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Abstract. Let us consider a real valued Lévy process X whose transition probabilities are absolutely continuous and have bounded
densities. Then the law of the past supremum of X before any deterministic time t is absolutely continuous on (0,∞). We show that
its density ft (x) is continuous on (0,∞) if and only if the potential density h′ of the upward ladder height process is continuous
on (0,∞). Then we prove that ft behaves at 0 as h′. We also describe the asymptotic behaviour of ft , when t tends to infinity.
Then some related results are obtained for the density of the meander and this of the entrance law of the Lévy process conditioned
to stay positive.

Résumé. Soit X un processus de Lévy réel dont les probabilités de transition sont absolument continues par rapport à la mesure
de Lebesgue. Dans ce cas, il est connu que la loi du supremum passé avant un temps déterministe t est elle-même absolument
continue sur (0,∞). En supposant de plus que les densités sont bornées, nous montrons que la densité ft (x) du supremum passé
est continue en x sur (0,∞), si et seulement si la densité potentielle h′(x) du subordinateur des hauteurs d’échelle ascendant est
continue sur (0,∞). Nous montrons alors que ft se comporte en 0 de la même manière que h′. Nous donnons également une
description du comportement asymptotique de ft , lorsque t tend vers l’infini. Enfin nous appliquons ces résultats pour étudier le
comportement asymptotique de la densité du méandre des processus de Lévy et de la densité de la loi d’entrée des processus de
Lévy conditionnés à rester positifs.
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1. Introduction

Since the work by Paul Lévy [16] for standard Brownian motion, the study of the law of the past supremum before
a deterministic time of real valued Lévy processes has given rise to a significant literature. This is mainly justified
by the important number of applications of this functional in various domains such as risk and queuing theories but
properties of its law may also be useful for theoretical purposes. It is constantly involved in fluctuation theory, for
instance.

Let us denote by Xt = sups≤t Xs the past supremum at time t > 0 of the real valued Lévy process X. Recently in
[15] the asymptotic behaviour of the distribution function P(Xt ≤ x) was deeply investigated and in [2], necessary and
sufficient conditions where given for the law of Xt to be absolutely continuous. A natural continuation of both these
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works consists in a detailed study of the density ft of this law, when it exists. For instance if the transition probabilities
of the Lévy process are absolutely continuous, then the law of the past supremum is absolutely continuous on (0,∞).
In this paper, under the additional assumption that the transition densities of the Lévy process are bounded, we show
that ft is continuous at x ∈ (0,∞) if and only if the potential density h′ of the upward ladder height process is
continuous at this point. Then, we describe the asymptotic behaviour of the density ft (x), when x tends to 0. This
behaviour is the same as this of h′, up to a constant which is given by the tail distribution of the lifetime of the generic
excursion of the Lévy process reflected at its supremum. We also obtain some asymptotic results and estimates for
ft , when the time t tends to infinity. Most of the results displayed in this paper extend those obtained by Doney and
Savov in [9] for stable Lévy processes.

In the next section we recall some elements of excursion and fluctuation theory for Lévy processes that are neces-
sary for the proof of our main results. In Section 3, we state the main results and Section 4 is devoted to their proofs.
The latter section as well as Section 3 also contain some intermediary results on bridges, meanders and Lévy processes
conditioned to stay positive.

2. Preliminaries

We denote by D the space of càdlàg paths ω : [0,∞) → R ∪ {∞} with lifetime ζ(ω) = inf{t ≥ 0: ωt = ∞}, with the
usual convention that inf∅ = +∞. The space D is equipped with the Skorokhod topology, its Borel σ -algebra F , and
the usual completed filtration (Fs , s ≥ 0) generated by the coordinate process X = (Xt , t ≥ 0) on the space D. We
write X and X for the infimum and supremum processes, that is

Xt = inf{Xs : 0 ≤ s ≤ t} and Xt = sup{Xs : 0 ≤ s ≤ t}.
We also define the first passage time by X in the open half line (−∞,0) by:

τ−
0 = inf{t > 0: Xt < 0}.

We denote by Px the law on (D,F) of a Lévy process starting from x ∈ R and we will set P := P0. Define
X∗ := −X, then the law of X∗ under Px will be denoted by P∗

x , that is (X∗,Px) = (X,P∗
x). We recall that the process

(X,P∗
x) is in weak duality with (X,P), with respect to the Lebesgue measure. In this section, as well as in most of

this paper, we make the following assumptions:

(H1) The transition semigroup of (X,P) is absolutely continuous and there is a version of its densities, denoted by
x 
→ pt (x), x ∈ R, which are bounded for all t > 0.

(H2) (X,P) is not a compound Poisson process and for all c ≥ 0, the process ((|Xt − ct |, t ≥ 0),P) is not a subordi-
nator.

Note that (H1) is equivalent to the apparently stronger condition saying that the characteristic function e−tΨ (ξ) of X

is integrable for all t > 0. Here Ψ (ξ) denotes the characteristic exponent of X given by the Lévy–Khintchine formula

Ψ (ξ) = −aiξ + 1

2
σ 2ξ2 −

∫
R\{0}

(
eiξx − 1 − iξx1|x|<1

)
Π(dx),

where (a, σ 2,Π) is a Lévy triplet. Indeed, boundedness of pt implies that pt ∈ L2(R) and consequently e−tΨ (ξ) ∈
L2(R), for all t > 0 which implies that e−tΨ (ξ) ∈ L1(R), for all t > 0. Conversely, if e−tΨ (ξ) ∈ L1(R), for all t > 0,
then by the Riemann–Lebesgue lemma, pt ∈ C0(R), moreover the function (t, x) 
→ pt (x) is jointly continuous on
(0,∞)×R. Regarding the latter equivalence, we emphasize that the weaker condition that Xt is absolutely continuous
for all t > 0 does not have such a nice characterization in terms of Ψ , see Chapter 5 of [17].

Positivity of the density of the semigroup is ensured by conditions (H1) and (H2), that is,

pt(x) > 0, for all t > 0 and x ∈R. (2.1)

Actually, from Theorem (3.3) in [19], under the assumption that Xt is absolutely continuous for all t > 0, condition
(2.1) is equivalent to (H2). The latter is an essential property for our purpose. Compound Poisson processes are



1180 L. Chaumont and J. Małecki

excluded here only because our setting is not adapted to their study. Note that assumptions (H1) and (H2) are satisfied
in many classical cases, such as stable processes or subordinated Brownian motions.

Recall that the reflected process X − X is Markovian. Besides, 0 is regular for itself, for X − X if and only if 0 is
regular for (−∞,0), for the process X. When it is the case, we will simply write that (−∞,0) is regular. Similarly,
we will write that (0,∞) is regular when 0 is regular for (0,∞), for the process X. Then recall that in any case, at
least one of the half lines (−∞,0) or (0,∞) is regular. If (−∞,0) is regular, then the local time at 0 of the process
X − X is a continuous, increasing, additive functional which we will denote by L∗, satisfying L∗

0 = 0, a.s., and such
that the support of the measure dL∗

t is the set {t : Xt = Xt }. Moreover L∗ is unique up to a multiplicative constant.
We will normalize it by

E

(∫ ∞

0
e−t dL∗

t

)
= 1. (2.2)

Then the Itô measure n∗ of the excursions away from 0 of the process X − X is characterized by the compensation
formula. More specifically, for any positive and predictable process F ,

E

(∑
s∈G

F
(
s,ω, εs

)) = E

(∫ ∞

0
dL∗

s

(∫
E

F(s,ω, ε)n∗(dε)

))
, (2.3)

where E is the set of excursions, G is the set of left end points of the excursions, and εs is the excursion which starts
at s ∈ G. We refer to [1], Chapter IV, [14], Chapter 6 and [7] for more detailed definitions and some constructions of
L∗ and n∗.

When (−∞,0) is not regular, the set {t : (X − X)t = 0} is discrete and following [1] and [14], we define the local
time L∗ of X − X at 0 by

L∗
t =

Rt∑
k=0

e(k), (2.4)

where for t > 0, Rt = Card{s ∈ (0, t]: Xs = Xs}, R0 = 0 and e(k), k = 0,1, . . . is a sequence of independent and
exponentially distributed random variables with parameter

γ = (
1 −E

(
e−τ−

0
))−1

. (2.5)

In this case, the measure n∗ of the excursions away from 0 is proportional to the distribution of the process X under
the law P, killed at its first passage time in the negative half line. More formally, let us define ε0 = (Xt1{t<τ−

0 } + ∞ ·
1{t≥τ−

0 }), then for any bounded Borel functional K on E,

∫
E

K(ε)n∗(dε) = γE
[
K

(
ε0)]. (2.6)

From definitions (2.4), (2.6) and an application of the strong Markov property, we may check that the normalization
(2.2) and the compensation formula (2.3) are still valid in this case.

In any case, n∗ is a Markovian measure whose semigroup is this of the killed Lévy process when it enters in the
negative half line. More specifically, for x > 0, let us denote by Q∗

x the law of the process (Xt1{t<τ−
0 } + ∞ · 1{t≥τ−

0 },
t ≥ 0) under Px , that is for Λ ∈Ft ,

Q∗
x(Λ, t < ζ) = Px

(
Λ, t < τ−

0

)
. (2.7)

Then for all Borel positive functions f and g and for all s, t > 0,

n∗(f (Xt )g(Xs+t ), s + t < ζ
) = n∗(f (Xt )E

Q∗
Xt

(
g(Xs)

)
, s < ζ

)
, (2.8)
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where E
Q∗
x means the expectation under Q∗

x . Recall that Q∗
0 is well defined when 0 is not regular for (−∞,0), and

in this case, from (2.6), we have Q∗
0 = γ −1n∗. We define the probability measures Qx in the same way as in (2.7)

with respect to the dual process (X,P∗). Let us denote by q∗
t (x,dy) (resp. qt (x,dy)) the semigroup of the strong

Markov process (X,Q∗
x) (resp. (X,Qx)). Note that from (H1) and (2.7), the semigroups qt (x,dy) and q∗

t (x,dy) are
absolutely continuous. A slight extension of Lemma 2 in [21] actually leads to Lemma 1 below. Note also that the
next two lemmas are closely related to Proposition 10.10 of [10], where similar results are obtained under slightly
more restrictive hypothesis.

Lemma 1. Under assumptions (H1) and (H2), for all t > 0, there are versions of the densities of the measures
qt (x,dy) and q∗

t (x,dy) which are strictly positive and continuous on (0,∞)2. We denote by qt (x, y) and q∗
t (x, y)

these densities. Both qt and q∗
t satisfy Chapman–Kolmogorov equations and the duality relation,

q∗
t (x, y) = qt (y, x), x, y > 0, t > 0. (2.9)

Proof. It is obtained by following the proof of Lemma 2 in [21] along the lines. Indeed, the latter result is proved
under the additional assumptions that both half lines (−∞,0) and (0,∞) are regular. But we can see that these
properties are actually not needed, although regularity of (−∞,0) is argued at the beginning of this proof. �

Let us denote by q∗
t (dx), t > 0, the entrance law of n∗, that is for any positive Borel function f ,

∫
[0,∞)

f (x)q∗
t (dx) = n∗(f (Xt ), t < ζ

)
. (2.10)

The local time at 0 of the reflected process at its supremum X −X = X∗ −X∗ and the measure of its excursions away
from 0 are defined in the same way as for X − X. They are respectively denoted by L and n. Then the entrance law
qt (dx) of n is defined in the same way as q∗

t (dx).

Lemma 2. Under assumptions (H1) and (H2) the entrance laws qt (dx) and q∗
t (dx) are absolutely continuous on

[0,∞) and there are versions of their densities which are strictly positive and continuous on (0,∞), for all t > 0. We
denote by qt (x) and q∗

t (x) these densities. Then both qt and q∗
t satisfy Chapman–Kolmogorov equations: for s, t > 0

and y > 0,

qs+t (y) =
∫ ∞

0
qs(x)qt (x, y)dx and q∗

s+t (y) =
∫ ∞

0
q∗
s (x)q∗

t (x, y)dx. (2.11)

Proof. It suffices to prove the result for qt (dx). It is proved in part 3 of Lemma 1 in [2], that under assumption (H1),
the measure qt (dx) is absolutely continuous with respect to the Lebesgue measure on [0,∞). Let ht be any version
of its density and for all s > 0 and y > 0, define

qs,t (y) =
∫ ∞

0
ht (x)qs(x, y)dx. (2.12)

We derive from (H1) and (2.7) (for the dual process) that qt (x, y) is uniformly bounded in x, y ∈ (0,∞). Moreover,
from (2.10), (2.2) and (2.3),

∫ ∞
0 ht (x)dx = n(t < ζ) < ∞. Then from the Lebesgue dominated convergence theorem

and Lemma 1, relation (2.12) defines a continuous and strictly positive function on (0,∞). Moreover, from (2.8) we
see that qs,t (x) is a density for qt+s(dx). Hence it only depends on t + s. Let us set qs,t (x) = qt+s(x).

Proceeding this way for all s, t > 0, we define a family of strictly positive and continuous densities qt (x), t > 0
of the entrance law of n which satisfies the Chapman–Kolmogorov equations qt+s(y) = ∫ ∞

0 qt (x)qs(x, y)dx, x > 0,
s, t > 0. �

We end this section with the definition of the ladder processes. The ladder time processes τ and τ ∗, and the ladder
height processes H and H ∗ are the following (possibly killed) subordinators:

τt = inf{s: Ls > t}, τ ∗
t = inf

{
s: L∗

s > t
}
, Ht = Xτt , H ∗

t = −Xτ∗
t
, t ≥ 0,
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where τt = Ht = +∞, for t ≥ ζ(τ ) = ζ(H) and τ ∗
t = H ∗

t = +∞, for t ≥ ζ(τ ∗) = ζ(H ∗). We denote by κ and
κ∗ the characteristic exponents of the ladder processes (τ,H) and (τ ∗,H ∗). Recall that the drifts d and d∗ of the
subordinators τ and τ ∗ satisfy

∫ t

0
1{Xs=Xs } ds = dLt ,

∫ t

0
1{Xs=Xs } ds = d∗L∗

t (2.13)

and that d> 0 if and only if (−∞,0) is not regular. In any case, we can check that d= γ −1, see [2]. We point out
that d> 0 if and only if 0 is not regular for (−∞,0) (and d∗ > 0 if and only if 0 is not regular for (0,∞)), so that
dd∗ > 0 always holds since 0 is necessarily regular for at least one of the half lines.

3. Main results

In all this section, (X,P) is any Lévy process satisfying assumptions (H1) and (H2). Then from Corollary 3 of [2], the
law of the past supremum Xt on [0,∞) takes the following form,

P(Xt ∈ dx) =
∫ t

0
n(t − s < ζ)q∗

s (x)ds dx + dq∗
t (x)dx + d∗n(t < ζ)δ{0}(dx). (3.1)

Expression (3.1) shows that the law of Xt is absolutely continuous with respect to the Lebesgue measure on (0,∞).
Moreover, this law has an atom at 0 if and only if (0,∞) is not regular. Then we will denote by ft (x) the following
version of the density of P(Xt ∈ dx) on (0,∞),

ft (x) =
∫ t

0
n(t − s < ζ)q∗

s (x)ds + dq∗
t (x), x > 0. (3.2)

Note that there are instances where the law of Xt is absolutely continuous whereas assumption (H1) is not satisfied,
see part 1 of Corollary 2 in [2]. Expression (3.2) will be the starting point of our study. The latter expression shows
that certain properties of ft , such as continuity or asymptotic behaviour at 0, are related to those of q∗

t . However,
due to the “bad” behaviour of the function (t, x) 
→ q∗

t (x), when t and x are small, some features of the first term on
the right-hand side of (3.2) cannot be directly derived from those of q∗

t . This study requires much sharper arguments
which will be developed in the next section.

The next proposition extends Lemma 3 in [21]. It describes the asymptotic behaviour at 0 of the functions x 
→
q∗
t (x, y) and x 
→ q∗

t (x). The second assertion is to be compared with Propositions 6 and 7 in [8] where similar results
are obtained in the case where the law of X is in the domain of attraction of a stable law.

Proposition 1. For all t > 0,

lim
x→0+

q∗
t (x, y)

h∗(x)
= q∗

t (y), for all y > 0 and lim
x→0+

q∗
t (x)

h(x)
= pt(0)

t
,

where h and h∗ are the renewal functions of the ladder height processes H and H ∗, that is h(x) = ∫ ∞
0 P(Ht ≤ x)dt

and h∗(x) = ∫ ∞
0 P(H ∗

t ≤ x)dt , x ≥ 0.

In general, the function h is finite, continuous, increasing and h−h(0) is subadditive on [0,∞). Moreover, h(0) = 0
if (−∞,0) is regular and h(0) = d if not. This function is known explicitly, for instance when X has no positive
jumps. In this case, given our normalisation of the local time L, one has Ht = ct , where c = Φ(1) and Φ is the
Laplace exponent of the subordinator Tx = inf{t : Xt > x}, x ≥ 0, so that h(x) = c−1x. Also, when X is a stable
process with index α ∈ (0,2] and positivity coefficient P(X1 > 0) = ρ, then H is a stable subordinator with index αρ,
and h(x) = E(H

−αρ
1 )xαρ . Lévy processes whose characteristic is of the form Ψ (ξ) = ψ(ξ2) for a complete Bernstein

function ψ are also examples where h is explicit. The function h(x) is then a Bernstein function and its integral
representation in terms of ψ(ξ) was given in Proposition 4.5 in [15].
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Recall from (1.8) and (3.3) in [20], see also parts 2 and 3 of Lemma 1 in [2], that the renewal function h of the
upward ladder process H is everywhere differentiable and that its derivative is given by

h′(x) =
∫ ∞

0
q∗
s (x)ds, for all x > 0. (3.3)

Moreover Lemma 2 ensures that

h′(x) > 0, for all x > 0.

Knowing that x 
→ q∗
t (x) is continuous on (0,∞) and considering the representation (3.2), it is natural to ask about

continuity of ft .

Proposition 2. The following conditions are equivalent:

(1) x → h′(x) is continuous at x0 > 0,
(2) x → ft (x) is continuous at x0 > 0 for every t > 0,
(3) x → ft (x) is continuous at x0 > 0 for some t > 0.

The function h′ is known to be continuous on (0,∞) in many instances. We have already seen that it is the case
when X is a stable process. It is also continuous when the process has no positive jumps, but more generally if the
ascending ladder height process H has a positive drift, then h′ is continuous and bounded, see Theorem 19, Section
VI.4 in [1]. In this case, a further study of the continuity of h′ can be also deduced from Proposition 4.5 in [15] for
a wide class of subordinated Brownian motions. Actually, this function is not always continuous, see for instance
Lemma 2.4 in [13], where it is proved that if X has no negative jumps, bounded variations and a Lévy measure which
admits atoms, then h′ is not continuous.

Our next result deals with the asymptotic behaviour of ft at 0.

Theorem 1. The density of the law of the past supremum of (X,P) fulfills the following asymptotic behaviour,

lim
x→0+

ft (x)

h′(x)
= n(t < ζ),

uniformly on [t0,∞) for every fixed t0 > 0.

Note that the above-given result leads (by simple integration) to the estimates for the cumulative distribution func-
tion P(Xt < x), which were previously studied in Theorem 3.1 in [15]. However, the result provided in [15] is valid
for the whole range of time and space parameters and here we can recover the estimates only for x small enough and
large t . We now state two results regarding the asymptotic behaviour of ft (x), when t tends to infinity. First recall
the following equivalent forms of Spitzer’s condition. Let ρ ∈ (0,1), and denote by Rρ(0) (resp. R−ρ(∞)) the set of
regularly varying functions at 0+ (resp. at +∞) with index ρ (resp. −ρ), then

lim
t→∞P(Xt ≥ 0) = ρ ⇔ α 
→ κ(α,0) ∈ Rρ(0) ⇔ t 
→ n(t < ζ) ∈ R−ρ(∞). (3.4)

The first equivalence can be found in Theorem 14, Section VI.3 in [1], see also the discussion after this theorem.
The second equivalence follows from the discussion after Theorem 6, Section III.3 in [1] and the identity n(t < ζ) =
π(t,∞) + a, where π is the Lévy measure of τ and a its killing rate. Then Theorem 2 provides a uniform limit in x

on compact sets, under assumption (3.4). This result complements, and in some cases generalizes, the result of [11],
where the same study was performed for the distribution function P(Xt ≤ x).

Theorem 2. Assume that (3.4) is satisfied, then

lim
t→∞

ft (x)

n(t < ζ)
= h′(x),

uniformly in x on every compact subset of (0,∞).
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Note that in the stable case, Theorem 2 is an immediate consequence of Theorem 1, the scaling property and the
expressions for h′(x) and n(t < ζ). The next theorem provides some general estimates for ft (x), when t ≥ t0 and
x ≤ x0, for any given t0, x0 > 0. These estimates are sharp when (3.4) is satisfied.

Theorem 3. For fixed x0, t0 > 0 there exist positive constants c1 and c2 such that

c1n(t < ζ) ≤ ft (x)

h′(x)
≤ c2

1

t

∫ t

0
n(s < ζ)ds, x ≤ x0, t ≥ t0.

If additionally (3.4) is satisfied, then there exists c3 > 0 such that

c1h
′(x)n(t < ζ) ≤ ft (x) ≤ c3h

′(x)n(t < ζ), x ≤ x0, t ≥ t0.

The constants c1 and c2 depend on x0 and t0 by the relations described explicitly in (4.21) and (4.24).

Now we derive from Proposition 1 the asymptotics of the densities of the Lévy process (X,P) conditioned to stay
positive and this of its meander. Lévy processes conditioned to stay positive will also be involved in the proofs of
Section 4. Let us briefly recall their definition which may be found in more details in [3] and [5]. The law of the Lévy
process (X,P) conditioned to stay positive is a Doob h-transform of the killed process (X,Q∗

x) defined in (2.7). It
is obtained from the renewal function h∗ of the downward ladder height process H ∗ which is excessive for (X,Q∗

x)

and invariant if and only if lim supt→∞ Xt = +∞, a.s. The conditioned process is currently denoted by (X,P
↑
x ) and

formally defined by

P↑
x (Λ, t < ζ) = 1

h∗(x)
EQ∗

x

(
h∗(Xt )1{Λ,t<ζ }

)
, x > 0,Λ ∈Ft . (3.5)

We also recall from Theorem 2 in [3] that the family of measures (P
↑
x ) converges as x ↓ 0, towards a probability

measure P↑ which is related to n∗ by the following expression:

P↑(Λ, t < ζ) = n∗(h∗(Xt )1{Λ,t<ζ }
)
. (3.6)

This convergence holds weakly on the Skohorod’s space when (0,∞) is regular. In the nonregular case, we can only
say that this convergence holds for the process X ◦ θε , for all ε > 0, where θ· is the shift operator. In any case, we
derive from (3.6) that the density of the law P↑(Xt ∈ dx), for t > 0 is related to the entrance law q∗

t as follows:

p
↑
t (x) = h∗(x)q∗

t (x). (3.7)

The meander with length t > 0, is a process with the law of (Xs,0 ≤ s ≤ t) under the conditional distribution
P(·|Xt ≥ 0). This conditioning only makes sense when (−∞,0) is not regular. When (0,∞) is regular, it corresponds
to the law of (Xs,0 ≤ s ≤ t) under the limiting probability measure

M(t) := lim
x↓0

1

h∗(x)
Px(·|Xt ≥ 0).

A general definition can be found in [5], see Section 4 and relation (4.5) therein. It implies in particular that on Ft ,
the law M(t) of the meander of length t is absolutely continuous with respect to the process (X,P↑), with density
(h∗(Xt ))

−1. As a consequence, the density of the distribution M(t)(Xt ∈ dx) of the meander with length t at time t ,
which we denote by mt(x), is given by:

mt(x) = n∗(t < ζ )−1q∗
t (x).

This relation together with (3.7) leads to the following straightforward consequence of Proposition 1.
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Corollary 1. The density mt(x) of the law of the meander with length t , at time t and the density p
↑
t (x) of the entrance

law of the Lévy process conditioned to stay positive are continuous and strictly positive on (0,∞). Moreover they have
the following asymptotic behaviour at 0:

mt(x) ∼ pt(0)

tn∗(t < ζ )
h(x) and p

↑
t (x) ∼ pt(0)

t
h(x)h∗(x), as x → 0.

4. Proofs

Before proceeding to the proofs of the theorems, we need a couple of additional preliminary results. We first ex-
tend Corollary 1 of [3] to the case where (0,∞) is not regular. Recall from (3.5) the definition of Lévy processes
conditioned to stay positive.

Proposition 3. Assume that (X,P) is not a compound Poisson process and that (|X|,P) is not a subordinator. Then
for all bounded and continuous function f and for all t > 0,

lim
x→0

E↑
x

(
h∗(Xt )

−1f (Xt )
) = n∗(f (Xt ), t < ζ

)
.

Proof. When (0,∞) is regular for (X,Px), the result is given by Corollary 1 of [3] whose proof can be found in [4].
Let us assume that (0,∞) is not regular for (X,Px). Then from the second part of Theorem 2 of [3] and relation

(3.2) in this article, we still have for all t > 0,

lim
x→0

E↑
x

(
f (Xt )

) = n∗(h∗(Xt )f (Xt ), t < ζ
)
. (4.1)

(Note that the constant k in (3.2) of [3] is equal to 1, according to the normalisation of the local time that is recalled
in (2.2).) However, since h∗(0) = 0, the function x 
→ h∗(x)−1f (x) is not necessarily bounded, so we cannot replace
f by this function in (4.1) in order to get our result. But from the weak convergence stated in (4.1) with f ≡ 1 and
using definitions (2.7) and (3.5), we derive that for all fixed δ > 0 and t > 0 that

lim
x→0

E↑
x

(
h∗(Xt )

−11{Xt>δ}
) = lim

x→0
h∗(x)−1Px

(
Xt > δ, τ−

0 > t
)

= n∗(Xt > δ, t < ζ). (4.2)

Then it remains to prove that

lim
x→0

E↑
x

(
h∗(Xt )

−1) = lim
x→0

h∗(x)−1Px

(
τ−

0 > t
)

= n∗(t < ζ ). (4.3)

Indeed, it will follows from (4.2) and (4.3) that

lim
x→0

E
↑
x (h∗(Xt )

−11{Xt≤δ})
E

↑
x (h∗(Xt )−1)

= n∗(Xt ≤ δ|t < ζ ),

which proves that for all t > 0, the family of probability measures on (0,∞) with distribution function δ 
→
E

↑
x (h∗(Xt )

−11{Xt ≤δ})
E

↑
x (h∗(Xt )−1)

converges weakly as x → 0, toward the probability measure on (0,∞) with distribution function

δ 
→ n∗(Xt ≤ δ|t < ζ ). The latter assertion is equivalent to the statement of our proposition.
Then let us prove (4.3). This point differs from the proof given in [4] in the regular case. First recall formula (1)

in [4]:

Px

(
τ−

0 > e/ε
) = E

(∫ ∞

0
e−εs1{Xs≥−x} dL∗

s

)[
d∗ε + n∗(e/ε < ζ)

]
, (4.4)
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which can be derived from the compensation formula (2.3) and (2.13). Set h(ε)(x) := E(
∫ ∞

0 e−εs1{Xs≥−x} dL∗
s ) and

recall that h∗(x) = E(
∫ ∞

0 1{Xs≥−x} dL∗
s ). Then we will first show that for all ε > 0,

h(ε)(x) ∼ h∗(x), as x → 0. (4.5)

First note that for all ε > 0, h(ε)(x) ≤ h∗(x). Then, for the lower bound, we can write for all u > 0, h(ε)(x) ≥
e−εuE(

∫ u

0 1{Xs≥−x} dL∗
s ), so that

h∗(x) = E

(∫ u

0
1{Xs≥−x} dL∗

s

)
+E

(∫ ∞

u

1{Xs≥−x} dL∗
s

)

≤ eεuh(ε)(x) +E

(∫ ∞

u

1{Xs≥−x} dL∗
s

)
. (4.6)

Then applying the Markov property at time u and using the monotonicity of h∗, we obtain that E(
∫ ∞
u

1{Xs≥−x} dL∗
s ) ≤

Px(τ
−
0 ≥ u)h∗(x). Plunging this in (4.6), we get

h∗(x) ≤ eεu

1 − Px(τ
−
0 ≥ u)

h(ε)(x).

Observe that since (−∞,0) is regular, for all u > 0, limx→0 Px(τ
−
0 ≥ u) = 0. Let δ > 1, then from the above inequal-

ity, for u sufficiently small, we can find x0 > 0 such that for all x ≤ x0, h∗(x) ≤ δh(ε)(x). So we have proved (4.5).
Then let us rewrite (4.4) as follows:

∫ ∞

0
e−εsPx

(
τ−

0 > s
)

ds = h(ε)(x)

[
d∗ +

∫ ∞

0
e−εsn∗(s < ζ)ds

]
.

From (4.5), we obtain that for all ε > 0,

lim
x→0

∫ ∞

0
e−εs

Px(τ
−
0 > s)

h∗(x)
ds = d∗ +

∫ ∞

0
e−εsn∗(s < ζ)ds,

which means that the measure with density s 
→ Px(τ
−
0 > s)/h∗(x) converges weakly toward the measure d∗δ0(ds)+

n∗(s < ζ)ds, as x tends to 0.
Then from this fact, we can derive (4.3) as it is done in the proof of Corollary 1 in [4]. Let c ∈ (0, t), then

lim inf
x→0

h∗(x)−1Px

(
τ−

0 > t
) ≥ c−1 lim

x→0
h∗(x)−1

∫ t+c

t

Px

(
τ−

0 > s
)

ds

= c−1
∫ t+c

t

n∗(ζ > s)ds ≥ n∗(ζ > t + c),

lim sup
x→0

h∗(x)−1Px

(
τ−

0 > t
) ≤ c−1 lim

x→0
h∗(x)−1

∫ t

t−c

Px

(
τ−

0 > s
)

ds

= c−1
∫ t

t−c

n∗(ζ > s)ds ≤ n∗(ζ > t − c),

and the result follows, since c can be chosen arbitrarily small. �

Let P∗↑
x , x ≥ 0 be the law of the dual Lévy process (X,P∗

x) conditioned to stay positive. Then Proposition 3 is
interpreted for the dual process as follows:

lim
x→0

E∗↑
x

(
h(Xt )

−1f (Xt )
) = n

(
f (Xt ), t < ζ

)
, (4.7)
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for all bounded and continuous function f and for all t > 0. We will actually use (4.7) in order to show Proposition 4
below.

In the next results, we will use some properties of the bridge of (X,P). Let us now briefly recall its definition. We
refer to [6] for a more complete account on the subject. Assume that (H1) and (H2) are satisfied, then the law Pt

x,y of
the bridge from x ∈ R to y ∈ R, with length t > 0 of the Lévy process (X,P) is a regular version of the conditional
law of (Xs,0 ≤ s ≤ t) given Xt = y, under Px . It satisfies Pt

x,y(X0 = x,Xt = y) = 1 and for all s < t , this law is
absolutely continuous with respect to Px on Fs , with density pt−s(Xs − x)/pt (y − x), i.e.,

Pt
x,y(Λ) = E

(
1Λ

pt−s(Xs − x)

pt (y − x)

)
, for all Λ ∈Fs . (4.8)

In the next proposition, we give the law of the time at which the bridge (X,Pt
0,y), reaches its supremum over [0, t].

Proposition 4. Assume that (H1) and (H2) are satisfied and let us define,

gt := sup{u ≤ t : Xu = Xu}.
Let y ∈R, then Pt

0,y -a.s., gt is the unique instant such that Xgt = Xt or Xgt− = Xt .
Besides, the law of the time of the supremum of the bridge (X,Pt

0,y) is absolutely continuous on [0, t] and its
density is given by:

Pt
0,y(gt ∈ ds)

ds
= pt(y)−1

∫ ∞

0
q∗
s (x)qt−s(x + y)dx, s ∈ [0, t].

Proof. It is well known that under our assumptions, P-a.s., gt is the unique instant such that Xgt = Xt or Xgt− = Xt ,
see Section VI.2 in [1]. Let s ∈ (0, t), then from the latter result applied to s and (4.8), we derive that Pt

0,y -a.s., gs is the

unique instant in [0, s] such that Xgs = Xs or Xgs− = Xs . Now define gs,t := sup{u ∈ [s, t]: Xu = supv∈[s,t] Xv}, then
by a classical argument of time reversal, Pt

0,y -a.s., gs,t is the unique instant in [s, t] such that Xgs,t = supv∈[s,t] Xv

or Xgs,t− = supv∈[s,t] Xv . So it remains to prove that Pt
0,y(Xs = supv∈[s,t] Xv) = 0. But it is a consequence of the

following inequality,

Pt
0,y

(
Xs = sup

v∈[s,t]
Xv

)
≤ Pt

0,y

(
Xs = sup

v∈[s,t]
Xv = y

)
+

∑
n≥1

Pt
0,y

(
Xs = sup

v∈[s,t−1/n]
Xv

)

≤ min
{
Pt

0,y(Xs = y),Pt
0,y

(
sup

v∈[s,t]
Xv = y

)}

+
∑
n≥1

Pt
0,y

(
Xs = sup

v∈[s,t−1/n]
Xv

)
.

Indeed, for all u > 0, the law of Xu under P has no atom whenever 0 is regular for (0,∞), see [2]. Then from (4.8)
and a time reversal argument, we derive that at least one of the terms Pt

0,y(Xs = y) and Pt
0,y(supv∈[s,t] Xv = y) is

equal to 0. Moreover, for all n ≥ 1, P(Xs = supv∈[s,t−1/n] Xv) = 0, so that from (4.8) the second term of right-hand
side of the above inequality is equal to 0.

The second assertion is a direct consequence of Theorem 3 in [2] which asserts that

P(gt ∈ ds,Xt ∈ dx,Xt − Xt ∈ dy)

= q∗
t (x)qt−s(y)1[0,t](s)ds dx dy + dδ{t}(ds)q∗

t (x)δ{0}(dy)dx + d∗δ{0}(ds)δ{0}(dx)qt (y)dy. �

For y = 0, the time gt of the supremum of the bridge (X,Pt
0,y) is uniformly distributed over [0, t], see [12]. Then

as a consequence of this result and Proposition 4, we obtain the following equality:

for all s ∈ (0, t),

∫ ∞

0
q∗
t−s(x)qs(x)dx = pt(0)

t
. (4.9)
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Proof of Proposition 1. When both half lines (−∞,0) and (0,∞) are regular, the result follows directly from
Lemma 3 of [21]. This lemma actually concerns the transition densities p

∗↑
t (x, y) of the process (X,P

∗↑
x ), but it

is easily interpreted in terms of the transition densities q∗
t (x, y) and the entrance law q∗

t (x), thanks to relations (3.5)
and (3.7). Actually Lemma 3 of [21] yields

lim
y→0

q∗
t (y)

h(y)
=

∫ ∞

0
q∗
t−s(x)qs(x)dx, (4.10)

and we conclude to the second assertion from identity (4.9).
Now let us consider the case where one of the half lines is not regular. Note that the main argument in the proof

of Lemma 3 in [21] is the fact that for all t > 0, limx→0 E
∗↑
x (h(Xt )

−1) = E∗↑(h(Xt )
−1) = n∗(t < ζ ) < ∞, which

we have proved in Proposition 3, in the general case. (Here we actually use the result for the dual process, see (4.7).)
Thanks to this result, we can follow the proof of Lemma 3 of [21] along the lines in order to check that it is still valid,
when one of the half lines is not regular. Then we conclude as above.

A key point in the proof of our main result is the following proposition regarding integrability properties of t →
pt (0)/t , both at zero and at infinity. �

Proposition 5. If there exists t0 > 0 such that x → pt0(x) is bounded, then
∫ ∞ pt(0)

t
dt < ∞. (4.11)

Moreover, if t → pt(x) is bounded for every t > 0 (that is (H1) holds) then∫
0+

pt(0)

t
dt = ∞. (4.12)

Proof. Since boundedness of x → pt0(x) implies that pt0 ∈ L2(R), its Fourier transform is also in L2(R) which
means that e−2t0 Re(Ψ (·)) ∈ L1(R). On the one hand it implies integrability of the characteristic function of X for
t ≥ 2t0 and, by the Riemann–Lebesgue lemma, continuity of pt for t ≥ 2t0. On the other hand, applying inverse
Fourier transform together with Fubini–Tonelli theorem, we can write

∫ ∞

3t0

pt(0)

t
dt ≤ 1

2π

∫ ∞

3t0

1

t

∫
R

∣∣e−tΨ (ξ)
∣∣dξ dt = 1

π

(∫ 1

0
+

∫ ∞

1

)∫ ∞

t0

1

t
e−3t Re(Ψ (ξ)) dt dξ.

Recall that 2 ReΨ (ξ) is the Lévy–Khintchin exponent of the symmetrization of X and thus it is an increasing function
(we have excluded the compound Poisson processes from our consideration). Consequently, for t ≥ t0 and ξ ≥ 1, we
can write

e−3t Re(Ψ (ξ)) = e−2t Re(Ψ (ξ))e−t Re(Ψ (ξ)) ≤ e−2t0 Re(Ψ (ξ))e−t Re(Ψ (1)).

By integrability of the characteristic function of X2t0 and the fact that ReΨ (1) > 0, we obtain
∫ ∞

1

∫ ∞

t0

1

t
e−3t Re(Ψ (ξ)) dt dξ ≤

∫ ∞

1
e−2t0 Re(Ψ (ξ)) dξ ·

∫ ∞

2t0

1

t
e−t Re(Ψ (1)) dt < ∞,

hence it is enough to show the finiteness of the integral over (0,1). By Lévy–Khintchine formula, there exists a
constant c > 0 such that ReΨ (ξ) ≥ cξ2 whenever ξ ∈ (0,1). Moreover, we have∫ ∞

t0

1

t
e−3ctξ2

dt ≈ − ln ξ, ξ ≤ 1/2.

Here and below f ≈ g means that the ratio of the functions is bounded from below and above by positive constants
for the indicated range of arguments. It finally gives

∫ 1

0

∫ ∞

t0

1

t
e−3t Re(Ψ (ξ)) dt dξ ≤

∫ 1

0

∫ ∞

t0

1

t
e−3ctξ2

dt dξ < ∞,
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which ends the proof of (4.11).
To deal with (4.12) recall that (H1) implies that the function t → pt (0) is completely monotone (see [18], p. 118),

so in particular it is decreasing. It entails

∫ t1

0

pt(0)

t
dt ≥ pt1(0)

∫ t1

0

dt

t
= ∞.

This ends the proof. �

Finally, we introduce the following result providing the upper-bounds for q∗
t in terms of the transition probability

density of the symmetrization of the process X and the renewal functions h.

Lemma 3. If (H1) holds then

q∗
t (y)

h(y)
≤ 6

(
e

e − 1

)2 pS
t/6(0)

t
, y > 0, t > 0, (4.13)

where pS
t = pt ∗ p̌t is the density of the semi-group of the symmetrization of X.

Proof. Note that under (H1) by the inversion formula we have for every t > 0 that

q∗
t (x, y) ≤ pt(y − x) = 1

2π

∫
R

eit (x−y)e−tΨ (ξ) dξ ≤ 1

2π

∫
R

∣∣e−tΨ (ξ)
∣∣dξ = pS

t/2(0), (4.14)

where the first inequality follows from (2.7). By the upper-bounds given in Theorem 3.1 in [15] we have
∫ ∞

0
qt (x, y)dy = P(Xt ≤ x) ≤ e

e − 1
κ(1/t,0)h(x). (4.15)

Note that this bound is true for every Lévy process and that an analogous result holds for the reflected process X −X.
Then, applying the Chapman–Kolmogorov equation and using Inequalities (4.14) and (4.15), we obtain

q∗
3t (x, y) =

∫ ∞

0

∫ ∞

0
q∗
t (x, z)q∗

t (z,w)q∗
t (w, y)dz dw

≤ pS
t/2(0)

∫ ∞

0
q∗
t (x, z)dz

∫ ∞

0
q∗
t (w, y)dw

= pS
t/2(0)

∫ ∞

0
q∗
t (x, z)dz

∫ ∞

0
qt (y,w)dw

≤
(

e

e − 1

)2

pS
t/2(0)h∗(x)h(y)κ(1/t,0)κ∗(1/t,0).

This inequality together with the Wiener–Hopf factorization κ(1/t,0)κ∗(1/t,0) = 1/t yields

q∗
3t (x, y)

h∗(x)h(y)
≤

(
e

e − 1

)2 pS
t/2(0)

t
. (4.16)

Taking the limit when x → 0 and using Proposition 1 we can finally write

q∗
t (y)

h(y)
≤ 6

(
e

e − 1

)2 pS
t/6(0)

t
, y > 0, t > 0. (4.17)

�

We are now ready to proceed to the proofs of our main results.
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Proof of Theorem 1. Let us first note that

lim
x→0+

h(x)

h′(x)
= 0. (4.18)

Indeed, from (3.3), Proposition 1 and the Fatou lemma, we have

lim inf
x→0+

h′(x)

h(x)
= lim inf

x→0+
1

h(x)

∫ ∞

0
q∗
s (x)ds ≥

∫ ∞

0
lim inf
x→0+

q∗
s (x)

h(x)
ds =

∫ ∞

0

ps(0)

s
ds,

which is infinite from (4.12).
Similarly as in the proof of Lemma 3, applying Chapman–Kolmogorov equation (2.11), we can write for δ ∈ (0, s)

q∗
s (x)

h(x)
=

∫ ∞

0

∫ ∞

0
q∗
s−δ(z)q

∗
δ/2(z,w)

q∗
δ/2(w,x)

h(x)
dz dw

≤ pS
δ/4(0)

∫ ∞

0
q∗
s−δ(z)dz ·

∫ ∞

0

qδ/2(x,w)

h(x)
dw.

Consequently, using (4.15) together with the fact that
∫ ∞

0 q∗
s−δ(z)dz = n∗(s − δ < ζ), we get

q∗
s (x)

h(x)
≤ cδn

∗(s − δ < ζ), x > 0, (4.19)

where

cδ = e

e − 1
pS

δ/4(0)κ(2/δ,0).

Since t → n(t < ζ) is a continuous, nonnegative and decreasing function, it is uniformly continuous on [t0/2,∞).
For every ε > 0 we can choose 0 < δ < t0/2 such that

n(t − δ < ζ) − n(t < ζ) ≤ ε, t ≥ t0.

Then, using (3.2), the monotonicity of t → n(t < ζ), (3.3) and (4.19), we can write for every t ≥ t0 that

ft (x)

h′(x)
=

∫ δ

0
n(t − s < ζ)

q∗
s (x)

h′(x)
ds + h(x)

h′(x)

∫ t

δ

n(t − s < ζ)
q∗
s (x)

h(x)
ds + d

h(x)

h′(x)

q∗
t (x)

h(x)

≤ n(t − δ < ζ) + h(x)

h′(x)

[
cδ

∫ t

δ

n(t − s < ζ)n∗(s − δ < ζ)ds + dct0/2n
∗(t − t0/2 < ζ)

]
,

where the last term was estimated using (4.19) with s := t and δ := t0/2. Moreover, we have the following simple
inequality

∫ t−δ

0
n(t − δ − s < ζ)n∗(s < ζ)ds ≤

∫
[0,∞)

ft−δ(x)dx ≤ 1,

which is a consequence of integration of the formula (3.2) with respect to x. The choice of δ and the monotonicity of
n(· < ζ) give

ft (x)

h′(x)
≤ n(t < ζ) + ε + h(x)

h′(x)

[
cδ + ct0/2dn∗(t0/2 < ζ)

]
,

for every t > t0 and x > 0. Consequently, using (4.18) and the fact that ε was arbitrary, we have

lim sup
x→0+

ft (x)

h′(x)
≤ n(t < ζ),
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uniformly on [t0,∞). For the lower bound, note that monotonicity of t → n(t < ζ) and (3.2) give

ft (x)

h′(x)
≥ n(t < ζ)

∫ t

0

q∗
s (x)

h′(x)
ds ≥ n(t < ζ) − n(t < ζ)

h(x)

h′(x)

∫ ∞

t

q∗
s (x)

h(x)
ds.

From (4.13) we have

n(t < ζ)

∫ ∞

t

q∗
s (x)

h(x)
ds ≤ 6

(
e

e − 1

)2

n(t0 < ζ)

∫ ∞

6t0

pS
t (0)

t
dt, t ≥ t0.

Note that boundedness of x → pt (x) implies boundedness of pS
t (since pS

t is a convolution of a function from L1(R)

and a bounded function) and consequently, by (4.11) and (4.18) we finally obtain

lim inf
x→0+

ft (x)

h′(x)
≥ n(t < ζ), uniformly for t ≥ t0.

This ends the proof. �

Proof of Theorem 2. Let A be any compact subset of (0,∞). Since t 
→ n(t < ζ) is regularly varying at infinity, we
have

1

t

∫ t

0
n(s < ζ)ds ≈ n(t < ζ), t → ∞. (4.20)

Recall that f (t) ≈ g(t), t → ∞ means that there exists constant c > 1 such that c−1g(t) ≤ f (t) ≤ cg(t) for large t .
Then let us split formula (3.2) into two parts by writing f 1

t (x) for the integral component and f 2
t (x) := dq∗

t (x). Thus,
for every fixed δ ∈ (0,1), by monotonicity of n(· < ζ) and (4.13) we have

f 1
t (x) =

(∫ (1−δ)t

0
+

∫ t

(1−δ)t

)
n(s < ζ)q∗

t−s(x)ds

≤ 6

(
e

e − 1

)2

h(x)

∫ (1−δ)t

0
n(s < ζ)

pS
(t−s)/6(0)

t − s
ds + n

(
(1 − δ)t < ζ

)∫ ∞

0
q∗
s (x)ds.

Since t → pS
t (0) is decreasing (by (H1)), we can write

f 1
t (x)

n(t < ζ)
≤ n((1 − δ)t < ζ)

n(t < ζ)
h′(x) + 6

(
e

e − 1

)2 h(x)pS
δt/6(0)

δ

1

tn(t < ζ)

∫ t

0
n(s < ζ)ds.

Finally, using (4.20) and the facts that limt→∞ pS
t (0) = 0 and h(x) is bounded on (0, x0], we obtain

lim sup
t→∞

f 1
t (x)

n(t < ζ)
= (1 − δ)−ρh′(x).

Since δ was arbitrary and h′ is bounded on A, we get

lim sup
t→∞

f 1
t (x)

n(t < ζ)
= h′(x),

uniformly in x ∈ A. To deal with f 2
t (x) we use (4.19) to get

f 2
t (x)

n(t < ζ)
≤ d

e

e − 1
pS

t/8(0)κ(4/t,0)h(x)
n(t/2 < ζ)

n(t < ζ)
.
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Because h(x) is bounded on A, and using the facts that

lim
t→∞

n(t/2 < ζ)

n(t < ζ)
= 2ρ

and limt→∞ pS
t/8(0)κ(4/t,0) = 0, we obtain

lim sup
t→∞

f 2
t (x)

n(t < ζ)
= 0,

uniformly on A. Moreover, we have

ft (x)

n(t < ζ)
≥

∫ t

0
q∗
s (x)ds = h′(x) −

∫ ∞

t

q∗
s (x)ds,

where, for x ∈ A, we can write

∫ ∞

t

q∗
s (x) ≤ 6

(
e

e − 1

)2

h(x)

∫ ∞

t

pS
s/6(0)

s
ds < 6

(
e

e − 1

)2

sup
x∈A

h(x)

∫ ∞

6t

pS
s (0)

s
ds.

The last integral goes to zero, when t goes to infinity and consequently,

lim inf
t→∞

ft (x)

n(t < ζ)
= h′(x),

uniformly in x ∈ A. This ends the proof. �

Proof of Theorem 3. Note that the function

g(x, t) := h(x)

h′(x)

∫ ∞

t

q∗
s (x)

h(x)
ds < 1

is a nonnegative function on (0, x0] × [t0,∞] such that

c(x0, t0) := sup
x≤x0,t≥t0

g(x, t) < 1. (4.21)

Since, by (4.11) and (4.18), the function g(x, t) vanishes when x → 0 or t → ∞ and g(x, t) ≤ g(x, t0), for t ≥ t0, it
is enough to show that for every 0 < a < b,

sup
x∈[a,b]

1

h′(x)

∫ ∞

t0

q∗
s (x)ds < 1.

If the above-given supremum were equal to 1, then we could choose a sequence of points (xn) ∈ [a, b] such that
limn xn = x0 and limn g(xn, t0) = 1. Since, by continuity of g∗

s (x) (see [2]) together with (4.13) and (4.11), the above-
given integral is continuous in x we would get

∫ ∞

t0

q∗
s (x0)ds = lim

n
h′(xn) = lim

n

∫ ∞

0
q∗
s (xn)ds ≥

∫ ∞

0
lim inf

n
q∗
s (xn)ds =

∫ ∞

0
q∗
s (x0)ds.

Here we have used the Fatou lemma and once again continuity of q∗
s (x). Since q∗

s (x0) is strictly positive this is a
contradiction.

By monotonicity of n(· < ζ) we can write

ft (x) ≥
∫ t

0
n(s < ζ)q∗

t−s(x)ds ≥ n(t < ζ)

∫ t

0
q∗
s (x)ds

= n(t < ζ)h′(x)

(
1 − h(x)

h′(x)

∫ ∞

t

q∗
s (x)

h(x)

)
≥ c1n(t < ζ)h′(x)
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whenever x ≤ x0, t ≥ t0. Here c1 = 1 − c(x0, t0) > 0. To deal with the upper-bounds we use the fact that

n(t < ζ) ≤ 1

t

∫ t

0
n(s < ζ)ds.

This together with (4.13) enable us to write for every t ≥ t0 and x ≤ x0,

f 1
t (x) =

(∫ t/2

0
+

∫ t

t/2

)
n(s < ζ)q∗

s (x)ds

≤ 6
pt/12(0)

t
h(x)

∫ t/2

0
n(s < ζ)ds + n(t/2 < ζ)

∫ t

t/2
q∗
s (x)ds

≤ 6pt0/12(0)
h(x)

h′(x)
h′(x)

1

t

∫ t

0
n(s < ζ)ds + 2h′(x)

t

∫ t

0
n(s < ζ)ds. (4.22)

We deal with the second part f 2
t (x) similarly as in Theorem 2. We have

f 2
t (x) ≤ dh′(x)

h(x)

h′(x)
ct0/2n(t − t0/2)

≤ dh′(x) sup
x≤x0

h(x)

h′(x)
ct0/2

1

t − t0/2

∫ t−t0/2

0
n(s < ζ)ds

≤ dh′(x) sup
x≤x0

h(x)

h′(x)
ct0/2

2

t

∫ t

0
n(s < ζ)ds. (4.23)

Inequalities (4.22) and (4.23) prove the upper-bounds ft ≤ c2n(t < ζ)h′(x), with

c2 = 6pt0/12(0) sup
x≤x0

h(x)

h′(x)
+ 2 + 2 sup

x≤x0

h(x)

h′(x)
ct0/2. (4.24)

The second part of the thesis follows from the first one, (4.20) and the fact that n(t < ζ) is continuous and positive.
Notice that positivity follows from monotonicity and the regular behaviour at infinity. �

Proof of Proposition 2. (1) ⇒ (2) Let x0 be a point of continuity of h′. Fix t > 0 and take ε > 0. Since q∗
s (x) is

continuous, it is enough to show that the integral part f 1
t (x) := ∫ t

0 n(t − s < ζ)q∗
s (x)ds of (3.2) is continuous in x at

x0. Moreover, for every t0 < t we can write

f 1
t (x) =

(∫ t0

0
+

∫ t

t0

)
n(t − s < ζ)q∗

s (x)ds := k1
t0
(x) + k2

t0
(x).

Using the Lebesgue dominated convergence theorem, the fact that n(t < ζ) is integrable at zero and (4.13) we can
easily show that x → k2

t0
(x) is continuous on (0,∞) for every choice of t0 < t . Moreover, the same arguments give

continuity of the function x → ∫ ∞
t0

q∗
s (x)ds for every positive t0. We choose t0 < t/2 such that

∫ t0

0
q∗
s (x0)ds <

ε

4n(t/2 < ζ)
,

where existence of such t0 follows from integrability of q∗
s (x0) in s at 0. Since x → h′(x) is continuous at x0 and the

function x → ∫ ∞
t0

q∗
s (x)ds is continuous on (0,∞), we can choose δ > 0 such that for every |x − x0| < δ,

∫ t0

0
q∗
s (x)ds <

ε

2n(t/2 < ζ)
.
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Writing for |x − x0| < δ,

∣∣f 1
t (x) − f 1

t (x0)
∣∣ ≤ n(t − t0 < ζ)

(∫ t0

0
q∗
s (x)ds +

∫ t0

0
q∗
s (x0)ds

)
+ ∣∣k2

t0
(x) − k2

t0
(x0)

∣∣
≤ ε + ∣∣k2

t0
(x) − k2

t0
(x0)

∣∣
and taking a limit, when x → x0 ends the proof in this case.

Since (3) follows directly from (2), it is enough to show (3) ⇒ (1). Assume that for some t > 0 the function
x → ft (x) is continuous at x0. We choose t0 > 0 such that

∫ t0

0
n(t − s < ζ)q∗

s (x0)ds < εn(t < ζ)/4,

for a given ε > 0. Our assumption implies that x → k1
t0
(x) is continuous at x0 and consequently, we can choose δ > 0

such that∫ t0

0
n(t − s < ζ)q∗

s (x)ds < εn(t < ζ)/2,

whenever |x − x0| < δ. Monotonicity of n(· < ζ) entails,

∣∣h′(x) − h′(x0)
∣∣ ≤

(∫ t0

0
q∗
s (x)ds +

∫ t0

0
q∗
s (x0)ds

)
+

∣∣∣∣
∫ ∞

t0

q∗
s (x)ds −

∫ ∞

t0

q∗
s (x0)ds

∣∣∣∣
≤ ε +

∣∣∣∣
∫ ∞

t0

q∗
s (x)ds −

∫ ∞

t0

q∗
s (x0)ds

∣∣∣∣,
whenever |x − x0| < δ. Since the function x → ∫ ∞

t0
q∗
s (x)ds is continuous, the proof is complete. �
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