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Abstract. In this paper we give an elementary approach to several results of Chatterjee in (Disorder chaos and multiple valleys
in spin glasses (2013) arXiv:0907.3381, Comm. Math. Phys. 337 (2015) 93–102), as well as some generalizations. First, we prove
quenched disorder chaos for the bond overlap in the Edwards–Anderson type models with Gaussian disorder. The proof extends to
systems at different temperatures and covers a number of other models, such as the mixed p-spin model, Sherrington–Kirkpatrick
model with multi-dimensional spins and diluted p-spin model. Next, we adapt the same idea to prove quenched self-averaging of
the bond magnetization for one system and use it to show quenched self-averaging of the site overlap for random field models with
positively correlated spins. Finally, we show self-averaging for certain modifications of the random field itself.

Résumé. Dans cet article, nous présentons une approche élémentaire de plusieurs résultats de Chatterjee (Disorder chaos and
multiple valleys in spin glasses (2013) arXiv:0907.3381, Comm. Math. Phys. 337 (2015) 93–102), et quelques généralisations.
D’abord, nous prouvons, dans le cas d’un désordre quenched, un résultat de chaos pour le recouvrement par arêtes dans les modèles
de type Edwards–Anderson avec désordre gaussien. La preuve s’étend à des systèmes à différentes températures et couvre d’autres
modèles comme le modèle p-spins mixte, le modèle de Sherrington–Kirkpatrick avec des spins multi-dimensionnels et le modèle
p-spin dilué. Ensuite, nous adaptons la même idée pour prouver la propriété d’auto-moyennisation du recouvrement par site et nous
l’utilisons pour montrer le même résultat pour des modèles avec un champs aléatoire et des spins positivement corrélés. Enfin, nous
montrons la propriété d’auto-moyennisation pour certaines modifications du champs aléatoire.
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1. Introduction

The approach developed in this paper was motivated by several results of Chatterjee in [2,4]. One of the results in
[2] described a quenched disorder chaos for the bond overlap in the setting of the Edwards–Anderson type spin glass
models. Consider a finite undirected graph (V ,E) and the Edwards–Anderson type Hamiltonian

H(σ) =
∑

(i,j)∈E

gi,j σiσj , (1)

where σ = (σi)i∈V ∈ {−1,+1}V and gi,j are i.i.d. standard Gaussian random variables. Given an inverse temperature
parameter β > 0, the corresponding Gibbs measure is defined by

G(σ) = expβH(σ)

Z
, (2)
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where Z = ∑
σ expβH(σ) is called the partition function. Now, let us consider two copies of this system with differ-

ent disorder parameters (g1
i,j ) and (g2

i,j ). We will denote the Hamiltonians and Gibbs measures of these systems by
H1(σ ), H2(ρ) and G1(σ ), G2(ρ). Suppose that the disorder parameters of these two systems are correlated,

Eg1
i,j g

2
i,j = t, (3)

for some t ∈ [0,1]. We still assume that (g1
i,j , g

2
i,j ) are independent for different (i, j) ∈ E. When t = 1, this gives

us two copies of the same system, and the interesting case is when t is slightly smaller than one, so the interaction
parameters of these two systems are slightly decoupled. Note that in [2] and [3] the correlation was written as e−2s

for s ∈ [0,∞), which is the same as our t = e−2s . Consider i.i.d. samples (σ �)�≥1 from G1 and (ρ�)�≥1 from G2. The
quantity

Q�,�′ = 1

|E|
∑

(i,j)∈E

σ�
i σ �

j ρ�′
i ρ�′

j (4)

is called the bond overlap of configurations σ� and ρ�′
, which is a measure of similarity between bonds in these two

configurations. Of course, one can similarly define the bond overlap of σ� and σ�′
, but here one is interested in the

behavior of the bond overlap between two slightly decoupled systems. Up to a normalization factor |E|, the bond
overlap is the covariance

EH
(
σ�

)
H

(
ρ�′) = |E|Q�,�′

of the Hamiltonian H in (1). Let us denote by 〈 · 〉 the average with respect to (G1 × G2)
⊗∞.

In Theorem 1.7 in [2] (see Theorem 11.5 in [3]), Chatterjee proved that, for any 0 < t < 1,

E
〈(

Q1,1 − 〈Q1,1〉
)2〉 ≤ 2

√
2

βt1/4
√|E| log(1/t)

. (5)

This shows that for t < 1 and large |E|, the bond overlap Q1,1 between replicas from these two systems concentrates
around its Gibbs average 〈Q1,1〉. The first goal of this paper will be to give an elementary proof of essentially the
same inequality,

E
〈(

Q1,1 − 〈Q1,1〉
)2〉 ≤ 8

β
√|E|(1 − t)

, (6)

as well as some generalizations. First of all, in addition to the proof being elementary, we get a better dependence on
t when t approaches zero, which covers the case t = 0. In the case when t is close to 1, the dependence on t is the
same, since log(1/t) is of order 1 − t in that case. Moreover, the same proof will give us quenched disorder chaos for
two systems with different inverse temperature parameters β1 and β2, in which case (6) will be replaced by

E
〈(

Q1,1 − 〈Q1,1〉
)2〉 ≤ 4(β1 + β2)

β1β2
√|E|(1 − t)

. (7)

It is not clear to us how to adapt Chatterjee’s proof to this case because his approach heavily relies on the complete
monotonicity of the quantity E〈Q1,1〉 in s := 2−1 log t−1, which does not seem to hold when β1 and β2 are different. In
Section 2, we will formulate a general disorder chaos result that will cover other examples in addition to the Edwards–
Anderson type models, such as the mixed p-spin model, Sherrington–Kirkpatrick model with multi-dimensional spins,
and diluted p-spin model.

In the second paper, [4], Chatterjee studied the random field Ising model on the d-dimensional lattice with the
Hamiltonian

H(σ) = β
∑
i∼j

σiσj + h
∑

i

giσi, (8)



Quenched self-averaging in models with Gaussian disorder 245

where σ ∈ {−1,+1}V for V = Z
d ∩ [1,N ]d , i ∼ j means that i and j are neighbors on this lattice, β,h > 0, and gi

are i.i.d. standard Gaussian random variables. The main goal in [4] was to show that for almost all values β and h, in
the thermodynamic limit, the site overlap

R1,2 = 1

|V |
∑
i∈V

σ 1
i σ 2

i

between two replicas σ 1 and σ 2 concentrates around a constant that depends only on β and h. We are not going to
reproduce the entire proof, but will give simplified proofs of two key steps. The first key step was to show quenched
self-averaging of the overlap,

E
〈(
R1,2 − 〈R1,2〉

)2〉 ≤ 2
√

2 + h2

h
√|V | , (9)

as a consequence of positive correlation of spins, which in this model follows from the FKG inequality [9]. Our
approach in Section 4 will also remove the factor

√
2 + h2. It will be based on some general result about quenched

self-averaging of the bond magnetization for one system in Section 3.
Another key step in [4] was to show that the normalized random field

h(σ ) = 1

|V |
∑
i∈V

giσi

concentrates around its quenched average 〈h(σ )〉,

E
(〈
h(σ )2〉 − 〈

h(σ )
〉2) ≤

√
24

h
√|V | + 1

|V | . (10)

This step holds more generally and does not depend on the condition that the spins are positively correlated. Again,
we will give a simplified proof of a slightly improved bound in Section 5 (see equations (40) and (46)), as well as
certain generalizations (the most general statement appears in Theorem 6 in that section).

All the proofs of the results mentioned above are based on the same idea and follow the same simple pattern,
which combines standard techniques of Gaussian interpolation and integration by parts with clever choices of observ-
ables and Gaussian functionals on which these observables are projected. The arguments are then reduced to simple
applications of the Cauchy–Schwarz inequality, whereas the methods in [4] were based on the Poincaré inequality
for the Gaussian measure. The simplicity of our approach results in better dependence of the bounds on the external
parameters.

2. Quenched disorder chaos

We will formulate the main result of this section in a way that will cover a number of models as examples. We will
consider two systems with the Hamiltonians

Y1(σ ) =
∑
e∈E

g1
e fe(σ ), (11)

Y2(ρ) =
∑
e∈E

g2
e fe(ρ), (12)

defined on the same measurable space (�,F) (i.e. both σ,ρ ∈ �), which will usually be some finite set. Here the set
E is some finite index set, (fe)e∈E is a family of measurable functions fe : � → [−1,1], and (g1

e , g
2
e ) are independent

Gaussian random pairs for e ∈ E such that

E
(
g1

e

)2 = E
(
g2

e

)2 = 1 and Eg1
e g

2
e = t (13)
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for some t ∈ [0,1]. We can allow the functions (fe)e∈E be random as long as their randomness is independent of the
Gaussian random variables (g1

e , g
2
e ), but in all the examples below they will be non-random. In some models, such as

diluted models, the cardinality of the index set E can be random as well and, in that case, we will also assume it to be
independent of the Gaussian random variables (g1

e , g
2
e ). We will state our result for a fixed E, since one can average

in |E| later, as we will do, for example, in the diluted models.
Next, we consider the corresponding Gibbs measures G1 and G2 on (�,F),

dG1(σ ) = expγ1Y1(σ )

Z1
dμ1(σ ), (14)

dG2(ρ) = expγ2Y2(ρ)

Z2
dμ2(ρ), (15)

where γ1, γ2 > 0 are some fixed constants, μ1 and μ2 are random finite measures on (�,F) and Z1, Z2 are the
partition functions. The randomness of μ1 and μ2 should be independent of the Gaussian random variables (g1

e , g
2
e )

but not necessarily of other random variables or each other. As above, we will consider i.i.d. replicas (σ �)�≥1 from
G1 and (ρ�)�≥1 from G2, let 〈 · 〉 denote the average with respect to (G1 × G2)

⊗∞, and define the overlaps by

Q�,�′ = 1

|E|
∑
e∈E

fe

(
σ�

)
fe

(
ρ�′)

. (16)

Then the following quenched disorder chaos for the overlap holds.

Theorem 1. If γ1, γ2 > 0 and t ∈ [0,1) then

E
〈(

Q1,1 − 〈Q1,1〉
)2〉 ≤ 4(γ1 + γ2)

γ1γ2
√|E|(1 − t)

. (17)

Proof. The proof is based on a simple computation first used in the derivation of the (two-system) Ghirlanda–Guerra
identities for the mixed p-spin model in Chen, Panchenko [6] and Chen [7] (for related results about disorder chaos,
see also [5]). Because of the assumption (13), we can represent

Y1(σ ) = √
tZ(σ ) + √

1 − tZ1(σ ),

Y2(ρ) = √
tZ(ρ) + √

1 − tZ2(ρ),

where, given i.i.d. standard Gaussian random variables ze , z1
e and z2

e indexed by e ∈ E,

Z(σ) =
∑
e∈E

zefe(σ ), Z(ρ) =
∑
e∈E

zefe(ρ),

Z1(σ ) =
∑
e∈E

z1
efe(σ ), Z2(ρ) =

∑
e∈E

z2
efe(ρ).

Let us consider the quantity

E

〈
Q1,1

Z1(ρ
1)

|E|
〉
.

Notice that Z1(ρ
1) is a new object, with the randomness coming from the second term in the Hamiltonian Y1 on the

first system, and the argument ρ1 that is a replica from the second system and is averaged with respect to G2. As a
result, if E′ denotes the expectation in the Gaussian random variables ze , z1

e and z2
e , then

E
′Y1

(
σ�

)
Z1

(
ρ1) = √

1 − t |E|Q�,1, E
′Y2

(
ρ�

)
Z1

(
ρ1) = 0,
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and the usual Gaussian integration by parts (see e.g. [10], Appendix A.4) gives

E

〈
Q1,1

Z1(ρ
1)

|E|
〉
= γ1

√
1 − tE

〈
Q2

1,1 − Q1,1Q2,1
〉
.

On the other hand, since |Q1,1| ≤ 1,∣∣∣∣E
〈
Q1,1

Z1(ρ
1)

|E|
〉∣∣∣∣ ≤ E

〈 |Z1(ρ
1)|

|E|
〉
.

The average on the right-hand side is with respect to dG2(ρ
1) only, which is independent of the Gaussian random

variables z1
e that appear in Z1(ρ), so

E

〈 |Z1(ρ
1)|

|E|
〉
= E

〈
E1|Z1(ρ

1)|
|E|

〉
,

where E1 is the expectation with respect to (z1
e)e∈E . Finally, since

E1
∣∣Z1

(
ρ1)∣∣ ≤ (

E1Z1
(
ρ1)2)1/2 =

(∑
e∈E

fe

(
ρ1)2

)1/2

≤ |E|1/2,

we prove that

∣∣γ1
√

1 − tE
〈
Q2

1,1 − Q1,1Q2,1
〉∣∣ =

∣∣∣∣E
〈
Q1,1

Z1(ρ
1)

|E|
〉∣∣∣∣ ≤ 1√|E| . (18)

Next, by symmetry, 〈Q2
2,1〉 = 〈Q2

1,1〉 and, therefore,

E
〈
(Q1,1 − Q2,1)

2〉 = 2E
〈
Q2

1,1 − Q1,1Q2,1
〉 ≤ 2

γ1
√|E|(1 − t)

,

where in the last inequality we used (18). Similarly, one can show that

E
〈
(Q2,2 − Q2,1)

2〉 ≤ 2

γ2
√|E|(1 − t)

.

Combining the above two inequalities and using Jensen’s inequality,

E
〈(
Q1,1 − 〈Q1,1〉

)2〉 ≤ E
〈
(Q1,1 − Q2,2)

2〉
≤ 2E

〈
(Q1,1 − Q2,1)

2〉 + 2E
〈
(Q2,2 − Q2,1)

2〉
≤ 4

γ1
√|E|(1 − t)

+ 4

γ2
√|E|(1 − t)

.

This finishes the proof. �

We will now give several examples of applications of Theorem 1. Since all the arguments are very similar, we will
only give a detailed discussion of the mixed p-spin model.

Example 1 (Mixed p-spin model). The Hamiltonian of the mixed p-spin model is given by

H(σ) =
∑
p≥1

βp

N(p−1)/2

∑
1≤i1,...,ip≤N

gi1,...,ipσi1 · · ·σip ,
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where σ ∈ �N := {−1,+1}N , (βp)p≥1 is a sequence of inverse temperature parameters such that βp ≥ 0 for all p ≥ 1
and

∑
p≥1 2pβ2

p < ∞, and gi1,...,ip are i.i.d. standard Gaussian for all p ≥ 1 and all 1 ≤ i1, . . . , ip ≤ N . Let us now
consider two such systems,

H1(σ ) =
∑
p≥1

β1,p

N(p−1)/2

∑
1≤i1,...,ip≤N

g1
i1,...,ip

σi1 · · ·σip ,

H2(ρ) =
∑
p≥1

β2,p

N(p−1)/2

∑
1≤i1,...,ip≤N

g2
i1,...,ip

ρi1 · · ·ρip ,

with the Gaussian interaction parameters coupled according to some sequence (tp)p≥1,

E
(
g1

i1,...,ip

)2 = E
(
g2

i1,...,ip

)2 = 1 and Eg1
i1,...,ip

g2
i1,...,ip

= tp ∈ [0,1].
Suppose that for some p ≥ 1, β1,p, β2,p > 0 and tp < 1. Let Y1 and Y2 be the p-spin terms in H1 and H2 correspond-
ingly. This means that in (11), we should set E = {1, . . . ,N}p , for e = (i1, . . . , ip) ∈ E define fe(σ ) = σi1 · · ·σip for
all σ ∈ �N , and let

γ1 = β1,p

N(p−1)/2
and γ2 = β2,p

N(p−1)/2
.

In this case, the bond overlap Q1,1 will be equal to

Q1,1 = 1

Np

∑
1≤i1,...,ip≤N

σ 1
i1

· · ·σ 2
ip

ρ1
i1

· · ·ρ1
ip

= (R1,1)
p,

where R1,1 = N−1 ∑N
i=1 σ 1

i ρ1
i is the usual site overlap. Finally, we can write the Gibbs measures corresponding to

H1 and H2 as

G1(σ ) = expγ1Y1(σ )

Z1
μ1(σ ), G2(ρ) = expγ2Y2(ρ)

Z2
μ2(ρ),

where we denoted

μ1(σ ) = exp
(
H1(σ ) − γ1Y1(σ )

)
, μ2(ρ) = exp

(
H2(ρ) − γ2Y2(ρ)

)
.

By construction, these measures are independent of the Gaussian random variables in Y1 and Y2. Theorem 1 implies
that

E
〈(

(R1,1)
p − 〈

(R1,1)
p
〉)2〉 ≤ 4(γ1 + γ2)

γ1γ2
√

Np(1 − tp)
= 4(β1,p + β2,p)

β1,pβ2,p

√
N(1 − tp)

. (19)

Clearly, for odd p this implies that R1,1 ≈ 〈R1,1〉 and for even p this implies that |R1,1| ≈ 〈|R1,1|〉. This example was
one of the main results in [6].

Example 2 (SK model with multidimensional spins). Let S be a bounded Borel measurable subset of Rd and ν be a
probability measure on B(S). Consider the configuration space

�N = {
(x1, . . . , xN) : x1 = (x1,u)1≤u≤d , . . . , xN = (xN,u)1≤u≤d ∈ S

}
.

Consider the Hamiltonians and Gibbs measures of two SK type models with multidimensional spins on �N ,

H1(σ ) = β1√
N

∑
1≤i,j≤N

g1
i,j (σi, σj ), dG1(σ ) = expH1(σ )

Z1
dν(σ ),

H2(ρ) = β2√
N

∑
i≤i,j≤N

g2
i,j (ρi, ρj ), dG2(ρ) = expH2(ρ)

Z2
dν(ρ),
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where (a, b) is the scalar product on R
d , β1, β2 > 0, and (g1

i,j , g
2
i,j ) are independent Gaussian random vectors with

covariance

E
(
g1

i,j

)2 = E
(
g2

i,j

)2 = 1 and Eg1
i,j g

2
i,j = t ∈ [0,1].

The bond overlap Q1,1 will be defined in this case by

Q1,1 = 1

N2

∑
1≤i,j≤N

(
σ 1

i , σ 1
j

)(
ρ1

i , ρ1
j

) =
d∑

u,v=1

(
1

N

N∑
i=1

σ 1
i,uρ

1
i,v

)2

,

and it is easy to see that Theorem 1 implies that

E
〈(
Q1,1 − 〈Q1,1〉

)2〉 ≤ 4(β1 + β2)

β1β2
√

N(1 − t)
(20)

for t < 1.

Example 3 (Diluted p-spin model). Let π(λN) be a Poisson random variable with mean λN and (ij,k)j,k≥1 be i.i.d.
uniform random variables on {1, . . . ,N}. Consider two diluted p-spin models,

H1(σ ) = β1

∑
k≤π(λN)

g1
kσi1,k

· · ·σip,k
, G1(σ ) = expH1(σ )

Z1
,

H2(ρ) = β2

∑
k≤π(λN)

g2
kρi1,k

· · ·ρip,k
, G2(ρ) = expH2(ρ)

Z2
,

where β1, β2 > 0 and (g1
k , g

2
k )k≥1 are independent Gaussian random vectors with covariance

E
(
g1

k

)2 = E
(
g2

k

)2 = 1 and Eg1
kg

2
k = t ∈ [0,1].

If we define the bond overlap Q1,1 by

Q1,1 = 1

π(λN)

π(λN)∑
k=1

σ 1
i1,k

· · ·σ 1
ip,k

ρ1
i1,k

· · ·ρ1
ip,k

when π(λN) ≥ 1, and Q1,1 = 1 (or any constant) when π(λN) = 0, then applying Theorem 1 conditionally on π(λN)

and then averaging in π(λN) implies that for t < 1,

E
〈(
Q1,1 − 〈Q1,1〉

)2〉 ≤ 4(β1 + β2)

β1β2
√

1 − t
E

1√
π(λN)

I
(
π(λN) ≥ 1

)
. (21)

The last expectation is of order 1/
√

λN and, in fact, it is easy to check that it is bounded by 1/(
√

λN − √
2/(λN)).

Example 4 (Edwards–Anderson model). Let (V ,E) be an arbitrary undirected finite graph and let β1, β2, h1, h2 ≥ 0.
Consider two Edwards–Anderson models on {−1,+1}V with Gaussian random external fields,

H1(σ ) = β1

∑
(i,j)∈E

g1
i,j σiσj + h1

∑
i∈V

g1
i σi, G1(σ ) = expH1(σ )

Z1
,

H2(ρ) = β2

∑
(i,j)∈E

g2
i,j ρiρj + h2

∑
i∈V

g2
i ρi, G2(ρ) = expH2(ρ)

Z2
,
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where (g1
i,j , g

2
i,j ) are independent Gaussian random vectors with covariance

E
(
g1

i,j

)2 = E
(
g2

i,j

)2 = 1 and Eg1
i,j g

2
i,j = tE ∈ [0,1],

(g1
i , g

2
i ) are independent Gaussian random vectors with covariance

E
(
g1

i

)2 = E
(
g2

i

)2 = 1 and Eg1
i g

2
i = tV ∈ [0,1],

and these two families of random vectors are independent of each other. From Theorem 1, we can deduce two kinds of
quenched disorder chaos. First, if β1, β2 > 0 and tE < 1, we obtain

E
〈(

Q1,1 − 〈Q1,1〉
)2〉 ≤ 4(β1 + β2)

β1β2
√|E|(1 − tE)

, (22)

where Q1,1 is the bond overlap

Q1,1 = 1

|E|
∑

(i,j)∈E

σ 1
i σ 1

j ρ1
i ρ1

j .

If h1, h2 > 0 and tV < 1, then

E
〈(

R1,1 − 〈R1,1〉
)2〉 ≤ 4(h1 + h2)

h1h2
√|V |(1 − tV )

, (23)

where

R1,1 = 1

|V |
∑
i∈V

σ 1
i ρ1

i

is the usual site overlap. The bound in (22) was the one discussed in the introduction.

Remark. In Theorem 1.6 of the same paper [2], Chatterjee also proved the following result. If d is the maximum
degree of the graph (V ,E) and

q = min

(
β2,

1

4d2

)

then for some choice of absolute constant C,

E〈Q1,1〉 ≥ Cqt1/(Cq). (24)

If d is fixed (for example, in the EA model on a finite dimensional lattice) and t > 0 then (24) combined with (5)
excludes the possibility that Q1,1 concentrates near 0 for large |E|, since the quenched average 〈Q1,1〉 must be
strictly positive with positive probability. This seems to be in contrast with the predictions of Fisher, Huse [8] and
Bray, Moore [1] for the site overlap

R�,�′ = 1

|V |
∑
i∈V

σ �
i ρ�′

i , (25)

which is expected to concentrate near zero when t < 1. One interpretation of (24) is that there is no disorder chaos
for the bond overlap. Another possible interpretation could be that the vectors (σ 1

i σ 1
j ) and (ρ1

i ρ1
j ) might have ‘pre-

ferred directions’ and the overlap 〈Q1,1〉 of their Gibbs averages (〈σ 1
i σ 1

j 〉) and (〈ρ1
i ρ1

j 〉) could deviate from zero but,
otherwise, they have no common structure, which is some sort of weak disorder chaos. To strengthen this statement,
one could also try to show that 〈Q1,1〉 concentrates around its expected value E〈Q1,1〉.
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3. Self-averaging of the magnetization

From now on we will consider one system with the Hamiltonian as in (11),

Y(σ) =
∑
e∈E

gefe(σ ),

and the Gibbs measure as in (14),

dG(σ) = expγ Y (σ )

Z
dμ(σ).

Consider a vector a = (ae)e∈E of some arbitrary constants and denote

‖a‖2 =
(∑

e∈E

a2
e

)1/2

and ‖a‖1 =
∑
e∈E

|ae|.

We will define a weighted bond magnetization by

m(σ) =
∑
e∈E

aefe(σ ). (26)

The following holds.

Theorem 2. If γ > 0 then

E
〈(
m(σ) − 〈

m(σ)
〉)2〉 ≤ 1

γ
‖a‖2‖a‖1. (27)

Proof. If we consider the random variable g = ∑
e aege then Gaussian integration by parts gives

E
〈
m

(
σ 1)g〉 = γE

〈
m

(
σ 1)2 − m

(
σ 1)m(

σ 2)〉
= γE

〈(
m(σ) − 〈

m(σ)
〉)2〉

.

On the other hand, since∣∣〈m(
σ 1)〉∣∣ ≤

∑
e∈E

|ae|
∣∣〈fe

(
σ 1)〉∣∣ ≤ ‖a‖1, (28)

we can write∣∣E〈
m

(
σ 1)g〉∣∣ = ∣∣E〈

m
(
σ 1)〉g∣∣ ≤ ‖a‖1E|g| ≤ ‖a‖1

(
Eg2)1/2 = ‖a‖2‖a‖1

and the proof follows. �

Example 5. Consider the mixed p-spin model as in the Example 1 above. Let us consider b1, . . . , bN such that∑N
i=1 |bi | = 1. If we denote γ = βp/N(p−1)/2, let

fe(σ ) = σi1 · · ·σip and ae = bi1 · · ·bip for e = (i1, . . . , ip) ∈ E = {1, . . . ,N}p

then the bond magnetization is given by

m(σ) =
∑

1≤i1,...,ip≤N

bi1 · · ·bipσi1 · · ·σip =
(

N∑
i=1

biσi

)p
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and (27) implies that, for βp > 0,

E
〈(

m(σ) − 〈
m(σ)

〉)2〉 ≤ ‖a‖2

γ
= N(p−1)/2‖b‖p

2

βp

. (29)

If we take bi = 1/N , the bound becomes (βp

√
N)−1 and m(σ) is the pth power of the usual total site magnetization

N−1 ∑
i≤N σi . For odd p, this implies quenched self-averaging for the total site magnetization and, for even p,

quenched self-averaging for its absolute value.

4. Self-averaging of the site overlap assuming positive spin correlation

Theorem 2 can be used to give a simplified proof of a slightly improved version of Lemma 2.6 in [4]. Consider a finite
set V and consider any model with the Hamiltonian defined on σ ∈ {−1,+1}V that includes a Gaussian random field
term,

H(σ) = H ′(σ ) + h
∑
i∈V

giσi, (30)

where (gi) are i.i.d. standard Gaussian random variables, independent of H ′(σ ). For the next result, let us assume that
the spins are positively correlated under the Gibbs measure,

〈σiσj 〉 ≥ 〈σi〉〈σj 〉 for all i, j ∈ V. (31)

For example, this was the case for the random field Ising model considered in [4] by the FKG inequality [9]. Let

R1,2 = 1

|V |
∑
i∈V

σ 1
i σ 2

i

denote the usual site overlap of two replicas.

Theorem 3. If the inequalities (31) hold then

E
〈(

R1,2 − 〈R1,2〉
)2〉 ≤ 2

h
√|V | . (32)

In particular, this removes the factor
√

2 + h2 from the bound in Lemma 2.6 in [4].

Proof. To prove this, we start by copying the following equation from the proof of Lemma 2.6 in [4]:

E
(〈

R2
1,2

〉 − 〈R1,2〉2) = 1

|V |2
∑
i,j

E
(〈σiσj 〉2 − 〈σi〉2〈σj 〉2)

= 1

|V |2
∑
i,j

E
∣∣〈σiσj 〉 − 〈σi〉〈σj 〉

∣∣∣∣〈σiσj 〉 + 〈σi〉〈σj 〉
∣∣

≤ 2

|V |2
∑
i,j

E
∣∣〈σiσj 〉 − 〈σi〉〈σi〉

∣∣

= 2

|V |2
∑
i,j

E
(〈σiσj 〉 − 〈σi〉〈σj 〉

)
,
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where in the last step the positive correlation condition (31) was used. Next, if we consider the magnetization m(σ) =
|V |−1 ∑

i σi then

E
〈(
m(σ) − 〈

m(σ)
〉)2〉 = 1

|V |2
∑
i,j

E
〈(
σi − 〈σi〉

)(
σj − 〈σj 〉

)〉

= 1

|V |2
∑
i,j

E
(〈σiσj 〉 − 〈σi〉〈σj 〉

)
.

Therefore, the inequalities (31) imply that

E
(〈
R2

1,2

〉 − 〈R1,2〉2) ≤ 2E
〈(
m(σ) − 〈

m(σ)
〉)2〉

.

Finally, using Theorem 2 with γ = h and Y(σ) = ∑
i∈V giσi implies (32). �

5. Self-averaging of random fields

Throughout this section, we will use the integration by parts formula

EHk(g)F (g) = EHk−1(g)F ′(g) (33)

for the Hermite polynomials

Hk(x) = (−1)kex2/2 dk

dxk
e−x2/2

of degree k ≥ 1. In (33), g is a standard Gaussian random variable and F is a continuously differentiable function
such that F ′ is of moderate growth. The case k = 1,

EgF(g) = EF ′(g), (34)

is often called the (usual) Gaussian integration by parts, and

E
(
g2 − 1

)
F(g) = EgF ′(g) (35)

corresponds to the case k = 2.
Let Y(σ) and dG(σ) be as in Section 3. Consider a random field

W(σ) =
∑
e∈E

aegefe(σ ) (36)

for arbitrary constants ae for e ∈ E. Denote

‖a‖2 =
(∑

e∈E

a2
e

)1/2

and ‖a‖1 =
∑
e∈E

|ae|.

We will start with the following.

Theorem 4. If γ > 0 then

E
(〈
W(σ)2〉 − 〈

W(σ)
〉2) ≤

√
2

γ
‖a‖2‖a‖1. (37)
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Proof. Using the integration by parts formula in (35), we can write

E
(
g2

e − 1
)〈
W(σ)

〉 = Ege

〈
aefe(σ )

〉 + γEge

〈
W(σ)fe(σ )

〉 − γEge

〈
W

(
σ 1)fe

(
σ 2)〉.

Multiplying both sides by ae and summing over e ∈ E gives

E

∑
e∈E

ae

(
g2

e − 1
)〈
W(σ)

〉 = ∑
e∈E

a2
eE

〈
gefe(σ )

〉 + γE
〈
W(σ)2〉 − γE

〈
W(σ)

〉2
and, therefore,

γE
(〈
W(σ)2〉 − 〈

W(σ)
〉2) = E

∑
e∈E

ae

(
g2

e − 1
)〈
W(σ)

〉 − ∑
e∈E

a2
eE

〈
gefe(σ )

〉
. (38)

By the usual Gaussian integration by parts,

E
〈
gefe(σ )

〉 = γE
(〈
fe(σ )2〉 − 〈

fe(σ )
〉2) ≥ 0,

so omitting the last sum in (38) yields an upper bound

γE
(〈
W(σ)2〉 − 〈

W(σ)
〉2) ≤ E

∑
e∈E

ae

(
g2

e − 1
)〈
W(σ)

〉
.

Let us note that

E

(∑
e∈E

ae

(
g2

e − 1
))2

=
∑

e,e′∈E

aeae′E
(
g2

e − 1
)(

g2
e′ − 1

) = 2‖a‖2
2,

since the terms for e �= e′ are equal to 0 and E(g2
e − 1)2 = 2. By the Cauchy–Schwarz inequality,

γE
(〈
W(σ)2〉 − 〈

W(σ)
〉2) ≤ √

2‖a‖2
(
E

〈
W(σ)

〉2)1/2
.

Finally, using that |W(σ)| ≤ ∑
e∈E |aege| and E(

∑
e∈E |aege|)2 ≤ ‖a‖2

1 finishes the proof. �

Example 6. If in (41) we take all ae = 1, we get

E
(〈

Y(σ)2〉 − 〈
Y(σ)

〉2) ≤
√

2|E|3/2

γ
. (39)

Applying this to the Hamiltonian (30) with the Gaussian random field gives a new proof of Lemma 2.9 in [4]. If in
Theorem 5 we take E = V , γ = h, for i ∈ V take fi(σ ) = σi , and divide both sides of (41) by |V |2, then the normalized
random field

h(σ ) = 1

|V |
∑
i∈V

giσi

satisfies

E
(〈

h(σ )2〉 − 〈
h(σ )

〉2) ≤
√

2

h
√|V | . (40)

This inequality was used in [4] to establish ‘half’ of the Ghirlanda–Guerra identities for the first moment of the
overlaps, with the other half following from the existence of the limit for the free energy.

Next, we will show how one can push the above proof even further to improve the bound for small values of γ .
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Theorem 5. If γ > 0 then

E
(〈
W(σ)2〉 − 〈

W(σ)
〉2) ≤ ‖a‖2

2 + √
2‖a‖2‖a‖1. (41)

Remark. When all ae = 1, the bound becomes |E| + √
2|E|3/2, which is an improvement over (39) for small values

of γ . In fact, for very small values of γ , if one simply integrates E〈W(σ)2〉 by parts to obtain a trivial bound ‖a‖2
2 +

Cγ 2‖a‖2
1, this gives further improvement for very small values of γ .

Proof. To prove this inequality, let us look at the right-hand side of (38) more closely. First,

E

∑
e∈E

ae

(
g2

e − 1
)〈
W(σ)

〉 = E

∑
e,e′∈E

aeae′
(
g2

e − 1
)
ge′

〈
fe′(σ )

〉
.

It will be convenient to introduce the notation

Fe = 1

γ

∂

∂ge

〈
fe(σ )

〉 = 〈
fe(σ )2〉 − 〈

fe(σ )
〉2

. (42)

For the terms e = e′, using the formula (35) for the factors g2
e − 1 gives

∑
e∈E

a2
eE

(
g2

e − 1
)
ge

〈
fe(σ )

〉 = ∑
e∈E

a2
eEge

〈
fe(σ )

〉 + γ
∑
e∈E

a2
eEg2

eFe. (43)

Since 0 ≤ Fe ≤ 1, the second sum is bounded by γ ‖a‖2
2. The first sum cancels out the last sum in (38), so

γE
(〈
W(σ)2〉 − 〈

W(σ)
〉2) ≤ E

∑
e �=e′

aeae′
(
g2

e − 1
)
ge′

〈
fe′(σ )

〉 + γ ‖a‖2
2. (44)

If in the first term on the right-hand side we use the usual Gaussian integration by parts with respect to g′
e, it can be

rewritten as

∑
e′∈E

ae′E

(∑
e �=e′

ae

(
g2

e − 1
))

ge′
〈
fe′(σ )

〉 = γ
∑
e′∈E

ae′E

(∑
e �=e′

ae

(
g2

e − 1
))

Fe′ . (45)

Since 0 ≤ Fe′ ≤ 1 and

E

(∑
e �=e′

ae

(
g2

e − 1
))2

≤ 2‖a‖2
2,

by the Cauchy–Schwarz inequality, we can bound the last sum by
√

2γ ‖a‖2‖a‖1 and this finishes the proof. �

Example 7. Using the bound (41), one can supplement (40) in the Example 6 with

E
(〈
h(σ )2〉 − 〈

h(σ )
〉2) ≤ 1

|V | +
√

2√|V | (46)

for small values of h.

There is a natural generalization of the previous results to the random field

W(σ) =
∑
e∈E

aeHk(ge)fe(σ ), (47)
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where, as above, Hk is the Hermite polynomial of degree k ≥ 0. Let us denote

F (k)
e = 1

γ k

∂k

∂gk
e

〈
fe(σ )

〉
, (48)

and let Ck be a constant such that |F (k)
e | ≤ Ck with probability one. For example, F (0)

e = 〈fe(σ )〉 and C0 = 1 (this was
used in (28)) and F

(1)
e = 〈fe(σ )2〉 − 〈fe(σ )〉2 with C1 = 1, which already appeared in (42). The following analogue

of Theorems 2, 4 and 5 holds in this case.

Theorem 6. We have that for k ≥ 0,

E
(〈

W(σ)2〉 − 〈
W(σ)

〉2) ≤
√

k!(k + 1)!
γ

‖a‖1‖a‖2 (49)

and for k ≥ 1,

E
(〈

W(σ)2〉 − 〈
W(σ)

〉2) ≤ Ck

√
(k + 1)!γ k−1‖a‖1‖a‖2 + k!‖a‖2

2. (50)

Proof. Using the integration by parts formula (33),

EHk+1(ge)
〈
W(σ)

〉 = EHk(ge)
∂

∂ge

〈
W(σ)

〉
= aeEHk(ge)H

′
k(ge)

〈
fe(σ )

〉 + γEHk(ge)
(〈

W(σ)fe(σ )
〉 − 〈

W
(
σ 1)fe

(
σ 2)〉).

Multiplying both sides by ae and summing over e ∈ E gives

E

∑
e∈E

aeHk+1(ge)
〈
W(σ)

〉 = E

∑
e∈E

a2
eHk(ge)H

′
k(ge)

〈
fe(σ )

〉 + γE
(〈
W(σ)2〉 − 〈

W(σ)
〉2)

and, therefore,

γE
(〈
W(σ)2〉 − 〈

W(σ)
〉2) = E

∑
e∈E

aeHk+1(ge)
〈
W(σ)

〉

−E

∑
e∈E

a2
eHk(ge)H

′
k(ge)

〈
fe(σ )

〉
. (51)

As above, the first term can be bounded as follows,

E

∑
e∈E

aeHk+1(ge)
〈
W(σ)

〉 ≤
(
E

(∑
e∈E

aeHk+1(ge)

)2)1/2(
E

〈
W(σ)

〉2)1/2

≤
(∑

e∈E

a2
eEHk+1(ge)

2
)1/2(

E

(∑
e∈E

|ae|
∣∣Hk(ge)

∣∣)2)1/2

≤ √
(k + 1)!‖a‖2

√
k!‖a‖1,

where we used that EH�(g)2 = �! for � = k, k + 1. This will finish the proof of (49) if we can show that the second
term is negative. Using (33) for the factor Hk(ge) gives

EHk(ge)H
′
k(ge)

〈
fe(σ )

〉 = EHk−1(ge)H
′′
k (ge)

〈
fe(σ )

〉 + γEHk−1(ge)H
′
k(ge)F

(1)
e .

Using a well-known relationship Hk(x)′ = kHk−1(x), we can rewrite this as

EHk(ge)H
′
k(ge)

〈
fe(σ )

〉 = kEHk−1(ge)H
′
k−1(ge)

〈
fe(σ )

〉 + kγEHk−1(ge)
2F (1)

e .
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Finally, using that F
(1)
e ≥ 0 and proceeding by induction on k, we get

EHk(ge)H
′
k(ge)

〈
fe(σ )

〉 ≥ kEHk−1(ge)H
′
k−1(ge)

〈
fe(σ )

〉 ≥ 0.

To obtain (50), we need further calculations for the first term on the right-hand side of (51). Let us begin by writing

E

∑
e∈E

aeHk+1(ge)
〈
W(σ)

〉 = E

∑
e �=e′

aeae′Hk+1(ge)Hk(ge′)
〈
fe′(σ )

〉

+E

∑
e∈E

a2
eHk+1(ge)Hk(ge)

〈
fe(σ )

〉
. (52)

Using the integration by parts formula (33) repeatedly, for any e �= e′ we get

EHk+1(ge)Hk(ge′)
〈
fe′(σ )

〉 = EHk+1(ge)
∂k

∂gk
e′

〈
fe′(σ )

〉 = γ k
EHk+1(ge)F

(k)

e′ .

Using (33) once for the factor Hk+1(ge), for e = e′ we get

EHk+1(ge)Hk(ge)
〈
fe(σ )

〉 = EHk(ge)H
′
k(ge)

〈
fe(σ )

〉 + γEHk(ge)
2F (1)

e .

Therefore, we can rewrite (52) as

E

∑
e∈E

aeHk+1(ge)
〈
W(σ)

〉 = γ k
E

∑
e �=e′

aeae′Hk+1(ge)F
(k)

e′

+E

∑
e∈E

a2
eHk(ge)H

′
k(ge)

〈
fe(σ )

〉 + γE
∑
e∈E

a2
eHk(ge)

2F (1)
e .

Plugging this into (51) and dividing both sides by γ ,

E
(〈
W(σ)2〉 − 〈

W(σ)
〉2) = γ k−1

E

∑
e �=e′

aeae′Hk+1(ge)F
(k)

e′ +E

∑
e∈E

a2
eHk(ge)

2F (1)
e .

Since F
(1)
e ≤ 1, the second term can be bounded by

E

∑
e∈E

a2
eHk(ge)

2F (1)
e ≤ k!‖a‖2

2.

To bound the first term, let us rewrite it as

γ k−1
E

∑
e �=e′

aeae′Hk+1(ge)F
(k)

e′ = γ k−1
∑
e′∈E

ae′EF
(k)

e′
∑
e �=e′

aeHk+1(ge).

Since, for any fixed e′ ∈ E, |F (k)

e′ | ≤ Ck and

E

(∑
e �=e′

aeHk+1(ge)

)2

≤ (k + 1)!‖a‖2
2,

this can be bounded by Ck

√
(k + 1)!γ k−1‖a‖2‖a‖1, which finishes the proof of (50). �
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