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Abstract. Several stochastic processes modeling molecular motors on a linear track are given by random walks (not necessarily
Markovian) on quasi 1d lattices and share a common regenerative structure. Analyzing this abstract common structure, we derive
information on the large fluctuations of the stochastic process by proving large deviation principles for the first-passage times and
for the position. We focus our attention on the Gallavotti–Cohen-type symmetry of the position rate function (fluctuation theorem),
showing its equivalence with the independence of suitable random variables. In the special case of Markov random walks, we show
that this symmetry is universal only inside a suitable class of quasi 1d lattices.

Résumé. Nous considérons différents processus stochastiques modélisant des moteurs moléculaires : il s’agit de marches aléa-
toires, non nécessairement markoviennes, le long d’un rail linéaire, presque un réseau unidimensionnel, qui partagent une même
structure de régénération. En analysant cette structure abstraite commune nous contrôlons les grandes déviations du processus sto-
chastique, nous établissons des principes de grandes déviations pour les temps de premier passage et pour la variable de position.
Nous nous concentrons sur les symétries de type Gallavotti–Cohen de la fonction de taux positionnelle (théorème de fluctuations),
en montrant son équivalence avec l’indépendance de certaines variables aléatoires. Dans le cas particulier des marches aléatoires
markoviennes, nous montrons que cette symétrie n’est universelle qu’au sein d’une classe particulière de réseaux presque unidi-
mensionnels.
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1. Introduction

Molecular motors are proteins working as nanomachines: they usually convert chemical energy coming from ATP
hydrolysis to produce mechanical work fundamental e.g. for cargo transport inside the cell, cell division, genetic tran-
scription, muscle contraction. When working in a non-cooperative way, two main modelizations have been proposed.
In the so called Brownian ratchet model [16] the dynamics of the molecular motor is given by a one-dimensional
diffusion in a switching force field. The other paradigm, on which we concentrate here, is given by continuous time
random walks1 on quasi linear graphs having a periodic structure [11,12,18–20,30]. We call these graphs quasi 1d
lattices, since they are obtained by gluing together several copies of a fundamental cell in a linear fashion. The geo-
metric complexity of the fundamental cell corresponds to the conformational transformations of the molecular motor

1By random walks we mean stochastic jump processes on a given graph. When we restrict to random walks given by Markov chains [27] (hence
with exponential waiting times), we call them Markov random walks
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in its mechanochemical cycle. It can be an interval with N sites (thus leading to a random walk on Z with periodic
jump rates) or a more complex graph as in parallel-chain models and divided-chain models [4,17].

In [8] we have derived both the law of large numbers and the invariance principle for random walks on quasi 1d
lattices, and discussed computability issues. We focus here on their large deviations and Gallavotti–Cohen-type sym-
metries (also called fluctuation theorems), which have received much attention inside the non-equilibrium statistical
physics of small systems (cf. [1,10,22,29] and references therein). All relevant information concerning the position
of the random walk is encoded in an associated random walk on Z with nearest neighbor jumps, that we call skele-
ton process. The holding times of this process are typically non-exponential, and are in general correlated with the
location of the jumps. For the skeleton process we derive the LDP for the first-passage times as well as for the posi-
tion (Theorem 1). We also obtain a detailed qualitative analysis of the rate functions of the above LDPs (Theorem 2
and Proposition 5.3). The tools developed in this part are fundamental to investigate the Gallavotti–Cohen symmetry
(shortly, GC symmetry) of the form I (ϑ) = I (−ϑ) + cϑ , where I is the LD rate function for the position of the
skeleton process, ϑ ∈R and c is a suitable constant. The above GC symmetry has been derived in [21,22] for Markov
random walks on Z with periodic rates of period 2. We show that this symmetry cannot hold for a generic Markov
random walk on a quasi 1d lattice. Indeed, there exists a class of quasi 1d lattices (called (v, v)-minimal) such that the
GC symmetry is verified for any choice of the rates, while outside that class the GC symmetry is violated for Lebesgue
any choice of the rates (Theorem 5). In particular, the universality of the above GC symmetry suggested in [22] does
not hold. In [9] we will continue our analysis on GC symmetries and we will also consider some examples.

We conclude this introduction with some comments on technical aspects. When considering Markov random walks
the proof of the position LD principle is simpler, obtained by the Gärtner–Ellis theorem [15] and by generalizing the
matrix approach introduced by [21] (cf. Theorem 3). On the other hand it gives no insight on the mechanism leading
to the GC symmetry. The results, presented in Section 2, concerning the LD principles for first-passage times and
for the position (Theorems 1 and 2) hold also for non-Markov random walks on quasi 1d lattices. In general (cf.
Theorems 6 and 7) they hold for stochastic processes (Zt )t∈R+ obtained as follows. Consider a sequence (wi, τi)i≥1
of i.i.d. 2d vectors with values in R× (0,+∞). Defining Wm :=∑m

i=1 wi and Tm :=∑m
i=1 τi for m ≥ 0 integer, set

Zt := Wmax{m≥0:Tm≤t}. The derivation of the LDP for (Zt )t∈R+ from the large deviation properties of (Wm)m≥0 and
(Tm)m≥0 is in general rather delicate. In [7] a LDP is obtained under the condition that the τi ’s have finite logarithmic
moment generating function. This condition is not satisfied when considering Markov random walks on quasi 1d
lattices, hence in our case the results of [7], and the similar ones of [28], cannot be applied. In the context of LDPs
for processes under random time changes we also mention the new progresses obtained in [24,26]. Restricting to
the case wi ∈ {−1,1} (which covers the applications to molecular motors), the process (Zt )t∈R+ becomes a random
walk on Z with generic holding times (not necessarily exponential). Following the main scheme presented in [5]
we derive the LDP for the process (Zt )t∈R+ . We point out some technical issues making our analysis different from
[5]: we allow correlations between wi and τi (absent in [5]), moreover the minimum in the support of the law of τi

can be zero or positive (the first case is excluded in [5]). Hence, although we have no random environment (thus of
course simplifying the analysis) in our case there is a richer scenario for the possible behavior of the rate functions
of the process (Zt )t∈R+ and of the associated first-passage times, and this behavior has to be investigated and kept in
consideration in order to prove LDPs (see Section 5.2).

The theorems concerning the GC symmetry are the most innovative ones from a mathematical viewpoint. Using
the above LD analysis, in Theorems 4 and 8 we prove several characterizations of the GC symmetry for (Zt )t∈R+ ,
including the fact that it holds if and only if wi and τi are independent. Using the above characterizations, we study
the GC symmetry for Markov random walks (Theorem 5). The validity of the GC symmetry for Markov random
walks on (v, v)-minimal 1d lattices is derived by introducing a special path transformation and comparing the original
paths with the transformed ones. On the other hand, the proof of the almost everywhere breaking of the GC symmetry
outside the class of (v, v)-minimal quasi 1d lattices is based on complex analysis methods.

2. Random walks on quasi 1d lattices

We start by defining quasi 1d lattices. Consider first a finite oriented graph G = (V ,E), V being the set of vertices
and E being the set of oriented edges, E ⊂ {(v,w) : v �= w in V }. We fix in V two vertices v, v. We assume that the
oriented graph G is connected, i.e. for any v,w ∈ V there is an oriented path in G from v to w. Then the quasi 1d
lattice G associated to the triple (G,v, v) is the oriented graph obtained by gluing together countable copies of G such
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Fig. 1. The graph G = (V ,E) with vertices v, v (left) and the associated quasi 1d lattice G = (V,E) (right).

that the point v of one copy is identified with the point v of the next copy. To give a formal definition, we define G as
G = (V,E) with vertex set V and edge set E as follows (see Figure 1):

V := {
vn := (v, n) ∈ (

V \ {v})×Z
}
, E := E1 ∪ E2 ∪ E3,

where

E1 :=
{
(vn,wn) : (v,w) ∈E,n ∈ Z

}
,

E2 :=
⋃
n∈Z

{
(vn, vn+1) : (v, v) ∈E

}
,

E3 :=
⋃
n∈Z

{
(vn+1, vn) : (v, v) ∈E

}
.

To simplify notation we set

n∗ := vn, n ∈ Z.

On the graph G we define the shift T : V → V as T (vn) = vn+1. Note that the graph G is left invariant by the action
of T . We can now define the class of stochastic processes on quasi 1d lattices we are interested in:

Definition 2.1. Given a quasi 1d lattice G associated to the triple (G,v, v), we consider a stochastic process (Xt )t∈R+
with paths in the Skohorod space D(R+;V) starting at any site n∗ (we denote by Pn∗ the associated law on D(R+;V))
and fulfilling the following properties:

(i) for each n ∈ Z, Pn∗ -a.s., jumps are possible only along the edges in E ,
(ii) for each n ∈ Z, when (Xt )t∈R+ is sampled with law Pn∗ then the law of (T (Xt ))t∈R+ equals P(n+1)∗ ,

(iii) defining S as the random time

S := inf
{
t ≥ 0 :Xt ∈ {−1∗,1∗}

}
, (1)

it holds E0∗(S) < ∞ where E0∗(·) denotes the expectation w.r.t. P0∗ ,
(iv) under P0∗(·|XS =±1∗) the random path (XS+t )t∈R+ is independent from (Xt )t∈[0,S] and has law P±1∗ .

In the applications, typically (Xt )t∈R+ is a Markov random walk:

Lemma 2.2. Let (Xt )t∈R+ be a Markov random walk with state space V and with positive jump rates r(x, y), (x, y) ∈
E , such that

r(x, y) = r(T x,T y). (2)

Then the above random walk is well defined for all times t (no explosion takes place), fulfills the properties of Defini-
tion 2.1 and moreover E0∗(e

λS) < +∞ for λ > 0 small enough.



Random walks on quasi one dimensional lattices 49

The proof of the above lemma is simple and therefore omitted. The finite exponential moments for λ small follow
from the exponential decay of hitting probabilities for irreducible Markov chains with finite state space. We point out
that in the applications another relevant example is given by a random walk (Xt )t∈R+ on the graph G with nonexpo-
nential holding times (cf. [18]).

We now introduce the fundamental object of our investigation:

Definition 2.3. Given the stochastic process X as in Definition 2.1, the skeleton process X∗ = (X∗
t )t∈R+ is defined as

X∗
t := �(Xι) where �(n∗) = n and

ι := sup
{
s ∈ [0, t] :Xt = n∗ for some n ∈ Z

}
.

X∗
t has values in Z and records the last visited state of the form n∗ up to time t .

In the applications to molecular motors, the process (X∗
t )t∈R+ contains all the relevant information, indeed it allows

to determine the position of the molecular motor up to an error of the same order of the monomer size.

3. Main results for random walks on quasi 1d lattices

Let S be the random time defined in (1). As proved in [8], one can easily obtained a strong law of large numbers for
the skeleton process since E0∗(S) < +∞ (cf. Theorems 1 and 2 in [8]):

lim
t→∞

X∗
t

t
= P0∗(XS = 1∗)− P0∗(XS =−1∗)

E0∗(S)
=: v, P0∗ -a.s. (3)

In [8] we study also the Gaussian fluctuations of the skeleton process, proving an invariance principle if E0∗(S
2) <

+∞. We concentrate here on large deviations.

3.1. Large deviations

From now on, in addition to the requirements in Definition 2.1, we assume that

P0∗(XS = 1∗) > 0 and P0∗(XS =−1∗) > 0, (4)

which holds for molecular motors.

Theorem 1. Consider the process (Xt )t∈R+ starting at 0∗. Call Tn the first time the skeleton process hits n ∈ Z, i.e.

Tn := inf
{
t ∈R+ : X∗

t = n
} ∈ [0,+∞]. (5)

Then the following holds:

(i) As n →±∞ the random variables Tn/|n| satisfy a LDP with speed |n| and convex rate function

J±(u) := sup
λ∈R

{
λu− logϕ±(λ)

}
, u ∈R, (6)

where

ϕ±(λ) := E0∗
(
eλT±11(T±1 < ∞) ∈ (0,+∞], λ ∈R. (7)

The rate function J± is good2 if and only if P0∗(T1 < ∞) �= P0∗(T−1 < ∞).

2We use the same terminology of [6], in particular J is good if it has compact level sets.
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(ii) As t →+∞, the random variables X∗
t /t satisfy a LDP with speed t and good and convex rate function I given

by

I (ϑ) =
{

ϑJ+(1/ϑ) if ϑ > 0,
|ϑ |J−(1/|ϑ |) if ϑ < 0,

(8)

and I (0) = limϑ→0 I (ϑ).

Theorem 1 is an immediate consequence of Lemma 4.1 and Theorem 6 in Section 4. Since Tn can take value +∞,
the meaning of the LDP for Tn/|n| as n →±∞ is the following: for each close subset C ⊂ R and each open subset
O ⊂R it holds

lim
n→±∞

1

|n| logP0∗

(
Tn

|n| ∈ C
)
≤− inf

C
J±, lim

n→±∞
1

|n| logP0∗

(
Tn

|n| ∈O
)
≥− inf

O
J±.

We now collect information on the qualitative behavior of the rate function I . The qualitative behavior of the rate
functions J−, J+ is described in Proposition 5.3 in Section 5. Here we concentrate on the rate function I since the
large deviations of X∗

t /t are more relevant in the applications.

Definition 3.1. We define α± as the minimum of the support of the law of T±1.

We point out that α± is the minimum of the support of the Borel measure A → P0∗(S ∈ A,XS = ±1∗) (see
Proposition 4.3 in Section 4). Below 1/α± is intended to be +∞ if α± = 0. Note that α± = 0 in the case of Markov
random walks.

Theorem 2. The following holds:

(i) I is infinite outside [− 1
α− , 1

α+ ], I is finite and C1 on (− 1
α− , 1

α+ ), moreover it is smooth on (−1/α−,1/α+) \ {0}.
(ii) The following holds:

lim
ϑ↗ 1

α+
I (ϑ) =

{+∞ if P0∗(T1 = α+)= 0,

I ( 1
α+ ) < ∞ otherwise. (9)

lim
ϑ↘− 1

α−
I (ϑ) =

{+∞ if P0∗(T−1 = α−) = 0,

I (− 1
α− ) < ∞ otherwise. (10)

(iii) The derivative of I satisfies lim
ϑ↗ 1

α+
I ′(ϑ)=+∞ and lim

ϑ↘− 1
α−

I ′(ϑ) =−∞.

(iv) I is lower semicontinuous and convex on R, it is strictly convex on (− 1
α− , 1

α+ ).
(v) I has a unique global minimum, which is given by 0 and is attained at v ∈ (−1/α−,1/α+), where v is the

asymptotic velocity defined in (3). Moreover I is strictly decreasing on (−1/α−, v) and is strictly increasing on
(v,1/α+).

Theorem 2 is an immediate consequence of Lemma 4.1 and Theorem 7 in Section 4.
When the process X is a Markov random walk with periodic rates (i.e. satisfying (2)), the derivation of the large

deviation principle is simpler. In this case given x ∈ V we set r(x) :=∑
y:(x,y)∈E r(x, y) and, given v �= w in V \ {v},

we set (using the convention that r(y, z) = 0 if (y, z) /∈ E )

r(v) := r(vn), r−(w,v) := r(wn−1, vn), r0(w,v) := r(w,v), r+(w,v) := r(wn+1, vn).

The above definition is well posed due to (2). Finally, given λ ∈ R we consider the finite matrix A(λ), with entries
parameterized by (V \ {v})× (V \ {v}), defined as :

Av,w(λ) :=
{−r(v) if v = w,

eλr−(w,v)+ r0(w,v)+ e−λr+(w,v) if v �= w.
(11)
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By applying the Gärtner–Ellis Theorem we will derive the following result, where R(γ ) denotes the real part of
γ ∈C:

Theorem 3. Suppose X is a Markov random walk on the quasi 1d lattice G = (V,E) with transition rates satisfy-
ing (2). Then, as t →+∞, the random variables X∗

t /t satisfy a large deviation principle with speed t and convex and
good rate function I (ϑ) given by

I (ϑ) = sup
λ∈R

{
ϑλ−
(λ)

}
, ϑ ∈R,

where 
(λ) is the finite value 
(λ) := max{�(γ ) : γ eigenvalue of A(λ)} and the matrix A(λ) is defined in (11).

3.2. Fluctuation theorems (Gallavotti–Cohen type symmetry)

Theorem 4. The following facts are equivalent:

(i) For some c ∈R the Gallavotti–Cohen type symmetry3 I (ϑ) = I (−ϑ)+ cϑ holds for all ϑ ∈R;
(ii) The random variables XS and S are independent.

Moreover, when (i), (ii) hold it must be c = log P0∗ (XS=−1∗)
P0∗ (XS=1∗) .

Theorem 4 is an immediate consequence of Lemma 4.1 and Theorem 8 in Section 4.
We continue our investigation of the Gallavotti–Cohen type symmetry (shortly, GC symmetry) as in Theorem 4

restricting now to Markov random walks (Xt )t∈R+ on quasi 1d lattices. Recall that we write r(x, y), (x, y) ∈ E , for
the positive jump rates of the Markov random walk and assume the periodicity (2) to hold. We restrict our discussion
to the case of fundamental graphs G = (V ,E) such that

(x, y) ∈E if and only if (y, x) ∈ E, (12)

which is the standard setting in the investigation of GC symmetry for Markov chains [23].
In what follows, given an edge (u, v) ∈ E in the fundamental graph G = (V ,E), we define

r(u, v) = r
(
π(u),π(v)

)
, (13)

where π is the map V → V defined as π(u) = u0 if u �= v and π(v) = v1. Note that, fixed positive numbers a(e),
e ∈ E, it is univocally determined a Markov random walk on G whose rates satisfy (2) and such that r(e) = a(e) for
all e ∈E. We call it the Markov random walk induced by a(e), e ∈E.

We introduce a special class of graphs G which includes in particular trees. Recall that G has connected support
when disregarding the orientation of the edges.

Definition 3.2. We say that the graph G = (V ,E) is (v, v)-minimal if it satisfies (12) and moreover there is a unique
path γ∗ = (z0, z1, . . . , zn) such that (i) z0 = v, (ii) zn = v, (iii) (zi, zi+1) ∈ E and (iv) the points z0, . . . , zn are all
distinct.

Note that, given a generic fundamental graph G = (V ,E), there exists at least one path γ = (z0, z1, . . . , zn) satis-
fying the above properties (i), . . . ,(iv). Indeed, since G is connected, there exists a path from v to v. Take such a path
and prune iteratively the loops. Since each time a loop is pruned away the length of the path decreases, after a finite
number of prunes one gets a minimal path satisfying the above properties (i), . . . ,(iv).

Now suppose that G = (V ,E) is (v, v)-minimal and take two points zi �= zj (the zk’s are as in the Definition 3.2).
Then it cannot exist a path from zi to zj whose intermediate points are in V \{z0, z1, . . . , zn}. In particular, the graph G

must be as in Figure 2 (due to property (12) we only draw the support of G, disregarding orientation). More precisely,
the graph is given by the linear chain γ∗ of Definition 3.2, to which one attaches some subgraphs, in such a way that
each attached subgraph has exactly one point in common with γ∗.

3Sum is thought in [0,+∞)
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Fig. 2. A (v, v)-minimal graph G = (V ,E).

Theorem 5. Suppose that X is a Markov random walk and that G = (V ,E) is a graph satisfying (12). If G is (v, v)-
minimal, then the random variables S and X∗

S are independent, and in particular the large deviation rate function I

associated to the skeleton process X∗ satisfies the Gallavotti–Cohen type symmetry

I (ϑ) = I (−ϑ)−�ϑ, ∀ϑ ∈R, (14)

where

� = log
r(z0, z1)r(z1, z2) · · · r(zn−1, zn)

r(z1, z0)r(z2, z1) · · · r(zn, zn−1)
(15)

and γ∗ = (z0, z1, z2, . . . , zn−1, zn) is the path in Definition 3.2.
Vice versa, if G is not (v, v)-minimal then the vectors (r(e) : e ∈ E) ∈ (0,+∞)E for which the induced random

walk on G satisfies (14) for some constant � (depending on the numbers r(e), e ∈ E) has zero Lebesgue measure in
(0,+∞)E .

The proof of the above theorem is given in Section 9.

Remark 3.3. In Section 9 we give a sufficient condition (see Criterion 1) assuring (14) for some constant � and for
fixed rates (also outside the class of (v, v)-minimal graphs).

4. Random time changes of cumulative processes

As already mentioned, the results presented in Section 3 hold in a more general context that we now describe. Consider
a sequence (wi, τi)i≥1 of i.i.d. 2d vectors with values in R× (0,+∞). For each integer m≥ 1 we define

Wm := w1 +w2 + · · · +wm, Tm := τ1 + τ2 + · · · + τm. (16)

We set W0 = T0 = 0. Note that limm→∞ Tm = +∞ a.s. As a consequence, we can univocally define a.s. a random
process {ν(t)}t∈R+ with values in {0,1,2,3, . . .} such that

Tν(t) ≤ t < Tν(t)+1, t ≥ 0. (17)

Note that ν(t) = max{m ∈N : Tm ≤ t}. Finally, we define the process Z : [0,∞) →R as

Zt := Wν(t). (18)

Note that Z0 = 0. The resulting process Z = (Zt )t∈R+ is therefore obtained from the cumulative process (Wm)m≥0 by
a random time change.

Due to Definitions 2.1 and 2.3 the skeleton process X∗ is indeed a special case of process Z (recall the definition
of the random time S given in (1)):
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Lemma 4.1. Consider a sequence (wi, τi)i≥1 of i.i.d. vectors, with the same law of the random vector (X∗
S, S) ∈

{−1,1} × (0,+∞) when the random walk (Xt )t∈R+ starts at 0∗. We define (Zt )t∈R+ as the stochastic process built
from (wi, τi)i≥1 according to (18). Then (Zt )t∈R+ has the same law of (X∗

t )t∈R+ with X∗
0 = 0.

The proof of the above lemma is very simple and therefore omitted. We recall also the LLN discussed in [8,
Appendix A]:

Proposition 4.2. If E(τi) < ∞, then almost surely limt→∞ Zt

t
= v := E(wi )

E(τi )
.

We now state our main results for (Zt )t∈R+ :

Theorem 6 [LDP]. Assume: (A1) wi ∈ {−1,1} a.s., (A2) P(w1 =+1) > 0 and P(w1 =−1) > 0. Set Tn := inf{t ∈
R+ : Zt = n} ∈ [0,+∞). Define J± and ϕ± as in (6) and (7). Then the following holds:

(i) As n →±∞ the random variables Tn/|n| satisfy a LDP with speed |n| and convex rate function J±. The rate
function J± is good if and only if P(T1 < ∞) �= P(T−1 < ∞).

(ii) As t →+∞, the random variables Zt/t satisfy a LDP with speed t and good and convex rate function I given by

I (ϑ) =
{

ϑJ+(1/ϑ) if ϑ > 0,
|ϑ |J−(1/|ϑ |) if ϑ < 0,

(19)

and I (0) = limϑ→0 I (ϑ).

The proof of the above result is given in Sections 5 and 6.
We introduce the functions f± on R as

f±(λ) := E
(
eλτ11(w1 =±1)

) ∈ (0,+∞). (20)

Note that f±(λ) > 0 under assumption (A2). We call α± the minimum value in the support of the law of T±1.

Proposition 4.3. Under assumptions (A1) and (A2) of the previous theorem the following holds:

(i) The function ϕ±(λ) satisfies

ϕ±(λ) = 1 −√
1 − 4f−(λ)f+(λ)

2f∓(λ)
(21)

for λ ≤ λc , where λc ∈ [0,+∞) is the unique value of λ such that f−(λ)f+(λ) = 1/4, while ϕ±(λ) = +∞ for
λ > λc .

(ii) Consider the measure μ± on [0,+∞) such that μ±(A) = P(τ1 ∈ A,w1 =±1) for any Borel A ⊂R. Then α± is
the minimum value in the support of μ±. Moreover P(T±1 = α±) = P(τ1 = α±,w1 =±1).

The proof is given at the beginning of Section 5.2.
The qualitative behavior of the rate function I (ϑ) is described by the following theorem (for the qualitative behavior

of J± see Proposition 5.3):

Theorem 7. Theorem 2 remains valid in the present more general context, with v defined as in Proposition 4.2.

We conclude with a result on the presence of a Gallavotti–Cohen type symmetry in the rate function I (the proof
is given in Section 7):

Theorem 8. The following facts are equivalent:



54 A. Faggionato and V. Silvestri

(i) There exists a constant c ∈R such that the Gallavotti–Cohen type symmetry

I (ϑ) = I (−ϑ)+ cϑ (22)

holds for all ϑ ∈R;
(ii) fixed i, the random variables wi, τi are independent;

(iii) the functions ϕ+(λ) and ϕ−(λ) are proportional where finite: ∃C > 0 such that ϕ+(λ) = Cϕ−(λ) for all λ ≤ λc.

Moreover, if we let p := P(wi = 1) and q := P(wi = −1) (with p,q > 0 by Assumption (A2)), then C = p/q and
c = log(q/p) =− logC.

We end this section with some comments on the existing literature. Considering [26] with X , xi, τ : X → (0,∞)

given by X := {−1,1} × (0,+∞), xi = (wi, τi) and τ(x, t) = t , one gets the large deviation principle of the random
probability measure πt = 1

t

∫
[0,t)

δ(wν(s)+1,τν(s)+1) ds ∈ P(X ) as t →∞ (recall (17)). Let us restrict to the case wi =
±1. If we consider the function f : X → (0,+∞) defined as f (x, t) = x/t , then the expectation πt (f ) satisfies

|πt (f )− Zt

t
| ≤ 1

t

t−Tν(t)

τν(t)+1
≤ 1

t
, hence πt (f ) and Zt

t
must satisfy the same large deviation principle. On the other hand,

the map P(X ) � π → π(f ) ∈ (0,+∞) is not a bounded continuous map, and one cannot derive immediately by
contraction the LDP of πt (f ) (and therefore of Zt/t ) from the LDP of the empirical measure πt stated in [26,
Theorem 1.3, Theorem 1.6]. Of course, one could try to apply some extended version of the contraction principle
(cf. [6]) to follow this route. On the other hand, supposing to succeed in such a direction, one would end up with a
rate function for Zt/t characterized as the solution of a variational problem on an infinite dimensional space, instead
of a finite dimensional space as in Theorem 6.

5. Proof of Theorem 6(i) and Theorem 7

In this section we prove item (i) of Theorem 6 and we study the behavior of the functions I, J± defined in Theorem 6.
In particular, we prove Theorem 7 at the end of this section.

5.1. Proof of item (i) in Theorem 6

For n ≥ 1 the random variable Tn has the same law of
∑n

k=1 τ̂n, where τ̂n’s are i.i.d. random variables taking value
in (0,+∞), distributed as T1. The thesis can then be obtained from Cramér Theorem. We give the proof in the case
n →∞. Call α := P(T1 < ∞) and note that P(Tn < ∞) = αn. Then for each subset A⊂ R we can write P(Tn/n ∈
A) = αnP(Tn/n ∈ A|Tn < ∞). Now we observe that, conditioning on the event Tn < ∞, Tn can be represented as∑n

k=1 τ̂ ′n, where the real random variables τ ′n are i.i.d. and distributed as T1 conditioned to be finite. In conclusion
P(Tn/n ∈ A|Tn < ∞) = P( 1

n

∑n
k=1 τ̂ ′n ∈ A). At this point one only need to apply Cramér Theorem for i.i.d. real

random variables (cf. [6, Theorem 2.2.3]) observing that the moment generating function of τ̂ ′n is ϕ+/α. The fact that
J± is good if and only if P(T1 < ∞) �= P(T−1 < ∞) is proved in the next subsection (see Remark 5.4 below).

5.2. Qualitative study of the functions J±(ϑ), I (ϑ)

In this subsection we first prove some properties of the function I (ϑ) defined in Theorem 6 by (19) and the identity
I (0) = limϑ→0 I (ϑ). In the next subsection we will indeed prove that I (ϑ) is the rate function of the LDP for Zt/t .

We start by proving Proposition 4.3.

Proof of Proposition 4.3. Let us prove point (i). Recall the definition of the positive functions f± given in (20).
Distinguishing on the value of w1 we can write

T1 = 1(w1 = 1)τ1 + 1(w1 =−1)
(
τ1 + T ′

1 + T ′′
1

)
(23)

where T ′
1, T

′′
1 are independent random variables, independent from w1, τ1 and distributed as T1 (roughly, T ′

1 is the
time for Z to go from −1 to 0 and T ′′

1 is the time for Z to go from 0 to 1). The above identity implies that

ϕ+(λ) = f+(λ)+ f−(λ)ϕ+(λ)2. (24)
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From this we deduce that ϕ+(λ) < +∞ if and only if f+(λ)f−(λ) ≤ 1/4, and moreover in this case (21) holds. By
symmetry, one obtains that the same condition implies ϕ−(λ) < +∞. Trivially f± is increasing, limλ→−∞ f±(λ) = 0
and limλ→+∞ f±(λ) = +∞. Moreover, f±(λ) is smooth and strictly increasing on the open set {f± < +∞}. As a
consequence there exists a unique value λc ∈ R such that f+(λ)f−(λ) = 1/4 and therefore f+(λ)f−(λ) ≤ 1/4 for
λ ≤ λc. Since trivially ϕ+(λ) < +∞ for λ ≤ 0 it must be λc ≥ 0. This completes the proof of point (i).

We now move to point (ii). To see that P(τ1 < α+,w1 = 1) = 0 observe that by (23) {w1 = 1} ⊆ {T1 = τ1} and
therefore P(τ1 < α+,w1 = 1) = P(T1 < α+,w1 = 1) ≤ P(T1 < α+) = 0. To get the thesis it remains to show that
∀ε > 0 P(τ1 ∈ [α+, α+ + ε),w1 = 1) > 0. Assume the contrary. Then there exists ε̂ > 0 such that P(τ1 ∈ [α+, α+ +
ε̂),w1 = 1) = 0. By definition of α+, on the other hand, we have P(T1 ∈ [α+, α+ + ε̂)) > 0. Combining this with the
decomposition in (23), we find

0 < P(T1 < α+ + ε̂)

= P(τ1 < α+ + ε̂,w1 = 1)+ P
(
τ1 + T ′

1 + T ′′
1 < α+ + ε̂,w1 =−1

)
≤ P(τ1 < α+ + ε̂,w1 =−1)P(T1 < α+ + ε̂)2

≤ P(w1 =−1)P(T1 < α+ + ε̂)2.

Dividing both sides by the positive quantity P(T1 < α+ + ε̂) and recalling that by (A2) P(w1 =−1) < 1, we get the
contradiction and this concludes the proof. �

We now focus on the behavior logϕ±. Recall the definition of λc,α± given in Proposition 4.3.

Lemma 5.1. The following holds:

(i) logϕ± is strictly increasing and continuous on (−∞, λc], convex and smooth on (−∞, λc) and moreover
limλ→−∞ logϕ±(λ) =−∞;

(ii) the second derivative (logϕ±)′′ is strictly positive on (−∞, λc) (in particular (logϕ+(λ))′ is strictly increasing
on (−∞, λc)) and

lim
λ→−∞

(
logϕ±(λ)

)′ = α±, (25)

lim
λ↗λc

(
logϕ±(λ)

)′ = +∞. (26)

Proof. The proof of point (i) is rather standard (see Lemma 2.2.5 in [6], the fact that logϕ± is strictly increasing on
(−∞, λc] and convex follows also from point (ii)).

We prove point (ii) restricting to ϕ+ without loss of generality. Note that, for λ < λc,

(
logϕ+(λ)

)′′ = E(T 2
1 eλT11(T1 < ∞))

E(eλT11(T1 < ∞))
− E(T1e

λT11(T1 < ∞))2

E(eλT11(T1 < ∞))2
= VarQ(T1),

where Q is the probability defined as Q(A) = E(1(A)eλT11(T1 < ∞))/E(eλT11(T1 < ∞)). Since T1 is non constant
Q-a.s. by assumption (A1), we conclude that (logϕ+(λ))′′ > 0 for λ < λc, hence (logϕ+(λ))′ on (−∞, λc) is strictly
increasing.

We first derive (25) in the case α+ = 0. It is convenient to prove the thesis for a generic nonnegative random
variable T1, nonnecessarily defined as in Theorem 6. Suppose first that P(T1 = 0) > 0. Since ϕ+(λ) ≥ P(T1 = 0),
while limλ→−∞ ϕ′(λ) = limλ→−∞E(T1e

λT11(T1 < ∞)) = 0 by the monotone convergence theorem, we get (25).
We now consider the case P(T1 = 0) = 0, thus implying P(T1 ∈ (0, ε)) > 0 for all ε > 0. We fix any c > 0 and take

λ < −1/c. By this choice it holds supx≥c xeλx = ceλc. Moreover we fix c1, c2 : 0 < c1 < c2 < c such that P(c1 ≤ T1 ≤
c2) > 0. Define:

e1(λ) := E
(
T1e

λT11(c ≤ T1 < ∞)
)≤ ceλc,

e2(λ) := E
(
T1e

λT11(T1 < c)
)≥ c1e

λc2P(c1 ≤ T1 ≤ c2),
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e3(λ) := E
(
eλT11(c ≤ T1 < ∞)

)≤ eλc,

e4(λ) := E
(
eλT11(T1 < c)

)≥ eλc/2P(T1 < c/2) > 0.

By the previous bounds we have limλ→−∞ e1(λ)/e2(λ) = 0 and limλ→−∞ e3(λ)/e4(λ) = 0. In conclusion

0 ≤ lim
λ→−∞

(
logϕ+(λ)

)′ = lim
λ→−∞

ϕ′+(λ)

ϕ+(λ)
= lim

λ→−∞
e2(λ)(1 + e1(λ)/e2(λ))

e4(λ)(1 + e3(λ)/e4(λ))

= lim
λ→−∞

e2(λ)

e4(λ)
= lim

λ→−∞
E(T1e

λT11(T1 < c))

E(eλT11(T1 < c))
≤ c.

Since c > 0 is arbitrary we get (25).
To complete the proof of (25) it remains to discuss the case α+ > 0. To this aim note that 0 is the minimum in

the support of the law of T̂1 := T1 − α+. Hence, by what just proven, it holds limλ→−∞(log ϕ̂+(λ))′ = 0, where

ϕ̂+(λ) := E(eλT̂11(T̂1 < ∞)). Since ϕ+(λ) = eλα+ ϕ̂+(λ), we get (25).
To conclude the proof of point (ii) we need to justify (26). Since by point (i) logϕ+ is smooth and convex on

(−∞, λc), the derivative (logϕ+(λ))′ = ϕ′+(λ)/ϕ+(λ) is increasing and therefore the limit in (26) exists. Moreover,
since limλ↗λc ϕ+(λ) = ϕ+(λc) < ∞, we only need to show that limλ↗λc ϕ′+(λ) =+∞. To this aim recall (24). Dif-
ferentiating such identity for λ < λc (note that everything is finite and smooth) we get

(
1 − 2f−(λ)ϕ+(λ)

)
ϕ′+(λ) = f ′+(λ)+ f ′−(λ)ϕ+(λ)2. (27)

By the monotone convergence theorem we get that f−(λ),ϕ+(λ) and the derivative f ′±(λ) = E(τ1e
λτ11(w1 = ±1))

converge to f−(λc), ϕ+(λc) and f ′±(λc) respectively as λ ↗ λc . Observing that

ϕ+(λc) = 1

2f−(λc)
(28)

due to (21) and the identity f+(λc)f−(λc) = 1/4, we get that 1 − 2f−(λ)ϕ+(λ) converges to zero as λ ↗ λc. On the
other hand, as λ ↗ λc the r.h.s. of (27) converges to its value at λc, which is nonzero. The limit (26) is therefore the
only possibility as λ ↗ λc in (27). �

Recall the definition of the asymptotic velocity v given in (3).

Remark 5.2. Taking the expectation in (23) and in the analogous expression for T−1, one concludes that E(T±1) <

+∞ implies that E(T±1)E(w1) = ±E(τ1). Since E(τ1) �= 0, we conclude that if E(T±1) < ∞ then E(w1) �= 0 and
E(T±1)=±E(τ1)/E(w1) =±1/v.

From Lemma 5.1 we deduce the qualitative behavior of the rate function J±(ϑ) := supλ∈R{λϑ − logϕ±(λ)}:

Proposition 5.3. The following holds:

(i) J± is lower semicontinuous, convex and takes values in [0,+∞).
(ii) J± is finite on (α±,+∞) and infinite on (−∞, α±).

(iii) J± is smooth on (α±,+∞) and the derivative J ′± satisfies limϑ→+∞ J ′±(ϑ) = λc. In particular,
limϑ→+∞ J±(ϑ) =+∞ if λc > 0.

(iv) If λc = 0 then J± is strictly decreasing on (α±,+∞). If λc > 0 then there exist ϑ±
c ∈ (α±,+∞) such that J± is

strictly decreasing on (α±, ϑ±
c ), strictly increasing on (ϑ±

c ,+∞). Moreover:

• v = 0 if and only if λc = 0,
• if v > 0 then ϑ+

c = 1/v and J+(ϑ+
c ) = 0,

• if v < 0 then ϑ−
c =−1/v and J−(ϑ−

c )= 0.
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(v) The value J±(α±) admits the following characterization

J±(α±) = lim
ϑ↘α±

J±(ϑ)=
{+∞ if P(T±1 = α±) = 0,

< ∞ otherwise.
(29)

Remark 5.4. Due to the above result, J± is a good rate function (i.e. {J± ≤ u} is compact for all u ∈R) if and only if
λc > 0.

Proof of Proposition 5.3. Without loss of generality we prove the above statements only for J+.
The proof of point (i) is standard (cf. [6, Chapter 2]) and we omit it. We now prove point (ii). The fact that

J+(ϑ)=∞ for ϑ ≤ 0 follows from Lemma 5.1(i). We now show that if α+ > 0 then J+(ϑ) =∞ also for ϑ ∈ (0, α+).
For such ϑ , by (25) in Lemma 5.1 it holds

lim
λ→−∞

logϕ+(λ)

λϑ
= lim

λ→−∞
(logϕ+)′(λ)

ϑ
= α+

ϑ
> 1

and therefore

J+(ϑ) ≥ lim
λ→−∞λϑ

(
1 − logϕ+(λ)

λϑ

)
=+∞.

Take now ϑ > α+. Since by Lemma 5.1 (logϕ+)′(λ) is a strictly increasing function which takes values in (α+,+∞),
there exists a unique λ̃+(ϑ) such that

ϑ = (logϕ+)′
(
λ̃+(ϑ)

)
. (30)

Then J+(ϑ) = ϑλ̃+(ϑ)− logϕ+(λ̃+(ϑ)) which is finite. This concludes the proof of (ii).
We now move to point (iii). Observe that, by (30) and Lemma 5.1, λ̃+ is the inverse function of (logϕ+)′. By

Lemma 5.1 (logϕ±)′ is smooth on (−∞, λc) and (logϕ±)′′ > 0 on (−∞, λc). Hence, by the implicit function the-
orem, the function λ̃+ is smooth on (α+,+∞) and tending to λc as ϑ → +∞ (see (26)). Hence J+ is smooth on
(α+,+∞) and

J ′+(ϑ) = ϑλ̃′+(ϑ)+ λ̃+(ϑ)− (logϕ+)′
(
λ̃+(ϑ)

)
λ̃′+(ϑ) = λ̃+(ϑ), (31)

thus implying that limϑ→+∞ J ′+(ϑ) = λc. This concludes the proof of (iii).
We now prove point (iv). By Lemma 5.1 λ̃+ is strictly increasing on (α+,+∞), limϑ↘α+ λ̃+(ϑ) = −∞ and

limϑ→∞ λ̃+(ϑ) = λc. If λc = 0, then λ̃+ must be negative and from (31) we conclude that J+ is strictly decreasing
on (α+,+∞). If λc > 0, then there exists a unique ϑ+

c such that λ̃+(ϑ+
c ) = 0, λ̃+ is negative on the left of ϑ+

c and is
positive on the right of ϑ+

c . Hence, by (31) we see that J+ has a unique minimum at ϑ = ϑ+
c . In this case, from (30)

we have

ϑ+
c = (logϕ+)′(0) = ϕ′+(0)

ϕ+(0)
= E(T11(T1 < ∞))

P(T1 < ∞)
.

If v > 0, then by the LLN in Proposition 4.2 we get that T1 < ∞ a.s. and ϑ+
c = E(T1) = 1/v (cf. Remark 5.2). Hence,

recalling that λ̃+(ϑ+
c ) = 0,

inf
ϑ∈RJ+(ϑ) = J+

(
ϑ+

c

)= λ̃+
(
ϑ+

c

)
ϑ+

c − logϕ+
(
λ̃+

(
ϑ+

c

))=− logP(T1 < ∞) = 0.

The case v < 0 can be treated similarly. We conclude the proof by showing that v = 0 ⇔ λc = 0. Trivially, v = 0 ⇔
P(w1 = ±1) = 1

2 ⇔ P(w1 = 1)P(w1 = −1) = 1
4 . The last identity can be rewritten as f+(0)f−(0) = 1

4 , where the
function f+, f− are defined as in (20). Due to the characterization of λc given after (28), we conclude that the last
identity is equivalent to λc = 0.
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To derive point (v) we note that by point (iv) the limit in (29) exists. We first assume P(T1 = α+) = 0. Taking δ > 0
and λ < 0 we can bound

ϕ+(λ) ≤ eλα+P(T1 ≤ α+ + δ)+ eλ(α++δ)P(T1 > α+ + δ),

thus implying

J+(α+) ≥ λα+ − logϕ+(λ) ≥− log
[
P(T1 ≤ α+ + δ)+ eλδP(T1 > α+ + δ)

]
.

To get that J+(α+) = +∞ it is enough to take first the limit λ →−∞ and afterwards the limit δ → 0. Since J+ is
also l.s.c. one has limϑ↘α+ J+(ϑ) ≥ J+(α+) and therefore one gets (29).

Assume, on the other hand, that P(T1 = α+) > 0. The fact that J+(α+) < ∞ follows by the LDP for Tn (cf.
Section 5.1) and the characterization of α+ given in Proposition 4.3(ii). Indeed we can bound

−J+(α+) ≥ lim
n→∞

1

n
logP

(
Tn

n
= α+

)
= lim

n→∞
1

n
logP(τ1 = α+,w1 = 1)n

= logP(τ1 = α+,w1 = 1)= logP(T1 = α+) > −∞.

To see that J+ is right-continuous at α+ observe that by lower semicontinuity J+(α+) ≤ limϑ↘α+ J+(ϑ). We claim
that J+(α+) ≥ limϑ↘α+ J+(ϑ). Indeed, fixed α0 > α+, by convexity it holds

J+(α+) ≥ 1

1 − λ
J+

(
(1 − λ)α+ + λα0

)− λ

1 − λ
J+(α0).

The claim then follows from the monotonicity of J+ on the right of α+. Combining the last observations we get
limϑ↘α+ J+(ϑ)= J+(α+) < ∞ and this concludes the proof of point (v). �

We now move to the study of the function I (ϑ) defined on R \ {0} as

I (ϑ) =
{

I+(ϑ) := supλ∈R{λ− ϑ logϕ+(λ)}, ϑ > 0,
I−(ϑ) := supλ∈R{λ+ ϑ logϕ−(λ)}, ϑ < 0. (32)

Lemma 5.5. It holds

lim
ϑ↗0

I−(ϑ)= lim
ϑ↘0

I+(ϑ) = λc, (33)

lim
ϑ↗0

I ′−(ϑ)= lim
ϑ↘0

I ′+(ϑ). (34)

In particular, the definition of I (ϑ) in Theorem 6 is well posed and I (0) = λc. Moreover, I is finite and C1 on
(−1/α−,1/α+), and it is smooth on (−1/α−,1/α+) \ {0}.

Proof. For any ϑ > 0 we have I (ϑ) = supλ≤λc
{λ− ϑ logϕ+(λ)} since ϕ+(λ) =+∞ if λ > λc. Moreover, always by

Lemma 5.1, for 0 < ϑ < 1/α+ the above supremum is attained at the unique value λ+(ϑ) < λc such that

(logϕ+)′
(
λ+(ϑ)

)= 1/ϑ, (35)

thus implying that λ+(ϑ) is a strictly decreasing function and limϑ↘0 λ+(ϑ) = λc (due to Lemma 5.1). In particular,
I (ϑ) = λ+(ϑ)− ϑ logϕ+(λ+(ϑ)) is finite on (0,1/α+) and moreover

lim
ϑ↘0

I (ϑ) = lim
ϑ↘0

{
λ+(ϑ)− ϑ logϕ+

(
λ+(ϑ)

)}= λc

since limλ↗λc logϕ+(λ) = logϕ+(λc) which is finite due to (28). This concludes the proof of (33) for I+. By similar
arguments one gets that, given ϑ ∈ (−1/α−,0) there is a unique value λ−(ϑ) solving the equation

(logϕ−)′
(
λ−(ϑ)

)=−1/ϑ. (36)
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The function λ− is strictly increasing on (−1/α−,0) where it holds I (ϑ) = λ−(ϑ) + ϑ logϕ−(λ−(ϑ)). As above
one gets that limϑ↗0 I−(ϑ) = λc, hence (33). Note that (33) implies that I is well defined in Theorem 6 and that
I (0) = λc. By the previous results we conclude also that I is finite on (−1/α−,1/α+).

Let us now prove (34) and that I is C1 on (−1/α−,1/α+) \ {0}. By the implicit function theorem and Lemma 5.1,
the function (0,1/α+) � ϑ → λ+(ϑ) ∈ (−∞, λc) is smooth. In particular, using (35), I+ is smooth on (0,1/α+)

where it holds

I ′+(ϑ) = d

dϑ

(
λ+(ϑ)− ϑ logϕ+

(
λ+(ϑ)

))
= λ′+(ϑ)− logϕ+

(
λ+(ϑ)

)− ϑ · (logϕ+)′
(
λ+(ϑ)

) · λ′+(ϑ)

= − logϕ+
(
λ+(ϑ)

)
. (37)

Hence, limϑ↘0 I ′+(ϑ) =− logϕ+(λc). By similar arguments and definitions we get that I− is smooth on (−1/α−,0)

where it holds

lim
ϑ↗0

I ′−(ϑ)= lim
ϑ↗0

d

dϑ

(
λ−(ϑ)+ ϑ logϕ−

(
λ−(ϑ)

))= logϕ−(λc).

To conclude the proof of (34) it remains to show that logϕ−(λc) =− logϕ+(λc). To this aim we observe that

logϕ−(λc)+ logϕ+(λc) = log
[
ϕ+(λc)ϕ−(λc)

]= log

(
1

4f+(λc)f−(λc)

)
= 0

due to (28), its analogous version for ϕ−(λc) and since, by definition, λc is the unique solution of 4f−(λ)f+(λ) = 1.
This concludes the proof of (34) and that I is smooth on (−1/α−,1/α+) \ {0}. Due to (34) one easily gets that I is
differentiable at 0 and I ′(0) equals the limits in (34). This implies that I is C1 on (−1/α−,1/α+). �

Combining Lemmas 5.1, 5.5 and Proposition 5.3 we are finally able to prove Theorem 7 and therefore also Theo-
rem 2 due to Lemma 4.1.

Proof of Theorem 7. Below the labeling of items is as in Theorem 2.
The fact that I is finite and C1 on (− 1

α− , 1
α+ ) and infinite outside [− 1

α− , 1
α+ ] follows from (19) and Proposition 5.3.

This proves item (i).
To prove item (ii) note that if P(T1 = α+) > 0 then α+ > 0. Hence, by (29) we get

lim
ϑ↗ 1

α+
I (ϑ) = lim

ϑ↗ 1
α+

ϑJ+
(

1

ϑ

)
= J+(α+)

α+
< ∞

and the last term equals I (1/α+) by definition of I . If, on the other hand, P(T1 = α+) = 0, then by (29) we get

lim
ϑ↗ 1

α+
I (ϑ) = lim

u↘α+

J+(u)

u
=+∞.

The correspondent statements for ϑ ↘−1/α− are obtained in the same way, and this concludes the proof of item (ii).
To see (iii) recall that I ′(ϑ)=− logϕ+(λ+(ϑ)) for λ ∈ (0,1/α+) (see (37)). Observe now that lim

ϑ↗ 1
α+

λ+(ϑ)=
−∞ (due to Lemma 5.1(ii) and (35)). This implies that

lim
ϑ↗ 1

α+

(− logϕ+
(
λ+(ϑ)

))=− logϕ+(−∞) =+∞.

Similarly one sees that

lim
ϑ↘− 1

α−
I ′(ϑ) = lim

ϑ↘− 1
α−

logϕ−
(
λ−(ϑ)

)= logϕ−(−∞) =−∞.
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We now consider item (iv). We observe that I+, I− are l.s.c. because they can be expressed as pointwise suprema
of continuous functions, and by (33) they attach in 0 in a continuous fashion. We now prove that I is convex. Being
suprema of families of linear functions, I+ and I− are convex. Therefore I is convex on (0,+∞) and (−∞,0)

separately. To prove the convexity on all R it remains to show that I is also convex in ϑ = 0. Since the left and
right branches of I are differentiable, it suffices to show that the left derivative at ϑ = 0 is non greater than the
right derivative. In fact, they are equal due to (34). Let us now prove that I is strictly convex on the closure of
(−1/α−,1/α+). We know that I ′(ϑ) = logϕ−(λ−(ϑ)) on (−1/α−,0] and I ′(ϑ) = − logϕ+(λ+(ϑ)) on [0,1/α+)

(see the proof of Lemma 5.5). By Lemma 5.1(ii) logϕ± is strictly increasing with positive derivative, while we know
that λ+ is a strictly decreasing function on (0,1/α+) and λ− is a strictly increasing on (−1/α−,0). Using also that
I ′ is continuous at 0 we conclude that I ′ is strictly increasing on (−1/α−,1/α+), hence I is strictly convex on
(−1/α−,1/α+).

We conclude with item (v). We know that I ′ is strictly increasing on (−1/α−,1/α+). Due to item (iii) it simple
to conclude that there exists a unique minimum point ϑ∗ ∈ (−1/α−,1/α+) such that I is strictly decreasing on
(−1/α−, ϑ∗) and strictly increasing on (ϑ∗,1/α+). It remains to prove that ϑ∗ = v.

If v > 0 then by Proposition 5.3(iv) v = 1/ϑ+
c and so I (v) = vJ+(1/v) = (1/ϑ+

c )J+(ϑ+
c ) = 0. If v < 0 then

v = −1/ϑ−
c and so I (v) = −vJ−(−1/v) = (1/ϑ−

c )J−(ϑ−
c ) = 0. If, finally, v = 0 then again by Proposition 5.3(iv)

we have 0 = λc = I (0) = I (v). In all cases I (v) = 0 and since I is non-negative we conclude that v = ϑ∗. �

6. Proof of Theorem 6(ii)

Below we show how one can deduce the LDP for the process Z itself from the LDP for the hitting times. Due to
Theorem 4.1.11 in [6], the LDP for Zt/t holds with rate function I and speed t if we show that

lim
ε→0

lim
t→∞

1

t
logP

(
Zt

t
∈ (ϑ − ε,ϑ + ε)

)
≥−I (ϑ), (LB)

lim
ε→0

lim
t→∞

1

t
logP

(
Zt

t
∈ (ϑ − ε,ϑ + ε)

)
≤−I (ϑ). (UB)

6.1. The lower bound

Given ϑ �= 0 and δ, c ∈ (0,1) we define the events

At = At(δ,ϑ) := {
(1 − δ)t < T�ϑt� < (1 + δ)t

}
,

Bt = Bt(δ, c) :=
{
ν(t + δt)− ν(t − δt)≤ ct

}
.

Lemma 6.1. For any ϑ �= 0 and δ, c ∈ (0,1) there exists t̃ = t̃ (c) > 0 such that

At ∩Bt ⊆
{
Zt/t ∈ (ϑ − 2c,ϑ + 2c)

}
for all t > t̃ .

Proof. Take any t > 0 and assume At ∩Bt holds. Then, due to assumption (A1),∣∣Zt − �ϑt�∣∣ = |Zt −ZT�ϑt� | = |Wν(t) −Wν(T�ϑt�)|
≤ ν(t ∨ T�ϑt�)− ν(t ∧ T�ϑt�) ≤ ν(t + δt)− ν(t − δt) ≤ ct.

Hence Zt ∈ [�ϑt� − ct, �ϑt� + ct], thus leading to the thesis. �

Lemma 6.2. For any ϑ �= 0 and δ ∈ (0,1) it holds

lim
t→∞

1

t
logP(At ) ≥−I (ϑ) =

{−ϑJ+( 1
ϑ
) if ϑ > 0,

ϑJ−(− 1
ϑ
) if ϑ < 0.
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Proof. We give the proof for ϑ > 0, the one for ϑ < 0 being the same. Note that, fixed ε > 0, for t large enough it
holds

1

t
logP(At ) ≥ 1

t
logP

(
1 − δ

ϑ
+ ε <

T�ϑt�
�ϑt� <

1 + δ

ϑ

)
.

Thanks to the LDP for the hitting times Tn this implies that

lim
t→∞

1

t
logP(At ) ≥ ϑ lim

n→∞
1

n
logP

(
1 − δ

ϑ
+ ε <

Tn

n
<

1 + δ

ϑ

)

≥ −ϑ inf
( 1−δ

ϑ
+ε, 1+δ

ϑ
)

J+ ≥−ϑJ+
(

1

ϑ

)

as long as ε is chosen small enough so that 1
ϑ
∈ ( 1−δ

ϑ
+ ε, 1+δ

ϑ
). �

Since τi ’s are positive i.i.d. random variables, for every p0 ∈ (0,1) we can find some η > 0 such that p := P(τi ≥
η) > p0. In particular, the i.i.d. random variables ri ’s with ri := 1(τi ≥ η) are Bernoulli of parameter p. They are a
useful tool to bound the probability of Bc

t :

Lemma 6.3. For any ϑ �= 0 and any c ∈ (0,1), there exists a constant δ∗ = δ∗(θ, c) ∈ (0,1) depending only on θ, c

such that, for all δ ∈ (0, δ∗], it holds

lim
t→∞

P(Bc
t )

P(At )
= 0.

Proof. We restrict to the case ϑ > 0, being the proof for ϑ < 0 similar. We observe that the event Bc
t implies the event

∞⋃
j=0

{
ν(t − δt)= j,

�ct�−1∑
�=1

τj+1+� ≤ 2δt

}
.

Since the event {ν(t − δt) = j} depends only on τ1, τ2, . . . , τj+1, by independence we get

P
(
Bc

t

) ≤ ∞∑
j=0

P
(
ν(t − δt) = j

)
P

(�ct�−1∑
�=1

τj+1+� ≤ 2δt

)

= P

(�ct�−1∑
�=1

τ� ≤ 2δt

)
≤ P

(�ct�−1∑
�=1

r� ≤ 2δt/η

)
. (38)

Above we have used that τ� ≥ ηr�. Now we use Cramér Theorem for sums of i.i.d. p-Bernoulli r.v.’s. The associated
rate function is given by (cf. exercise 2.2.23 in [6])

Ip(x) =
{

x log x
p
+ (1 − x) log 1−x

1−p
if x ∈ [0,1],

+∞ otherwise,

with the convention that 0 log 0 := 0. Trivially, Ip is strictly decreasing on [0,p] and strictly increasing on [p,1],
while Ip(p) = 0. Let t∗ := �ct� − 1. Writing

1

t
logP

(�ct�−1∑
�=1

r� ≤ 2δt/η

)
= t∗

t

1

t∗
logP

(
1

t∗

t∗∑
�=1

r� ≤ 2δt

ηt∗

)
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and using that 2δt (ηt∗)−1 ≤ 3δ(ηc)−1 for t large enough, we get

lim
t→∞

1

t
logP

(�ct�−1∑
�=1

r� ≤ 2δt/η

)
≤−c inf

(−∞, 3δ
ηc
]
Ip. (39)

Now we have to choose carefully the constants in order to win. Fix ϑ > 0 and c ∈ (0,1). The function Ip(0) = log 1
1−p

is increasing in p and limp→1 Ip(0) =+∞. In particular, there exists p0 > 0 such that Ip(0) > ϑJ+(1/ϑ)/c for all
p ≥ p0. We fix η such that p := P(τi ≥ η) > p0.

If p = 1 then τi ≥ η a.s. In particular, equation (38) gives P(Bc
t ) ≤ 1(ct − 1 ≤ 2δt

η
), so by setting δ∗ = ηc/4 we

have that for any δ ≤ δ∗ and t large enough P(Bc
t )= 0. This, combined with Lemma 6.2, gives the thesis.

Assume, on the other hand, that p < 1. Recall that Ip(0) > ϑJ+(1/ϑ)/c. Since limε↘0 Ip(ε) = Ip(0) and Ip is
decreasing near 0, we can fix ε0 > 0 such that Ip(ε) > ϑJ+(1/ϑ)/c for all ε ∈ [0, ε0]. Note that the (now fixed) con-
stants η,p, ε0 depend only on ϑ, c. To conclude let δ∗ = (ηcε0/4)∧1. Then for each δ ∈ (0, δ∗] we have 3δ(ηc)−1 ≤ ε0
and therefore the last term in (39) is strictly bounded from above by −ϑJ+(1/ϑ). Coming back to (38) and (39) we
conclude that

lim
t→∞

1

t
logP

(
Bc

t

)
< −ϑJ+(1/ϑ). (40)

The above bound together with Lemma 6.2 implies the thesis. �

Combining Lemmas 6.2 and 6.3 we can prove the following key lower bound:

Lemma 6.4. For any ϑ �= 0 and ε ∈ (0,1/2) the following holds

lim
t→∞

1

t
logP

(
Zt

t
∈ (ϑ − ε,ϑ + ε)

)
≥−I (ϑ). (41)

Proof. Given ε > 0, take c := ε/2 and δ := δ∗(ϑ, c) in the definition of At,Bt given in Lemma 6.1, where the constant
δ∗ is as in Lemma 6.3. Due to Lemma 6.1 for t large enough we have

P

(
Zt

t
∈ (ϑ − ε,ϑ + ε)

)
≥ P(At ∩Bt) ≥ P(At )− P

(
Bc

t

)= P(At )

(
1 − P(Bc

t )

P(At )

)

which implies

1

t
logP

(
Zt

t
∈ (ϑ − ε,ϑ + ε)

)
≥ 1

t
logP(At )+ 1

t
log

(
1 − P(Bc

t )

P(At )

)
.

Using Lemma 6.2 to control the first term in the r.h.s. and Lemma 6.3 to control the second term in the r.h.s. we get
the thesis. �

Being (41) uniform in ε ∈ (0,1/2), one can let ε → 0 to conclude that the lower bound (LB) holds for all ϑ �= 0. If
ϑ = 0, take any ε > 0 and let u = ε/2. Then by Lemma 6.4 one has

lim
t→∞

1

t
logP

(
Zt

t
∈ (−ε,+ε)

)
≥ lim

t→∞
1

t
logP

(
Zt

t
∈ (u− ε/4, u+ ε/4)

)
≥−I (u).

Letting then ε → 0 and therefore u → 0 gives (recall Theorems 2, 7)

lim
ε→0

lim
t→∞

1

t
logP

(
Zt

t
∈ (−ε, ε)

)
≥− lim

u→0
I (u) =−I (0).

This concludes the proof of (LB) for all ϑ ∈R.
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6.2. The upper bound

We now move to the proof of (UB). This is rather easy if the asymptotic velocity v vanishes.

Lemma 6.5. If v = 0 then (UB) holds for all ϑ ∈R.

Proof. If ϑ = 0 it is enough to observe that by the LLN Zt/t → 0 almost surely as t →∞, and therefore in proba-
bility. Since I (0)= 0 by Theorems 2, 7, we get the thesis.

To deal with the case ϑ �= 0, recall that v = 0 ⇔ λc = 0 ⇔ J± are strictly decreasing on (α±,∞) (see Proposi-
tion 5.3). Since J+ ≡+∞ on (−∞, α+) and due to (29) we conclude that J+ :R→[0,+∞) is a decreasing extended
function. Fix now any ϑ > 0 and ε > 0 such that ϑ − ε > 0. Then, given any ε̃ > 0, for t large it holds

P

(
Zt

t
∈ (ϑ − ε,ϑ + ε)

)
≤ P

(
Zt

t
> ϑ − ε

)
≤ P

(
Zt ≥

⌊
(ϑ − ε)t

⌋)

≤ P(T�(ϑ−ε)t� ≤ t)= P

(
T�(ϑ−ε)t�
�(ϑ − ε)t� ≤ 1

ϑ − ε
+ ε̃

)
.

Hence, using the LDP for the hitting times Tn and the fact that J+ is decreasing,

lim
t→∞

1

t
logP

(
Zt

t
∈ (ϑ − ε,ϑ + ε)

)

≤ (ϑ − ε) lim
n→∞

1

n
logP

(
Tn

n
≤ 1

ϑ − ε
+ ε̃

)

≤−(ϑ − ε) inf
(−∞, 1

ϑ−ε
+ε̃)

J+ =−(ϑ − ε)J+
(

1

ϑ − ε
+ ε̃

)
. (42)

Letting ε̃ → 0 and using that J+ is l.s.c. (see Proposition 5.3) we get that the first member of (42) is bounded from
above by −(ϑ − ε)J+(1/(ϑ − ε)). Taking now the limit ε → 0 and using again that J+ is l.s.c. we get the thesis for
ϑ > 0. The proof of (UB) for ϑ < 0 follows by similar arguments. �

We now prove that (UB) holds for all ϑ ∈ R assuming v > 0. The case v < 0 can be addressed in the same way.
The proof we present is based on a method introduced in [5], that we re-adapt to our setting. The strategy consists in
reducing the problem to proving the following:

Proposition 6.6. Assume v > 0 and define St := inf{s ≥ t :Zs ≤ 0}. Then it holds

lim
t→∞

1

t
logP(St < ∞) ≤−I (0). (43)

The fact that the above result implies that (UB) holds for all ϑ ∈R can be seen reasoning as in [5], page 1017, with
minor modifications. For completeness we give a sketch of the proof in Appendix A.

A detailed proof of Proposition 6.6 is, on the other hand, given below. This choice is due to the presence of a small
gap [13] in the proof presented in [5] (see formula (4.14) on page 1020 there), and to the fact that some additional
arguments are necessary since our holding times can be in general arbitrarily small while in [5] they are bounded from
below by 1.

Proof of Proposition 6.6. Due to Proposition 5.3, since v > 0, λc > 0 and the critical point ϑ±
c of J± is finite and

positive. Take any u ∈ (0,1/ϑ+
c ) and fix c > 1 integer such that c/u > ϑ−

c . Let, in order to simplify the notation,
bt := P(St < ∞) with the convention that bt = 1 if t < 0. Recall that T�tu� is the hitting time of �tu�, and define

T̃0 :=
{ inf{s ≥ T�tu� : Zs = 0}, if T�tu� < ∞,
+∞ otherwise.
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Then we have

bt ≤ P(T�tu� ≥ t)+ P(T�tu� < t, T̃0 − T�tu� ≥ ct, St < ∞)

+ P(T�tu� < t, T̃0 − T�tu� < ct,St < ∞). (44)

For the first term in the r.h.s. of (44) the LDP for the hitting times Tn, n →∞, implies that

lim
t→∞

1

t
logP

(
T�tu�
�tu� ≥ t

�tu�
)
≤ lim

t→∞
1

t
logP

(
T�tu�
�tu� ≥ 1

u

)
≤−uJ+(1/u) =−I (u). (45)

Above we have used that J+ is increasing on (ϑ+
c ,+∞).

For the second term we apply the strong Markov property at time T�tu� (cf. Definition 2.1(iv)) to get

P(T�tu� < t, T̃0 − T�tu� ≥ ct, St < ∞) ≤ P(T−�tu� ≥ ct).

Therefore, by the LDP for the hitting times T−n, n →∞, and the fact that J− is increasing on (ϑ−
c ,+∞), we obtain

lim
t→∞

1

t
logP(T�tu� < t, T̃0 − T�tu� ≥ ct, St < ∞) ≤ lim

t→∞
1

t
logP

(
T−�tu�
�tu� ≥ c

u

)
≤ −uJ−(c/u) =−cI (−u/c). (46)

For the third term in the r.h.s. of (44) one has to deal with the critical points of J±, so the idea is to localize things.
Fix m ∈N positive. Fix 0 < u′ < u, hence 1/�tu� ≤ 1/tu′ for t large (as we assume). We take u′ very near to u such
that 1/u′ > ϑ+

c and c/u′ > 1/ϑ−
c . Then

P

(
T�tu�
�tu� <

1

u′
,
T̃0 − T�tu�

�tu� <
c

u′
, St < ∞

)

=
m∑

k=1

mc∑
�=1

P

(
T�tu�
�tu� ∈

[
k − 1

mu′
,

k

mu′

)
,
T̃0 − T�tu�

�tu� ∈
[
�− 1

mu′
,

�

mu′

)
, St < ∞

)

≤
m∑

k=1

mc∑
�=1

P

(
T�tu�
�tu� ∈

[
k − 1

mu′
,

k

mu′

])
P

(
T−�tu�
�tu� ∈

[
�− 1

mu′
,

�

mu′

])
b
t− (k+�)t

m
(47)

where we have applied the strong Markov property at times T�tu� and T̃0 and used that if s ≤ t then bs ≥ bt since
Ss ≤ St . Now we analyze each term separately. Define

w+(r, δ) := max
{∣∣J+(s)− J+(t)

∣∣ : s, t ∈ [
ϑ+

c , r
]
, |s − t | ≤ δ

}
,

(48)
w−(r, δ) := max

{∣∣J−(s)− J−(t)
∣∣ : s, t ∈ [

ϑ−
c , r

]
, |s − t | ≤ δ

}
,

with the convention that w±(r, δ) = 0 if r < ϑ±
c . The LDP for the hitting times Tn then gives

lim
t→∞

1

t
logP

(
T�tu�
�tu� ∈

[
k − 1

mu′
,

k

mu′

])

≤−u inf
[ k−1

mu′ ,
k

mu′ ]
J+ ≤−uJ+

(
k/mu′

)+ uw+
(

k

mu′
,

1

mu′

)
=− k

m
I

(
u′m
k

)
+ uw+

(
k

mu′
,

1

mu′

)
. (49)

Similarly we get

lim
t→∞

1

t
logP

(
T−�tu�
�tu� ∈

[
�− 1

mu′
,

�

mu′

])

≤−u inf
[ �−1
mu′ ,

�
mu′ ]

J− ≤−uJ−
(
�/mu′

)+ uw−
(

�

mu′
,

1

mu′

)
=− �

m
I

(
−um′

�

)
+ uw−

(
�

mu′
,

1

mu′

)
. (50)
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We set

Wk,� := w+
(

k

mu′
,

1

mu′

)
+w−

(
�

mu′
,

1

mu′

)
,

W := max

{
w+

(
1

u′
,

1

mu′

)
,w−

(
c

u′
,

1

mu′

)}
.

The above inequalities (49) and (50), and the convexity of I , we have for any ε > 0 and t large enough that

P

(
T�tu�
�tu� ∈

[
k − 1

mu′
,

k

mu′

])
P

(
T−�tu�
�tu� ∈

[
�− 1

mu′
,

�

mu′

])

≤ etε+u′tWk,�e−t[ k
m

I ( u′m
k

)+ �
m

I (− u′m
�

)]

≤ etε+u′tWk,�e−t
(k+�)

m
I (0) ≤ e

tε−t
(k+�)

m
(I (0)−W

c0
)
, (51)

where c0 := min{ϑ+
c , ϑ−

c }. We explain the last bound. Note that Wk,� = 0 if k ≤ ϑ+
c mu′ and � ≤ ϑ−

c mu′. On the other
hand, since k

mu′ ≤ 1
u′ and �

mu′ ≤ c
u′ , we have Wk,� ≤ W . Hence it holds

u′Wk,� ≤ u′W1
(
k + � > c0mu′

)≤ (k + �)

c0m
W. (52)

Let now

J := min
{
I (u), cI (−c/u), I (0)

}−W/c0. (53)

Then putting (44), (45), (46), (47) and (51) we have

bt ≤ e−tI (u)+tε + e−tcI (−u/c)+tε +
m∑

k=1

mc∑
�=1

etε−t
(k+�)

m
J b

t− (k+�)t
m

.

Note that if k + � > m, then b
t− (k+�)t

m
= 1. Hence we get

bt ≤
(
2 +m2c

)
e−tJ+tε + etε

∑
(k,�):1≤k≤m,1≤�≤mc

k+�≤m

e−t
(k+�)

m
J b

t− (k+�)t
m

. (54)

Call x := limt→∞ 1
t

logbt ∈ [−∞,0]. Since, given a finite family of functions {fi(t)}i∈I , it holds limt→∞ 1
t
×

log(
∑

i fi(t)) ≤ maxi∈I limt→∞ 1
t

log(fi(t)) from (54) we get

x ≤ ε + max
j :2≤j≤m

{
−jJ

m
+
(

1 − j

m

)
x

}
= x + ε − min

j :2≤j≤m

j (J + x)

m
.

The above bound holds for any ε > 0, hence we conclude that 0 ≤−minj :2≤j≤m
j(J+x)

m
. This implies that J + x ≤ 0,

i.e. limt→∞ 1
t

logbt ≤−J . Now, let m →∞ first, so that W → 0 due to the fact that J± are even C1 on (α±,∞) and
α± < ϑ±

c (see Proposition 5.3 and recall that 1/u′ > ϑ+
c , c/u′ > ϑ−

c ). Now we let u → 0. By Theorems 2, 7 and since
v > 0, min{I (u), cI (−c/u), I (0)} converges to I (0) as u → 0. This leads to the thesis. �

7. Proof of Theorem 8 (Gallavotti–Cohen type symmetry)

Due to the definition of I , I (ϑ) = I (−ϑ)+ cϑ for all ϑ ∈R if and only if

J+(ϑ) = J−(ϑ)+ c, ∀ϑ > 0. (55)
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We now prove that (55) and item (iii) with c =− logC are equivalent. To this aim, assume that ϕ+(λ) = Cϕ−(λ) for
all λ ≤ λc and some C > 0. Then logϕ+(λ) = logϕ−(λ) + logC = logϕ−(λ) − c for all λ ∈ R. Hence, taking the
Legendre transform and recalling the definition (6) of J± as Legendre transform of logϕ±, we get (55).

On the other hand suppose that (55) holds. We claim that J+(ϑ) = J−(ϑ)+c also for all ϑ ≤ 0. Indeed, since α± ≥
0, the claim follows from Proposition 5.3(ii) for ϑ < 0. If α+, α− are both positive then Proposition 5.3(ii) implies the
claim also for ϑ = 0. If α+, α− are both zero, then (55) and the right continuity of J± at α± (see Proposition 5.3(v))
imply the claim for ϑ = 0. We now show that α− and α+ must be either both positive or both zero, thus concluding
the proof of our claim. Suppose for example that α− = 0 and α+ > 0. Then we would have J+(ϑ) = ∞ for ϑ ∈
(0, α+) (by Proposition 5.3(ii)). This fact together with (55) implies that J−(ϑ) = +∞ for ϑ ∈ (0, α+). Applying
Proposition 5.3(ii) to J− we conclude that α+ ≤ α− thus getting a contradiction.

Due to (55) and the above claim we conclude that J+(ϑ) = J−(ϑ) + c for all ϑ ∈ R. J+(ϑ), J−(ϑ) + c are the
Legendre transforms of logϕ+, logϕ−− c, respectively, thought as extended functions from R to (−∞,+∞). Due to
Lemma 5.1 logϕ+, logϕ−− c are convex, l.s.c. and not everywhere infinite. Hence, by the Fenchel–Moreau Theorem
(cf. [2]) we conclude that logϕ+ = logϕ− − c, i.e. item (iii) holds with c =− logC.

We now prove that item (ii) implies item (iii). To this aim assume that τi and wi are independent. Then f+(λ) =
E(eλτi )p and f−(λ) = E(eλτi )q for all λ ≤ λc. Combining this with (21) we get

ϕ+(λ)

ϕ−(λ)
= f+(λ)

f−(λ)
= p

q
=: C, ∀λ ≤ λc,

which is item (iii).
Finally we prove that item (iii) implies item (ii). Hence assume ϕ+(λ) = Cϕ−(λ) for all λ ≤ λc. By (21) we

have ϕ+(λ)
ϕ−(λ)

= f+(λ)
f−(λ)

= C. Moreover, taking λ = 0 in the previous identity, from the definition of f± we deduce that
C = p/q .

In particular, given λ,γ ≤ 0, we can write

E
(
eλτi+γwi

) = E
(
eγ eλτi 1(wi = 1)

)+E
(
e−γ eλτi 1(wi =−1)

)
= eγ f+(λ)+ e−γ f−(λ) = f+(λ)

(
eγ + e−γ q

p

)
.

On the other hand:

E
(
eλτi

)= E
(
eλτi 1(wi = 1)

)+E
(
eλτi 1(wi =−1)

)= f+(λ)

(
1 + q

p

)
= f+(λ)

p
,

E
(
eγwi

)= eγ p + e−γ q = p

(
eγ + e−γ q

p

)
.

Putting all together, we conclude that

E
(
eλτi+γwi

)= f+(λ)

(
eγ + e−γ q

p

)
=
(

f+(λ)

p

)(
p

(
eγ + e−γ q

p

))
= E

(
eλτi

)
E
(
eγwi

)
,

thus implying the independence of τi,wi .

8. Proof of Theorem 3 (LDP via Gärtner–Ellis theorem for Markov r.w.’s)

We introduce a Z-valued process (Nt )t∈R+ given by the cell number of Xt . More precisely, we set Nt := n if Xt = vn

for some v ∈ V \ {v}. Note that the cell number process is in general not a Markovian process and that |X∗
t −Nt | ≤ 1.

We introduce the constant κ defined as κ := max{r(x) : x ∈ V}, where r(x) = ∑
y:(x,y)∈E r(x, y). Due to the

periodicity (2), κ is a well defined constant in (0,+∞).

Lemma 8.1. For each n ∈ Z \ {0} and t ∈R+ it holds P(Nt = n) ≤ eκt |n|−|n| log |n|. In particular, for each λ ∈ R and
t ∈R+ it holds E(eλNt ) < +∞.
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Proof. The event {Nt = n} implies that the r.w. X has performed at least |n| jumps within time t . On the other hand,
by definition of κ , the random walk X waits at each x ∈ V an exponential time of mean at least 1/κ . Hence (by
a coupling argument) P(Nt = n) ≤ P(Zt ≥ |n|), where Zt is a Poisson random variable with intensity κt . Since
E(eaZt )= eκt (ea−1), by Chebyshev inequality with a = log |n| we get

P(Nt = n)≤ P
(
Zt ≥ |n|)≤ e−|n| log |n|E

(
eZt log |n|)= e−|n| log |n|+κt (|n|−1),

thus proving the bound on P(Nt = n). As a consequence, we obtain

E
(
eλNt

)≤ 1 + 2
∞∑

n=1

eλ|n|+κt |n|−|n| log |n| < +∞.
�

We now define a new function F : (V \ {v})×R×R+ � (v,λ, t) → F(v,λ, t) ∈R+ as

F(v,λ, t) =
∑
n∈Z

eλnP(Xt = vn) = E
(
eλNt 1(Xt = vn for some n ∈ Z)

)
. (56)

Recall that, given v �= w in V \ {v}, we have set

r(v) := r(vn), r−(w,v) := r(wn−1, vn), r0(w,v) := r(w,v), r+(w,v) := r(wn+1, vn).

Lemma 8.2. Given λ ∈ R consider the finite matrix A(λ) defined in (11). Consider the vector-valued function R+ �
t �→ F (λ)(t) ∈RV \{v} defined as F (λ)(t)v := F(v,λ, t). Then F (λ)(·) is C1 in t and

∂tF
(λ)(t) =A(λ)F (λ)(t). (57)

Proof. Fixed v,λ, we write F(v,λ, ·) as the function series F(v,λ, t) =∑
n∈Z fn(t), where fn(t) = eλnP(Xt = vn).

By [27, Theorem 2.8.2], the function R+ � t �→ P(Xt = vn) ∈ [0,1] is differentiable and moreover

∂tP(Xt = vn) = −r(vn)P(Xt = vn)

+
∑

w∈V \{v,v}

[
r(wn−1, vn)P(Xt = wn−1)

+ r(wn, vn)P(Xt = wn)+ r(wn+1, vn)P(Xt = wn+1)
]
. (58)

Then, by Lemma 8.1, we conclude that, for M > 0 and n ∈ Z with |n| ≥ 2, it holds

‖fn‖L∞[−M,M] ≤ e|λ|·|n|+κM−|n| log |n|,

‖∂tfn‖L∞[−M,M] ≤ 4κ|V |e|λ|·|n|+κ(|n|+1)M−(|n|−1) log(|n|−1).

The space C1[−M,M] (of functions C1 on (−M,M), such that they and their first derivates have continuous exten-
sions to [−M,M]) is a Banach space endowed with the norm ‖f ‖ := ‖f ‖L∞[−M,M] +‖∂tf ‖L∞[−M,M]. We therefore
conclude that F(v,λ, t) =∑

n∈Z fn(t) belongs to C1(R) and ∂tF (v,λ, t) =∑
n∈Z f ′

n(t), i.e.

∂tF (v,λ, t) =
∑
n∈Z

eλn∂tP(Xt = vn)

= −r(v)F (v,λ, t)+
∑

w∈V \{v,v}

[
eλr−(w,v)+ r0(w,v)+ e−λr+(w,v)

]
F(w,λ, t).

This concludes the proof. �
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We can now conclude the proof of Theorem 3. Since |X∗
t −Nt | ≤ 1, it is enough to prove the same LDP for Nt/t .

Due to Lemma 8.2 we have F (λ)(t) = e(t−1)A(λ)F (λ)(1). Since the graph G = (V,E) is connected, Definition (56)
implies that the vector F (λ)(1) has strictly positive entries. In particular we can write

E
(
eλNt

)= e−κ(t−1)
∑

v,v′∈V \{v}

[
e[A(λ)+κ](t−1)

]
v,v′F

(
v′, λ,1

)
,

where κ := max{r(x) : x ∈ V}, as above. Note that A(λ) + κ is an irreducible matrix with nonnegative entries and
therefore, by Perron–Frobenius theorem, it has a simple positive eigenvalue γ̄ and an associated eigenvector with
strictly positive entries (a(v))v∈V \{v}, while any other eigenvalue γ̄ ′ is such that |γ̄ ′| ≤ γ̄ (in particular, R(γ̄ ′) <

R(γ̄ )). The above eigenvalue γ̄ is the so called Perron–Frobenius eigenvalue and equals the spectral radius of A(λ)+κ

(note that γ̄ = γ̄ (λ)). Call{
C(λ) := max{F(v,λ,1)/av : v ∈ V \ {v}},
c(λ) := min{F(v,λ,1)/av : v ∈ V \ {v}}.

Note that C(λ), c(λ) are positive constants. Then

E
(
eλNt

)≤ C(λ)e−κ(t−1)
∑

v,v′∈V \{v}

[
e[A(λ)+κ](t−1)

]
v,v′av′ = e(γ̄−κ)(t−1)C(λ)

∑
v∈V \{v}

av,

E
(
eλNt

)≥ c(λ)e−κ(t−1)
∑

v,v′∈V \{v}

[
e[A(λ)+κ](t−1)

]
v,v′av′ = e(γ̄−κ)(t−1)c(λ)

∑
v∈V \{v}

av.

It then follows that the limit limt→∞ 1
t

lnE(eλNt ) exists and equals γ̄ (λ) − κ , which corresponds to 
(λ) by the
previous discussion.

By finite-dimensional perturbation theory [25], the Perron–Frobenius eigenvalue γ̄ = γ̄ (λ) is differentiable in λ,
thus implying that 
(λ) is differentiable in λ. At this point the thesis follows from Gärtier–Ellis theorem (cf. [15,
Lemma V.4 and Theorem V.6]).

9. Proof of Theorem 5 (GC type symmetry for Markov r.w.’s)

We start with a technical result, that is also useful in the applications for the computation of the functions f±(λ).
Consider a generic stochastic process (Xt )t∈R+ as in Definition 2.1. Define

J1 := inf
{
t > 0 : Xt ∈ {−1∗,0∗,1∗},∃s ∈ (0, t) with Xs �= X0

}
,

and set

f̃±(λ) := E0∗
(
eλJ11(XJ1 =±1∗)

)
, f̃0(λ) := E0∗

(
eλJ11(XJ1 = 0∗)

)
. (59)

Lemma 9.1. If f̃0(λ) < 1, then f+(λ) = f̃+(λ)

1−f̃0(λ)
, f−(λ) = f̃−(λ)

1−f̃0(λ)
. If f̃0(λ) ≥ 1, then f+(λ) = f−(λ) =+∞.

Proof. We call Jk’s the consecutive times at which the stochastic process (Xt )t≥0 hits the states of type n∗:{
J0 := 0,

Jk := inf{t > Jk−1 : Xt ∈ {−1∗,0∗,1∗},∃s ∈ (Jk−1, t) with Xs �= XJk−1}, k ≥ 1.

We can write S =∑∞
k=0 1(XJ0 = · · · = XJk

= 0∗,XJk+1 ∈ {−1∗,1∗})Jk+1. Taking the exponential at both sides and
multiplying by 1(XS = 1∗) we get

eλS1(XS = 1∗)=
∞∑

k=0

1(XJ0 = · · · = XJk
= 0∗,XJk+1 = 1∗)eλJk+1 .
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Note that, by Definition 2.1, w.r.t. the probability measure P0∗(·|XJ0 = · · · = XJk
= 0∗,XJk+1 = 1∗), the ran-

dom variables eλ(Ji−Ji−1), 1 ≤ i ≤ k + 1, are independent with expectation E0∗(e
λJ1 |XJ1 = 0∗) if 1 ≤ i ≤ k and

E0∗(e
λJ1 |XJ1 = 1∗) if i = k + 1. Hence,

f+(λ) = E0∗
(
eλS1(XS = 1∗)

)
=

∞∑
k=0

P0∗(XJ1 = 0∗)kP0∗(XJ1 = 1∗)E0∗
(
eλJ1 |XJ1 = 0∗

)k
E0∗

(
eλJ1 |XJ1 = 1∗

)

=
∞∑

k=0

f̃0(λ)kf̃+(λ).

A similar expression holds for f−(λ). At this point it is immediate to derive the thesis. �

Let us now come back to the same context of Section 3.2: (Xt )t∈R+ is a Markov random walk on the quasi 1d
lattice G = (V,E), with positive rates r(x, y), (x, y) ∈ E , such that (2) and (12) hold. For the rest of this section,
we refer to Markov random walks without stating explicitly that they are Markov. Due to (12) in the figures of G,G
we draw only unoriented edges with the convention that for each unoriented edge {x, y} the graph in consideration
presents both the edge (x, y) and the edge (y, x).

Recall that given an edge (u, v) ∈ E in the fundamental graph G = (V ,E), we have defined (cf. (13)) r(u, v) =
r(π(u),π(v)) where π is the map V → V such that π(u) = u0 if u �= v and π(v) = v1 = 1∗. Given v ∈ V we set

r(v) :=
∑

y:(π(v),y)∈E
r
(
π(v), y

)
. (60)

Note that r(v) = r(v). We point out that the map π : V → V does not induce a graph embedding of G into G. Indeed,
problems come from the neighbors of v, v in G. Consider for example the fundamental graph G in Figure 3. Then
x0, y−1, z−1 are neighboring points of v0, while x1, y0, z0 are neighboring points of v1. Despite this phenomenon, the
map π induces an isomorphism between the family of paths (x0, x1, . . . , xm) in G from v to v with interior points in
V \ {v, v} and the family of paths (x′

0, x
′
1, . . . , x

′
m) in G from v0 = 0∗ to v1 = 1∗ with interior points in V \ {0∗,1∗},

moreover it holds r(xi, xi+1) = r(π(xi),π(xi+1)) for 0 ≤ i < m and r(xi) = r(π(xi)) for 0 ≤ i ≤ m. This property
will be used below.

By Theorem 8 the Gallavotti–Cohen type symmetry (14) is satisfied for some constant � if and only if
ϕ+(λ)/ϕ−(λ) = e� for all λ ≤ λc. On the other hand, by (21) and the above Lemma 9.1, it holds

ϕ+(λ)

ϕ−(λ)
= f+(λ)

f−(λ)
= f̃+(λ)

f̃−(λ)
, ∀λ ≤ λc. (61)

Given an integer m ≥ 1, let Am be the family of sequences (x0, x1, . . . , xm) such that x0 = v, xm = v, (xi, xi+1) ∈ E

for all i : 0 ≤ i < m and xi ∈ V \ {v, v} for all 0 < i < m. We call A∗
m the family of sequences satisfying the same

Fig. 3. Example of fundamental graph G.
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properties as above when exchanging the role of v and v. Then we can write

f̃+(λ) =
∞∑

m=1

∑
(x0,x1,...,xm)∈Am

∫
Rm−1+

dt1dt2 · · ·dtm−1e
∑m−1

i=0 (λ−r(xi ))ti

m−1∏
i=0

r(xi, xi+1)

=
{∑∞

m=1
∑

(x0,x1,...,xm)∈Am

∏m−1
i=0 r(xi, xi+1)

∏m−1
i=0

1
r(xi )−λ

if λ < minx∈V r(x),
+∞ otherwise.

(62)

A similar expression holds for f̃−(λ), with Am replaced by A∗
m.

Given γ = (x0, x1, . . . , xm) we set

Rγ :=
m−1∏
i=0

r(xi, xi+1), Sγ (λ) =
m−1∏
i=1

1

r(xi)− λ
.

Note that the product in Sγ (λ) starts from i = 1, hence all sites xi appearing in the product belong to V \ {v, v}. By
mean of this notation we can write

f̃+(λ) = 1

r(v)− λ

∞∑
m=1

∑
γ∈Am

Rγ Sγ (λ), f̃−(λ) = 1

r(v)− λ

∞∑
m=1

∑
γ∈A∗

m

Rγ Sγ (λ). (63)

Hence, due to (61), the Gallavotti–Cohen type symmetry (14) is satisfied for some constant � if and only if

∞∑
m=1

∑
γ∈Am

Rγ Sγ (λ) = e�
∞∑

m=1

∑
γ∈A∗

m

Rγ Sγ (λ), λ ≤ λc. (64)

Given γ = (x0, x1, . . . , xm) ∈Am we write γ̄ for the loop-erased version of γ . We recall that γ̄ is obtained by erasing
all the loops of γ in chronological order. More precisely, consider the following algorithm. Set i0 := 0 and, once
defined i0, i1, . . . , ik , set r := k if ik = m, otherwise (if ik < m) set

ik+1 := max{j : ik ≤ j < m and xj = xik } + 1

(recall that γ ∈Am visits v only as last point xm = v). Then γ̄ := (xi0 , xi1, . . . , xir ) (see Figure 4). Since γ ∈Am it
must be γ̄ ∈Ar . Note that

Rγ = Rγ̄ R
loop
γ , R

loop
γ :=

r−1∏
k=0

ik+1−2∏
i=ik

r(xi, xi+1), (65)

with the convention that
∏ik+1−2

i=ik
r(xi, xi+1) = 1 if ik+1 = ik + 1 (Rloop

γ is the contribution to Rγ given by factors
associated to the edges inside the loops).

We write γ † for the path in A∗
m going from v to v and obtained from γ by reversing the order out of the loops and

keeping the same order in the loops. More precisely, with the notation introduced above, it holds

γ † = (xir , � � �, xir−1, � � �, xir−2, � � �, xi1, � � �, xi0),

Fig. 4. Example of a path γ ∈ A9. γ̄ = (v, x1, x2, x3, x8, v), R
loop
γ = r(x3, x4)r(x4, x5)r(x5, x6)r(x6, x7), γ † = (v, x8, x7, x4, x5, x6, x3,

x2, x1, v).
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where the pieces marked by � � � are determined as follows. Take k : 1 ≤ k ≤ r . If ik = ik−1 + 1, then the piece
“xik , ���, xik−1 ” is indeed simply “xik , xik−1 .” If ik > ik−1+1, then the piece “xik , ���, xik−1 ” is given by “xik , xik−1 =
xik−1, xik−1+1, xik−1+2, . . . , xik−1 = xik−1 ” (see Figure 4).

We note that the transformation γ �→ γ † is an involute bijection from Am to A∗
m and that

(
γ †

)= (γ̄ )†, R
loop
γ = R

loop
γ † , Sγ (λ) = Sγ †(λ). (66)

The above identities, together with (64) and (65), imply the following criterion:

Criterion 1. The Gallavotti–Cohen type symmetry (14) is satisfied for some constant � if and only if

∞∑
m=1

∑
γ∈Am

R
loop
γ

(
Rγ̄ − e�Rγ̄ †

)
Sγ (λ) = 0, λ ≤ λc. (67)

In particular, (14) is satisfied for some constant � if it holds Rγ = e�Rγ † for any loop-free path from v to v.

If G is (v, v)-minimal, then trivially the above criterion implies that (14) is satisfied with � given by (15).
We now prove the reverse implication, in particular we show the following result:

Proposition 9.2. Suppose that the fundamental graph G is not (v, v)-minimal. Call R ⊂ (0,+∞)E the family of
vectors r := (r(e) : e ∈ E) for which (64) holds4 for λ ≤ 0 (instead of λ ≤ λc) and for some constant � which can
depend on r (i.e. � = �(r)). Then R has zero Lebesgue measure in (0,+∞)E .

Consider the oriented subgraph Ĝ = (V̂ , Ê) consisting of the points in V and edges in E that appear in some
path γ as γ varies in Am and m varies in {1,2, . . .}. Note that G is (v, v)-minimal if and only Ĝ is (v, v)-minimal.
Moreover, equation (64) for λ ≤ 0 (instead of λ ≤ λc) is the same for the two graphs G,Ĝ. Hence, to simplify the
notation below and without loss of generality, we assume from now on that G = Ĝ.

9.1. Proof of Proposition 9.2

Given r ∈CE we define �(r) ∈RE as the vector whose entries are the real part of the entries of r , i.e.

�(r)(e) := �(r(e)), e ∈E.

We define �∗ ⊂C×CE as the set of vectors (λ, r) satisfying the following properties:

(i) �(r) ∈ (0,+∞)E ,
(ii) |r(e)| < 2�(r(e)) ∀e ∈E,

(iii) −�(λ) > 3
∑

e∈E �(r(e))+ 1.

Note that −�(λ) > 0 and that � := �∗ ∩ (R× RE) is simply given by the elements (λ, r) with r ∈ (0,+∞)E and
−λ > 3

∑
e∈E r(e)+ 1.

Claim 9.3. There exist holomorphic functions h± :�∗ →C such that

h+(λ, r) =
∞∑

m=1

∑
γ∈Am

Rγ Sγ (λ), h−(λ, r) =
∞∑

m=1

∑
γ∈A∗

m

Rγ Sγ (λ) (68)

for all (λ, r) ∈� = �∗ ∩ (R× (0,+∞)E).

4Recall that λc ≥ 0.
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Note that, for (λ, r) ∈�, the series in (68) are well posed since given by positive addenda. The proof of Claim 9.3
is postponed to Section 9.1.1.

Since h− > 0 on �, there exists an open subset �∗∗ ⊂C×CE with � ⊂ �∗∗ ⊂ �∗ and such that h− �= 0 on �∗∗.
At cost to restrict �∗∗ we can assume that the set{

λ ∈C : (λ, r) ∈�∗∗
}

(69)

is connected for any fixed r ∈ (0,+∞)E . Since the function h+/h− is well defined and holomorphic on �∗∗, also the
derivative ∂λ(h+/h−) is holomorphic on �∗∗ (cf. [3, Section IV.2.2]).

Due to the definition of R, fixed r ∈R, the map λ �→ ∂λ(h+/h−)(λ, r) is zero for λ real and sufficiently small.
Being holomorphic, this map must be zero on all the set (69) and we get the following result (see Section 9.1.1 for a
detailed proof):

Claim 9.4. ∂λ(h+/h−)(λ, r)= 0 for any (λ, r) ∈ �∗∗ with r ∈R.

Suppose now, by contradiction, that the set R has positive Lebesgue measure (here and in what follows we refer
to the |E|-dimensional Lebesgue measure). Given λ < 0, consider the open and connected set �λ := {r ∈ (0,∞)E :
(λ, r) ∈ �} and define the function hλ :�λ →R as hλ(r) := ∂λ(h+/h−)(λ, r). Note that hλ is a real analytic function
(locally it admits a convergent power series expansion, since restriction of an holomorphic function). Since �λ ⊂ �λ′
if λ′ < λ and since

⋃
λ<0 �λ = (0,+∞)E , we can find λ0 < 0 such that �λ ∩ R has positive Lebesgue measure

for λ ≤ λ0 (from now on we assume λ ≤ λ0). This fact and Claim 9.4 imply that (i) the set {r ∈ �λ : hλ(r) = 0}
contains �λ ∩R and therefore has positive Lebesgue measure. On the other hand, (ii) hλ is the restriction to �λ of
the holomorphic function ∂λ(h+/h−)(λ, ·) defined on an open subset of CE containing �λ. As a byproduct of (i), (ii)
and Lemma B.1 in Appendix B (the latter is based on the Weierstrass Preparation Theorem) we get the following:

Claim 9.5. For any λ < λ0 it holds hλ ≡ 0 on the entire connected set �λ. In particular, for any λ < λ0 and r ∈
(0,+∞)E such that λ < −3

∑
e∈E r(e)− 1, it holds ∂λ(h+/h−)(λ, r)= 0 and therefore the ratio h+(λ, r)/h−(λ, r)

depends only on r .

We now show that this is in contradiction with the assumption that the fundamental graph G is not (v, v)-
minimal. Indeed, since G is not (v, v)-minimal, there exist at least two distinct paths γ (1) = (z0, z1, . . . , zM) and
γ (2) = (z′0, z′1, . . . , z′M ′) in AM and AM ′ respectively, such that the points zi are all distinct and the points z′i are all
distinct. It is simple to check that we can always reduce to the following case: γ (1) and γ (2) have in common the first
κ1 + 1 points and the last κ2 + 1 points (for some non-negative integers κ1, κ2 with κ1 + κ2 + 2 ≤ M ∧ M ′), while
they divide in their interior part (see Figure 5).

We define �1 and �2 as the edge set of γ (1) and γ (2), i.e.

�1 :=
{
(zi, zi+1), (zi+1, zi) : 0 ≤ i < M

}
, �2 :=

{(
z′j , z′j+1

)
,
(
z′j+1, z

′
j

) : 0 ≤ j < M ′}.
We also set E� := �1 ∪ �2 and V� := {z1, . . . , zM} ∪ {z′1, . . . , z′M ′ }. As explained in Section 9.1.1, from the above
results and tuning to zero the rates on edges in E \E� one easily gets the following result:

Claim 9.6. Fix r� ∈ (0,+∞)E� and define f̃ �± as in (59) referred now to the fundamental graph G� = (V�,E�) and
weights E� � e → r�(e) ∈ (0,+∞). Then the ratio f̃ �+(λ)/f̃ �−(λ) does not depend on λ < 0 small enough.

Fig. 5. Example of chains γ (1) , γ (2) . Note that they share the first 4 points (κ1 = 3) and the last 3 points (κ2 = 2).
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At this point it is enough to exhibit r� ∈ (0,+∞)E� violating the conclusion of the last claim. In order to avoid
heavy notation, and without loss of generality, from now on we assume that G = (V ,E) equals G� = (V�,E�), i.e. G

is simply the graph in Figure 5.
For each path γ ∈Am let J(x,y)(γ ) denote the current of γ along (x, y), i.e. J(x,y)(γ ) equals the number of times

the oriented edge (x, y) appears in γ minus the number of times the oriented edge (y, x) appears in γ . Note that, given
γ ∈Am and a site x �= v, v, the number of times that γ arrives at x equals the number of times that γ leaves x. Since
moreover γ leaves v exactly once and it never arrives at v, and it does the opposite with v, we get that Jzi ,zi+1(γ )= 1
for any edge (zi, zi+1) in �1 ∩ �2. In addition it holds either{

J(zi ,zi+1)(γ )= k + 1 ∀(zi, zi+1) ∈ �1 \ �2,
J(z′i ,z′i+1)

(γ )=−k ∀(z′i , z′i+1) ∈ �2 \ �1, (70)

for some k ≥ 0, or{
J(zi ,zi+1)(γ )=−k ∀(zi, zi+1) ∈ �1 \ �2,
J(z′i ,z′i+1)

(γ )= k + 1 ∀(z′i , z′i+1) ∈ �2 \ �1, (71)

for some k ≥ 0. It is simple to check that the above situations can indeed take place.
We can therefore define the two disjoint sets

P1 :=
{

paths in
⋃
m≥1

Am such that (70) holds

}
,

P2 :=
{

paths in
⋃
m≥1

Am such that (71) holds

}
.

Note that P1 ∪P2 =⋃
m≥1 Am. Recall the bijection Am � γ �→ γ † ∈A∗

m defined after (65). Splitting, then, the sum
in (63) into the contribution of paths in P1 and P2, we find

f̃+(λ)

f̃−(λ)
= f̃1,+(λ)+ f̃2,+(λ)

f̃1,−(λ)+ f̃2,−(λ)
(72)

where, for s = 1,2,

f̃s,+(λ) =
∞∑

m=1

∑
γ∈Ps∩Am

Rγ Sγ (λ), f̃s,−(λ) =
∞∑

m=1

∑
γ∈Ps∩Am

Rγ †Sγ †(λ).

We observe now that G has only two loop-free paths from v to v: γ (1) and γ (2). By the geometric properties of the
loops, it then follows that Pj is given by the paths γ ∈⋃

m≥1 Am whose loop-erased version equals γ (j), for j = 1,2.
Then by (65) and (66) we have Sγ (λ) = Sγ †(λ) and, for γ ∈ Ps ∩Am, Rγ = Rγ †�s , where

�1 :=
M−1∏
i=0

r(zi , zi+1)

r(zi+1, zi)
, �2 :=

M ′−1∏
i=0

r(z′i , z′i+1)

r(z′i+1, z
′
i )

. (73)

It follows that f̃s,+(λ) = f̃s,−(λ) ·�s , s = 1,2. Combining (72) and (73) we have

f̃+(λ)

f̃−(λ)
= f̃1,+(λ)+ f̃2,+(λ)

�−1
1 f̃1,+(λ)+�−1

2 f̃2,+(λ)
. (74)

If �1 = �2 then the ratio f̃+(λ)/f̃−(λ) is independent of λ, but �1 = �2 holds only for a set of rates of Lebesgue
measure 0. Assume now �1 �= �2. Then dividing by f̃1,+(λ) we conclude that the l.h.s. of (74) does not depend on λ

for λ < 0 with |λ| large if and only if the same holds for the ratio f̃2,+(λ)/f̃1,+(λ).
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We point out that each path in P1 belongs to Am for some m ≥ M . The only path in P1 belonging to AM is γ (1),
while there is no path in P1 belonging to AM+1. Moreover, |Am| ≤ 3m since, when constructing a path γ ∈Am vertex
by vertex, at each step we can choose only among 2 or 3 neighbors. Hence∣∣∣∣∣

∞∑
m=M+2

∑
γ∈P1∩Am

Rγ Sγ (λ)

∣∣∣∣∣≤
∞∑

m=M+2

cm

|λ|m−1
= c

1 − c/|λ| ·
(

c

|λ|
)M+1

, (75)

where c := 3 max{r(e) : e ∈ E}, and |λ| is large enough so that c/|λ| < 1. In particular, isolating the contribution of
γ (1) in the definition of f̃1,+(λ), we have that

f̃1,+(λ) = c1

M−1∏
i=1

1

r(zi)− λ
+O

(
1

|λ|M+1

)
, c1 :=

M−1∏
i=0

r(zi , zi+1).

Above O( 1
|λ|M+1 ) means that the term in consideration is bounded in modulus by C/|λ|M+1 for some constant C > 0

as λ →−∞. Note that for λ < 0 with |λ| large we have

1

r(zi)− λ
= 1

|λ| ·
1

1 + r(zi)/|λ| =
1

|λ|
(

1 − r(zi)

|λ| + Ei (λ)

)
,

where limλ→−∞ |λ|Ei (λ) = 0. The same arguments hold for f̃2,+ with c2 := ∏M ′−1
i=0 r(z′i , z′i+1). In conclusion we

have

f̃1,+(λ) = c1

|λ|M−1
− c1

|λ|M
M−1∑
i=1

r(zi)+ o

(
1

|λ|M
)

,

f̃2,+(λ) = c2

|λ|M ′−1
− c2

|λ|M ′

M ′−1∑
i=1

r
(
z′i
)+ o

(
1

|λ|M ′

)
.

If f̃1,+(λ), f̃2,+(λ) are proportional for λ < 0 with |λ| large enough, it must be M = M ′ and
∑M−1

i=1 r(zi) =∑M ′−1
i=1 r(z′i ). These identities cannot be true in general. If M �= M ′ trivially we have a contradiction. Otherwise take

r(e) = 1 for all e ∈ �1 and r(e) = a > 0 for all a ∈ �2 \�1. If a is large then the identity
∑M−1

i=1 r(zi) =∑M ′−1
i=1 r(z′i )

fails. �

9.1.1. Proof of Claims 9.3, 9.4 and 9.6

Proof of Claim 9.3. Given v ∈ V we introduce the map φv :CE →C as

φv(r) :=
∑

(v,y)∈E

r(v, y).

For each γ = (x0, x1, . . . , xm) ∈Am, m ≥ 1, we consider the holomorphic function (cf. [14]) gγ : �∗ →C defined
as

gγ (λ, r) := Rγ Sγ (λ) =
∏
e∈E

r(e)Ne(γ )
m−1∏
i=1

1

φxi
(r)− λ

, (76)

where Ne(γ ) counts the number of times the edge e appears along the path γ .
Fix (λ∗, r∗) ∈ �∗. Consider the open subset U(λ∗, r∗) ⊂ �∗ given by the vectors (λ, r) ∈ �∗ such that

−�(λ∗)/
√

2 < −�(λ) < −√
2�(λ∗) and �(r∗)/

√
2 < �(r) <

√
2�(r∗) (componentwise). Trivially, (λ∗, r∗) ∈
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U(λ∗, r∗). If γ ∈Am and (λ, r) ∈ U(λ∗, r∗) we can bound

∣∣gγ (λ, r)
∣∣ = ∏

e∈E

∣∣r(e)∣∣Ne(γ )
m−1∏
i=1

1

|φxi
(r)− λ|

≤ 2m
∏
e∈E

�(r(e))Ne(γ )
m−1∏
i=1

1

φxi
(�(r))−�(λ)

≤ 4m
∏
e∈E

�(r∗(e))Ne(γ )
m−1∏
i=1

1

φxi
(�(r∗))−�(λ∗)

≤
∏
e∈E

�(4r∗(e)
)Ne(γ )

m−1∏
i=1

1

φxi
(�(4r∗))+ 1

. (77)

Indeed the first bound follows from the assumptions in the definition of �∗ (note that φxi
(�(r)) − �(λ) > 0), the

second bound follows from the definition of U(λ∗, r∗), while the last bound follows from assumption (iii) in the
definition of �∗ since we can bound

φxi

(�(r∗))−�(λ∗)≥ 4φxi

(�(r∗))+ 1 = φxi

(�(4r∗
))+ 1. (78)

We are now interested to the series of holomorphic functions
∑∞

m=1
∑

γ∈Am
gγ (λ, r). By (77) for any (λ, r) ∈

U(λ∗, r∗) we have

∞∑
m=1

∑
γ∈Am

∣∣gγ (λ, r)
∣∣≤ ∞∑

m=1

∑
γ=(x0,x1,...,xm)∈Am

∏
e∈E

�(4r∗(e)
)Ne(γ )

m−1∏
i=1

1

φxi
(�(4r∗))+ 1

.

Comparing with (62), the above r.h.s. multiplied by 1
φv(�(4r∗))+1 equals the function f̃ ∗+(−1) with f̃ ∗+ defined as the

function f̃+ referred to the random walk on G induced by weights e →�(4r∗(e)). We finally observe that the value
f̃ ∗+(−1) is finite by definition of f̃ ∗+ (cf. (59)), hence the above r.h.s. is finite.

Since each compact subset of �∗ can be covered by the union of a finite family of sets of the form U(λ∗, r∗) we
conclude that series

∑∞
m=1

∑
γ∈Am

gγ (λ, r) converges uniformly on compact subsets of �∗. By a classical theorem
in complex analysis (see e.g. [14, Chapter I, Lemma 11]), we conclude that the limiting function h+ is holomorphic.
By construction, it satisfies (68) on �. By a similar argument one can treat the function h−. �

Proof of Claim 9.4. To simplify the notation we set h := ∂λ(h+/h−). Fix r ∈R. By Claim 9.3 and the definition of
the set R, since λ < 0 if (λ, r) ∈ �, it holds

h+(λ, r) = e�(r)h−(λ, r) ∀λ : (λ, r) ∈�. (79)

By definition of �∗, we have (λ, r) ∈ � for λ small enough (depending on r). In particular, (79) implies that the map
λ �→ [h+/h−](λ, r) is constant for λ < 0 sufficiently small. As a consequence, the map λ �→ h(λ, r) is zero for λ < 0
sufficiently small. Since this map is also holomorphic on the open connected set (69), we get that it is zero on all the
set (69) (see [3, Chapter IV.2.3]). �

Proof of Claim 9.6. Given a positive integer k, define rk ∈ (0,+∞)E as rk(e) := r�(e) for e ∈ E� and rk(e) := 1/k

for e ∈E \E�. Let f̃±,k(λ) be the function defined in (59), for the Markov chain with weights rk referred to the graph
G = (V ,E). Then, for λ < 0, it holds limk→∞ f̃±,k(λ) = f̃ �±(λ) since the probability to have a jump along an edge in
E \E� goes to zero as k →∞ (use the graphical construction for Markov chains). Now observe that, due to (63) and
(68),

f̃+,k(λ)

f̃−,k(λ)
= h+(λ, rk)

h−(λ, rk)
. (80)
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From now on we restrict to λ < min{λ0,−1 − 3
∑

e∈E�
r�(e)} without further mention (recall that the constant λ0,

introduced before Claim 9.5, depends only on the geometry of the graph G and not on a specific family of rates). Triv-
ially, there exists k0 such that, for all the above values λ, if k ≥ k0 then λ < min{λ0,−1− 3

∑
e∈E rk(e)}. By applying

Claim 9.5 we get that, for k ≥ k0, the ratio in the r.h.s. of (80) is λ-independent, i.e. it is a constant ck depending
only on k and rk . As a byproduct with the first part of the proof we conclude that f̃ �+(λ)/f̃ �−(λ) = limk→∞ ck , which
therefore does not depend on λ. �

Appendix A: Proposition 6.6 implies (UB)

For completeness, following similar arguments as in [5], we explain how one can deduce from Proposition 6.6 the
upper bound (UB) for all ϑ ∈ R, assuming v > 0. Recall that St := inf{s ≥ t : Zs ≤ 0}, and observe that for all u > 0
it holds

P

(
inf
s≥t

Zs ≤ ut
)
≤ q−utP(St < ∞), q := P(w1 =−1). (81)

To prove the above bound observe that one possible way of realizing the event {infs≥t Zs ≤ 0} is the following. If
Zt > �ut� then the process hits �ut� after time t and then performs �ut� consecutive steps to the left. If Zt ≤ �ut�
then after time t the process performs �ut� consecutive steps to the left. In particular we get

P(St < ∞)= P

(
inf
s≥t

Zs ≤ 0
)
≥ P

(
inf
s≥t

Zs ≤ �ut�
)
q�ut� ≥ P

(
inf
s≥t

Zs ≤ ut
)
qut .

From (81) and Proposition 6.6 we readily get (UB) for ϑ = 0:

lim
t→∞

1

t
logP

(
Zt

t
∈ (−ε, ε)

)
≤ lim

t→∞
1

t
logP

(
inf
s≥t

Zs ≤ εt
)
≤−ε − I (0)

ε→0−→−I (0).

Fix, now, any ϑ > 0 and take ε small enough so that u := ϑ − ε > 0 and fix u′ ∈ (0, u). Let m be any positive
integer. Then we have for t large (as we assume)

P

(
Zt

t
∈ (ϑ − ε,ϑ + ε)

)
≤ P

(
Zt ∈ [ut,ut + 2εt])= P

(
T�ut� ≤ t,Zt ∈ [ut,ut + 2εt])

≤ P

(
T�ut�
�ut� ≤ 1

u′
, inf
s≥t

Zs ≤ ut + 2εt

)

≤
m∑

k=1

P

(
T�ut�
�ut� ∈

[
(k − 1)

u′m
,

k

u′m

])
P

(
inf

s≥t− kt
m

Zs ≤ 2εt
)

≤ q−2εt
m∑

k=1

P

(
T�ut�
�ut� ∈

[
(k − 1)

u′m
,

k

u′m

])
P(S

t− kt
m

< ∞).

We point out that the third inequality above follows from the strong Markov property applied at time T�ut� and the
fact that the probability P(infs≥t−a Zs ≤ 2εt) is increasing in a. The last inequality follows from (81).

Reasoning as in (49) and using Proposition 6.6, we get for 1 ≤ k < m

P

(
T�ut�
�ut� ∈

[
(k − 1)

u′m
,

k

u′m

])
P(S

t− kt
m

< ∞) ≤ e
tε+tuw+( 1

u′ ,
1

mu′ )e−t[ k
m

I ( mu′
k

)+(1− k
m

)I (0)]

≤ e
tε+tuw+( 1

u′ ,
1

mu′ )e−tI (u′),



Random walks on quasi one dimensional lattices 77

where t is taken large enough and w+ is defined as in (48). Note that the last inequality follows from the convexity
of I . When k = m, on the other hand, P(S

t− kt
m

< ∞) = P(S0 < ∞) = 1 and, as in (49), for t large we have

P

(
T�ut�
�ut� ∈

[
(m− 1)

u′m
,

1

u′

])
≤ e

tε+tuw+( 1
u′ ,

1
mu′ )e−tI (u′).

Putting all together, we have shown that for any ε small and t large enough it holds

P

(
Zt

t
∈ (ϑ − ε,ϑ + ε)

)
≤m · q−2εt · etε+tuw+( 1

u′ ,
1

mu′ )e−tI (u′)

with u = ϑ − ε, and therefore

lim
t→∞

1

t
logP

(
Zt

t
∈ (ϑ − ε,ϑ + ε)

)
≤−2ε logq + ε + uw+

(
1

u′
,

1

mu′

)
− I

(
u′
)
.

Letting, now, m→∞ and then ε → 0 (so that also u → ϑ ) and taking u′ → ϑ gives (UB).
The proof of the same bound for ϑ < 0 follows by similar arguments.

Appendix B: Zeros set of holomorphic functions in several variables

The following result is based on the Weierstrass Preparation Theorem.

Lemma B.1. Fix n ≥ 1 integer. Let V be an open set of Cn such that U := V ∩ Rn is connected. Let f : V → C

be an holomorphic function. Then either f ≡ 0 on U or the set {z ∈ U : f (z) = 0} has zero n-dimensional Lebesgue
measure.

Proof. Note that U is open. Below Lebesgue measure is considered as n-dimensional. It is enough to prove the
following claim:

Claim B.2. For any z ∈ U there is a neighborhood Bz of z in U such that the set {y ∈ Bz : f (y) = 0} has nonempty
open part or has zero Lebesgue measure.

Let us first assume the above claim and show how to conclude. If for all z ∈ U the set {y ∈ Bz : f (y) = 0} has
zero Lebesgue measure, then each compact subset K ⊂ U can be covered by a finite family Bz1 , Bz2 , . . . ,Bzr , thus
implying that {y ∈ K : f (y) = 0} has zero Lebesgue measure. This trivially leads to the fact that {z ∈ U : f (y) = 0}
has zero Lebesgue measure. On the other hand, if for some z ∈U the set {y ∈ Bz : f (y) = 0} has nonempty open part,
then the analytic function given by f restricted to U is zero on a ball inside the open connected set U and therefore is
zero on all U (see [3, Chapter IV.2.3]).

At this point we only need to prove the above Claim B.2. If f (z) �= 0 then for Bz small the set {y ∈ Bz : f (y) = 0}
is empty and we are done. Suppose that f (z) = 0 and f is not identically zero around z. By Weierstrass preparation
theorem [14, Chapter II.B], there exists ε > 0 such that for all y = (y1, y2, . . . , yn) ∈Cn with |yi − zi | < ε for all i it
holds

f (y) = h(y)
[
(yn − zn)

k + a1(y1, . . . , yn−1)(yn − zn)
k−1

+ · · · + ak−1(y1, . . . , yn−1)(yn − zn)+ ak(y1, . . . , yn−1)
]
, (82)

where k is a suitable nonnegative integer, a1, . . . , ak are holomorphic functions, and h is a never-zero holo-
morphic function. It then follows that, fixed (y1, . . . , yn−1) with |yi − zi | < ε, the set {yn ∈ C : |yn − zn| <

ε,f (y1, . . . , yn−1, yn) = 0} has cardinality at most k (in particular, it has zero Lebesgue measure when intersected
with R). The thesis follows by taking Bz := {y ∈Rn : |yi − zi | < ε} and applying Fubini theorem. �
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