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Abstract. Let X be a continuous time random walk on a weighted graph. Given the on-diagonal upper bounds of transition
probabilities at two vertices x1 and x2, we obtain Gaussian upper estimates for the off-diagonal transition probability Px1 (Xt = x2)

in terms of an adapted metric introduced by Davies.

Résumé. Soit X une marche aléatoire à temps continu sur un graphe pondéré. Etant données des bornes supérieures sur la transition
de probabilité diagonale en deux sommets x1 et x2, nous obtenons des estimées supérieures gaussiennes sur la transition de
probabilité Px1 (Xt = x2) (qui est en dehors de la diagonale) en termes d’une métrique adaptée introduite par Davies.
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1. Introduction

Let � = (V,E) be a connected, locally finite graph without double edges. The graph � can be either finite or infinite.
Let μ be an edge weight function on E, such that μxy = μyx > 0 for each (x, y) ∈ E, while μxy = 0 for each
(x, y) /∈ E. Let νx > 0 for x ∈ V . Denote by X = {Xt : t ≥ 0} a continuous time random walk on � with generator

Lf (x) = 1

νx

∑
y∈V

(
f (y) − f (x)

)
μxy.

Write Px for the probability measure of X starting from x.
If νx = ∑

μxy for all x, then the process X is called the constant speed random walk or CSRW on V . It is a
process that waits an exponential time mean 1 at each vertex and then jumps to one of its neighbours. If νx ≡ 1, then
the expected waiting time of each jump may vary. Moreover, such a process may explode in finite time.

In this paper, we fix vertices x1, x2 ∈ V and functions f1, f2 on R+ such that for any i = 1,2 and t ≥ 0,

Pxi
(Xt = xi) ≤ 1

fi(t)
. (1.1)

Our interest is, under what circumstances Px1(Xt = x2) will have Gaussian upper bounds. Let dν(·, ·) be a metric of
� such that{ 1

νx

∑
y dν(x, y)2μxy ≤ 1 for all x ∈ V,

dν(x, y) ≤ 1 whenever x, y ∈ V and x ∼ y.
(1.2)

http://www.imstat.org/aihp
http://www.imstat.org/aihp
http://dx.doi.org/10.1214/15-AIHP707
mailto:chenxinx@sjtu.edu.cn


28 X. Chen

Metrics satisfying (1.2) are called adapted metrics. Such metrics were introduced by Davies [9] and [10], and are
closely related to the intrinsic metric associated with a given Dirichlet form. (One might expect that analogues of
diffusion processes on manifolds hold using the intrinsic metrics for random walks on graphs, see [12,13] and [17].)
Fix A ≥ 1 and γ > 1. Let f :R+ → R+. We say that f is (A,γ )-regular on [a, b), if the function f is non-decreasing
on R+ and satisfies that

f (γ s)

f (s)
≤ A

f (γ t)

f (t)
for all a ≤ s < t < γ −1b. (1.3)

In particular, if a = 0 and b = ∞ then we say that f is (A,γ )-regular, which was introduced by Grigor’yan [14].

Theorem 1.1. Let δ ≥ 1. If each fi is (A,γ )-regular and satisfies

fi(t) ≤ Aeδt for all t ∈R+, (1.4)

then there exist constants C1, θ > 0 which are independent of A,γ and δ, such that

Px1(Xt = x2) ≤ C1A
β(νx2/νx1)

1/2

√
f1(αt)f2(αt)

exp

(
−θ

dν(x1, x2)
2

t

)
for t ≥ dν(x1, x2),

where α = min{(2γ )−1, (64δ)−1} and β = 
 logγ
log 2 �.

The problem of getting a Gaussian upper bound from two point estimates was introduced in the manifold case
by Grigor’yan [14]. In subsequent researches, Coulhon, Grigor’yan and Zucca [8] studied the problem for discrete
time random walks on graphs, while Folz [11] studied it for the continuous time random walks. The current paper
considers the same problem, however, it improves the result of [11] by no longer requiring a lower bound on νx . The
improvement comes from imposing conditions on the transition probabilities Px(Xt = x) instead of the heat kernels
pt (x, x). Note that the transition probabilities are invariant under the transformation from (μ, ν) to (cμ, cν), where
(cμ)xy = cμxy and (cν)x = cνx .

Remark 1.1. The condition (1.4) is quite natural. Note that Px(Xt = x) ≥ exp(−μx

νx
t), where μx = ∑

y μxy . It implies

that (1.4) holds if A = 1 and δ = max{μx1
νx1

,
μx2
νx2

}. In particular, for CSRW one can take δ = 1.

Remark 1.2. One can also trace the values of C1 and θ . Indeed, we select θ = 10−7 in our proof.

Theorem 1.2. Let δ ≥ 1. If each fi is (A,γ )-regular on [T1, T2) and satisfies

fi(t) ≤ Aeδt for all t ∈ [T1, T2), (1.5)

then there exist constants C1, θ > 0 which are independent of A,γ and δ, such that

Px1(Xt = x2) ≤ C1A
β(νx2/νx1)

1/2

√
f1(αt)f2(αt)

exp

(
−θ

dν(x1, x2)
2

t

)
for t ∈ [T̃1, T2), (1.6)

where α = min{(2γ )−1, (64δ)−1}, β = 
 logγ
log 2 � and T̃1 = (8α−2T 2

1 ) ∨ dν(x1, x2).

Remark 1.3.

(1) If the growth rate of fi is either sub-exponential or polynomial, then the lower bound of T̃1 will be improved, see
Theorems 5.1 and 5.2.
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(2) Theorems 1.1 and 1.2 are potentially very useful for random walks with random conductances. For example,
Mathieu and Remy [16] considered the CSRW on the infinite cluster C∞(ω) and showed that Px(Xt = x) ≤ ct−d/2

for t ≥ Nx(ω) and x ∈ C∞(ω). Using Theorem 1.2 immediately gives

Px(Xt = y) ≤ c1t
−d/2 exp

(
−c2

d(x, y)2

t

)
, t ≥ Sxy(ω) ∨ d(x, y),

where Sxy(ω) = 643(Nx(ω)2 ∨ Ny(ω)2) and d(x, y) is the graph distance. A more delicate result by a different
method was obtained in [2].

See Balow and Chen [3] for the new application in a deterministic graph where volume doubling and Poincaré
inequality hold for all sufficiently large balls.

In Section 2, we show the Integral Maximum Principle for a positive subsolution function on R+ × V . From this,
we get the initial estimates of the transition probabilities, the case t ≤ dν(x, y) included. In Section 3, we update the
results of the previous section, under the assumption that a certain regularity condition holds. In Section 4, we give
the proof of Theorem 1.1. In the final section, we consider functions which are regular only on an interval and have
different rates of growth; in doing so, we obtain Theorem 1.2.

2. Integral maximum principle

For any functions f,g on V , define

〈f,g〉 =
∑
x∈V

f (x)g(x)νx.

Then 〈·, ·〉 induces an inner product space. Denote by ‖ · ‖ the induced norm. Let I be an interval of R+. We say that
u : I× V �→R+ is a positive subsolution of the heat equation on I× V if

∂

∂t
u ≤ Lu on I× V.

Furthermore, we define a set of functions:

H(I) = {
u : u is a positive subsolution on I× V and

∣∣{z : u(t, z) �= 0 for some t ∈ I
}∣∣ < ∞}

.

Let o ∈ B ⊆ V with |B| < ∞. Set

uB(t, z) = ν
1/2
o

νz

Po

(
Xt = z, inf{s ≥ 0 : Xs /∈ B} > t

)
. (2.1)

Then uB = 0 on R+ × (V \ B). Since � is a locally finite graph, uB is a positive subsolution on R+ × V and so
uB ∈H(R+). Now we show the Integral Maximum Principle.

Theorem 2.1. Let h be a positive function on I× V and u ∈H(I). If for each t ∈ I one has

1

νy

∑
x

|h(t, x) − h(t, y)|2
4h(t, x)h(t, y)

μxy ≤ − ∂

∂t
logh(t, y) for all y ∈ V, (2.2)

then J (t) = 〈u2(t, ·), h(t, ·)〉 is non-increasing on I.
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Proof. For brevity, we omit the notation t . Set ∇xyg = g(t, y) − g(t, x) for any function g on I× V and get

〈2uLu,h〉 = 2〈uh,Lu〉
= −

∑
x,y

∇xy(uh) · ∇xyu · μxy since
∣∣{z : u(t, z) �= 0 for some t ∈ I

}∣∣ < ∞

= −
∑
x,y

(
h(x)∇xyu + u(y)∇xyh

) · ∇xyu · μxy

= −
∑
x,y

(
(∇xyu)2h(x) + u(y)∇xyu · ∇xyh

)
μxy

=
∑
x,y

[
−

(√
h(x)∇xyu + u(y)∇xyh

2
√

h(x)

)2

+ (u(y)∇xyh)2

4h(x)

]
μxy since h is positive

≤
∑
x,y

u(y)2 |∇xyh|2
4h(x)

μxy

=
∑
y

u(y)2
(∑

x

|∇xyh|2
4h(x)

μxy

)
.

By (2.2),
∑

x
|∇xyh|2
4h(x)

μxy ≤ −νy
∂
∂t

h(y) and hence

〈2uLu,h〉 ≤ −
∑
y

u(y)2νy

∂

∂t
h(y) = −

〈
u2,

∂

∂t
h

〉
.

On the other hand, by the condition that u is a positive subsolution on I× V , we have

d

dt
J = ∂

∂t

〈
u2, h

〉 = 〈
2u

∂

∂t
u,h

〉
+

〈
u2,

∂

∂t
h

〉
≤ 〈2uLu,h〉 +

〈
u2,

∂

∂t
h

〉
≤ 0.

Therefore, J is non-increasing. �

Since the metric dν satisfies (1.2), Theorem 2.1 immediately implies Corollary 2.2 as follows. Define a set of
functions:

F(I) =
{
h : h is a positive function on I× V and for each t ∈ I, x, y ∈ V with x ∼ y,

|h(t, x) − h(t, y)|2
4h(t, x)h(t, y)

≤ −dν(x, y)2 ∂

∂t
logh(t, y)

}
.

Corollary 2.2. Let u ∈H(I) and h ∈F(I). Then J (t) = 〈u2(t, ·), h(t, ·)〉 is non-increasing on I.

Next, some useful functions in F(I) will be given below. Let ρ(·) be any nonnegative function on V such
that ∣∣ρ(x) − ρ(y)

∣∣ ≤ dν(x, y) for any x, y ∈ V with x ∼ y. (2.3)

(In practice, one often chooses ρ(·) = dν(o, ·) ∧ R for some o ∈ V and R ≥ 0.)
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Lemma 2.3. Let τ > 0. For each t ≥ 0 and z ∈ V , set

h(t, z) = exp

{(
ρ(z) − 4−1e(t + τ)

)
log

(
1 ∨ ρ(z)

4−1e(t + τ)

)
− t

τ

}
.

Then h(t, z) ∈F(R+).

Proof. We first show that for any x ∈ [0,∞) and ε ∈ [0,1],
eεx + e−εx − 2 ≤ ε2(ex + e−x − 2

)
(2.4)

and

1 − e−εx ≥ ε
(
1 − e−x

)
. (2.5)

By the Mean Value Theorem,

eεx + e−εx − 2

ε2(ex + e−x − 2)
= eεx1 − e−εx1

ε(ex1 − e−x1)
= eεx2 + e−εx2

ex2 + e−x2
≤ 1,

where x > x1 > x2 > 0. Consequently, (2.4) holds. In the same way, we can obtain (2.5).
Fix y ∼ z and ε = dν(y, z). Then |ρ(y) − ρ(z)| ≤ ε ≤ 1 by (1.2) and (2.3). Write t+ = t + τ and

b =
∣∣∣∣(ρ(y) − 4−1et+

)
log

(
1 ∨ ρ(y)

4−1et+

)
− (

ρ(z) − 4−1et+
)

log

(
1 ∨ ρ(z)

4−1et+

)∣∣∣∣.
Then

|h(t, z) − h(t, y)|2
4h(t, z)h(t, y)

= eb + e−b − 2

4
.

We shall consider three cases.
Case I: ρ(z), ρ(y) ≤ 4−1et+. Then b = 0 and

|h(t, z) − h(t, y)|2
4h(t, z)h(t, y)

= eb + e−b − 2

4
= 0.

Case II: ρ(z), ρ(y) ≥ 4−1et+. By the Mean Value Theorem,

b = ∣∣ρ(y) − ρ(z)
∣∣(log

(
ξ

4−1et+

)
+ ξ − 4−1et+

ξ

)
,

where ξ is some value between ρ(y) and ρ(z). Furthermore, we have 4−1et+ ≤ ξ ≤ ρ(y) + ε and

b ≤ ε log

(
4ξ

t+
e−4−1et+/ξ

)
≤ ε log

(
4ξ

t+
(
1 − (

1 − e−1)4−1et+/ξ
))

by (2.5)

= ε log

(
4ξ

t+
− e + 1

)
≤ ε log

(
4
ρ(y) + ε

t+
− e + 1

)
.

As a result,

eb + e−b − 2 ≤ exp

(
ε log

(
4
ρ(y) + ε

t+
− e + 1

))
+ exp

(
−ε log

(
4
ρ(y) + ε

t+
− e + 1

))
− 2.
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Using (2.4) we get

eb + e−b − 2 ≤ ε2
{(

4
ρ(y) + ε

t+
− e + 1

)
+

(
4
ρ(y) + ε

t+
− e + 1

)−1

− 2

}
≤ ε2

{
4
ρ(y) + ε

t+
− e

}
,

and hence

|h(t, z) − h(t, y)|2
4h(t, z)h(t, y)

≤ ε2
(

ρ(y)

t+
+ ε

t+
− e

4

)
≤ ε2

(
ρ(y)

t+
+ 1

τ
− e

4

)
. (2.6)

Case III: ρ(y) ∧ ρ(z) < 4−1et+ < ρ(y) ∨ ρ(z). Since |ρ(y) − ρ(z)| ≤ ε, we have

ρ(y) + ε ≥ ρ(y) ∨ ρ(z) > 4−1et+ and ρ(y) ∨ ρ(z) − 4−1et+ < ε.

It implies

4
ρ(y) + ε

t+
− ρ(y) + ε

4−1et+
= ρ(y) + ε

4−1et+
(e − 1) ≥ e − 1.

Hence

b =
∣∣∣∣(ρ(z) ∨ ρ(y) − 4−1et+

)
log

(
ρ(z) ∨ ρ(y)

4−1et+

)∣∣∣∣
≤ ε log

(
ρ(y) + ε

4−1et+

)
≤ ε log

(
4
ρ(y) + ε

t+
− e + 1

)
.

Similarly, we have (2.6) for this case.
On the other hand, note that h(·, y) is differentiable on R

+ and satisfies

− ∂

∂t
logh(t, y) = − ∂

∂t

((
ρ(y) − 4−1et+

)
log

(
1 ∨ ρ(y)

4−1et+

)
− t

τ

)

= 1

τ
+ 4−1e log

(
1 ∨ ρ(y)

4−1et+

)
+ (ρ(y) − 4−1et+) ∨ 0

t+

≥ 1

τ
+

(
ρ(y)

t+
− e

4

)
∨ 0.

Therefore, in any case we have

|h(t, z) − h(t, y)|2
4h(t, z)h(t, y)

≤ ε2
(

1

τ
+

(
ρ(y)

t+
− e

4

)
∨ 0

)
≤ −ε2 ∂

∂t
logh(t, y),

which implies h ∈F(R+). �

The following two examples can be obtained in a similar way as Lemma 2.3 and we leave it to the reader. See the
examples in [8, Proposition 2.5 and Theorem 4.1] for a reference.

Example 2.4. Fix a ∈ [0, 1
4 ]. Let h1(t, x) = eaρ(x)−(a2/2)t . Then h1 ∈F(R+).

Example 2.5. Fix D ≥ 5, R ≥ 1, � ≥ 24R
D

and s > 0. For each t ∈ [0, s] and x ∈ V , set h2(t, x) = exp(− ρ(x)2

D(s−t+�)
).

If 1 ≤ ρ(x) ≤ R for each x ∈ V , then h2 ∈ F([0, s]).
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Now, fix o ∈ V and for each R ≥ 0 set

GR(I) = {
g : g is a function on I×R+, g(t, r) is non-decreasing in r, g

(·, dν(o, ·) ∧ R
) ∈F(I)

}
.

For brevity, we write BR = {z ∈ V : dν(o, z) < R}. The lemma below shows the way we use Corollary 2.2.

Lemma 2.6. Let T ≥ τ ≥ 0 and R ≥ r ≥ 0. Let u ∈H([τ, T ]) and g ∈ GR([τ, T ]). Then

〈
u(T , ·)2,1 − 1BR

〉 ≤ g(τ, r)

g(T ,R)

∥∥u(τ, ·)∥∥2 + g(τ,R)

g(T ,R)

〈
u(τ, ·)2,1 − 1Br

〉
.

Proof. Let ρ(z) = min{dν(o, z),R} for each z ∈ V . Then ρ = R on V \ BR and hence〈
u(T , ·)2,1 − 1BR

〉 ≤ 〈
u(T , ·)2, g

(
T ,ρ(·))〉g(T ,R)−1.

By Corollary 2.2 and the hypothesis u ∈ H([τ, T ]) and g(·, ρ(·)) ∈F([τ, T ]), we have〈
u(T , ·)2, g(T ,ρ)

〉 ≤ 〈
u(τ, ·)2, g(τ, ρ)

〉
.

Using the condition that g(t, ·) is a non-decreasing function, we get〈
u(τ, ·)2, g(τ, ρ)

〉 ≤ 〈
u(τ, ·)2,1Br

〉
g(τ, r) + 〈

u(τ, ·)2,1 − 1Br

〉
g(τ,R)

≤ g(τ, r)
∥∥u(τ, ·)∥∥2 + g(τ,R)

〈
u(τ, ·)2,1 − 1Br

〉
,

proving the lemma. �

Furthermore, we set

Ho = {
u ∈ H(R+) : u(0, z) = ν

−1/2
o 1{o}(z) for each z ∈ V

}
.

Proposition 2.7. Let u ∈ Ho. For any t,R > 0, we have

〈
u(t, ·)2,1 − 1BR

〉 ≤ {
exp(−R2

8t
) if t ≥ R,

exp(−R log( 1.01R
t

) + 120) if t ≤ R.

Proof. Consider t ≥ R first. Take a = R
4t

then a ∈ (0, 1
4 ]. For each s ≥ 0 and r ≥ 0, set

g1(s, r) = ear−(a2/2)s .

By Example 2.4, g1 ∈ GR(R+). Use Lemma 2.6 and get for r ∈ (0,R],
〈
u(t, ·)2,1 − 1BR

〉 ≤ g1(0, r)

g1(t,R)

∥∥u(0, ·)∥∥2 + g1(0,R)

g1(t,R)

〈
u(0, ·)2,1 − 1Br

〉
.

From u(0, z) = ν
−1/2
o 1{o}(z), it follows immediately that〈

u(0, ·)2,1 − 1Br

〉 = 0 and
∥∥u(0, ·)∥∥2 = 1.

So,

〈
u(t, ·)2,1 − 1BR

〉 ≤ lim
r→0+

g1(0, r)

g1(t,R)
= g1(0,0)

g1(t,R)
.



34 X. Chen

Obviously, g1(0,0) = 1 and hence〈
u2(t, ·),1 − 1BR

〉 ≤ e−aR+(a2/2)t .

Substituting the value of a into the above, we get the first inequality of the proposition.
Next, suppose t ≤ R. Choose τ = (4c/e − 1)t , where b = (4c/e − 1)−1 ≈ 117.6 and c = e−e−1

/1.01. For each
s ≥ 0 and r ≥ 0, set

g2(s, r) = exp

{(
r − 4−1e(s + τ)

)
log

(
1 ∨ r

4−1e(s + τ)

)
− s

τ

}
.

Obviously, g2(0,0) = 1. By Lemma 2.3, we have g2 ∈ GR(R+). Since x log(R/x) ≤ e−1R for any x > 0, we get

log
(
g2(t,R)

) = (R − ct) log

(
R

ct

)
− b

= R log

(
1.01R

t

)
+ R log

(
1

1.01c

)
− ct log

(
R

ct

)
− b

≥ R log

(
1.01R

t

)
+ R log

(
1

1.01c

)
− e−1R − 120

= R log

(
1.01R

t

)
− 120. (2.7)

From (2.7) and g2 ∈ GR(R+), we prove the second inequality of the proposition in the same way as we did the first. �

Corollary 2.8. For any z ∈ V ,

Po(Xt = z) ≤
{

(νz/νo)
1/2 exp{− r2

16t
} if t ≥ r > 0,

(νz/νo)
1/2 exp(− r

2 log( 1.01r
t

) + 60) if r ≥ t > 0,

where r = dν(o, z).

Proof. Recall the definition uB in (2.1). Denote by d(·, ·) the graph distance of �. Set Sn = {z : d(o, z) < n}. Then Sn

is a finite set since � is a locally finite graph and hence uSn ∈ Ho. Clearly, uSn converges pointwise to u as n tends to
infinity even if the process X explodes in finite time, where

u(t, z) = ν
1/2
o

νz

Po(Xt = z).

Let r = dν(o, z), then we have 〈uSn(t, ·)2,1 − 1Br 〉 ≥ uSn(t, z)
2νz. So,

u(t, z)2νz = lim
n→∞uSn(t, z)

2νz ≤ sup
n

〈
uSn(t, ·)2,1 − 1Br

〉
.

Combining the above inequality with Proposition 2.7, we get the desired result. �

The long range bounds for transition probabilities were already obtained by [11, Theorems 2.1 and 2.2], however,
Corollary 2.8 is more effective when t ∈ [0.9r,1.1r] and r = dν(o, z) is large.

3. Regular functions and integral estimates

Recall that A ≥ 1 and γ > 1. Fix δ ≥ 1, θ1 = 10−6 and θ2 = θ1/5. Set

α = min
{
(2γ )−1, (64δ)−1} and β =

⌈
log 2

logγ

⌉
.
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Let u ∈ Ho and f : R+ �→R+ such that∥∥u(t, ·)∥∥2 ≤ 1

f (2t)
for all t ∈R+. (3.1)

In this section, we shall extend Proposition 2.7 into a result which can be used to prove Theorem 1.1.

Proposition 3.1. Suppose f is (A,γ )-regular and satisfies f (t) ≤ Aeδt for all t ∈ R+. Then there exists a constant
C1 > 0 which is independent of A,γ and δ, such that for t > 0,〈

u(t, ·)2, exp

(
θ2

(dν(o, ·) ∧ (2t))2

t

)〉
≤ C1A

β

f (2αt)
. (3.2)

Before proving the proposition, we establish some lemmas.

Lemma 3.2. If f is an (A,γ )-regular function, then

f
(
2−kt

) ≥
(

Aβ f (t)

f (γ −βt)

)−k

f (t) for all k ∈ N and t > 0.

Proof. By the regularity, for any t ≥ s > 0 we have

f (γ βs)

f (s)
=

β−1∏
j=0

f (γ j+1s)

f (γ j s)
≤

β−1∏
j=0

(
A

f (γ j+1t)

f (γ j t)

)
= Aβ f (γ βt)

f (t)
. (3.3)

In other words, an (A,γ )-regular function is also (Aβ, γ β)-regular. Furthermore, by the monotonicity we get

f (t)

f (2−kt)
≤ f (t)

f (γ −βkt)
=

−1∏
j=−k

f (γ β(j+1)t)

f (γ βj t)
≤

−1∏
j=−k

(
Aβ f (t)

f (γ −βt)

)
=

(
Aβ f (t)

f (γ −βt)

)k

.
�

Lemma 3.3. If f (t) ≤ Aeδt for each t ∈R+, then there exists a constant c > 0 which is independent of A and δ, such
that 〈

u(t, ·)2,1 − 1BR

〉 ≤ cA

f (R/(32δ))
e−10−4R for t > 0 and R ∈ [t,64t].

Proof. Fix t > 0, R ∈ [t,64t], x = t/R and a = (64δ)−1. Then a ≤ x ≤ 1. Write a1 = 4−1e(a + 0.45) and b =
4−1e(x + 0.45). Then,

a1 ≥ 4−1e · 0.45 ≥ 0.3 and a1 ≤ b ≤ 4−1e(1 + 0.45) ≤ 0.99.

For each s ≥ 0 and r ≥ 0, we define

g(s, r) = exp

{(
r − 4−1e(s + 0.45R)

)
log

(
1 ∨ r

4−1e(s + 0.45R)

)
− s

0.45R

}
.

By Lemma 2.3, we have g ∈ GR(R+). Applying Lemma 2.6 gives〈
u(t, ·)2,1 − 1BR

〉 ≤ g(aR,a1R)

g(xR,R)

∥∥u(aR, ·)∥∥2 + g(aR,R)

g(xR,R)

〈
u(aR, ·)2,1 − 1Ba1R

〉
. (3.4)

By a direct calculation, we get g(aR,a1R) ≤ 1,

log
(
g(aR,R)

) ≤ R(1 − a1) log

(
1 ∨ 1

a1

)
≤ R(1 − 0.3) log

(
1

0.3

)
≤ 0.8428R,
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and

log
(
g(xR,R)

) = R(1 − b) log

(
1

b

)
− x

0.45
≥ R(1 − 0.99) log

(
1

0.99

)
− 3 ≥ 0.0001R − 3.

Thus, (3.4) becomes〈
u(t, ·)2,1 − 1BR

〉 ≤ e−0.0001R+3
∥∥u(aR, ·)∥∥2 + e0.843R+3〈u(aR, ·)2,1 − 1Ba1R

〉
.

By (3.1) and the hypothesis f (s) ≤ Aeδs , we obtain,

〈
u(t, ·)2,1 − 1BR

〉 ≤ 1

f (2aR)
e−0.0001R+3 + Ae2aδR

f (2aR)
e0.843R+3〈u(aR, ·)2,1 − 1Ba1R

〉
.

By Proposition 2.7,〈
u(aR, ·)2,1 − 1Ba1R

〉 ≤ exp

(
−a1R log

(
a1

a

)
+ 120

)
.

Therefore,

〈
u(t, ·)2,1 − 1BR

〉 ≤ Ae123

f (2aR)

(
e−0.0001R + exp

(
2aδR + 0.843R − a1R log

(
a1

a

)))
.

Substitute a = (64δ)−1 and get,

〈
u(t, ·)2,1 − 1BR

〉 ≤ Ae123

f (R/(32δ))

(
e−0.0001R + e−RC

)
,

where C = a1 log(64a1δ) − 0.8743. Since a1 ≥ 0.3 and δ ≥ 1, we have C ≥ 0.01. So,

〈
u(t, ·)2,1 − 1BR

〉 ≤ 2Ae123

f (R/(32δ))
e−0.0001R. �

Proposition 3.4. Suppose that f is (A,γ )-regular and satisfies f (t) ≤ Aeδt for all t ∈ R+. Then there exists a con-
stant C0 > 0 which is independent of A,γ and δ, such that

〈
u(t, ·)2,1 − 1BR

〉 ≤ C0A
β

f (2αt)
exp

(
−θ1

R2

t

)
for all t ≥ R ≥ 103.

Proof. Fix L = log(Aβ f (2t)

f (2t/γ β)
), D = 100 and � = R

4 . If θ1
R2

t
− L − 1

D�
< θ1, then we complete the proof since〈

u(t, ·)2,1 − 1BR

〉 ≤ ∥∥u(t, ·)∥∥2

≤ 1

f (2t)
≤ eθ1

f (2t)
exp

(
L + 1

D�
− θ1

R2

t

)

= eθ1Aβ exp(1/(D�))

f (2t/γ β)
exp

(
−θ1

R2

t

)

≤ eθ1Aβ exp(1/100)

f (t/γ )
exp

(
−θ1

R2

t

)
,

where the last inequality uses the monotonicity of f . Therefore, we may assume that

t ≥ R ≥ 103 and θ1
R2

t
− L − 1

D�
≥ θ1. (3.5)
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This implies that R ≤ t ≤ R2 and L ≤ θ1
R2

t
.

Let ρ(x) = (R − dν(o, x)) ∨ 1 for any x ∈ V . Then ρ satisfies (2.3) and 1 ≤ ρ(x) ≤ R. For each s ∈ [0, t] and
r ≥ 0, set

g(s, r) = exp

(
− ((R − r) ∨ 1)2

D(t − s + �)

)
.

Then g ∈ GR([0, t]) by Example 2.5 and the argument above about ρ. From Lemma 2.6, we get that for any r ∈ [0,R]
and s ∈ [0, t],〈

u(t, ·)2,1 − 1BR

〉 ≤ g(s, r)

g(t,R)

∥∥u(s, ·)∥∥2 + g(s,R)

g(t,R)

〈
u(s, ·)2,1 − 1Br

〉
≤ exp(1/(D�))

f (2s)
exp

(
− (R − r)2

D(t − s + �)

)
+ exp

(
1

D�

)〈
u(s, ·)2,1 − 1Br

〉
. (3.6)

We shall iterate using (3.6). Let us build a sequence {(tj ,Rj ) : 0 ≤ j ≤ j0}. Take

tj = t/2j−1, Rj = R/2 + R/(j + 1) for each 0 ≤ j ≤ j0;
and

j0 = min{j : Rj ≥ tj }.
Then j0 ≥ 1 and for all 0 ≤ j < j0 we have tj > Rj > R/2 > 1. Hence

tj − tj+1 = tj /2 ≥ R/4 = �.

From tj0−1 > R/2, we get

j0 <
log(8t/R)

log 2
.

Using the identity (Rj − Rj+1)
2 = R2

(j+1)2(j+2)2 , we obtain

(Rj − Rj+1)
2

D(tj − tj+1 + �)
≥ (Rj − Rj+1)

2

Dtj
= 2j−1

D(j + 1)2(j + 2)2

R2

t
.

Note that

min

{
2j−1

100(j + 1)3(j + 2)2
: j ≥ 1

}
= 26−1

100(6 + 1)3(6 + 2)2
≈ 1.5 × 10−5.

Sicne θ1 = 10−6, it follows immediately that

(Rj − Rj+1)
2

D(tj − tj+1 + �)
≥ (j + 1)θ1

R2

t
.

Iterating (3.6), we obtain〈
u(t, ·)2,1 − 1BR

〉 = 〈
u(t1, ·)2,1 − 1BR1

〉
≤

j0−1∑
j=1

exp(j/(D�))

f (2tj+1)
exp

(
− (Rj − Rj+1)

2

D(tj − tj+1 + �)

)
+ exp

(
j0 − 1

D�

)〈
u(tj0, ·)2,1 − 1BRj0

〉
:= �1 + �2.
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By Lemma 3.2, we have

f (2tj+1) ≥ f (2t)e−jL. (3.7)

Using (3.5), we conclude

�1 ≤ 1

f (2t)
exp

(
−θ1

R2

t

) j0−1∑
j=1

exp

(
−j

(
θ1

R2

t
− L − 1

D�

))

≤ 1

f (2t)
exp

(
−θ1

R2

t

) j0−1∑
j=1

exp(−jθ1)

≤ e−θ1(1 − e−θ1)−1

f (2t)
exp

(
−θ1

R2

t

)
. (3.8)

On the other hand, since 2tj0 = tj0−1 > Rj0−1 > Rj0 ≥ tj0 , we use Lemma 3.3 to get

〈
u(tj0 , ·)2,1 − 1BRj0

〉 ≤ cA

f (Rj0/(32δ))
e−10−4Rj0 , (3.9)

where c is a constant which is independent of A,γ and δ. By Lemma 3.2 and (3.3), we also have

f

(
Rj0

32δ

)
≥ f

(
tj0

32δ

)
≥

(
Aβ f (t/(32δ))

f (t/(32δγ β))

)−j0+1

f

(
t

32δ

)

≥
(

A2β f (2t)

f (2t/γ β)

)−j0+1

f

(
t

32δ

)
≥ f

(
t

32δ

)
e−2j0L. (3.10)

So,

�2 = exp

(
j0 − 1

D�

)〈
u(tj0 , ·)2,1 − 1BRj0

〉 ≤ exp

(
j0 − 1

D�

)
cA

f (Rj0/(32δ))
e−10−4Rj0

≤ cA

f (t/(32δ))
exp

(
j0

D�
+ 2j0L − 10−4R/2

)
.

Note that

103 ≤ R ≤ t ≤ R2, j0 <
log(8t/R)

log 2
, D� = 25R and L ≤ θ1

R2

t
.

From these inequalities, we calculate

j0

D�R
≤ log(8t/R)

25R2 log 2
≤ log(8R)

25R2 log 2
≤ log(8 · 103)

25 · 106 · log 2
< 5.2 × 10−7;

2j0L

R
≤ 2θ1

log(8t/R)

log 2

R

t
≤ 2θ1

8

e log 2
< 8.5 × 10−6.

So, j0
D�

+ 2j0L − 10−4R/2 < −θ1R and hence

�2 ≤ cA

f (t/(32δ))
e−θ1R ≤ cA

f (t/(32δ))
e−θ1R

2/t . (3.11)
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Finally, we choose

C0 = eθ1+0.01 + e−θ1
(
1 − e−θ1

)−1 + c

and complete the proof. �

Proof of Proposition 3.1. Write ρ(z) = dν(o, z) ∧ (2t) for short. If t ≤ 106, then the result is trivial since〈
u(t, ·)2, exp

(
θ2

ρ2

t

)〉
≤ e4θ2t

∥∥u(t, ·)∥∥2 ≤ e4·106θ2

f (2t)
.

So, we may assume that t ≥ 106 in the following.
Fix R = t1/2 and n = 
 log(t/R)

log 2 �. Then 2nR ≥ t , and t ≥ 2j−1R ≥ 103 for each 1 ≤ j ≤ n. Write

ϒ0 = 〈
u(t, ·)2, eθ2ρ

2/t1BR

〉
, ϒ∞ = 〈

u(t, ·)2, eθ2ρ
2/t (1 − 1Bt )

〉
and set

ϒj = 〈
u(t, ·)2, eθ2ρ

2/t (1B2j R
− 1B2j−1R

)
〉

for 1 ≤ j ≤ n.

Then 〈
u(t, ·)2, exp

(
θ2

ρ2

t

)〉
≤ ϒ0 +

n∑
j=1

ϒj + ϒ∞.

We estimate each ϒj separately.
The first term admits the estimate

ϒ0 ≤ 〈
u(t, ·)2, eθ2 1BR

〉 ≤ eθ2
∥∥u(t, ·)∥∥2 ≤ eθ2

f (2t)
.

Next, for each 1 ≤ j ≤ n, we have

ϒj ≤ 〈
u(t, ·)2, eθ2(2j )2

(1B2j R
− 1B2j−1R

)
〉 ≤ e4j θ2

〈
u(t, ·)2,1 − 1B2j−1R

〉
. (3.12)

Set C0 as in Proposition 3.4. Then

〈
u(t, ·)2,1 − 1B2j−1R

〉 ≤ C0A
β

f (2αt)
exp

(−θ1 · 4j−1).
By definition θ2 = θ1/5; therefore we get

ϒj ≤ C0A
β

f (2αt)
exp

(−θ2 · 4j−1).
For the remaining term,

ϒ∞ ≤ e4θ2t
〈
u(t, ·)2, (1 − 1Bt )

〉
.

Using Proposition 3.4 again gives

ϒ∞ ≤ e4θ2t · C0A
β

f (2αt)
e−θ1t = C0A

β

f (2αt)
e−θ2t ≤ C0A

β

f (2αt)
.
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Therefore,〈
u(t, ·)2, exp

(
θ2

ρ2

t

)〉
≤ eθ2

f (2t)
+

n∑
j=1

C0A
β

f (2αt)
exp

(−θ2 · 4j−1) + C0A
β

f (2αt)

≤ C1A
β

f (2αt)
,

where

C1 = e4·106θ2 + C0

∞∑
j=1

exp
(−θ2 · 4j−1) + C0.

�

4. Proof of Theorem 1.1

Proof of Theorem 1.1. Recall the notation H· from Section 2. Fix t ≥ dν(x1, x2) and s = t/2. For each z ∈ V and
i ∈ {1,2}, set

ρi(s, z) = dν(xi, z) ∧ (2s) and hi(s, z) = exp

(
1

2
· θ2

ρi(s, z)
2

s

)
.

Then 2ρ1(s, z)
2 + 2ρ2(s, z)

2 ≥ dν(x1, x2)
2 and so

h1(s, z)h2(s, z) ≥ exp

(
θ2

2
· dν(x1, x2)

2

t

)
. (4.1)

Let d(·, ·) be the graph distance of �. As in Corollary 2.8, we define

uij (s, z) = ν
1/2
xi

νz

Pxi

(
Xs = z, inf

{
l ∈R+ : d(xi,Xl) ≥ j

}
> s

)
and ui(s, z) = ν

1/2
xi

νz
Pxi

(Xs = z). Then {uij (s, z) : j = 1,2, . . .} is a non-decreasing sequence and satisfies

lim
j→∞uij (s, z) = ui(s, z).

By (1.1), for any l ≥ 0 we have

∥∥uij (l, ·)
∥∥2 ≤ ∥∥ui(l, ·)

∥∥2 = Pxi
(X2l = xi) ≤ 1

fi(2l)
.

Since uij ∈Hxi
, we use Proposition 3.1 and get

∥∥uij (s, ·)hi(s, ·)
∥∥2 =

〈
uij (s, ·)2, exp

(
θ2

ρi(s, ·)2

s

)〉
≤ C1A

β

fi(2αs)
= C1A

β

fi(αt)
.

By the Monotone Convergence Theorem,

∥∥ui(s, ·)hi(s, ·)
∥∥2 = lim

j→∞
∥∥uij (s, ·)hi(s, ·)

∥∥2 ≤ C1A
β

fi(αt)
.



Pointwise upper estimates for transition probabilities 41

By (4.1) and the Cauchy–Schwarz inequality, we obtain

Px1(Xt = x2) =
∑
z∈V

Px1(Xs = z)Px2(Xs = z)
νx2

νz

= (νx2/νx1)
1/2〈u1(s, ·), u2(s, ·)

〉
≤ (νx2/νx1)

1/2〈u1(s, ·)h1(s, ·), u2(s, ·)h2(s, ·)
〉
exp

(
−θ2

2
· dν(x1, x2)

2

t

)
≤ (νx2/νx1)

1/2
∥∥u1(s, ·)h1(s, ·)

∥∥∥∥u2(s, ·)h2(s, ·)
∥∥ exp

(
−θ2

2
· dν(x1, x2)

2

t

)
≤ C1A

β(νx2/νx1)
1/2

√
f1(αt)f2(αt)

exp

(
−θ2

2
· dν(x1, x2)

2

t

)
.

Set θ = θ2/2 and we complete the proof. �

5. Regularity on an interval

Proof of Theorem 1.2. First, we show that〈
u(t, ·)2, exp

(
θ2

(dν(o, ·) ∧ (2t))2

t

)〉
≤ C1A

β

f (2αt)
for t ∈ [(

2α−1T1
)2

, T2/2
)
. (5.1)

Take t ∈ [(2α−1T1)
2, T2/2), tj = t/2j−1, Rj = R/2 + R/(j + 1), j0 = min{j : Rj ≥ tj } and R = t1/2 as in Proposi-

tions 3.1 and 3.4. Then

2αtj0 > αR/2 = αt1/2/2 ≥ T1.

Using (1.5) and the regular condition on [T1, T2), we still have the inequalities (3.7), (3.9) and (3.10). Therefore, we
can get (5.1) in the same way as we did Proposition 3.1. Furthermore, by (5.1) and the Cauchy–Schwarz inequality,
we finish the proof of Theorem 1.2 similar as that of Theorem 1.1. �

Heat kernels having either polynomial decay or sub-exponential decay appear in many groups, see Hebisch and
Saloff-Coste [15, Theorem 4.1]. More importantly, there are a lot of papers which studied random walks on Z

d with
random conductances and showed that

Px(Xt = x) ≤ cνxt
−d/2 for all t ≥ tx (5.2)

under different conditions, such as [1,2,4–6]. A general feature of these random walks with random conductances is
that one may have (5.2) with either νx → 0 or tx → ∞ as x goes to infinity. Thus the condition (1.4) fails for small
time t and so we cannot apply Theorem 1.1 directly to give a uniform bound on Px(Xt = ·). This is the motivation for
our studying the regularity on an interval.

The lower bound of T̃1 in Theorem 1.2 can be improved if one knows that the growth rate of fi has either sub-
exponential or polynomial.

Fix A ≥ 1, γ > 1, θ1 = 10−6 and θ = θ2/2 = θ1/10 as before.

Theorem 5.1. Let δ ≥ 0 and ε ∈ [0,1). If each fi is (A,γ )-regular on [T1, T2) and satisfies

fi(t) ≤ Aeδtε for all t ∈ [T1, T2), (5.3)

then there exists a constant C1(A,γ, δ, ε) > 0 such that for each t ∈ [T̃1, T2),

Px1(Xt = x2) ≤ C1(νx2/νx1)
1/2

√
f1(t/(2γ ))f2(t/(2γ ))

exp

(
−θ

dν(x1, x2)
2

t

)
, (5.4)

where T̃1 = (29δT 1+ε
1 ) ∨ dν(x1, x2).
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Theorem 5.2. Let ε ≥ 0. If each fi is (A,γ )-regular on [T1, T2) and satisfies

fi(t) ≤ Atε for all t ∈ [T1, T2),

then there exists a constant C1(A,γ, ε) > 0 such that (5.4) holds for t ∈ [T̃1, T2). Here,

T̃1 = (
210εT1 log(T1 ∨ 1)

) ∨ dν(x1, x2).

Let’s begin with Theorem 5.1. As the proof of Theorem 1.1, we need some results which are similar to Propositions
3.4 and 3.1.

Proposition 5.3. Let δ > 0 and ε ∈ (0,1). Let u,f be defined as in Section 3. Suppose further that f is (A,γ )-regular
on [T1, T2) and satisfies

f (t) ≤ Aeδtε for all t ∈ [T1, T2). (5.5)

Then there exists a constant C0(A,γ, δ, ε) > 0 such that for R ≥ max{4,2κ(1+ε)/(1−ε),2(κT1)
(1+ε)/2} and t ∈

[κ−1R2/(1+ε), T2/2), we have

〈
u(t, ·)2,1 − 1BR

〉 ≤ C0

f (t/γ )
exp

(
−θ1

R2

t

)
.

Here, κ = (64δ)1/(1+ε).

Proof. We only show the part of the proof which is different from that of Proposition 3.4.
Fix R ≥ max{4,2κ(1+ε)/(1−ε),2(κT1)

(1+ε)/2} and t ∈ [κ−1R2/(1+ε), T2/2). Take L,D,�,Rj and tj as in Propo-

sition 3.4. We may still assume that θ1
R2

t
− L − 1

D�
≥ θ1. (Hence t ≤ R2 and L ≤ θ1

R2

t
.) However, we set

j0 = min
{
j : R2/(1+ε)

j ≥ κtj
}
.

Since R ≥ max{4,2κ(1+ε)/(1−ε)}, for j < j0 we have

tj > κ−1R
2/(1+ε)
j > κ−1(R/2)2/(1+ε) ≥ R/2 ≥ 2.

Hence

tj − tj+1 = tj /2 ≥ R/4 = �.

From R ≥ 2(κT1)
(1+ε)/2, it deduces

tj0 = tj0−1/2 ≥ κ−1(R/2)2/(1+ε)/2 ≥ T1/2.

So, T1 ≤ 2tj+1 ≤ 2t < T2 for each j < j0. By the hypothesis that f is (A,γ )-regular on [T1, T2), one has

f (2tj+1) ≥ f (2t)e−jL

the same as Lemma 3.2. Hence (3.8) holds under this circumstance, too. That is,

�1 :=
j0−1∑
j=1

exp(j/(D�))

f (2tj+1)
exp

(
− (Rj − Rj+1)

2

D(tj − tj+1 + �)

)
≤ e−θ1(1 − e−θ1)−1

f (2t)
exp

(
−θ1

R2

t

)
.

Next, if tj0 < Rj0 then by Proposition 2.7,

〈
u(tj0 , ·)2,1 − 1BRj0

〉 ≤ c1e
−2c−1

1 Rj0 ≤ c1e
−c−1

1 R ≤ c2 exp

(
− κ

16
R2ε/(1+ε)

)
,
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where c1, c2 ≥ 1 are constants. If tj0 ≥ Rj0 then by Proposition 2.7 we still have

〈
u(tj0, ·)2,1 − 1BRj0

〉 ≤ e
−R2

j0
/(8tj0 ) ≤ exp

(
−κ

8
R

2ε/(1+ε)
j0

)
≤ c2 exp

(
− κ

16
R2ε/(1+ε)

)
.

From R
2/(1+ε)
j0

≥ κtj0 and R
2/(1+ε)

j0−1 < κtj0−1, we get the following inequalities respectively:

tj0 ≤ R2/(1+ε)/κ and j0 <
1

log 2
log

(
16κt

R2/(1+ε)

)
.

Hence

f (2t) ≤ f (2tj0)e
j0L ≤ f

(
2R2/(1+ε)/κ

)
exp

{
1

log 2
log

(
16κt

R2/(1+ε)

)
· L

}
By (5.5) and the assumption L ≤ θ1

R2

t
,

f (2t) ≤ A exp

(
2εδ

κε
R2ε/(1+ε)

)
· exp

{
1

log 2
log

(
16κt

R2/(1+ε)

)
· θ1

R2

t

}
≤ A exp

(
2εδ

κε
R2ε/(1+ε)

)
exp

{
θ1

e log 2
16κR2ε/(1+ε)

}
.

Since t ≤ R2 and R ≥ 4, there exists a constant c3 such that

exp

(
j0

D�

)
≤ exp

(
1

log 2
log

(
16κt

R2/(1+ε)

)
· 1

25R

)

≤ exp

(
1

log 2
log

(
16κR2

R2/(1+ε)

)
· 1

25R

)
≤ c3.

Combining the above inequalities gives

�2 := exp

(
j0 − 1

D�

)〈
u(tj0 , ·)2,1 − 1BRj0

〉
≤ c3c2 exp

(
− κ

16
R2ε/(1+ε)

)
≤ c3c2 exp

(
− κ

16
R2ε/(1+ε)

)
· 1

f (2t)
· A exp

(
2εδ

κε
R2ε/(1+ε)

)
exp

{
θ1

e log 2
16κR2ε/(1+ε)

}
= c4

f (2t)
exp

((
− κ

16
+ 2εδ

κε
+ θ1

e log 2
16κ

)
R2ε/(1+ε)

)
,

where c4 = c3c2A. Substituting κ = (64δ)1/(1+ε) and using the condition t ≥ κ−1R2/(1+ε),

�2 ≤ c4

f (2t)
exp

((
− κ

16
+ 2εκ

64
+ θ1

e log 2
16κ

)
R2ε/(1+ε)

)
≤ c4

f (2t)
exp

(
− κ

64
R2ε/(1+ε)

)

≤ c4

f (2t)
exp

(
− 1

64

R2

t

)
.

This completes the proof. �



44 X. Chen

Proposition 5.4. Under the condition of Proposition 5.3, there exists a constant C0(A,γ, δ, ε) > 0 such that〈
u(t, ·)2, exp

(
θ2

(dν(o, ·) ∧ (2t))2

t

)〉
≤ C0

f (t/γ )
for t ∈ [28δT 1+ε

1 , T2/2).

Proof. We only show the difference from Proposition 3.1. Fix κ = (64δ)1/(1+ε) and t0 = max{16,4κ(2+2ε)/(1−ε),

κ−(1+ε)/ε}. Let t ∈ [28δT 1+ε
1 , T2/2). If t ≤ t0, then as before the result is trivial. So, we may assume further t ≥ t0.

Fix R = t1/2. Then

R ≥ max
{
4,2κ(1+ε)/(1−ε),2(κT1)

(1+ε)/2} and κt ≥ R2/(1+ε).

Define θ2,ϒj and n as in Proposition 3.1. However, we set

m = max
{
j : κt ≥ (

2jR
)2/(1+ε)}

.

Then by Proposition 5.3, for 1 ≤ j ≤ m ∧ n we have

ϒj ≤ C0

f (t/γ )
exp

(−θ2 · 4j−1).
If m + 1 ≤ j ≤ n then use Proposition 2.7 and get

ϒj ≤ e4j θ2
〈
u(t, ·)2,1 − B2j−1R

〉 ≤ e4j θ2 · exp

(
− (2j−1)2

8

)
≤ exp

(
−4j−1

12

)
.

By the definition of m, one has κt < (2m+1R)2/(1+ε) = (2m+1t1/2)2/(1+ε) and so,

4m+1 > κ1+εtε = 64δtε. (5.6)

By (5.5) and (5.6), we still have

ϒj ≤ Aeδtε

f (t)
exp

(
−4j−1

12

)
≤ A

f (t)
exp

(
4m−2 − 4j−1

12

)

≤ A

f (t)
exp

(
4j−3 − 4j−1

12

)
= A

f (t)
exp

(
−4j−1

48

)
.

For the other terms ϒ0 and ϒ∞, one can get the estimates the same as we did in Proposition 3.1 and so we finish the
proof. �

Proof of Theorem 5.1. If εδ = 0, then the problem is reduced to Corollary 2.8 since each fi has a constant upper
bound on [T1, T2). Otherwise, if δ > 0 and ε ∈ (0,1) then we can get the proof as Theorem 1.1 by using Proposition 5.4
and the Cauchy–Schwarz inequality. �

Proof of Theorem 5.2. We obtain a similar result as Proposition 5.3 just by setting

j0 = min
{
j : R2

j / logRj ≥ κtj
}
,

and then prove the theorem as above. �

Enlightened by Boukhadra, Kumagai and Mathieu [6], we give an application of Theorem 5.1. (See our further
reseach [7] for the application in a concrete example.) Set

pt (x, y) = Px(Xt = y)

νy

for the heat kernel of X.
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Example 5.5. Suppose pt (xi, xi) ≤ κt−d/2 for t ≥ t1 and i ∈ {1,2}. Suppose νx1 , νx2 ≥ t−κ
1 . Then for each ε > 0,

there exists a constant C0(d, κ, ε) > 0 such that

pt(x1, x2) ≤ C0t
−d/2 exp

(
−θ

dν(x1, x2)
2

t

)
for t ≥ t1+ε

1 ∨ dν(x1, x2). (5.7)

Proof. Let fi(t) = κ−1ν−1
xi

td/2 for i ∈ {1,2} and t ∈R+. Then for each t ≥ t1,

Pxi
(Xt = xi) = νxi

pt (xi, xi) ≤ 1

fi(t)
.

Note that fi is (1,2)-regular and for t ≥ t1,

fi(t) = κ−1ν−1
xi

td/2 ≤ κ−1tκ1 td/2 ≤ κ−1tκ+d/2 ≤ A exp
(
2−9tε

)
,

where A is some constant which depends only on d, κ and ε. Applying Theorem 5.1 gives

Px1(Xt = x2) ≤ C1(νx2/νx1)
1/2

√
f1(t/4)f2(t/4)

exp

(
−θ

dν(x1, x2)
2

t

)
for t ≥ t1+ε

1 ∨ dν(x1, x2),

which implies (5.7) immediately. �
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