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Abstract. It has been shown by Akemann, Ipsen and Kieburg that the squared singular values of products of M rectangular random
matrices with independent complex Gaussian entries are distributed according to a determinantal point process with a correlation
kernel that admits a representation in terms of Meijer G-functions. We prove the universality of the local statistics of the squared
singular values, namely, the bulk universality given by the sine kernel and the edge universality given by the Airy kernel. The proof
is based on the asymptotic analysis for the double contour integral representation of the correlation kernel. Our strategy can be
generalized to deal with other models of products of random matrices introduced recently and to establish similar universal results.
Two more examples are investigated, one is the product of M Ginibre matrices and the inverse of K Ginibre matrices studied by
Forrester, and the other one is the product of M − 1 Ginibre matrices with one truncated unitary matrix considered by Kuijlaars
and Stivigny.

Résumé. Il a été démontré par Akemann, Ipsen et Kieburg que les valeurs singulières carrées de produits de M matrices aléatoires
rectangulaires composées de variables aléatoires complexes gaussiennes, suivent un processus ponctuel déterminantal, avec un
noyau de corrélation qui admet une représentation en fonction des fonctions G de Meijer. Nous démontrons l’universalité des
statistiques locales des valeurs singulières carrées, c’est-à-dire, l’universalité dans le bulk donné par le noyau sinus et l’universalité
au bord donné par le noyau Airy. La preuve est basée sur l’analyse asymptotique de la représentation du noyau de corrélation
comme une double intégrale de contour. Notre stratégie peut être généralisée à d’autres modèles de produits de matrices aléatoires
introduits récemment, afin d’obtenir des résultats d’universalité similaires. Deux autres exemples sont considérés, le premier étant
le produit de M matrices de Ginibre et l’inverse de K matrices de Ginibre, étudié par Forrester, le deuxième étant le produit de
M − 1 matrices de Ginibre avec une troncation d’une matrice unitaire, considéré par Kuijlaars et Stivigny.
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1. Introduction and statement of the main results

1.1. Products of Ginibre matrices

Significant progresses have been achieved recently in the study of products of random matrices, which have important
applications in Schrödinger operator theory [16], in statistical physics relating to disordered and chaotic dynamical
systems [20] and in wireless communication like MIMO (multiple-input and multiple-output) networks [48]. Although
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the pioneering work of Furstenberg and Kesten [26] focused on the statistical behavior of individual entries in the
product as the number of factors tends to infinity, the recent interest of study lies in the distribution of eigenvalues
and singular values of the product of a fixed number of matrices, where the sizes of the matrices tend to infinity.
Various methods have been applied to perform the spectral analysis in different regimes. Particularly, the tools from
free probability allow one to find the limiting mean eigenvalue distributions as in [8,10,14,17,18,26–28,42,44,45].
It turns out that, as in the theory of matrix model for a single random matrix, the various limits exhibit a rich and
interesting mathematical structure. Most of the results in literature on the model of products of matrices are about
the global spectral properties, but local universality is also suggested (cf. [7,22,23]). Our work is motivated by the
previous results and proves the local universality of the squared singular values.

In this paper, we consider M ≥ 1 independent complex random matrices Xj , j = 1, . . . ,M , each has size Nj ×
Nj−1 with independent and identically distributed standard complex Gaussian entries. These matrices are also known
as complex Ginibre random matrices. We then form the product

YM = XMXM−1 · · ·X1. (1.1)

For convenience, we assume that N1, . . . ,NM are associated to a large integer parameter n, which we interchangeably
denote by N0, such that

min{N0, . . . ,NM} = N0 = n, (1.2)

and set

νj = Nj − N0, j = 0, . . . ,M. (1.3)

Clearly, ν0 = 0 and νj ≥ 0 for j = 1, . . . ,M .
When M = 1, Y1 = X1 defines the complex Wishart random matrix and plays a fundamental role in random matrix

theory; cf. [21]. It is well known that the eigenvalues and squared singular values of Y1 form determinantal point
processes [33,46], and their distributions are expressed in terms of the correlation kernels. Recent studies find the
determinantal structures for the model with general M ; see [3] for the eigenvalues and [6,7] for the squared singular
values. Moreover, further investigations reveal that similar determinantal structures also appear in many other models
of products of random matrices, such as the products involving inverses of complex Ginibre matrices [1,22,35] and
products involving truncated unitary matrices [4,30,37]; see also Section 4 below, and the recent review paper [5] and
references therein.

We will focus on the squared singular values of YM . According to [6], the joint probability density function of the
squared singular values is given by (see [6, formula (18)])

P(x1, . . . , xn) = 1

Zn

∏
j<k

(xk − xj )det
[
wk−1(xj )

]
j,k=1,...,n

, (1.4)

where xj > 0, the function wk is a Meijer G-function (see e.g. [11,40])

wk(x) = G
M,0
0,M

( −
νM,νM−1, . . . , ν2, ν1 + k

∣∣∣∣ x

)
, (1.5)

and the normalization constant (see [6, formula (21)]) is

Zn = n!
n∏

i=1

M∏
j=0

Γ (i + νj ).

Note that the Meijer G-function wk(x) can be written as a Mellin–Barnes integral

wk(x) = 1

2πi

∫ c+i∞

c−i∞
Γ (s + ν1 + k)

M∏
j=2

Γ (s + νj )x
−s ds, k = 0,1, . . . , (1.6)

with c > 0.
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1.2. The correlation kernel and double integral representation

The determinantal point process (1.4) is a biorthogonal ensemble [15] with correlation kernel

Kn(x, y) =
n−1∑
j=0

n−1∑
k=0

xj
(
M−1

n

)
k,j

wk(y), (1.7)

where Mn is the n × n matrix of moments

Mn =
(∫ ∞

0
xjwk(x)dx

)
j,k=0,...,n−1

. (1.8)

Alternatively, one can write the correlation kernel as

Kn(x, y) =
n−1∑
k=0

Pk(x)Qk(y), (1.9)

where for each k = 0,1, . . . , n−1, Pk is a monic polynomial of degree k and Qk is a linear combination of w0, . . . ,wk ,
uniquely defined by the orthogonality∫ ∞

0
Pj (x)Qk(x)dx = δj,k. (1.10)

Thus the functions Pk and Qk are the so-called biorthogonal functions. The polynomials Pk are also characterized as
multiple orthogonal polynomials [31] with respect to the first M weight functions wj , j = 0, . . . ,M − 1, as shown in
[38].

It turns out that Pk and Qk are Meijer G-functions [7], and then they have contour integral representations. Then it
is shown in [38, Proposition 5.1] that the correlation kernel admits the following double contour integral representation

Kn(x, y) = 1

(2πi)2

∫ −1/2+i∞

−1/2−i∞
ds

∮
Σ

dt

M∏
j=0

Γ (s + νj + 1)

Γ (t + νj + 1)

Γ (t − n + 1)

Γ (s − n + 1)

xty−s−1

s − t
, (1.11)

where Σ is a closed contour going around 0,1, . . . , n − 1 in the positive direction and Re t > −1/2 for t ∈ Σ . The
choices of these two contours are not unique. We can, and indeed will, make some deformations in our later analysis.

1.3. Limiting mean density

The first step of the study of the correlation kernel is to compute the 1-point correlation function, which is also known
as the mean density of the model. This global result is also the basis of our proof of the local universality [36]. As
mentioned at the very beginning, the limiting mean density/spectral distribution of the squared singular values for YM

is well understood using tools from free probability; see also recent work [41,49] for the study from the polynomials
Pk . It turns out that, after proper scaling, the limiting mean density is recognized as the Fuss–Catalan distribution
[8,10,42], i.e., its kth moment is given by the Fuss–Catalan number

1

Mk + 1

(
Mk + k

k

)
, k = 0,1,2, . . . . (1.12)

The (rescaled) limiting mean density is supported on an interval [0, (M + 1)M+1/MM ], with explicit form given in
terms of Meijer G-functions [45] or multivariate integrals [39]. Probably the simplest form of the density function for
general M is expressed by the following parametrization of the argument [14,29,41]:

x = (sin((M + 1)ϕ))M+1

sinϕ(sin(Mϕ))M
, 0 < ϕ <

π

M + 1
. (1.13)
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It is readily seen that this parametrization is a strictly decreasing function of ϕ, thus gives a one-to-one mapping from
(0,π/(M + 1)) to (0, (M + 1)M+1/MM). The density function in terms of ϕ is then given by

ρ(ϕ) = 1

πx

sin((M + 1)ϕ)

sin(Mϕ)
sinϕ = 1

π

(sinϕ)2(sin(Mϕ))M−1

(sin((M + 1)ϕ))M
. (1.14)

From (1.13) and (1.14), one can check (cf. [23]) that the density blows up with a rate x−M/(M+1) near the origin
(hard edge), while vanishes as a square root near (M + 1)M+1/MM (soft edge). These facts particularly suggest, as
pointed out in [7], the classical bulk and soft edge universality (via the sine kernel and Airy kernel, respectively)
should hold in the bulk and the right edge respectively as in the M = 1 case, that is, the complex Wishart ensemble,
but new limiting distributions are required to describe the local behavior at the hard edge if M > 1. The new limiting
distributions, characterized by their limiting correlation kernels, were computed in [38] by taking limit from the
integral representation (1.11). Here we note that the new family of kernels is a generalization of the classical Bessel
kernel [47] which is the M = 1 case of the family, and they are universal correlation kernels since they also appear
in many other random models, including Cauchy-chain matrix models [12,13], products of Ginibre matrices with
inverse ones [22], biorthogonal ensembles of Borodin [15] (as shown in [37]), etc. However, the conceptually simpler
universality results in the bulk and at the right edge turn out to be technically more complicated and have been left
open in [38].

It is the aim of this paper to confirm the bulk and soft edge universality in the products of Ginibre matrices YM .
Our main results are stated in the next section.

1.4. Statement of the main results

We start with the definition of the sine kernel (see [9, Theorem 3.1.1]; here we take a different normalization):

Ksin(x, y) := sinπ(x − y)

π(x − y)
. (1.15)

Recall the correlation kernel Kn(x, y) given in (1.11), our first result is stated as follows:

Theorem 1.1 (Bulk universality). For x0 ∈ (0, (M + 1)M+1/MM), which is parametrized through (1.13) by ϕ =
ϕ(x0) ∈ (0,π/(M + 1)), we have, with ν1, . . . , νM being fixed,

lim
n→∞

e−πξ cotϕ

e−πη cotϕ

nM−1

ρ(ϕ)
Kn

(
nM

(
x0 + ξ

nρ(ϕ)

)
, nM

(
x0 + η

nρ(ϕ)

))
= Ksin(ξ, η) (1.16)

uniformly for ξ and η in any compact subset of R, where ρ(ϕ) is defined in (1.14).

Next, recall the Airy kernel defined by [9, Section 3.1]

KAi(x, y) := Ai(x)Ai′(y) − Ai′(x)Ai(y)

x − y

= 1

(2πi)2

∫
γR

dμ

∫
γL

dλ
e(μ3/3)−xμ

e(λ3/3)−yλ

1

μ − λ
, (1.17)

where γR and γL are symmetric with respect to the imaginary axis, and γR is a contour in the right-half plane going
from e−πi/3 · ∞ to eπi/3 · ∞; see Figure 1 for an illustration.

Theorem 1.2 (Soft edge universality). With ν1, . . . , νM being fixed, we have

lim
n→∞

e−2−1/3(M+1)2/3ξn1/3

e−2−1/3(M+1)2/3ηn1/3 nM−(2/3)c2Kn

(
nM

(
x∗ + c2ξ

n2/3

)
, nM

(
x∗ + c2η

n2/3

))
= KAi(ξ, η) (1.18)
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Fig. 1. The contours γL and γR in the definition of Airy kernel.

uniformly for ξ and η in any compact subset of R, where

x∗ = (M + 1)M+1

MM
and c2 = (M + 1)M+(2/3)

21/3MM−1
. (1.19)

Theorems 1.1 and 1.2 then imply that the universal scaling limits of the correlation kernel (in the bulk or at the
soft edge) that are typical for unitary random matrix ensembles also occur in products of complex Ginibre random
matrices.

Remark 1. If we strengthen the result in Theorem 1.2 from uniform convergence into the trace norm convergence of
the integral operators with respect to the correlation kernels, then as a direct consequence we have that the limiting
distribution of the largest squared singular value, after rescaling, converges to the Tracy–Widom distribution [9,
Theorem 3.1.5]. Since the proof of trace norm convergence is only a technical elaboration that confirms a well-
expected result, we do not give the detail.

1.5. About the proof

Our proof of the main theorems is based on a steepest descent analysis of the double contour integral (1.11), whose
integrand contains products and ratios of gamma functions with large arguments. By Stirling’s formula, the logarithms
of the gamma functions are approximated by elementary functions for n large, which play the role of phase function.
In the bulk regime there are two complex conjugate saddle points, while in the edge regime these two saddle points
coalesce into one. The main challenge of the proof is to find suitable contours of integration and sophisticated estimates
of integrals. As we shall see later, the parametrization (1.13) will be essential in the analysis. Our strategy can be
generalized to deal with some other product models introduced recently, where the correlation kernels have similar
structures. We will also discuss about this aspect at the end of this paper.

Here we note that the steepest descent analysis of a double contour integral involving gamma functions was used in
a different random matrix model in [2], where the limiting Pearcey kernel was derived. The preprint [25] that considers
a random matrix model similar to that in [2] applies the method detailed in this paper to perform asymptotic analysis.
See also [50].

The rest of this paper is organized as follows. Theorems 1.1 and 1.2 are proved in Section 2, upon two technical
lemmas that are proved in Section 3 on the properties of the specially deformed integral contours. Section 3 also
contains the precise construction of the deformed contours. We conclude this paper in Section 4 with a discussion
on the generalizations of our method to establish similar universal results in other models of products of random
matrices. We present two more examples, one is the product of M Ginibre matrices and the inverse of K Ginibre
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matrices studied by Forrester [22], and the other one is the product of M − 1 Ginibre matrices with one truncated
unitary matrix considered by Kuijlaars and Stivigny [37].

2. Proofs of the main theorems

2.1. Notations and contour deformations

For notational simplicity, we set

F(z;a) := log

(∏M
j=0 Γ (z + νj + 1)

Γ (z − n + 1)
a−z

)
, a ≥ 0, (2.1)

where the logarithm takes the principal branch and we assume that the value of logz for z ∈ (−∞,0) is continued from
above. The asymptotics of F is crucial in our analysis. To proceed, note the Stirling’s formula for gamma function
[43, formula 5.11.1] reads

logΓ (z) =
(

z − 1

2

)
log z − z + 1

2
log(2π) +O

(
1

z

)
(2.2)

as z → ∞ in the sector | arg z| ≤ π − ε for some ε > 0. Hence it follows that if |z| → ∞ and |z − n| → ∞, while
arg z and arg(z − n) are in (−π + ε,π − ε), then uniformly

F(z;a) = F̃ (z;a) +
M∑

j=0

(
νj + 1

2

)
log z

− 1

2
log(z − n) + M

2
log(2π) +O

(
min

(|z|, |z − n|)−1)
, (2.3)

where

F̃ (z;a) = (M + 1)z(log z − 1) − (z − n)
(
log(z − n) − 1

) − z loga. (2.4)

Furthermore, we have

F̃
(
nz;nMa

) = nF̂ (z;a) + n logn, (2.5)

where

F̂ (z;a) = (M + 1)z(log z − 1) − (z − 1)
(
log(z − 1) − 1

) − z loga. (2.6)

The behaviour of Re F̂ (z;a) is crucial in the saddle point analysis in this paper, and we plot the level line Re F̂ (z;a) =
Re F̂ (w±;a) in Figure 4, where w± are the critical points of F̂ (z;a), see (2.10) and (2.11).

To prove the results of universality, we also need to deform the contours in (1.11). First we note that the integral
contour for s can be replaced by any infinite contour C that is taken to go from −i∞ to i∞, as long as Σ is on the
right side of C. Thus (with shorthand notation F defined in (2.1)), we express (1.11) as

Kn(x, y) = y−1

(2πi)2

∫
C

ds

∮
Σ

dt
eF (s;y)

eF(t;x)

1

s − t
. (2.7)

In the proof of the soft edge universality, we will further deform C in (2.7) such that Σ is on its left, and it turns
out that the resulting double contour integral remains the same. To see this, let C and C′ be two infinite contours from
−i∞ to i∞ such that Σ lies between C and C′, that is, Σ is enclosed by C ∪ C′. Applying the residue theorem to the



1740 D.-Z. Liu, D. Wang and L. Zhang

Fig. 2. In the contour integral (2.7), the position of Σ and C can be switched, and Σ can be split into Σ1 and Σ2 and C goes between them.

Fig. 3. The contours C and Σ defined in (2.13) and (2.14), respectively.

integral on C ∪ C′, it follows∫
C

ds

∮
Σ

dt
eF (s;y)

eF(t;x)

1

s − t
−

∫
C′

ds

∮
Σ

dt
eF (s;y)

eF(t;x)

1

s − t
= 2πi

∫
Σ

(
x

y

)t

dt = 0. (2.8)

Hence, the double contour integral does not change if C is replaced by C′. The deformation of C is shown in Figure 2.
Similarly, we can show that if Σ is split into two disjoint closed counterclockwise contours Σ = Σ1 ∪ Σ2, which

jointly enclose poles 0,1, . . . , n − 1, and C is an infinite contour from −i∞ to i∞ such that Σ1 is on the left side of
C and Σ2 is on the right side of C, the formula (2.7) is still valid. We will use such kind of contours in the proof of the
bulk universality. The deformation of Σ is shown in Figure 2.

To facilitate the asymptotic analysis, throughout the rest of this paper, we shall denote by Dr(a) the disc centered
at a with radius r , and by C± the upper/lower half complex plane, respectively, and if C is a contour in C and r > 0,
then denote by rC the contour {z ∈C | z/r ∈ C} with the same orientation as C.

2.2. Proof of Theorem 1.1

Before going in the detail of the proof, we sketch the strategy. As mentioned in the end of Section 2.1, we use the
integral representation (2.7) of the kernel Kn(x, y), with the contours deformed, such that Σ is split into two parts,
and the contour C goes between them. But in the asymptotic analysis, we group the “curved” part and the “vertical”
part of Σ into Σcurved and Σvertical respectively; see Figure 3 to get a visual idea of these two parts. Then we compute
Kn(x, y) as I1 + I2, where I1 is the integral (2.7) over C and Σcurved, while I2 is that over C and Σvertical. I1 is
evaluated by the usual saddle point method, as detailed in Section 2.2.3, and it turns out to be the insignificant part; I2
is evaluated by an application of Cauchy’s theorem, see Section 2.2.2, and it turns out to be the main contribution.

2.2.1. Exact deformation of the contours
For any x0 ∈ (0, (M + 1)M+1/MM), we use the parametrization (1.13), and let ϕ be the unique real number in
(0,π/(M + 1)) such that

x0 = (sin((M + 1)ϕ))M+1

sinϕ(sin(Mϕ))M
.
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To prove the bulk universality, we assume that the arguments x and y in (2.7) are in the form

x = nM

(
x0 + ξ

nρ(ϕ)

)
,

(2.9)

y = nM

(
x0 + η

nρ(ϕ)

)
,

where ξ and η are in a compact subset of R and ρ(ϕ) is given in (1.14). For the asymptotic analysis, we denote

w± = sin((M + 1)ϕ)

sin(Mϕ)
e±iϕ. (2.10)

They are two saddle points of the function F̂ (z;x0) defined in (2.6), for

F̂z(w±;x0) := d

dz
F̂ (z;x0)

∣∣∣∣
z=w±

= 0. (2.11)

It is also straightforward to check

F̂zz(w±;x0) := d2

dz2
F̂ (z;x0)

∣∣∣∣
z=w±

= 1

w±

(
M + 1 − sin((M + 1)ϕ)

sinϕ
e∓iMϕ

)
. (2.12)

The shapes of the contours C and Σ in (2.7) used in this subsection are schematically illustrated in Figure 3, and
are precisely described as follows, based on the two contours C̃x0 and Σ̃ε explicitly constructed in Section 3.1. The
contour C is chosen to be

C = nC̃x0, (2.13)

i.e., C is the vertical, upward contour through the points nw+ and nw−. To describe Σ , we let ε and ε′ be two small
enough positive constants. Then the contour Σ is defined by

Σ = Σcurved ∪ Σvertical, (2.14)

where

Σcurved = Σ1 ∪ Σ2, Σvertical = Σ3 ∪ Σ4, (2.15)

and

Σ1 = nΣ̃r ∩ {z | Re z ≤ Renw± − ε},
Σ2 = nΣ̃r ∩ {z | Re z ≥ Renw± + ε}, with r = [ε′n]+(1/2)

n
,

(2.16)
Σ3 = vertical bar connecting the two ending points of Σ1,

Σ4 = vertical bar connecting the two ending points of Σ2.

Note that Σ consists of two disjoint closed contours: Σ1 ∪Σ3 and Σ2 ∪Σ4, whose orientations are counterclockwise.
By the arguments at the end of Section 2.1, such kind of contour deformation is allowed. Here we assume that Renw±
is not an integer, so that C does not pass through any integer point. We further assume that ε is small enough so that
C, Σ3 and Σ4 all lie between two consecutive integers k and k + 1. In the case that Renw± ∈ Z and C passes through
an integer point, we simply shift contour C horizontally by 1/2 to make it go between two consecutive integers, and
all arguments below work in the same way.
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In the asymptotic analysis of Kn(x, y), we write (2.7) as

Kn(x, y) = I1 + I2, where
I1
I2

}
= y−1

(2πi)2
×

{∫
C ds

∮
Σcurved

dt eF(s;y)

eF(t;x)
1

s−t
,∫

C ds
∮
Σvertical

dt eF(s;y)

eF(t;x)
1

s−t
.

(2.17)

The following properties of F(z;nMx0) on the contours Σcurved and C will play an important role in our later
analysis.

Lemma 2.1. There exists a constant δ > 0 such that for n large enough,

ReF
(
z;nMx0

) ≥ ReF
(
nw±;nMx0

) + δn

∣∣∣∣ zn − w±
∣∣∣∣
2

for z ∈ Σcurved ∩ Dn3/5(nw±), (2.18)

ReF
(
z;nMx0

)
> ReF

(
nw±;nMx0

) + δn1/5 for z ∈ Σcurved \ (
Dn3/5(nw+) ∪ Dn3/5(nw−)

)
, (2.19)

ReF
(
z;nMx0

) ≤ ReF
(
nw±;nMx0

) − δn

∣∣∣∣ zn − w±
∣∣∣∣
2

for z ∈ C ∩ Dn3/5(nw±), (2.20)

ReF
(
z;nMx0

)
< ReF

(
nw±;nMx0

) − δn1/5 for z ∈ C \ (
Dn3/5(nw+) ∪ Dn3/5(nw−)

)
, (2.21)

ReF
(
z;nMx0

)
< ReF

(
nw±;nMx0

) − δ|z| for z ∈ C ∩ {|z| > δ−1n
}
. (2.22)

Since the proof of this lemma is lengthy and technical, we decide to postpone it to Section 3.2.
To grasp the meaning of Lemma 2.1 before getting involved in the delicate inequalities, it is better to consult

Figure 4, the level line Re F̂ (z;x0) = F̂ (w±;x0). Since the n → ∞ behaviour of F(z;nMx0) is determined by
F̂ (z/n;x0), as shown in (2.3), (2.5) and (2.6), by comparing the shapes of Σcurved and C with the level line in Fig-
ure 4, we find that the value ReF(z;nMx0) attains its maximum over C around nw±, while it attains its minimum
over Σcurved around these two points.

Fig. 4. The level line Re F̂ (z;x0) = Re F̂ (w±;x0) with M = 3 and x0 = 1. The level line has two intersections w± , and it divides
the complex plane into five parts. In the top, central, and bottom parts, Re F̂ (z;x0) < Re F̂ (w±;x0), while in the left and right parts,
Re F̂ (z;x0) > Re F̂ (w±;x0).
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2.2.2. Evaluation of I2 as ε → 0
Note that the contour Σ depends on a parameter ε. By taking ε → 0, we have

lim
ε→0

I2 := lim
ε→0

y−1

(2πi)2

∫
C

ds

∫
Σ3∪Σ4

dt
eF (s;y)

eF(t;x)

1

s − t

= y−1

2πi

∫ nw+

nw−

eF(s;y)

eF(s;x)
ds = y−1

2πi

∫ nw+

nw−

(
x

y

)s

ds

= 1

2πiy log(x/y)

((
x

y

)nw+
−

(
x

y

)nw−)
. (2.23)

Here we assume that x �= y, and use Cauchy’s theorem in the first step. With the values of x, y given in (2.9), it is
readily seen that as n → ∞,

x

y
= 1 + ξ − η

nρ(ϕ)x0
+O

(
n−2), y log

(
x

y

)
= nM−1(ξ − η)

ρ(ϕ)

(
1 +O

(
n−1)), (2.24)

where ϕ is related to x0 by (1.13) and ρ(ϕ) is defined in (1.14). These approximations, together with w± given in
(2.10), imply that if ξ �= η, then

lim
ε→0

I2 = ρ(ϕ)

2πinM−1(ξ − η)(1 +O(n−1))

(
e((ξ−η)w+)/(ρ(ϕ)x0)

(
1 +O

(
n−1)) − e((ξ−η)w−)/(ρ(ϕ)x0)

(
1 +O

(
n−1)))

= eπξ cotϕ

eπη cotϕ

ρ(ϕ)

nM−1

sinπ(ξ − η)

π(ξ − η)
+O

(
n−M

)
(2.25)

for large n. Note that although we define I2 as a function with real variables x and y, it is also a well defined analytic
function if we understand x and y as complex variables. Then (2.25) also holds if ξ and η are distinct complex
numbers. By analytic continuation we have that (2.25) also holds for ξ = η, and particularly for the case that they are
identical real numbers.

2.2.3. Evaluation of I1 as ε → 0
Parallel to (2.23), by taking the limit ε → 0, it follows

lim
ε→0

I1 := lim
ε→0

y−1

(2πi)2

∫
C

ds

∫
Σ1∪Σ2

dt
eF (s;y)

eF(t;x)

1

s − t

= y−1

(2πi)2
lim

ε→0+

∫
nΣ̃r\(Dε(nw+)∪Dε(nw−))

(∫
C

ds
eF(s;y)

eF(t;x)

1

s − t

)
dt

= y−1

(2πi)2
p.v.

∫
nΣ̃r

(∫
C

ds
eF(s;y)

eF(t;x)

1

s − t

)
dt, (2.26)

where p.v. means the Cauchy principal value. For the definition and properties of Cauchy principal value for contour
integral; see [34, Section 8.3, Page 191]. We remark that the integral with respect to t on nΣ̃r in (2.26) is Riemann
integrable, but has discontinuities at nw±, the intersections of C and nΣ̃r . Thus there is no serious integrability
problem in the Cauchy principal value for the integral over nΣ̃r .

To estimate the limit of I1, we define

C±
local = C ∩ Dn3/5(nw±), Σ±

local = Σ ∩ Dn3/5(nw±), (2.27)

and show that the main contribution to the Cauchy principal integral is from C+
local × Σ+

local and C−
local × Σ−

local in the
sense that remaining part of the integral is negligible in the asymptotic analysis.
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It is clear that for s ∈ C+
local and t ∈ Σ+

local, we can approximate F(s;nMx0) and F(t;nMx0) by F̃ as in (2.3) and

furthermore by F̂ that is defined in (2.6). We make the change of variables

s = nw+ + n1/2u, t = nw+ + n1/2v. (2.28)

It then follows from (2.9), (2.11) and (2.12) that, uniformly for all s ∈ Dn3/5(nw+),

eF(s;y) = eF(s;nMx0)

(
1 + η

nρ(ϕ)x0

)−s

= nnec̃M enF̂ (w++n−1/2u;x0)

(
1 + η

nρ(ϕ)x0

)−s(
1 +O

(
n−1/2))

= nnec̃M+nF̂ (w+;x0)e(F̂zz(w+;x0)/2)u2
(

1 + η

nρ(ϕ)x0

)−s(
1 +O

(
n−1/5))

= nnec̃M+nF̂ (w+;x0)e(F̂zz(w+;x0)/2)u2
e−w+η/(x0ρ(ϕ))

(
1 +O

(
n−1/5)), (2.29)

where

c̃M =
M∑

j=1

(
νj + 1

2

)
log(nw+) + 1

2
log

(
w+

1 − w+

)
+ M

2
log(2π). (2.30)

A parallel argument yields that uniformly for t ∈ Dn3/5(nw+),

eF(t;x) = nnec̃M+nF̂ (w+;x0)e(F̂zz(w+;x0)/2)v2
e−w+ξ/(x0ρ(ϕ))

(
1 +O

(
n−1/5)). (2.31)

As a consequence (noting that s − t = √
n(u − v)),

p.v.

∫
C+

local

ds

∮
Σ+

local

dt
eF (s;y)

eF(t;x)

1

s − t

= e−w+(ξ−η)/(ρ(ϕ)x0)

√
n

p.v.
∫
C+

local

ds

∮
Σ+

local

dt
e(F̂zz(w+;x0)/2)u2

e(F̂zz(w+;x0)/2)v2

1 +O(n−1/5)

u − v
, (2.32)

where on the right-hand side, we understand u and v as functions of s and t respectively, as defined by (2.28). Note
that the O(n−1/5) term in the integrand on the right-hand side of (2.32) is uniform and analytic in Dn3/5(nw+).
Comparing the result of (2.29) with y = nMx0 and Lemma 2.1, we have that there exists a constant ε1 > 0 such that
for all s ∈ C+

local,∣∣e(F̂zz(w+;x0)/2)u2 ∣∣ ≤ e−ε1|u|2 . (2.33)

Similarly, a comparison between (2.31) and (2.18) in Lemma 2.1 implies that there is a constant ε2 > 0 such that for
all t ∈ Σ+

local,∣∣e(F̂zz(w+;x0)/2)v2 ∣∣ ≥ eε2|v|2 . (2.34)

Hence a standard application of the saddle point method yields

p.v.

∫
C+

local

ds

∮
Σ+

local

dt
eF (s;y)

eF(t;x)

1

s − t

= lim
ε→0+

∫
C+

local

ds

∮
Σ+

local\Dε(nw+)

dt
eF (s;y)

eF(t;x)

1

s − t
=O

(
n1/2). (2.35)
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In a similar manner, by setting

s = nw− + n1/2u, t = nw− + n1/2v, (2.36)

we have

p.v.

∫
C−

local

ds

∮
Σ−

local

dt
eF (s;y)

eF(t;x)

1

s − t
=O

(
n1/2). (2.37)

Finally, we note by (2.19), (2.21) and (2.22) in Lemma 2.1 that there exists ε3 > 0 such that for large enough n

∣∣e−F(t;x)
∣∣ =

∣∣∣∣e−F(t;nMx0)

(
1 + ξ

nρ(ϕ)x0

)t ∣∣∣∣ <
∣∣e−F(nw±;nMx0)

∣∣e−ε3n
1/5

if t ∈ Σ \ Σ±
local, (2.38)

∣∣eF(s;y)
∣∣ =

∣∣∣∣eF(s;nMx0)

(
1 + η

nρ(ϕ)x0

)−s∣∣∣∣ <

{
|eF(nw±;nMx0)|e−ε3n

1/5
if s ∈ C \ C±

local,

|eF(nw±;nMx0)|e−ε3|s| if s ∈ C ∩ {|s| > n
ε3

}. (2.39)

With the aid of the estimates (2.38), (2.39), (2.29), (2.31), (2.33) and (2.34), we obtain

p.v.

∫
C

ds

∮
Σ

dt
eF (s;y)

eF(t;x)

1

s − t
− p.v.

∫
C+

local

ds

∮
Σ+

local

dt
eF (s;y)

eF(t;x)

1

s − t

− p.v.

∫
C−

local

ds

∮
Σ−

local

dt
eF (s;y)

eF(t;x)

1

s − t
=O

(
e−εn1/5)

. (2.40)

This, together with (2.35), (2.37) and (2.26), implies

lim
ε→0

I1 = y−1(O
(
n1/2 + n1/2 +O

(
e−εn1/5)) =O

(
n−M+1/2), (2.41)

where we use that y = O(nM). Summing up (2.25) and (2.41) and letting n → ∞, we derive (1.16) and complete the
proof of Theorem 1.1.

2.3. Proof of Theorem 1.2

In view of the scalings of x, y in (1.18), we set

x = nM

(
x∗ + c2ξ

n2/3

)
, y = nM

(
x∗ + c2η

n2/3

)
, (2.42)

where ξ, η ∈ R,

x∗ = (M + 1)M+1

MM
and c2 = (M + 1)M+(2/3)

21/3MM−1
,

are defined in (1.19). Thus, we write (2.7) as

Kn(x, y) = y−1

(2πi)2

∫
C

ds

∮
Σ

dt
eF (s;nMx∗)(1 + n−2/3c−1

1 η)−s

eF (t;nMx∗)(1 + n−2/3c−1
1 ξ)−t

1

s − t
(2.43)

with

c1 = x∗
c2

= 21/3(M + 1)1/3

M
. (2.44)
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Fig. 5. The contours C and Σ defined in (2.46) and (2.49)

In this case, we will choose the contours C and Σ in (2.7) such that Σ is on the left hand side of C, as illustrated in
Figure 5. To describe C, we denote

z0 = 1 + 1

M
, (2.45)

and then define

C = Clocal ∪ Cglobal, (2.46)

where

Clocal = {
nz0 + c1n

2/3reπi/3
∣∣ r ∈ [

1, n1/30]} ∪ {
nz0 + c1n

2/3re−πi/3
∣∣ r ∈ [

1, n1/30]}
∪

{
nz0 + c1n

2/3

2
+ ic1n

2/3r

∣∣∣ r ∈
[
−

√
3

2
,

√
3

2

]}
, (2.47)

and

Cglobal =
{
nz0 + 1

2
c1n

7/10 + iy

∣∣∣ y ∈
(

−∞,−
√

3

2
c1n

7/10
]

∪
[√

3

2
c1n

7/10,∞
)}

. (2.48)

The orientation of C is taken to be upward. The contour Σ is defined as the union of contours

Σ = Σlocal ∪ Σglobal, and Σglobal = Σcurved ∪ Σvertical. (2.49)

The contour Σlocal is defined by

Σlocal = {
nz0 + c1n

2/3re2πi/3
∣∣ r ∈ [

1, n1/30]} ∪ {
nz0 + c1n

2/3re−2πi/3
∣∣ r ∈ [

1, n1/30]}
∪

{
nz0 − c1n

2/3

2
+ ic1n

2/3r

∣∣∣ r ∈
[
−

√
3

2
,

√
3

2

]}
. (2.50)

The contour Σglobal depends on a small constant ε > 0. Define

r = [εn] + (1/2)

n
. (2.51)

With the contour Σ̃r constructed in Section 3.1, we denote by z± ∈ C± the two intersection points of Σ̃r with the
vertical line Re z = z0 − 1

2c1n
−3/10. We then define

Σcurved = nΣ̃r ∩
{

Re z < nz0 − 1

2
c1n

7/10
}

(2.52)
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and

Σvertical = two vertical line segments connecting nz± and nz0 ± c1n
7/10e2πi/3. (2.53)

Note that Σ is a closed contour with counterclockwise orientation.
Similar to Lemma 2.1, we have the following properties of F(z;nMx∗) on the contours C and Σ .

Lemma 2.2. There exists a positive constant δ > 0 such that for n large enough,

ReF
(
z;nMx∗

)
> ReF

(
nz0;nMx∗

) + δn1/10 for z ∈ Σglobal, (2.54)

ReF
(
z;nMx∗

)
< ReF

(
nz0;nMx∗

) − δn1/10 for z ∈ Cglobal, (2.55)

ReF
(
z;nMx∗

)
< ReF

(
nz0;nMx∗

) − δ|z| for z ∈ Cglobal ∩
{|z| > δ−1n

}
. (2.56)

The proof of this lemma is postponed to Section 3.3.
The strategy now is first to consider the double contour integral in (2.43) with C and Σ restricted to Clocal and

Σlocal, respectively. It turns out that the integral with the restricted domain yields the Airy kernel in the large n limit.
Later we show that the remaining part of the integral is negligible in the asymptotic analysis.

For s ∈ Clocal and t ∈ Σlocal, we can approximate F(s;nMx∗) and F(t;nMx∗) by F̃ as in (2.3) and furthermore by
F̂ that is defined in (2.6). By making the change of variables

s = nz0 + n2/3c1u, t = nz0 + n2/3c1v, (2.57)

it follows that

F
(
s;nMx∗

) = F̃
(
s;nMx∗

) + cM +O
(
n−1/3)

= nF̂
(
z0 + n−1/3c1u;x∗

) + n logn + cM +O
(
n−1/3), (2.58)

where

cM =
M∑

j=1

(
νj + 1

2

)
log

(
n(M + 1)

M

)
+ 1

2
log(M + 1) + M

2
log(2π). (2.59)

Straightforward calculations show that

F̂z(z0;x∗) = 0, F̂zz(z0;x∗) = 0, F̂zzz(z0;x∗) = M3

M + 1
. (2.60)

We then obtain from Taylor’s expansion of (2.6) that

F̂
(
z0 + n−1/3c1u;x∗

)
= F̂ (z0;x∗) + F̂z(z0;x∗)c1un−1/3 + 1

2
F̂zz(z0;x∗)c2

1u
2n−2/3 + 1

6
F̂zzz(z0;x∗)c3

1u
3n−1 +O

(
n−6/5)

= F̂ (z0;x∗) + u3

3n
+O

(
n−6/5), (2.61)

uniformly valid for u ∈ Dn1/30(0). We also note that, by (2.44), (2.57) and (2.45),

(
1 + n−2/3c−1

1 η
)−s = e−2−1/3(M+1)2/3ηn1/3

e−uη
(
1 +O

(
n−1/3)), (2.62)

for all u ∈ Dn1/30(0) and η in a compact subset of R. Combining (2.58), (2.61) and (2.62), we find

eF(s;nMx∗)(1 + n−2/3c−1
1 η

)−s = nnecM+F̂ (z0;x∗)ne(1/3)u3−uηe−2−1/3(M+1)2/3ηn1/3(
1 +O

(
n−1/5)), (2.63)



1748 D.-Z. Liu, D. Wang and L. Zhang

Fig. 6. The contours Σr and Cr in (2.65)

uniformly for s ∈ Clocal and η in a compact subset of R. Similarly, if x and t are expressed respectively by ξ and v via
(2.42) and (2.57), where ξ belongs to a compact subset of R and t ∈ Σlocal, we have that uniformly in t and ξ

eF(t;nMx∗)(1 + n−2/3c−1
1 ξ

)−s = nnecM+F̂ (z0;x∗)ne(1/3)v3−vξ e−2−1/3(M+1)2/3ξn1/3(
1 +O

(
n−1/5)). (2.64)

Substituting (2.63) and (2.64) into the integrand of (2.43), we have

y−1

(2πi)2

∫
Clocal

ds

∮
Σlocal

dt
eF (s;nMx∗)(1 + n−2/3c−1

1 η)−s

eF (t;nMx∗)(1 + n−2/3c−1
1 ξ)−t

1

s − t

= e2−1/3(M+1)2/3(ξ−η)n1/3

nM−(2/3)x∗c−1
1

(
1

(2πi)2

∫
Cr

du

∫
Σr

dv
e(1/3)u3−uη

e(1/3)v3−vξ

1

u − v
+O

(
n−1/5))

= e2−1/3(M+1)2/3(ξ−η)n1/3

nM−(2/3)c2

(
KAi(ξ, η) +O

(
n−1/5)), (2.65)

where Σr and Cr are the images of Clocal and Σlocal (see (2.47) and (2.50)) under the change of variables (2.57) (see
Figure 6 for an illustration), and the last equality follows from the integral representation of Airy kernel shown in
(1.17).

In a manner similar to (2.62), we find that

e2−1/3(M+1)2/3(η−ξ)n1/3 eF(s;nMx∗)(1 + n−2/3c−1
1 η)−s

eF (t;nMx∗)(1 + n−2/3c−1
1 ξ)−t

= eF(s;nMx∗)(1 + n−2/3c−1
1 η)−(s−nz0)

eF (t;nMx∗)(1 + n−2/3c−1
1 ξ)−(t−nz0)

(
1 +O

(
n−1/3)). (2.66)

Then as a consequence of Lemma 2.2, there exists a constant δ > 0 such that for n large enough

∣∣e−F(t;nMx∗)(1 + n−2/3c−1
1 ξ

)(t−nz0)
∣∣ <

∣∣e−F(nz0;nMx∗)∣∣e−δn1/10
if t ∈ Σglobal, (2.67)

∣∣eF(s;nMx∗)(1 + n−2/3c−1
1 η

)−(s−nz0)
∣∣ <

{
|eF(nz0;nMx∗)|e−δn1/10

if s ∈ Cglobal,

|eF(nz0;nMx∗)|e−δ|s| if s ∈ Cglobal ∩ {|s| > δ
n
}. (2.68)
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We conclude by (2.66), (2.67), (2.68), and the asymptotics of the integrand of (2.43) given in (2.63) and (2.64) that

y−1

(2πi)2

∫
C

ds

∮
Σ

dt
eF (s;x∗)(1 + n−2/3c−1

1 η)−s

eF (t;x∗)(1 + n−2/3c−1
1 ξ)−t

1

s − t

− y−1

(2πi)2

∫
Clocal

ds

∮
Σlocal

dt
eF (s;x∗)(1 + n−2/3c−1

1 η)−s

eF (t;x∗)(1 + n−2/3c−1
1 ξ)−t

1

s − t
=O

(
e−δn1/10)

. (2.69)

A combination of the above formula and (2.65) gives us (1.18), and completes the proof of Theorem 1.2.

3. Contour constructions and proofs of Lemmas 2.1 and 2.2

In this section, we first construct two contours C̃x0 and Σ̃ε , from which we can describe precisely the contours of
the double integral (2.7) used in the proofs of our main theorems. The contour C̃x0 depends on x0 ∈ (0, x∗), where
x∗ = (M + 1)M+1/MM is defined in (1.19). The other contour Σ̃ε is dependent on a small parameter ε > 0. Two
technical lemmas regarding the behavior of the function Re F̂ on these two contours are then proved. With the aid of
these two lemmas, we finally finish the proofs of Lemmas 2.1 and 2.2 used in Sections 2.2 and 2.3, respectively.

3.1. Constructions of contours C̃x0 and Σ̃ε

Recall that for each x0 ∈ (0, x∗), which can be parametrized by ϕ ∈ (0,π/(M + 1)) as in (1.13), we have two complex
conjugate saddle points w± of F̂ (z;x0) defined in (2.10). The contour C̃x0 is defined by

C̃x0 := {z ∈ C | Re z = Rew+ = Rew−}, (3.1)

i.e., a vertical line passing through Rew±.
For the construction of Σ̃ε , we first define

Σ̃ := Σ̃+ ∪ Σ̃−, (3.2)

where

Σ̃+ :=
{
ζ(φ)

∣∣∣ φ ∈
[

0,
π

M + 1

]}
, Σ̃− :=

{
ζ(φ)

∣∣∣ φ ∈
[

0,
π

M + 1

]}
, (3.3)

with

ζ(φ) = sin((M + 1)φ)

sin(Mφ)
eiφ. (3.4)

It is easy to check that Σ̃± lies in C±, passes through w±, and intersects the real line only at 0 when φ = π/(M +
1), and at 1 + M−1 when φ = 0. Furthermore, as φ runs from 0 to π/(M + 1), the value of |ζ(φ)| = sin((M +
1)φ)/ sin(Mφ) decreases, and as φ → π/(M + 1) from the left,

ζ(φ) = π − (M + 1)φ

sin(πM/(M + 1))
eiπ/(M+1)

(
1 +O

(
π

M + 1
− φ

))
. (3.5)

Thus, for small ε > 0, the part of Σ̃± in the disc Dε(0) is approximated by the line segments {z = re±πi/(M+1) | r ≤ ε}.
A plot of Σ̃ is shown in the left picture of Figure 7. Our basic idea is to construct Σ by nΣ̃ . But the contour Σ̃ passes
through the origin, which coincides with the poles of integrand in (2.7), we need to make a small deformation of Σ̃

around the origin, which gives the following definition of Σ̃ε :

Σ̃ε := {
z ∈ Σ̃ | |z| ≥ ε

} ∪ the arc of
{|z| = ε

}
connecting Σ̃ ∩ {|z| = ε

}
and through −ε, (3.6)
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Fig. 7. The contours Σ̃ (left picture) and Σ̃ε (right picture) with M = 3 and ε = 0.1.

with counterclockwise orientation. It is clear that Σ̃ε is a closed contour enclosing the interval [0,1]; see the right
picture of Figure 7 for an illustration.

The next two lemmas give the behaviors of Re F̂ (z;a) (defined in (2.6)) on the contours Σ̃ and C̃x0 , which will be
essential in our later proofs of Lemmas 2.1 and 2.2.

Lemma 3.1. For all x0 ∈ (0, x∗), which can be parameterized by ϕ ∈ (0,π/(M +1)) as in (1.13), there exist constants
ε, δ > 0 such that

Re F̂ (z;x0) ≥ Re F̂ (w±;x0) + ε|z − w±|2 for z ∈ Σ̃ε ∩ Dδ(w±). (3.7)

Moreover, we have

d

dφ
Re F̂

(
ζ(φ);x0

){
< 0 for φ ∈ (0, ϕ),
> 0 for φ ∈ (ϕ, π

M+1 ),
(3.8)

d

dφ
Re F̂

(
ζ(φ);x0

){
< 0 for φ ∈ (0, ϕ),
> 0 for φ ∈ (ϕ, π

M+1 ).

We also have

d

dφ
Re F̂

(
ζ(φ);x∗

)
> 0 and

d

dφ
Re F̂

(
ζ(φ);x∗

)
> 0 for φ ∈

(
0,

π

M + 1

)
. (3.9)

Proof. Due to the symmetry of Re F̂ (z;a) with respect to the real axis, it suffices to consider the case that z ∈ C+,
that is, only the inequalities involving in ζ(φ).

To show (3.7) and (3.8), we define

v(φ) = (sin((M + 1)φ))M+1

sinφ(sin(Mφ))M
. (3.10)

Note that x0 = v(ϕ) and for all φ ∈ [0,π/(M + 1)],
ζ(φ)M+1 − v(φ)

(
ζ(φ) − 1

) = 0, (3.11)

where ζ(φ) is given in (3.4). Thus,

dF̂ (ζ(φ);x0)

dφ
= dF̂

dζ

dζ(φ)

dφ
= log

(
ζ(φ)M+1

(ζ(φ) − 1)x0

)
dζ(φ)

dφ
= log

(
v(φ)

v(ϕ)

)
dζ(φ)

dφ
. (3.12)
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Since the function sin θ/ sin(cθ) is a strictly decreasing function on (0,π) for 0 < c < 1, it is readily seen from (3.4)
and (3.10) that

v(φ) > 0,
dv(φ)

dφ
< 0, Re

dζ(φ)

dφ
= d

dφ

(
sin((M + 1)φ) cosφ

sin(Mφ)

)
< 0, (3.13)

for all φ ∈ (0, π
M+1 ). Hence

d Re F̂ (ζ(φ);x0)

dφ
= log

(
v(φ)

v(ϕ)

)
d Re ζ(φ)

dφ

{
< 0 if φ ∈ (0, ϕ),
> 0 if φ ∈ (ϕ, π

M+1 ), (3.14)

and

d2 Re F̂ (ζ(φ);x0)

dφ2

∣∣∣∣
φ=ϕ

= d

dφ

(
log

(
v(φ)

v(ϕ)

)
d Re ζ(φ)

dφ

)∣∣∣∣
φ=ϕ

= d Re ζ(φ)

dφ

∣∣∣∣
φ=ϕ

v′(ϕ)

v(ϕ)
> 0, (3.15)

which gives us (3.7) and (3.8) for z (or ζ(φ))∈ C+.
Finally, note that the inequality (3.9) is the limiting case of (3.8) as x0 → x∗, or equivalently, ϕ → 0, the result is

then immediate. �

Lemma 3.2. For all conjugate pairs w± ∈ C± locating on Σ̃ , there exists constants ε, δ > 0 such that for all a ∈R

Re F̂ (Rew± + iy;a) ≤ Re F̂ (w±;a) − ε|y − Imw±|2 for |y − Imw±| ≤ δ. (3.16)

Moreover, we have

d

dy
Re F̂ (Rew± + iy;a)

⎧⎪⎨
⎪⎩

< 0 if y > Imw+,
> 0 if y ∈ (0, Imw+),
< 0 if y ∈ (Imw−,0),
> 0 if y < Imw−,

(3.17)

lim
y→±∞

d

dy
Re F̂ (Rew± + iy;a) = ∓∞.

We also have, for all c > 0,

d

dy
Re F̂

(
1 + M−1 + c + iy;a){

< 0 if y > 0,
> 0 if y < 0,

(3.18)

lim
y→±∞

d

dy
Re F̂

(
1 + M−1 + c + iy;a) = ∓∞.

Proof. Similar to the proof of Lemma 3.1, we need only to prove (3.16)–(3.18) for y > 0.
By Cauchy–Riemann equations, it follows that, for any x ∈R and y ∈R+,

∂

∂y
Re F̂ (x + iy;a) = − Im

d

dz
F̂ (z;a)

∣∣∣∣
z=x+iy

,

(3.19)
∂2

∂y2
Re F̂ (x + iy;a) = −Re

d2

dz2
F̂ (z;a)

∣∣∣∣
z=x+iy

.

Since

F̂ ′′(z;a) = M + 1

z
− 1

z − 1
, (3.20)
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we have

∂2

∂y2
Re F̂ (x + iy;a) = (M + 1 − Mx)x(x − 1) − (Mx + 1)y2

(x2 + y2)((x − 1)2 + y2)
, (3.21)

which is independent of the parameter a.
To show (3.16) and (3.17), we observe from (2.10) that

Rew± = sin((M + 1)ϕ) cosϕ

sin(Mϕ)
∈

(
0,

M + 1

M

)
, ϕ ∈

(
0,

π

M + 1

)
. (3.22)

In the case that 0 < Rew± ≤ 1, we have M + 1 − M Rew± > 0. This, together with (3.21), implies that

∂2

∂y2
Re F̂ (Rew± + iy;a) < 0 for all y > 0 (3.23)

and

lim
y→+∞

∂2

∂y2
Re F̂ (Rew± + iy;a) = 0. (3.24)

Furthermore, since the parameter a is assumed to be real, the value of ∂
∂y

Re F̂ (x + iy;a) does not depend on a. By
(3.19) and (2.11), we have

∂

∂y
Re F̂ (Rew± + iy;a)

∣∣∣∣
y=Imw+

= − Im
d

dz
F̂ (z;a)

∣∣∣∣
z=w+

= − Im
d

dz
F̂ (z;x0)

∣∣∣∣
z=w+

= 0, (3.25)

for any a ∈ R. Thus, Re F̂ (Rew± + y;a), as a function of y > 0, has a critical point at Imw+, and by (3.23), is a
concave function attaining its maximum at Imw+. We thus prove (3.16) and (3.17) in this case.

In the case that 1 < Rew± < (M + 1)/M , the equation ∂2

∂y2 Re F̂ (Rew± + iy;a) = 0 has a unique real root at

y∗ =
√

(M + 1 − M Rew±)Rew±(Rew± − 1)

M Rew± + 1
, (3.26)

for y ∈ [0,∞). Thus, ∂
∂y

Re F̂ (Rew± + iy;a) is strictly increasing if y ∈ [0, y∗), and strictly decreasing if y ∈
(y∗,∞). Note that ∂

∂y
Re F̂ (Rew±+iy;a) is a continuous odd function in y, one has ∂

∂y
Re F̂ (Rew±+iy;a)|y=0 = 0.

Therefore,

∂

∂y
Re F̂ (Rew± + iy;a) > 0, y ∈ (

0, y∗). (3.27)

On the other hand, by (3.25), we have that ∂
∂y

Re F̂ (Rew± + iy;a) vanishes at Imw+. Thus we conclude that Imw+ ∈
(y∗,∞), and have that on the interval [y∗,∞), the function Re F̂ (Rew± + iy;a) has a critical point at Imw+, and
is a concave function with the maximum at Imw+. Note that (3.24) also holds in this case. We thus prove (3.16) and
(3.17) in this case.

We finally prove (3.18). By substituting x = 1 + M−1 + c into (3.21), we have

∂2

∂y2
Re F̂

(
1 + M−1 + c + iy;a)

< 0 for all y > 0. (3.28)

On the other hand, since ∂
∂y

Re F̂ (1 + M−1 + c + iy;a) is a continuous odd function in y, its value at 0 is 0. We

conclude that ∂
∂y

Re F̂ (1 + M−1 + c + iy;a) < 0 for all y > 0, and this gives us (3.18). �
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In Sections 2.2 and 2.3, the contours C and Σ in (2.7) are constructed from C̃x0 and Σ̃r , where r depends on n and
a small parameter. In the proofs of our main theorems, we need to estimate some integrals over specified contours,
which relies on Lemmas 2.1 and 2.2 concerning the inequalities satisfied by ReF over C and Σ . We are now ready to
prove these two lemmas based on Lemmas 3.1 and 3.2.

3.2. Proof of Lemma 2.1

For notational convenience, we shall write F(z;nMx0) as F(z) throughout this subsection.

3.2.1. Proof of (2.18) and (2.19)
Recall the contour Σcurved defined by (2.15) and (2.16), we further write it as

Σcurved = Σleft ∪ Σright, (3.29)

where

Σleft := {
z ∈ Σcurved | |z| = nr

}
, Σright := {

z ∈ Σcurved | |z| > nr
}
, (3.30)

i.e., Σleft is part of a circle centring at 0 with radius nr , and Σright is the part of Σcurved that does not overlap the circle.
If z ∈ Σright, it can be expressed as z = nζ(φ) or z = nζ(φ) for some φ ∈ (0,π/(M + 1)) by (3.4), so there exists a

constant ε′ > 0, such that for large enough n, arg(z+νj +1) ∈ (−π +ε′,π −ε′) and arg(z−n+1) ∈ (−π +ε′,π −ε′).
We then apply the Stirling’s formula (2.2) to Γ (z + νj + 1) and Γ (z − n + 1) in formula (2.1), and obtain a uniform
approximation of F(z) by nF̂ (z/n;x0), on account of (2.2)–(2.6). Thus, the inequalities (3.7) and (3.8) for Re F̂ (z;x0)

on Σ̃ yield the desired inequalities (2.18) and (2.19) for z ∈ Σright.
If z ∈ Σleft, Stirling’s formula (2.2) may not be valid anymore, and we need to pay special attention. Note that

there exists a constant ε′ > 0, such that for all n large enough, arg(−z − νj ) ∈ (−π + ε′,π − ε′) and arg(n − z) ∈
(−π + ε′,π − ε′). We make use of the reflection formula of gamma function

Γ (z)Γ (1 − z) = π

sin(πz)
(3.31)

to obtain a uniform approximation of F(z). Since

sin
(
π(z − n + 1)

) = ± sin(πz), sin
(
π(z + νj + 1)

) = ± sin(πz), (3.32)

we have

ReF(z) = Re log

(
Γ (n − z)∏M

j=0 Γ (−z − νj )

πM sin(π(z − n + 1))∏M
j=0 sin(π(z + νj + 1))

(
nMx0

)−z
)

= Re log

(
Γ (n − z)∏M

j=0 Γ (−z − νj )

(
nMx0

)−z
)

− M log
| sin(πz)|

π

= Re G̃
(
z;nMx0

) − M log
∣∣2 sin(πz)

∣∣
+

M∑
j=0

(
νj + 1

2

)
log |z| − 1

2
log |z − n| + M

2
log(2π) +O

(
n−1), (3.33)

where

G̃
(
z;nMx0

) = (M + 1)z
(
log(−z) − 1

) − (z − n)
(
log(n − z) − 1

) − (M logn + logx0)z. (3.34)

It is also straightforward to check that

G̃
(
z;nMx0

) = nĜ

(
z

n
;x0

)
+ n logn, (3.35)
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where

Ĝ(ζ ;x0) = (M + 1)ζ
(
log(−ζ ) − 1

) − (ζ − 1)
(
log(1 − ζ ) − 1

) − ζ logx0. (3.36)

Formulas (3.33)–(3.36) constitute a uniform approximation of ReF(z) for z ∈ Σleft. Now we choose the parameter
ε′ in (2.16) small enough such that nw± ∈ Σright, thus ReF(nw±) can be approximated by (2.3)–(2.6). The inequal-
ities (2.18) and (2.19) follow if we can show that there exists a constant c > 0 such that for all large enough n and
z ∈ Σleft,

Re Ĝ

(
z

n
;x0

)
− M

n
log

∣∣2 sin(πz)
∣∣ > Re F̂ (w±;x0) + c. (3.37)

To prove (3.37), we note that, by (3.8) in Lemma 3.1,

Re Ĝ(0;x0) = Re F̂ (0;x0) > Re F̂ (w±;x0), (3.38)

so we simply take

c = 1

3

(
Re F̂ (w±;x0) − Re F̂ (0;x0)

)
. (3.39)

Since Re Ĝ(ζ ;x0) is a continuous function in the vicinity of 0, we have that if ε is small enough, or equivalently, r

is small enough, |Re Ĝ(z/n;x0) − Re Ĝ(0;x0)| < c for all z ∈ Σleft. On the other hand, it is straightforward to check
that if ε′ is small enough, and n is large enough, then Mn−1 log |2 sin(πz)| < c for all z ∈ Σleft. Thus (3.37) holds if
ε′ is small enough while n is large enough. This completes the proof of (2.18) and (2.19).

3.2.2. Proof of (2.20)–(2.22)
For any x0 ∈ (0, (M +1)M+1/MM), the associated complex conjugate numbers w± satisfying Rew± ∈ (0,1+M−1);
see (3.22). We prove the inequalities in three cases depending on the value of Rew±.

We first consider the case that Rew± > 1, or equivalently, the vertical contour C defined in (2.13) is on the right
of n. Then for all z ∈ C, there exists a constant ε′ > 0 such that arg(z + νj + 1) ∈ (−π + ε′,π − ε′) and arg(z − n +
1) ∈ (−π + ε′,π − ε′) for large n enough. The formulas (2.3)–(2.6) then give a uniform approximation of F(z) by
nF̂ (z/n;x0), similar to the case that z ∈ Σright discussed previously. Hence, (2.20)–(2.22) are direct consequence of
(3.16) and (3.17) in Lemma 3.2.

In the case that Rew± ∈ (0,1), or equivalently, the vertical contour C lies between 0 and n, we divide

C = Couter ∪ Cinner, (3.40)

where

Couter = {
z ∈ C | | Im z| > nε′}, Cinner = {

z ∈ C | | Im z| ≤ nε′} (3.41)

and ε′ is a small positive number.
For z ∈ Couter, we can still use the Stirling’s formula directly and approximate F(z) by nF̂ (z/n;x0) through (2.3)–

(2.6). The desired inequalities (2.20)–(2.22) for such z again follow from (3.16) and (3.17) in Lemma 3.2.
For z ∈ Cinner, we encounter the problem of validity of Stirling’s formula for Γ (z − n + 1). With the aid of the

reflection formula (3.31), for n large enough, we obtain the following uniform approximation of ReF(z) given by

ReF(z) = Re H̃
(
z;nMx0

) + log
∣∣2 sin(πz)

∣∣
+

M∑
j=0

(
νj + 1

2

)
log |z| − 1

2
log |z − n| + M

2
log(2π) +O

(
n−1), (3.42)
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where

H̃
(
z;nMx0

) = (M + 1)z(log z − 1) − (z − n)
(
log(n − z) − 1

) − (M logn + logx0)z

= nĤ

(
z

n
;x0

)
+ n logn, (3.43)

and

Ĥ (ζ ;x0) = (M + 1)ζ(log ζ − 1) − (ζ − 1)
(
log(1 − ζ ) − 1

) − ζ logx0. (3.44)

Similar to the discussions used in the proof of (2.18) and (2.19) with z ∈ Σleft, we only need to show that for z ∈ Cinner,
there exists a constant c > 0 such that

Re Ĥ

(
z

n
;x0

)
+ 1

n
log

∣∣2 sin(πz)
∣∣ < Re F̂ (w±;x0) − c. (3.45)

Now we take

c = 1

3

(
Re F̂ (w±;x0) − Re F̂ (Rew±;x0)

)
, (3.46)

which is positive by (3.17) in Lemma 3.1. Since Re Ĥ (ζ ;x0) is continuous in the vicinity of Rew±, we have that
|Re Ĥ (z/n;x0)−Re Ĥ (Rew±;x0)| < c for all z ∈ Cinner if ε′ is small enough. On the other hand, it is straightforward
to check that if ε′ is small enough and n large enough, then n−1 log |2 sin(πz)| < c for all z ∈ Cinner. This gives us
(2.21) for z ∈ Cinner, and finishes the proof in this case.

Finally, if Rew± = 1, we still divide C into Couter and Cinner as in (3.40). The estimate of ReF(z) on Couter can be
derived from the Stirling’s formula, but for z ∈ Cinner, we need to control the value of Γ (z − n + 1) for z − n = o(n).
Since the strategy is similar, we omit the details here.

3.3. Proof of Lemma 2.2

For notational convenience, we shall write F(z;nMx∗) as F(z) throughout this subsection.

3.3.1. Proof of (2.54)
For z ∈ Σcurved, the proof is parallel to that of (2.19). The only difference is that after approximating F(z) uniformly
by nF̂ (z/n;x∗) (defined in (2.6)) or by nĜ(z/n;x∗) (defined in (3.36), with x0 replaced by x∗), depending on whether
|z| > nr or |z| = nr , we compare F̂ (z/n;x∗) and Ĝ(z/n;x∗) with Re F̂ (1 + M−1;x∗), instead of Re F̂ (w±;x∗) used
in the proof of (2.19). We then apply the inequality (3.9), instead of the inequality (3.8), in the comparison. The details
are left to the interested readers.

For z ∈ Σvertical, we apply the approximation of F(z) by nF̂ (z/n;x∗) as in (2.2)–(2.6), and reduce the proof of
(2.54) for z ∈ Σvertical to proving

Re F̂

(
z

n
;x∗

)
> Re F̂

(
1 + M−1;x∗

) + δn−9/10, δ > 0. (3.47)

Without loss of generality, we show (3.47) only for z ∈ Σvertical ∩ C+. By (3.17) in Lemma 3.2, Re F̂ (z/n;x∗) in-
creases as Im z increases for z ∈ Σvertical ∩C+. So we only need to check that (3.47) holds for z = nz0 +c1n

7/10e2πi/3,
i.e., the lowest end of Σvertical ∩C+. The explicit computation in (2.61) gives the approximation of Re F̂ (z/n;x∗) at
this point and finishes the proof in this case.
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3.3.2. Proof of (2.55) and (2.56)
For all z ∈ Cglobal, the uniform approximation of F(z) by nF̂ (z/n;x∗) as in (2.2)–(2.6) is valid. Then we reduce (2.55)
and (2.56) to

Re F̂ (z/n;x∗) < Re F̂ (z0;x∗) − δn−9/10 for z ∈ Cglobal, (3.48)

Re F̂ (z/n;x∗) < Re F̂ (z0;x∗) − δ|z|/n for z ∈ Cglobal and |z| > δ−1n. (3.49)

The inequality (3.49) is a direct consequence of (3.18). To prove (3.48) for z ∈ Cglobal ∩C+, we note that Re F̂ (z/n;x∗)
decreases as Im z increases, as shown in (3.18). Thus we only need to check (3.48) at z = nz0 + c1n

7/10eπi/3, the
lowest end of Cglobal ∩ C+. The explicit computation (2.61) gives the approximation of Re F̂ (z/n;x∗) at this point
and finishes the proof in this case. The inequality (3.48) for z ∈ Cglobal ∩C− can be proved in the same way.

4. Bulk and soft edge universality in other product models

As mentioned in Section 1.5, our strategy presented before is not restricted to the particular model, but applicable to
other interesting models of products of random matrices. In this section, we demonstrate this aspect by establishing
bulk and soft edge universality in two more examples with sketched proofs. One example is the product of M Ginibre
matrices and the inverse of K Ginibre matrices studied by Forrester [22], and the other example is the product of
M − 1 Ginibre matrices with one truncated unitary matrix considered by Kuijlaars and Stivigny [37]. Our method can
be applied to more cases, notably the newly analysed model in [24] and models that can be expressed in the general
double contour integral formalism in [19].

In this section, we use the same notations as in previous sections for objects in different models that have coun-
terpart in the model introduced and computed in Sections 1–3. We hope these notations show the readers analogue in
our arguments while do not bring confusion.

4.1. Products of Ginibre matrices and their inverses

This model refers to the product

YM,K = XM · · ·X1(X̃K · · · X̃1)
−1, (4.1)

where Xj , j = 1, . . . ,M , and X̃k , k = 1, . . . ,K , are complex Ginibre random matrices with size (n+νj )× (n+νj−1)

and (n + ν̃k) × (n + ν̃k−1), respectively. We assume that

ν0 = ν̃0 = ν̃K = 0, νj , ν̃k ≥ 0, (4.2)

thus, YM,K is a rectangular matrix of size (n + νM) × n. Clearly, YM,K extends products of Ginibre matrices YM

defined in (1.1).
It was shown in [22, Proposition 5] that the squared singular values of YM,K forms a determinantal process with

the correlation kernel

Kn(x, y) = 1

(2πi)2

∫ −1/2+i∞

−1/2−i∞
ds

∮
Σ

dt

M∏
j=0

Γ (s + νj + 1)

Γ (t + νj + 1)

K∏
k=1

Γ (n − s + ν̃k)

Γ (n − t + ν̃k)

Γ (t − n + 1)

Γ (s − n + 1)

xty−s−1

s − t
, (4.3)

where Σ is a closed contour going around 0,1, . . . , n − 1 in the positive direction and Re t > −1/2 for t ∈ Σ .
The special case (M,K) = (M,0) is the model we considered in Sections 1–3, while the special case (M,K) =

(0,K) is equivalent spectrally to the model (K,0) by reciprocal transform. In the generic case K > 0,M > 0, the
limiting mean density is supported over the whole positive real axis as n → ∞ (see [22,23]), which implies that no
soft edge occurs. Below we only consider the K > 0,M > 0 case.
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To state our result for bulk universality, we need the following parametrization of the spectral parameter x0

x0 = (sin(((M + 1)/(K + 1))ϕ + (K/(K + 1))π))M+1

(sinϕ)K+1(sin(((M − K)/(K + 1))ϕ + (K/(K + 1))π))M−K
, 0 < ϕ <

π

M + 1
, (4.4)

which is a one-to-one mapping from (0,π/(M + 1)) to (0,+∞); see [23,29].

Theorem 4.1 (Bulk universality). Let Kn(x, y) be the correlation kernel defined in (4.3). For x0 ∈ (0,+∞), which
is parametrized by ϕ ∈ (0,π/(M + 1)) through (4.4), we have, with νj , ν̃k being fixed,

lim
n→∞

e−πξ cotϕ

e−πη cotϕ

nM−K−1

ρ(ϕ)
Kn

(
nM−K

(
x0 + ξ

nρ(ϕ)

)
, nM−K

(
x0 + η

nρ(ϕ)

))
= Ksin(ξ, η) (4.5)

uniformly for ξ and η in any compact subset of R, where the function ρ is given by

ρ(ϕ) = 1

πx0

sin(((M + 1)/(K + 1))ϕ + (K/(K + 1))π)

sin(((M − K)/(K + 1))ϕ + (K/(K + 1))π)
sinϕ. (4.6)

We now give a sketched proof of the above theorem with emphasis on the key steps.

Sketched proof of Theorem 4.1. We scale the values of x and y in (4.3) such that

x = nM−K

(
x0 + ξ

nρ(ϕ)

)
, y = nM−K

(
x0 + η

nρ(ϕ)

)
, (4.7)

where ξ, η ∈R and ρ(ϕ) is given in (4.6). By Stirling’s formula (2.2) and the reflection formula, it follows that, for n

large,

Kn(x, y) ∼ −n−M+K

(2πi)2

∫
C

ds

∮
Σ

dt
en(F̂ (ns;x0)−F̂ (nt;x0))

s − t

(
1 + ξ

nx0ρ

)t(
1 + η

nx0ρ

)−s

×
(

x0 + η

ρn

)−1

exp

{
M∑

j=0

(
νj + 1

2

)
log

s

t
+

K∑
k=1

(
ν̃k − 1

2

)
log

n − s

n − t
− 1

2
log

s − n

t − n

}
, (4.8)

where the shapes of the contours C and Σ are to be described later. Here,

F̂ (z;x0) = (M + 1)(z log z − 1) + K(1 − z)
(
log(1 − z) − 1

) − (z − 1)
(
log(z − 1) − 1

) − z logx0. (4.9)

Since

F̂z(z;x0) = (M + 1) log z − K log(1 − z) − log(z − 1) − logx0, (4.10)

the saddle point of F̂ (z;x0) satisfies the following algebraic equation

zM+1 + x0(1 − z)K+1 = 0. (4.11)

Particularly, with the help of parametrization (4.4), two solutions of (4.11) can be given explicitly by

w± = sin(((M + 1)/(K + 1))ϕ + (K/(K + 1))π)

sin(((M − K)/(K + 1))ϕ + (K/(K + 1))π)
e±iϕ; (4.12)

see [23] for more details. These two complex conjugate numbers play the same role of w± used in Section 2.2.
Similar to the contours used in Section 2.2, the contour C is chosen to be the straight line

C =
{
z

∣∣∣ Re
z

n
= Rew± = sin(((M + 1)/(K + 1))ϕ + (K/(K + 1))π)

sin(((M − K)/(K + 1))ϕ + (K/(K + 1))π)
cosϕ

}
, (4.13)
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while Σ is chosen to be a deformation based on the contour

Σ̃ =
{
z = sin(((M + 1)/(K + 1))φ + (K/(K + 1))π)

sin(((M − K)/(K + 1))φ + (K/(K + 1))π)
eiφ

∣∣∣ − π

M + 1
≤ φ ≤ π

M + 1

}
, (4.14)

in the same way as the Σ in Section 2.2.
One can then show that, in a manner similar to Lemma 2.1, Re F̂ (z;x0) defined in (4.9) attains its global maximum

at z = w± for nz ∈ C and its global minimum at z = w± for z ∈ Σ̃ . This in turn implies that the main contribution of
the integral in (4.3) comes from the counterpart of the integral I2 in (2.23), that is,

Kn(x, y) ∼ n−M+K

2πix0

∫ nw+

nw−
ds

(
1 + ξ

x0ρn

)s(
1 + η

x0ρn

)−s

∼ n−M+K+1ρeπ(ξ−η) cotϕ sinπ(ξ − η)

π(ξ − η)
. (4.15)

�

4.2. Product of Ginibre matrices with one truncated unitary matrix

This model refers to the product

Y = XM · · ·X2V, (4.16)

where Xi , i = 2, . . . ,M is a Ginibre matrix of size (n+ νi)× (n+ νi−1) with νi ≥ 0. The (n+ ν1)×n matrix V is the
left upper block of an l × l Haar distributed unitary matrix U with l ≥ 2n + ν1. It is known that the squared singular
values of V are distributed on (0,1) according to a Jacobi unitary ensemble; cf. [32].

By [37, Proposition 4.4], we have that the squared singular values of Y form a determinantal process with the
correlation kernel

Kn(x, y) = 1

(2πi)2

∫ −1/2+i∞

−1/2−i∞
ds

∮
Σ

dt

M∏
j=0

Γ (s + νj + 1)

Γ (t + νj + 1)

Γ (t − n + 1)

Γ (s − n + 1)

Γ (t + n + κ)

Γ (s + n + κ)

xty−s−1

s − t
, (4.17)

where

ν0 = 0, κ := l + 1 − 2n > ν1, (4.18)

Σ is a closed contour going around 0,1, . . . , n − 1 in the positive direction and Re t > −1/2 for t ∈ Σ . To state the
universal results for the correlation kernel, we need the following parametrization

x0 = (sin(((M + 1)/2)ϕ))(M+1)/2

sinϕ(sin(((M − 1)/2)ϕ))(M−1)/2
, 0 < ϕ <

2π

M + 1
, (4.19)

which is a one-to-one mapping from (0,2π/(M + 1)) to (0, (M + 1)(M+1)/2/(2(M − 1)(M−1)/2)); see [23].

Theorem 4.2 (Bulk universality). Let Kn(x, y) be the correlation kernel defined in (4.17). For x0 ∈ (0, (M +
1)(M+1)/2/(2(M − 1)(M−1)/2)), which is parametrized by ϕ ∈ (0,2π/(M + 1)) through (4.19), we have, with M ≥ 2
and ν1, . . . , νM,κ being fixed,

lim
n→∞

e−πξ cot(ϕ/2)

e−πη cot(ϕ/2)

nM−2

ρ(ϕ)
Kn

(
nM−1

(
x0 + ξ

nρ(ϕ)

)
, nM−1

(
x0 + η

nρ(ϕ)

))
= Ksin(ξ, η) (4.20)

uniformly for ξ and η in any compact subset of R, where the function ρ is given by

ρ(ϕ) = 1

πx0

(
sin(((M + 1)/2)ϕ)

sin(((M − 1)/2)ϕ)

)1/2

sin
ϕ

2
. (4.21)
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When the reference point x0 is taken to be the right ending point, we have

Theorem 4.3 (Soft edge universality). With the correlation kernel Kn(x, y) defined in (4.17), we have, with
ν1, . . . , νM,κ being fixed,

lim
n→∞ exp

{(
n

2

)1/3
(M + 1)1/2

(M − 1)1/6
(η − ξ)

}
nM−(5/3)c2Kn

(
nM−1

(
x∗ + c2ξ

n2/3

)
, nM−1

(
x∗ + c2η

n2/3

))
= KAi(ξ, η) (4.22)

uniformly for ξ and η in any compact subset of R, where

x∗ = (M + 1)(M+1)/2

2(M − 1)(M−1)/2
and c2 = (M + 1)(M+1)/2

24/3(M − 1)M/2−7/6
. (4.23)

Sketched proofs of Theorems 4.2 and 4.3. We scale the values of x and y in (4.17) such that

x = nM−1
(

x0 + ξ

ρ(ϕ)n

)
, y = nM−1

(
x0 + η

ρ(ϕ)n

)
(4.24)

in the bulk case or

x = nM−1
(

x∗ + c2ξ

n2/3

)
, y = nM−1

(
x∗ + c2η

n2/3

)
(4.25)

in the soft edge case, where ξ, η ∈ R. By using Stirling’s formula for gamma functions and the reflection formula, in
the bulk case it follows that, for n large

Kn(x, y) ∼ n−M+1

(2πi)2

∫
C

ds

∮
Σ

dt
en(F̂ (ns;x0)−F̂ (nt;x0))

s − t

(
1 + ξ

nx0ρ

)t(
1 + η

nx0ρ

)−s

×
(

x0 + η

ρn

)−1

exp

{
M∑

j=0

(
νj + 1

2

)
log

s

t
−

(
κ − 1

2

)
log

n + s

n + t
− 1

2
log

s − n

t − n

}
, (4.26)

where the contours C and Σ depend on x0 and

F̂ (z;x0) = (M + 1)(z log z − 1) − (1 + z)
(
log(1 + z) − 1

) − (z − 1)
(
log(z − 1) − 1

) − z logx0. (4.27)

Since

F̂z(z;x0) = (M + 1) log z − log(1 + z) − log(z − 1) − logx0, (4.28)

the saddle point of F satisfies the algebraic equation

zM+1 + x0
(
1 − z2) = 0. (4.29)

One can find two explicit solutions of this equation with the help of (4.19), which are given by

w± =
(

sin(((M + 1)/2)ϕ)

sin(((M − 1)/2)ϕ)

)1/2

e±iϕ/2; (4.30)

cf. [23]. The contours C and Σ are chosen to be

C =
{
z

∣∣∣ Re
z

n
= Re z± =

(
sin(((M + 1)/2)ϕ)

sin(((M − 1)/2)ϕ)

)1/2

cos
ϕ

2

}
, (4.31)
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and the deformation of

Σ̃ =
{
z =

(
sin(((M + 1)/2)φ)

sin(((M − 1)/2)φ)

)1/2

ei(φ/2)
∣∣∣ − 2π

M + 1
≤ φ ≤ 2π

M + 1

}
, (4.32)

in manners similar to the construction of Σ based on Σ̃ that we described in Sections 3.1 and 2.2.
We then have Re F̂ (z;x0) defined in (4.27) attains its global maximum at z = w± for nz ∈ C and its global minimum

at z = w± for z ∈ Σ̃ . Thus, if x0 ∈ (0, (M + 1)(M+1)/2/(2(M − 1)(M−1)/2)), like (4.15),

Kn(x, y) ∼ n−M+1

2πix0

∫ nw+

nw−
ds

(
1 + ξ

x0ρn

)s(
1 + η

x0ρn

)−s

∼ n−M+2ρeπ(ξ−η) cot(ϕ/2) sinπ(ξ − η)

π(ξ − η)
, (4.33)

which is (4.20).
As x0 → x∗, we have z+ = z− := z0 = √

(M + 1)/(M − 1). In this case, the integration over the contours around
z0 contributes the most. Note that

F̂ (z;x∗) = F̂ (z0;x∗) + (M − 1)2

6
(z − z0)

3 + · · · , z → z0. (4.34)

With the formula

Kn(x, y) ∼ n−M+1

(2πi)2

∫
C

ds

∮
Σ

dt
en(F̂ (ns;x0)−F̂ (nt;x0))

s − t

(
1 + c2ξ

n2/3x∗

)t(
1 + c2η

n2/3x∗

)−s

×
(

x∗ + c2η

n2/3

)−1

exp

{
M∑

j=0

(
νj + 1

2

)
log

s

t
−

(
κ − 1

2

)
log

n + s

n + t
− 1

2
log

s − n

t − n

}
, (4.35)

by the change of variables

s = nz0 + n2/3((M − 1)2/2
)−1/3

u, t = nz0 + n2/3((M − 1)2/2
)−1/3

v, (4.36)

and by the deformation of C and Σ such that they go through the vicinity of nz0 in proper directions, we have

Kn(x, y) ∼ n−M+(5/3)c−1
2

(
1 + c2ξ

x∗n2/3

)nz0
(

1 + c2η

x∗n2/3

)−nz0

KAi(ξ, η). (4.37)

Thus (4.22) is proved. �

Remark 2. By setting ξ = η = 0 in (4.5) and (4.20), the bulk limit also implies point-wise convergence of one-point
correlation functions in the support of the limiting measure. The functions ρ(ϕ)’s in (4.5) and (4.20) are actually
density functions of the limiting spectral distribution for the squared singular values under proper parametrizations.
Similar result holds for products of Ginibre matrices; see Theorem 1.1. Thus we recover the limiting mean density re-
sults of the random matrix models discussed above, which were previously derived by the moment method of Stieltjes
transforms; see e.g. [8,22]. However, the moment method has the advantage in the discovery of natural parametriza-
tions like (1.13), (4.4) and (4.19) by combinatorial relations; see [14,23,29,41].
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[45] K. A. Penson and K. Życzkowski. Product of Ginibre matrices: Fuss–Catalan and Raney distributions. Phys. Rev. E 83 (6) (2011) 061118.
[46] A. Soshnikov. Determinantal random point fields. Uspekhi Mat. Nauk 55 (5(335)) (2000) 107–160. MR1799012
[47] C. A. Tracy and H. Widom. Level spacing distributions and the Bessel kernel. Comm. Math. Phys. 161 (2) (1994) 289–309. MR1266485
[48] A. M. Tulino and S. Verdú. Random matrix theory and wireless communications. Found. Trends Commun. Inform. Theory 1 (1) (2004) 1–182.
[49] L. Zhang. A note on the limiting mean distribution of singular values for products of two Wishart random matrices. J. Math. Phys. 54 (8)

(2013) 083303. MR3135481
[50] L. Zhang. Local universality in biorthogonal Laguerre ensembles. J. Stat. Phys. 161 (3) (2015) 688–711. MR3406705

http://www.ams.org/mathscinet-getitem?mr=2191786
http://www.ams.org/mathscinet-getitem?mr=2480790
http://www.ams.org/mathscinet-getitem?mr=2581882
http://www.ams.org/mathscinet-getitem?mr=1427946
http://www.ams.org/mathscinet-getitem?mr=2709142
http://www.ams.org/mathscinet-getitem?mr=2932626
http://www.ams.org/mathscinet-getitem?mr=3256862
http://www.ams.org/mathscinet-getitem?mr=3257662
http://www.ams.org/mathscinet-getitem?mr=2813403
http://www.ams.org/mathscinet-getitem?mr=0241700
http://www.ams.org/mathscinet-getitem?mr=3190209
http://www.ams.org/mathscinet-getitem?mr=2266879
http://www.ams.org/mathscinet-getitem?mr=2723248
http://www.ams.org/mathscinet-getitem?mr=2861673
http://www.ams.org/mathscinet-getitem?mr=1799012
http://www.ams.org/mathscinet-getitem?mr=1266485
http://www.ams.org/mathscinet-getitem?mr=3135481
http://www.ams.org/mathscinet-getitem?mr=3406705

	Introduction and statement of the main results
	Products of Ginibre matrices
	The correlation kernel and double integral representation
	Limiting mean density
	Statement of the main results
	About the proof

	Proofs of the main theorems
	Notations and contour deformations
	Proof of Theorem 1.1
	Exact deformation of the contours
	Evaluation of I2 as epsilon->0
	Evaluation of I1 as epsilon->0

	Proof of Theorem 1.2

	Contour constructions and proofs of Lemmas 2.1 and 2.2
	Constructions of contours Cx0 and Sigmaepsilon
	Proof of Lemma 2.1
	Proof of (2.18) and (2.19)
	Proof of (2.20)-(2.22)

	Proof of Lemma 2.2
	Proof of (2.54)
	Proof of (2.55) and (2.56)


	Bulk and soft edge universality in other product models
	Products of Ginibre matrices and their inverses
	Product of Ginibre matrices with one truncated unitary matrix

	Acknowledgements
	References

