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Abstract. Massive and massless Gaussian free fields can be described as generalized Gaussian processes indexed by an appropriate
space of functions. In this article we study various approaches to approximate these fields and look at the fractal properties of the
thick points of their cut-offs. Under some sufficient conditions for a centered Gaussian process with logarithmic variance we study
the set of thick points and derive their Hausdorff dimension. We prove that various cut-offs for Gaussian free fields satisfy these
assumptions. We also give sufficient conditions for comparing thick points of different cut-offs.

Résumé. Les champs libres gaussiens massifs et sans masse peuvent être décrits comme des processus gaussiens généralisées
indexés par un espace fonctionnel approprié. Dans cet article nous abordons différentes approches pour approximer ces champs et
nous considérons les propriétés fractales des points épais de leur cut-off. Sous certaines conditions suffisantes, pour un processus
gaussien avec variance logarithmique nous étudions l’ensemble des points épais et obtenons leur dimension de Hausdorff. Nous
prouvons que différents cut-off des champs libres gaussiens satisfont ces hypothèses. Nous donnons aussi des conditions suffisantes
pour comparer les points épais des différents cut-off.
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1. Introduction

Let D ⊆Rd with d ≥ 1 (possibly D =Rd ). A generalized Gaussian field (GGF) X is a collection of centered Gaussian
random variables indexed by a certain class of functions H , that is, the field can be written as {(X,f ) : f ∈ H }. H is
in the present paper a Hilbert space of functions on D, and more specifically a Sobolev space. Notable examples of
such GGFs are the massive and massless Gaussian free fields (GFF), for which correlations blow up logarithmically
in the distance between two points in dimension two. The study of GFFs has received considerable attention in the
context of statistical mechanics and physics, as they can be seen as multidimensional generalizations of Brownian
motion (see [21] for their construction and properties).

The two most important places, among many, where such fields have shown prominence is the construction of the
(critical) Liouville Quantum Gravity measure ([6]) and the theory of Gaussian multiplicative chaos ([12,18]). In both
these cases one constructs a random measure on D given by

mγ (dx) = exp

(
γX(x) − γ 2

2
E
[
X(x)2])dx, γ ≥ 0. (1.1)

For log-correlated models (1.1) is known as Gaussian Multiplicative chaos (GMC) measure after [12]. In particular,
when X is a planar massless or massive free field it is related to the (non critical) Liouville Quantum Gravity measure,
which is the exponential of the Liouville field under the Liouville action (see [17]). Since X is not defined pointwise,
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this measure is merely formal. To avoid this discrepancy, in (1.1) X is replaced by a space–time centered Gaussian
process {Xε(x) : x ∈ D,ε > 0}, which converges to X in law, and for which (1.1) makes sense. Note that Xε retains
log-correlations in the sense that Var(Xε(x)) behaves like log(1/ε) as ε goes to 0, but Xε is a “proper” Gaussian
process in x. This approach is used extensively in the literature (see [5] for example) and is connected to the seminal
work of [12]. We describe more explicitly some of these approximations in Section 2.2.

It is natural to ask whether different approximations almost surely give the same GMC. The question was already
studied in [12,16] where, for certain cut-offs, equality in law was proved. In the case of planar (massless) GFF, it was
shown by [6] that measures arising from the circle average process and by the orthonormal basis expansion of H 1

0 (D)

are almost surely the same. For some recent development in the area we refer to [20].
In this article we continue the study of almost-sure universality of cut-offs with respect to thick points (the term

was used in [11], and also referred to as multi-fractal behavior in [12]). This is the set of points which encapsulates
the extremal behavior of the field. For a cut-off Xε(x) the thick points are defined as

T (a) =
{
x ∈ D : lim

ε→0

Xε(x)

Var(Xε(x))
= a

}
, a ≥ 0. (1.2)

Their importance comes from the fact that they have full mass for the Gaussian multiplicative chaos measure, and
give also information on the behavior of the so-called Liouville Brownian motion for the Liouville quantum gravity
measure ([7]). Under a Hölder-type condition we show in Theorem 2.1 that the Hausdorff dimension dimH of T (a)

has an upper bound of d − a2/2 when a <
√

2d . The Hölder-type condition seems to be a minimal requirement as
these fields are not smooth and hence exhibit a fractal behavior.

The Hausdorff dimension has a lower bound of d − a2/2 if a <
√

2d as computed by [12]. Hence in Theorem 2.2
we recall briefly the main steps of his proof and give precise assumptions that complement our upper bound and wrap
up the question of the Hausdorff dimension of thick points for GGF with log-correlations.

In view of the above results, one might ask whether there is a possibility of comparing the extremal behavior for
different processes. We give a partial answer to this query by imposing a sufficient condition (see Theorem 2.3) on the
difference of two cut-offs which yields the almost sure equality of thick points.

The outline of the article is as follows. In Section 2 we review the definitions of massive and massless GFF and
in Section 2.2 some cut-offs procedures. Then we state the main results with brief descriptions in Section 2.3. In
Section 3 we first show that the examples considered in Section 2.2 satisfy the assumptions of these results. Finally,
in Section 4 we provide the proofs of our results.

2. Construction of free fields and approximations

2.1. Two examples of fields

2.1.1. Massive free fields on Rd

Let Rd , d ≥ 1. Let S(Rd) be the Schwartz space consisting of smooth functions whose derivatives decay faster than
any polynomial. Let S ′(Rd) be the space of tempered distribution which are also the continuous linear functionals on
S(Rd). Also, S(Rd) form a dense subset of S ′(Rd) with respect to the weak*-topology. With C∞

0 (D) we denote the
set of smooth and compactly supported functions on D. To avoid somehow lengthy notation, we set L2 = L2(Rd ,dx)

dropping the reference measure. For ξ ∈ Rd , let 〈ξ〉m = (m2 + ‖ξ‖2)1/2 and we denote 〈ξ〉 = 〈ξ 〉1. We will denote
in some instances the scalar product in a Hilbert space H by angle brackets with a subindex as 〈·, ·〉H . For s ∈ R we
denote Bs

m :S(Rd) �→ S(Rd) the operator defined by

Bs
mφ(x) =

∫
Rd

e−i〈ξ,x〉
Rd 〈ξ〉smφ̂(ξ)dξ. (2.1)

This corresponds to the definition of the (formal) Bessel operator Bs
mφ := (m2I − �)−s/2φ. Let us denote Gd(x) =

K0(m‖x‖), where K0(·) is the modified Bessel function; it is well known (see [22]) that Ĝd(ξ) = 〈ξ 〉−d
m and hence
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one can write

B−d
m φ(x) =

∫
Rd

Gd(x − y)φ(y)dy.

We want to look at generalized massive free fields indexed by f ∈ S(Rd) such that

E
[
(X,f )(X,g)

] = 〈
f,B−dg

〉
L2 .

It can be shown that the functional

L(φ) = exp

(
−1

2

〈
φ,B−d

m φ
〉
L2

)
,

is a positive definite, continuous functional and hence it induces a measure on S ′(Rd) whose characteristic functional
is given by L(φ). This gives a generalized Gaussian field {(X,φ),φ ∈ S(Rd)} whose covariance can be represented
by

E
[
(X,φ)(X,ψ)

] =
∫

φ̂(ξ)ψ̂(ξ)〈ξ〉−d
m dξ (2.2)

(see [9,23]). The tempered measure μ(dx) = 〈ξ 〉−d
m dξ can be realized as the spectral measure of the covariance of this

Gaussian process. We remark here that the Hilbert space associated to the GGF X is in this case the fractional Sobolev
space Hd/2(Rd), that we recall being defined by

Hs
(
Rd

) := {
φ ∈ S

(
Rd

) : Bsφ ∈ L2(Rd
)}

, s ∈ R.

For details on the construction of such generalized Gaussian fields, we refer the interested readers to [8]. See also for
a white noise representation for the massive free fields in Section 2.2.1.

2.1.2. Massless planar Gaussian free field
Let C∞

0 (D) be space of smooth functions vanishing outside D, a bounded domain of R2. Let H 1
0 (D) be the Hilbert

space which is the closure of C∞
0 (D) under the norm

‖f ‖2
H 1 =

∫
D

∥∥∇f (x)
∥∥2 dx.

The dual of H 1
0 (D) is given by H−1(D) equipped with the norm

‖f ‖H−1 = sup
g∈C∞

0 (D),‖g‖
H1 ≤1

〈f,g〉,

where 〈·, ·〉 denotes the duality pairing. Note that for f,g ∈ C∞
0 (D), we have by Green’s identity that 〈f,g〉H 1 =

〈f,�g〉L2 and it follows that 〈f,g〉H−1 = 〈f,�−1g〉L2 , where for g ∈ C∞
0 (D) one denotes

�−1g(x) =
∫

D

GD(x, y)g(y)dy.

Here GD(x, y) is the Green’s function for the Dirichlet problem on a planar domain and it is well known that

GD(x, y) = π

∫ ∞

0
pD(t, x, y)dt. (2.3)

pD is the transition kernel of standard Brownian motion killed at exiting D.
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A (massless) Gaussian free field can described as a centered Gaussian process indexed by H−1(D), that is, a
collection {(	,f ) : f ∈ H−1(D)} such that

Cov
(
(	,f )(	,g)

) = 〈f,g〉H−1 .

If we restrict ourselves to C∞
0 (D) it can be shown that

Cov
(
(	,f )(	,g)

) =
∫

D

∫
D

f (x)g(y)GD(x, y)dx dy.

If D = [0,1]2 the Gaussian Free Field has a formal representation as

	 =
∑

j,k∈N
Xj,kej,k, (2.4)

where ej,k are eigenfunctions given explicitly by ej,k(x, y) = 2(sin(πjx) sin(πky))(j2 + k2)−1/2, which also form
an orthonormal basis of H 1

0 (D). Thus 	 converges almost surely in H−1(D) as remarked above. We refer the readers
for a more detailed construction to [4] and [21].

2.2. The construction of cut-offs

There are several ways in which one can approach the question of approximating a field with infinite variance by
cut-offs. We will list here only a few of those examples.

2.2.1. White-noise cut-offs for massive free fields
Let W be a Gaussian complex white noise with control measure μ(dξ) = 〈ξ 〉−d

m dξ . Formally, the field X is given by
the characteristic function of the white noise. That is, if ζ(λ, ξ) = e−i〈λ,ξ〉

Rd , one can represent it as

X(λ) =
∫
Rd

ζ(λ, ξ)W(dξ),

which means that (X,φ) for φ ∈ S(Rd) has the stochastic integral representation

(X,φ) =
∫
Rd

φ̂(ξ)W(dξ).

It is well-known ([14, Chapter 1]) that for any f ∈ L2
C
(Rd) the integral above is well-posed. Under the control measure

μ, the isometry property of the stochastic integral gives us the covariance of the field as (2.2). Note that since W is
a complex white noise with control measure μ, the field can also be represented by using a standard complex white
noise W̃ (with control measure dξ ) in such a way that

X(λ) =
∫
Rd

ζ(λ, ξ)〈ξ〉−d/2
m W̃(dξ).

The above white noise representation helps to create the first example of white-noise cut-off. Pick now an arbitrary
ε > 0. We denote the white noise cut-off as

Xε(x) := 1

ωd

∫
B(0,1/ε)

ζ(x, ξ)W(dξ). (2.5)

Here ωd = 2πd/2/
(d/2) is the volume of the d-dimensional unit ball Sd . Such cut-offs are also known as ultra-violet
(UV) cut-offs (see [16]). We call this a cut-off for the field since if we denote by

Kε(x, y) = E
[
Xε(x)Xε(y)

] =
∫

B(0,1/ε)

ζ(x − y, ξ)〈ξ〉−d
m dξ (2.6)
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then for f,g compactly supported smooth functions one has

lim
ε→0

∫
Rd

∫
Rd

f (x)g(y)Kε(x, y)dx dy =
∫

f̂ (ξ)ĝ(ξ)〈ξ〉−d
m dξ,

and the right hand is the same as (2.2). One can also introduce many other cut-offs. One example is by taking a
mollifier θ(·) that satisfies

1. θ is positive definite and symmetric,
2.

∫
Rd θ(x)dx = 1,

3. |θ(x)| ≤ 1
1+|x|d+γ for some γ > 0

(an example is the Gaussian density). One can define θε(·) := ε−dθ(ε−1(·)), so that the process Xε(x) :=
(X, θε(x − ·)) satisfies

Xε(x) =
∫
Rd

ζ(x − y, ξ)θ̂(εξ)W(dξ) (2.7)

where W is again a complex white noise with control measure μ(dξ) = 〈ξ 〉−d
m dξ . When θ is the normalised indicator

function of the sphere S2 this cut-off is called sphere average ([6,11]).

2.2.2. Integral cut-offs
This cut-off has been extensively used by [16] as it follows under the scope of the work of [12]. Consider the massive
GFF on Rd . For that one observes that Kε(x, y) → K0(m‖x − y‖) as ε → 0 and x �= y (on the diagonal the modified
Bessel function is infinite). For x �= y one may write

K0
(
m‖x − y‖) =

∫ ∞

1
km

(
u‖x − y‖)du

u

where

km(z) = 1

2

∫ ∞

0
e−m2|z|2/(2v)e−v/2 dv.

Now one denotes the integral cut-off of the covariance for x, y ∈ Rd as

Hε(x, y) =
∫ 1/ε

1
km

(
u‖x − y‖)du

u
(2.8)

and associates to it a centered Gaussian process (we show in the appendix that Kε gives rise to a positive definite
functional). Note that even when x = y this is well defined and it follows that Hε(x, x) ∼ − log ε as ε → 0. For the
planar GFF one can define the integral cut-offs as follows. One considers for ε > 0

Gε,D(x, y) = π

∫ +∞

ε2
pD(s, x, y)ds. (2.9)

It is well-known that Gε,D is a positive definite kernel (for a proof see [16, Section 5.2]) and hence one can consider a
Gaussian process Xε(x) such that E[Xε(x)Xε(y)] = Gε,D(x, y). Note that, as before, it follows that for f,g ∈ C∞

0 (D)

one has that

lim
ε→0

∫
D

∫
D

f (x)g(y)Gε,D(x, y)dx dy = 〈
f,�−1g

〉
L2 .

We observe that Hε(x, y) in (2.8) and Kε(x, y) in (2.6) are different pointwise and indeed it can be shown that
there are x, y ∈Rd , such that Kε(x, y) takes negative values whilst Hε(x, y) is always positive.
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2.2.3. Transition semigroup cut-offs
These approximations rely on the particular transition semigroup of the massless Gaussian field, which is given in
terms of the transition kernel of Brownian motion and follow somehow a mixed approach between the integral cut-off
(compare for example (2.9) and (2.8)) and the white-noise integration. Let us start with the planar case to illustrate
the technique. Let W be a standard space–time Gaussian white noise on D × (0,∞) with the Lebesgue measure as
control measure; define the stochastic integral corresponding to the Gaussian free field as

X(x) = √
π

∫
D×(0,∞)

pD(s/2, x, y)W(dy,ds).

Now one represents the approximating field as

Xε(x) := √
π

∫
D×(ε2,∞)

pD(s/2, x, y)W(dy,ds).

It follows again that E[Xε(x)Xε(y)] = π
∫ ∞
ε2 pD(s, x, y)ds (see [16]).

The very same decomposition works for the massive GFF too. Let p(t, x, y) be the transition kernel for standard
Brownian motion. Knowing that

B−d
1 u(x) =

√
2π


(d/2)

∫ +∞

0

∫
Rd

et td/2−1p(t, x, y)u(y)dt dy

we can set

Xε(x) :=
√

2π√

(d/2)

∫
Rd×[ε,+∞)

et/2t (1/2)(d/2−1)p(t/2, x, y)W(dt,dy).

This decomposition extends in general to any operator whose action can be represented through the Brownian motion
semigroup (as for example [10]). Being very similar to integral cut-offs such as (2.9), in the paper we do not treat
these approximations as separate cases but refer to integral cut-offs for more general properties.

2.3. Main results

In this section we discuss the main results stated in the previous section. We give some general sufficient conditions
under which the lower bound and upper bound on the fractal dimension can be proved. We also give sufficient condi-
tions for comparing thick points of two different cut-offs. Later in the article we show that these sufficient conditions
are satisfied by almost all of the cut-offs described above.

Notation: we write a ∧ b := min{a, b} and f (t) ∼t→0 g(t) means that f (t)/g(t) → 1 as t → 0.

Theorem 2.1. If (Xε(x))ε≥0,x∈Rd , d ≥ 1, is a centered Gaussian process satisfying

(A) for all R > 0 and for all x, y ∈ B(0,R) and ε, η ≥ 0 we have

E
[(

Xε(x) − Xη(y)
)2] ≤ ‖x − y‖ + |η − ε|

η ∧ ε
,

(B) the variance of the process satisfies

G(ε) := E
[
Xε(x)2] ∼ε→0 − log ε.

Then letting

T≥(a,R) =
{
x ∈ B(0,R) : lim

ε→0

Xε(x)

G(ε)
≥ a

}

we have for a ≤ √
2d that dimH (T≥(a,R)) ≤ d −a2/2 almost surely, and for a >

√
2d that T≥(a,R) is empty almost

surely.
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Theorem 2.1 is stated for balls of radius R, but it can be used to derive the upper bound by first covering the space
with a countable number of balls and then using the countable stability property of the Hausdorff dimension, which
reads as

dimH

(⋃
n∈N

Bn

)
= sup

n∈N
dimH (Bn) (2.10)

for an arbitrary collection of sets (Bn)n∈N. In the following Corollary we treat as a separate case the Massless GFF,
both for its importance and for the slightly different proof.

Corollary 2.1. Let D be a bounded, convex regular domain. For δ > 0, denote D(δ) := {x ∈ D : d(x, ∂D) > δ)}. If
Xε(x) is a planar (massless) Gaussian free field integral cut-off, satisfying assumptions (A) and (B) on D(δ) for any
δ > 0. Then the conclusion of Theorem 2.1 holds with d = 2.

In Section 3 we will see that most of the cut-offs discussed in Section 2.2 satisfy the assumptions of Theorem 2.1
and Corollary 2.1. A brief sketch of the proof is as follows. The condition (A) allows us to have a modification which
has nice bounds on the spatial and time variable almost surely. We use a strong version of Kolmogorov–Centsov
theorem from [11] to derive this. Using these path properties it is possible to get an explicit cover of the space and
also get good bounds for the diameters of the sets used to form the cover. The upper bound then follows easily from
the definition of Hausdorff dimension.

Now we give some sufficient conditions on the cut-off for which we have a matching lower bound. We state the
results for discrete time for ease of exposition, noting that it can be extended to continuous time if the processes have
a continuous modification.

Theorem 2.2. Let {Xn(x), x ∈ D,n ≥ 1} be a continuous centered Gaussian process with covariance kernel qn(x, y)

which satisfies the following properties:

(C) There exists a uniformly bounded function HU :D × D → R such that for all n ≥ 1 and x �= y,

qn(x, y) ≤ log
1

‖x − y‖ + HU(x, y), (2.11)

and there exist a constant C′ such that, for all N ≥ 1, there exist k0 ≥ 1 such that whenever ‖x − y‖ ≤ e−N , one
has

qk(x, y) − qN(x, y) ≤ log
1

‖x − y‖ − N + C′ for all k ≥ k0. (2.12)

(D) There exists a sequence of positive definite covariance kernels {pk(x, y)}k≥1 such that qn(x, y) = ∑n
k=1 pk(x, y)

and pk(x, x) ≤ ck for all x, y ∈ D, n, k ≥ 1 and
∑

k≥1 ck/k2 < +∞ and qn(x, x) ∼n→+∞ n.

Consider the set of thick points

T (a) =
{
x ∈ D : lim

n→+∞
Xn(x)

n
= a

}
.

Then dimH (T (a)) ≥ d − a2/2 almost surely.

Remark 2.1. Although the conditions look technical it is easy to see that the above assumptions (C) and (D) get
satisfied when the following two conditions are assumed.

(C1) There exist uniformly bounded functions HU and HL such that for x �= y

log
1

‖x − y‖ − HL(x, y) ≤ qn(x, y) ≤ log
1

‖x − y‖ + HU(x, y). (2.13)
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(D1) There exists a sequence of positive definite covariance kernels {pk(x, y)}k≥1 such that qn(x, y) = ∑n
k=1 pk(x, y)

and pk(x, x) = 1 for all x, y ∈ D, n, k ≥ 1.

The proof is essentially given in [12]. The condition (D) allows one to construct a positive martingale using mea-
sures of the form (1.1) which converge for every bounded set A. It is then standard to construct a limiting a measure
out of it. We briefly sketch the idea of Kahane to show how one can easily adapt it to the above general conditions.

Naturally one could ask oneself whether one can compare covariances of two cut-offs to deduce the behavior of
thick points. Our next result is in that direction.

Theorem 2.3. Let Xε(x) and X̃ε(x) be two cut-off families for the same field on D. Let T (X,a) and T (X̃, a) be the
set of a-thick points for Xε(x) and X̃ε(x) respectively. Call Zε(x) := Xε(x) − X̃ε(x). Suppose Zε(x) satisfies the
following assumption:

(E) There exists universal constants C > 0, C′ > 0 independent of ε and x such that

E
[
Zε(x)2] ≤ C (2.14)

and

E
[(

Zε(x) − Zε(y)
)2] ≤ C′ ‖x − y‖

ε
. (2.15)

Then for all a > 0 we have T (X,a) = T (X̃, a) almost surely.

Again we will give an example in Section 3 where condition (E) is satisfied.
To prove Theorem 2.3 we show first that using Sudakov–Fernique’s inequality one can compare the maxima of

the Gaussian process Zε(x) with a multivariate version of the Ornstein–Uhlenbeck process for which the order of
expected maxima can be easily derived. To pass to the almost sure version one uses bounded variances and Borell’s
inequality. This allows one to compare the set of thick points and derive the final result.

3. Examples

In this Section we explicitly show cut-offs that satisfy the assumptions of our theorems. We will concentrate on
massive and massless GFFs but the results in general can be applied to centered Gaussian process with appropriate
covariance structure too.

3.1. White noise cut-off for massive GFF (2.5)

We will show (A)–(C)–(D) ((B) is a standard computation). The latter two conditions are outlined in the lecture notes
by [17] and hence we briefly sketch their proof.

(A) Let us without loss of generality assume ε1 < ε2 then it follows that

E
[(

Xε1(x) − Xε2(y)
)2] =

∫
Rd

(ζ(x, ξ)1B(0,1/ε1) − ζ(y, ξ)1B(0,1/ε2))
2

(‖ξ‖2 + m2)d/2
dξ

=
∫

B(0,1/ε2)

(
ζ(x, ξ) − ζ(y, ξ)

)2 1

(‖ξ‖2 + m2)d/2
dξ

+
∫

1/ε2<‖ξ‖≤1/ε1

ζ(x, ξ)2

(‖ξ‖2 + m2)d/2
dξ

≤ C
‖x − y‖

ε2
+ |ε2 − ε1|

ε1
≤ C

‖x − y‖ + |ε2 − ε1|
ε1 ∧ ε2

where we have used the inequality | log( x
y
)| ≤ |x − y|/x ∧ y.
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(C) The required Gaussian process in this case is taken to be Xe−n(x), so that pk(x, x) = E[Xe−k (x)Xe−k (y)]. Recall
that G(ε) = ω−1

d

∫ 1/ε

0 td−1(m2 + t2)d/2 dt and hence it follows that qn(x, x) = G(e−n) ∼n→+∞ n. Set ck := ek .
Denoting by φ(u) = (1 + ud)(m2 + u2)−d/2 one has

qN(x, y) = 1

ωd

∫ cN

0

(∫
Sd

ei〈x−y,r�s〉φ(r�s)d�s
)

rd−1

1 + rd
dr

= 1

ωd

∫ cN∧‖x−y‖−1

0

(∫
Sd

ei〈x−y,r�s〉φ(r�s)d�s − 1

)
rd−1

1 + rd
dr +

∫ cN

cN∧‖x−y‖−1

rd−1

1 + rd
dr

+ 1

ωd

∫ cN

cN∧‖x−y‖−1

(∫
Sd

ei〈x−y,r�s〉φ(r�s)d�s
)

rd−1

1 + rd
dr.

Call Hr(x) := 1
ωd

∫
Sd ei〈x,r�s〉φ(r�s)d�s. Now note that one break down Hr(x) as

Hr(x) = 1

ωd

(∫
Sd

ei〈x−y,r�s〉(φ(r�s) − 1
)

d�s +
∫
Sd

cos
(
r‖x‖�s)d�s

)

and now using the following inequalities from [17] the condition follows

∣∣Hr(x) − 1
∣∣ ≤ C

(1 + r)α
+ r|x|,

∣∣∣∣
∫
Sd

cos
(
r‖x‖�s)d�s

∣∣∣∣ ≤ C

(1 + r‖x‖)η , (3.1)

where α > 0 and η ∈ (0, 1
2 ) and C is some generic positive constant.

(D) We write as before

qk(x, y) − qN(x, y) = 1

ωd

∫ ck

cN

(∫
Sd

ei〈x−y,r�s〉φ(r�s)d�s
)

rd−1

1 + rd
dr

= 1

ωd

∫ ‖x−y‖−1

cN

(∫
Sd

ei〈x−y,r�s〉φ(r�s)d�s − 1

)
rd−1

1 + rd
dr +

∫ ‖x−y‖−1

cN

rd−1

1 + rd
dr

+ 1

ωd

∫ ck

‖x−y‖−1

(∫
Sd

ei〈x−y,r�s〉φ(r�s)d�s
)

rd−1

1 + rd
dr.

Before proceeding note that the break-up is possible since ‖x − y‖−1 ≥ eN = cN and we take k large enough so
that ck ≥ ‖x − y‖−1 eventually. The first and third term are bounded uniformly in x and y by (3.1), whereas the
main contribution comes from

∫ ‖x−y‖−1

cN

rd−1

1 + rd
dr ≤ log‖x − y‖−1 − N + C(d).

Note that pk(x, x) ≤ 1 and qn(x, x) ∼ n, and this gives the desired result.

3.2. Integral cut-off for massive GFF (2.8)

We will briefly point out the computation for (A).

(A) We have

E
[(

Xε(x) − Xε(y)
)2] ≤ ∣∣E[

Xε(x)2 − Xε(x)Xε(y)
]∣∣ + ∣∣E[

Xε(y)2 − Xε(x)Xε(y)
]∣∣.
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We look at the first term and the other follows similarly. Using an appropriate change of variables we can write the
first term as sum of two terms in the following way

∣∣E[
Xε(x)2 − Xε(x)Xε(y)

]∣∣ = 1

2

∫ 1/ε

1

∫ ∞

0
e−v/2(1 − e−‖x−y‖2m2u2/(2v)

)
dv

du

u

= 1

2

∫ ‖x−y‖m/ε

0

(
e−‖x−y‖2m2/(2s) − e−‖x−y‖2m2/(2ε2s)

)(
1 − e−s/2)ds

s

+
∫ ∞

‖x−y‖m/ε

(
e−‖x−y‖2m2/(2s) − e−‖x−y‖2m2/(2ε2s)

)(
1 − e−s/2)ds

s
.

Now in the first integral the integrand is bounded in absolute value by Cv/2, hence the whole integral is smaller
than C‖x − y‖m/ε. As for the second integral note that using the inequality 1 − e−x ≤ x it follows that the
integrand is bounded by ‖x − y‖2m2(ε−2 − 1)s−2 and hence again after integrating the integral cannot be larger
than C‖x − y‖m/ε. Here for (C)–(D) one can take

pk(x, y) =
∫ ek

e(k−1)

km

(
u(x − y)

)du

u
, k ∈ N

and it is straightforward to verify the conditions.

3.3. Planar GFF semigroup cut-off (2.9)

The proof for the planar GFF is a bit more involved than for other cut-offs, and requires some preliminary lemmas and
notations. We also would like to remind here that a proof tailored on the 2-d massless GFF for Theorem 2.1 is given
in Corollary 2.1. We first show conditions (A) and (B) and for future references we put it as lemma.

Lemma 3.1. Fix δ > 0, and for a set D assume that D(δ) is a convex bounded domain. There exists a constant
C = C(δ) such that

E
[(

Xε(x) − Xη(y)
)2] ≤ C

‖x − y‖ + |η − ε|
η ∧ ε

(3.2)

holds for all x, y ∈ D(δ) and G(ε) = Var(Xε(x)) ∼ε→0 − log ε.

Proof. We first begin by showing the second statement. Recall that

G(ε) = π

∫ ∞

ε2
pD(t, x, x)dt.

Also note that from [13, Section 2.4] we have the following upper and lower bounds on pD(t, x, x),

1

2πt
− 1

πe(d(x, ∂D))2
≤ pD(t, x, x) ≤ 1

2πt
. (3.3)

Fix t0 > 1, then we ignore the part from (t0,∞) by using [13, Lemma 2.28], since∫ ∞

t0

pD(t, x, x)dt ≤ C(x, δ)

∫ ∞

t0

1

t (log t)2
dt < ∞.

Now using the fact that x ∈ D(δ), it follows from (3.3) that G(ε) ∼ − log ε as ε → 0. At this point we show (3.2). The
case x = y and ε < ε′ is easier using the fact that pD(t, x, y) ≤ p(t, x, y) and the properties of the heat kernel. We
therefore concentrate on showing condition (A) for x �= y by means of the representation from [15]:

pD(t, x, y) = p(t, x, y) − Ex

[
p(t − TD,BTD

, y)1{TD<t}
]
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for Ex the law of a standard Brownian motion B starting at x. Note that

E
[(

Xε(x) − Xε(y)
)2] ≤ π

∣∣∣∣
∫ ∞

ε2

(
pD(t, x, x) − pD(t, x, y)

)
dt

∣∣∣∣
+ π

∣∣∣∣
∫ ∞

ε2

(
pD(t, y, y) − pD(t, x, y)

)
dt

∣∣∣∣.
We shall show that∣∣∣∣

∫ ∞

ε2

(
pD(t, x, x) − pD(t, x, y)

)
dt

∣∣∣∣ ≤ C
‖x − y‖

ε
. (3.4)

The other part follows similarly. So now note that (3.4) is satisfied if one replaces pD with p: indeed, first recall that
using a multivariate version of the mean value theorem one has∣∣p(t, z, x) − p(t, z, y)

∣∣ ≤ ∣∣∇p
(
t, z, (1 − λ)x + λy

)∣∣‖x − y‖
with λ ∈ [0,1]. We use then the notation ξ := (1 − λ)x + λy to denote a point on the segment starting at x and ending
at y. Observe that ξ ∈ D(δ). From [19] we have for any κ ∈ (0,1)

∥∥∇ξp(t, z, ξ)
∥∥ ≤ C(κ)√

tV (z,
√

t)
exp

(
− ‖z − ξ‖2

4(1 − κ)t

)
(3.5)

and V (x, r) is the volume of B(x, r).
So using (3.5) we have∫ ∞

ε2

(
p(t, x, x) − p(t, x, y)

)
dt ≤ C(δ, κ)‖x − y‖

∫ ∞

ε2
exp

(
− ‖x − ξ‖2

4(1 − κ)t

)
dt

t3/2

≤ C(δ, κ)‖x − y‖
∫ ∞

ε2

dt

t3/2
≤ C(δ, κ)

‖x − y‖
ε

. (3.6)

Now we need to show the term containing the expectation has a similar bound. Again using (3.5) we have∫ ∞

ε2
Ex

[(
p(t − TD,BTD

, x) − p(t − TD,BTD
, y)

)
1{t>TD}

]
dt

=
∫ ∞

0
Ex

[(
p(t − TD,BTD

, x) − p(t − TD,BTD
, y)

)
1{t>TD∨ε2}

]
t−τD=:s≤ Ex

[∫ ∞

0

∣∣p(s,B0, x) − p(s,BTD
, y)

∣∣ds

]
(3.5)≤ ‖x − y‖Ex

[∫ ∞

0

∣∣p(s,B0, x) − p(s,BTD
, y)

∣∣ds

]

≤ ‖x − y‖Ex

[∫ ∞

0

(
exp

(
−−‖BTD

− ξ‖2

4(1 − κ)s

)/
s3/2

)
ds

]

≤ ‖x − y‖Ex

[∫ ∞

0

(
exp

(
− −δ2

4(1 − κ)s

)/
s3/2

)
ds

]

= C(δ, κ)‖x − y‖ ≤ C(δ, κ)
‖x − y‖

ε
.

Here we have used the fact that BTD
∈ ∂D and since ξ ∈ D(δ) we have that ‖BTD

− ξ‖ ≥ δ. So the above inequality
combined with (3.6) shows (3.4) and hence completes the proof of the Lemma. �
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(C) One has

qn(x, y) = π

∫ ∞

e−2n

pD(t, x, y)dt, pk(x, y) = π

∫ e−2k

e−2(k+1)

pD(t, x, y)dt.

Using pD(t, x, y) ≤ p(t, x, y) the first bound in (C) easily follows. For (2.12) note that

qk(x, y) − qN(x, y) = π

∫ e−2N

e−2k

pD(t, x, y)dt

and since we consider ‖x −y‖ ≤ e−2N one breaks this integral into two further integrals over [e−2k,‖x −y‖) and
[‖x − y‖, e−2N). By pD(t, x, y) ≤ (2πt)−1 one gets that the first integral is bounded as x, y belong to a bounded
domain, and the second by − log‖x − y‖ − N . Hence the bound follows.

(D) Using pD(t, x, x) ≤ (2πt)−1 we obtain that pk(x, x) ≤ 1. It follows from (3.3) that qn(x, x) ∼n→+∞ n.

3.4. Example for comparison: Cut-offs (2.5) and (2.7)

This example illustrates the fact that the effect of the mollifier θ in (2.7) does not affect the structure of thick points,
as one might rightly expect. Indeed let us show that (2.14) holds. Set Zε(x) := Xε(x) − X̃ε(x) for Xε(x) of (2.5) and
X̃ε(x) of (2.7). We have

E
[(

Xε(x) − X̃ε(x)
)2] ≤

∫
B(0,1/ε)

|1 − θ̂ (εξ)|2
(‖ξ‖2 + m2)d/2

dξ +
∫

B(0,1/ε)c

|θ̂ (εξ)|2
(‖ξ‖2 + m2)d/2

dξ

≤
∫

B(0,1)

|1 − θ̂ (ξ )|2
(‖ξ‖2 + ε2m2)d/2

dξ +
∫

B(0,1)c

|θ̂ (ξ )|2
(‖ξ‖2 + ε2m2)d/2

dξ

≤
∫

B(0,1)

|1 − θ̂ (ξ )|2
‖ξ‖d

dξ +
∫

B(0,1)c

|θ̂ (ξ )|2
‖ξ‖d

dξ ≤ C. (3.7)

To obtain (2.15) observe that

E
[(

Zε(x) − Zε(y)
)2] ≤

∫
B(0,1/ε)

(ζ(x, ξ) − ζ(y, ξ))2(1 − θ̂ (εξ))2

(‖ξ‖2 + m2)d/2
dξ

and from here one can proceed starting over again as in (3.7) to conclude the proof of the condition. It is interesting
to note when θ is the indicator of the sphere, one can derive the sphere average process from the white noise cut-off
and vice-versa.

4. Proof of the main results

Throughout this section C, C′ > 0 will represent generic constants which may differ from line to line.

4.1. Proof of Theorems 2.1 and 2.2

Proof of Theorem 2.1. First, we claim that by assumption (A) of Theorem 2.1, there exists a modification X̃ε(x) of
Xε(x) such that for every γ ∈ (0,1/2) and χ, ζ > 0 there exists M > 0 such that

∣∣X̃ε1(x) − X̃ε2(y)
∣∣ ≤ M

(
log

1

ε2

)ζ
(|(x, ε1) − (y, ε2)|)γ

ε
(1+χ)γ

2

(4.1)

for all x, y ∈ B(0,R) and ε1, ε2 ∈ (0,1] and ε2/ε1 ∈ (1/2,2]. Indeed, by (A) we have that

E
[(

Xε1(x) − Xε2(y)
)α] ≤ C

(‖x − y‖ + |ε1 − ε2|
ε1 ∧ ε2

)α/2

.
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We can find α and β large enough such that |β
α

− 1
2 | < δ, and consequently by [11, Lemma C.1] there exists a

modification X̃ε(x) a.s. for which (4.1) holds. Without loss of generality we now work with this modification and with
a slight abuse of notation denote it by Xε(x). Now we choose some suitable parameters according to the regularity
condition above. Let χ > 0, r ∈ (0, 1

2 ), ζ ∈ (0,1), r̃ = (1 + χ)r , K = χ−1, rn = n−K , and

UR :=
{
x ∈ B(0,R) : lim

n→+∞
Xrn(x)

G(rn)
≥ a

}
.

Since for t ∈ (rn+1, rn) we have by (4.1) and the fact that G(rn) = C logn(1 + o(1)),∣∣∣∣Xt(x) − Xrn(x)

G(rn)

∣∣∣∣ = O

(
(logn)ζ

G(rn)

)
= o(1).

This shows that T≥(a,R) ⊆ UR . Let (xnj )
k̄n

j=1 be an r
1+χ
n -net for points in B(0,R). Denote

An :=
{
j : Xrn(xnj )

G(rn)
≥ a − δ(n)

}

with δ(n) = C(logn)ζ−1 (the constant C can be adjusted accordingly). Again using (4.1) it follows that, for all N ≥ 1,⋃
n≥N

⋃
j∈AN

B(xnj , r
1+χ
n ) covers UR with sets having maximal diameter 2r

1+χ
n .

We first note the estimate P(j ∈An) using the following Gaussian tail bound as follows:

P(j ∈ An) ≤ P

(
Xrn(xnj )√

G(rn)
≥ (

a − δ(n)
)√

G(rn)

)
≤ C(logn)−1/2n−(a2/(2χ))(1+o(1)).

Furthermore

E
[|An|

] ≤ C(logn)−1/2knr
−d(1+χ)
n n−(a2/(2χ))(1+o(1)) ≤ (logn)−1/2n−a2/(2χ)+d+d/χ+o(1). (4.2)

By denoting

α = d − a2

2
+ χ

d + a2/2

1 + χ
,

we can estimate the size of the balls in the cover as follows:

E

[∑
n≥N

∑
j∈An

diam
(
B

(
xnj , r

1+χ
n

))α
]

≤
∑
n≥N

(logn)−1/2rα(1+χ)
n n−a2/(2χ)+d+d/χ+o(1)

≤
∑
n≥N

(logn)−1/2n−(1/χ)(1+χ)α−a2/(2χ)+d+d/χ+o(1)

≤ C
∑
n≥N

(logn)−1/2n−d < +∞.

Therefore
∑

n≥N

∑
j∈An

diam(B(xnj , r
1+χ
n ))α < +∞ a.s. and this implies dimH (T≥(a,R)) ≤ d − a2

2 a.s. by letting
χ ↓ 0.

Now we show that for every R > 1, T≥(a,R) is empty for a2 > 2d using the above estimates. Since a2 > 2d we

have that a2

2χ
− d(1 + 1

χ
) > 1 and hence,

∑
n≥1

P
(|An| > 1

) ≤
∑
n≥1

E
[|An|

] ≤
∑
n≥1

n−(a2/(2χ)−d(1+1/χ)) < ∞

and hence by the Borel–Cantelli lemma we can conclude that, if χ becomes arbitrarily small, |An| = 0 eventually and
so T≥(a,R) is empty for a2 > 2d with probability one. �
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Proof of Corollary 2.1. Recall that from Lemma 3.1 we have that conditions (A) and (B) hold for the restricted
domain D(δ), for any δ > 0. Now, since D is a regular domain we can write

D =
⋃
n∈N

D(δn)

for a suitable sequence δn ↓ 0 and d(D(δn),Dc) > 0. Now that by repeating the arguments in the proof of Theorem 2.1
and using Lemma 3.1, we get that for all n, dimH (T (a,D(δn))) ≤ 2 − a2/2 with probability one. Hence by (2.10) we
obtain that dimH (T (a,D)) ≤ 2 − a2/2 almost surely. �

Now we provide a proof of the lower bound.

Kahane’s proof of lower bound. The proof is essentially Kahane’s proof of non-degeneracy, so we only give a
brief outline of it. The broad idea is to construct a measure ν giving full mass to T (a) which has finite α-energy
for α < d − a2/2.1 To show this one looks at the class of measures Rα which is described as follows: Rα is the set
of all Radon measures σ on D such that for all ε > 0 there exist δ > 0, C > 0, and a compact set Kε ⊆ D with
σ(D \ Kε) < ε such that σK(dx) := 1Kε(x)σ (dx) satisfies

σK(U) ≤ diam(U)α+δ for every open set U ⊆ D.

It is easy to show that if μ ∈ Rα then Iγ (μ) < ∞ for all γ < α + δ.
Step 1 (martingale measures). Consider σ ∈ Rα and define a random measure Q(a)σ in the following way: let, with

a slight abuse of notation, Q
(a)
n σ (dx) := Q

(a)
n (x)σ (dx) where

Q(a)
n (x) = exp

(
aXn(x) − a2

2
E
[
Xn(x)2]).

Note that due to condition (D), there exist independent random variables (Yk(x)) with covariance kernel given by
pk(x, y) and Xn(x) = ∑n

k=1 Yk(x) in law. It is almost immediate that for any Borel set A, Q
(a)
n σ (A) is a positive

martingale and hence converges almost surely. Now one can show that there exists a probability measure (denoted by
Q(a)σ ) on D such that Q

(a)
n σ converges weakly almost surely to Q(a)σ . Note that when a2 < α, by the upper bound

in condition (C) we have

sup
n≥1

E
[
Q(a)

n σ (A)2] ≤ CIa2(σ ) < +∞.

Hence Q
(a)
n σ (A) is an L2 martingale and convergence is also in L2 when a2 < α. Also it follows that E[Q(a)σ (D)] =

σ(D). Hence Q(a)σ is a non-degenerate measure for a2 < α.
Step 2. This is the main technical step in which one shows that, for a2 < α, σ ∈ Rα implies that Q(a)σ ∈ Rα−a2/2.

One uses the rooted measure for this scope. Let M(a) be the measure on D × � defined by

M(a)(dx,dω) = Q(a)σ (dx)P(dx)

where P is the probability on the space where X lives. We can choose σ such that σ(D) = 1 for simplicity and hence
we have M(a)(D × �) = 1. Let us denote by

P
(a)
k (x) = exp

(
aYk(x) − a2

2
pk(x, x)

)

and note that E[P (a)
k (x)] = 1 for all k. It can be shown that Q

(a)
n = ∏n

k=1 P
(a)
k (x) in law. Also one has the following

properties of Yk(x) under M(a):

1The αth-energy of a measure ν is defined by Iα(ν) := ∫
D×D

1
‖x−y‖α ν(dx)ν(dy).
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(i) Yk(x) ∼N (apk(x, x),pk(x, x)) and they are independent in k.
(ii)

∫
logP

(a)
k (x)dM(a) = a2/2.

(iii)
∫
(logP

(a)
k (x))2 dM(a) = 3a2/2.

To see (ii) observe that∫
logP

(a)
k (x)dM(a) = lim

n→+∞ E

[∫
D

logP
(a)
k (x)Q(a)

n (x)σ (dx)

]
= E

[
logP

(a)
k (x)P

(a)
k (x)

]
.

Note that for h > 0 we have E[P (a)
k (x)h] = e(a2/2)(h2−h). Now deriving with respect to h at 1 we have E[logP

(a)
k (x) ×

P
(a)
k (x)] = a2/2. (iii) follows similarly. Using independence and (ii)–(iii) we can invoke the strong law of large

numbers and say that M(a)-almost surely

logQ
(a)
N (x)

N
=

∑N
k=1 logP

(a)
k (x)

N
→ a2

2
. (4.3)

Hence using Fubini and Egoroff’s theorem we get P-almost surely that for every ε > 0, there exist a compact set
K1

ε ⊆ D such that Q(a)σ (D \ K1
ε ) < ε and log(Q

(a)
N (x))/N → a2/2 uniformly on K1

ε .

Let N ≥ 1 be fixed. Let us define a measure R
(a)
N σ (dx) in the following way: let R

(a)
N,kσ (dx) = R

(a)
N,k(x)σ (dx)

where

R
(a)
N,k(x) =

k∏
i=N+1

P
(a)
i (x).

Then again using a martingale argument it follows that R
(a)
N,kσ (dx) converges weakly almost surely to a measure, call

it R
(a)
N σ (dx). Note again that since a2 < α by condition (C) we obtain L2 convergence as well. Let BN(x) be a ball

of radius e−N centered at x. Define CN(x) = R
(a)
N σ (BN(x) ∩ D). Next we claim

Claim 4.1. For a2 < β < α, one has eβNCN(x) → 0 as N → +∞ M(a)-almost surely.

By means of Claim 4.1 we complete the proof of Step 2. From Claim 4.1 and Egoroff’s theorems it follows again
that P-almost surely, there exists a compact set K2

ε ⊆ D such that Qaσ(D \K2
ε ) < ε and eβNCN(x) → 0 as N → +∞

uniformly on K2
ε . Let Kε = K1

ε ∩ K2
ε and Q(a)σK = 1Kε(x)Q(a)σ (dx). P-almost surely one has for every N ≥ 1

Q(a)σ (dx) = Q
(a)
N (x)R

(a)
N σ (dx).

Hence it follows that

lim sup
N→+∞

log(Q(a)σK(BN(x)))

N
≤ sup

x∈K1
ε

lim sup
N→+∞

logQ
(a)
N (x)

N
+ sup

x∈K2
ε

lim sup
N→+∞

logCN(x)

N
= a2

2
− β,

and the convergence is uniform for all x ∈ Kε . Now since β < α is arbitrary this entails that Q(a)σ ∈ Rα−a2/2. Now

the proof of step 2 will be complete if we show Claim 4.1. Recall that CN(x) = ∫
D

1‖x−y‖≤e−N R
(a)
N σ (dy). First note

that using L2 convergence we have∫
�×D

C
(a)
N (x)dM(a) = lim

k→+∞

∫
D×D

1‖x−y‖≤e−N E
[
R

(a)
N,k(x)R

(a)
N,k(y)

]
σ(dy)σ (dx). (4.4)

Note that

E
[
R

(a)
N,k(x)R

(a)
N,k(y)

] = ea2(qk(x,y)−qN (x,y)).
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Thus using (2.12) there exists a constant C′ such that with k ≥ k0 we get

E
[
R

(a)
N,k(x)R

(a)
N,k(y)

] ≤ C′e−a2N 1

‖x − y‖a2 ∀k ≥ 1. (4.5)

So using the above bound one sees that∫
�×D

C
(a)
N (x)dM(a) ≤ C′

∫
D×D

e−a2N 1

‖x − y‖a2 1‖x−y‖≤e−N σ (dx)σ (dy).

Hence for a2 < β < α we get, for some constant C,

∫ +∞∑
N=1

eβNCN(x)dM(a)

= C

+∞∑
N=1

e(β−a2)N

∫
D×D

1

‖x − y‖a2 1‖x−y‖≤e−N σ (dx)σ (dy)

= C

∫
D×D

�− log‖x−y‖�∑
N=1

e(β−a2)N 1

‖x − y‖a2 σ(dx)σ (dy) ≤ C
(
Ia2(σ ) + Iβ(σ )

)
< +∞.

Here in the last step we have used that there exists a constant c > 0 such that

�− log‖x−y‖�∑
N=1

e(β−a2)N ≤ c

(
1 − 1

‖x − y‖β−a2

)
.

Now this proves Claim 4.1 and hence Step 2.
Step 3: Iterative limit for α < a2 < 2α and final step. Now we iterate Step 2 to show that if λ is the normalized

Lebesgue measure on D then for a2 < 2d , Q(a)λ ∈ Rd−a2/2. Assume a2 > α. Choose n real numbers a1, . . . , an such
that

a2
1 < d,

a2
2 < d − a2

1/2,

· · ·

a2
n < d −

n−1∑
j=1

a2
j /2

and a2 = a2
1 + a2

2 + · · ·+ a2
n. Define recursively the following measures: let S0(dx) = λ(dx) and for 1 ≤ k ≤ n Sk(dx)

is the almost sure weak limit of the martingale measure P
(a)
k (x)Sk−1(dx). Since a2

k < d −∑k−1
j=1 a2

j /2 and S0 ∈ Rd we

can apply Step 2 recursively to get that Sk ∈ R
d−∑k−1

j=1 a2
j /2 and E[Sk(D)] = E[Sk−1(D)] = λ(D). Note that the later

restriction shows that Sk are non-degenerate measures. The finite energy condition now follows by observing that
Sn(dx) = Q(a)λ(dx). Under the measure M(a) we have shown in Step 2 that Y

(a)
k (x) are independent and distributed

as N (apk(x, x),pk(x, x)). Since pk(x, x) ≤ ck and
∑∞

k=1 ck/k2 < ∞ by Kolmogorov’s strong law of large numbers

one has that M(a)-almost surely,
∑N

k=1 Y
(a)
k (x)/N = XN(x)/N → a. Hence P-almost surely one has

XN(x)

N
→ a Q(a)λ-almost surely.

This gives that P-almost surely, Q(a)λ(T (a)c) = 0. This completes the lower bound. �
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4.2. Proof of Theorem 2.3

Before we start the proof of Theorem 2.3, we state a useful claim which we implement in the proof.

Claim 4.2. Let {Gε(x), x ∈ B(0,R), ε ∈ (0,1)} be a centered Gaussian process, such that for some positive con-
stant C

E
[(

Gε(x) − Gε(y)
)2] ≤ C

‖x − y‖
ε

. (4.6)

Then there exists constants C1 (depending only on C, d and R) such that

E
[

sup
x∈B(0,R)

Gε(x)
]

≤ C1
√− log ε.

Proof. Without loss of generality let us take R = 1, D = B(0,1) and let T (x) be a continuous, stationary, centered
Gaussian process (indexed by x ∈ D) with

Cov
(
T (x), T (y)

) = σ

ρ
exp

(−ρ‖x − y‖),
where σ = 2C and ρ is some positive constant less than ε/2. Such a Gaussian process exists, see for example [2,
Lemma 2.1]. Using the fact that 1 − e−x ≥ (x ∧ 1)/2 we have that

E
[(

T (x/ε) − T (y/ε)
)2] = σ

ρ
− 2 Cov

(
T (x/ε), T (y/ε)

)
= σ

ρ

(
1 − exp

(−ρ‖x − y‖ε−1)) ≥ C
‖x − y‖

ε
.

This shows that E[(Gε(x) − Gε(y))2] ≤ E[(T (x/ε) − T (y/ε))2]. Hence by Sudakov–Fernique’s inequality ([1, The-
orem 2.9]), we have that

E
[

sup
x∈D

Gε(x)
]

≤ E
[

sup
x∈D

T (x/ε)
]

= E
[

sup
x∈B(0,ε−1)

T (x)
]
. (4.7)

Now we can apply Lemma 11.2 of [3] to conclude that

E
[

sup
x∈B(0,ε−1)

T (x)
]

≤ C(d)

√
logN

(
B(0,1/ε)

)
,

where, for A ⊆Rd , N(A) denotes the 1-packing number. Since it is bounded by the 1-covering number of B(0,1/ε),
it is easy to see that N(B(0,1/ε)) is bounded from above by ε−d and hence the claim now follows from (4.7). �

Now using Claim 4.2 we derive a proof of Theorem 2.3.

Proof of Theorem 2.3. First observe that assumption (E) implies we can apply the modified Kolmogorov–Centsov
theorem as in Theorem 2.1 and derive that, for x ∈ D = B(0,R) and ε ∈ (0,1], there exists a modification Z̃ε(x) of
Zε(x) such that for every γ ∈ (0,1/2) and a, b > 0 there exists M > 0 such that

∣∣Z̃ε1(x) − Z̃ε2(y)
∣∣ ≤ M

(
log

1

ε2

)b
(‖x − y‖ + |ε1 − ε2|)γ

ε
(1+a)γ

2

(4.8)

for all x, y ∈ B(0,R) and ε1, ε2 ∈ (0,1] and ε2/ε1 ∈ (1/2,2].
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We work with a modification of the process and also use the same notation for the process and its modification.
First we show that

lim sup
ε→0

Zε(x)

− log ε
= 0. (4.9)

From Claim 4.2 we have that E[supx∈D Zε(x)] ≤ C
√− log ε. By Borell’s inequality ([1, Chapter 5.1]),

P

(∣∣∣sup
x∈D

Zε(x) − E
[

sup
x∈D

Zε(x)
]∣∣∣ ≥ r

)
≤ Ce−cr2/2, (4.10)

where c = (supx∈D E[Zε(x)2])−1. Let a > 0 and if we choose εn := n−1/a , rn =
√

log ε
−3a/c
n then it follows that

∞∑
n=1

P
(∣∣∣sup

x∈D

Zεn(x) − E
[

sup
x∈D

Zεn(x)
]∣∣∣ ≥ rn

)
≤ C

∞∑
n=1

1

n3/2
< +∞.

Now by an easy application of Borel–Cantelli we have that supx∈D Zεn(x) = o(− log εn) almost surely, since
rn/(− log εn) → 0 as n → +∞. Now we claim that due to continuity we can move from the discrete sequence to the
continuous sequence. We plug in (4.8) the choice of εn = n−1/a and let ε ∈ (εn+1, εn) in order to have

∣∣∣sup
x∈D

Zε(x) − sup
x∈D

Zεn(x)

∣∣∣ ≤
(

log
1

εn

)b |ε − εn|γ
ε
(1+a)γ
n

≤ C(logn)b = o(logn).

This implies that | supx∈D Zε(x)− supx∈D Zεn(x)|/− log εn → 0 and hence, using Zε(x) = Zε(x)−Zεn(x)+Zεn(x)

we get that lim supε→0 Zε(x)/(− log ε) = 0 almost surely. What is left to show is the equality of the set of thick points,
and we begin with the inclusion T (X,a) ⊆ T (X̃, a) almost surely. The other follows similarly. Let x ∈ T (X,a), then

as a consequence of (4.9) it holds that lim supε→0 X̃ε(x)/(− log ε) ≥ a. We have

lim inf
ε→0

X̃ε(x)

− log ε
≥ lim inf

ε→0

(
inf
x∈D

−Zε(x)

− log ε

)
+ lim inf

ε→0

Xε(x)

− log ε
.

Hence using the known equalities inf(−xn) = − sup(xn) and lim infn xn = − lim supn(−xn) we have

lim inf
ε→0

X̃ε(x)

− log ε
≥ lim inf

ε→0

Xε(x)

− log ε
= a.

This completes the proof of the fact that T (X,a) ⊆ T (X̃, a); reversing the roles of Xε(x) and X̃ε(x) we get the other
inclusion to complete the proof. �
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