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Abstract. We investigate the high-temperature behavior of the directed polymer model in dimension 1 + 2. More precisely we
study the difference �F(β) between the quenched and annealed free energies for small values of the inverse temperature β. This
quantity is associated to localization properties of the polymer trajectories, and is related to the overlap fraction of two replicas.
Adapting recent techniques developed by the authors in the context of the disordered pinning model (Berger and Lacoin, 2015),
we identify the sharp asymptotic high temperature behavior

lim
β→0

β2 log�F(β) = −π.

Résumé. Nous analysons le comportement du modèle de polymère dirigé en dimension 1 + 2, dans la limite de haute température.
Plus précisément, nous étudions la différence �F(β) entre les énergies libres gelées et recuites, pour les petites valeurs de la
température inverse β. Cette quantité est associée à des propriétés de localisation des trajectoires du polymère, et est reliée à la
fraction de superposition de deux répliques. En adaptant des techniques récemment développées par les auteurs dans le contexte du
modèle d’accrochage désordonné (Berger et Lacoin, 2015), nous identifions le comportement asymptotique précis dans la limite
de haute température

lim
β→0

β2 log�F(β) = −π.
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1. Introduction

The directed polymer model has been introduced by Huse and Henley (in dimension 1+1) in 1985 [18] as an effective
model for an interface in the Ising model with impurities. It was shortly afterwards generalized to arbitrary dimension
1 + d , where it stands as a model for a stretched polymer interacting with an inhomogeneous solvent. The behavior of
the polymer trajectory relies heavily on the value of d , see [14] for a review.

In dimension 1 + 3 and higher there is a phase transition between a high temperature diffusive phase for which
there is a Brownian scaling [5,15], and a localized phase where the polymer tends to pin on a few narrow corridors
where the environment is more favorable (see [10,13] for rigorous evidence of the phenomenon).
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In dimension 1 + 1, the polymer is localized at every temperature. Moreover it belongs to the KPZ universality
class, which has been the object of intense studies in the recent year (for a connection between directed polymer and
the KPZ equation, see e.g. [1] and references therein).

The dimension 1 + 2 is critical for the model. It is known that localization occurs at all temperature (see [13,19]),
but the difference between the quenched and annealed free-energy of the system, which is a quantitative indicator of
localization, grows very slowly with the inverse-temperature. The aim of this paper is to obtain sharp information on
the asymptotic behavior of this free-energy difference.

1.1. Directed polymer in random environment

We let P denote the law of S = (Sn)n≥0 the symmetric nearest-neighbor random walk on Z
d , starting from 0, and

whose increments are i.i.d. with law

P(S1 = x) = 1

2d
1{|x|=1}, (1.1)

where | · | is the l1 norm.
Let ω = (ωi,x)i≥0,x∈Zd be a field of i.i.d. random variables with law P, which are centered and have unit variance,

E[ωi,x] = 0 and E[(ωi,x)
2] = 1. We also assume that they have a finite exponential moment in a neighborhood of zero,

i.e. that for some positive c,

∀β ∈ [−c, c], λ(β) := logE
[
eβωi,x

]
< +∞. (1.2)

Given the random environment ω and the inverse temperature β > 0, we define the following Gibbs transformation
of the law P of the random walk up to length N

dPβ,ω
N

dP
(S) := 1

Z
β,ω
N

exp

(
N∑

n=1

βωn,Sn

)
, (1.3)

where Z
β,ω
N is the partition function

Z
β,ω
N = E

[
exp

(
N∑

n=1

βωn,Sn

)]
. (1.4)

The free energy (or pressure) of the system is defined by

F(β) := lim
N→∞

1

N
logZ

β,ω
N . (1.5)

The limit is known to exist and be P-a.s. constant, see [13, Prop. 2.5]. It is also known that the convergence holds in
L1 and hence that

F(β) = lim
N→∞

1

N
E

[
logZ

β,ω
N

]
. (1.6)

An easy upper-bound on F(β) is given by Jensen’s inequality

F(β) ≤ lim
N→∞

1

N
logE

[
Z

β,ω
N

] = λ(β). (1.7)

We refer to this upper bound as the annealed free-energy while F(β) is the quenched one. Knowing whether or not this
inequality is sharp gives information on the localization of the trajectory. Heuristically F(β) < λ(β) corresponds to
localization of the trajectories under Pβ,ω

N around favorite corridors where ω is favorable, whereas F(β) = λ(β) implies
diffusivity of S. This has been largely put on rigorous ground both for the diffusive case [5,15] and the localized one
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[10,13]. Moreover, it is known that F(β) = λ(β) for small value of β when d ≥ 3 [5] while the inequality is always
strict for d = 1 [12] and d = 2 [19].

When F(β) < λ(β), the difference �F(β) = λ(β) − F(β) > 0 gives some indication on how much localized the
trajectories are: Carmona and Hu [9] (and later Comets Shiga and Yoshida [13]) gave an explicit link between �F(β)

and the overlap fraction of two replicas. Carmona and Hu [10] strengthened this result for a continuous-time model
of directed polymer: in our context, it would read

�F(β) = λ(β) lim
N→∞

1

N

N∑
k=1

(
Pβ,ω

k−1

)⊗2(
S

(1)
k = S

(2)
k

)
P-a.s.

In dimension 1, it is known that �F(β) scales like β4 (see [2,19,25]), and it is conjectured [23,24] that

lim
β→0

β−4�F(β) = 1

24
. (1.8)

The exponent 4 is very much related to the β = N−1/4 scaling which is required to obtain a non-trivial intermediate
disorder regime limit, see [1].

1.2. Main result

We write

Ẑ
β,ω
N := e−Nλ(β)Z

β,ω
N (1.9)

for the renormalized partition function, so that �F(β) = − limN→∞ 1
N
E log Ẑ

β,ω
N .

In this paper we focus on the case of d = 2, the critical dimension for directed polymers, for which the renormalized
free energy �F(β) vanishes faster than any power of β . In [19], the author showed the existence of a constant c such
that for β ≤ 1,

−c−1β−4 ≤ log�F(β) ≤ −cβ−2.

In [21], the lower bound was improved to log�F(β) ≥ −cεβ
−(2+ε) for any ε > 0, and the author conjectured that

limβ↓0 β2�F(β) = −π .
Our main theorem significantly improves over previous results and identifies the sharp critical behavior of �F(β),

confirming the prediction of [21].

Theorem 1.1. For d = 2,

lim
β→0

β2 log�F(β) = −π.

1.3. Strategy of the proof and organization of the paper

Our result improves both existing lower and upper bounds on �F(β). The main part of the work concerns the lower
bound.

To derive it we use a by now standard fractional moment/coarse-graining procedure, employed in the context of
pinning models [16,17] recently enhanced in [4], and adapted for the directed polymer model in [19,21]. Here, we
rely in particular on new ideas that have been introduced in [4] to obtain optimal bounds on the critical point shift in
disordered pinning. Let us sketch briefly how the different parts of the proof articulate.

First we realize that to control the free-energy it is sufficient to have a control on E[
√

Ẑ
β,ω
N ] which is easier to

work with than the log partition function. Then, to obtain the desired lower bound, we proceed in three steps which
we introduce here in a rather informal manner:
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(i) We perform a coarse-graining of the system, dividing it into cells of length � and width
√

� (to fit with the
random walk diffusive scaling) where � depends on β and gets very large when β gets small. We choose � to be
roughly the inverse of �F(β) or rather the inverse of the bound we would like to prove for it. The idea behind
this procedure is to “factorize” the partition function of a system of size much larger than � and isolate the
contribution of each cell. Then if we are able to show that the partition function “restricted to a cell” is small, the
factorization procedure enables us to deduce a good bound on the free energy.

(ii) The coarse grained trajectory is defined as the projection of the original trajectory S on this rougher lattice (we
give a more proper definition in the core of the paper). We decompose the partition function of a system whose
size is a multiple of � by isolating the contribution of each coarse grained trajectory. By using the inequality√∑

ai ≤ ∑√
ai valid for any collection of positive ai ’s, we reduce ourselves to estimate the square root moment

of partition functions restricted to a single coarse grained trajectory.
(iii) We estimate these square root contributions of coarse grained trajectories by performing a “change of measure”

which makes the environment ω less favorable in the visited cells. The way we choose this change of measure is
quite elaborate and is based on a multilinear form of the ωn,x in the cell. It is described in details in Section 2.3.

The steps (i) and (ii) are identical to those performed in [19] and are presented in Section 2, however the change
of measure is significantly improved with respect to that of [19] and builds on the innovations introduced in [4]. In
Section 3, we prove the technical estimates needed to control the effect of the change of measure procedure.

The upper bound is obtained in Section 4 thanks to an estimate on the second moment of the partition function,
together with a concentration argument of logZ

β,ω
N around its mean inspired by [8].

1.4. Generalization of the result?

We recall here that the question of localization can be studied either thanks to the excess free energy �F(β), or
thanks to the limit Ẑ

β,ω∞ of the positive martingale (Ẑ
β,ω
N )N≥0. By Kolmogorov’s 0–1 law, we only have two cases:

either Ẑ
β,ω∞ > 0 P-a.s., referred to as the weak disorder phase, and the polymer is shown to be diffusive, see [5]; or

Ẑ
β,ω∞ = 0 P-a.s., referred to as the strong disorder phase, and the polymer is localized, see [9] or [13]. A long-standing

conjecture is that the strong disorder phase is equivalent to the positivity of �F(β).
The techniques described in Section 1.3 could be adapted to a more general context. Indeed, one might consider

the model in which the random walk S is not the simple symmetric random walk on Z
d , but belongs to the domain

of attraction of an α-stable law with α ∈ (0,2], see [11]. Let us consider the case of the dimension 1 + 1: it has been
showed that weak disorder holds for β small enough when α ∈ (0,1), see [11], and that strong disorder holds for
any β > 0 when α ∈ (1,2), see [22] (in a continuous setting). A similar question has been studied in [6], where a
disordered scaling limit can be constructed whenever α ∈ (1,2]. The case α = 1 is marginal, as it is the case of the
simple random walk in dimension 1+2, and it is likely that it could be dealt with the same methods as presented here:
one should be able to obtain a necessary and sufficient condition for the existence of a weak disorder phase (note that
this is related to the notion of disorder irrelevance, studied in [4]). In general, localization should occur for all β > 0
if and only if S is recurrent, and the growth of the excess free energy �F(β) should be related to that of the mean
intersection local time up to time N , cf. (1.11) (analogously to [4, Prop. 6.1–7.1]).

1.5. Some notations

We introduce the intersection local time up to time N ,

LN

(
S(1), S(2)

) =
N∑

t=1

1{S(1)
t =S

(2)
t }. (1.10)

For t ∈N and x ∈ Z
2, we write

p(t, x) := P(St = x),
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for the kernel of the symmetric simple random walk on Z
2. A central quantity for the model is the mean intersection

local time up to N ,

D(N) :=
N∑

t=1

P
(
S

(1)
t = S

(2)
t

) =
N∑

t=1

p(2t,0)
N→∞∼ 1

π
logN. (1.11)

Note that D(N) can also be written as
∑N

t=1
∑

x∈Z2 p(t, x)2.

2. Lower-bound

2.1. Fractional moment and coarse-graining

To bound the free energy from above we have to estimate the expected value of logZ
β,ω
N . Using Jensen’s inequality,

we can reduce the problem into having to estimate only the square root, which turns out to be more convenient. We
have

E
[
log Ẑ

β,ω
N

] = 2E
[
log

√
Ẑ

β,ω
N

]
≤ 2 logE

[√
Ẑ

β,ω
N

]
, (2.1)

and hence

�F(β) ≥ − lim inf
N→∞

2

N
logE

[√
Ẑ

β,ω
N

]
. (2.2)

We split the system into “cells” of length � which we choose to be equal to

� = �β,ε := exp

(
(1 + 2ε)

π

β2

)
, (2.3)

where ε > 0 is a parameter (fixed for the rest of the proof), which we choose to be small. The reason for this choice of
coarse-graining length will appear later in the proof. We consider a system whose length is a multiple of �: N = m�,
m ∈N. For every y ∈ Z

2, we define a window centered at y
√

� (we assume for simplicity that
√

� is an even integer),
and of width

√
�:


y := y
√

� +
(

−1

2

√
�,

1

2

√
�

]2

∩Z
2.

Note that 
y contains � points. Given any Y = (y1, . . . , ym) ∈ (Z2)m, we define the event

EY := {∀i ∈ {1, . . . ,m}, Si� ∈ 
yi

}
. (2.4)

If S ∈ EY , then Y is a coarse-grained version of the trajectory of S. The width of the cells is chosen to match the
scaling of the random-walk.

We decompose Ẑ
β,ω
N according to the contribution of the different coarse-grained trajectories

Ẑ
β,ω
N = Ẑ

β,ω
m� =

∑
Y∈(Z2)m

E

[
exp

(
N∑

n=1

(
βωn,Sn − λ(β)

))
1{S∈EY }

]
=:

∑
Y∈(Z2)m

ZY . (2.5)

Using the inequality (
∑

i∈I ai)
1/2 ≤ ∑

i∈I a
1/2
i , valid for any family of non-negative ai ’s, we obtain

E
[(

Ẑ
β,ω
N

)1/2] ≤
∑

Y∈(Z2)m

E
[
(ZY )1/2]. (2.6)
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We are therefore left with estimating E[(ZY )1/2] for every coarse-grained trajectory Y . As a consequence of (2.2) and
(2.6) we have

�F(β) ≥ − lim inf
m→∞

2

m�
log

( ∑
Y∈(Z2)m

E
[
(ZY )1/2]), (2.7)

We obtain the lower bound in Theorem 1.1 as a consequence of the following result.

Proposition 2.1. For any ε > 0, there exists some βε > 0 such that, for every β ∈ (0, βε), and m ≥ 1∑
Y∈(Z2)m

E
[
(ZY )1/2] ≤ 2−m.

This statement implies indeed that �F(β) ≥ (2 log 2)�−1, and thus from the definition of � (2.3), for any arbitrary
ε > 0, we have

lim inf
β→0

β2 log�F(β) ≥ −(1 + 2ε)π. (2.8)

2.2. The change of measure argument

Let gY (ω) be a positive function, that can be interpreted as a probability density if renormalized. Using the Cauchy–
Schwarz inequality, we have(

E
[
(ZY )1/2])2 ≤ E

[
gY (ω)−1]

E
[
gY (ω)ZY

]
. (2.9)

The idea is then to choose gY (ω) such that E[gY (ω)−1] is not much larger than one, but lowers significantly the
expectation of ZY . Hence we want gY to be of order 1 for “typical environments,” but much smaller for atypical
ω which results in high values of ZY (the underlying idea being that these are the ones who carry the mass in the
expectation).

As we want to affect the partition function restricted to paths in EY , we choose a change of measure gY (ω) which
only affects the environment in a corridor which is centered on the location of the paths. To make certain that most
trajectories in EY are affected by the change, we apply it in a region which is slightly wider than

√
�: For any y ∈ Z

2,
let us define


̃y := y
√

� + (−R
√

�,R
√

�]2 ∩Z
2,

where R is chosen sufficiently large (see the proof of Lemma 3.2). Note that 
̃y contains 4R2� points.
We choose gY to be a function of ω restricted to

⋃m
i=1 B(i,yi−1) for i = 1, . . . ,m (with y0 = 0) where

B(i,y) := [
(i − 1)� + 1, i�

] × 
̃y. (2.10)

Because of our coarse-graining, it is natural that we choose gY as a product of functions of the environment restricted
to one cell (ωn,x)(n,x)∈B(i,yi−1)

.
We let X(ω) be a function of (ωn,x)(n,x)∈B(1,0)

which we specify in the next section and which satisfies

E
[
X(ω)

] = 0, E
[(

X(ω)
)2] ≤ 1. (2.11)

We define X(i,y) as the space-time “translation” of X

X(i,y)(ω) := X
(
θ(i−1)�,

√
�yω

)
, (2.12)
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where θa,b is the shift operator: (θa,bω)t,x := ωt+a,x+b . Finally, given K > 0 which is chosen large enough, we set

g(i,y)(ω) := exp(−K1{X(i,y)(ω)≥eK2 }),
(2.13)

gY (ω) := 1

2m

m∏
i=1

g(i,yi−1)(ω).

With this definition, and provided that K is large, we have

E
[
g(i,y)(ω)−1] = 1 + (

eK − 1
)
P
(
X(i,y)(ω) ≥ eK2) ≤ 1 + (

eK − 1
)
e−2K2 ≤ 2,

and hence by independence of the g(i,yi−1), i = 1, . . . ,m (which are functions of ω on disjoint sets by construction),
we have

E
[
gY (ω)−1] ≤ 1. (2.14)

The main task is then to estimate the effect on ZY of the multiplication by gY . We have

E
[
gY (ω)ZY

] = E
[
E

[
gY (ω)e

∑N
n=1(βωn,Sn−λ(β))

]
1EY

]
. (2.15)

Note that for a fixed trajectory S, the measure P
S on ω defined by

dPS

dP
(ω) := e

∑N
n=1(βωn,Sn−λ(β)), (2.16)

is a probability measure. Under PS , ω is still a field of independent random variables (in particular the g(i,yi−1)(ω), i =
1, . . . ,m are still independent), but they are not identically distributed: the law of (ωn,Sn)1≤n≤N has been exponentially
tilted. The variance and expectation of ωn,x for 1 ≤ n ≤ N are then given by

E
S[ωn,x] = λ′(β)1{Sn=x}, VarS(ωn,x) = 1 + (

λ′′(β) − 1
)
1{Sn=x}, (2.17)

where λ′ and λ′′ denote the first two derivatives of λ. In what follows we will always choose β sufficiently small so
that ∣∣∣∣λ′(β) − β

β

∣∣∣∣ ≤ ε3 and λ′′(β) ≤ 1 + ε3

2
. (2.18)

With this newly defined measure, the identity (2.15) can be rewritten as follows

E
[
gY (ω)ZY

] = E
[
E

S
[
gY (ω)

]
1EY

] = 2mE

[
m∏

i=1

E
S
[
g(i,yi−1)(ω)

]
1EY

]
. (2.19)

Using the product structure of gY (ω) := 2m
∏m

i=1 g(i,yi−1)(ω), we perform an approximate factorization of the above
expression by considering the worse possible intermediate points for S. It yields the following upper bound

2m
m∏

i=1

max
x∈
yi−1

E
[
E

S
[
g(i,yi−1)(ω)

];Si� ∈ 
yi
|S(i−1)� = x

]
.

Using translation invariance (2.12) and summing over all Y we have∑
Y∈(Z2)m

E
[
gY (ω)ZY

]1/2 ≤ 2m

( ∑
y∈Z2

max
x∈
0

(
Ex

[
E

S
[
g(1,0)(ω)

];S� ∈ 
y

])1/2
)m

, (2.20)

where Px denotes the law of the simple random walk starting from x. Therefore, one only needs to consider one block:
combining this with Lemma 2.2 and (2.9), (2.14), this proves Proposition 2.1.
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2.3. Choice of the change of measure

We now specify our choice of X. With the expression that we have chosen for g, we want X to be typically larger than
K under ES , at least for most realizations of S. We choose X to be a positive q-linear form of (ωn,x)(n,x)∈B(1,0)

, which

corresponds more or less to the term of order q appearing in the Taylor expansion of the partition function Z
β,ω
� . We

set

q� := (log log�)2. (2.21)

To simplify the calculations, we also reduce the interactions (in time) to a range u � �. We choose u = u� := ��1−ε2�.
Note that this gives (cf. (1.11))

D(u)
β→0∼ 1 − ε2

π
log�, (2.22)

so that the definition of � ensures that for β sufficiently small (and if ε < 1/10)

(1 + ε) ≤ β2D(u) ≤ (1 + 2ε). (2.23)

We introduce the set of increasing sequences with increments no larger than u

J�,u := {
t := (t0, . . . , tq) ∈N

q+1|1 ≤ t0 < · · · < tq ≤ �; (tj − tj−1) ≤ u,∀j ∈ {1, . . . , q}}. (2.24)

We now define

X(ω) := 1

2R�D(u)q/2

∑
x∈(
̃0)

q+1,t∈J�,u

P (t, x)ωt,x, (2.25)

where for any x = (x0, . . . , xq) ∈ (
̃0)
q+1 we set ωt,x = ∏q

j=0 ωtj ,xj
, and

P(t, x) =
q∏

j=1

p(tj − tj−1, xj − xj−1)1{|xj −xj−1|≤ρ(tj −tj−1)}

= P
(
Stj −t0 = xj − x0,∀j ∈ {1, . . . , q})1{|xj −xj−1|≤ρ(tj −tj−1),∀j∈{1,...,q}}. (2.26)

Here and later in the proof | · | denotes the l1 norm on Z
2, and

ρ(t) := min
(
t/2, (log t)

√
t
)
. (2.27)

The condition |xj − xj−1| ≤ ρ(tj − tj−1) turns out to be convenient for technical reasons but is not essential. For the
rest, as already mentioned, X resembles the term of order q in the Taylor expansion in β of the partition function
“restricted to a cell”. We refer to [4, Section 4.2] for a more elaborate discussion on the definition of X(ω).

We easily check that E[X(ω)] = 0 and

E
[(

X(ω)
)2] = 1

4R2�2D(u)q

∑
x∈(
̃0)

q+1,t∈J�,u

P (t, x)2 ≤ 1. (2.28)

Lemma 2.2. With the choice of change of measure made in (2.13)–(2.25), there exists some βε > 0 such that, for all
β ≤ βε , one has∑

y∈Z2

max
x∈
0

Ex

[
E

S
[
g(1,0)(ω)

];S� ∈ 
y

]1/2 ≤ 1

4
.
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3. Proof of the key Lemma 2.2

In this section, for notational convenience, we write g(ω) instead of g(1,0)(ω).
First, if A is chosen sufficiently large and ‖y‖2 ≥ A (‖ · ‖2 denotes the Euclidean norm), then uniformly for

x ∈ 
0 = (−√
�/2,

√
�/2]2 ∩Z

2, we have

Px(S� ∈ 
y) ≤ e−(1/4)‖y‖2
2 .

Therefore, as g(ω) ≤ 1, we have∑
‖y‖2≥A

max
x∈
0

(
Ex

[
E

S
[
g(ω)

];S� ∈ 
y

])1/2 ≤
∑

‖y‖2≥A

max
x∈
0

Px(S� ∈ 
y)
1/2

≤
∑

‖y‖2≥A

e−(1/4)‖y‖2
2 ≤ 1

8
,

where the last inequality holds provided that A is large enough. For the remaining sum, we use the (rather rough)
bound ∑

‖y‖2≤A

max
x∈
0

Ex

[
E

S
[
g(ω)

];S� ∈ 
y

]1/2 ≤ 4A2 max
x∈
0

(
Ex

[
E

S
[
g(ω)

]])1/2
.

Therefore, we need to control Ex[ES[g(ω)]] for every x ∈ 
0:

Lemma 3.1. For any η > 0, there exist constants K(η) > 0 and β0(ε, η) such that for all β ≤ β0, and for any x ∈ 
0

Ex

[
E

S
[
g(ω)

]] ≤ η. (3.1)

Applying this lemma with η = ( 1
32A2 )2, we have

∑
‖y‖2≤A

max
x∈
0

(
Ex

[
E

S
[
g(ω)

];S� ∈ 
y

])1/2 ≤ 1

8
,

and Lemma 2.2 is proven. To prove Lemma 3.1 we need some control over the distribution of X(ω) under PS .

Lemma 3.2. For any δ > 0, there exist R(δ) and β0(ε, δ) such that, for every x ∈ 
0 and any β ≤ β0

Px

(
E

S[X] ≥ (
1 + ε2)q) ≥ 1 − δ.

Lemma 3.3. For any δ > 0, and R > 0, there exists some β0(ε, δ) such that, for every x ∈ 
0 and any β ≤ β0

Px

[
VarS(X) ≤ (

1 + ε3)q] ≥ 1 − δ. (3.2)

Proof of Lemma 3.1. Recalling the definition (2.13) of g(ω), we have for any S,

E
S
[
g(ω)

] ≤ e−K + P
S
(
X(ω) ≤ eK2)

, (3.3)

and we choose K large such that e−K ≤ η/6. We define the event

A := {
E

S[X] ≥ (
1 + ε2)q} ∩ {

VarS(X) ≤ (
1 + ε3)q}

,
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and we apply Lemmas 3.2 and 3.3 for δ = η/3, so that Px(A) ≥ 1 − 2η/3, for every x ∈ 
0. Then, choosing β small
enough (so that q is sufficiently large) we have eK2 ≤ 1

2 (1 + ε2)q , so that on the event A, Chebychev’s inequality
yields

P
S
(
X(ω) ≤ eK2) ≤ P

S

(
X −E

S[X] ≤ −1

2

(
1 + ε2)q

)
≤ 4(1 + ε3)q

(1 + ε2)2q
≤ η/6. (3.4)

Hence from (3.3), we have (still on the event A)

E
S
[
g(ω)

] ≤ η/3. (3.5)

Using the bound E
S[g(ω)] ≤ 1 on the complement of A (which has probability at most 2η/3), we conclude the proof

of Lemma 3.1. �

3.1. Proof of Lemma 3.2

From the definition (2.25) of X, and recalling (2.17), we have, for any trajectory of S

E
S[X] = (λ′(β))q+1

2R�D(u)q/2

∑
t∈J�,u

P
(
t, S(t)

)
1{Stk

∈
̃0∀k∈{0,...,q}}

≥
[

(λ′(β))q+1

2R�D(u)q/2

∑
t∈J�,u

P
(
t, S(t)

)]
1{maxt≤� ‖St‖∞≤R

√
�}, (3.6)

where we used the notation

S(t) := (St0 , St1, . . . , Stq ).

Note that if R = R(δ) is chosen sufficiently large, we have for all x ∈ (−√
�/2,

√
�/2]2 ∩Z

2

Px

(
max
t≤�

‖St‖∞ > R
√

�
)

≤ P0

(
max
t≤�

‖St‖∞ > (R − 1/2)
√

�
)

≤ δ/2. (3.7)

On the event {maxt≤� ‖St‖∞ ≤ R
√

�}, we use (2.18) which gives λ′(β) ≥ (1 − ε3)β , to obtain

E
S[X] ≥ β

(
1 − ε3)q+1(

β2D(u)
)q/2 1

2R�D(u)q

∑
t∈J�,u

P
(
t, S(t)

)
≥ (

1 + ε2)2q 1

�D(u)q

∑
t∈J�,u

P
(
t, S(t)

)
, (3.8)

where in the last line, we used (2.23), and the inequality

β

2R

(
1 − ε3)q+1

(1 + ε)q/2 ≥ (
1 + ε2)2q

which is valid provided ε < 1/10 and β is small enough. Hence combining (3.6) with (3.7)–(3.8) we have

Px

(
E

S[X] ≥ (
1 + ε2)q) ≥ −δ/2 + Px

[
1

�D(u)q

∑
t∈J�,u

P
(
t, S(t)

) ≥ 1

(1 + ε2)q

]
. (3.9)

Then, we obtain again a lower bound if we restrict the sum to t such that t0 ≤ �/2. We set

J ′
�,u := {

t = (t0, . . . , tq); t0 ≤ �/2; tj − tj−1 ∈ (0, u] ∀j ∈ {1, . . . , q}}.
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Note that J ′
�,u ⊆ J�,u provided β is small enough (because �/2 + qu ≤ �). Therefore, it is sufficient to show that

Px

(
W� <

1

(1 + ε2)q

)
≤ δ/2, (3.10)

where

W� := 1

�D(u)q

∑
t∈J ′

�,u

P
(
t, S(t)

)
. (3.11)

Note that the law of W� does not depend on the starting point x, hence for the rest of the proof we replace Px by P.
We achieve the bound (3.10) by controlling the first two moments of W (we actually prove that W� converges in
probability to 1

2 as � → ∞). We have

E[W�] = 1

�D(u)q

∑
t∈J ′

�,u

E
[
P

(
t, S(t)

)]
. (3.12)

Note that by the definition of P , E[P(t, S(t))] is translation invariant and thus∑
t∈J ′

�,u

E
[
P

(
t, S(t)

)] = �

2

∑
{t∈J ′

�,u|t0=1}
E

[
P

(
t, S(t)

)]

= �

2

(
u∑

t=1

P
(
S2t = 0; |St | ≤ ρ(t)

))q

=: �

2

(
D̂(u)

)q
. (3.13)

It is an easy exercise to show that the restriction |St | ≤ ρ(t) = min(t/2, (log t)
√

t) has not much effect, and that (recall
(1.11)) there exists a constant C such that

D(u) − C ≤ D̂(u) ≤ D(u). (3.14)

Hence, we conclude that

1

2

(
D(u) − C

D(u)

)q

≤ E[W�] ≤ 1

2
, (3.15)

and E[W�] converges to 1/2 when β tends to zero (recall (2.21)–(2.22)).
Now let us estimate the variance of W . We define, for j ∈ N

Yj = 1

D(u)q

∑
t∈J ′

�,u(j)

P
(
t, S(t)

) −
(

D̂(u)

D(u)

)q

, (3.16)

where J ′
�,u(j) := {t ∈ J ′

�,u; t0 = j}. We have E[Yj ] = 0, and W� − E[W�] = 1
�

∑�/2
j=1 Yj . Hence,

Var(W�) = 1

�2

�/2∑
j1,j2=1

E[Yj1Yj2 ], (3.17)

and we can conclude by showing that most covariance terms are zero. More precisely we have

Lemma 3.4. One has that

(i) There exists a constant C1 such that, for all j , with probability 1, |Yj | ≤ (C1)
q .

(ii) If |j1 − j2| ≥ uq , then E[Yj1Yj2] = 0.
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Replacing the terms in (3.17) by either zero (if |j1 − j2| ≥ uq) or (C1)
2q (in other cases) we obtain that

Var(W�) ≤ 2uq

�
(C1)

2q ≤ 2q(C1)
2q�−ε2

. (3.18)

Since q and (C1)
2q grow slower than any power of �, Var(W�) tends to 0 as � goes to infinity (or β ↓ 0). As a

consequence, Chebychev’s inequality together with (3.15) gives that W� converges in probability to 1
2 as � → ∞, and

(3.10) hence Lemma 3.2 are proven. �

Proof of Lemma 3.4. For the first point, we remark that trivially Yj ≥ −1. For an upper bound, by the local Central
Limit Theorem for the simple random walk on Z

2 (which can be obtained with little more than the application of
Stirling formula), there exists a constant c1 such that

∀x ∈ Z
2, p(t, x) ≤ c1

1 + t
. (3.19)

We therefore have

∑
t∈J ′

�,u(j)

P
(
t, S(t)

) ≤
(

u∑
i=1

c1

1 + i

)q

≤ (c1)
q(logu)2q .

As D(u) is also of order logu (cf. (1.11)), we obtain the result for a suitable C1.
For (ii), note that

E[Yj1Yj2] =
∑
z∈Z2

E[Yj1 1{Sj2=z}Yj2].

If j2 > j1 + qu, then conditionnally on Sj2 = z Yj1 and Yj2 are independent, and E[Yj2 |Sj2 = z] = 0 for all z ∈ Z
2.

Hence the result. �

3.2. Proof of Lemma 3.3

We are going to show a uniform bound on the variance which holds provided that S satisfies

max
{|St − St ′ |/1 ≤ t ≤ t ′ ≤ �,

∣∣t − t ′
∣∣ ≤ qu

} ≤ (logu)
√

u. (3.20)

Note that if � is sufficiently large (i.e. β sufficiently small), for every x ∈ 
0 this occurs with Px probability larger
than 1 − δ, by standard properties of the simple random walk.

For any trajectory S, we define a modified environment

ω̂n,x := ωn,x − λ′(β)1{Sn=x}.

It is such that under PS , the variables ω̂n,x are independent and centered, with a variance smaller than 1 + (ε3/2), see
(2.17)–(2.18). We want to expand

E
S
[
X2] = 1

4R2�2D(u)q
E

S

[( ∑
x∈(
̃0)

q+1,t∈J�,u

P (t, x)

q∏
j=0

(
ω̂tj ,xj

+ λ′(β)1{Stj
=xj }

))2]
. (3.21)

We have

q∏
j=0

(
ω̂tj ,xj

+ λ′(β)1{Stj
=xj }

) =
q+1∑
r=0

(
λ′(β)

)r
∑

A⊆{0,...,q},|A|=r

∏
k∈A

1{Stk
=xk}

∏
j∈{0,...,q}\A

ω̂tj ,xj
.
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Therefore, when taking the square in (3.21), one obtains a sum over x, x′ ∈ (
̃0)
q+1, t, t ′ ∈ J�,u of P(t, x)P (t ′, x′)

times

q+1∑
r=0

q+1∑
r ′=0

(
λ′(β)

)r+r ′ ∑
A⊆{0,...,q},|A|=r

B⊆{0,...,q},|B|=r ′

∏
k∈A
k′∈B

1{Stk
=xk}1{St ′

k′ =x′
k′ }

∏
j∈{0,...,q}\A
j ′∈{0,...,q}\B

ω̂tj ,xj
ω̂t ′

j ′ ,x′
j ′ .

When taking the expectation under ES , the only non-zero terms are those with r = r ′ and{
(tj , xj )|j ∈ {0, . . . , q} \ A

} = {
(tj ′ , xj ′)|j ′ ∈ {0, . . . , q} \ B

}
. (3.22)

Note that the term r = q + 1 corresponds exactly to E
S[X]2, and is therefore canceled when considering the variance.

We need to introduce some additional notations to reorganize the sum: for any a ≥ 1, define

Sa := {
s = (s0, . . . , sa);1 ≤ s0 < · · · < sa ≤ �; sa − s0 ≤ au

}
.

Also, for r ≥ 1, and any s ∈ Sq−r , a set of s-compatible t :

Tr (s) = {
t = (t1, . . . , tr );1 ≤ t1 < · · · < tr ≤ �; s · t ∈ J�,u

}
,

where s · t denotes the ordered sequence with q + 1 elements which is obtained by reordering the values of the si ’s
and tj ’s. Hence, isolating the term r = 0, and recalling E

S[(ω̂t,x)
2] ≤ 1 + (ε3/2) ≤ 2, we obtain

VarS[X] ≤ (1 + (ε3/2))q+1

4R2�2D(u)q

∑
x∈(
̃0)

q+1,t∈J�,u

P (t, x)2

+ 1

4R2�2D(u)q

q∑
r=1

(
λ′(β)

)2r2q+1−r

×
∑

s∈Sq−r

∑
x∈(
̃0)

q−r+1

∑
t,t ′∈Tr (s)

P
(
(s, x),

(
t, S(t)

))
P

(
(s, x),

(
t ′, S(t ′))), (3.23)

where we used the notation

P
(
(s, x), (t, z)

) = P(s · t, x · z),
where x · z is defined (a bit improperly since the definition depends on s and t ) as

(x · z)k :=
{

xi if (s · t)k = si ,
zj if (s · t)k = tj . (3.24)

The first term, according to (2.28) is smaller than (1 + (ε3/2))q+1. It remains to control the second term. First, we
restrict the summation over x0 by showing that

|x0 − Ss0 | ≥
√

u(logu)2 ⇒ P
(
(s, x),

(
t, S(t)

)) = 0. (3.25)

Indeed for P to be positive, all coordinates x · S(t) must be within distance qρ(u) of one another. However, (3.20)
implies that

|x0 − St1 | ≥
√

u(logu)2 − √
u logu > qρ(u), (3.26)

provided that β is small enough. For the other values of x0 we will make use of the following bound.
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Lemma 3.5. There exists a constant C2 such that for any realization of S we have, for any s ∈ Sq−r∑
t∈Tr (s)

P
(
(s, x),

(
t, S(t)

)) ≤ 2q(C2 log�)r
q−r∏
i=1

p(si − si−1, xi − xi−1). (3.27)

This implies, together with (3.25), that for any S verifying (3.20)∑
s∈Sq−r

∑
x∈(
̃0)

q−r+1

( ∑
t∈Tr (s)

P
(
(s, x),

(
t, S(t)

)))2

≤ 4q(C2 log�)2r
∑

s∈Sq−r

∑
x∈(
̃0)

q−r+1

|x0−Ss0 |≤√
u(logu)2

(
q−r∏
i=1

p(si − si−1, xi − xi−1)

)2

. (3.28)

Summing over all possible 1 ≤ s0 ≤ � and x0, we obtain

∑
s∈Sq−r

∑
x∈(
̃0)

q−r+1

|x0−Ss0 |≤√
u(logu)2

q−r∏
i=1

p(si − si−1, xi − xi−1)
2

≤ �2u(logu)4 ×
( ∑

x∈Z2

1≤t≤�

p(t, x)2
)q−r

≤ 2�u(log�)4+q−r , (3.29)

where we used that D(�) ≤ log� if � is large enough, see (1.11). Hence, collecting (3.28)–(3.29), the second term in
(3.23) is bounded by

1

4R2�2D(u)q

q∑
r=1

(
λ′(β)

)2r2q+1−r × 4q(C2 log�)2r2�u(log�)4+q+r

≤ 42qC
2q

2

R2

(
log�

D(u)

)q

(log�)4u�−1
q∑

r=1

β2r (log�)r ≤ q(C3)
q

R2
(log�)4�−ε2

, (3.30)

where we used that λ′(β) ≤ 2β (see (2.18)) in the first inequality. In the second inequality, we used that β2 log� ≤ 2π

from the definition of � (2.3), that D(u) ≥ 1
4 log� if � is large enough (and ε < 1/10) so that C3 := 128C2

2π ; we also

used that u ≤ �1−ε2
. Since q, (C3)

q and (log�)4 grow slower than any power of �, the r.h.s. of (3.30) tends to zero as
� goes to infinity (or β → 0). Therefore, if β is small enough, (3.23) implies

VarS[X] ≤ (
1 + (

ε3/2
))q+1 + 1 ≤ (

1 + ε3)q
. (3.31)

�

3.3. Proof of Lemma 3.5

First of all, we divide the sum according to the way the t coordinates are interlaced with the s coordinates: for any
given s ∈ Sq−r , we have∑

t∈Tr (s)

P
(
(s, x),

(
t, S(t)

))

≤
∑

0≤m0≤···≤mq−r≤r

q−r∏
i=1

∑
si−1<tmi−1+1<···<tmi

<si

P
(
(si−1, tmi−1+1, . . . , tmi

, si), (xi−1, Stmi+1 , . . . , Stmi+1
, xi)

)
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×
∑

0<t1<···<tm0<s0

P
(
(t1, . . . , tm0, s0), (St1 , . . . , Stm0

, x0)
)

×
∑

sq−r<tmq−r+1<···<tr<�

P
(
(sq−r , tmq−r , . . . , tr ),

(
xq−r , Stmq−r

, . . . , Str

))
. (3.32)

where we used the (rather unusual, but convenient) convention that if mi+1 = mi then∑
si−1<tmi−1+1<···<tmi

<si

P
(
(si−1, tmi−1+1, . . . , tmi

, si), (xi−1, Stmi−1+1 , . . . , Stmi
, xi)

)
= P

(
(si−1, si), (xi−1, xi)

) = p(si − si−1, xi − xi−1)1{|xi−xi−1|≤ρ(si−si−1)}. (3.33)

Here mi designates the index of the last t -coordinate before si : there are m0 t -coordinates before s0, mi − mi−1

between si−1 and si , and r − mq−r after sq−r . We also isolated the contribution of the t -coordinates smaller than s0

and of those larger than sq−r . Note that there are
(

q+1
q−r+1≤2q

)
possible interlacements 0 ≤ m0 ≤ · · · ≤ mq−r ≤ r , and

we will bound the contribution of each of them separately.
First, we deal with the contribution of the t coordinates greater than sq−r . We use (3.19) to obtain∑

sq−r<tmq−r+1<···<tr<�

P
(
(sq−r , tmq−r+1, . . . , tr ), (xq−r , Stmq−r

, . . . , Str )
)

≤
∑

sq−r<tmq−r+1<···<tr<�

c1

1 + tmq−r+1 − sq−r

r∏
k=mq−r+2

c1

1 + tk − tk−1
≤ (c1 log�)r−mq−r . (3.34)

By symmetry, the same argument yields∑
0<t1<···<tm0 <s0

P
(
(t1, . . . , tm0, s0), (St1 , . . . , Stm0

, x0)
) ≤ (c1 log�)m0 . (3.35)

Then, we deal with the inner terms. We have to prove that there exists a constant C2 such that, for any 1 ≤ s ≤ �,
x ∈ Z

2, for any k ≥ 0, and any sequence (Vn)n≥0 with V0 = 0 and Vs = x,∑
0<t1<···<tk<s

P
(
(0, t1, . . . , tk, s), (V0 = 0,Vt1, . . . , Vtk ,Vs = x)

) ≤ (C2 log�)kp(s, x). (3.36)

This, combined with (3.34)–(3.35) and plugged in (3.32) completes the proof of Lemma 3.5. To prove (3.36), the main
ingredient is the following inequality.

Lemma 3.6. There exists a constant C2 such that for all t ≥ 1, for all x satisfying |x| ≤ t/2, and for all 0 ≤ n ≤ t

sup
{z∈Z2/|z|≤n/2,|x−z|≤(t−n)/2}

P(Sn = z;St = x)

P(St = x)
≤ C2

1 + min(n, t − n)
. (3.37)

This is a standard but technical estimate (note that the assumption on z is not needed but simplifies the proof). We
use Lemma 3.6 now to prove (3.36) by induction, and postpone its proof to the end of the section.

Note that (3.36) for k = 0 follows from our convention (3.33). For k ≥ 1 note that

p(s − tk,Vs − Vtk )p(tk − tk−1,Vtk − Vtk−1)1{|Vtk
−Vtk−1 |≤ 1

2 |tk−tk−1|;|Vs−Vtk
|≤ 1

2 |s−tk |}

≤ C2

1 + min(s − tk, tk − tk−1)
p(s − tk−1,Vs − Vtk−1)1{|Vs−Vtk−1 |≤ 1

2 |s−tk−1|}. (3.38)
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Using the convention that t0 = 0, tk+1 = s, it therefore gives the following upper bound on (3.36)

∑
t0=0<t1<···<tk<s=tk+1

k∏
i=0

p(ti+1 − ti , Vti+1 − Vti )1{|Vti+1 −Vti
|≤ 1

2 |ti+1−ti |}

≤ 2C2 log(s)
∑

0<t1<···<tk−1<s

k−1∏
i=0

p(ti+1 − ti , Vti+1 − Vti )1{|Vti+1 −Vti
|≤ 1

2 |ti+1−ti |}, (3.39)

where we simply summed (3.38) over tk . We can then conclude by induction.

Proof of Lemma 3.6. First, we simplify the problem thanks to a rotation: if we denote Sn := (Xn,Yn), then letting
X̃n := Xn − Yn, Ỹn := Xn + Yn, we obtain that X̃n and Ỹn are two independent symmetric nearest-neighbor random
walks on Z. Then, writing x = (x1, x2), one has that {St = x} = {X̃t = x1 − x2; Ỹt = x1 + x2}. Therefore, Lemma 3.6
reduces to a statement on the nearest-neighbor random walk on Z: we only need to prove that there exists a constant
c2 such that, for all t ≥ 2, and all x̃ satisfying |̃x| ≤ t/2, we have for all 1 ≤ n ≤ t − 1,

sup
{̃z∈Z/|̃z|≤n/2,|̃x−̃z|≤(t−n)/2}

P(X̃n = z̃)P(X̃t−n = x̃ − z̃)

P(X̃t = x̃)
≤ c2√

min(n, t − n)
. (3.40)

This is equivalent to proving that for all n, t , and k and j satisfying

t/4 ≤ k ≤ 3t/4, n/4 ≤ j ≤ 3n/4, (t − n)/4 ≤ k − j ≤ 3(t − n)/4, (3.41)

we have(
n

j

)(
t − n

k − j

)
(

t

k

) ≤ c2√
min(n, t − n)

. (3.42)

By symmetry, we only have to prove this inequality for n ≤ t/2. Using Stirling’s formula for all the binomial coeffi-
cients we obtain that there exists a constant C > 0 such that(

n

j

)(
t − n

k − j

)
(

t

k

) ≤ C

√
n(t − n)k(t − k)

j (n − j)(k − j)(t − n − (k − j))t

×
(

n

j

)j(
n

n − j

)n−j(
t − n

k − j

)k−j(
t − n

t − n − (k − j)

)t−n−k+j(
k

t

)k(
t − k

t

)t−k

. (3.43)

Note that because of our assumptions (3.41) and n ≤ t/2, the square-root term is up to a multiplicative constant
equivalent to n−1/2. Hence we just need to show that the factor on the second line is smaller than one. If one considers
j as a continuous variable, elementary calculus implies that this term is maximized for j = kn/t , and that this maximal
value is indeed 1. �

4. Upper bound

By a superadditivity argument (see [13, Proposition 2.5] and its proof) we have

�F(β) ≤ − 1

N
E

[
log Ẑ

β,ω
N

]
. (4.1)
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We use this inequality for the largest possible choice of N := Nβ,ε for which Ẑ
β,ω
N is still of constant order (recall that

it has mean one, but that it converges to zero when N goes to infinity). After a simple second moment computation,
see Section 4.2, one realizes that the right choice is Nβ,ε := exp((1 − ε)πβ−2) (if one replaces (1 − ε) by (1 + ε) the

variance of Ẑ
β,ω
N explodes). The constant π which appears here corresponds to that appearing in the tail distribution

of the first meeting time of two independent random walk

P⊗2[∀n ≤ 2N,S(1)
n �= S(2)

n

] N→∞∼ 1

π
logN

(we refer to the proof of [4, Lemma 6.4] for more details on the estimates of the second moment).
To be able to use (4.1), we need to prove that log Ẑ

β,ω
Nβ,ε

is concentrated around its median, which is a nontrivial

result, but this gives already an intuition of why one shoud have �F(β) ≤ CN−1
β,ε .

This intuition is strengthened by the work (in preparation) of Caravenna, Sun and Zygouras [7] which proves that,
when β → 0, log Ẑ

β,ω
Nβ,ε

converges in distribution towards a normal random variable whose expectation and variance
depend only on ε.

We stress that obtaining such a concentration result is not straightforward: standard techniques (e.g. using martin-
gales) give that the variance of log Ẑ

β,ω
N is bounded above by CN (see [13, Section 6]). The reader can check that by

using this bound as done in [19, Section 7], we would be off by a factor 1
2 for our bound on log�F(β). Obtaining bet-

ter bounds for the variance of log Ẑ
β,ω
N is in general a very difficult problem and the best known general improvements

are by log factors (see e.g. [3]).
However, in our context, the temperature depends on N and we can use this fact to obtain sharper concentration

results. To do so, we borrow ideas from [8], and we obtain a uniform bound on the tail of − log Ẑ
β,ω
Nβ,ε

.

4.1. Concentration of log Ẑ
β,ω
Nβ,ε

To simplify the exposition, we present the proof first in the case where ω is bounded, and then quickly adapt it to the
general case with a suitable truncation procedure.

The boundedness is used to have a convex concentration inequality which does not depend on the number or
variables considered. Let us start with a convex concentration inequality for bounded variables. The following result
is a consequence of [8, Lemma 3.3] and a more usual concentration inequality [20, Corollary 4.10].

Lemma 4.1. There exists a constant C1 such that for any m ≥ 0, for any sequence of i.i.d. variables η = (η1, . . . , ηm)

satisfying

P
(|η1| < K

) = 1, (4.2)

and any convex set A ⊆R
m, we have

P(η ∈ A)P
(
d(η,A) > t

) ≤ 2e−t2/(C1K
2). (4.3)

We do not use the result above directly but as a tool to obtain a finer concentration result which is valid for functions
whose Lipschitz norm is controlled only on a small set. It is a convex version of [20, Proposition 1.6] (we refer to [8]
for the details). If f is a function of η we let |∇f (η)| denote the Euclidean norm of the gradient of f ,

∣∣∇f (η)
∣∣ =

√√√√ m∑
i=1

(
∂f

∂ηi

(η)

)2

. (4.4)

Proposition 4.2 ([8], Proposition 3.4). Let f be a convex function, and η satisfy (4.2). Then for any a, M and t we
have

P
(
f (η) ≥ a; ∣∣∇f (η)

∣∣ ≤ M
)
P
(
f (η) ≤ a − t

) ≤ 2e−t2/(C1K
2M2), (4.5)

where the constant C1 is identical to that of Lemma 4.1.
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We want to apply this result to log Ẑ
β,ω
Nβ,ε

, which is a convex function of (ωn,x)1≤n≤N,|x|≤N . To use Proposition 4.2
efficiently we have to obtain a good bound on the norm of its gradient

∣∣∇ log Ẑ
β,ω
Nβ,ε

∣∣ :=
√√√√ N∑

n=1

∑
|x|≤n

(
∂

∂ωn,x

log Ẑ
β,ω
Nβ,ε

)2

. (4.6)

We prove the following in Section 4.2.

Lemma 4.3. There exists positive constants βε and M = Mε such that for all β < βε we have

P
(
Ẑ

β,ω
Nβ,ε

≥ 1/2; ∣∣∇ log Ẑ
β,ω
Nβ,ε

∣∣ ≤ M
) ≥ ε/80. (4.7)

In the case where the environment ω satisfies |ωn,x | ≤ K almost surely, we can use Proposition 4.2 directly with
a = − log 2, combined with Lemma 4.3. This yields

P
(
log Ẑ

β,ω
Nβ,ε

≤ − log 2 − t
) ≤ 160

ε
e−t2/(C1K

2M2), (4.8)

and hence that

�F(β) ≤ − 1

Nβ,ε

E
[
log Ẑ

β,ω
Nβ,ε

] ≤ C(ε,M,K)

Nβ,ε

. (4.9)

In the case where the environment is unbounded, we can deduce from (1.2) that there exists c0 < c such that

∀v > 0, P
(|ω1| ≥ v

) ≤ 2e−c0v, (4.10)

and hence

P

(
max

n≤N,|x|≤n
|ωn,x | ≥ v

)
≤ 8N3e−c0v. (4.11)

From this we deduce two bounds. The first one is rough, but valid for any value of β and N , and we use it in desperate
cases

P
[
log Ẑ

β,ω
N ≤ −(

βv + λ(β)
)
N

] ≤ 8N3e−c0v. (4.12)

The other one makes use of Proposition 4.2, that we apply to

ω̃ �→ f (ω̃) := log E

[
exp

(
N∑

n=1

βω̃n,Sn − λ(β)

)]
, (4.13)

where ω̃n,x = ωn,x1{|ωn,x |≤(logN)2}. For β small enough, Lemma 4.3 gives that

P
(
f (ω̃) ≥ − log 2,

∣∣∇f (ω̃)
∣∣ ≤ M

)
≥ P

(
Ẑ

β,ω
Nβ,ε

≥ 1/2; ∣∣∇ log Ẑ
β,ω
Nβ,ε

∣∣ ≤ M
) − P(ω �= ω̃) ≥ ε

160
, (4.14)

where in P(ω �= ω̃) we implicitly considered environments restricted to n ∈ [1,N ], |x| ≤ N , and in the last inequality
we used that

P(ω �= ω̃) ≤ 8N3e−c0(logN)2
.
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Therefore, applying Proposition (4.2) to the function f (ω̃), we finally obtain

P
(
log Ẑ

β,ω
Nβ,ε

≤ − log 2 − t
)

≤ P
(
f (ω̃) ≤ − log 2 − t

) + P(ω �= ω̃) ≤ 320

ε
e−t2/(C1(logN)4M2) + 8N3e−c0(logN)2

. (4.15)

In the end, combining (4.15) for “small” values of t (e.g. t ≤ N2) and (4.12) for all other values, we conclude that

�F(β) ≤ − 1

Nβ,ε

E
[
log Ẑ

β,ω
Nβ,ε

] ≤ C(logNβ,ε)
2

Nβ,ε

. (4.16)

This yields the result thanks to the definition of Nβ,ε .

4.2. Second moment estimate, proof of Lemma 4.3

Let us set γ (β) := λ(2β) − 2λ(β), and note that

E
[(

Ẑ
β,ω
N

)2] = E⊗2

[
exp

(
γ (β)

N∑
n=1

1{S(1)
n =S

(2)
n }

)]
. (4.17)

Using [4, Lemma 6.4], for ε > 0 and β sufficiently small, and choosing N = Nβ,ε := exp((1 − ε)πβ−2), we have that

E
[(

Ẑ
β,ω
Nβ,ε

)2] ≤ 10

ε
. (4.18)

Therefore, thanks to the Paley–Zygmund inequality, we obtain

P
[
Ẑ

β,ω
Nβ,ε

≥ 1/2
] ≥ 1

4E[(Ẑβ,ω
Nβ,ε

)2]
≥ ε

40
. (4.19)

For notational simplicity let us write f (ω) := log Ẑ
β,ω
Nβ,ε

. With (4.19), we have

P

(
Ẑ

β,ω
Nβ,ε

≥ 1

2
; ∣∣∇f (ω)

∣∣ ≤ M

)
= P

(
Ẑ

β,ω
Nβ,ε

≥ 1

2

)
− P

(
Ẑ

β,ω
Nβ,ε

≥ 1

2
; ∣∣∇f (ω)

∣∣ > M

)
≥ ε

40
− 1

M2
E

[∣∣∇f (ω)
∣∣21{Ẑβ,ω

Nβ,ε
≥1/2}

]
. (4.20)

Then, a straightforward calculation gives

∣∣∇f (ω)
∣∣2 = β2

(Ẑ
β,ω
Nβ,ε

)2
E⊗2

[Nβ,ε∑
n=1

1{S(1)
n =S

(2)
n } exp

(Nβ,ε∑
n=1

(
β(ω

n,S
(1)
n

+ ω
n,S

(2)
n

) − 2λ(β)
))]

, (4.21)

so that, similarly to (4.17), we get

E
[∣∣∇f (ω)

∣∣21{Ẑβ,ω
Nβ,ε

≥1/2}
] ≤ 4E⊗2

[
β2

(Nβ,ε∑
n=1

1{S(1)
n =S

(2)
n }

)
exp

(
γ (β)

Nβ,ε∑
n=1

1{S(1)
n =S

(2)
n }

)]
. (4.22)

It is now standard to show that this last term is uniformly bounded for β ≤ βε , as done for example in [4, § 6.3].
First, notice that γ (β) ∼ β2 as β ↓ 0. Therefore if β is small enough, we have that γ (β) ≤ (1 + ε2/2)β2, and there
exists a constant Cε > 0 such that for all β ≤ βε and all N ≥ 1

β2

(
N∑

n=1

1{S(1)
n =S

(2)
n }

)
exp

(
γ (β)

N∑
n=1

1{S(1)
n =S

(2)
n }

)
≤ Cε exp

((
1 + ε2)β2

N∑
n=1

1{S(1)
n =S

(2)
n }

)
.
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Hence, exactly as in Section 6.3 of [4], the term we need to bound is Zu
N , the partition function of a homogeneous

pinning model with parameter u = (1 + ε2)β2 and underlying renewal τ = {n;S(1)
n = S

(2)
n }. Referring to [4] (in

particular Equations (6.24)–(6.31)), we have that Zu
Nβ,ε

≤ 10/ε if β is small enough, and we get that

E
[∣∣∇f (ω)

∣∣21{Ẑβ,ω
Nβ,ε

≥1/2}
] ≤ 40Cε/ε.

In the end, choosing M = 80
√

Cε

ε
in (4.20) yields (4.7).

Acknowledgements

The authors are grateful to Francesco Caravenna, Rongfeng Sun and Nikos Zygouras for communicating their result
[7], and thank in particular Francesco Caravenna for pointing out the techniques used in [8].

References

[1] T. Alberts, K. Khanin and J. Quastel. The intermediate disorder regime for directed polymers in dimension 1 + 1. Ann. Probab. 42 (2014)
1212–1256. MR3189070

[2] K. S. Alexander and G. Yildirim. Directed polymers in a random environment with a defect line. Electron. J. Probab. 20 (2015) Article ID 6.
MR3311219

[3] K. S. Alexander and N. Zygouras. Subgaussian concentration and rates of convergence in directed polymers. Electron. J. Probab. 18 (2013)
Article ID 5. MR3024099

[4] Q. Berger and H. Lacoin Pinning on a defect line: Characterization of marginal disorder relevance and sharp asymptotics for the critical point
shift. Preprint, 2015. Available at arXiv:1503.07315 [math-ph].

[5] E. Bolthausen. A note on diffusion of directed polymers in a random environment. Comm. Math. Phys. 123 (1989) 529–534. MR1006293
[6] F. Caravenna, R. Sun and N. Zygouras. Polynomial chaos and scaling limits of disordered systems. J. Eur. Math. Soc. (JEMS). To appear.
[7] F. Caravenna, R. Sun and N. Zygouras. Universality in marginally relevant disordered systems. Preprint, 2015. Available at arxiv:1510.06287

[math.PR].
[8] F. Caravenna, F. Toninelli and N. Torri Universality for the pinning model in the weak coupling regime. Preprint, 2015. Available at

arXiv:1505.04927v1 [math.PR].
[9] P. Carmona and Y. Hu. On the partition function of a directed polymer in a random Gaussian environment. Probab. Theory Related Fields 124

(3) (2002) 431–457. MR1939654
[10] P. Carmona and Y. Hu. Strong disorder implies strong localization for directed polymers in a random environment. ALEA Lat. Am. J. Probab.

Math. Stat. 2 (2006) 217–229. MR2249669
[11] F. Comets. Weak disorder for low dimensional polymers: The model of stable laws. Markov Process. Related Fields 13 (4) (2007) 681–696.

MR2381596
[12] F. Comets and V. Vargas. Majorizing multiplicative cascades for directed polymers in random media. ALEA Lat. Am. J. Probab. Math. Stat. 2

(2006) 267–277. MR2249671
[13] F. Comets, T. Shiga and N. Yoshida. Directed polymers in a random environment: Strong disorder and path localization. Bernoulli 9 (4)

(2003) 705–723. MR1996276
[14] F. Comets, T. Shiga and N. Yoshida. Probabilistic analysis of directed polymers in a random environment: A review. Adv. Stud. Pure Math.

39 (2004) 115–142. MR2073332
[15] F. Comets and N. Yoshida. Directed polymers in a random environment are diffusive at weak disorder. Ann. Probab. 34 (5) (2006) 1746–1770.

MR2271480
[16] B. Derrida, G. Giacomin, H. Lacoin and F. L. Toninelli. Fractional moment bounds and disorder relevance for pinning models. Comm. Math.

Phys. 287 (2009) 867–887. MR2486665
[17] G. Giacomin, H. Lacoin and F. L. Toninelli. Disorder relevance at marginality and critical point shift. Ann. Inst. Henri Poincaré Probab. Stat.

47 (2011) 148–175. MR2779401
[18] D. A. Huse and C. L. Henley. Pinning and roughening of domain wall in Ising systems due to random impurities. Phys. Rev. Lett. 54 (1985)

2708–2711.
[19] H. Lacoin. New bounds for the free energy of directed polymers in dimension 1 + 1 and 1 + 2. Comm. Math. Phys. 294 (2010) 471–503.

MR2579463
[20] M. Ledoux. The Concentration of Measure Phenomenon. American Mathematical Society, Providence, RI, 2005. MR1849347
[21] M. Nakashima. A remark on the bound for the free energy of directed polymers in random environment in 1 + 2 dimension. J. Math. Phys.

55 (2014) 093304. MR3390799
[22] M. Miura, Y. Tawara and K. Tsuchida. Strong and weak disorder for Lévy directed polymers in random environment. Stoch. Anal. Appl. 26

(5) (2008) 1000–1012. MR2440912

http://www.ams.org/mathscinet-getitem?mr=3189070
http://www.ams.org/mathscinet-getitem?mr=3311219
http://www.ams.org/mathscinet-getitem?mr=3024099
http://arxiv.org/abs/arXiv:1503.07315
http://www.ams.org/mathscinet-getitem?mr=1006293
http://arxiv.org/abs/arxiv:1510.06287
http://arxiv.org/abs/arXiv:1505.04927v1
http://www.ams.org/mathscinet-getitem?mr=1939654
http://www.ams.org/mathscinet-getitem?mr=2249669
http://www.ams.org/mathscinet-getitem?mr=2381596
http://www.ams.org/mathscinet-getitem?mr=2249671
http://www.ams.org/mathscinet-getitem?mr=1996276
http://www.ams.org/mathscinet-getitem?mr=2073332
http://www.ams.org/mathscinet-getitem?mr=2271480
http://www.ams.org/mathscinet-getitem?mr=2486665
http://www.ams.org/mathscinet-getitem?mr=2779401
http://www.ams.org/mathscinet-getitem?mr=2579463
http://www.ams.org/mathscinet-getitem?mr=1849347
http://www.ams.org/mathscinet-getitem?mr=3390799
http://www.ams.org/mathscinet-getitem?mr=2440912


450 Q. Berger and H. Lacoin

[23] T. Sasamoto and H. Spohn. Exact height distributions for the KPZ equation with narrow wedge initial condition. Nuclear Phys. B 834 (2010)
523–542. MR2628936

[24] T. Sasamoto and H. Spohn. The one-dimensional KPZ equation: An exact solution and its universality. Phys. Rev. Lett. 104 (2010) 230602.
[25] F. Watbled. Sharp asymptotics for the free energy of 1 + 1 dimensional directed polymers in an infinitely divisible environment. Electron.

Commun. Probab. 17 (2012) 53. MR2999981

http://www.ams.org/mathscinet-getitem?mr=2628936
http://www.ams.org/mathscinet-getitem?mr=2999981

	Introduction
	Directed polymer in random environment
	Main result
	Strategy of the proof and organization of the paper
	Generalization of the result?
	Some notations

	Lower-bound
	Fractional moment and coarse-graining
	The change of measure argument
	Choice of the change of measure

	Proof of the key Lemma 2.2
	Proof of Lemma 3.2
	Proof of Lemma 3.3
	Proof of Lemma 3.5

	Upper bound
	Concentration of logZbeta,omegaNbeta,epsilon
	Second moment estimate, proof of Lemma 4.3

	Acknowledgements
	References

