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Abstract. In this paper, we will show that the higher moments of the natural parametrization of SLE curves in any bounded domain
in the upper half plane is finite. We prove this by estimating the probability that an SLE curve gets near n given points.

Résumé. Dans cet article, nous montrons que les grands moments de la paramétrisation naturelle d’une courbe SLE dans n’importe
quel domaine borné du demi-plan supérieur sont finis. Nous prouvons ceci en estimant la probabilité qu’une courbe SLE soit proche
d’un nombre n de points fixés.
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1. Introduction

A number of measures arise from statistical physics are believed to have conformally invariant scaling limits. In [13], a
one-parameter family of measures on self-avoiding curves in the upper half plane, called (chordal) Schramm–Loewner
evolution (SLEκ ) is defined. Here we only work with chordal version so we omit chordal. By conformal invariance,
it is extended to other simply connected domains. Later, it was shown that SLE describes the limits of a number of
models from physics so answering the question of conformal invariance for them. These models include loop-erased
random walk for κ = 2 [9], Ising interfaces for κ = 3 and κ = 16/3 [16], harmonic explorer for κ = 4 [14], percolation
interfaces for κ = 6 [15], and uniform spanning tree Peano curves for κ = 8 [9].

In order to define SLE, Schramm used capacity parametrization. We will see the definition of SLE as well as
capacity parametrization in the next section. Capacity parametrization comes from Loewner evolution and makes it
easy to analyze SLE curves by Ito’s calculus. In all the physical models that we have above, in order to show the
convergence, we have to first parametrize them with discrete version of the capacity and then prove the convergence
to SLE. This parametrization is very different from the natural parametrization that we have for them which is just the
length of the curve.

In order to prove the same results with the natural parametrization, we need to define a natural length for SLE
curves. In [2], it is proved that the Hausdorff dimension of SLEκ is d = min{2,1 + κ

8 }. In [8], the authors conjectured
that the Minkowski content of SLE should exist. They defined the natural parametrization in a different way using
Doob–Meyer decomposition and proved the existence for κ < 5.021. . . . Moreover, they conjectured that the natural
length of SLE can be defined in terms of d-dimensional Minkowski content. Here is how it is defined (see [6] for more
details). Let

Contd
(
γ [0, t]; r) = rd−2 Area

{
z : dist

(
z, γ [0, t]) ≤ r

}
.
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Then the d-dimensional content is

Contd
(
γ [0, t]) = lim

r→0
Contd

(
γ [0, t]; r), (1.1)

provided that the limit exists. If κ > 8 the curve is space filling and d = 2 so this is just the area and the problem is
trivial. For k < 8, the existence was shown in [6]. We assume for the purpose of this paper that κ < 8. We call this
parametrization, natural length or length from now on. Also a number of properties of the natural length were studied
in [6]. For example the authors computed the first and second moments of the “natural length.” Basically, this function
is the appropriate scaled version of the probability that SLE hits given point(s). Precisely, the n-point Green’s function
at z1, . . . , zn is

G(z1, . . . , zn) = lim
r1,...,rn→0

n∏
k=1

rd−2
k P

[
n⋂

k=1

{
dist(zk, γ ) ≤ rk

}]
, (1.2)

provided that the limit exists. The covariance rule of the Green’s function is obvious, that is, if F maps (H;0,∞)

conformally onto (D;w1,w2), then

G(D;w1,w2)(z1, . . . , zn) = ∣∣(F−1)′
(z)

∣∣2−d
G(H;0,∞)

(
F−1(z1), . . . ,F

−1(zn)
)
, (1.3)

if the Green’s function at either side exists. Here we use G(D;w1,w2) to denote the Green’s function for SLEκ in D

from w1 to w2.
It is proved in [10] that a modified version of 1-point and 2-point Green’s function using conformal distance instead

of distance exists. In [6], the authors prove the above limit exists for n = 1,2. Lawler and Werness mentioned in [10]
that the argument can be generalized to define higher order Green’s function. So they conjectured the existence of
multi-point Green’s function. For n = 1 the exact formula is given in [6] which is

G(z) = G(H;0,∞)(z) = C|z|d−2 sinκ/8+8/κ−2(arg z) = C Im(z)d−2 sin8/κ−1(arg z), (1.4)

where C = Cκ > 0 is an unknown constant. In arbitrary domains the exact formula of the 1-point Green’s function
can be found by the covariance rule.

We now state the main theorems of this paper. Throughout, we fix κ ∈ (0,8), the following constants depending
on κ :

d = 1 + κ

8
, α = 8

κ
− 1.

We will use C to denote an arbitrary positive constant that depends only on κ , whose value may vary from one
occurrence to another. If we allow C to depend on κ and another variable, say n, then we will use Cn. We introduce a
family of functions. For y ≥ 0, define Py on [0,∞) by

Py(x) =
{

yα−(2−d)x2−d, x ≤ y;
xα, x ≥ y.

Since α ≥ 2 − d > 0, if 0 ≤ x1 < x2, then

xα
1

xα
2

≤ Py(x1)

Py(x2)
≤ x2−d

1

x2−d
2

. (1.5)

The first main theorem is:

Theorem 1.1. Let z0, . . . , zn be distinct points on H such that z0 = 0. Let yk = Im zk ≥ 0 and lk = dist(zk, {zj : 0 ≤
j < k}), 1 ≤ k ≤ n. Let r1, . . . , rn > 0. Let γ be an SLEκ curve in H from 0 to ∞. Then there is Cn < ∞ depending
only on κ and n such that

P
[
dist(γ, zk) ≤ rk,1 ≤ k ≤ n

] ≤ Cn

n∏
k=1

Pyk
(rk ∧ lk)

Pyk
(lk)

.
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The second main theorem answers a question in [6].

Theorem 1.2. If γ is an SLE curve from 0 to ∞ in H, then for any bounded D ⊂H, we have

E
[
Contd(γ ∩ D)n

]
< ∞, n ∈N.

Remarks.

1. The quantity on the right-hand side of the formula in Theorem 1.1 depends on the order of the points z1, . . . , zn.
However, if rj ’s are sufficiently small, say, rj < dist(zj , {z0, . . . , zn} \ {zj }), then if we exchange any pair of con-
secutive points, i.e., zk and zk+1, then the new quantity is no more than C times the old quantity, where C > 0

depends only on κ . Thus, if we permute those n points, the quantity will increase at most Cn2
times.

2. An immediate consequence of Theorem 1.1 is that the right-hand side of (1.2), with lim replaced by lim sup, is
finite.

3. In fact, Theorem 1.1 implies an upper bound of the Green’s function G(z1, . . . , zn) for the above γ , if it exists. That
is

G(z1, . . . , zn) ≤ Cn

n∏
k=1

y
α−(2−d)
k

Pyk
(lk)

.

A natural question to ask is whether the reverse inequality also holds (with smaller Cn). The answer is yes if n ≤ 2.

In the case n = 1, the right-hand side is C
yα−(2−d)

|z|α , which agrees with the right-hand side of (1.4). In the case
n = 2, the right-hand side is comparable to a sharp estimate of the 2-point Green’s function given in [7] up to a
constant. Thus, we expect that it holds for all n ∈N.

4. We guess that one can show E[eλContd (γ∩D)] < ∞ for some λ > 0 in any bounded domain D. This is nice because
we can study natural length by its moment generating function. One way to prove it is to prove a similar bound
for ordered multi-point Green’s function but with Cn instead of Cn. See [10] for the definition of ordered Green’s
function.

5. If the Green’s function G(z1, . . . , zn) exits, the left-hand side of the displayed formula in Theorem 1.2 equals to∫
Dn G(z1, . . . , zn) dA(z1) · · · dA(zn).

6. Theorem 1.1 also provides an upper bound for the boundary Green’s function, which is the scaled version of
the probability that SLE hits given boundary point(s). The scaling exponent will be α instead of 2 − d so that
the Green’s function does not vanish. To be more precise, for the above γ , the boundary Green’s function at
x1, . . . , xn ∈R \ {0} is

G̃(x1, . . . , xn) = lim
r1,...,rn→0

n∏
k=1

r−α
k P

[
n⋂

k=1

{
dist(xk, γ ) ≤ rk

}]
, (1.6)

provided that the limit exists. Lawler recently proved in [5] that the 1-point and 2-point boundary Green’s func-
tion exist, and gave good estimates of these functions. Using Theorem 1.1, we can derive the following con-
clusions. First, the right-hand side of (1.6), with lim replaced by lim sup, is finite. This result may help us
to prove the existence of multi-point boundary Green’s functions for SLE. Second, if G̃(x1, . . . , xn) exits, then
G̃(x1, . . . , xn) ≤ Cn

∏n
k=1 l−α

k , where lk = min0≤j<k |xk − xj | with x0 = 0. Similarly, we get upper bounds for
mixed Green’s functions, where some points lie on the boundary, and others lie in the interior.

The organization of the rest of the paper goes as follows. In the next section we review the definition of SLE and
some fundamental estimates for SLE. In the third section, we will prove two main lemmas. At the end, we will prove
the two main theorems.

2. Preliminaries

2.1. Definition of SLE

In this subsection we review the definition of SLE and its basic properties. See [3,4,6,10] for more details.
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A bounded set K ⊂ H = {x + iy : y > 0} is called an H-hull if H \ K is a simply connected domain, and the
complement H \ K is called an H-domain. For every H-hull K , there is a unique conformal map gK from H \ K onto
H that satisfies

gK(z) = z + c

z
+ O

(|z|−2), |z| → ∞

for some c ≥ 0. The number c is called the half plane capacity of K , and is denoted by hcap(K).
Suppose that γ : (0,∞) → H is a simple curve with γ (0+) ∈ R and γ (t) → ∞ as t → ∞. Then for each t ,

Kt := γ (0, t] is an H-hull. Let gt = gKt and a(t) = hcap(Kt ). We can reparameterize the curve such that a(t) = 2t .
Then gt satisfies the (chordal) Loewner equation

∂tgt (z) = 2

gt (z) − Vt

, g0(z) = z, (2.1)

where Vt := limH\Kt�z→γ (t) gt (z) is a continuous real-valued function.
Conversely, one can start with a continuous real-valued function Vt and define gt by (2.1). For z ∈ H \ {0}, the

function t �→ gt (z) is well defined up to a blowup time Tz, which could be ∞. The evolution then generates an
increasing family of H-hulls defined by

Kt = {z ∈H : Tz > t}, 0 ≤ t < ∞,

with gt = gKt and hcap(Kt ) = 2t for each t . One may not always get a curve from the evolution.
The (chordal) Schramm–Loewner evolution (SLEκ ) (from 0 to ∞ in H) is the solution to (2.1) where Vt = √

κBt ,
where κ > 0 and B(t) is a standard Brownian motion. It is shown in [9,12] that the limits

γ (t) = lim
H�z→Vt

g−1
t (z), 0 ≤ t < ∞,

exist, and give a continuous curve γ in H with γ (0) = 0 and limt→∞ γ (t) = ∞. Only in the case κ ≤ 4, the curve is
simple and stays in H for t > 0, and we recover the previous picture. For other cases, γ is not simple, and Ht := H\Kt

is the unbounded component of H \ γ (0, t].
We can define SLEκ in other simply connected domains using conformal maps. Roughly speaking, SLEκ in a

simply connected domain D � C is the image of the above γ under a conformal map F from H onto D. However,
since γ in fact lies in H instead of H, the rigorous definition requires some regularity of D. For simplicity, we assume
that ∂D is locally connected and call such domain D regular. This ensures that any conformal map F from H onto D

has a continuous extension to H, and so F ◦ γ is a continuous curve in D.
Now we state the definition. Let D be a regular simply connected domain, and w0,w∞ be distinct prime ends

(cf. [3]) of D. Let F : H → D be a conformal transformation of H onto D with F(0) = w0,F (∞) = w∞. Then
γ̃ := F ◦ γ is called an SLEκ curve in D from w0 to w∞. Although such F is not unique, the definition is unique up
to a linear time change.

Now we state the important Domain Markov Property (DMP) of SLE. Let D be a regular simply connected domain
with prime ends w0 �= w∞, and γ an SLEκ curve in D from w0 to w∞. For each t0 ≥ 0, let Dt0 be the connected
component of H \ γ (0, t0] which is a neighborhood of w∞ in D, and γ t0(t) = γ (t0 + t), 0 ≤ t < ∞. Let T be any
stopping time w.r.t. γ . Then conditioned on γ (0, T ] and the event {T < ∞}, a.s. γ (T ) ∈ ∂DT determines a prime end
of DT , and γ T has the distribution of SLEκ in DT from (the prime end determined by) γ (T ) to w∞.

2.2. Crosscuts

Let D be a simply connected domain. A simple curve ρ : (a, b) → D is called a crosscut in D if limt→a+ ρ(t) and
limt→b− ρ(t) both exist and lie on ∂D. We emphasize that by definition the end points of ρ do not belong to ρ, and
so ρ completely lies in D. It is well known (cf. [11]) that as t → a+ or t → b−, ρ(t) tends to a prime end of D. We
say that these two prime ends are determined by ρ. Thus, if f maps D conformally onto D, then f (ρ) is a crosscut
in D. So we see that D \ ρ has exactly two connected components.



186 M. A. Rezaei and D. Zhan

Fig. 1. This figure illustrates the situation of Lemma 2.1. Here D̃ is the square and D is the comb domain. The λ1, λ2, λ3 are sub-crosscuts of ρ

in D that separate Z1 from Z2. Among them λ1 is the crosscut given by the lemma.

For the ease of labeling the two components of D \ ρ, we introduce the following symbols. Let K be any subset of
C such that K ∩ D is a relatively closed subset of D, and let S be a connected subset of D \ K . We use D(K;S) to
denote the connected component of D\K which is a neighborhood of S in D; and let D∗(K;S) = D\(K ∪D(K;S)),
which is the union of components of D \ K other than D(K;S). For example, D(K; z1) �= D(K; z2) means that z1
and z2 are separated in D by K . If ρ and η are disjoint crosscuts in D. Then D \ ρ = D(ρ;η) ∪ D∗(ρ;η) and
D \ η = D(η;ρ) ∪ D∗(η;ρ); and we have D∗(ρ;η) ⊂ D(η;ρ) and D∗(η;ρ) ⊂ D(ρ;η).

The symbols D(K;S) and D∗(K;S) also make sense if S is a prime end of D such that D \ K is a neighborhood
of S in D. If D is an H-domain, and S is the prime end ∞, then we omit the ∞ in D(K;∞) and D∗(K;∞). For
example, for the SLEκ curve γ in H from 0 to ∞, the corresponding H-hull Kt satisfies that H \ Kt =H(γ (0, t]).

Lemma 2.1. Let D ⊂ D̃ be two simply connected domains. Let ρ be a Jordan curve in D̃, which intersects ∂D, or
a crosscut in D̃. Let Z1 and Z2 be two connected subsets or prime ends of D̃ such that D̃(ρ;Zj), j = 1,2, are well
defined and not equal. In other words, D̃ \ ρ is a neighborhood of both Z1 and Z2 in D, and Z1 is disconnected from
Z2 in D̃ by ρ. Suppose D is a neighborhood of both Z1 and Z2 in D̃. Let 	 denote the set of connected components of
ρ ∩D. Then there is a unique λ1 ∈ 	 such that D(λ1;Z1) �= D(λ1;Z2), and if D(λ;Z1) �= D(λ;Z2) for some λ ∈ 	,
then D(λ1;Z1) ⊂ D(λ;Z1) and D(λ1;Z2) ⊃ D(λ;Z2).

Remark. Every λ ∈ 	 is a crosscut in D. We call the λ1 given by the lemma the first sub-crosscut of ρ in D that
disconnects Z1 from Z2. See Figure 1.

Proof of Lemma 2.1. Let 	0 = {λ ∈ 	 : D(λ;Z1) �= D(λ;Z2)}. We first show that 	0 is finite. Let γ be any curve
in D connecting Z1 with Z2. Since γ ∩ ρ is a compact subset of

⋃
λ∈	 λ, and every λ ∈ 	 is a relatively open subset

of ρ, we see that γ intersects finitely many λ ∈ 	. From the definition of 	0, γ intersects every λ ∈ 	0. Thus, 	0 is
finite. We emphasize here that the above argument does not exclude the possibility that 	0 is empty.

Next, we show that 	0 is nonempty. We choose γ such that it minimizes the size of the set 	(γ ) := {λ ∈ 	 :
γ ∩ λ �= ∅}, which can not be empty since

⋃
λ∈	 λ = ρ ∩ D disconnects Z1 from Z2 in D. Let λ0 ∈ 	(γ ). Let

w1 and w2 be the first point and the last point on γ , which lies on λ0, respectively. Let λ′
0 be the sub curve of λ0

with end points w1 and w2. There is ε > 0 such that dist(λ′
0, λ) > ε for any λ ∈ 	 \ {λ0}. Suppose λ0 /∈ 	0. Then

D(λ;Z1) = D(λ;Z2). We may choose for j = 1,2, w′
j on the part of γ between Zj and wj , which is very close

to wj , such that there is a curve γε connecting w′
1 and w′

2 in D(λ0;Z1), which stays in the ε-neighborhood of λ′
0.

Construct a new curve γ ′ in D connecting Z1 and Z2 by modifying γ such that the part of γ between w′
1 and w′

2 is
replaced by γε . Then we find that 	(γ ′) = 	(γ ) \ {λ0}, which contradicts the assumption on γ . Thus, 	0 ⊃ 	(γ ) is
nonempty.

Finally, we need to show that there is λ1 ∈ 	0, which minimizes {D(λ;Z1) : λ ∈ 	0} and maximizes {D(λ;Z2) :
λ ∈ 	0}. This follows from the finiteness and nonemptyness of 	0 and the facts that for any λ1, λ2 ∈ 	0, one of
D(λ1;Z1) and D(λ2;Z1) is a subset of the other, and the inclusion relation is reversed if Z1 is replaced by Z2. �

Lemma 2.2. Let D be a simply connected domain and ρ a crosscut in D. Let w0, w1 and w∞ be connected subsets or
prime ends of D such that D \ρ is a neighborhood of all of them in D. Suppose that ρ disconnects w0 from w∞ in D.
Let γ (t), 0 ≤ t < T , be a continuous curve in D with γ (0) ∈ ∂D. Suppose for 0 ≤ t < T , D \γ [0, t] is a neighborhood
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Fig. 2. This figure illustrates the situation of Lemma 2.2. Here D is the upper half plane, ρ is the semi-circle, and w∞ is the prime end ∞. The
curve γ is shown up to some time t0. Since ρt0 does not disconnect w1 from ∞, we have f (t0) = 1. When t < t0 and is close to t0, ρt is the ρ

t−0
in the figure, which disconnects w1 from ∞. This means that f (t−0 ) = 0, and f is not left-continuous at t0.

of w0, w1 and w∞ in D, and w0,w1 ⊂ Dt := D(γ [0, t];w∞). For 0 ≤ t < T , let ρt be the first sub-crosscut of ρ

in Dt that disconnects w0 from w∞ as given by Lemma 2.1. For 0 ≤ t < T , let f (t) = 1 if w1 ∈ Dt(ρt ;w∞); = 0 if
w1 ∈ D∗

t (ρt ;w∞). Then f is right-continuous on [0, T ), and left-continuous at those t0 ∈ (0, T ) such that γ (t0) is
not an end point of ρt0 .

Remark. It is easy to see that (Dt )0≤t<T is a decreasing family of H-domains. But (ρt )0≤t<T may not be a decreasing
family. See Figure 2.

Proof of Lemma 2.2. We first show that f is right-continuous. Fix t0 ∈ [0, T ). From the definition of ρt0 , there exist
a curve β0 in Dt0 , which goes from w0 to w∞, crosses ρt0 for only once, and does not visit ρ \ ρt0 before ρt0 . Let
S = w∞ or w0 depending on whether f (t0) = 1 or 0. Then there is a curve β1 in Dt0 \ ρt0 that connects w1 with S.
Since γ (t0) /∈ Dt0 and γ is continuous, there is t1 ∈ (t0, T ) such that γ [t0, t1) is disjoint from β0 and β1. Fix t ∈ (t0, t1).
Then β0, β1 ⊂ Dt . From Lemma 2.1, there is the first sub-crosscut of ρt0 , denoted by ρt0,t in Dt that disconnects w0
from w∞. From the properties of β0, ρt0,t is the connected component of ρt0 ∩ Dt that contains β0 ∩ ρt0 . Since β0
does not intersect ρ before β0 ∩ ρt0 , we have ρt = ρt0,t ⊂ ρt0 . Thus, β1 is a curve in Dt \ ρt connecting w1 with S,
which implies that f is constant on [t0, t1).

Suppose γ (t0) is not an end point of ρt0 for some t0 ∈ (0, T ). We now show that f is left-continuous at t0. There
exists t1 ∈ [0, t0) such that γ (t1, t0] does not intersect ρt0 . Fix t ∈ (t1, t0]. Then ρt0 is a crosscut in Dt . Let β0, S,β1 be
as above. Then β0 and β1 are also curves in Dt . From the properties of β0, we see that ρt = ρt0 . Thus, β1 is a curve in
Dt \ ρt connecting w1 with S, which implies that f is constant on (t1, t0]. �

2.3. Estimates

We give some important estimates for SLE in this subsection. The first one is the interior estimate. To begin with, we
quote the following theorem proved in [2].

Theorem 2.1. Suppose γ is an SLEκ curve from w1 to w2 in a simply connected domain D. If z ∈ D, then

P
[
dist(γ, z) ≤ r

] ≤ CG(D;w1,w2)(z)r
2−d ,

where G(D;w1,w2) is the 1-point Green’s function for the γ .

A stronger estimate is obtained in [6]: P[dist(γ, z) ≤ r] = r2−dG(D;w1,w2)(z)[1 + o(rα)], α > 0. Using (1.4), (1.3)
and Koebe’s 1/4 theorem, we find that G(D;w1,w2)(z) ≤ C dist(z, ∂D)d−2. So we have the following interior estimate
which is a corollary of Theorem 2.1.

Lemma 2.3 (Interior estimate). For any z ∈ D,

P
[
dist(γ, z) ≤ r

] ≤ C

(
r

dist(z, ∂D)

)2−d

.
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We will state the boundary estimate for SLE in several different forms. The original one comes from [1], which is
the following theorem.

Theorem 2.2 (Boundary estimate v.0). Let γ be an SLEκ curve in H from 0 to ∞. Then for any x0 ∈ R \ {0} and
r > 0,

P
[
dist(γ, x0) ≤ r

] ≤ C

(
r

|x0|
)α

.

We will express the above theorem in another form using the notation of extremal distance. The reader may refer
to [11] for the definition and properties of extremal distance (length). We use dD(L1,L2) to denote the extremal
distance between L1 and L2 in D. Suppose K is a nonempty H-hull with K ∩ R− = ∅. Let xK = max{K ∩ R} and
rK = max{|z−xK | : z ∈ K}. It is well known that there are absolute constants C and M such that rK

xK
≤ Ce−πdH(K,R−)

if dH(K,R−) ≥ M . So the above theorem implies the following corollary.

Lemma 2.4 (Boundary estimate v.1). Let γ be as above. Then for any H-hull K with K ∩R− =∅, we have

P[γ ∩ K �=∅] ≤ Ce−απdH(K,R−).

The same is true if R− is replaced with R+.

Using conformal invariance and comparison principle of extremal distance, we immediately get the following
version of boundary estimate from the previous one.

Lemma 2.5 (Boundary estimate v.2). Let D be a regular simply connected domain, and w0 and w∞ be two distinct
prime ends of D. Let ρ and η be two disjoint crosscuts in D such that D(ρ;η) is neither a neighborhood of w0 nor a
neighborhood of w∞ in D. For w0, the condition means that either D \ ρ is a neighborhood of w0 and D(ρ;w0) =
D∗(ρ;η), or w0 is a prime end determined by ρ; and likewise for w∞. Let γ be an SLEκ curve in D from w0 to w∞.
Then

P
[
γ ∩ (

η ∪ D∗(η;w∞)
) �=∅

] ≤ Ce−απdD(ρ,η).

We now combine the interior estimate and the boundary estimate to get the following one-point estimate, which
implies the case n = 1 in Theorem 1.1.

Lemma 2.6 (One-point estimate). Let D be an H-domain with a prime end w0 �= ∞. Let γ be an SLEκ curve in D

from w0 to ∞. Let z0 ∈ H, y0 = Im z0 ≥ 0, and R > r > 0. Let ρ = {z ∈H : |z − z0| = R} and η = {z ∈ H : |z − z0| =
r}. Suppose {z ∈ H : |z − z0| ≤ R} ⊂ D and w0 /∈ {x ∈R : |x − z0| < R}. Then

P[γ ∩ η �=∅] ≤ C
Py0(r)

Py0(R)
.

Proof. We consider different cases. Case 1: y0 ≥ R. The conclusion follows from the interior estimate because
Py0 (r)

Py0 (R)
= ( r

R
)2−d and dist(z0, ∂D) ≥ R. Case 2: y0 ≤ r . We have

Py0 (r)

Py0 (R)
= ( r

R
)α . By increasing the value of C,

we may assume that R > 4r . The conclusion follows from the boundary estimate because ρ and η are separated in
D by the two crosscuts {z ∈ H : |z − Re z0| = 2r} and {z ∈ H : |z − Re z0| = R/2}, and the extremal distance be-
tween them in D is log(R/(4r))/π . Case 3: R > y0 > r . Let ρ′ = {z ∈ H : |z − z0| = y0}, which separates ρ from
η in D. Let T be the first time that γ hits ρ′, and γ T (t) = γ (T + t), 0 ≤ t < ∞, if T < ∞. Then T is an stopping

time, and {γ ∩ η �= ∅} = {γ T ∩ η �= ∅} ⊂ {T < ∞} almost surely. From the result of Case 2, P[T < ∞] ≤ C
Py0 (y0)

Py0 (R)
.

From DMP, conditioned on γ [0, T ] and {T < ∞}, the γ T is an SLEκ curve in D(γ [0, T ]) from γ (T ) to ∞. Since

dist(z0, ∂DT ) = y0, from the result of Case 1, we get P[γ T ∩ η �= ∅|γ [0, T ], T < ∞] ≤ C
Py0 (r)

Py0 (y0)
. Combining this

with the estimate for P[T < ∞], we get the conclusion in Case 3. �
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The following version of boundary estimate will be frequently used in this paper.

Lemma 2.7 (Boundary estimate v.3). Let D be an H-domain with a prime end w0 �= ∞. Let γ be an SLEκ curve in
D from w0 to ∞. Let ρ be a crosscut in D such that D∗(ρ) is not a neighborhood of w0 in D, and S ⊂ D∗(ρ). Let
D̃ be a domain that contains D, and ρ̃ a subset of D̃ that contains ρ. Let η̃ be a Jordan curve in D̃, which intersects
∂D, or a crosscut in D̃. Suppose that η̃ disconnects S from ρ̃ in D̃. Then

P[γ ∩ S �=∅] ≤ Ce−παdD̃(ρ̃,̃η).

Proof. From Lemma 2.1, η̃ contains a sub-crosscut in E, denoted by η, which disconnects S from ρ. Since S ⊂
D∗(ρ), we have η ⊂ D∗(ρ) and S ⊂ D∗(η). Thus, D(ρ;η) = D∗(ρ) is not a neighborhood of either ∞ or w0 in D.
Using the boundary estimate v.2, we get

P[γ ∩ S �=∅] ≤ P
[
γ ∩ D∗(η) �=∅

] ≤ Ce−παdD(ρ,η) ≤ Ce−παdD̃(ρ̃,̃η). �

3. Main estimates

In this section, we let γ be an SLEκ curve in H from 0 to ∞. Given any set S, let τS = inf{t ≥ 0 : γ (t) ∈ S}; we set
inf∅ = ∞ by convention. Let (Ft ) be the right-continuous filtration generated by γ . For t0 ≥ 0, let γ t0(t) = γ (t0 + t),
0 ≤ t < ∞, and Ht0 = H(γ [0, t0]). Recall the DMP: if T is an (Ft )-stopping time, then conditioned on FT and
T < ∞, γ T is an SLEκ curve in HT from (the prime end of HT determined by) γ (T ) to ∞.

Theorem 3.1. Let m ∈ N, zj ∈ H and Rj ≥ rj > 0, 0 ≤ j ≤ m. Let ξ̂j = {|z − zj | = Rj }, ξj = {|z − zj | = rj }, and

D̂j = {|z − zj | ≤ Rj }, 0 ≤ j ≤ m. Suppose that 0 /∈ D̂j , 0 ≤ j ≤ m; and D̂0 ∩ D̂j = ∅, 1 ≤ j ≤ m. Let r ′
0 ∈ (0, r0)

and ξ ′
0 = {|z − z0| = r ′

0}. Let

E = {τξ0 < τ̂ξ1
≤ τξ1 < · · · < τ̂ξm

≤ τξm < τξ ′
0
< ∞}.

Let yj = Im zj , 1 ≤ j ≤ m. Then we have

P[E|Fτξ0
] ≤ Cm

(
r0

R0

)α/4 m∏
j=1

Pyj
(rj )

Pyj
(Rj )

.

Discussion. From the 1-point estimate, we see that, given γ up to hitting ξ̂j , the probability that it reaches ξj is

at most C
Pyj

(rj )

Pyj
(Rj )

. The DMP allows us to put these estimates together to get the product on the righthand side of

the above formula. The key point of the proof is to use the boundary estimate to derive the factor (
r0
R0

)α/4. Recall
that the boundary estimate can be applied when the SLE curve is required to cross a disjoint pair of crosscuts from
the unbounded component to the bounded component determined by these crosscuts. But whether a given set lies in
the bounded component may vary as the SLE curve grows. So we have to carefully keep track of the changes of the
“topology” situations.

Proof of Theorem 3.1. Let � be the set of ξj , ξ̂j , 0 ≤ j ≤ n, and ξ ′
0. By Theorem 2.2, for any ξ ∈ �, γ almost surely

does not visit ξ ∩R. By discarding an event with probability zero, we may assume that γ does not visit ξ ∩R for any
ξ ∈ �. Then for any ξ ∈ �, τξ = τξ∩H. Thus, it suffices to prove the lemma with each ξ ∈ � replaced by ξ ∩H. This
means that every ξ ∈ � is a Jordan curve or crosscut in H. After that, we see that τξ < ∞ implies that γ (τξ ) ∈ ξ ∩H,
and γ does not visit H∗(ξ) before ξ .

Let τ0 = τξ0 , τ̂j = τ̂ξj
and τj = τξj

, 1 ≤ j ≤ m, and τm+1 = τξ ′
0
. From the DMP and one-point estimate

(Lemma 2.6), we get

P[τj < ∞|Fτ̂j
] ≤ C

Pyj
(rj )

Pyj
(Rj )

, 1 ≤ j ≤ m. (3.1)
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Thus, P[E|Fτ0 ] ≤ Cm
∏m

j=1
Pyj

(rj )

Pyj
(Rj )

. If R0 = r0, the proof is finished.

Suppose R0 > r0. Let ρ = {z ∈ H : |z − z0| = √
R0r0}. Then ρ is a Jordan curve or crosscut in H, which lies

between ξ̂0 and ξ0, and

dH(ρ, ξ0), dH(ρ, ξ̂0) ≥ log(R0/r0)

4π
. (3.2)

Also note that ρ disconnects ξ ′
0 from ∞. Let T = inf{t ≥ 0 : ξ ′

0 �⊂ Ht }. For τ0 ≤ t < T , ξ ′
0 is a connected subset

of Ht , and ρ intersects ∂Ht . Thus, we may use Lemma 2.1 to define ρt to be the first sub-crosscut of ρ in Ht that
disconnects ξ ′

0 from ∞ for τ0 ≤ t < T . Note that every ρt is Ft -measurable.
Let I = {(j, j + 1) : 0 ≤ j ≤ m} ∪ {(j, j) : 1 ≤ j ≤ m}, and define (Aι)ι∈I by

A(0,1) = {T > τ0} ∩ {
H∗(ξ1) ⊂ H ∗

τ0
(ρτ0)

} ∈Fτ0;
A(j,j) = {T > τj } ∩ {

H∗(ξj ) ⊂ Hτj−1(ρτj−1)
} ∩ {

H∗(ξj ) ⊂ H ∗
τj

(ρτj
)
} ∈Fτj

, 1 ≤ j ≤ m;
A(j,j+1) = {T > τj } ∩ {

H∗(ξj ) ⊂ Hτj
(ρτj

)
} ∩ {

H∗(ξj+1) ⊂ H ∗
τj

(ρτj
)
} ∈ Fτj

, 1 ≤ j ≤ m − 1;
A(m,m+1) = {T > τm} ∩ {

H∗(ξm) ⊂ Hτm(ρτm)
} ∈Fτm.

Suppose E occurs. Then γ does not visit ξ ′
0 at any time t ≤ τm. So ξ ′

0 is a connected subset of H \ γ [0, τm]. Then we
must have ξ ′

0 ⊂ Hτm because γ τm visits ξ ′
0, and γ τm ⊂ Hτm ⊂ Hτm ∪ γ [0, τm]. Thus, T > τm > τm−1 > · · · > τ1 > τ0.

Similarly, since H∗(ξj ) is not visited by γ at any time t ≤ τj , we conclude that H∗(ξj ) ⊂ Ht for t ≤ τj . Since H∗(ξj )

is disjoint from ρ ⊃ ρt , we conclude that H∗(ξj ) is contained in either Ht(ρt ) or H ∗
t (ρt ) for any t ≤ τj .

Define a strict total order on I such that (0,1) < (1,1) < (1,2) < (2,2) < · · · < (m−1,m) < (m,m) < (m,m+1).
Define a family of events Eι, ι ∈ I , such that Eι = E \ ⋃

ι′:ι′>ι Aι′ . Using induction, one can prove that

Eι ⊂ {
H∗(ξι1) ⊂ H ∗

τι2
(ρτι2

)
}
, ι = (ι1, ι2) ∈ I \ {

(m,m + 1)
}
.

Especially, we get

E0,1 = E
∖ ⋃

ι∈I\{(0,1)}
Aι ⊂ {

H∗(ξ0) ⊂ H ∗
τ1

(ρτ1)
} ⊂ A(0,1).

Thus, we have E ⊂ ⋃
ι∈I Aι. We will finish the proof by showing that

P[E ∩ Aι|Fτ0 ] ≤ Cm

(
r0

R0

)α/4 m∏
j=1

Pyj
(rj )

Pyj
(Rj )

, ι ∈ I. (3.3)

Case 1. Suppose A(0,1) occurs and τ0 < τ̂1. Since ξ̂1 and H∗(ξ1) are subsets of H∗(̂ξ1) ∪ ξ̂1, which is a connected
subset of (H \ γ [0, τ0]) \ ρτ0 , from H∗(ξ1) ⊂ H ∗

τ0
(ρτ0), we conclude that ξ̂1 ⊂ H ∗

τ0
(ρτ0). Note that ρ disconnects ξ̂1

from ξ ′
0 in H, and intersects ∂Hτ0 . Applying Lemma 2.1, we get a sub-crosscut of ρ, denoted by ρ′

τ0
, that disconnects

ξ̂1 from ξ ′
0 in Hτ0 . Since both ξ̂1 and ξ ′

0 lie in H ∗
τ0

(ρτ0), so does ρ′
τ0

. Thus, H ∗
τ0

(ρ′
τ0

) ⊂ H ∗
τ0

(ρτ0). Since ρτ0 is the
first sub-crosscut of ρ in Hτ0 that disconnects ξ ′

0 from ∞, we see that ρ′
τ0

does not disconnect ξ ′
0 from ∞. Thus,

ξ ′
0 ⊂ Hτ0(ρ

′
τ0

), and ξ̂1 ⊂ H ∗
τ0

(ρ′
τ0

) as ρ′
τ0

disconnects ξ̂1 from ξ ′
0 in Hτ0 . See Figure 3.

Since H∗(ξ0) is a connected subset of Hτ0 \ ρ′
τ0

, and contains ξ ′
0 and a curve that approaches γ (τ0) ∈ ξ0, we

conclude that Hτ0(ρ
′
τ0

;γ (τ0)) = Hτ0(ρ
′
τ0

; ξ ′
0) = Hτ0(ρ

′
τ0

). Thus, Hτ0(ρ
′
τ0

; ξ̂1) = H ∗
τ0

(ρ′
τ0

) is not a neighborhood of
γ τ0(0) = γ (τ0) in Hτ0 . Since τ0 < τ̂1, τ̂1 < ∞ implies that the SLEκ curve γ τ0 in Hτ0 (conditioned on Fτ0 ) visits ξ̂1.
Since ξ̂0 disconnects ξ̂1 from ρ ⊃ ρ′

τ0
in H, and intersects ∂Hτ0 , from the boundary estimate v.3 (Lemma 2.7) and

(3.2), we get

P[̂τ1 < ∞|Fτ0 ,A(0,1), τ0 < τ̂1] ≤ Ce−απdH(ρ,̂ξ0) ≤ C

(
r0

R0

)α/4

,
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Fig. 3. This figure shows the event A(0,1) with γ stopped at τ0 = τξ0 .

Fig. 4. This figure shows the event A(j,j+1) with γ stopped at τj = τξj .

which together with (3.1) implies that (3.3) holds for ι = (0,1).
Case 2. Suppose for some 1 ≤ j ≤ m − 1, A(j,j+1) occurs and τj < τ̂j+1. Using the argument in the previous case

with τ0 and ξ̂1 replaced by τj and ξ̂j+1, respectively, we get a sub-crosscut of ρ, denoted by ρ′
τj

, that disconnects ξ̂j+1

from ξ ′
0 in Hτj

, and conclude that H ∗
τj

(ρ′
τj

) ⊂ H ∗
τj

(ρτj
), ξ ′

0 ⊂ Hτj
(ρ′

τj
), and ξ̂j+1 ⊂ H ∗

τj
(ρ′

τj
). See Figure 4.

Since H∗(ξj ) is a connected subset of Hτj
\ρτj

, and contains a curve that approaches γ (τj ) ∈ ξj , we conclude that
Hτj

(ρτj
;γ (τj )) = Hτj

(ρτj
;H∗(ξj )) = Hτj

(ρτj
). Thus, H ∗

τj
(ρ′

τj
) ⊂ H ∗

τj
(ρτj

) is not a neighborhood of γ τj (0) = γ (τj )

in Hτj
. Since τj < τ̂j+1, τ̂j+1 < ∞ implies that the SLEκ curve γ τj in Hτj

(conditioned on Fτj
) visits ξ̂j+1. Since ξ̂0

disconnects ξ̂j+1 from ρ ⊃ ρ′
τj

in H, from Lemma 2.7 and (3.2), we get

P[̂τj+1 < ∞|Fτj
,A(j,j+1), τj < τ̂j+1] ≤ Ce−απdH(ρ,̂ξ0) ≤ C

(
r0

R0

)α/4

,

which together with (3.1) implies that (3.3) holds for ι = (j, j + 1), 1 ≤ j ≤ m − 1.
Case 3. Suppose A(m,m+1) and τm < τm+1 occur. Since H∗(ξm) is a connected subset of Hτm \ ρτm , and contains

a curve that approaches γ (τm) ∈ ξm, we conclude that Hτm(ρτm;γ (τm)) = Hτm(ρτm;H∗(ξm)) = Hτm(ρτm). Thus,
H ∗

τm
(ρτm) is not a neighborhood of γ τm(0) = γ (τm) in Hτm . Since τm < τm+1, τm+1 < ∞ implies that the SLEκ curve
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γ τm in Hτm (conditioned on Fτm ) visits ξ ′
0 ⊂ H ∗

τm
(ρτm). Since ξ0 disconnects ξ ′

0 from ρ in H, and intersects ∂Hτm , we
may apply Lemma 2.7 and (3.2) to get

P[τm+1 < ∞|Fτm,A(m,m+1), τm < τm+1] ≤ Ce−πdH(ξ0,ρ) ≤ C

(
r0

R0

)α/4

,

which together with (3.1) implies that (3.3) holds for ι = (m,m + 1).
Case 4. Finally, we consider (3.3) in the case ι = (j, j). Fix 1 ≤ j ≤ m and define

σj = inf
{
t ≥ τj−1 : H∗(ξj ) ⊂ H ∗

t (ρt )
}
.

From Lemma 2.2 and the right-continuity of (Ft ), we have

1. Every σj is an (Ft )-stopping time.
2. If σj < ∞, then H∗(ξj ) ⊂ H ∗

σj
(ρσj

).
3. If A(j,j) occurs, then τj−1 < σj < τj .
4. If τj−1 < σj < ∞, then γ (σj ) is an endpoint of ρσj

.

Note that the last property implies that H ∗
σj

(ρσj
) is not a neighborhood of either γ (σj ) or ∞ in Hσj

. Let F< = {σj <

τ̂j } and F≥ = {̂τj ≤ σj < τj }. Then A(j,j) ⊂ F< ∪ F≥.
Case 4.1. Suppose F≥ occurs. Let N = �log(Rj/rj )� ∈N. Let ζk = {z ∈ H : |z − zj | = (RN−k

j rk
j )1/N }, 0 ≤ k ≤ N .

Note that ζ0 = ξ̂j and ζN = ξj . Then F≥ ⊂ ⋃N
k=1 Fk , where

Fk := {τζk−1 ≤ σj < τζk
}, 1 ≤ k ≤ N.

If Fk occurs, then ζk ⊂ H ∗
σj

(ρσj
) because H∗(ζk) ∪ ζk is a connected subset of (H \ γ [0, σj ]) \ ρ that contains both

ζk and H∗(ξj ), and H∗(ξj ) ⊂ H ∗
σj

(ρσj
). See Figure 5.

From Lemma 2.7 and (3.2), we get

P[τζk
< ∞|Fσj

,Fk] ≤ Ce−απdH(ρ,ζk−1) ≤ Ce−απ(dH(ρ,̂ξ0)+dH(ζ0,ζk−1)) ≤ C

(
r0

R0

)α/4( rj

Rj

)(α/2)((k−1)/N)

.

Fig. 5. This figure shows the event Fk , a sub event of A(j,j) , with γ stopped at σj , the first time after τj−1 = τξj−1 that ξj lies in the bounded
component of Ht \ ρt .
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From Lemma 2.6, we get

P[Fk|Fτj−1, τj−1 < τ̂j ] ≤ C
Pyj

((RN−k+1
j rk−1

j )1/N )

Pyj
(Rj )

,

P[τj < ∞|Fτζk
,Fk] ≤ C

Pyj
(rj )

Pyj
((RN−k

j rk
j )1/N )

.

The above three displayed formulas together with (1.5) imply that

P[τj < ∞,Fk|Fτj−1, τj−1 < τ̂j ] ≤ C

(
r0

R0

)α/4( rj

Rj

)(α/2)((k−1)/N)( rj

Rj

)−α/N Pyj
(rj )

Pyj
(Rj )

.

Since F≥ ⊂ ⋃N
k=1 Fk , by summing up the above inequality over k, we get

P[τj < ∞,F≥|Fτj−1, τj−1 < τ̂j ] ≤ C

(
r0

R0

)α/4 Pyj
(rj )

Pyj
(Rj )

[(
rj

Rj

)−α/N 1 − (rj /Rj )
α/2

1 − (rj /Rj )α/(2N)

]
. (3.4)

By considering the cases Rj/rj ≤ e and Rj/rj > e separately, we see that the quantity inside the square bracket is
bounded by the constant eα

1−e−α/4 .

Case 4.2. Suppose F< occurs. Then H∗(̂ξj ) ∪ ξ̂j is a connected subset of (H \ γ [0, σj ]) \ ρ that contains H∗(ξj ).
So we get ξ̂j ⊂ H ∗

σj
(ρσj

;H∗(ξj ) = H ∗
σj

(ρσj
). Since ξ̂0 disconnects ρ from ξ̂j in H, applying Lemma 2.7 and (3.2),

we get

P[̂τj < ∞|Fσj
,F<] ≤ Ce−απdH(ρ,̂ξ0) ≤ C

(
r0

R0

)α/4

,

which together with (3.1) implies that

P[τj < ∞,F<|Fτj−1] ≤ C

(
r0

R0

)α/4 Pyj
(rj )

Pyj
(Rj )

. (3.5)

Combining (3.4) and (3.5), we get

P[τj < ∞,A(j,j)|Fτj−1, τj−1 < τ̂j ] ≤ C

(
r0

R0

)α/4 Pyj
(rj )

Pyj
(Rj )

,

which together with (3.1) implies that (3.3) holds for ι = (j, j), 1 ≤ j ≤ m. �

Let � be a family of mutually disjoint circles with center in H, each of which does not pass through or enclose 0.
Define a partial order on � such that ξ1 < ξ2 if ξ2 is enclosed by ξ1. One should keep in mind that a smaller element
in � has bigger radius, but will be visited earlier (if it happens) by a curve started from 0.

Suppose that � has a partition {�e}e∈E with the following properties:

1. For each e ∈ E , the elements in �e are concentric circles with radii forming a geometric sequence with common
ratio 1/4. We denote the common center ze , the biggest radius Re , and the smallest radius re.

2. Let Ae = {re ≤ |z − z0| ≤ Re} be the closed annulus associated with �e, which is a single circle if Re = re , i.e.,
|�e| = 1. Then the annuli Ae, e ∈ E , are mutually disjoint.

Note that every �e is a totally ordered set w.r.t. the partial order on �.

Theorem 3.2. Let ye := Im ze ≥ 0, e ∈ E . Then there is C|E | < ∞, which depends only on κ and |E |, such that

P
[⋂

ξ∈�

{γ ∩ ξ �=∅}
]

≤ C|E |
∏
e∈E

Pye(re)

Pye (Re)
.



194 M. A. Rezaei and D. Zhan

Discussion. Suppose γ visits all ξ ∈ �. For ξ1, ξ2 ∈ �, if ξ1 < ξ2, then γ will visit ξ1 before ξ2. Other than these
constraints, γ can visit the elements in � in any order. The simplest case is that γ does not jump back and forth
between different groups {�e : e ∈ E}. This means that γ first visits all circles in �e1 for some e1 ∈ E before all other
circles in �, then visits all circles in �e2 for some e2 ∈ E \ {e1} before circles in � \ (�e1 ∪ �e2), and so on. In
this case, we can easily use the 1-point estimate and DMP to get the righthand side of the above formula. We use
Theorem 3.1 to deal with the general cases. The key point is that γ has to pay a price to jump back and forth between
different �e’s due to the factor (

r0
R0

)α/4 given in Theorem 3.1.

Proof of Theorem 3.2. We write Nn for {k ∈ N : k ≤ n}. Let S denote the set of bijections σ : N|�| → � such that
ξ1 < ξ2 implies that σ−1(ξ1) < σ−1(ξ2). Let E = ⋂

ξ∈�{γ ∩ ξ �=∅} and

Eσ = {τσ(1) < τσ(2) < · · · < τσ(|�|) < ∞}, σ ∈ S.

Then the above discussion gives

E =
⋃
σ∈S

Eσ . (3.6)

We will derive an upper bound of P[Eσ ] in (3.9).
Fix σ ∈ S. For e ∈ E , we label the elements of �e by ξe

0 < · · · < ξe
Ne

, where Ne = |�e| − 1. Let

Je = {
1 ≤ n ≤ Ne : σ−1(ξe

n

)
> σ−1(ξe

n−1

) + 1
} ∪ {0}.

In plain words, n ∈ Je means that either n = 0 or after visiting ξe
n−1, γ does not immediately visit ξe

n without visiting
other circles in � that it has not visited before. In the latter case, after visiting ξe

n−1, γ visits the circles in
⋃

e′ �=e �e′
before ξe

n .
Order the elements of Je by 0 = se(0) < · · · < se(Me), where Me = |Je| − 1. Set se(Me + 1) = Ne + 1. Every �e

can be partitioned into Me + 1 subsets:

�(e,j) = {
ξe
n : se(j) ≤ n ≤ se(j + 1) − 1

}
, 0 ≤ j ≤ Me.

The meaning of the partition is that, after γ visits the first element in �(e,j), which must be ξe
se(j), it then visits all

elements in �(e,j) without visiting any other circles in � that it has not visited before. Let I = {(e, j) : e ∈ E,0 ≤ j ≤
Me}. Then {�ι : ι ∈ I } is another partition of �, which is finer than {�e : e ∈ E}. Note that every σ−1(�ι), ι ∈ I , is a
connected subset of Z.

For ι ∈ I , let eι denote the first coordinate of ι, zι = zeι and yι = Im zι. Let Pι = Pyι (Rmax�ι )

Pyι (Rmin�ι )
. Recall that if ι = (e, j),

min�ι = ξe
se(j) and max�ι = ξe

se(j+1)−1. From Lemma 2.6 we get

P[τmax�ι < ∞|Fmin�ι ] ≤ CPι, ι ∈ I. (3.7)

Let Pe = Pye (re)

Pye (Re)
, e ∈ E . From (1.5) we get

Me∏
j=0

P(e,j) ≤ 4αMePe, e ∈ E . (3.8)

We have |I | = ∑
e∈E (Me + 1). Considering the order that γ visits �ι, ι ∈ I , we get a bijection map σ̂ : N|I | → I

such that n1 < n2 implies that maxσ−1(�σ̂(n1)) < minσ−1(�σ̂(n2)), and n1 = n2 −1 implies that maxσ−1(�σ̂(n1)) =
minσ−1(�σ̂(n2)) − 1. We may now express Eσ as

Eσ = {τmin�σ̂(1)
< τmax�σ̂(1)

< τmin�σ̂(2)
< τmax�σ̂(2)

< · · · < τmin�σ̂(|I |) < τmax�σ̂(|I |) < ∞}.
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Fix e0 ∈ E . Let nj = σ̂−1((e0, j)), 0 ≤ j ≤ Me0 . Then nj+1 ≥ nj + 2, 0 ≤ j ≤ Me0 − 1. Fix 0 ≤ j ≤ Me0 − 1. Let
m = nj+1 − nj − 1. Applying Theorem 3.1 to ξ̂0 = min�e0 , ξ0 = max�(e0,j) = max�σ̂(nj ), ξ ′

0 = min�(e0,j+1) =
min�σ̂(nj+1), ξ̂k = min�σ̂(nj +k) and ξk = max�σ̂(nj +k), 1 ≤ k ≤ m, we get

P
[
Eσ[max�σ̂(nj ),min�σ̂(nj+1)]|Fτmax�σ̂(nj )

] ≤ Cm4−α/4(se0 (j+1)−1)

nj+1−1∏
n=nj +1

Pσ̂(n),

where Eσ[max�σ̂(nj ),min�σ̂(nj+1)] is the Fτmin�σ̂(nj+1)
-measurable event

{τmax�σ̂(nj )
< τmin�σ̂(nj +1)

< τmax�σ̂(nj +1)
< · · · < τmax�σ̂(nj +m)

< τmin�σ̂(nj+1)
< ∞}.

Letting j vary between 0 and Me0 − 1 and using (3.7) and we get

P
[
Eσ

] ≤ C|I |4−α/4
∑Me0

j=1 (se0 (j)−1)
∏
ι∈I

Pι.

Using (3.8) and |I | = ∑
e(Me + 1), we find that the right-hand side is bounded by

C|E |C
∑

e∈E Me4−α/4
∑Me0

j=1 se0 (j)
∏
e∈E

Pe.

Taking a geometric average over e0 ∈ E , we get

P
[
Eσ

] ≤ C|E |C
∑

e∈E Me4−α/(4|E |)∑
e∈E

∑Me
j=1 se(j)

∏
e∈E

Pe. (3.9)

So far we have omitted the σ on I , Me , se(j) and etc.; we will put σ on the superscript if we want to emphasize
the dependence on σ . From (3.6) and the above result, it follows that

P[E] ≤ C|E | ∑
(Me;(se(j))

Me
j=0)e∈E

|S(Me,(se(j)))|C
∑

e∈E Me4−α/(4|E |)∑
e∈E

∑Me
j=1 se(j)

∏
e∈E

Pe, (3.10)

where

S(Me,(se(j))) := {
σ ∈ S : Mσ

e = Me, s
σ
e (j) = se(j),0 ≤ j ≤ Me, e ∈M

}
,

and the first summation in (3.10) is over all possible (Me; (se(j))
Me

j=0)e∈E , namely, Me ≥ 0 and 0 = se(0) < se(1) <

· · · < se(Me) ≤ Ne for every e ∈ E . It now suffices to show that

∑
(Me;(se(j))

Me
j=1)e∈E

|S(Me,(se(j)))|C
∑

e∈E Me4−α/(4|E |)∑
e∈E

∑Me
j=1 se(j) ≤ C|E |, (3.11)

for some C|E | < ∞ depending only on |E | and κ .
We now bound the size of S(Me,(se(j))). Note that Mσ

e and sσ
e (j), 0 ≤ j ≤ Mσ

e , e ∈ E , determine the partition �ι,
ι ∈ Iσ , of �. When the partition is given, σ is then determined by σ̂ : N|Iσ | → Iσ , which is in turn determined by
eσ̂ (n), 1 ≤ n ≤ |Iσ | = ∑

e∈E (Mσ
e + 1), because if eσ̂ (n) = e0, then σ̂ (n) = (e0, j0), where j0 = min{0 ≤ j ≤ Me0 :

(e0, j) /∈ σ̂ (m),m < n}. Since each eσ̂ (n) has at most |E | possibilities, we have |S(Me,(se(j)))| ≤ |E |
∑

e∈E (Me+1). Thus,
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the left-hand side of (3.11) is bounded by

|E ||E | ∑
(Me;(se(j))

Me
j=0)e∈E

∏
e∈E

(
C|E |)Me4−α/(4|E |)∑Me

j=1 se(j)

= |E ||E | ∏
e∈E

Ne∑
Me=0

(
C|E |)Me

∑
0=se(0)<···<se(Me)≤Ne

4−α/(4|E |)∑Me
j=1 se(j)

≤ |E ||E | ∏
e∈E

∞∑
M=0

(
C|E |)M

∞∑
s(1)=1

· · ·
∞∑

s(M)=M

4−α/(4|E |)∑M
j=1 s(j)

≤ |E ||E | ∏
e∈E

∞∑
M=0

(
C|E |)M

M∏
j=1

∞∑
s(j)=j

4−(α/(4|E |))s(j) =
[
|E |

∞∑
M=0

(
C|E |

1 − 4−α/(4|E |)

)M

4−(α/(8|E |))M(M+1)

]|E |
.

The conclusion now follows since the summation inside the square bracket equals to a finite number depending only
on κ and |E |. �

4. Proofs of the main theorems

First, we are going to use Theorem 3.2 to prove Theorem 1.1. What we need to do in the proof is to use the radii
rj ’s and the distances lj ’s to construct a group of circles � and a partition �e, e ∈ E , that satisfy the conditions in
Section 3, and prove that the upper bound given by Theorem 3.2 is comparable to the upper bound in Theorem 1.1.

Proof of Theorem 1.1. We assume that any rj is of the form
lj

4hj
for some integer hj . If not, it is between two of

them and by changing Cn in the theorem and using (1.5) we can get the result easily. Also we can assume hj ≥ 1 for

every j because otherwise the corresponding term on right-hand side i.e.
Pyj

(rj ∧lj )

Pyj
(lj )

is 1 so we can just ignore it. We

want to deduce this theorem from Theorem 3.2, so we want to construct a family �. Consider

ξ s
j =

{
|z − zj | = lj

4s

}
, 1 ≤ j ≤ n,1 ≤ s ≤ hj .

The family {ξ s
j : 1 ≤ j ≤ n,1 ≤ s ≤ hj } may not be mutually disjoint. To solve this issue, we will remove some circles

as follows. For 1 ≤ j < k ≤ n, let Dk = {|z − zk| ≤ lk/4}, which contains every ξ r
k , 1 ≤ r ≤ hk , and

Ij,k = {
ξ s
j : 1 ≤ s ≤ hj , ξ

s
j ∩ Dk �=∅

}
. (4.1)

Then � := {ξ s
j : 1 ≤ j ≤ n,1 ≤ s ≤ hj } \ ⋃

1≤j<k≤n Ij,k is mutually disjoint. If dist(γ, zj ) ≤ rj , then γ intersects
every ξ s

j , 1 ≤ s ≤ hj . So we get

P
[
dist(γ, zj ) ≤ rj ,1 ≤ j ≤ n

] ≤ P

[
n⋂

j=1

hj⋂
s=1

{
γ ∩ ξ s

j �=∅
}] ≤ P

[⋂
ξ∈�

{γ ∩ ξ �=∅}
]
. (4.2)

Next, we construct a partition {�e : e ∈ E} of �. First, � has a natural partition �j , 1 ≤ j ≤ n, such that �j is
composed of circles centered at zj . For each j , we construct a graph Gj , whose vertex set is �j , and ξ1 �= ξ2 ∈ �j

are connected by an edge iff the bigger radius is 4 times the smaller one, and the open annulus between them does
not contain any other circle in �. Let Ej denote the set of connected components of Gj . Then we partition �j into
�e, e ∈ Ej , such that every �e is the vertex set of e ∈ Ej . Then the circles in every �e are concentric circles with
radii forming a geometric sequence with common ratio 1/4, and the closed annuli Ae associated with �e, e ∈ Ej ,
are mutually disjoint. From the construction we also see that for any j < k, and e ∈ Ej , Ae does not intersect Dk ,
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which contains every Ae with e ∈ Ek . Let E = ⋃n
j=1 Ej . Then Ae , e ∈ E , are mutually disjoint. Thus, {�e : e ∈ E} is a

partition of � that satisfies the properties before Theorem 3.2. So we get

P
[⋂

ξ∈�

{γ ∩ ξ �=∅}
]

≤ C|E |
∏
e∈E

Pye(re)

Pye (Re)
= C|E |

n∏
j=1

∏
e∈Ej

Pyj
(re)

Pyj
(Re)

. (4.3)

Here we set
∏

e∈Ej
= 1 if Ej = ∅. We will finish the proof by comparing |E | with n and the product

∏
e∈Ej

Pyj
(re)

Pyj
(Re)

with
Pyj

(rj )

Pyj
(Rj )

.

Here is a useful fact: every Ij,k defined in (4.1) contains at most one element. The reason is

maxz∈Dk
{|z − zj |}

minz∈Dk
{|z − zj |} = |zj − zk| + lk/4

|zj − zk| − lk/4
≤ lk + lk/4

lk − lk/4
< 4.

The above formula also implies that, for j < k,
⋃

ξ∈�k
ξ ⊂ Dk intersects at most 2 annuli from {lj /4r ≤ |z − zj | ≤

lj /4r−1}, 2 ≤ r ≤ hj . If j > k, by construction,
⋃

ξ∈�k
ξ is disjoint from the annuli {lj /4r ≤ |z − zj | ≤ lj /4r−1},

2 ≤ r ≤ hj , which are contained in Dj .
We now bound |Ej |. We may obtain G by removing vertices and edges from a path graph Ĝj , whose vertex set is

{ξ s
j : 1 ≤ s ≤ hj }, and two vertices are connected by an edge iff the bigger radius is 4 times the smaller one. Every

edge e of Ĝj determines an annulus, denoted by Ae. The vertices removed are the elements in Ij,k , k > j ; and the
edges removed are those e such that Ae intersects some ξ ∈ �k with k �= j , which may happen only if k > j . Thus, the
total number of vertices or edges removed is not bigger than

∑
k>j (1 + 2) = 3(n− j). So we get |Ej | ≤ 1 + 3(n− j).

Thus, |E | ≤ n + 3n(n−1)
2 . This means that C|E | may be written as Cn.

Finally we compare
∏

e∈Ej

Pyj
(re)

Pyj
(Re)

with
Pyj

(rj )

Pyj
(Rj )

. If A is an annulus {r ≤ |z − z0| ≤ R} for some z0 ∈ H with

y0 ∈ Im z0 ≥ 0 and R ≥ r > 0, we define PA = Py0 (r)

Py0 (R)
. Let Aj,s = {lj /4s ≤ |z − zj | ≤ lj /4s−1}, 1 ≤ s ≤ hj , and

Sj = {s ∈ Nhj
: Aj,s ⊂ ⋃

e∈�j
Ae}. Then

Pyj
(rj )

Pyj
(lj )

=
hj∏

s=1

PAj,s
,

∏
e∈Ej

Pyj
(re)

Pyj
(Re)

=
∏
s∈Sj

PAj,s
.

Using (1.5), we get∏
e∈Ej

Pyj
(re)

Pyj
(Re)

≤ 4α|Nhj
\Sj | Pyj

(rj )

Pyj
(lj )

.

Now s ∈Nhj
\Sj only if s = 1 or there is some k > j with Dk ∩Aj,s �=∅. Since for k > j , Dk intersects at most two

Aj,s , we find that |Nhj
\ Sj | ≤ 1 + 2(n − j). Thus,

n∏
j=1

∏
e∈Ej

Pyj
(re)

Pyj
(Re)

≤ 4αn2
n∏

j=1

Pyj
(re)

Pyj
(Re)

.

Combining the above formula with (4.2) and (4.3), we complete the proof. �

Proof of Theorem 1.2. As we mentioned before we can define natural length of SLE in a domain by Minkowski
content. See equation (1.1). Similarly if D is a bounded subset of the upper half plane we can define Contd(γ ∩ D) as
the natural length of SLE in the domain D in the obvious way.

The main theorem of [6] becomes

lim
r→0

Contd(γ ∩ D; r) = Contd(γ ∩ D),
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with probability 1. Now we compute

E
[
Contd(γ ∩ D; r)n] = E

[
rn(d−2)

(
Area

(
z ∈ D|dist(z, γ ) < r

)n)]
= rn(d−2)E

[(∫
D

1dist(z,γ )<r dA(z)

)n]
=

∫
Dn

rn(d−2)P
(
dist(z1, γ ) < r, . . . ,dist(zn, γ ) < r

)
dA(z1) · · · dA(zn).

For the above equality, we changed expectation and integral which is allowed because the integrand is always positive.
We will find an upper bound for

sup
{
rn(d−2)P

(
dist(z1, γ ) < r, . . . ,dist(zn, γ ) < r

)}
,

which is integrable over Dn. By Theorem 1.1 we know that this is bounded above by

rn(d−2)Cn

n∏
k=1

Pyk
(r ∧ lk)

Pyk
(lk)

.

Now assume that r is smaller than li1, . . . , lik and bigger than the rest. Then by equation (1.5) and the definition of Py

we get that the above quantity is bounded by

Cnr
n(d−2)

k∏
j=1

r2−d

l2−d
ij

≤ Cn

n∏
s=1

ld−2
s .

We have the last inequality because if r > l then rd−2 < ld−2. So now we should show

f (z1, . . . , zn) =
n∏

k=1

ld−2
k =

n∏
k=1

min
{|zk − z0|, |zk − z1|, . . . , |zk − zk−1|

}d−2

is integrable over Dn. This is true because for every 1 ≤ k ≤ n,∫
D

min
{|zk − z0|, |zk − z1|, . . . , |zk − zk−1|

}d−2
dA(zk)

≤
k−1∑
j=0

∫
D

|zk − zj |d−2 dA(zk)

≤ k

∫
|z|≤diam(D∪{0})

|z|d−2 dA(z) = 2πk

∫ diam(D∪{0})

0
rd−1 dr < ∞,

as d > 0. Finally, we may apply Fatou’s lemma to conclude that

E
[
Contd(γ ∩ D)n

] ≤
∫

D

· · ·
∫

D

n∏
k=1

lk(z1, . . . , zn) dA(z1) · · · dA(zn) < ∞.
�
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