurable, by Lemma 3.3, we can assume without loss of generality that ḣs = 0
for s > t . Let ε > 0. By Lemmas 3.1 and 3.4, it holds that

Y
j
s ◦ τεh = ξj ◦ τεh +

∫ T

s

f j (r, Yr ,Zr) ◦ τεh dr −
∫ T

s

(
Z

j,:
r

)� ◦ τεh · dWr, ∀s ∈ [t, T ],P0-a.s.

As a consequence, setting for the sake of simplicity

Y ε
s := 1

ε
(Ys ◦ τεh − Ys), Zε

s := 1

ε
(Zs ◦ τεh − Zs), ξε := 1

ε
(ξ ◦ τεh − ξ), s ∈ [t, T ],

we have for any j ∈ {1, . . . , n}

(
Y ε

s

)j = (
ξε

)j +
∫ T

s

(
Ãε

r + Ã
y,ε
r · Y ε

r +
d∑

k=1

(
f

j
z

):,k(
r, · + εh,Yr ◦ τεh, Z̃

k
r

) · (
Zε

r

):,k
)

dr

−
∫ T

s

((
Zε

r

)j,:)� · dWr, (5.4)
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with

Ã
y,ε
r := f

j
y

(
r, · + εh, Ȳ ε,h

r ,Zr

)
, Ãε

r := 1

ε

(
f j (r, · + εh,Yr ,Zr) − f j (r, ·, Yr ,Zr)

)
,

where Ȳ
ε,h
r is a convex combination of Yr and Yr ◦ τεh and where for any k ∈ {1, . . . , d}, we have Z̃k

r := (Z
:,1
r ◦

τεh, . . . ,Z
:,k−1
r ◦ τεh, Z̄

:,k
r ,Z

:,k+1
r , . . . ,Z

:,d
r ) where Z̄

:,k
r is a convex combination of Z

:,k
r ◦ τεh and Z

:,k
r .

Under Assumptions (D) and (L), the following linear BSDE on [t, T ] has a unique solution (Ŷ h, Ẑh) in S
2
n ×H

2
n,d

with Ŷ h := ((Ŷ h)j )j∈{1,...,n}, Ẑh := ((Ẑh)j,:)j∈{1,...,n} and for any j ∈ {1, . . . , n}

(
Ŷ h

s

)j = 〈∇(
ξj

)
, h

〉
H

+
∫ T

s

(〈∇(
f j

)
(r, ·, Yr ,Zr), h

〉
H

+ f
j
y (r, ·, Yr ,Zr) · Ŷ h

r

+
d∑

k=1

(
f

j
z

):,k
(r, · + εh,Yr ,Zr) · (

Ẑh
r

):,k
)

dr −
∫ T

s

((
Ẑh

r

)j,:)� · dWr. (5.5)

Using a priori estimates (see Proposition 3.2 in [7]) in Lp , we have for some constant Cp , independent of ε

E

[
sup

s∈[t,T ]
∣∣(Y ε

s

)j − (
Ŷ h

s

)j ∣∣p]
+E

[(∫ T

t

∥∥((
Zε

s

)j,:)� − ((
Ẑh

s

)j,:)�∥∥2
ds

)p/2]

≤ Cp

(
E

[∣∣(ξε
)j − 〈∇(

ξj
)
, h

〉
H

∣∣p] +E

[(∫ T

0

∣∣Ãε
s − 〈∇(

f j
)
(s, ·, Ys,Zs), h

〉
H

∣∣ds

)p])

+ CpE

[(∫ T

0

∥∥Ã
y,ε
s − f

j
y (s, ·, Ys,Zs)

∥∥∥∥Ŷ h
s

∥∥ds

)p]

+ Cp

d∑
k=1

E

[(∫ T

0

∥∥(
f

j
z

):,k(
s, · + εh,Ys ◦ τεh, Z̃

k
s

) − (
f

j
z

):,k
(s, · + εh,Ys,Zs)

∥∥∥∥(
Ẑh

s

):,k∥∥ds

)p]
. (5.6)

Since ξj is in D
1,2, limε→0 E[|(ξε)j − 〈∇(ξ j ), h〉H |p] = 0 by Lemma 4.2. By Assumption (H1), the second term in

the right-hand side of (5.6) goes to 0 as ε goes to 0. For the last two terms, we will use Assumption (H2). First, the
above estimate implies directly that (Y j ◦ τεh − Y j , (Zj,:)� ◦ τεh − (Zj,:)�)ε goes to 0 in S

q ×H
q
d as ε goes to 0 for

any q ∈ (1,2). We can therefore conclude with Assumption (H2), together with the fact that ‖f j
y ‖ is bounded, that by

the dominated convergence theorem:

E

[(∫ T

0

∥∥Ã
y,ε
s − f

j
y (s, ·, Ys,Zs)

∥∥∥∥Ŷ h
s

∥∥ds

)p]

≤ CE

[(∫ T

0

∥∥Ã
y,ε
s − f

j
y (s, ·, Ys,Zs)

∥∥2
ds

)p]1/2

E

[(∫ T

0

∥∥Ŷ h
s

∥∥2
ds

)p]1/2

−→
ε→0

0.

We can show similarly that the last term on the right-hand side of (5.6) also goes to 0, by using the fact that for any
j ∈ {1, . . . , n}, ((Ẑh)j,:)� ∈ H

2
d . It just remains to prove that for any j ∈ {1, . . . , n}, (Ŷ h

t )j is a random operator on H

or equivalently that there exists DY
j
t an H -valued r.v. such that (Ŷ h

t )j = 〈DY
j
t , h〉H for any h in H . To this end, let

(hk)k be an orthonormal system in H , we set for any j ∈ {1, . . . , n}, � ∈ {1, . . . , d}:

DY
j
t :=

∑
k≥1

(
Ŷ

hk
t

)j
hk, DZ

j,l
s :=

∑
k≥1

((
Ẑhk

s

)j,l)
hk.

Note that these elements are well defined, since one can prove that DY
j
t ∈ L2(H) and that DZj,� ∈ L2([t, T ];H).

Indeed using once again a priori estimates for affine BSDEs, there exists C > 0 (which may differ from line to line)
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such that:

E

[
n∑

j=1

∥∥DY
j
t

∥∥2
H

+
n∑

j=1

d∑
�=1

∫ T

t

∥∥DZ
j,�
s

∥∥2
H

ds

]

=
∑
k≥1

E

[
n∑

j=1

∣∣(Ŷ hk
t

)j ∣∣2 +
n∑

j=1

d∑
�=1

∫ T

t

∣∣(Ẑhk
s

)j,�∣∣2
ds

]

≤ C
∑
k≥1

E

[
n∑

j=1

∣∣〈∇(
ξj

)
, hk

〉
H

∣∣2 +
n∑

j=1

∫ T

t

∣∣〈∇(
f j

)
(s, Ys,Zs), hk

〉
H

∣∣2
ds

]

≤ C

n∑
j=1

E

[∥∥∇(
ξj

)∥∥2
H

+
∫ T

t

∥∥∇(
f j

)
(s, Ys,Zs)

∥∥2
H

ds

]
< +∞, (5.7)

by our assumptions on ξ and f . We now identify (Ŷ h
t )j (respectively (Ẑh

t )j,�) with the inner product 〈DY
j
t , h〉H

(respectively 〈DZ
j,�
t , h〉H ). For any s ≥ t , it holds that:

〈
DY

j
s , h

〉
H

=
∑
k≥1

〈∇(
ξj

)
, hk

〉
H

〈hk,h〉H +
∑
k≥1

〈hk,h〉H
∫ T

s

〈∇(
f j

)
(r, Yr ,Zr), hk

〉
H

dr

+
∑
k≥1

〈hk,h〉H
∫ T

s

(
f

j
y (r, Yr ,Zr) · Ŷ hk

r +
d∑

l=1

(
f

j
z

):,l
(r, · + εh,Yr ,Zr) · (

Ẑhk
r

):,l
)

dr

+
∑
k≥1

〈hk,h〉H
∫ T

s

((
Ẑhk

r

)j,:)� · dWr

= 〈∇(
ξj

)
, h

〉
H

+
∫ T

s

(〈∇(
f j

)
(r, Yr ,Zr), h

〉
H

+ f
j
y (r, Yr ,Zr) ·

∑
k≥1

Ŷ hk
r 〈hk,h〉H

+
∑
k≥1

〈hk,h〉H
d∑

l=1

(
f

j
z

):,l
(r, · + εh,Yr ,Zr) · (

Ẑhk
r

):,l
)

dr

+
∫ T

s

∑
k≥1

〈hk,h〉H
((

Ẑhk
r

)j,:)� · dWr,

where we justify the exchange between the series and the Riemann integrals by Fubini’s theorem. Concerning the
Wiener integral we make use of the stochastic Fubini’s theorem (see e.g. [26]) since by a priori estimates:

∑
k≥1

E

[∫ T

0

∣∣〈hk,h〉H
∣∣ × ∥∥(

Ẑhk
)j,:
t

∥∥2
dt

]1/2

≤ C
∑
k≥1

∣∣〈hk,h〉H
∣∣E[∣∣〈∇(

ξj
)
, hk

〉
H

∣∣2 +
∫ T

0

∣∣〈∇(
f j

)
(r, Yr ,Zr), hk

〉
H

∣∣2
dr

]1/2

≤ CE

[∥∥∇(
ξj

)∥∥2
H

+
∫ T

0

∥∥∇(
f j

)
(r, Yr ,Zr)

∥∥2
H

dr

]
< +∞,

where C is a constant which may vary from line to line. By setting

DYh
s := (〈

DY
j
s , h

〉
H

)
j∈{1,...,n}, DZh

s := (〈
DZ

j,l
s , h

〉
H

)
1≤j≤n,1≤�≤d

,
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we obtain

〈
DY

j
s , h

〉
H

= 〈∇(
ξj

)
, h

〉
H

+
∫ T

s

(〈∇(
f j

)
(r, Yr ,Zr), h

〉
H

+ f
j
y (r, Yr ,Zr) ·DYh

s

+
d∑

�=1

(
f

j
z

):,�
(r, · + εh,Yr ,Zr) · (

DZh
r

):,�
)

dr +
∫ T

s

((
DZh

r

)j,:)� · dWr.

Thus, by uniqueness of the solution to affine BSDEs with square integrable data, it holds that (Ŷ h
t )j = 〈DY

j
t , h〉H

in L2(R) and (Ẑh)j,:1[t,T ] = (DZh)j,: in H
2
d for any h in H . Thus, using Estimate (5.6) we have proved that for any

h in H ,

lim
ε→0

E
[∣∣(Y ε

t

)j − 〈
DY

j
t , h

〉
H

∣∣p] = 0.

Hence by Theorem 4.1, Y
j
t belongs to D

1,p and ∇Y
j
t =DY

j
t .

If we set

D
∫ T

t

(
Z

j,:
s

)� · dWs :=
∑
k≥1

∫ T

t

((
Ẑhk

s

)j,:)� · dWshk,

the stochastic Fubini theorem implies that:〈
D

∫ T

t

(
Z

j,:
s

)� · dWs,h

〉
H

=
∫ T

t

((
DZh

s

)j,:)� · dWs.

Moreover, Burkholder–Davis–Gundy’s inequality implies that there exists C̃p > 0 such that

E

[∣∣∣∣ε−1
(∫ T

t

(
Z

j,:
r

)� · dWr ◦ τεh −
∫ T

t

(
Z

j,:
r

)� · dWr

)
−

〈
D

∫ T

t

(
Z

j,:
r

)� · dWr,h

〉
H

∣∣∣∣p
]

= E

[∣∣∣∣ε−1
(∫ T

t

(
Z

j,:
r

)� · dWr ◦ τεh −
∫ T

t

(
Z

j,:
r

)� · dWr

)
−

∫ T

t

((
DZh

r

)j,:)� · dWr

∣∣∣∣p
]

≤ E

[
sup

t≤s≤T

∣∣∣∣
∫ s

t

(
ε−1((

Z
j,:
r

)� ◦ τεh − (
Z

j,:
r

)�) − ((
DZh

r

)j,:)�) · dWr

∣∣∣∣p
]

≤ C̃pE

[(∫ T

t

∥∥((
Zε

r

)j,:)� − ((
DZh

r

)j,:)�∥∥2
dr

)p/2]

= C̃pE

[(∫ T

t

∥∥((
Zε

r

)j,:)� − ((
Ẑh

r

)j,:)�∥∥2
dr

)p/2]
,

where we have used in the last inequality the fact that (Ẑh)j,:1[t,T ] = (DZh)j,: in H
2
d for any h in H .

The right-hand side above tends to 0 as ε goes to 0, once again by (5.6). Therefore,∫ T

t

(
Z

j,:
s

)� · dWs ∈ D
1,p and ∇

∫ T

t

(
Z

j,:
s

)� · dWs =D
∫ T

t

(
Z

j,:
s

)� · dWs.

Furthermore, by the computations (5.7) we deduce that Y
j
t belongs to D

1,2 and that
∫ T

t
(Z

j,:
s )� · dWs belong to D

1,2

which, by [20, Lemma 2.3] implies that Zj,: belongs to L2([t, T ]; (D1,2)d). Finally, to match with the notations of
the papers [9,20] let us denote by DYj and DZj,: the derivatives of respectively ∇Y j and ∇Zj,:. We also define
DsY ∈R

n×d by

(DsY )j,� := (
DsY

j
)�

, 1 ≤ j ≤ n,1 ≤ � ≤ d,
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and similarly for Dsξ , Dsf and DsZ
:,k , 1 ≤ k ≤ d . Let us also define for any 1 ≤ j ≤ n, DsZ

j,: ∈ Rd×n by(
DsZ

j,:)k,� := (
DsZ

j,k
)�

, 1 ≤ k ≤ d,1 ≤ � ≤ n.

We thus obtain using the chain rule formula

(DsYt )
j,� = (Dsξ)j,� +

∫ T

t

(
(Dsf )j,�(r, Yr ,Zr) + f

j
y (r, Yr ,Zr) · (

(DsYr)
j,:)�)

dr

+
∫ T

t

d∑
k=1

(
f

j
z

):,k
(r, Yr ,Zr) · ((

DsZ
k,:
r

)j,:)�
dr −

∫ T

t

(
DsZ

j,:
r

):,� · dWr, (5.8)

which can be interpreted as an affine BSDE. �

Remark 5.1. Let j ∈ {1, . . . , n}. We would like to point out that since each process (Zj,:)� is defined as a H-valued
r.v., one may be careful not to study Z directly at a given time, as Zt is not well defined for a given t . Hence, in the
proof we rather study at any time t the random variable

∫ T

t
(Z

j,:
s )� · dWs and prove that it belongs to D

1,2. Then by
[20, Lemma 2.3] the latter result is equivalent to the fact that (Zj,:)� belongs to L2([t, T ]; (D1,2)d).

Remark 5.2. We emphasize that our criterion can also be used to study higher-order differentiability properties
for (Y,Z). For instance, the pair (DY,DZ) is itself the solution of a (linear) BSDE. Therefore, as long as one is
able to derive appropriate a priori estimates for this BSDE, the methodology above can then be applied to obtain
conditions ensuring second-order Malliavin differentiability of (Y,Z). Notice nonetheless that when handling higher
order derivatives, products of lower order derivatives appear. One may then need to add conditions on the coefficients
ensuring strong integrability properties of (Y,Z) and their Malliavin derivatives.

6. Applications and discussion of the results

For simplicity, in this section we will enforce that n = d = 1.

6.1. Application to FBSDEs

We consider in this section a FBSDE of the form{
Xt = X0 + ∫ t

0 b(s,Xs) ds + ∫ t

0 σ(s,Xs) dWs, t ∈ [0, T ],P0-a.s.,

Yt = g(XT ) + ∫ T

t
f (s,Xs,Ys,Zs) ds − ∫ T

t
Zs dWs, t ∈ [0, T ],P0-a.s.,

(6.1)

where X0 ∈ R. We make the following assumptions:

(A1) b, σ : [0, T ] ×R → R are continuous in time and continuously differentiable in space for any fixed time t and
such that there exist kb, kσ > 0 with∣∣bx(t, x)

∣∣ ≤ kb,
∣∣σx(t, x)

∣∣ ≤ kσ , for all x ∈ R.

Besides b(t,0), σ (t,0) are bounded functions of t .
(A2) (i) g is continuously differentiable with polynomial growth.

(ii) f : [0, T ] ×R
3 → R is continuously differentiable in (x, y, z) with bounded first partial derivatives in y, z

uniformly in t , such that E[∫ T

0 |f (s,0,0,0)|2 ds] < +∞ and satisfying for some C > 0

∃(q, κ) ∈R+ × [0,2),
∣∣fx(t, x, y, z)

∣∣ ≤ C
(
1 + |y|κ + |z|κ + |x|q)

, ∀(t, x, y, z) ∈ [0, T ] ×R
3.

Notice that under (A1) and (A2), the FBSDE (6.1) admits a unique solution (X,Y,Z) (see [19]). The well-known
following lemma provides the existence of a Malliavin derivative for Xt for all t ∈ [0, T ] under Assumption (A1) (see
e.g. [18, Theorem 2.2.1]).
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Lemma 6.1. Under Assumption (A1), for any p ≥ 1, Xt ∈ D1,p for all t ∈ [0, T ], and X ∈ Sp .

The following proposition shows that Assumptions (A1) and (A2), which are actually weaker than (PP1) and
(PP2), imply our new Assumptions (H1) and (H2). As a corollary, using Theorem 5.1, we recover the original result
[20, Proposition 2.2].

Proposition 6.1. Let (X,Y,Z) be the unique solution of FBSDE (6.1). Under Assumptions (A1), (A2), Assumptions
(L), (D), (H1) and (H2) hold.

Remark 6.1. We insist on the fact that in the Markovian case, the original Assumptions (PP1) and (PP2) of [20] imply
directly our new Assumptions (H1) and (H2) while Assumptions (EPQ1) and (EPQ2) of [9] are strictly stronger than
(PP1) and (PP2). In other words, in the Markovian case our assumptions are enough to recover the original result
[20, Proposition 2.2], without any additional conditions.

Proof of Proposition 6.1. From Lemma 6.1, Property (D) holds by the chain rule formula and (L) follows from our
assumptions. It remains to prove (H1) and (H2). We start with (H1). Let 1 < p < 2 and h in H . Below C denotes a
positive constant which can differ from line to line. Recall that from our assumptions,

E

[
sup

t∈[0,T ]
|Yt |r +

(∫ T

0
|Zt |2 dt

)r/2]
< ∞, ∀r ≤ 2. (6.2)

Denoting by X̄t a random point between Xt and Xt ◦ τεh, where we suppressed the dependence on ε for notational
simplicity. We have for any t in [0, T ], that

E
[∣∣ε−1(

f (t,Xt ◦ τεh,Yt ,Zt ) − f (t,Xt , Yt ,Zt )
) − fx(t,Xt , Yt ,Zt )〈DXt, ḣ〉H

∣∣p]
= E

[∣∣∣∣Xt ◦ τεh − Xt

ε
fx(t, X̄t , Yt ,Zt ) − fx(t,Xt , Yt ,Zt )〈DXt, ḣ〉H

∣∣∣∣p
]

≤ CE
[∣∣ε−1(Xt ◦ τεh − Xt) − 〈DXt, ḣ〉H

∣∣p(
1 + |Yt |κp + |Zt |κp + |Xt |pq + |Xt ◦ τεh|pq

)]
+ CE

[∣∣fx(t, X̄t , Yt ,Zt ) − fx(t,Xt , Yt ,Zt )
∣∣p∣∣〈DXt, ḣ〉H

∣∣p]
≤ CE

[∣∣ε−1(Xt ◦ τεh − Xt) − 〈DXt, ḣ〉H
∣∣pr]1/r

E
[(

1 + |Yt |κp + |Zt |κp + |Xt |pq + |Xt ◦ τεh|pq
)r̄]1/r̄

+ CE
[∣∣fx(t, X̄t , Yt ,Zt ) − fx(t,Xt , Yt ,Zt )

∣∣p∣∣〈DXt, ḣ〉H
∣∣p]

=: A1,ε
t + A

2,ε
t ,

where r̄ > 1 and p are chosen so that pκr̄ < 2 and r denotes the Hölder conjugate of r̄ . Using the above estimates,
we deduce

E

[(∫ T

0

∣∣ε−1(
f (t,Xt ◦ τεh,Yt ,Zt ) − f (t,Xt , Yt ,Zt )

) − fx(t,Xt , Yt ,Zt )〈DXt, ḣ〉H
∣∣dt

)p]

≤
∫ T

0

(
A

1,ε
t + A

2,ε
t

)
dt.

Then, we have∫ T

0
A

1,ε
t dt ≤ C

(∫ T

0
E

[∣∣ε−1(Xt ◦ τεh − Xt) − 〈DXt, ḣ〉H
∣∣pr]2/r

dt

)1/2

×
(∫ T

0
E

[(
1 + |Yt |κp + |Zt |κp + |Xt |pq + |Xt ◦ τεh|pq

)r̄]2/r̄
dt

)1/2

. (6.3)
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In addition by Lemma 3.4, we have that Mε,h := X ◦ τεh − X is solution to the linear SDE:

dM
ε,h
t = M

ε,h
t

(
bx(t,Xt ) dt + σx(t,Xt ) dWt

) + εσ (t,Xt ◦ τεh)ḣt dt,

where Xs denotes once again a random point between Xs and Xs ◦ τεh. Hence using Assumption (A1) and standard
estimates for SDEs, we get that for any q ≥ 1,

lim
ε→0

E

[
sup

t∈[0,T ]
|Xt ◦ τεh − Xt |q

]
= 0.

Following the same lines as above, and recalling that Nh := 〈DXt, ḣ〉H is solution to the SDE:

dNh
t = Nh

t

(
bx(t,Xt ) dt + σx(t,Xt ) dWt

) + σ(t,Xt )ḣt dt,

we get that the process P ε,h := ε−1(X ◦ τεh − X) − 〈DX, ḣ〉H is solution to the affine SDE:

dP
ε,h
t = dHε

t + P
ε,h
t

(
bx(t,Xt ) dt + σx(t,Xt ) dWt

)
,

with

dHε
t := (〈DXt, ḣ〉H

(
bx(t,Xt ) − bx(t,Xt )

) + ḣt

(
σ(t,Xt ◦ τεh) − σ(t,Xt )

))
dt

+ 〈DXt, ḣ〉H
(
σx(t,Xt ) − σx(t,Xt )

)
dWt .

Using the fact that σx, bx are bounded, σ has linear growth and is continuous, we get by similar computations than
those done several times in this paper that:

lim
ε→0

E

[
sup

t∈[0,T ]
∣∣Hε

t

∣∣q]
= 0, ∀q ≥ 1,

from which we deduce using the explicit representation of solutions to affine SDEs (see e.g. [21, Theorem V.9.53])
that

lim
ε→0

E

[
sup

t∈[0,T ]

∣∣ε−1(X ◦ τεh − X) − 〈DXt, ḣ〉H
∣∣q]

= 0, ∀q ≥ 1.

As a consequence, combining this estimate with (6.3), we get that:∫ T

0
A

1,ε
t dt ≤ C

(
E

[
sup

t∈[0,T ]
∣∣ε−1(Xt ◦ τεh − Xt) − 〈DXt, ḣ〉H

∣∣pr
]2/r)1/2

,

which goes to 0 as ε goes to 0, since we recall that we have chosen p, r̄ > 1 so that κpr̄ < 2, which implies by (6.2),
Lemma 6.1 and the Cameron–Martin formula that∫ T

0
E

[(
1 + |Yt |κp + |Zt |κp + |Xt |pq + |Xt ◦ τεh|pq

)r̄]2/r̄
dt < ∞.

Concerning the term
∫ T

0 A
2,ε
t dt , choosing p̃ > 1 so that pp̃ < 2, it holds by Hölder and by Jensen inequalities that

∫ T

0
A

2,ε
t dt ≤ C

(∫ T

0
E

[∣∣fx(t, X̄t , Yt ,Zt ) − fx(t,Xt , Yt ,Zt )
∣∣pp̃]

dt

)1/p̃

,

since

E

[
sup

t∈[0,T ]
∣∣〈DXt, ḣ〉H

∣∣q]
< ∞, ∀q > 1.
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As

lim
ε→0

E

[
sup

t∈[0,T ]
|Xt ◦ τεh − Xt |q

]
= 0, ∀q ≥ 1

it holds that

lim
ε→0

∣∣fx(t, X̄t , Yt ,Zt ) − fx(t,Xt , Yt ,Zt )
∣∣pp̃ = 0, P0 ⊗ dt-a.e.

Furthermore, for any 2 > ρ > 1,

sup
ε∈(0,1)

∫ T

0
E

[∣∣fx(t, X̄t , Yt ,Zt ) − fx(t,Xt , Yt ,Zt )
∣∣ρpp̃]

dt

≤ C sup
ε∈(0,1)

∫ T

0
E

[(
1 + |Xt |q + |Xt ◦ τεh|q + |Yt |κ + |Zt |κ

)ρpp̃]
dt < ∞,

by choosing p small enough so that κρpp̃ ≤ 2. So by Lebesgue’s dominated convergence theorem,

lim
ε→0

∫ T

0
A

2,ε
t dt = 0,

which proves (H1). Concerning, (H2) we just mention that fy (respectively fz) is bounded, jointly continuous in
(x, y, z) and we make use of Lemma 3.2. �

6.2. Affine BSDEs

The aim of this section is to prove that with our condition, we can provide weaker conditions compared to [9] for
affine BSDEs. We take a driver of the form

f (t,ω, y, z) := αt (ω) + βt (ω)y + γt (ω)z

with bounded F-progressively measurable processes such that α,β, γ ∈ L2([0, T ];D1,2), and ξ in D
1,2. The condi-

tions given in [9, Proposition 5.3] for proving that the associated solution (Y,Z) is Malliavin differentiable read as
follows (together with some measurability conditions):

∃η > 0 such that E
[|ξ |2+η

]
< +∞ and

∫ T

0
E

[(∫ T

θ

∣∣Kθ(s)
∣∣2

ds

)2+η]1/(2+η)

dθ < +∞, (6.4)

with Kθ(s) := |Dθβ(s)| + |Dθγ (s)|.
In our setting, one needs to check Assumptions (L), (D), (H1) and (H2). As mentioned below by Lemma 3.2

Condition (H2) comes for free, and Assumptions (D) and (L) are also trivially satisfied. The interesting point is that
(H1) is true as soon as (6.4) is replaced with:

∃η > 0 such that lim
ε→0

∫ T

0
E

[∣∣ε−1(μt ◦ τεh − μt) − 〈Dμt, ḣ〉H
∣∣2+η]

dt = 0, for μ ∈ {β,γ }. (6.5)

Hence our condition only involves a condition on γ and β and not on ξ . For instance if β and γ are given as:

βt = ϕ1(Xt ), γt := ϕ2(Xt ), t ∈ [0, T ],
with ϕ1, ϕ2 two smooth functions with polynomial growth and X is the solution to an SDE of the form of the one
considered in Section 6.1, then the requirements of Conditions (6.4) and (6.5) are satisfied for β and γ , however in
contradistinction to Condition (6.4), Assumption (6.5) does not put extra regularity on the terminal condition ξ .

We make precise our result.
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Proposition 6.2. Let ξ in D1,2, and α,β, γ bounded F-progressively processes in L2([0, T ];D1,2) such that Dα,Dβ

and Dγ are F-progressively measurable. Assume that Assumption (6.5) is in force. Then for any t in [0, T ], Yt belongs
to D

1,2, Z ∈ L2([t, T ];D1,2) where (Y,Z) is the unique solution in S
2 ×H

2 to the affine BSDE:

Yt = ξ +
∫ T

t

(αs + βsYs + γsZs) ds −
∫ T

t

Zs dWs, t ∈ [0, T ].

Proof. Once again we check that assumptions of Theorem 4.1 are in force. Properties (D) and (L) are immediately
satisfied. Let f (t,ω, y, z) := αt (ω) + βt (ω)y + γt (ω)z. Since fy(t,ω, y, z) = βt (ω), and fz(t,ω, y, z) = γt (ω) we
immediately get by Lemma 3.2 and since β,γ are bounded that (H2) is satisfied. Concerning (H1), we have for any
1 < p < 2 and h in H , that

E

[(∫ T

0

∣∣ε−1(
f (t, · + εh,Yt ,Zt ) − f (t, ·, Yt ,Zt )

) − 〈
Df (t, ·, Yt ,Zt ), ḣ

〉
H

∣∣dt

)p]

≤ CE

[(∫ T

0

∣∣ε−1(αt ◦ τεh − αt ) − 〈Dαt , ḣ〉H
∣∣dt

)p]

+ CE

[(∫ T

0

∣∣Yt

(
ε−1(βt ◦ τεh − βt ) − 〈Dβt , ḣ〉H

)∣∣dt

)p]

+ CE

[(∫ T

0

∣∣Zt

(
ε−1(γt ◦ τεh − γt ) − 〈Dγt , ḣ〉H

)∣∣dt

)p]
=: Aε

1 + Aε
2 + Aε

3, (6.6)

where C is a constant. By Lemma A.2 we have that limε→0 Aε
1 = 0. We consider the term Aε

3. We have that:

Aε
3 ≤ E

[∫ T

0

∣∣Zt

(
ε−1(γt ◦ τεh − γt ) − 〈Dγt , ḣ〉H

)∣∣p dt

]

≤ C

∫ T

0
E

[|Zt |2
]p/2

E
[∣∣ε−1(γt ◦ τεh − γt ) − 〈Dγt , ḣ〉H

∣∣2p/(2−p)](2−p)/2
dt

≤ C

(∫ T

0
E

[|Zt |2
]
dt

)p/2(∫ T

0
E

[∣∣ε−1(γt ◦ τεh − γt ) − 〈Dγt , ḣ〉H
∣∣2p/(2−p)]

dt

)(2−p)/2

.

Choosing p such that 2p
2−p

= 2 + η we get that Aε
3 converges to 0 as ε tends to 0 by (6.5). Similarly, limε→0 Aε

2 = 0
for this choice of p. �

Remark 6.2. Note that, since the BSDE is affine, Yt can be expressed explicitly as:

Yt = E

[
Mt,T ξ −

∫ T

t

Mt,sαs ds

∣∣∣ Ft

]
,

where

Mt,s := exp

(∫ s

t

γu dWu − 1

2

∫ s

t

|γu|2 du +
∫ s

t

βu du

)
, s ∈ [t, T ].

Hence, on the one hand, Yt belongs to D
1,2 if and only if the coefficients α,β, γ belong to L2([0, T ];D1,2) and ξ is in

D
1,2. The same conclusion follows for the Z component. Hence, neither our Condition (6.5) nor the one of [9], namely

(6.4), are sharp. However, both are sharp in the case where β = γ = 0. On the other hand, Condition (6.4) or (6.5) give
more information than the simple fact that Y,Z are Malliavin differentiable, since they imply that the BSDE solved
by (DY,DZ) is limit in S

2 ×H
2 of respectively (DYn,DZn) (where (Y n,Zn) is the solution to the Picard iteration

equation at order n approximating (Y,Z)) for (6.4), and of the difference quotient (ε−1(Y ◦τεh−Y), ε−1(Z◦τεh−Z))

in our case (6.5).
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6.3. Discussion and comparison of the results

We would like before going to the quadratic BSDE case to make a comment about the difference between our approach
and the one of [9,20] and our approach. In these references, the authors consider the sequence of BSDEs:

Yn
t = ξ +

∫ T

t

f
(
s, Y n−1

s ,Zn−1
s

)
ds −

∫ T

t

Zn
s dWs, t ∈ [0, T ],

which approximate in S
2 ×H

2 the solution to the original BSDE:

Yt = ξ +
∫ T

t

f (s, Ys,Zs) ds −
∫ T

t

Zs dWs, t ∈ [0, T ].

Now, under mild assumptions on f , the processes (Y n,Zn) are Malliavin differentiable and it holds that a version of
(DrY

n
t ,DrZ

n
t ) satisfies for t ∈ [0, T ], r ≤ t :

DrY
n
t = Drξ +

∫ T

t

[
Drf

(
s,�n−1

s

) + ∂yf
(
s,�n−1

s

)
DrY

n−1
s + ∂zf

(
s,�n−1

s

)
DrZ

n−1
s

]
ds

−
∫ T

t

DrZ
n
s dWs,

with �n−1
s := (Y n−1

s ,Zn−1
s ). On the other if (Y,Z) where Malliavin differentiable we would have that a version of

(DrYt ,DrZt ) would satisfy for t ∈ [0, T ], r ≤ t :

DrYt = Drξ +
∫ T

t

[
Drf (s,Ys,Zs) + ∂yf (s,Ys,Zs)DrYs + ∂zf (s,Ys,Zs)DrZs

]
ds −

∫ T

t

DrZs dWs.

In other words, assuming that ∂yf and ∂zf to be continuous, we would get formally that (DYn,DZn) converges
to (DY,DZ) (in S

2 × H
2) as n goes to infinity provided that at the limit one can replace Drf (s,Y n−1

s ,Zn−1
s ) by

Drf (s,Ys,Zs) which is exactly where comes the main assumption in [9,20] which impose Drf to be (stochastic)
Lipschitz continuous in (y, z) with integrability conditions on the Lipschitz constant to make the aforementioned
argument rigorous. However, it is not a necessary condition for (Y,Z) to be Malliavin differentiable that (DYn,DZn)

to converge to (DY,DZ). However, for Yt to be in D
1,2, it is necessary (and sufficient) that ε−1(Yt ◦ τεh − Yt )

converges in Lp for some p < 2 to 〈DYt , ḣ〉H for any h in H (according to Theorem 4.1). Hence, this is an advantage
of our conditions.

7. Extension to quadratic growth BSDEs

The aim of this section is to extend our previous results to so-called quadratic growth BSDEs. Some results for
these equations already exist in the literature, see in particular [2,12] or the thesis [8], however they are generally
limited to specific forms of the generators or to a Markovian setting. We will show that our approach to the Malliavin
differentiability is flexible enough to be able to treat this problem without major modifications to our proofs. Since the
wellposedness theory for multidimensional quadratic BSDEs is still an open problem, we enforce n = 1 throughout
this section.

We will now list our assumptions in this quadratic setting

(D∞) ξ is bounded, belongs to D1,∞ and its Malliavin derivative Dξ is bounded, for any (y, z) ∈ R×Rd , (t,ω) �→
f (t,ω, y, z) is in L2([0, T ];D1,∞), f (·, y, z) and Df (·, y, z) are F-progressively measurable, Df (·, y, z) is
uniformly bounded in y, z.

(Q) The map (y, z) �→ f (·, y, z) is continuously differentiable and there exists some constant C > 0 such that for
any (s,ω, y, z, z′) ∈ [0, T ] × � ×R×R

d ×R
d∣∣f (s,ω,y, z) − f

(
s,ω, y, z′)∣∣ ≤ C

(
1 + ‖z‖ + ∥∥z′∥∥)∥∥z − z′∥∥,

∣∣f (s,ω,0,0)
∣∣ ≤ C,∣∣fy(s,ω, y, z)

∣∣ ≤ C,
∥∥fz(s,ω, y, z)

∥∥ ≤ C
(
1 + ‖z‖)

,
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where fz = (
∂f
∂zl

)l∈{1,...,d} denotes the gradient of f with respect to the z variable.
(H1,∞) For any p > 1 and for any h ∈ H

lim
ε→0

E

[(∫ T

0

∣∣∣∣f (s, · + εh,Ys,Zs) − f (s, ·, Ys,Zs)

ε
− 〈

Df (s, ·, Ys,Zs), ḣ
〉
H

∣∣∣∣ds

)p]
= 0.

(H2,∞) Let (εk)k∈N be a sequence in (0,1] such that limk→+∞ εk = 0, and let (Y k,Zk)k be a sequence of random
variables which converges in S

p × H
p
d for any p > 1 to some (Y,Z). Then for all h ∈ H , the following

convergences hold in probability∣∣fy

(·,ω + εkh,Y k· ,Z·
) − fy(·,ω,Y·,Z·)

∣∣
L2([0,T ];R)

−→
k→+∞ 0,

(7.1)∣∣fz

(·,ω + εkh,Y k· ,Zk·
) − fz(·,ω,Y·,Z·)

∣∣
L2([0,T ];Rd )

−→
n→+∞ 0,

or∣∣fy

(·,ω + εkh,Y k· ,Zk·
) − fy(·,ω,Y·,Z·)

∣∣
L2([0,T ];R)

−→
k→+∞ 0,

(7.2)∣∣fz

(·,ω + εkh,Y·,Zk·
) − fz(·,ω,Y·,Z·)

∣∣
L2([0,T ];Rd )

−→
k→+∞ 0.

Let S∞ be the set of F-progressively measurable processes Y such that supt∈[0,T ] |Yt | is bounded and H
2
BMO the

set of Rd -valued predictable processes Z such that:

essup
τ∈T

E

[∫ T

τ

‖Zs‖2 ds

∣∣∣ Fτ

]
< +∞, P0-a.s.,

where T denotes the set of F-stopping times with values in [0, T ]. We start by recalling the following by now classical
results on quadratic growth BSDEs and stochastic Lipschitz BSDEs, which can be found among others in [12].

Proposition 7.1. Under Assumptions (D∞) and (Q), the BSDEs (5.1) and (5.5) both admit a unique solution in
S

∞ ×H
2
BMO.

We have the following extension of Theorem 5.1.

Theorem 7.1. Let t be in [0, T ]. Under Assumptions (D∞), (Q), (H1,∞) and (H2,∞), Yt belongs to D
1,∞ and Z ∈

L∞([t, T ]; (D1,2)d).

Proof. We follow the proof of Theorem (5.1), using the same notations. Since the BSDEs are now quadratic, we can
use the a priori estimates of Lemma A.1 in [12] to obtain that for any p > 1, there exists some q > 1 such that

E

[
sup

s∈[t,T ]
∣∣Y ε

s − Ŷ h
s

∣∣2p
]
+E

[(∫ T

t

∥∥Zε
s − Ẑh

s

∥∥2
ds

)p]

≤ Cp

(
E

[∣∣ξε − 〈Dξ, ḣ〉H
∣∣pq]1/q +E

[(∫ T

0
Ãε

s − 〈
Df (s, ·, Ys,Zs), ḣ

〉
H

ds

)pq]1/q)

+ CpE

[(∫ T

0

∣∣Ãy,ε
s − fy(s, ·, Ys,Zs)

∣∣∣∣Ŷ h
s

∣∣ds

)pq]1/q

+ CpE

[(∫ T

0

∥∥Ãz,ε
s − fz(s, ·, Ys,Zs)

∥∥∥∥Ẑh
s

∥∥ds

)pq]1/q

, (7.3)
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where we set

Ã
y,ε
s := fy

(
s, · + εh, Ȳ ε,h

s ,Zs

)
,

Ãε
s := 1

ε

(
f (r, · + εh,Ys,Zs) − f (s, ·, Ys,Zs)

)
,

where Ȳ
ε,h
r is a convex combination of Yr and Yr ◦ τεh and

Ãz,ε
s := ((

Ãz,ε
s

)k)
k∈{1,...,d}

with (Ã
z,ε
s )k := fz(s, · + εh,Ys ◦ τεh, Z̃

k
r ), and Z̃k

r is as in the proof of Theorem 5.1.
Since ξ ∈ D

1,∞, the first term on the right-hand side above goes to 0 thanks to Theorem 4.1. Moreover, the second
term also goes to 0 thanks to Assumption (H∞). Then, since fy is bounded by Assumption (Q) and since Ỹ h ∈ S

∞ by
Proposition 7.1, we can easily conclude with Assumption (H2) and the dominated convergence theorem that the third
term on the right-hand side also goes to 0. Let us now concentrate on the fourth term involving the control variable.
By Cauchy–Schwarz inequality we have that

E

[(∫ T

0

∥∥Ãz,ε
s − fz(s, ·, Ys,Zs)

∥∥∥∥Ẑh
s

∥∥ds

)pq]

≤ E

[(∫ T

0

∥∥Ãz,ε
s − fz(s, ·, Ys,Zs)

∥∥2
ds

)pq]1/2

E

[(∫ T

0

∥∥Z̃h
s

∥∥2
ds

)pq]1/2

. (7.4)

Since (Ŷ h, Ẑh) is the solution to the stochastic linear BSDE (5.5) with bounded coefficients Df and fy (by (D∞))
and fz(s, Ys,Zs) is in H

2
BMO since ‖fz(s, Ys,Zs)‖ ≤ C(1 +‖Zs‖) (by Assumption (Q)), we deduce that Ẑh ∈ H

2
BMO

which implies that Ẑh ∈ H
m
d for any m > 1 by the energy inequalities. Furthermore, for any η > 0 it holds that

E

[(∫ T

0

∥∥Ãz,ε
s − fz(s, ·, Ys,Zs)

∥∥∥∥Ẑh
s

∥∥ds

)pq+η]

≤ CE

[(∫ T

0

(
1 + ‖Zs‖ + ‖Zs ◦ τεh‖

)∥∥Ẑh
s

∥∥ds

)pq+η]

≤ CE

[(∫ T

0

(
1 + ‖Zs‖ + ‖Zs ◦ τεh‖

)2
ds

)(pq+η)/2(∫ T

0

∥∥Ẑh
s

∥∥2
ds

)(pq+η)/2]

≤ CE

[(∫ T

0

(
1 + ‖Zs‖ + ‖Zs ◦ τεh‖

)2
ds

)pq+η]1/2

E

[(∫ T

0

∥∥Ẑh
s

∥∥2
ds

)pq+η]1/2

≤ C

(
1 +E

[(∫ T

0
‖Zs‖2 ds

)p′]1/q ′)
E

[(∫ T

0

∥∥Ẑh
s

∥∥2
ds

)pq+η]1/2

< +∞,

where p′, q ′ > 1 using Hölder inequality and Proposition 3.1. Hence, taking limit as ε goes to 0 in (7.4) we get
that limε→0 E[sups∈[t,T ] |Y ε

s − Ŷ h
s |2p] + E[(∫ T

t
‖Zε

s − Ẑh
s ‖2 ds)p] = 0. Following the same lines as in the proof of

Theorem 5.1, one can use a priori estimates for quadratic growth BSDEs to obtain that Ŷ h and Ẑh are linear operators-
valued r.v. This proves that Yt and

∫ T

t
Z�

s · dWs belongs to D
1,∞ by Theorem 4.1. In particular, Z1[t,T ] belongs to

L2([t, T ]; (D1,2)d) (see [20]). Moreover, since (DtY,DtZ) is the solution of the stochastic linear BSDE (5.8) for any
t ∈ [0, T ] and Assumptions (D∞) and (Q) hold, from the relation (DtYt )

j = (Zt )
j for any j in {1, . . . , d}, and for all

t ∈ [0, T ] we obtain Z1[t,T ] ∈ L∞([t, T ]; (D1,2)d). �

Remark 7.1. We would like to point out that our conditions cover the case of Markovian quadratic BSDEs presented
in [11, Theorem 2.9]. Indeed, assume that we consider a forward-backward system of the form (6.1) where the solution
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process X to the forward SDE is m-dimensional with m a positive integer (so that we match with the notations and
assumptions of [11, Theorem 2.9]) under assumptions, (D∞), (Q), (A1), (A2)(i) and where (A2)(ii) is replaced by the
following assumption:

(A2)(ii′) f : [0, T ] ×R
m ×R×R

d → R is continuously differentiable in (x, y, z) and satisfying for some C > 0

∃q ∈R+,
∥∥fx(t, x, y, z)

∥∥ ≤ C
(
1 + |y| + ‖z‖2 + ‖x‖q

)
, ∀(t, x, y, z) ∈ [0, T ] ×R

m ×R×R
d,

where fx := (
∂f
∂xl

)l∈{1,...,m} denotes the gradient of f with respect to the variable x. Under these assumptions, we can
check that (H1,∞) and (H2,∞) are in force. To see this we just make a comment about how the proof of Proposition 6.1
has to be modified to obtain (H1,∞), whereas (H2,∞) is met trivially. Using the notations of this proof one can manage
a term of the form:

E

[(∫ T

0

∥∥ε−1(Xt ◦ τεh − Xt) − 〈DXt, ḣ〉H
∥∥∥∥fx(t, X̄t , Yt ,Zt )

∥∥dt

)p]

as follows:

E

[(∫ T

0

∥∥ε−1(Xt ◦ τεh − Xt) − 〈DXt, ḣ〉H
∥∥∥∥fx(t, X̄t , Yt ,Zt )

∥∥dt

)p]

≤ CE

[
sup

t∈[0,T ]

∥∥∥∥Xt ◦ τεh − Xt

ε
− 〈DXt, ḣ〉H

∥∥∥∥p

×
(∫ T

0

(
1 + ‖Xt‖q + ‖Xt ◦ τεh‖q + |Yt | + ‖Zt‖2)

dt

)p]

≤ CE

[
sup

t∈[0,T ]

∥∥ε−1(Xt ◦ τεh − Xt) − 〈DXt, ḣ〉H
∥∥2p

]1/2

×E

[(∫ T

0

(
1 + ‖Xt‖q + ‖Xt ◦ τεh‖q + |Yt | + ‖Zt‖2)

dt

)2p]1/2

,

which goes to 0 as ε goes to 0 since Z belongs to H
2
BMO and since Y is bounded. The term involving A2,ε can be

treated similarly.

Appendix

The following lemma was remarked in [24, Remark 2] with the set of polynomial cylindrical functions P , we provide
a proof of it with the set of cylindrical functions S .

Lemma A.1. Let p > 1 and F be in Lp(R), G ∈ S and h ∈ H . The mapping ε �→ E[F ◦ τεhG] is differentiable in ε

and

d

dε
E[F ◦ τεhG] = E

[
F ◦ τεhδ(Gh)

]
. (A.1)

Proof. Let η > 0, by the Cameron–Martin formula, we have that

η−1(
E[F ◦ τ(η+ε)hG] −E[F ◦ τεhG])

= E

[
F ◦ τεh

G ◦ τ−ηh exp(η
∫ T

0 ḣ(u)� · dWu − (|η|2/2)
∫ T

0 ‖ḣ(u)‖2 du) − G

η

]
.
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Hence

lim
η→0

η−1(
E[F ◦ τ(η+ε)hG] −E[F ◦ τεhG])

= E

[
F ◦ τεh lim

η→0

G ◦ τ−ηh exp(η
∫ T

0 ḣ(u)� · dWu − (|η|2/2)
∫ T

0 ‖ḣ(u)‖2 du) − G

s

]

= E

[
F ◦ τεh lim

η→0

(
G ◦ τ−ηh − G

η
+ G ◦ τ−ηh

exp(η
∫ T

0 ḣ(u)� · dWu − (|η|2/2)
∫ T

0 ‖ḣ(u)‖2 du) − 1

η

)]
,

where the exchange between the limit and the expectation is justified by the fact that

sup
η∈(0,1]

η−q
E

[∣∣∣∣G ◦ τ−ηh exp

(
η

∫ T

0
ḣ(u)� · dWu − |η|2

2

∫ T

0

∥∥ḣ(u)
∥∥2

du

)
− G

∣∣∣∣q
]

< +∞ (A.2)

for any q > 1 and by the Cameron–Martin formula. Indeed for any r in (1,p) we have by Hölder inequality:

E

[∣∣∣∣F ◦ τεh

G ◦ τ−ηh exp(η
∫ T

0 ḣ(u)� · dWu − (|η|2/2)
∫ T

0 ‖ḣ(u)‖2 du) − G

η

∣∣∣∣r
]

≤ E
[|F ◦ τεh|p1

]r/p1︸ ︷︷ ︸
=:E1

E

[∣∣∣∣G ◦ τ−ηh exp(η
∫ T

0 ḣ(u)� · dWu − (|η|2/2)
∫ T

0 ‖ḣ(u)‖2 du) − G

η

∣∣∣∣rp2
]1/p2

︸ ︷︷ ︸
=:E2

,

where r < p1 < p and p2 is the Hölder conjugate of p1/r . Using Cameron–Martin formula for E1, Relation (3.1) and
Hölder inequality with r1 = p

p1
and r2 such that 1

r1
+ 1

r2
= 1, we deduce that:

E1 ≤ E
[|F |p]r/p

E

[∣∣∣∣E
(∫ T

0
ḣ�

s · dWs

)∣∣∣∣r2
]1/r2

< +∞.

We now turn to E2, for any q > 1

sup
η∈(0,1]

E

[∣∣∣∣G ◦ τ−ηhE(η
∫ T

0 ḣ(u)� · dWu) − G

η

∣∣∣∣q
]

≤ sup
η∈(0,1]

E

[∣∣∣∣G ◦ τ−ηh − G

η
E

(
η

∫ T

0
ḣ(u)� · dWu

)∣∣∣∣q
]

︸ ︷︷ ︸
=:A1

+ sup
η∈(0,1]

E

[∣∣∣∣E(η
∫ T

0 ḣ(u)� · dWu) − 1

η
G

∣∣∣∣q
]

︸ ︷︷ ︸
=:A2

,

hence, on the one hand there exists α1, α2 > 1 such that:

A1 ≤ sup
η∈(0,1]

η−q
E

[|G ◦ τ−ηh − G|qα1
]1/α1

E

[∣∣∣∣E
(

η

∫ T

0
ḣ(u)� · dWu

)∣∣∣∣qα2
]1/α2

< +∞,

using the fact that G is polynomial, so G is locally Lipschitz and we conclude by Relation (3.1). On the other hand,
using the mean value theorem and Relation (3.1), we obtain also A2 < +∞. We deduce that Relation (A.2) holds.
Moreover, given that G ∈ P is polynomial, we deduce that

G◦τ−ηh−G

η
→η→0 −〈∇G,h〉H a.s. Hence,

lim
η→0

η−1(
E[F ◦ τ(η+ε)hG] −E[F ◦ τεhG])

= E

[
F ◦ τεh lim

η→0

(
G ◦ τ−ηh − G

η
+ G ◦ τ−ηh

exp(η
∫ T

0 ḣ(u)� · dWu − (|η|2/2)
∫ T

0 ‖ḣ(u)‖2 du) − 1

η

)]
= E

[
F ◦ τεh

(−〈∇G,h〉H + Gδ(h)
)] = E

[
F ◦ τεhδ(Gh)

]
,
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by (2.3), so (A.1) holds. �

Lemma A.2. Let α in L2([0, T ];D1,2). Then for any p in (1,2),

lim
ε→0

E

[∫ T

0

∣∣∣∣αs ◦ τεh − αs

ε
− 〈∇αs,h〉H

∣∣∣∣p ds

]
= 0.

Proof. Note first that the space L2([0, T ];D1,2) can be identified with the space D1,2(H) which is the completion of
the set of H-valued r.v. of the form:

n∑
i=1

Fiui, Fi ∈ S, ui ∈ L2([0, T ]), n ≥ 1,

with respect to the norm ‖ · ‖1,2,2 defined as:

‖u‖2
1,2,2 := E

[‖u‖2
L2([0,T ])

] +E
[‖∇u‖2

H⊗L2([0,T ])
]
.

Alternatively, an element u in D
1,2(H) is identified with a stochastic process such that for almost avery t in [0, T ], ut

belongs to D
1,2 and such that

E
[‖∇u‖2

H⊗L2([0,T ])
] = E

[∫ T

0

∫ T

0
|Dsut |2 ds dt

]
< +∞.

Hence we can assume that α belongs to D
1,2(H). Thus by [24, Theorem 3.1], α satisfies (RAC) and (SGD), which

entails in this setting that for any h in H , there exists a H-valued r.v. α̃h such that α̃h = α in H, P0-a.s., and for any
ε > 0

α̃h ◦ τεh − α̃h

ε
= ε−1

∫ ε

0
〈∇α ◦ τsh, h〉H ds, in H,P0-a.s.

Using Lemma 3.1 we thus get that for any r ∈ (p,2), it holds that:

E

[∫ T

0

∣∣ε−1(αs ◦ τεh − αs)
∣∣r ds

]
= E

[∫ T

0

∣∣ε−1(
(α̃h)(s) ◦ τεh − (α̃h)(s)

)∣∣r ds

]

≤ E

[∫ T

0
ε−1

∫ ε

0

∣∣〈∇αs ◦ τuh,h〉H
∣∣r duds

]

≤ C

∫ T

0
E

[∣∣〈∇αs,h〉H
∣∣p]r/p

ds

≤ CE

[∫ T

0

∣∣〈∇αs,h〉H
∣∣p ds

]r/p

≤ C‖h‖r
HE

[‖∇α‖p

H⊗H

]r/p
< +∞,

where we have used Cameron–Martin formula and similar computations to those of the proof of Lemma 4.2, and
C denotes a positive constant which can differ from line to line. Hence, the family (

∫ T

0 |ε−1(αs ◦ τεh − αs) −
〈∇αs,h〉H |p ds)ε∈(0,1) is uniformly integrable. In addition, by Property (SGD), ε−1(α ◦ τεh − α) converges in proba-

bility to 〈∇α,h〉H (with respect to the norm L2([0, T ])) which implies that
∫ T

0 |ε−1(αs ◦ τεh − αs) − 〈∇αs,h〉H |p ds

converges in probability to 0 as ε goes to 0, which provides the result. �
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