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Abstract. In this paper, we provide sufficient conditions for the existence of the invariant distribution and for subgeometric rates
of convergence in Wasserstein distance for general state-space Markov chains which are (possibly) not irreducible. Compared to
(Ann. Appl. Probab. 24 (2) (2014) 526–552), our approach is based on a purely probabilistic coupling construction which allows
to retrieve rates of convergence matching those previously reported for convergence in total variation in (Bernoulli 13 (3) (2007)
831–848).

Our results are applied to establish the subgeometric ergodicity in Wasserstein distance of non-linear autoregressive models and
of the pre-conditioned Crank–Nicolson Markov chain Monte Carlo algorithm in Hilbert space.

Résumé. Dans cet article, nous donnons des conditions suffisantes pour l’existence d’une probabilité invariante et qui permettent
d’établir des taux de convergence sous-géométriques en distance de Wasserstein, pour des chaînes de Markov définies sur des
espaces d’états généraux et non nécessairement irréductibles. Comparée à (Ann. Appl. Probab. 24 (2) (2014) 526–552), notre
approche est basée sur une construction par couplage purement probabiliste, ce qui permet de retrouver les taux de convergence
obtenus précédement pour la variation total dans (Bernoulli 13 (3) (2007) 831–848).

Par application de ces résultats, nous établissons la convergence sous-géométrique en distance de Wasserstein de modèles non
linéaires auto-régressifs et l’algorithme de MCMC, l’algorithme de Crank–Nicolson pré-conditionné dans les espaces de Hilbert,
pour une certaine classe de mesure cible.
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1. Introduction

Convergence of general state-space Markov chains in total variation distance (or V -total variation) has been studied
by many authors. There is a wealth of contributions establishing explicit rates of convergence under conditions im-
plying geometric ergodicity; see [19, Chapter 16], [2,7,21] and the references therein. Subgeometric (or Riemanian)
convergence has been more scarcely studied; [24] characterized subgeometric convergence using a sequence of drift
conditions, which proved to be difficult to use in practice. [15] have shown that, for polynomial convergence rates,
this sequence of drift conditions can be replaced by a single drift condition, which shares some similarities with the
classical Foster–Lyapunov approach for the geometric ergodicity. This result was later extended by [12] and [9] to
general subgeometric rates of convergence. Explicit convergence rates were obtained in [10,12,25] and [1].

The classical proofs of convergence in total variation distance are based either on a regenerative or a pairwise
coupling construction, which requires the existence of accessible small sets and additional assumptions to control the
moments of the successive return time to these sets. The existence of an accessible small set implies that the chain is
irreducible.
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In this paper, we establish rates of convergence for general state-space Markov chains which are (possibly) not
irreducible. In such cases, Markov chains might not converge in total variation distance, but nevertheless may con-
verge in a weaker sense; see for example [18]. We study in this paper the convergence in Wasserstein distance, which
also implies the weak convergence. The use of the Wasserstein distance to obtain explicit rates of convergence has
been considered by several authors, most often under conditions implying geometric ergodicity. A significant break-
through in this domain has been achieved in [13]. The main motivation of [13] was the convergence of the solutions of
stochastic delay differential equations (SDDE) to their invariant measure. Nevertheless, the techniques introduced in
[13] laid the foundations of several contributions. [14] used these techniques to prove the convergence of Markov chain
Monte Carlo algorithms in infinite dimensional Hilbert spaces. An application for switched and piecewise determin-
istic Markov processes can be found in [8]. The results of [13] were generalized by [6] which establishes conditions
implying the existence and uniqueness of the invariant distribution, and the subgeometric ergodicity of Markov chains
(in discrete-time) and Markov processes (in continuous-time). [6] used this result to establish subgeometric ergodicity
of the solutions of SDDE. Nevertheless, when applied to the context of V -total variation, the rates obtained in [6] in
discrete-time do not exactly match the rates established in [9].

In this paper, we complement and sharpen the results presented in [6] in the discrete-time setting. The approach
developed in this paper is based on a coupling construction, which shares some similarities with the pairwise coupling
used to prove geometric convergence in V -total variation. The arguments are therefore mostly probabilistic whereas
[6] heavily relies on functional analysis techniques and methods. We provide a sufficient condition couched in terms
of a single drift condition for a coupling kernel outside an appropriately defined coupling set, extending the notion of
d-small set of [13]. We then show how this single drift condition implies a sequence of drift inequalities from which
we deduce an upper bound of some subgeometric moment of the successive return times to the coupling set. The
last step is to show that the Wasserstein distance between the distribution of the chain and the invariant probability
measure is controlled by these moments. We apply our results to the convergence of some Markov chain Monte Carlo
samplers with heavy tailed target distribution and to nonlinear autoregressive models whose the noise distribution
can be singular with the Lebesgue measure. We also study the convergence of the preconditioned Crank–Nicolson
algorithm when the target distribution has a density w.r.t. a Gaussian measure on an Hilbert space, under conditions
which are weaker than [14].

The paper is organized as follows: in Section 2, the main results on the convergence of Markov chains in Wasser-
stein distance are presented, under different sets of assumptions. Section 3 is devoted to the applications of these
results. The proofs are given in Section 4 and Section 5.

Notations

Let (E,d) be a Polish space where d is a distance bounded by 1. We denote by B(E) the associated Borel σ -algebra
and P(E) the set of probability measures on (E,B(E)). Let μ,ν ∈ P(E); λ is a coupling of μ and ν if λ is a
probability on the product space (E × E,B(E × E)), such that λ(A × E) = μ(A) and λ(E × A) = ν(A) for all
A ∈ B(E). The set of couplings of μ,ν ∈ P(E) is denoted C(μ, ν). Let P be Markov kernel of E ×B(E); a Markov
kernel Q on (E × E,B(E × E)) such that, for every x, y ∈ E, Q((x, y), ·) is a coupling of P(x, ·) and P(y, ·) is a
coupling kernel for P .

The Wasserstein metric associated with d , between two probability measures μ,ν ∈ P(E) is defined by:

Wd(μ,ν) = inf
γ∈C(μ,ν)

∫
E×E

d(x, y)dγ (x, y). (1)

When d is the trivial metric d0(x, y) = 1x �=y , the associated Wasserstein metric is the total variation distance
Wd0(μ, ν) = supA∈B(E) |μ(A) − ν(A)|. Since d is bounded, the Monge–Kantorovich duality theorem implies (see
[26, Remark 6.5]) that the lower bound in (1) is realized. In addition, Wd is a metric on P(E) and P(E) equipped
with Wd is a Polish space; see [26, Theorems 6.8 and 6.16]. Finally, the convergence in Wd is equivalent to the weak
convergence, since Wd is equivalent to the Prokorov metric (see e.g. [4, Theorem 6.8 and 6.9]).

Let �0 be the set of measurable functions r0 : R+ → [2,+∞), such that r0 is non-decreasing, x �→ log(r0(x))/x

is non-increasing and limx→∞ log(r0(x))/x = 0. Denote by � the set of positive functions r : R+ → (0,+∞), such
that there exists r0 ∈ �0 satisfying:

0 < lim inf
x→+∞ r(x)/r0(x) ≤ lim sup

x→+∞
r(x)/r0(x) < +∞. (2)
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Finally, let F be the set of concave increasing functions φ : R+ → R+, continuously differentiable on [1,+∞), and
satisfying limx→+∞ φ(x) = +∞ and limx→+∞ φ′(x) = 0. For φ ∈ F, we denote by φ← the inverse of φ.

2. Main results

The key ingredient for the derivation of the convergence of a Markov kernel P on (E,d) is the existence of a coupling
kernel Q((x, y), ·) for P satisfying a strong contraction property when (x, y) belongs to a set �, referred to as a
coupling set. For � ∈ B(E × E), a positive integer 	 and ε > 0, consider the following assumption:

H1(�,	, ε).

(i) Q is a d-weak-contraction: for every x, y ∈ E, Qd(x, y) ≤ d(x, y).
(ii) Q	d(x, y) ≤ (1 − ε)d(x, y), for every (x, y) ∈ �.

A set � satisfying H1(�,	, ε)(ii) will be referred to as a (	, ε, d)-coupling set. Of course the definition of this set
also depends on the choice of the coupling kernel Q, but this dependence is implicit in the notation. If d = d0 and �

is a (1, ε)-pseudo small set (with ε > 0) in the sense that

inf
(x,y)∈�

[
P(x, ·) ∧ P(y, ·)](E) ≥ ε,

then H1(�,1, ε) is satisfied by the pairwise coupling kernel (see [20]). Furthermore, a simple way to check that
� ∈ B(E × E) is a (1, ε, d)-coupling set is the following. Let ε > 0. If for all (x, y) ∈ E × E, Wd(P (x, ·),P (y, ·)) ≤
d(x, y), and for all (x, y) ∈ �, Wd(P (x, ·),P (y, ·)) ≤ (1 − ε)d(x, y), then [26, Corollary 5.22] implies that there
exists a Markov kernel Q on (E × E,B(E × E)) satisfying H1(�,1, ε).

The following theorem shows that, under H1(�,	, ε) and a condition which essentially claims that if the first
moment of the hitting time to the coupling set � is finite, the Markov kernel P admits a unique invariant distribution.

Theorem 1. Assume that there exist

(i) a coupling kernel Q for P , a set � ∈ B(E × E), 	 ∈N
∗ and ε > 0 such that H1(�,	, ε) holds,

(ii) a measurable function V : E2 → [1,∞) and a constant b < ∞ such that the following drift condition is satisfied:

QV(x, y) ≤ V(x, y) − 1 + b1�(x, y), sup
(x,y)∈�

Q	−1V(x, y) < +∞, (3)

(iii) an increasing sequence of integers {nk, k ∈ N} and a concave function ψ :R+ → R
+ such that limv→+∞ ψ(v) =

+∞ and

sup
k∈N

P nk [ψ ◦ Vx0](x0) < +∞, P Vx0(x0) < +∞ for some x0 ∈ E, (4)

where Vx0 = V(x0, ·).
Then, P admits a unique invariant distribution.

Proof. See Section 4.1. �

If we now combine H1(�,	, ε) with a condition which implies the control of the tail probabilities of the successive
return times to the coupling sets (more precisely, of the moments of order larger than one of these return times) then
the Wasserstein distance between P n(x, ·) and P n(y, ·) may be shown to decrease at a subgeometric rate. To control
these moments, it is quite usual to consider drift conditions. In this paper, we focus on a class of drift conditions
which has been first introduced in [9]. For � ∈ B(E ×E), a function φ ∈ F, a measurable function V : E → [1,+∞),
consider the following assumption:
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H2(�,φ,V ).

(i) There exists a constant b < ∞ such that for all x, y ∈ E:

PV (x) + PV (y) ≤ V (x) + V (y) − φ
(
V (x) + V (y)

) + b1�(x, y). (5)

(ii) sup(x,y)∈�{V (x) + V (y)} < +∞.

Not surprisingly, this condition implies that the return time to the coupling set � possesses a first moment. This
property combined with Theorem 1 yields

Corollary 2. Assume that there exist a coupling kernel Q for P , � ∈ B(E × E), 	 ∈ N
∗, ε > 0, φ ∈ F and V : E →

[1,∞) such that H1(�,	, ε)–H2(�,φ,V ) are satisfied. Then, P admits a unique invariant probability measure π

and
∫
E

φ ◦ V (x)π(dx) < ∞.

Proof. See Section 4.2. �

We now derive expressions of the rate of convergence and make explicit the dependence upon the initial condition
of the chain. For φ ∈ F, set

Hφ(t) =
∫ t

1

1

φ(s)
ds. (6)

Since for t ≥ 1, φ(t) ≤ φ(1) + φ′(1)(t − 1), the function Hφ is monotone increasing to infinity, twice continuously
differentiable and concave. Its inverse, denoted H←

φ , is well defined on R+, is twice continuously differentiable and
convex (see e.g. [9, Section 2.1]).

Theorem 3. Assume that there exist a coupling kernel Q for P , � ∈ B(E × E), 	 ∈ N
∗, ε > 0, φ ∈ F and V : E →

[1,∞) such that H1(�,	, ε)–H2(�,φ,V ) are satisfied. Let π be the invariant probability of P .

(i) There exist constants {Ci}3
i=1 such that for all x ∈ E and all n ≥ 1

Wd

(
P n(x, ·),π) ≤ C1V (x)/H←

φ (n/2) + C2/φ
(
H←

φ (n/2)
)

+ C3/H
←
φ

(− log(1 − ε)n/
{
2
(
log

(
H←

φ (n)
) − log(1 − ε)

)})
.

(ii) For all δ ∈ (0,1), there exists a constant Cδ such that for all x ∈ E and all n ≥ 1

Wd

(
P n(x, ·),π) ≤ CδV (x)/φ

({
H←

φ (n)
}δ)

.

The values of the constants Ci , for i = 1,2,3, and Cδ are given explicitly in the proof, and depend on �,	, ε,φ,V, b.

Proof. See Section 4.3 �

We summarize in Table 1 the rates of convergence obtained (for a given x ∈ E) from Theorem 3 for usual concave
functions φ: logarithmic rates φ(t) = (1 + log t)κ for some κ > 0; polynomial rates φ(t) = tκ for some κ ∈ (0,1);
subexponential rates φ(t) = t/(1 + log t)κ for some κ > 0. Note that since φ ∈ F, the first term in the RHS of the
bound in (i) is not the leading term (for fixed x, when n → ∞). In the case φ is logarithmic or polynomial, the leading
term in the RHS is the second one so that the rate of decay is given by 1/φ(H←

φ (n/2)). For the logarithmic and
polynomial cases, the best rates are given by Theorem 3(i) and for the subexponential case, by Theorem 3(ii).

In practice, it is often easier to establish a drift inequality on E rather than on E ×E as in H2(�,φ,V ). Theorem 4
relates the following single drift condition to the drift H2. For a function φ ∈ F, a measurable function V : E →
[1,+∞) and a constant b ≥ 0, consider the following assumption
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Table 1
Rates of convergence when φ increases at a logarithmic rate, a polynomial rate and a subexponential rate, obtained from Theorem 3 and from [6,
Theorem 2.1] and [9, Section 2.3]

Order of the rates φ(x) = (1 + log(x))κ φ(x) = xκ φ(x) = x/(1 + log(x))κ

of convergence in for κ > 0 for κ ∈ (0,1) for κ > 0
set ς = κ/(1 − κ) set ς = 1/(1 + κ)

Theorem 3 1/ logκ (n) 1/nς exp(−δ((1 + κ)n)ς )

for all δ ∈ (0,1)

[9] 1/ logκ (n) 1/nς nκς exp(−((1 + κ)n)ς )

[6] for all δ ∈ (0,1) 1/ logδκ (n) 1/nδς ∃C > 0
exp(−Cnς )

H3 (φ,V,b). φ(0) = 0 and for all x ∈ E,

PV (x) ≤ V (x) − φ ◦ V (x) + b. (7)

Theorem 4. Let φ ∈ F, a measurable function V : E → [1,+∞) and a constant b ≥ 0 such that H3(φ,V,b) holds.
Then H2({V ≤ υ}2, cφ,V ) is satisfied for any υ > φ←(2b) and with c = 1 − 2b/φ(υ).

The proof is postponed in Section 4.4. Note that we can assume without loss of generality that t �→ φ(t) is concave
increasing and continuously differentiable only for large t ; see Lemma 21.

Our assumptions and results can be compared to [6] which also establish convergence in Wasserstein distance at a
subgeometric rate under the single drift condition H3(φ,V,b) and the following assumptions

B(i) For all x, y ∈ E, Wd(P (x, ·),P (y, ·)) ≤ d(x, y).
B(ii) There exists η > 0 such that the level set � = {(x, y) : V (x) + V (y) ≤ φ←(2b) + η} is d-small for P : there

exists ε > 0 such that for any x, y ∈ �, Wd(P (x, ·),P (y, ·)) ≤ (1 − ε)d(x, y).

Under these conditions, [6, Theorem 2.1] shows the existence and uniqueness of the stationary distribution π and
provides rates of convergence to stationarity in the Wasserstein distance Wd ; expressions for these rates are provided
in the last row of Table 1 for various choices of functions φ. It can be seen that our results always improve the rates of
convergence when compared to those of [6].

Let us compare the assumptions of Theorem 3 to (B). It follows from [26, Corollary 5.22] that under B(i) and
B(ii), there exists a coupling kernel for P (which is the coupling kernel realizing the lower bound in the Monge–
Kantorovitch duality theorem) such that H1(�,1, ε) holds. Since Theorem 4 establishes that a single drift condition
of the form H3 implies a drift condition of the form H2, the assumptions of [6, Theorem 2.1] essentially differ from
the assumptions of Theorem 3 through the coupling set assumption: [6, Theorem 2.1] only covers coupling sets of
order 1 when our result covers coupling sets of order 	, for any 	 ≥ 1. This is an unnatural and sometimes annoying
restriction since in practical examples the order 	 is most likely to be large (see e.g. the examples in Section 3). Note
that the strategy consisting in applying a result for a coupling set of order 1 to the 	-iterated kernel is not equivalent
to applying a result for a coupling set of order 	 to the one iterated kernel; we provide an illustration of this claim
in Section 3.1. Checking H1(�,	, ε) is easier than checking (B) since allowing the coupling set to be of any order
provides far more flexibility.

Our results can also be compared to the explicit rates in [9] derived for convergence in total variation distance. In
[9], it is assumed that P is phi-irreducible, aperiodic, that the drift condition H3 holds and that the level sets {V ≤ υ}
are small in the usual sense, i.e. for some 	 ∈ N

∗, ε ∈ (0,1) and a probability ν that may depend upon the level set,
P 	(x,A) ≥ εν(A), for all x ∈ {V ≤ υ} and A ∈ B(E). Under these assumptions, [9, Proposition 2.5] shows that for
any x ∈ E, limn→∞ φ(H←

φ (n))Wd0(P
n(x, ·),π) = 0, where Wd0 is the total variation distance. Table 1 displays the

rate rφ obtained in [9] (see penultimate row) and the rates given by Theorem 3 (row 2): our results coincide with
[9] for the polynomial and logarithmic cases and the logarithm of the rate differs by a constant (which can be chosen
arbitrarily close to one in our case) in the subexponential case. Nevertheless, we would like to stress that our conditions
do not require φ-irreducibility and therefore apply in more general contexts.
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3. Application

3.1. A symmetric random walk Metropolis algorithm

Let E
def= {k/4; k ∈ Z} endowed with the trivial distance d0, thus (E,d0) is a Polish space. Consider a symmetric

random walk Metropolis (SRWM) algorithm on E for an heavy tailed target distribution π given by

π(x) ∝ 1/
(
1 + |x|)1+h

, for all x ∈ E, (8)

where h ∈ (0,1/2). Starting at x ∈ E, the Metropolis algorithm proposes at each iteration, a candidate y from a
random walk with a symmetric increment distribution q on E. The move is accepted with probability α(x, y) =
1 ∧ (π(y)/π(x)). The Markov kernel associated with the SRWM algorithm is given, for all x ∈ E and A ⊂ E, by

P(x,A) =
∑

y,x+y∈A

α(x, x + y)q(y) + δx(A)
∑
y∈E

(
1 − α(x, x + y)

)
q(y).

Assume that q is the uniform distribution on {−1/4,0,1/4}. It is easily checked that P is irreducible and aperiodic.
In the following, we prove that [6, Theorem 2.1] cannot be applied to this case, contrary to Theorem 3.

We first prove that P cannot be geometrically ergodic. The proof essentially follows from [16, Theorem 2.2], where
the authors established necessary and sufficient conditions for the geometric and the polynomial ergodicity of random
walk type Markov chains on R.

Proposition 5. P is not geometrically ergodic.

Proof. The proof is by contradiction: we assume that P is geometrically ergodic. Since it is also P irreducible
and aperiodic, the stationary distribution π is unique and geometrically regular: for any set A such that π(A) > 0,
there exists L > 1 such that Eπ [LτA ] = ∑

x∈E π(x)Ex[LτA ] < ∞, where τA is the return time to A. Choose M > 0,
A = {x ∈ E, |x| ≤ M}. Since for |x| ≥ M , τA ≥ 4(|x| − M) Px -a.s. the regularity of π claims that there exists L > 1
such that

∑
x∈Z L|x|π(x) < ∞. This clearly yields to a contradiction. �

We then show that the Markov kernel P satisfies a sub-geometric drift condition. For s ≥ 0, set Vs(x) = 1 ∨ |x|s .

Proposition 6. For all s ∈ (2,2 + h), there exist b, c > 0 such that for all x ∈ E

PVs(x) ≤ Vs(x) − cVs(x)(s−2)/s + b. (9)

Proof. We have for all x ≥ 5/4,

PVs(x) − Vs(x) = (
xs/3

)(((
1 − (4x)−1)s − 1

) − (
1 − 1/(5 + 4x)

)1+h(1 − (
1 + (4x)−1)s))

.

Since (1 − (4x)−1)s − 1 = −s/(4x) − (1 − s)s/(32x2) + o(x−2) and (1 − 1/(5 + 4x))1+h = 1 − (1 + h)/(4x) +
(10 + 11h + h2)/(32x2) + o(x−2) as x → +∞, then PVs(x) − Vs(x) = xs−2s(s − h − 2)/48 + o(xs−2). The same
expansion remains valid as x → −∞ upon replacing x by −x. �

Using this result, [9, Proposition 2.5] shows that for any x ∈ E, P n(x, ·) converges to π in total variation norm, at
the rates nh̃ for all h̃ ∈ (0, h/2).

We can also apply Theorem 4 and Theorem 3(i). For any s ∈ (2,2 + h), H3(φs,Vs, b) is satisfied with φs(x) =
cx(s−2)/s , Vs(x) = 1 ∨ |x|s and b < +∞. For x, y ∈ E and A,B ⊂ E, consider the following kernel:

Q
(
(x, y), (A × B)

) = P(x,A)P (y,B)1{x �=y} + P(x,A ∩ B)1{x=y}.
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Clearly, Q is a coupling kernel for P . Let us prove that for any M > 0 and any 	 ≥ 4M , there exists ε > 0 such that
H1(�,	, ε) holds with � = {|x| ∨ |y| ≤ M}. We have Qd0(x, y) ≤ d0(x, y) for every x �= y ∈ E and by definition of
Q, Qd0(x, x) = 0 for every x ∈ E. Let M > 0, 	 ≥ 4M . For any x, y ∈ {|x| ∨ |y| ≤ M} such that |x| < |y|

P̃x,y[X	 = Y	] ≥ P̃x,y[X4|y| = Y4|y|] ≥ P̃x,y

[
τX

0 = 4|x|,X4|x|+1 = 0, . . . ,X4|y| = 0, τY
0 = 4|y|],

where τX
0 = inf{n ≥ 1,Xn = 0} and τY

0 = inf{n ≥ 1, Yn = 0}. Since

P̃x,y

[
τX

0 = 4|x|] ≥ (1/3)4|x|, P̃x,y

[
τY

0 = 4|y|] ≥ (1/3)4|y|,

P̃x,y[X4|x|+1 = 0, . . . ,X4|y| = 0] ≥ (1/3)4(|y|−|x|),

it follows that Q	d0(x, y) = 1 − P̃x,y[X	 = Y	] ≤ 1 − (1/3)8|y| ≤ 1 − (1/3)8Md0(x, y). This inequality remains valid
when x = y. This concludes the proof of H1(�,	, ε). By Theorem 4, the kernel P is subgeometrically ergodic in total
variation distance at the rates nh̃, for h̃ ∈ (0, h/2).

In this example, [6, Theorem 2.1] cannot be applied. Indeed, on one hand, for any M > 0 the set �M = {|x| ∨
|y| ≤ M} is a (1, ε, d0)-coupling set for P 	 iff l ≥ 4M . This property is a consequence of the above discussion (for
the converse implication) and of the equality Wd0(P

	(x, ·),P 	(y, ·)) = 1 if |x − y| > 	/2 (for the direct implication).
On the other hand, in order to check B(ii) for some 	-iterated kernel P 	, we have to prove that there exists η > 0 such
that �� = {(x, y) ∈ E2;Vs(x) + Vs(y) ≤ (2b	/c)s/(s−2) + η} is a (1, ε, d0)-coupling set for P 	 – the constants b, c

are given by Proposition 6. Unfortunately, since b/c ≥ 1 (apply the drift inequality (9) with x = 0), and 1/(s − 2) ≥ 2,
we get{

(x, y) ∈ E, |x| ∨ |y| ≤ 4	2} ⊂ {
x, y ∈ E; |x| ∨ |y| ≤ (2b	/c)1/(s−2)

} ⊂ ��.

Therefore whatever 	, �� is not a (1, ε, d0) coupling set for P 	.

3.2. Non linear autoregressive model

In this section, we consider the functional autoregressive process {Xn,n ∈ N} on E = R
p , given by Xn+1 = g(Xn) +

Zn+1 Denote by ‖ · ‖ the Euclidean norm on E and B(x,M) the ball of radius M ≥ 0 and centered at x ∈ R
p ,

associated with this norm. Consider the following assumptions:

AR1. {Zn,n ∈ N
∗} is an independent and identically distributed (i.i.d.) zero-mean R

p-valued sequence, independent
of X0, and satisfying

∫
exp(β0‖z‖κ0)μ(dz) < +∞, where μ is the distribution of Z1 for some β0 > 0 and κ0 ∈ (0,1].

AR2. For all M > 0, g :Rp →R
p is CM -Lipschitz on B(0,M) with respect to ‖ · ‖ where CM ∈ (0,1). Furthermore,

there exist positive constants r,M0, and ρ ∈ [0,2), such that ‖g(x)‖ ≤ ‖x‖(1 − r‖x‖−ρ) if ‖x‖ ≥ M0.

A simple example of function g satisfying AR2 is x �→ x · max(1/2,1 − 1/‖x‖ρ) with ρ ∈ [0,2). Denote by P the
Markov kernel defined by the process (Xn)n. Proposition 7 establishes H3(φ,V,b) in the case where ρ > κ0, and a
geometric drift condition in the other case.

Proposition 7 ([9, Theorem 3.3]). Assume AR1 and AR2.

(i) If ρ > κ0, there exist β ∈ (0, β0) and b, c > 0 such that H3(φ,V,b) holds with

φ(x) := cx
(
1 + log(x)

)1−ρ/(κ0∧(2−ρ))
and V (x) := exp

(
β‖x‖κ0∧(2−ρ)

)
.

(ii) If ρ ≤ κ0, then there exist b < +∞ and ζ ∈ (0,1) such that for all x ∈ R
p , PV (x) ≤ ζV (x) + b where V (x) =

exp(β‖x‖κ0) with β ∈ (0, β0).
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Proof. The proof of Proposition 7 is along the same lines as [9, Theorem 3.3] and is omitted.1 �

Consider the coupling kernel Q defined for all x, y ∈ E and A ∈ B(E × E) by

Q
(
(x, y),A

) =
∫

1A

(
g(x) + z, g(y) + z

)
μ(dz). (10)

For η > 0, define dη(x, y)
def= 1 ∧ η−1‖x − y‖.

Proposition 8. Assume AR1 and AR2. For any M > 0, there exist ε, η > 0 such that B(0,M) × B(0,M) is a
(1, ε, dη)-coupling set.

Proof. Since dη(x, y) = ‖x − y‖/η for any x, y ∈ B(0,M) and η = 2M , we get under AR2,

E
[
dη

(
g(x) + Z1, g(y) + Z1

)] ≤ η−1
∥∥g(x) − g(y)

∥∥ ∧ 1 ≤ CMη−1‖x − y‖ ≤ CMdη(x, y). (11)

Finally, since AR2 implies that g is 1-Lipschitz on R
p , (11) shows that E[dη(g(x) + Z1, g(y) + Z1)] ≤ dη(x, y) for

all x, y ∈R
p . �

For all η,η′ > 0, dη and dη′ are Lipschitz equivalent, i.e., there exists C > 0 such that for all x, y ∈ R
p ,

C−1dη(x, y) ≤ dη′(x, y) ≤ Cdη(x, y), which implies (see (1)) that Wdη and Wdη′ are Lipschitz equivalent.

Theorem 9. Assume AR1 and AR2 hold. Then P admits a unique invariant distribution π .

(i) If ρ > κ0, there exist two constants C1 and C2 such that for all x ∈R
p and n ∈ N

∗

Wd1

(
P n(x, ·),π) ≤ C1V (x) exp

(−C2n
ς
)
,

where ς = (κ0 ∧ (2 − ρ))/ρ.
(ii) If ρ ≤ κ0, then there exist ζ̃ ∈ (0,1) and a constant C such that for all x ∈ R

p and n ∈N
∗

Wd1

(
P n(x, ·),π) ≤ CV (x)ζ̃ n.

Proof. By application of Corollary 2, Theorem 3 and Theorem 4, we deduce (i) from Proposition 7(i) and Proposi-
tion 8. By an application of [13, Theorem 4.8, Corollary 4.11], we deduce (ii) from Proposition 7(ii) and Proposi-
tion 8. �

Perhaps surprisingly, we cannot relax the condition κ0 ∈ (0,1], to obtain geometric convergence for 1 < ρ ≤ κ0.
Indeed, [22, Theorem 3.2(a)] provides an example where AR1 and AR2 are satisfied for κ0 = 2 and ρ ∈ (1,2), but the
chain fails to be geometrically ergodic (for the total variation distance).

3.3. The preconditioned Crank–Nicolson algorithm

In this section, we consider the preconditioned Crank–Nicolson algorithm (Algorithm 1) introduced in [3] and ana-
lyzed in [14] for sampling in a separable Hilbert space (H,‖ · ‖) a distribution with density π ∝ exp(−g) with respect
to a zero-mean Gaussian measure γ with covariance operator C; see [5]. This algorithm is studied in [14] under
conditions which imply the geometric convergence in Wasserstein distance.

We consider the convergence of the Crank–Nicolson algorithm under the weaker condition CN1 below for which
the results in [14] cannot be applied. We will show that subgeometric convergence can nevertheless be obtained.

1We point out that in [9], it is additionally required that the distribution of Z1 has a nontrivial absolutely continuous component which is bounded
away from zero in a neighborhood of the origin. However, this condition is only required to establish the φ-irreducibility of the Markov chain,
which is not needed here.
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Algorithm 1: Preconditioned Crank–Nicolson algorithm
Data: ρ ∈ [0,1)

Result: {Xn,n ∈ N}
begin

Initialize X0
for n ≥ 0 do

Generate Zn+1 ∼ γ

Generate Un+1 ∼ U([0,1])
if Un+1 ≤ α(Xn,ρXn + √

1 − ρ2Zn+1) = 1 ∧ exp(g(Xn) − g(ρXn + √
1 − ρ2Zn+1)) then

Xn+1 = ρXn + √
1 − ρ2Zn+1

else
Xn+1 = Xn

CN 1. The function g : H → R is β-Hölder for some β ∈ (0,1] i.e., there exists Cg , such that for all x, y ∈ H,
|g(x) − g(y)| ≤ Cg‖x − y‖β .

Examples of densities satisfying CN1 are g(x) = −‖x‖β with β ∈ (0,1]. The following Theorem implies that
under CN1, exp(−g) is γ -integrable (see [5, Theorem 2.8.5]).

Theorem 10 (Fernique’s theorem). There exist θ ∈R
∗+ and a constant Cθ such that

∫
H exp(θ‖ξ‖2)dγ (ξ) ≤ Cθ .

The Crank–Nicolson kernel Pcn has been shown to be geometrically ergodic by [14] under the assumptions
that g is globally Lipschitz and that there exist positive constants C,M1,M2 such that for x ∈ H with ‖x‖ ≥ M1,
infz∈B(ρx,M2)

exp(g(x)−g(z)) ≥ C (see [14, Assumption 2.10–2.11]), where we denote by B(x,M) the open ball cen-

tered at x ∈ H and of radius M > 0 associated with ‖ · ‖, and by B(x,M) its closure. Such an assumption implies that
the acceptance ratio α(x,ρx +√

1 − ρ2ξ) is bounded from below as ‖x‖ → ∞ uniformly on ξ ∈ B(0,M2/
√

1 − ρ2).
In CN1, this condition is weakened in order to address situations in which the acceptance-rejection ratio vanishes
when ‖x‖ → ∞: this happens when lim‖x‖→+∞{g(ρx) − g(x)} = +∞. We first check that H3(φ,V, b) is satisfied
with

V (x) = exp
(
s‖x‖2), (12)

where s = (1 − ρ)2θ/16 and θ is given by Theorem 10.

Proposition 11. Assume CN1, and let ρ ∈ [0,1). Then there exist b ∈R+ and c ∈ (0,1) such that for all x ∈H

PcnV (x) ≤ V (x) − φ ◦ V (x) + b,

where φ ∈ F and φ(t) ∼t→∞ ct exp(−{log(t)/κ}β/2), with κ = θC
−2/β
g /36.

Proof. The proof is postponed to Section 5.1. �

We now deal with showing H1. To that goal, we introduce the distance dη(x, y) = 1 ∧ η−1‖x − y‖β , for any
η > 0, and for x, y ∈ E the basic coupling Qcn between Pcn(x, ·) and Pcn(y, ·): the same Gaussian variable � and
the same uniform variable U are generated to build X1 and Y1, with initial conditions x, y. Define �(x,y)(z) = (ρx +√

1 − ρ2z,ρy + √
1 − ρ2z) and γ̃(x,y) the pushforward of γ by �(x,y). Then an explicit form of Qcn is given, for
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A ∈ B(H×H), by:

Qcn
(
(x, y),A

) =
∫

A

α(x, v) ∧ α(y, t)dγ̃(x,y)(v, t) +
∫
H×H

(
α(y, t) − α(x, v)

)
+1A(x, t)dγ̃(x,y)(v, t)

+
∫
H×H

(
α(x, v) − α(y, t)

)
+1A(v, y)dγ̃(x,y)(v, t)

+ δ(x,y)(A)

∫
H×H

(
1 − α(x, v) ∨ α(y, t)

)
dγ̃(x,y)(v, t), (13)

where for u ∈ R, (u)+ = max(u,0). The following Proposition shows that H1 is satisfied.

Proposition 12. Assume CN1. There exists η > 0 such that, Qcn is a dη-weak contraction and for every u > 1, there
exist 	 ≥ 1 and ε > 0 such that {V ≤ u}2 is a (	, ε, dη)-coupling set.

Proof. See Section 5.2. �

Note that for all η > 0, dη is Lipschitz equivalent to d1, therefore Wdη and Wd1 are Lipschitz equivalent. As a
consequence of Proposition 11, Proposition 12, Theorem 3 and Theorem 4, we have

Theorem 13. Let Pcn be the kernel of the preconditioned Crank–Nicolson algorithm with target density dπ ∝
exp(−g)dγ and design parameter ρ ∈ [0,1). Assume CN1. Then Pcn admits π as a unique invariant probability
measure and there exist C1,C2 such that for all n ∈N

∗ and x ∈ H

Wd1

(
P n

cn(x, ·),π) ≤ C1V (x) exp
(−κ

(
log(n) − C2 log

(
log(n)

))2/β)
,

where V is given by (12), d1(x, y) = ‖x − y‖β ∧ 1 and κ = θC
−2/β
g /36 for θ given by Theorem 10.

Theorem 13 covers the case of the independent sampler (case ρ = 0). Both the rate of convergence through the
constant C2 and the control in the initial value x throught C1 and the function V depends on ρ.

4. Proofs of Section 2

In this section, C is a constant which may take different values upon each appearance.
For � ∈ B(E × E), 	 ∈N

∗ and a canonical Markov chain on the space ((E × E)N, (B(E) ⊗B(E))⊗N), denote by
T0 = inf{n ≥ 	, (Xn,Yn) ∈ �} the first return time to � after 	 − 1 steps. Then, define recursively for j ≥ 1,

Tj = T0 ◦ θTj−1 + Tj−1 = T0 +
j−1∑
k=0

T0 ◦ θTk , (14)

where θ is the shift operator.
Let Q be a coupling kernel for P . Hereafter, {(Xn,Yn), n ∈ N} is the canonical Markov chain on the space

((E × E)N, (B(E) ⊗ B(E))⊗N) with Markov kernel Q. We denote by P̃x,y and Ẽx,y the associated canonical proba-
bility and expectation, respectively, when the initial distribution of the Markov chain is the Dirac mass at (x, y).

For any n ∈ N
� and x, y ∈ E, the n-iterated kernel Qn((x, y), ·) is a coupling of (P n(x, ·),P n(y, ·)); hence

Wd(P n(x, ·),P n(y, ·)) ≤ Ẽx,y[d(Xn,Yn)]. Define the filtration {F̃n, n ≥ 0} by F̃n = σ((Xk,Yk), k ≤ n).
Before proceeding to the actual derivation of the proofs, we present a roadmap of them. The key step for our results

is given by the following inequality: for any x, y ∈ E and n,m ≥ 1,

Wd

(
P n(x, ·),P m(y, ·)) ≤ B(n,m)

(
V (x) + V (y)

)
, (15)

with limn,m→+∞ B(n,m) = 0. Under the assumptions of Theorem 1, this inequality will imply that P admits at most
one invariant probability. In addition, by applying (15) with n ← n+m, and y ← x, we show that {P n(x, ·), n ∈N} is
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a Cauchy sequence in (P(E),Wd) and therefore converges in Wd to some probability measure πx which is shown to
be invariant for P . Since P admits one invariant probability measure, then πx does not depend on x (see Section 4.1).
The proof of Corollary 2 consists in verifying that the assumptions of Theorem 1 are satisfied.

The proof of Theorem 3 also follows from (15), but an explicit expression of B is required (see Lemma 18). Taking
n = m and integrating this inequality w.r.t. the unique invariant distribution π will conclude the proof.

Let us now explain the computation of the upper bound (15). The contraction property of Q (see H1(i)) combined
with the Markov property of {(Xn,Yn), n ∈ N} imply that {d(Xn,Yn), n ∈ N} is a supermartingale with respect to the
filtration F̃n; this property yields Ẽx,y[d(Xn,Yn)] ≤ (1 − ε)m−1 + P̃x,y[Tm ≥ n] for any n,m ≥ 0. By the Markov
inequality, for any increasing rate function R, it holds

Ẽx,y

[
d(Xn,Yn)

] ≤ (1 − ε)m−1 + Ẽx,y[R(Tm)]
R(n)

. (16)

The last step of the proof is to compute an upper bound for the moment Ẽx,y[R(Tm)]. Then m is chosen in order to
balance the two terms in the RHS of (16).

We preface the proof of our results by the following result.

Proposition 14. Assume that there exists a coupling kernel Q for P , � ∈ B(E × E), 	 ∈ N
∗ and ε > 0 such that

H1(�,	, ε) holds. Then, for all x, y ∈ E, and n ≥ 0, m ≥ 0:

Ẽx,y

[
d(Xn,Yn)

] ≤ (1 − ε)m + P̃x,y[Tm ≥ n].

Proof. Set Zn = d(Xn,Yn); under H1(�,	, ε), {(Zn, F̃n)}n≥0 is a bounded non-negative supermartingale and for all
(x, y) ∈ �, Ẽx,y[Z	] ≤ (1−ε)d(x, y). Denote by Z∞ its P̃x,y -a.s limit. By the optional stopping theorem, we have for
every m ≥ 0: Ẽx,y[ZTm+1 |F̃Tm+	] ≤ ZTm+	. On the other hand, by the strong Markov property, Ẽx,y[ZTm+	|F̃Tm ] ≤
(1 − ε)ZTm . By combining these two relations, we get: Ẽx,y[ZTm+1 |F̃Tm ] ≤ (1 − ε)ZTm . Since Zn is upper bounded
by 1, the proof follows from [17, Lemma 3.1]. �

4.1. Proof of Theorem 1

By Proposition 14 and the Markov inequality for all m ≥ 0, we get

Ẽx,y

[
d(Xn,Yn)

] ≤ (1 − ε)m + n−1
Ẽx,y[Tm]. (17)

Using (14) and the strong Markov property, we obtain Ẽx,y[Tm] = Ẽx,y[T0] + Ẽx,y[∑m−1
k=0 ẼXTk

,YTk
[T0]]. Using [19,

Proposition 11.3.3] and the Markov property we have that

Ẽx,y[T0] ≤ Q	−1V(x, y) + b + 	 − 1,

which implies that Ẽx,y[Tm] ≤ m sup(x,y)∈� Q	−1V(x, y) + Q	−1V(x, y) + (m + 1)(b + 	 − 1), where the constant
b is defined in (3). Plugging this inequality into (17) and taking m = �− log(n)/ log(1 − ε)� implies that there exists
C < ∞ satisfying

Qnd(x, y) = Ẽx,y

[
d(Xn,Yn)

] ≤ C
(
log(n)/n

)
Q	−1V(x, y) ≤ C

(
log(n)/n

)
V(x, y), (18)

where we have used that Q	−1V(x, y) ≤ V(x, y) + b(	 − 1) (the constant C takes different values upon each appear-
ance).

Uniqueness of the invariant probability
The proof is by contradiction. Assume that there exist two invariant distributions π and ν, and let λ ∈ C(π, ν). Ac-
cording to Lemma 23(i), we have for every integer n,

Wd(π, ν) = Wd

(
πP n, νP n

) ≤
∫

E×E

Qnd(x, y)λ(dx,dy).
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We prove that the RHS converges to zero by application of the dominated convergence theorem. It follows from

(18) that for all x, y ∈ E and n ≥ 0, gn(x, y)
def= Qnd(x, y) ≤ CV(x, y) log(n)/n for some C < ∞. Therefore, the

sequence of functions {gn,n ∈ N} converges pointwise to 0. Since d ≤ 1, gn(x, y) ≤ 1. Hence, by the Lebesgue
theorem,

∫
E×E

gn(x, y)λ(dx,dy) −→
n→+∞ 0 showing that Wd(π, ν) = 0, or equivalently ν = π since Wd is a distance

on P(E).

Existence of an invariant measure
Let x0 ∈ E. We first show that there exists {mk, k ∈ N} such that {P mk (x0, ·), k ∈ N} is a Cauchy sequence for Wd .
Let n, k ∈N

∗ and choose M ≥ 1. By Lemma 23(i):

Wd

(
P n(x0, ·),P n+nk (x0, ·)

) ≤ inf
λ∈C(δx0 ,P nk (x0,·))

{∫
E×E

1{V(z,t)≥M}Qnd(z, t)λ(dz,dt)

+
∫

E×E

1{V(z,t)<M}Qnd(z, t)λ(dz,dt)

}
. (19)

We consider separately the two terms. Set Mψ = supk P nk [ψ ◦Vx0](x0). Let λ ∈ C(δx0 ,P
nk (x0, ·)). Since d is bounded

by 1, we get∫
E×E

1{V(z,t)≥M}Qnd(z, t)λ(dz,dt) ≤
∫

E×E

1{V(z,t)≥M}λ(dz,dt) ≤ P nk
(
x0, {Vx0 ≥ M})

≤ P nk
(
x0,

{
ψ ◦ Vx0 ≥ ψ(M)

}) ≤ P nk [ψ ◦ Vx0 ](x0)/ψ(M)

≤ Mψ/ψ(M), (20)

where we have used (4) and the Markov inequality. In addition by (18), there exists C > 0 such that:∫
E×E

1{V(z,t)<M}Qnd(z, t)λ(dz,dt) ≤ C
(
log(n)/n

)∫
E×E

1{V(z,t)<M}V(z, t)λ(dz,dt).

Furthermore, x �→ ψ(x)/x is non-increasing so that V(z, t) ≤ Mψ(V(z, t))/ψ(M) on {V(z, t) ≤ M}. This inequality
and (4) imply∫

E×E

1{V(z,t)<M}Qnd(z, t)λ(dz,dt) ≤ C
(
log(n)/n

)
MψM/ψ(M). (21)

Plugging (20) and (21) in (19), we have for every M > 0, n, k ∈ N
∗

Wd

(
P n(x0, ·),P n+nk (x0, ·)

) ≤ Mψ

ψ(M)
+ C

(
log(n)/n

)(
MψM/ψ(M)

)
.

Setting M = n/ log(n), we get that for all n, k ∈N
∗

Wd

(
P n(x0, ·),P n+nk (x0, ·)

) ≤ C/ψ
(
n/ log(n)

)
. (22)

Since limx→+∞ ψ(x) = +∞ and limk→+∞ nk = +∞ there exists {uk, k ∈ N} such that u0 = 1 and for k ≥ 1,
uk = inf{nl |l ∈ N;ψ(nl/ log(nl)) ≥ 2k}. Set mk = ∑k

i=0 ui . Since for all k ∈ N, mk+1 = mk + uk+1, by (22),
Wd(P mk (x0, ·),P mk+1(x0, ·)) ≤ C2−k , which implies that the series

∑
k Wd(P mk (x0, ·),P mk+1(x0, ·)) converges and

{P mk(x0, ·), k ∈ N} is a Cauchy sequence in (P(E),Wd).
Since (P(E),Wd) is Polish, there exists π ∈ P(E) such that limk→+∞ Wd(P mk (x0, ·),π) = 0. The second step is

to prove that π is invariant. Since limk→+∞ Wd(P mk (x0, ·),π) = 0, by the triangular inequality it holds

Wd(π,πP ) ≤ lim
k→+∞Wd

(
P mk(x0, ·), δx0PP mk

) + lim
k→+∞Wd

(
δx0P

mkP,πP
)
. (23)
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By Lemma 23(i) and (18), there exists C such that for any k ≥ 1,

Wd

(
P mk(x0, ·), δx0P

mk+1) ≤ inf
λ∈C(δx0 ,δx0 P)

∫
E×E

Qmkd(z, t)dλ(z, t)

≤ C
(
log(mk)/mk

)
inf

λ∈C(δx0 ,δx0 P)

∫
E×E

V(z, t)λ(dz,dt)

≤ C
(
log(mk)/mk

)
P Vx0(x0).

By definition, limk mk = +∞ so that by (4), the RHS converges to 0 when k → +∞. In addition, by Lemma 23(ii),
Wd(δx0P

mkP,πP ) ≤ Wd(P mk (x0, ·),π), and this RHS converges to 0 by definition of π . Plugging these results in
(23) yields Wd(π,πP ) = 0, and therefore πP = π .

4.2. Proof of Corollary 2

We prove that the assumptions of Theorem 1 are satisfied. Set V(x, y) = 1 + (V (x) + V (y))/φ(2). Since Q is a
coupling for P , it holds

QV(x, y) = 1 + (
1/φ(2)

)(
PV (x) + PV (y)

) ≤ V(x, y) − φ(V (x) + V (y))

φ(2)
+ (

b/φ(2)
)
1�(x, y).

This yields the drift inequality (3) upon noting that φ is increasing and V ≥ 1 so that φ(V (x) + V (y))/φ(2) ≥ 1. By
iterating this inequality, we have for any 	,

sup
(x,y)∈�

{
Q	−1V(x, y)

} ≤ sup
(x,y)∈�

{
V(x, y)

} + b(	 − 1)/φ(2),

and the RHS is finite since by assumption, sup(x,y)∈�{V (x) + V (y)} < ∞.
Let x0 ∈ E. Under H2(�,φ,V ), PV (x) ≤ PV (x)+PV (x0) ≤ V (x)−φ ◦V (x)+b+V (x0) where we have used

that φ(V (x)+V (x0)) ≥ φ(V (x)). This implies that for every n ∈N
∗, n−1 ∑n−1

k=0 P k(φ◦V )(x) ≤ b+V (x0)+V (x)/n.
For any x, we have P Vx(x) < ∞. Finally, since φ ∈ F, we can set ψ = φ. Let us define the increasing sequence
{nk, k ∈N}. Set Mφ > b + V (x0); there exists an increasing sequence {nk, k ∈ N} such that limk nk = +∞ and

P nk (φ ◦ V )(x0) ≤ Mφ, for all k ∈N. (24)

Finally, [6, Lemma 4.1] implies
∫
E

φ ◦ V (x)π(dx) < ∞.

4.3. Proof of Theorem 3

We preface the proof by some preliminary technical results. By using Proposition 14, for every x, y ∈ E and m ≥ 0,
Ẽx,y[d(Xn,Yn)] ≤ (1 − ε)m + P̃x,y[Tm > n]. The crux of the proof is to obtain estimates of tails of the successive
return times to �. Following [24], we start by considering a sequence of drift conditions on the product space E × E.
For � ∈ B(E × E), 	 ∈ N

∗, a sequence of measurable functions {Vn, n ∈ N}, Vn : E × E → R+, a function r ∈ �

and a constant b < ∞, let us consider the following assumption:

A(�,	,Vn, r, b). For all x, y ∈ E:

QVn+1(x, y) ≤ Vn(x, y) − r(n) + br(n)1�(x, y) and sup
(x,y)∈�

Q	−1V0(x, y) < ∞.

Under A(�,	,Vn, r, b), we first obtain bounds on the moments Ẽx,y[R(T0)] for x, y ∈ E (see Proposition 15),
where

R(t) = 1 +
∫ t

0
r(s)ds, t ≥ 0. (25)
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We will then deduce bounds for P̃x,y[Tm ≥ n] (see Lemma 17). Set

c1,r = sup
k∈N∗

R(k)
/ k−1∑

i=0

r(i), c2,r = sup
m,n∈N

R(m + n)/
{
R(m)R(n)

}
. (26)

It follows from Lemma 24 that these constants are finite.

Proposition 15. Assume that there exist a coupling kernel Q for P , � ∈ B(E ×E), 	 ∈N
∗, a sequence of measurable

functions {Vn, n ∈ N}, Vn : E × E → R+, a function r ∈ � and a constant b < ∞ such that A(�,	,Vn, r, b) is
satisfied. Then, for any x, y ∈ E,

Ẽx,y

[
R(T0)

] ≤ c1,r c2,rR(	 − 1)
{
Q	−1V0(x, y) + br(0)

}
, (27)

and sup(z,t)∈� Ẽz,t [R(T0)] is finite.

Proof. By [19, Proposition 11.3.2], Ẽx,y[∑τ�−1
k=0 r(k)] ≤ V0(x, y) + br(0), where τ� is the return time to �. Since

R(k) ≤ c1,r

∑k−1
p=0 r(p), the previous inequality provides a bound on Ẽx,y[R(τ�)]. The conclusion follows from the

Markov property upon noting that R(T0) ≤ c2,rR(	 − 1)R(τ� ◦ θ	−1). �

Combining the strong Markov property, (14) and Proposition 15, it is easily seen that Ẽx,y[Tm] < ∞ for any m ≥ 0
and x, y ∈ E. This yields the following result.

Corollary 16. Assume that there exist a coupling kernel Q for P , � ∈ B(E × E), 	 ∈ N
∗, a sequence of measurable

functions {Vn, n ∈ N}, Vn : E × E → R+, a function r ∈ � and a constant b < ∞ such that A(�,	,Vn, r, b) is
satisfied. Then, for all j ≥ 0 and (x, y) ∈ E × E, P̃x,y[Tj < ∞] = 1.

For r ∈ �, there exists r0 ∈ �0 such that c3,r = 1 ∨ supt≥0 r(t)/r0(t) < ∞ and c4,r = 1 ∨ supt≥0 r0(t)/r(t) < ∞.
Denote c5,r = supt,u∈R+ r(t + u)/{r(t)r(u)} and define for κ > 0, the real Mκ such that for all t ≥ Mκ , r(t) ≤ κR(t).
Mκ is well defined by Lemma 24(iii).

Lemma 17. Assume that there exist a coupling kernel Q for P , � ∈ B(E × E), 	 ∈ N
∗, a sequence of measurable

functions {Vn, n ∈ N}, Vn : E × E → R+, a function r ∈ � and constants ε > 0, b < ∞ such that H1(�,	, ε) and
A(�,	,Vn, r, b) are satisfied. Then,

(i) for all x, y ∈ E and for all n ∈N, m ∈ N
∗,

P̃x,y[Tm ≥ n] ≤ {
a1Q

	−1V0(x, y) + a2
}
/R(n/2) + a3/R

(
n/(2m)

)
,

(ii) for all κ > 0, for all x, y ∈ E and for all n,m ∈N,

P̃x,y[Tm ≥ n] ≤ (1 + b1κ)m
{
κ−1r(Mκ) + a1Q

	−1V0(x, y) + a2
}
/R(n).

The constants {ai}3
i=1, b1 can be directly obtained from the proof.

Proof. Since r ∈ �, there exists r0 ∈ �0 such that c3,r +c4,r < ∞. Denote by R0 the function (25) associated with r0.

P̃x,y[Tm ≥ n] ≤ P̃x,y[T0 ≥ n/2] + P̃x,y[Tm − T0 ≥ n/2]
≤ Ẽx,y

[
R(T0)

]
/R(n/2) + Ẽx,y

[
R0

(
(Tm − T0)/m

)]
/R0

(
n/(2m)

)
≤ {

a1Q
	−1V0(x, y) + a2

}
/R(n/2) + c3,r Ẽx,y

[
R0

(
(Tm − T0)/m

)]
/R

(
n/(2m)

)
, (28)
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where we used Proposition 15 in the last inequality, and a1 = c1,r c2,rR(	− 1); a2 = a1br(0). Since R0 is convex (see
Lemma 24), we have by (14):

Ẽx,y

[
R0

(
(Tm − T0)/m

)] ≤ c4,rm
−1

Ẽx,y

[
m−1∑
k=0

R
(
T0 ◦ θTk

)]
.

Using Corollary 16 and the strong Markov property, for any x, y ∈ E and m ≥ 1,

Ẽx,y

[
R0

(
(Tm − T0)/m

)] ≤ c4,rC�, with C� = sup
(x,y)∈�

Ẽx,y

[
R(T0)

]
. (29)

Plugging (29) in (28) implies (i) with a3 = c3,r c4,rC�. We now consider (ii). Again by the Markov inequality, since
R is increasing,

P̃x,y[Tm ≥ n] ≤ R−1(n)Ẽx,y

[
R(Tm)

]
. (30)

If m = 0, the result follows from Proposition 15. If m ≥ 1, using the definitions of Tm and R, given respectively in
(14) and (25), and since for all t, u ∈ R+, R(t + u) ≤ R(t) + c5,rR(u)r(t), we get

Ẽx,y

[
R(Tm)

] ≤ Ẽx,y

[
R(Tm−1)

] + c5,r Ẽx,y

[
r(Tm−1)R

(
T0 ◦ θTm−1

)]
.

Thus, by the strong Markov property

Ẽx,y

[
R(Tm)

] ≤ Ẽx,y

[
R(Tm−1)

] + c5,rC�Ẽx,y

[
r(Tm−1)

]
. (31)

Let κ > 0. Since by definition, for all t ≥ Mκ , r(t) ≤ κR(t), Ẽx,y[r(Tm−1)] ≤ r(Mκ) + κẼx,y[R(Tm−1)], so that (31)
becomes

Ẽx,y

[
R(Tm)

] ≤ (1 + c5,rC�κ)Ẽx,y

[
R(Tm−1)

] + c5,rC�r(Mκ).

By a straightforward induction we get,

Ẽx,y

[
R(Tm)

] ≤ (1 + c5,rC�κ)m
(
Ẽx,y

[
R(T0)

] + r(Mκ)/κ
)
.

Plugging this result in (30) and using Proposition 15 concludes the proof. Note that b1 = c5,rC� and a2 =
c1,r c2,rR(	 − 1)br(0). �

Lemma 18. Assume that there exist a coupling kernel Q for P , � ∈ B(E × E), 	 ∈ N
∗, a sequence of measurable

functions {Vn, n ∈ N}, Vn : E × E → R+, a function r ∈ � and constants ε > 0, b < ∞ such that H1(�,	, ε) and
A(�,	,Vn, r, b) are satisfied. Then,

(i) for all x, y ∈ E and n ∈N,

Ẽx,y

[
d(Xn,Yn)

] ≤ 1/R(n) + {
a1Q

	−1V0(x, y) + a2
}
/R(n/2) + a3v

−1
n ,

where vn
def= R(−n log(1 − ε)/{2(log(R(n)) − log(1 − ε))}),

(ii) for all δ ∈ (0,1), x, y ∈ E and n ∈N,

Ẽx,y

[
d(Xn,Yn)

] ≤ (
1 + (1 + b1κ)

{
κ−1r(Mκ) + a1Q

	−1V0(x, y) + b2
})

/Rδ(n),

where κ = ((1 − ε)−(1−δ)/δ − 1)/b1.

The constants ai, bj are given by Lemma 17.
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Proof. By Proposition 14 and Lemma 17(i), there exist {ai}3
i=1 such that for all x, y in E and for all n ≥ 0 and m ≥ 0

Ẽx,y

[
d(Xn,Yn)

] ≤ (1 − ε)m + P̃x,y[Tm ≥ n]
≤ (1 − ε)m + {

a1Q
	−1V0(x, y) + a2

}
/R(n/2) + a3/R

(
n/(2m)

)
.

We get the first inequality by choosing m = �− log(R(n))/ log(1 − ε)�. Let us prove (ii). Fix δ ∈ (0,1) and choose
the smallest integer m such that (1 − ε)m ≤ R(n)−δ (i.e. m = �−δ logR(n)/ log(1 − ε)�). Apply Lemma 17(ii), with
κ > 0 such that (1 + b1κ) = (1 − ε)−((1−δ)/δ); hence, upon noting that R(n)−δ ≤ (1 − ε)m−1, it holds

(1 + b1κ)m = (1 + b1κ)
{
(1 − ε)m−1}−((1−δ)/δ) ≤ (1 + b1κ)

{
R(n)−δ

}−((1−δ)/δ) = (1 + b1κ)R(n)1−δ. �

We now prove that H2(�,φ,V ) implies A. For a function φ ∈ F and a measurable function V : E → [1,∞), set

rφ(t) = (
H←

φ

)′
(t) = φ

(
H←

φ (t)
)
, (32)

where Hφ is defined in (6) and H←
φ denotes its inverse; and define for k ≥ 0, Hk : [1,∞) → R+ and Vk : E×E →R+

by

Hk(u) =
∫ Hφ(u)

0
rφ(t + k)dt = H←

φ

(
Hφ(u) + k

) − H←
φ (k), (33)

Vk(x, y) = Hk

(
V (x) + V (y)

)
. (34)

Note that Vk is measurable, Hk is twice continuously differentiable on [1,∞) and that H0(x) ≤ x so V0(x, y) ≤
V (x) + V (y). The proof of the following lemma is adapted from [9, Proposition 2.1].

Lemma 19. Assume that there exist � ∈ B(E × E), a function φ ∈ F and a measurable function V : E → [1,∞)

such that H2(�,φ,V ) is satisfied. For any x, y ∈ E and any coupling λ ∈ C(P (x, ·),P (y, ·)) we have:∫
E×E

Vk+1(z, t)dλ(z, t) ≤ Vk(x, y) − rφ(k) + b

rφ(0)
rφ(k + 1)1�(x, y),

where rφ and Vk are defined in (32) and (34) respectively.

Proof. Set V(x, y) = V (x) + V (y). By [9, Proposition 2.1] Hk+1 is concave, which implies that for all u ≥ 1 and
t ∈ R such that t + u ≥ 1, we have

Hk+1(t + u) − Hk+1(u) ≤ H ′
k+1(u)t. (35)

In addition, according to the proof of [9, Proposition 2.1], for every u ≥ 1 it holds:

Hk+1(u) − φ(u)H ′
k+1(u) ≤ Hk(u) − rφ(k). (36)

Therefore, the Jensen inequality and (5) imply∫
E×E

Vk+1(z, t)dλ(z, t) ≤ Hk+1

(∫
E×E

V(z, t)dλ(z, t)

)
≤ Hk+1

(
V(x, y) − φ ◦ V(x, y) + b1�(x, y)

)
.

Using (35), (36) and the inequality H ′
k+1(V(x, y)) ≤ H ′

k+1(1) we get that∫
E×E

Vk+1(z, t)dλ(z, t) ≤ Hk+1
(
V(x, y)

) − φ ◦ V(x, y)H ′
k+1

(
V(x, y)

) + bH ′
k+1(1)1�(x, y)

≤ Hk

(
V(x, y)

) − rφ(k) + bH ′
k+1(1)1�(x, y).

The proof is concluded upon noting that H ′
k+1(1) = rφ(k + 1)/rφ(0). �
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Proposition 20. Assume that there exist a coupling kernel Q for P , � ∈ B(E×E), a function φ ∈ F and a measurable
function V : E → [1,∞) such that H2(�,φ,V ) is satisfied. Then for any 	 ≥ 0, A(�,	,Vn, rφ, {supp≥0 rφ(p + 1)/

rφ(p)}b/rφ(0)) holds with Vn(x, y) = Hn(V (x) + V (y)) where rφ and Hn are given by (32) and (33) respectively.

Proof. By [9, Lemma 2.3], rφ ∈ �. Then, it follows from Lemma 19 and Lemma 24(i) that for all x, y ∈ E,

QVk+1(x, y) ≤ Vk(x, y) − rφ(k) + b
{

sup
p≥0

rφ(p + 1)/rφ(p)
}
rφ(k)1�(x, y)/rφ(0).

Finally, since Q	 is a coupling kernel for P 	, we have by iterating the inequality (5)

Q	V0(x, y) ≤ P 	V (x) + P 	V (y) ≤ V (x) + V (y) + 	b.

Therefore under H2(�,φ,V ), sup(x,y)∈� Q	−1V0(x, y) < +∞. �

Proof of Theorem 3. (i) Using Proposition 20, Lemma 18 applies with R(t) = 1 + ∫ t

0 rφ(s)ds for t ∈ R+. Note that
we have R = H←

φ .
Set MV > 0 such that π(V ≤ MV ) ≥ 1/2; such a constant exists since π(E) = 1 and E = ⋃

k∈N{V ≤ k}. Set
M > MV and define the probability πM by πM(·) = π(· ∩ {V ≤ M})/π({V ≤ M}). Since π is invariant for P ,
Wd(P n(x, ·),π) = Wd(P n(x, ·),πP n) and the triangle inequality implies:

Wd

(
P n(x, ·),π) ≤ Wd

(
P n(x, ·),πMP n

) + Wd

(
πMP n,πP n

)
, for all n ≥ 1. (37)

Consider the first term in the RHS of (37). By Lemma 23(i), for all x ∈ E and n ≥ 1:

Wd

(
P n(x, ·),πMP n

) ≤ inf
λ∈C(δx ,πM)

∫
E×E

Qnd(z, t)dλ(z, t).

Let vn = R(−n log(1 − ε)/{2(log(R(n)) − log(1 − ε))}). By Lemma 18(i) and since R = H←
φ is increasing, for all

x ∈ E and n ≥ 1

R(n/2)Wd

(
P n(x, ·),πMP n

)
≤ R(n/2)/R(n) + a1 inf

λ∈C(δx ,πM)

∫
E×E

(
P 	−1V (z) + P 	−1V (t)

)
dλ(z, t) + a2 + a3R(n/2)/vn

≤ a1

(
V (x) +

∫
E

V (t)dπM(t) + b(	 − 1)

)
+ a2 + 1 + a3R(n/2)/vn, (38)

where in the last inequality, we used

P kV (x) ≤ V (x) + bk/2, (39)

which is obtained by iterating the drift inequality (5) and applying it with x = y. Since x �→ φ(x)/x is non-increasing,
V (t) ≤ Mφ(V (t))/φ(M) on {V ≤ M}, we have∫

E

V (t)dπM(t) ≤ 2π(φ ◦ V )M/φ(M). (40)

Note that by Corollary 2, Mφ = ∫
E

φ ◦ V (t)dπ(t) < ∞. Combining (38) and (40) yield

Wd

(
P n(x, ·),πMP n

) ≤ {
a1

(
V (x) + 2MφM/φ(M) + b(	 − 1)

) + a2 + 1
}
/R(n/2) + a3/vn. (41)

Consider the second term in the RHS of (37). Since d is bounded by 1, Wd(μ,ν) ≤ Wd0(μ, ν) (where Wd0 is the total
variation distance) and Lemma 23(ii) implies Wd(πMP n,πP n) ≤ Wd(πM,π) ≤ Wd0(πM,π). For every A ∈ B(E),
we get∣∣πM(A) − π(A)

∣∣ = ∣∣πM(A)
(
1 − π

({V ≤ M})) + πM(A)π(V ≤ M) − π(A)
∣∣ ≤ 2π

({V > M}),
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showing that

Wd

(
πMP n,πP n

) ≤ 2π
({V > M}) = 2π

({
φ(V ) > φ(M)

}) ≤ 2Mφ/φ(M). (42)

Since R(n/2) > MV for all n large enough, we can now choose M = R(n/2) in (41) and (42). This yields

Wd

(
P n(x, ·),π) ≤ {

a1
(
V (x) + b(	 − 1)

) + a2 + 1
}
/H←

φ (n/2) + 2Mφ(a1 + 1)/φ
(
R(n/2)

) + a3/vn.

(ii) The proof is along the same lines, using Lemma 18(ii) instead of Lemma 18(i). Finally, we end up with the
following inequality for n large enough:

Wd

(
P n(x, ·),π) ≤ (

1 + (1 + b1κ)
{
κ−1rφ(Mκ) + a1

(
V (x) + b(	 − 1)

) + b2
})

/
{
Rδ(n)

}
+ 2Mφ

(
(1 + b1κ)a1 + 1

)
/
{
φ
(
Rδ(n)

)}
,

where κ = ((1 − ε)−(1−δ)/δ − 1)/b1. �

4.4. Proof of Theorem 4

Note that since c = 1 − 2b/φ(υ) and υ > φ←(2b), we get c ∈ (0,1). Set C = {V ≤ υ}. By (7),

PV (x) + PV (y) ≤ V (x) + V (y) − cφ
(
V (x) + V (y)

) + 2b1C×C(x, y) + �(x,y),

where �(x,y) = cφ(V (x) + V (y)) − φ(V (x)) − φ(V (y)) + 2b1(C×C)c (x, y). We show that for every x, y ∈ E,
�(x,y) ≤ 0. Since φ is sub-additive (note that φ(0) = 0), for all x, y ∈ E

�(x,y) ≤ −(1 − c)
(
φ
(
V (x)

) + φ
(
V (y)

)) + 2b1(C×C)c (x, y).

On (C × C)c, φ(V (x)) + φ(V (y)) ≥ φ(υ). The definition of c implies that �(x,y) ≤ 0.

5. Proofs of Section 3.3

Lemma 21. Let M > 0. Assume that there exists an increasing continuously differentiable concave function φ :
[M,∞) → R+, such that limx→∞ φ′(x) = 0 and satisfying, on {V ≥ M}, PV (x) ≤ V (x)−φ ◦V (x)+b. Then, there
exist φ̃ ∈ F and b̃ such that, PV ≤ V − φ̃ ◦ V + b̃ on E, φ(v) = φ̃(v) for all v large enough, and φ̃(0) = 0.

Proof. Observe indeed that the function φ̃ defined by

φ̃(t) =
{

(2φ′(M) − φ(M)
M

)t + 2(φ(M)−Mφ′(M))√
M

√
t for 0 ≤ t < M ,

φ(t) for t ≥ M ,

is concave increasing and continuously differentiable on [1,+∞), φ̃(0) = 0, limv→∞ φ̃(v) = ∞ and limv→∞ φ̃′(v) =
0. The drift inequality (5) implies that for all x ∈ E

PV (x) ≤ V (x) − φ̃
(
V (x)

) + b̃,

with b̃ = b + sup{t≤M}{φ̃(t) − φ(t)}. �

5.1. Proof of Proposition 11

For notational simplicity, let P = Pcn. By definition of P , V (X1) ≤ V (X0)∨V (ρX0 +√
1 − ρ2Z1). Since ‖x+y‖2 ≤

2‖x‖2 + 2‖y‖2, we get

sup
x∈B(0,1)

PV (x) ≤ sup
x∈B(0,1)

∫
H

exp
(
2s

(‖x‖2 + (
1 − ρ2)‖z‖2))dγ (z), (43)

and Theorem 10 implies that the RHS is finite.
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Now, let x /∈ B(0,1) and set w(x) = (1 − ρ)‖x‖/2. Define the events I = {‖Z1‖ ≤ w(X0)/
√

1 − ρ2}, A =
{α(X0, ρX0 + √

1 − ρ2Z1) ≥ U}, and R = {α(X0, ρX0 + √
1 − ρ2Z1) < U}, where U ∼ U([0,1]), Z1 ∼ γ , and

U and Z1 are independent. With these definitions, we get,

PV (x) = Ex

[
V (X1)1Ic

] +Ex

[
V (X1)1I(1A + 1R)

]
. (44)

For the first term in the RHS, using again V (X1) ≤ V (X0) ∨ V (ρX0 + √
1 − ρ2Z1) and ‖x + y‖2 ≤ 2‖x‖2 + 2‖y‖2,

we get

Ex

[
V (X1)1Ic

] ≤ exp
(
2s‖x‖2)∫

√
1−ρ2‖z‖≥w(x)

exp
(
2s

(
1 − ρ2)‖z‖2)dγ (z)

≤ exp
(
2s‖x‖2 − (θ/2)w(x)2)∫

H
exp

(
(θ/2 + 2s)

(
1 − ρ2)‖z‖2)dγ (z)

≤
∫
H

exp
(
(5/8)

(
1 − ρ2)θ‖z‖2)dγ (z),

where the definition of s and w are used for the last inequality. Hence by Theorem 10, there exists a constant b < ∞
such that

sup
x∈H

Ex

[
V (X1)1Ic

] ≤ b. (45)

Consider the second term in the RHS of (44). On the event A ∩ I, the move is accepted and ‖X1 − ρX0‖ ≤ w(X0).
On R, the move is rejected and X1 = X0. Hence,

Ex

[
V (X1)1I(1A + 1R)

] ≤
{

sup
z∈B(ρx,w(x))

V (z)
}
Px[I ∩ A] + V (x)Px[I ∩ R].

For z ∈ B(ρx,w(x)), by the triangle inequality, V (z) ≤ exp(s(1 + ρ)2‖x‖2/4). Therefore for any x /∈ B(0,1) since
ρ ∈ [0,1), supz∈B(ρx,w(x)) V (z) ≤ ζV (x), with ζ = exp{((1 + ρ)2/4 − 1)s} < 1. This yields

Ex

[
V (X1)1I(1A + 1R)

] ≤ ζV (x)Px[I ∩ A] + V (x)Px[I ∩ R]
≤ V (x)Px[I] − (1 − ζ )V (x)Px[A ∩ I].

Since U1 and Z1 are independent, we get

Px[A ∩ I] = Ex

[(
1 ∧ eg(x)−g(ρx+

√
1−ρ2Z1)

)
1I

]
.

By definition of the set I and using the inequality infz∈B(ρx,w(x)) exp(g(x) − g(z)) ≥ exp(−Cg(1 − ρ)β(3/2)β‖x‖β),

we get Px[A ∩ I] ≥ exp(−{lnV (x)/κ}β/2)Px[I], with κ = θC
−2/β
g /36. Hence, for any x /∈ B(0,1),

Ex

[
V (X1)1I(1A + 1R)

] ≤ V (x) − (1 − ζ )V (x) exp
(−κ−β/2 logβ/2 V (x)

)
. (46)

Combining (43), (45) and (46) in (44), it follows that there exists b̃ > 0 such that, for every x ∈ H,

PV (x) ≤ V (x) − (1 − ζ )V (x) exp
(−κ−β/2 logβ/2 V (x)

) + b̃.

The proof follows from Lemma 21.

5.2. Proof of Proposition 12

We preface the proof of Proposition 12 by a Lemma.
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Lemma 22. Assume CN1. There exists η ∈ (0,1) satisfying the following assertions

(i) For all L > 0, there exists k(Qcn,L,η) < 1 such that, for all x, y ∈ B(0,L) satisfying dη(x, y) < 1,
Qcndη(x, y) ≤ k(Qcn,L,η)dη(x, y).

(ii) For all x, y ∈ H, Qcndη(x, y) ≤ dη(x, y).

Proof. Let η ∈ (0,1); for ease of notation, we simply write Q for Qcn. Let L > 0 and choose x, y ∈ B(0,L) satisfying
dη(x, y) < 1. Let (X1, Y1) be the basic coupling between P(x, ·) and P(y, ·); let Z1,U1 be the Gaussian variable
and the uniform variable used for the basic coupling. Set I = {√1 − ρ2‖Z1‖ ≤ 1}, A = {�∧(X0, Y0,Z1) > U1},
R = {�∨(X0, Y0,Z1) < U1}, where

�∧(x, y, z) = α
(
x,ρx +

√
1 − ρ2z

) ∧ α
(
y,ρy +

√
1 − ρ2z

)
, (47)

�∨(x, y, z) = α
(
x,ρx +

√
1 − ρ2z

) ∨ α
(
y,ρy +

√
1 − ρ2z

)
. (48)

On the event A, the moves are both accepted so that X1 = ρX0 + √
1 − ρ2Z1 and Y1 = ρX0 + √

1 − ρ2Z1; On the
event R, the moves are both rejected so that X1 = X0 and Y1 = Y0. It holds,

Qdη(x, y) ≤ Ẽx,y

[
dη(X1, Y1)

] ≤ Ẽx,y

[
dη(X1, Y1)1A∪R

] + P̃x,y

[
(A ∪ R)c

]
, (49)

where we have used dη is bounded by 1. Since dη(X1, Y1) = ρβdη(X0, Y0), on A, and dη(X1, Y1) = dη(X0, Y0), on
R, we get Ẽx,y[dη(X1, Y1)(1A∪R)] ≤ ρβdη(x, y)̃Px,y[A]+dη(x, y)̃Px,y[R]. Since P̃x,y[A]+ P̃x,y[R] ≤ 1, we have

Ẽx,y

[
dη(X1, Y1)(1A∪R)

] ≤ dη(x, y) − (
1 − ρβ

)
dη(x, y)̃Px,y[A]

≤ dη(x, y) − (
1 − ρβ

)
dη(x, y)̃Px,y[A ∩ I]. (50)

Set �(x,y, z) = |α(x,ρx + √
1 − ρ2z) − α(y,ρy + √

1 − ρ2z)|. Since Z1 and U1 are independent, it follows that
P̃x,y[(A ∪ R)c] ≤ ∫

H �(x,y, z)dγ (z) Plugging this identity and (50) in (49) yields

Qdη(x, y) ≤ dη(x, y) − (
1 − ρβ

)
dη(x, y)̃Px,y[A ∩ I] +

∫
H

�(x,y, z)dγ (z). (51)

Let us now define h : H → R by

h(z) = g(z) − g(ρz). (52)

We bound from below P̃x,y[A ∩ I]. Since U1 is independent of Z1, it follows that

P̃x,y[A ∩ I] ≥ Ẽx,y

[
�∧(X0, Y0,Z1)1I

]
.

By CN1, for all z ∈ H such that
√

1 − ρ2‖z‖ ≤ 1, it holds for � ∈ H, g(�) − g(ρ� + √
1 − ρ2z) ≥ h(�) − Cg .

Then,

�∧(x, y, z) ≥ 1 ∧ (
e−Cg eh(x)

) ∧ (
e−Cg eh(y)

) ≥ e−Cg
[
1 ∧ eh(x)∧h(y)

]
.

Therefore,

P̃x,y[A ∩ I] ≥ e−Cg
[
1 ∧ eh(x)∧h(y)

]̃
Px,y[I]. (53)

We now upper bound the integral term in (51). For x, y ∈H, define the partition of H,

K1(x, y) = {
z ∈H : α(

x,ρx +
√

1 − ρ2z
) = α

(
y,ρy +

√
1 − ρ2z

) = 1
}
,

K2(x, y) = {
z ∈H : α(

x,ρx +
√

1 − ρ2z
) = 1 > α

(
y,ρy +

√
1 − ρ2z

)}
,
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K3(x, y) = {
z ∈H : α(

y,ρy +
√

1 − ρ2z
) = 1 > α

(
x,ρx +

√
1 − ρ2z

)}
,

K4(x, y) = {
z ∈H : α(

y,ρy +
√

1 − ρ2z
)
< 1 and α

(
x,ρx +

√
1 − ρ2z

)
< 1

}
.

Since on K1(x, y), �(x,y, z) = 0,∫
H

�(x,y, z)dγ (z) =
4∑

j=2

∫
Kj (x,y)

�(x, y, z)dγ (z). (54)

For any a, b > 0, we have |a − b| = (a ∨ b)[1 − ((a/b)∧ (b/a))]. Upon noting that 1 − e−t ≤ t for any t ≥ 0, we have

�(x,y, z) ≤ �∨(x, y, z)
∣∣g(y) − g(x) − g

(
ρy +

√
1 − ρ2z

) + g
(
ρx +

√
1 − ρ2z

)∣∣1⋃4
i=2 Ki (x,y)

(z).

By CN1, this yields, for x, y ∈ H such that dη(x, y) < 1,

�(x,y, z) ≤ 2Cg‖y − x‖β�∨(x, y, z) ≤ 2Cgηdη(x, y)�∨(x, y, z). (55)

On K2(x, y), g(x) > g(ρx + √
1 − ρ2z) and, together with the definition (52), this implies that h(x) ≥ g(ρx +√

1 − ρ2z) − g(ρx). Therefore, since under CN1, h(x) ≥ −Cg(1 − ρ2)β/2‖z‖β we get∫
K2(x,y)

�(x, y, z)dγ (z) ≤ 2Cgηdη(x, y)

∫
K2(x,y)

dγ (z)

≤ 2Cgηdη(x, y)

{[
eh(x)

∫
K2(x,y)

eCg(1−ρ2)β/2‖z‖β

dγ (z)

]
∧ 1

}
≤ CIηdη(x, y)

{
eh(x) ∧ 1

}
, (56)

for a constant CI , which is finite according to Theorem 10. By symmetry, on K3(x, y),∫
K3(x,y)

�(x, y, z)dγ (z) ≤ CIηdη(x, y)
{
eh(y) ∧ 1

}
. (57)

On K4(x, y), using CN1,

α
(
x,ρx +

√
1 − ρ2z

) = eg(x)−g(ρx+
√

1−ρ2z) ∧ 1 ≤ (
eh(x)eCg(1−ρ2)β/2‖z‖β ) ∧ 1;

and by symmetry, we obtain a similar upper bound for α(y,ρy + √
1 − ρ2z). Since eCg(1−ρ2)β/2‖z‖β ≥ 1, these two

inequalities imply �∨(x, y, z) ≤ eCg(1−ρ2)β/2‖z‖β
(eh(x)∨h(y) ∧1). Hence, using again (55) and Theorem 10, there exists

CI < +∞ such that∫
K4(x,y)

�(x, y, z)dγ (z) ≤ CIηdη(x, y)
[
eh(x)∨h(y) ∧ 1

]
. (58)

Plugging (56), (57), (58) into (54), we finally obtain∫
H

�(x,y, z)dγ (z) ≤ 3CIηdη(x, y)
[
eh(x)∨h(y) ∧ 1

]
.

Finally, under CN1, for every x, y ∈ H such that dη(x, y) < 1, |h(x) − h(y)| ≤ 2Cg‖x − y‖β ≤ 2Cgη
β . Therefore

eh(x)∨h(y) ∧ 1 ≤ e2Cgηβ [eh(x)∧h(y) ∧ 1] and∫
H

�(x,y, z)dγ (z) ≤ 3CI e2Cgηβ

ηdη(x, y)
[
eh(x)∧h(y) ∧ 1

]
. (59)
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Plugging (53) and (59) in (51) yields

Qdη(x, y) ≤ dη(x, y)
(
1 − {(

1 − ρβ
)
e−Cg P̃x,y[I] − 3CI e2Cgηβ

η
}[

eh(x)∧h(y) ∧ 1
])

.

Note that M = P̃x,y[I] is a positive quantity that does not depend on x, y. Therefore, we may choose η sufficiently
small so that, for every x, y ∈ H satisfying dη(x, y) < 1,

Qdη(x, y) ≤ dη(x, y)
(
1 − (1/2)

(
1 − ρβ

)
e−CgM

[
eh(x)∧h(y) ∧ 1

])
, (60)

which implies Lemma 22(i) upon noting that, under the stated assumptions, infB(0,L) h > −∞.
We now consider (ii). For every x, y ∈H, dη(x, y) ≤ 1, which implies that Qdη(x, y) ≤ 1. For every x, y ∈H such

that dη(x, y) = 1, Qdη(x, y) ≤ 1 = dη(x, y). If dη(x, y) < 1, (60) shows that Qdη(x, y) ≤ dη(x, y). �

Proof of Proposition 12. Let {(Xn,Yn), n ∈ N} be a Markov chain with Markov kernel Q given by (13). We denote
for all n ∈ N

∗, Zn and Un, respectively the common Gaussian variable and uniform variable, used in the definition
(Xn,Yn). Note that by definition the variables {Zn,Un;n ∈ N} are independent.

Since {x : V (x) ≤ u} = {x : ‖x‖ ≤ (s log(u))1/2}, for u ≥ 1, we only prove that for all L > 0, there exist 	 ∈ N
∗ and

ε > 0 such that B(0,L)2 is a (	, ε, dη)-coupling set. By Lemma 22(i), for any L > 0, there exists k(Q,L,η) ∈ (0,1)

such that for any x, y ∈ B(0,L) satisfying dη(x, y) < 1, Qdη(x, y) ≤ k(Q,L,η)dη(x, y). Then by Lemma 22(ii), for
every n ∈ N

∗,

Qndη(x, y) ≤ Qn−1dη(x, y) ≤ · · · ≤ k(Q,L,η)dη(x, y). (61)

Consider now the case dη(x, y) = 1. Let n ∈ N
∗ and denote for all 1 ≤ i ≤ n, Ai = {Ui ≤ �∧(Xi−1, Yi−1,Zi)} and

Ãi (n) = ⋂
1≤j≤i ({

√
1 − ρ2‖Zj‖ ≤ L/n} ∩ Aj ) where �∧ is defined in (47).

On the event Ãi (n), Xj = ρXj−1 + √
1 − ρ2Zj and Yj = ρYj−1 + √

1 − ρ2Zj for all 1 ≤ j ≤ i. Then, since
dη(x, y) ≤ η−1‖x − y‖β , on Ãn(n) it holds dη(Xn,Yn) ≤ η−1ρβn‖X0 − Y0‖β . This inequality and dη(x, y) ≤ 1 yield

Qndη(x, y) = Ẽx,y

[
dη(Xn,Yn)(1Ãn(n) + 1(Ãn(n))c )

] ≤ η−1ρβn‖x − y‖β
P̃x,y

[
Ãn(n)

] + P̃x,y

[(
Ãn(n)

)c]
≤ η−1ρβn(2L)β P̃x,y

[
Ãn(n)

] + P̃x,y

[(
Ãn(n)

)c] ≤ 1 + (
η−1ρβn(2L)β − 1

)̃
Px,y

[
Ãn(n)

]
. (62)

As ρ ∈ [0,1), there exists 	 such that, η−1ρβ	(2L)β < 1. It remains to lower bound P̃x,y[Ã	(	)] by a positive constant
to conclude. Since the random variables {(Zi,Ui); i ∈ N

∗} are independent, we get

P̃x,y

[
Ã	(	)

] = P̃x,y

[
Ã	−1(	) ∩ {√

1 − ρ2‖Z	‖ ≤ L/	
}]

× Ẽx,y

[
�∧(X	−1, Y	−1,Z	)|Ã	−1(	) ∩ {√

1 − ρ2‖Z	‖ ≤ L/	
}]

.

For all 1 ≤ i ≤ 	, on the event
⋂

j≤i{
√

1 − ρ2‖Zj‖ ≤ L/	}, it holds

�∧(Xi−1, Yi−1,Zi) ≥ exp
(
− sup

z∈B(0,2L)

g(z) + inf
z∈B(0,2L)

g(z)
)

= δ,

where δ ∈ (0,1). Therefore, since Z	 is independent of Ã	−1(	), we have

P̃x,y

[
Ã	(	)

] ≥ δP̃x,y

[
Ã	−1(	)

]̃
Px,y

[√
1 − ρ2‖Z	‖ ≤ L/	

]
.

An immediate induction leads to P̃x,y[Ã	(	)] ≥ (̃Px,y[
√

1 − ρ2‖Z1‖ ≤ L/	])	δ	. Plugging this result in (62) and (61)
implies there exists ζ ∈ (0,1) such that for all x, y ∈ B(0,L), Q	dη(x, y) ≤ ζdη(x, y). �
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Appendix A: Wasserstein distance: some useful properties

Let (E,d) be a Polish space, with d bounded by 1. Then, for all μ,ν ∈ P(E): Wd(μ,ν) ≤ Wd0(μ, ν) since for all
x, y ∈ E, d(x, y) ≤ d0(x, y). Hence when d is bounded by 1, the convergence in total variation distance implies the
convergence in the Wasserstein metric Wd .

Lemma 23. Let (E,d) be a Polish space, with d bounded by 1, and let P be a Markov kernel on (E,B(E)). Let Q

be a coupling kernel for P .

(i) Then, for all probability measures μ,ν ∈ P(E) and n ∈ N
∗,

Wd

(
μP n, νP n

) ≤ inf
λ∈C(μ,ν)

∫
E×E

Qnd(z, t)dλ(z, t).

(ii) If in addition Q is a d-weak-contraction, then for all x, y ∈ E, Wd(P (x, ·),P (y, ·)) ≤ d(x, y) and for all proba-
bility measures μ,ν ∈ P(E),

Wd(μP,νP ) ≤ Wd(μ,ν).

Proof. (i) For every λ ∈ C(μ, ν), λQn is a coupling of μP n and νP n. This yields the result. Consider now (ii).
Using (i), we get

Wd(μP,νP ) ≤ inf
λ∈C(μ,ν)

∫
E×E

Qd(z, t)dλ(z, t) ≤ inf
λ∈C(μ,ν)

∫
E×E

d(z, t)dλ(z, t) ≤ Wd(μ,ν). �

Appendix B: Subgeometric functions and sequences

Lemma 24. Let r ∈ �0 and R be given by (25).

(i) For all t, v ∈ R+, r(t + v) ≤ r(t)r(v).
(ii) R is differentiable, convex and increasing to +∞.

(iii) limt→∞ r(t)/R(t) = 0.
(iv) There exists a constant C such that for any t, v ∈R+, R(t + v) ≤ CR(t)R(v).
(v) supk R(k)/

∑k−1
i=0 r(i) < ∞.

Proof. (i) follows from [23, Lemma 1]. Consider now (ii). By definition, r is non-decreasing, thus is bounded on every
compact set; then, R is continuous. Moreover, it is differentiable and its derivative is r , which is non-decreasing. Then

R is convex. In addition r(0) ≥ 2, thus R is increasing to +∞. (iii) Set u(t)
def= log(r(t))/t . Since r ∈ �0, the function

u is non increasing, which implies that, for every h ∈ (0,1),

log
(
1 + {

r(t + h) − r(t)
}
/r(t)

) = log
(
r(t + h)/r(t)

) = t
(
u(t + h) − u(t)

) + hu(t + h) ≤ hu(t + h).

Since limt→+∞ u(t) = 0, for all ε > 0, there exists T ∈ R+ such that for all t ≥ T and h ∈ (0,1), (r(t + h) − r(t)) ≤
εhr(t). Therefore for all t ≥ T and h ∈ (0,1), (R(t + h) − R(t))/(hR(t)) ≤ ε + r(T + 1)/R(t). Taking h → 0 it
follows r(t)/R(t) ≤ ε + r(T + 1)/R(t), for all t ≥ T . The proof is concluded by (ii). (iv) follows from (i) and (iii).
Finally, for (v), the upper bound follows from (iv) and R(k − 1) ≤ 1 + ∑k−1

i=0 r(i). �
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