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Abstract. Consider the d dimensional lattice Zd where each vertex is open or closed with probability p or 1 − p respectively.
An open vertex u := (u(1),u(2), . . . ,u(d)) is connected by an edge to another open vertex which has the minimum L1 distance
among all the open vertices x with x(d) > u(d). It is shown that this random graph is a tree almost surely for d = 2 and 3 and it is
an infinite collection of disjoint trees for d ≥ 4. In addition, for d = 2, we show that when properly scaled, the family of its paths
converges in distribution to the Brownian web.

Résumé. Nous considérons le réseau Zd dont les sommets sont ouverts ou fermés, respectivement avec probabilité p et 1 − p.
Chaque sommet ouvert u = (u(1),u(2), . . . ,u(d)) est connecté par une arête au sommet ouvert x le plus proche de lui, pour la
distance L1, et satisfaisant x(d) > u(d). Nous montrons que le graphe aléatoire résultant est presque sûrement un arbre pour d = 2
et 3, et qu’il est une collection infinie d’arbres disjoints pour d ≥ 4. De plus, pour d = 2, nous montrons que la famille de ses
trajectoires correctement renormalisées converge en loi vers la toile Brownienne.

MSC: 60D05; 60K35

Keywords: Markov chain; Random walk; Directed spanning forest; Brownian web

1. Introduction

Let P be the points of a Poisson point process on Rd of intensity 1. For each x ∈ P let h(x) ∈ P be the Poisson
point in the half-space {u: u(d) > x(d)} which has the minimum Euclidean distance from x, where v(j) denotes the
j th co-ordinate of v ∈ Rd . The directed spanning forest (DSF) is the random graph with vertex set P and edge set
{〈x, h(x)〉: x ∈ P}. The study of the directed spanning forest (DSF) was initiated by Baccelli et al. [5]. Coupier et al.
[8] proved that for d = 2 the DSF is a tree almost surely. Ferrari et al. [11] also studied a directed random graph on a
Poisson point process, however, the mechanism used to construct edges in that model incorporates more independence
than is available in the DSF. They proved that their random graph is a connected tree in dimensions 2 and 3, and a
forest in dimensions 4 and more.

A similar construction, like the DSF arising from a Poisson point process, can be made from vertices of the integer
lattice. Let {Uv: v ∈ Zd} be a collection of i.i.d. uniform (0,1) random variables. Fix 0 < p < 1 and let V := {v ∈
Zd : Uv < p} be the set of open vertices of Zd . Given u ∈ Zd , let v ∈ V be such that

1. u(d) < v(d),
2. there does not exist any w ∈ V with w(d) > u(d) such that ‖u − w‖1 < ‖u − v‖1, and
3. for all w ∈ V with w(d) > u(d) and ‖u − w‖1 = ‖u − v‖1 we have Uv ≤ Uw.
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Fig. 1. The construction of h(u) from u on Z2. The shaded points are open, while the others are closed. Note that in order to get h(u) from u, we
require information on the values of the uniform random variables of the gray vertices.

Here and henceforth ‖u‖1 denotes the L1 norm of u on Rd . Such a v is almost surely unique and clearly, is a function
of u and W := {Uw: w ∈ Zd ,w(d) > u(d)}. We denote it by h(u,W) (see Figure 1). We will drop the second argument
in h for the time being. Let 〈u, h(u)〉 be the edge joining u and h(u) and let E denote the edge set given by,

E := {〈u, h(u)
〉
: u ∈ V

}
.

In this paper, we study the undirected random graph G := (V ,E), which we will refer to as the discrete DSF hence-
forth.

Similar models of random graphs are known in the physics literature as drainage networks (see [19]) and have been
studied extensively (see [18]). Mathematically, for similar discrete processes but with a condition for constructing
edges which allows more independence, the dichotomy in dimensions of having a single connected tree vis-a-vis a
forest has been studied (see [4,13]). The graph studied in [13] connected an open vertex u to the vertex h(u) with
h(u) being the nearest open vertex in {w: w(d) = u(d)+ 1}, with the vertex being chosen with uniform probability in
case there are more than one nearest open vertex. This construction immediately leads to a Markovian analysis which
is exploited in [13] to obtain the tree/forest dichotomy. However the DSF model considered here has to take care of a
“history” set arising from the paths constructed in the past. The Markovian structure is thus obtained through regener-
ation times. Moreover to obtain the dichotomy requires information on the tail of the distribution of the regeneration
time which we do here through coupling and auxiliary results on renewal processes.

Our paper may also be viewed as an extension, albeit in the discrete setting, of the result of [8] to any dimension.
Our proof is different from that of [8]; while their argument is percolation theoretic and crucially depends on the
planarity of R2, our argument exploits the Markovian structure of the DSF, thereby allowing us to extend the result to
any dimension. The difficulty of carrying our analysis in the continuous model studied in [8] is that there is no obvious
extension of regeneration time as considered here.

Theorem 1.1. For d = 2 and d = 3 the random graph G is connected almost surely and consists of a single tree
while for d ≥ 4, it is a disconnected forest containing infinitely many distinct connected components, each connected
component being an infinite tree almost surely.

Our second result in this paper is the convergence of the random graph G for d = 2, under a suitable diffusive
scaling, to the Brownian web. The standard Brownian web originated in the work of Arratia [1,2] as the scaling limit
of the voter model on Z. It arises naturally as the diffusive scaling limit of the coalescing simple random walk paths
starting from every point on the space–time lattice. We can thus think of the Brownian web as a collection of one-
dimensional coalescing Brownian motions starting from every point in the space–time plane R2. Detailed analysis of
the Brownian web was carried out in [20]. Later Fontes et al. [12] introduced a framework in which the Brownian web
is realized as a random variable taking values in a Polish space. We recall relevant details from [12].

Let R2
c denote the completion of the space–time plane R2 with respect to the metric

ρ
(
(x1, t1), (x2, t2)

) := ∣∣tanh(t1) − tanh(t2)
∣∣∨ ∣∣∣∣ tanh(x1)

1 + |t1| − tanh(x2)

1 + |t2|
∣∣∣∣.
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As a topological space R2
c can be identified with the continuous image of [−∞,∞]2 under a map that identifies the

line [−∞,∞] × {∞} with the point (∗,∞), and the line [−∞,∞] × {−∞} with the point (∗,−∞). A path π in R2
c

with starting time σπ ∈ [−∞,∞] is a mapping π : [σπ ,∞] → [−∞,∞] such that π(∞) = ∗ and, when σπ = −∞,
π(−∞) = ∗. Also t → (π(t), t) is a continuous map from [σπ ,∞] to (R2

c, ρ). We then define Π to be the space of
all paths in R2

c with all possible starting times in [−∞,∞]. The following metric, for π1,π2 ∈ Π

dΠ(π1,π2) := ∣∣tanh(σπ1) − tanh(σπ2)
∣∣∨ sup

t≥σπ1∧σπ2

∣∣∣∣ tanh(π1(t ∨ σπ1))

1 + |t | − tanh(π2(t ∨ σπ2))

1 + |t |
∣∣∣∣

makes Π a complete, separable metric space. Convergence in this metric can be described as locally uniform conver-
gence of paths as well as convergence of starting times. Let H be the space of compact subsets of (Π,dΠ) equipped
with the Hausdorff metric dH given by,

dH(K1,K2) := sup
π1∈K1

inf
π2∈K2

dΠ(π1,π2) ∨ sup
π2∈K2

inf
π1∈K1

dΠ(π1,π2).

The space (H, dH) is a complete separable metric space. Let BH be the Borel σ -algebra on the metric space (H, dH).
The Brownian web W is an (H,BH) valued random variable.

Ferrari et al. [10] have shown that, for d = 2, the random graph on the Poisson points introduced by [11], converges
to a Brownian web under a suitable diffusive scaling. Coletti et al. [7] have a similar result for the discrete random
graph studied in [13]. Baccelli et al. [5] have shown that scaled paths of the successive ancestors in the DSF converges
weakly to the Brownian motion and also conjectured that the scaling limit of the DSF is the Brownian web.

Our work here differs from that of [10] and [7] in that we need to obtain the Brownian web as a limit of a Markov
process defined through regeneration times, while in the earlier work correlation inequalities like the FKG inequality
could be used because every step of the paths constructing their model had i.i.d. increments. The method we employ
requires us to control the size of the region surveyed to obtain the regeneration time of a process starting from a single
vertex. Also using a martingale constructed via the joint regeneration times of processes starting from two distinct
starting points we estimate the tail probability of the coalescing time. This method which we present here can be used
in both [10] and [7] to obtain their results without invoking correlation inequalities. Also for the model considered by
[5] and [8], if a suitable “pseudo-regeneration time” of joint processes is defined and there is a control on the size of
the region explored to obtain such pseudo-regeneration times, then our approach should yield the convergence to the
Brownian web. In addition such pseudo-regeneration times should also yield the geometric structure of the DSF in
dimensions 3 or more.

From a vertex u ∈ Z2, taking the edges {〈hk−1(u), hk(u)〉: k ≥ 1)} (with h0(u) := u and hk(u) := h(hk−1(u)))
to be straight line segments we parametrize the path formed by these edges as the piecewise linear function
πu : [u(2),∞) → R such that πu(hk(u)(2)) := hk(u)(1) for every k ≥ 0 and πu(t) is linear in the interval
[hk(u)(2), hk+1(u)(2)]. Define X := {πu: u ∈ V }. For given γ,σ > 0, a path π with starting time σπ and for each
n ≥ 1, the scaled path πn(γ,σ ) : [σπ/n2γ,∞] → [−∞,∞] is given by πn(γ,σ )(t) := π(n2γ t)/nσ . Thus, the scaled
path πn(γ,σ ) has the starting time σπn(γ,σ ) = σπ/n2γ . For each n ≥ 1, let Xn(γ, σ ) := {πu

n (γ, σ ): u ∈ V } be the
collection of the scaled paths. The closure X̄n(γ, σ ) of Xn(γ, σ ) in (Π,dΠ) is a (H,BH) valued random variable. We
have:

Theorem 1.2. There exist σ := σ(p) and γ := γ (p) such that as n → ∞, X̄n(γ, σ ) converges weakly to the standard
Brownian web W as (H,BH) valued random variables.

Remark 1.3. The scaling property of the Brownian web yields X̄n(1, σ ′) ⇒W as n → ∞ for σ ′ := σ/
√

γ .

For the proof of Theorem 1.1 we obtain a Markovian structure in our model and define suitable stopping times
for this Markov process. From these stopping times the process regenerates which allows us to phrase the problem
as a question of recurrence or transience of the Markov chain. This we do by obtaining a martingale for d = 2, using
a Lyapunov function technique for d = 3 and a suitable coupling with a random walk with independent steps for
d = 4.
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The martingale obtained for d = 2 and the fact that the distributions of the stopping times have exponentially
decaying tails are used to prove Theorem 1.2.

Finally, although our results are obtained for the random graph constructed by connecting edges between L1 nearest
open vertices, they should also hold for the model constructed with the L2 metric (see Remark 2.5 for more details).

The paper is structured as follows – in the next section we construct the paths of the graph G starting from k

distinct vertices and obtain some properties of these paths. In Section 3, we derive the martingale (for d = 2) and also
provide a method of approximation of the paths by independent processes, which is used later to prove Theorem 1.1
and Theorem 1.2. In Section 4 we prove Theorem 1.1 and in Section 5, we prove Theorem 1.2.

2. Construction of the process

We first detail a construction of the graph G which is needed to bring out a Markovian structure. Later we obtain a
martingale for d = 2 which is used in the next two sections. Before proceeding further we fix some notation: for u ∈ Zd

and r ∈ Z, let H(r) := {w ∈ Zd : w(d) ≤ r} be the half-space and, for r > 0, let S+(u, r) := {w ∈ Zd : ‖u − w‖1 ≤
r,w(d) > u(d)} be the upper part of closed L1 ball at u having radius r . As a convention we take S+(u,0) := ∅.

From k (k ≥ 1) vertices u1, . . . ,uk ∈ Zd with u1(d) = · · · = uk(d), we obtain the vertices {hn(ui ): n ≥ 0,1 ≤ i ≤
k} as a stochastic process. Note here that the construction described below does not require the vertices u1, . . . ,uk to
be open. The vertices with the smallest d th co-ordinate are allowed to move, while the others stay put (see Figures 2
and 3). Each of these vertices explores a region in the half space “above” it to obtain the vertex to which it moves.
During this exploration a vertex may encounter regions which have been already explored by other vertices earlier.
While the information for the region explored earlier is known, the information about the freshly explored region is
new and is obtained during the exploration process of the vertices which are moving at that time. The region which has
been explored till the nth move of the entire process and which is needed for the (n + 1)th move is called the history
region and the information of the uniform random variables in the history region constitutes the history. Formally, let
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Fig. 2. The vertices gn+1(u1), gn+1(u2) and the history set Δn+1(u1,u2) when Wmove
n = {gn(u1), gn(u2)}, W

stay
n = ∅. Note the vertices above

gn+1(u1) and gn+1(u2) are unexplored.
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Fig. 3. The vertices gn+1(u1), gn+1(u2) and the history region Δn+1(u1,u2) when Wmove
n = {gn(u2)}, W

stay
n = {gn(u1)}.

(i) g0(ui ) := ui for all 1 ≤ i ≤ k and r0 := u1(d);
(ii) Wmove

0 := {u1, . . . ,uk} and W
stay
0 := ∅;

(iii) Δ0 = Δ0(u1, . . . ,uk) := ∅ and Ψ0 :∅→ [0,1] the empty function (see [14]).

Having obtained gn(ui ), rn, Wmove
n , W

stay
n , Δn and Ψn, for 1 ≤ i ≤ k, we set

(i) gn+1(u) := h(gn(u)) for all gn(u) ∈ Wmove
n and gn+1(v) := gn(v) for all gn(v) ∈ W

stay
n , rn+1 :=

min{gn+1(ui )(d): 1 ≤ i ≤ k};
(ii) Wmove

n+1 := {gn+1(w): w ∈ {u1, . . . ,uk}, gn+1(w)(d) = rn+1} and W
stay
n+1 := {gn+1(u1), . . . , gn+1(uk)} \ Wmove

n+1 ;
(iii) Δn+1 = Δn+1(u1, . . . ,uk) := (Δn ∪⋃u∈Wmove

n
S+(u,‖h(u) − u‖1)) \ H(rn+1) and Ψn+1 :Δn+1 → [0,1] is a

map given by Ψn+1(w) := Uw for w ∈ Δn+1, with Ψn+1 := Ψ0, the empty function, when Δn+1 =∅.

Let Δ ⊆ Zd be a finite union of d-dimensional tetrahedrons, with each tetrahedron in Δ having a (d − 1)-
dimensional tetrahedron as a base on the hyperplane Qr := {w ∈ Zd : w(d) = r} for some r ∈ Z. In other words,
we have Δ =⋃p

i=1 S+(wi , ti ) for some p ≥ 1 and wi ∈ Qr, ti ≥ 0 for 1 ≤ i ≤ p. We denote this class of subsets
by Dr . Further, for any Δ =⋃p

i=1 S+(wi , ti ) ∈ Dr , let Ψ :Δ → [0,1] be a mapping such that Ψ (w) ≥ p for all
w ∈ Δ0 =⋃p

i=1 S+(wi , ti − 1), with Ψ being the empty function when Δ =∅. Let
S(k) := {s = (v1, . . . ,vk,Δ,Ψ ): vi ∈ Zd for i = 1, . . . , k, Δ ∈ Dr for r := min{v1(d), . . . ,vk(d)}, vi ∈ Δ \

Δ0 for all vi with vi (d) > r and Ψ satisfies the conditions above}.

Remark 2.1. We have the following observations:

(a) From the definition of the history region Δn, formed at the nth step, is either empty or an element of D with the
bases of tetrahedrons being contained in Qrn+1.

(b) Clearly, by definition of rn, Wmove
n ⊆ Qrn .

(c) From the definition of Δn, all vertices in the set Ξn := Zd \ (Δn ∪H(rn)) are unexplored until the (n + 1)th step,
for each n ≥ 0.

We now obtain the Markov process implicit in our construction. Set Z(k)
n := (gn(u1), . . . , gn(uk),Δn,Ψn) for

n ≥ 0. Clearly, Z(k)
n ∈ S(k). Let Y := {Vw: w ∈ Zd,w(d) > 0} be an independent collection of i.i.d. uniform [0,1]-



Random directed forest 1111

valued random variables. For any n ≥ 1, suppose Z(k)
n = s(= (v1, . . . ,vk,Δ,Ψ )) for some s ∈ S(k). We define the

collection of random variables Ỹ := {Ṽw: w ∈ Zd ,w(d) > r} for r = min{v1(d), . . . ,vk(d)} as follows:

Ṽw :=
{

Ψ (w) if w ∈ Δ;
Vw′ if w /∈ Δ,w(j) = w′(j), j �= d and w(d) = w′(d) + r .

The above definition implies that Ỹ is a function of Y and s, say Ỹ = f (Y, s) where f is a function from
[0,1]Zd\H(0) ×S(k) to [0,1]Zd\H(r). From the above definition and the fact that the vertices in Ξn = Zd \ (Δ ∪H(r))

are unexplored, and hence can be replaced by another set of i.i.d. uniform random variables, for the family
X := {Uw: w ∈ Zd ,w(d) > r}, we have

X |Z(k)
n

d= f
(
Y,Z(k)

n

)
.

From the definition of the process, we obtain that gn+1(u1), . . . , gn+1(uk), Δn+1 and Ψn+1 is a function of Z(k)
n =

(gn(u1), . . . , gn(uk),Δn,Ψn) and X, i.e.,

Z(k)
n+1 = f1

(
Z(k)

n ,X
)
,

where f1 is a function on S(k) × [0,1]Zd\H(rn) → S(k). Therefore, from the above observation, the conditional distri-
bution of Z(k)

n+1, given {Z(k)
j : 0 ≤ j ≤ n}, is the same as that of f1(Z(k)

n , f (Y,Z(k)
n )). Hence, the process {Z(k)

n : n ≥ 1}
admits a random mapping representation, which proves the Markov property (see, for example, [16]).

Proposition 2.2. The process {Z(k)
n = (gn(u1), gn(u2), . . . , gn(uk),Δn,Ψn): n ≥ 0} is Markov with state space S(k).

For the remainder of this section we fix u1, . . . ,uk with u1(d) = · · · = uk(d). Set τ0 = τ(u1, . . . ,uk) := 0 and, for
l ≥ 1, define

τl = τl

(
u1, . . . ,uk

) := inf{n > τl−1: Δn =∅};
(2.1)

σl = σl

(
u1, . . . ,uk

) := τl

(
u1, . . . ,uk

)− τl−1
(
u1, . . . ,uk

)
.

We call τl the step at which the lth simultaneous regeneration of k joint paths occurs. We note here that τl denotes
the number of steps (in the above construction) required for the joint process to regenerate (i.e., to reach a state of
empty history for the lth time) and σl denotes the total number of steps (again in the above construction) between the
(l − 1)th and lth simultaneous regeneration of k joint paths. This is not the same as the time (measured as the distance
in the d th co-ordinate) for regeneration, which we later denote by Tl (see Figure 4). Also at each regeneration step τl ,
the paths must be at the same level in terms of their d th co-ordinate, i.e., gτl

(u1)(d) = · · · = gτl
(uk)(d).

Our first task is to show that the Markov process, defined in Proposition 2.2, regenerates almost surely. In fact,
we prove the much stronger statement that the number of inter-regeneration steps has exponentially decaying tail
probabilities.

Proposition 2.3. For any l ≥ 1 and u1, . . . ,uk ∈ Zd with u1(d) = · · · = uk(d), we have

P(σl ≥ n) ≤ C
(k)
1 exp

(−C
(k)
2 n
)

(2.2)

for all n ≥ 1, where C
(k)
1 and C

(k)
2 are positive constants, depending on k, but not on l, n or u1, . . . ,uk .

Since τl < ∞ almost surely, we obtain that:

Corollary 2.3.1. For u1, . . . ,uk as above, the process{(
gτl

(
u1), . . . , gτl

(
uk
))

: l ≥ 0
}

is a Markov chain on
(
Zd
)k

.
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Fig. 4. At regeneration step τ1(u1,u2) of the process gτ1 (u1)(d) = gτ1 (u2)(d) and Δτ1 = ∅.

For w ∈ Zd , let (w)↑m be defined by

(w)↑m(j) :=
{

w(j) for 1 ≤ j ≤ d − 1,
m + w(d) for j = d ,

the vertex w. Note

if w ∈ Zd , v ∈ V are such that v(d) > w(d), then ‖h(w) − w‖1 ≤ ‖v − w‖1.

The main idea behind regeneration is contained in the above simple observation and the following Proposition 2.4.

Proposition 2.4. For u1, . . . ,uk as in the construction of the process with the history region Δn and the quantity rn
as described there, we have, for any n ≥ 0, m ≥ 1 and 1 ≤ i ≤ k, the vertex (gn(ui ))↑m /∈ Δn ∪H(rn).

Proof. Fix n ≥ 0, m ≥ 1 and 1 ≤ i ≤ k. We have (gn(ui ))↑m(d) = gn(ui )(d) + m > gn(ui )(d) ≥ rn, so that
(gn(ui ))↑m /∈ H(rn). It is enough to show (gn(ui ))↑m /∈⋃n

j=0 Δj . First (gn(ui ))↑m /∈ Δ0. So take n ≥ 1 and induc-

tively assume that (gn(ui ))↑m /∈ Δj for some 0 ≤ j ≤ n − 1. Let w ∈ Wmove
j . Since the vertices with the small-

est d th co-ordinate are in Wmove
j and, in the next step their d th co-ordinate increases by at least one unit, we

have w(d) = rj < rn ≤ gn(ui )(d). Since gn(ui ) ∈ V , clearly ‖h(w) − w‖1 ≤ ‖gn(ui ) − w‖1. Further, we have
‖(gn(ui ))↑m − w‖1 = m + ‖gn(ui ) − w‖1 > ‖gn(ui ) − w‖1 and hence (gn(ui ))↑m /∈ S+(w,‖h(w) − w‖1). Thus,
(gn(ui ))↑m /∈ Δj+1. �

In order to prove Proposition 2.3, we define a random variable Ln which represents the height of the history region
Δn, measured along the d th co-ordinate from the lowest vertex among gn(u1), . . . , gn(uk). Using Proposition 2.4, for
any 1 ≤ i ≤ k, the set of vertices {(gn(ui ))↑m: m ≥ 1} is not explored till the nth step (see Figure 2). This provides an
upper bound on the size of the next step, and hence on the increment of the height of the history region. The height
of the first vertex of {(gn(ui ))↑m: m ≥ 1} which is open from gn(ui ) is a geometric random variable irrespective of
the history carried. Using these geometric random variables, we construct a coupling with a Markov chain Mn which
dominates the height random variable. Hence, the Markov chain’s return time to 0 will dominate the return time of
Ln to 0. The Markov chain is constructed so that it uses an independent sequence of random variables when Ln has
already returned to 0 but Mn is positive.

Remark 2.5. Note here that Proposition 2.4 remains valid even if we consider the L2 norm and define regeneration in
the same way, i.e., when the history set becomes empty. Though the geometric structure of the history region changes,
we can still provide a bound on the increment of the height and construct a dominating Markov chain with the same
properties as above. The geometry of the L1 structure has been used very minimally, and wherever they have been
used we may see that the results also hold when it is replaced with the L2 norm.
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To prove Proposition 2.3, we need an auxiliary lemma on Markov chains, whose proof is given in the Appendix.
Let {θn: n ≥ 1} be a sequence of i.i.d. positive integer valued random variables with P(θ1 = 1) > 0 and P(θ1 ≥ n) ≤
C3 exp(−C4n) for all n ≥ 1 where C3, C4 are positive constants. Define a sequence of random variables as follows:
M0 := 0 and for l ≥ 0,Ml+1 := max{Ml, θl+1} − 1. Let τM := inf{l ≥ 1: Ml = 0} be the first return time of Ml to 0.

Lemma 2.6. For n ≥ 1, we have

P
(
τM ≥ n

)≤ C5 exp(−C6n),

where C5 and C6 are positive constants.

Proof of Proposition 2.3. We first observe that by the Markov property (Proposition 2.2) it is enough to show the
result for l = 1. In order to study that, we define,

Ln :=
{

max{w(d): w ∈ Δn} − rn if Δn �=∅,
0 if Δn =∅,

(2.3)

where rn = min{gn(ui )(d): i = 1, . . . , k}. We set,

τL := inf{n ≥ 1: Ln = 0}
and observe that τ1 = τL.

For any fixed n ≥ 0, using Proposition 2.4, we have that (gn(ui ))↑m is unexplored for m ≥ 1 and 1 ≤ i ≤ k (see
Figure 2). We now define the collection of random variables{

Jn+1(w) := inf
{
m ≥ 1: (w)↑m ∈ V

}
: w ∈ Wmove

n

}
, (2.4)

where V is the set of all open points. This is a collection of i.i.d. geometric random variables with parameter p, i.e.,
each of the random variables takes the value m with probability p(1 − p)m−1 for m = 1,2, . . . . Also,∥∥gn(w) − gn+1(w)

∥∥
1 ≤ Jn+1(w) for all w with gn(w) ∈ Wmove

n . (2.5)

Let {Gi,1
n : 1 ≤ i ≤ k,n ≥ 0} be another family of i.i.d. geometric random variables with parameter p, independent of

{Uw: w ∈ Zd}.
Now given gn(u1), . . . , gn(uk) and Hn, we define {Mn := Mn(u1, . . . ,uk),Xn := Xn(u1, . . . ,uk): n ≥ 0} as fol-

lows:

set M0 = 0 = X0 and Mn+1 = max
{
Mn,J

1
n+1

}− 1 for n ≥ 0,

where

J 1
n+1 :=

⎧⎨
⎩

max{Jn+1(u): gn(u) ∈ Wmove
n } if #Wmove

n = k and Xn = 0,
max{Gi,1

n+1, Jn+1(u): gn(u) ∈ Wmove
n , i = 1, . . . , k − k′} if #Wmove

n = k′ < k and Xn = 0,

max{Gi,1
n+1: 1 ≤ i ≤ k} if Xn = 1,

(2.6)

and

Xn+1 :=
{

1 if Xn = 0,Ln+1 = 0,
Xn otherwise.

(2.7)

From (2.6) it follows that {J 1
n+1: n ≥ 0} is a family of i.i.d. copies of J where for any m ≥ 1,

P(J ≥ m) = 1 − (1 − (1 − p)m−1)k ≤ k(1 − p)m−1 (2.8)

and hence the sequence {J 1
n : n ≥ 1} satisfies the conditions of Lemma 2.6.

Further, we claim that 0 ≤ Ln ≤ Mn for all 0 ≤ n ≤ τL. Indeed, this holds for n = 0, and assume that it holds for
some 0 ≤ n < τL. If Δn+1 = ∅ then we have 0 = Ln+1 ≤ Mn+1. Otherwise if w ∈ Δn+1, then, from the definition
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of Δn+1, either w ∈ Δn or w ∈ S+(u,‖u − h(u)‖1) for some u ∈ Wmove
n . Therefore, from (2.5) and (2.6), w(d) ≤

max{max{u(d): u ∈ Δn},min{gn(ui )(d),1 ≤ i ≤ k} + ‖u − h(u)‖1: u ∈ Wmove
n } ≤ max{Ln + rn, rn + Jn+1} =

max{Ln,Jn+1} + rn. Also rn+1 = min{gn+1(ui )(d),1 ≤ i ≤ k} ≥ min{gn(ui )(d),1 ≤ i ≤ k} + 1 = rn + 1. Thus
Ln+1 ≤ max{Ln,Jn+1} − 1 ≤ max{Mn,Jn+1} − 1 = Mn+1.

Define,

τM = τM
(
u1, . . . ,uk

) := inf{n ≥ 1: Mn = 0}.

Note that the distribution of τM(u1, . . . ,uk) does not depend on u1, . . . ,uk . From the above observation that 0 ≤
Ln ≤ Mn for 0 ≤ n ≤ τ1, we obtain that

τ1 = τL ≤ τM.

Using Lemma 2.6, we obtain Proposition 2.3. �

The following lemma will be used to show that the inter-regeneration times as well as the width of the explored
regions during a regeneration have exponentially decaying tail probabilities. Let {θi : i ≥ 1} be i.i.d. random variables
and N be any random variable taking values in {0,1,2, . . .}. We define the random sum S as follows:

S :=
{

0 if N = 0,∑n
i=1 θi if N = n.

Then, we have following lemma.

Lemma 2.7. Suppose that for some β > 0 and α > 0, E(exp(βθ1)) < ∞ and E(exp(αN)) < ∞. Then, there exists
γ > 0 such that E(exp(γ S)) < ∞.

We note here that no assumption of independence or the structure of dependence between N and θi ’s have been
imposed here. The proof uses the Cauchy–Schwarz inequality and has been relegated to the Appendix.

We now consider the width of the explored region between the l − 1 and lth regenerations. For the process starting
from u1, . . . ,uk with u1(d) = · · · = uk(d) define

Wl = Wl

(
u1, . . . ,uk

) := τl∑
n=τl−1+1

k∑
i=1

∥∥gn

(
ui
)− gn−1

(
ui
)∥∥

1. (2.9)

Using {Gi,l+1
n : 1 ≤ i ≤ k,n ≥ 0}, another family of i.i.d. geometric random variables with parameter p and

independent of both {Uw: w ∈ Zd} and {Gi,j
n : 1 ≤ i ≤ k,1 ≤ j ≤ l, n ≥ 0}, our construction ensures that

σl+1(u1, . . . ,uk) ≤ τM(gτl
(u1), . . . , gτl

(uk)) and τM(gτl
(u1), . . . , gτl

(uk)) is an i.i.d. copy of τM(u1, . . . ,uk). Also,
for τl ≤ n < τl+1, we have

k∑
i=1

∥∥gn+1
(
ui
)− gn

(
ui
)∥∥

1 ≤
∑

gn(ui )∈Wn
move

Jn+1
(
ui
)≤ kJ l+1

(n−τl)+1,

where the last sum is over distinct elements of Wmove
n to avoid double counting and J l+1

i is defined as in

(2.6) using {Gi,l+1
n : 1 ≤ i ≤ k,n ≥ 0} instead of {Gi,1

n : 1 ≤ i ≤ k,n ≥ 0}. Further it follows that Wl+1 ≤∑τM(gτl
(u1),...,gτl

(uk))

i=1 kJ l+1
i and

∑τM(gτl
(u1),...,gτl

(uk))

i=1 kJ l+1
i is an i.i.d. copy of WM := ∑τM(u1,...,uk)

i=1 kJ 1
i . From

Lemma 2.7, we conclude that for some α > 0, E(exp(αWM)) < ∞.
The time for the lth regeneration, measured by the distance traveled by process in the d th co-ordinate (see Figure 4),

is defined as

Tl = Tl

(
u1, . . . ,uk

) := gτl

(
u1)(d) − u1(d) = gτl

(
ui
)
(d) − ui (d) for 1 ≤ i ≤ k. (2.10)
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Clearly Tl − Tl−1 ≤ Wl and from the fact that, for some α > 0, E(exp(αWM)) < ∞, we conclude the following
proposition.

Proposition 2.8. For any l ≥ 1 and u1, . . . ,uk with u1(d) = · · · = uk(d), we have

P(Tl − Tl−1 ≥ n) ≤ P(Wl ≥ n) ≤ P
(
WM ≥ n

)≤ C
(k)
7 exp

(−C
(k)
8 n
)

(2.11)

for all n ≥ 1, where C
(k)
7 and C

(k)
8 are positive constants, depending on k but not l or u1, . . . ,uk .

Now we specialize to the case k = 1, i.e., the process starting from just one vertex u and consider the inter-
regeneration step process σl(u), the width process Wl(u) and the inter-regeneration time process Tl(u) − Tl−1(u),
defined in (2.1), (2.9) and (2.10) respectively. Using the Markov property of {Z(1)

l : l ≥ 0} and the translation in-
variance of the model, we have that {(σl(u),Wl(u), (Tl(u) − Tl−1(u))): l ≥ 1} is an i.i.d. family of random vectors
taking values in {1,2,3, . . .}3. Using the translation invariance of our model, the distribution of these random variables
does not depend on the choice of the starting vertex u. Furthermore, each of the marginals of this random vector has
exponentially decaying tail probability. Let

w := (w(1), . . . ,w(d − 1)
)

for w = (w(1), . . . ,w(d)
)

(2.12)

denote the first d − 1 co-ordinates of w ∈ Zd . We observe the following:

Remark 2.9. Define, for any l ≥ 1,

Y
(u)
l := gτl(u)(u) − gτl−1(u)(u). (2.13)

We have

(a) {Y (u)
l : l ≥ 1} is a sequence of i.i.d. Zd−1-valued random vectors, whose distribution does not depend on u. For

u = 0, we denote Y
(0)
l by Yl .

(b) Denoting the L1 norm in (d − 1) dimensions by ‖ · ‖1,d−1, we also observe that ‖Y1‖1,d−1 ≤ W1(0), so that we
also have

P
(‖Y1‖1,d−1 ≥ n

)≤ C
(1)
7 exp

(−C
(1)
8 n
)

(2.14)

for all n ≥ 1, where C
(1)
7 and C

(1)
8 are as in (2.11).

(c) By reflection symmetry of the model, about any of the first (d − 1) co-ordinates, we have that each co-ordinate of
Y1 is marginally symmetric. Further, the rotational symmetry of the model in the first (d − 1) co-ordinates implies
that the marginal distributions are same for i = 1,2, . . . , d − 1. In other words, P(Y1(1) = +m) = P(Y1(i) =
+m) = P(Y1(i) = −m) for all m ≥ 1 and 1 ≤ i ≤ d − 1 where Y1(i) denotes the ith co-ordinate of Y1.

(d) For any i, j ∈ {1,2, . . . , d − 1}, i �= j , let s = E(Y1(i)Y1(j)). By reflection symmetry along the ith co-ordinate,
with other co-ordinates being fixed, we observe that the joint distribution of (Y1(i), Y1(j)) remains unchanged.
This implies that s = E((−Y1(i))Y1(j)) and hence, E(Y1(i)Y1(j)) = 0. The same argument holds to prove
E[(Y1(i))

m1(Y1(j))m2 ] = 0 for m1,m2 ≥ 1 with at least one of them being odd.

3. Martingale and independent processes

In this section, we study the joint evolution of paths starting from two vertices u and v with u(d) = v(d). The process
{(gτl

(u), gτl
(v)): l ≥ 0} is a Markov chain on (Zd)2 by Corollary 2.3.1. Further, our model is translation invariant.

Hence, the process {gτl
(u)−gτl

(v): l ≥ 0} is also a Markov chain on Zd . However, as observed earlier (see Figure 4),
gτl

(u)(d) = gτl
(v)(d) for every l ≥ 1. Thus, using notation as in (2.12),{

Zl = Zl(u,v) := gτl
(u) − gτl

(v): l ≥ 0
}

(3.1)
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is a Zd−1 valued Markov chain. Further, we observe that 0 = (0,0, . . . ,0︸ ︷︷ ︸
d−1

) is the only absorbing state of this Markov

chain.
In Section 3.1, we prove that the process Zl is a martingale for d = 2. Later, in Section 3.2 and Section 3.3, we

study, for any d ≥ 2, how Zl can be approximated by a process having i.i.d. increments when the starting point of
paths are sufficiently far apart.

3.1. Martingale

In this subsection we restrict ourselves to d = 2 and fix two vertices u,v ∈ Z2 with u(2) = v(2). We first observe that,
for l ≥ 0, the regeneration time Tl = Tl(u,v) is a stopping time with respect to the filtration {Ft : t ≥ 0} where Ft :=
σ {Uw: w(2) ≤ u(2) + t}. By our construction, gτl

(u) is FTl
measurable. Therefore, gτl

(u), given by the projection
from Z2 → Z, is also FTl

measurable.

Proposition 3.1. For d = 2 and u,v ∈ Z2 with u(2) = v(2), the process {gτl
(u): l ≥ 0} is a martingale with respect

to the filtration {FTl
: l ≥ 0}.

The above proposition also holds for gτl
(v), so we obtain

Corollary 3.1.1. For d = 2 and any u,v ∈ Z2 with u(2) = v(2), the process {Zl = Zl(u,v): l ≥ 0} is a martingale
with respect to the filtration {FTl

: l ≥ 0}.

Proof of Proposition 3.1. Consider the process (gn(u), gn(v),Δn(u,v),Ψn) starting from u, v with u(2) = v(2), and
the process (gn(u),Δn(u),Ψn) starting from u with the same set of uniform random variables {Uw: w ∈ Z2}. Observe
that every joint regeneration of the paths from a pair of vertices u,v is also a regeneration of the single path from u,
i.e., for every l ≥ 0, we have

Tl(u,v) = TNl
(u) (3.2)

for some sequence Nl = Nl(u,v) (see Figure 4 where N1 = 2 for u1 and N1 = 3 for u2). Therefore, we have,

gτl(u,v)(u) = gτNl
(u)(u) =

Nl∑
i=1

Y
(u)
i ,

where Y
(u)
i := gτi(u)(u) − gτi−1(u)(u) is as in Remark 2.9. Since Nl ≤ Tl(u,v), and each of Ti(u,v) − Ti−1(u,v) and

Y
(u)
i has an exponentially decaying tail probability (see Proposition 2.8 and Equation (2.14)), for every l ≥ 0, we have

that E(|gτl(u,v)(u)|) < ∞.
Further we need to show that

E
[
gτl+1(u,v)(u) − gτl(u,v)(u)|FTl(u,v)

]= E

[
Nl+1∑

i=Nl+1

Y
(u)
i

∣∣∣FTNl
(u)

]
= 0 a.s. (3.3)

Denoting Gi := FTi(u), we have that Y
(u)
i+1 is independent of Gi . We also observe that Nl is {Gi : i ≥ 0} adapted for each

l ≥ 0, i.e., {Nl ≤ m} ∈ Gm. Therefore, using 1 to denote the indicator function, for any A ∈ FTNl
(u) = GNl

, we have

E

[
1(A)

Nl+1∑
i=Nl+1

Y
(u)
i

]

= E

[
1(A)

∞∑
nl=1

∞∑
m=1

1(Nl = nl)1(Nl+1 = nl + m)

m∑
i=1

Y
(u)
nl+i

]
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= E

[
1(A)

∞∑
nl=1

∞∑
m=1

1(Nl = nl)1(Nl+1 ≥ nl + m)Y
(u)
nl+m

]

=
∞∑

nl=1

∞∑
m=1

E
[
1(A)1(Nl = nl)

[
1 − 1(Nl+1 ≤ nl + m − 1)

]
Y

(u)
nl+m

]

=
∞∑

nl=1

∞∑
m=1

E
[
E
[
1(A)1(Nl = nl)

[
1 − 1(Nl+1 ≤ nl + m − 1)

]
Y

(u)
nl+m | Gnl+m−1

]]

=
∞∑

nl=1

∞∑
m=1

E
[
1(A)1(Nl = nl)

[
1 − 1(Nl+1 ≤ nl + m − 1)

]
E
[
Y

(u)
nl+m | Gnl+m−1

]]

=
∞∑

nl=1

∞∑
m=1

E
[
1(A)1(Nl = nl)

[
1 − 1(Nl+1 ≤ nl + m − 1)

]
E
[
Y

(u)
nl+m

]]
= 0.

In the above, we have used Fubini’s theorem to interchange the expectation and summation. Observe that
1(A)

∑Nl+1
i=Nl+1 |Y (u)

i | ≤ Wl+1(u,v). Hence, using Proposition 2.8, E(1(A)
∑Nl+1

i=Nl+1 |Y (u)
i |) < ∞. In the above we

have also used property (c) of Remark 2.9 and the fact that, since A ∈ GNl
, A ∩ {Nl = nl} ∈ Gnl

⊆ Gnl+m−1 for all

m ≥ 1. Also, {Nl+1 ≤ nl + m − 1} ∈ Gnl+m−1 and Y
(u)
nl+m is independent of Gnl+m−1. �

3.2. Independent processes

In this subsection, we describe simultaneous regenerations of two independent paths. This will be used to approximate
the paths at simultaneous regenerations of joint paths when the starting points are far apart. We start with a result
(Lemma 3.2) about renewal processes, which is proved in the Appendix.

Let {ξ (1)
n : n ≥ 1} and {ξ (2)

n : n ≥ 1} be two independent collections of i.i.d. inter-arrival times (positive inte-
ger valued random variables) with P(ξ

(1)
1 = j) = f

(1)
j and P(ξ

(2)
1 = j) = f

(2)
j . We assume that, for any m ≥ 1,

max{P(ξ
(1)
1 ≥ m),P(ξ

(2)
1 ≥ m)} ≤ C9 exp(−C10m) where C9 and C10 are positive constants and f

(1)
1 f

(2)
1 > 0. Let

S
(1)
0 := 0 =: S

(2)
0 and, for n ≥ 1, S

(1)
n :=∑n

j=1 ξ
(1)
j and S

(2)
n :=∑n

j=1 ξ
(2)
j . For any n ≥ 1 and i = 1,2, define the

residual life of the ith component at time n by

R(i)
n := inf

{
S

(i)
k : S

(i)
k ≥ n

}− n. (3.4)

We consider the joint residual process (R
(i)
n : i = 1,2) and define

τR := inf
{
n ≥ 1: R(1)

n = R(2)
n = 0

}
.

Lemma 3.2. For any n ≥ 1, we have

P
(
τR ≥ n

)≤ C11 exp(−C12n),

where C11 and C12 are positive constants, depending on the distribution of ξ
(i)
n ’s only.

Now we fix two vertices u and v with u(d) = v(d) and consider two independent constructions of the marginal
paths, one starting from u and the other from v. More precisely, we start with two independent collections of uniform
i.i.d. random variables, {Uu

w: w ∈ Zd} and {Uv
w: w ∈ Zd}. Now, as in Section 2, we start two paths, one from u,

constructed using the collection {Uu
w: w ∈ Zd}, and the other from v, constructed using the collection {Uv

w: w ∈ Zd}.
We denote these respective paths by {g(Ind)

n (u): n ≥ 0} and {g(Ind)
n (v): n ≥ 0}. The above processes being inde-
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pendent, we have two independent collections of regeneration times, {T (Ind)
l (u): l ≥ 0} and {T (Ind)

l (v): l ≥ 0} (see
Equation (2.10) for definition). As mentioned in Remark 2.9, for a single starting point, the distribution of the col-
lection {T (Ind)

l (u): l ≥ 0} or {T (Ind)
l (v): l ≥ 0} does not depend on the starting point, and is an independent copy of

{Tl(0): l ≥ 0}.
Take R

(1)
n = inf{T (Ind)

l (u): T
(Ind)
l (u) ≥ n} − n and R

(2)
n = inf{T (Ind)

l (v): T
(Ind)
l (v) ≥ n} − n. Note here that

{T (Ind)
l+1 (u) − T

(Ind)
l (u): l ≥ 0} and {T (Ind)

l+1 (v) − T
(Ind)
l (v): l ≥ 0} are two independent collections of i.i.d. random

variables, which play the respective roles of {ξ (1)
l : l ≥ 1} and {ξ (2)

l : l ≥ 1} of Lemma 3.2. Set, T
(Ind)

0 (u,v) = 0 and,
for l ≥ 0,

T
(Ind)
l+1 (u,v) := inf

{
n > T

(Ind)
l (u,v): R(1)

n = R(2)
n = 0

}
. (3.5)

We call T
(Ind)
l (u,v), the time for the lth simultaneous regeneration time of two independent paths.

Applying Lemma 3.2 and observing that each T
(Ind)
l (u,v) represents the occurrence of a renewal event, we obtain

the following proposition.

Proposition 3.3. {T (Ind)
l+1 (u,v) − T

(Ind)
l (u,v): l ≥ 0} is an i.i.d. sequence of random variables taking values in

{1,2,3, . . .} and, for all n ≥ 1,

P
(
T

(Ind)
1 (u,v) ≥ n

)≤ C13 exp(−C14n), (3.6)

where C13 and C14 are positive constants.

Any simultaneous regeneration time of two independent paths T
(Ind)
l (u,v) is also a regeneration time for each of

the marginal processes. Therefore, as in (3.2), for every l ≥ 0, we have

T
(Ind)
l (u,v) = T

(Ind)

Nu
l

(u) = T
(Ind)

Nv
l

(v)

for some sequences Nu
l (= Nu

l (u,v)) and Nv
l (= Nv

l (u,v)) with Nu
0 = Nv

0 = 0.
As in (2.9) consider the width of the explored region between the l−1 and lth regenerations of both the independent

processes,

W
(Ind)
l (u,v) :=

Nu
l∑

t=Nu
l−1+1

W
(Ind)
t (u) +

Nv
l∑

t=Nv
l−1+1

W
(Ind)
t (v), (3.7)

where {W(Ind)
l (u): l ≥ 1} and {W(Ind)

l (v): l ≥ 1} are the explored width processes associated with the processes

{g(Ind)
l (u): l ≥ 0} and {g(Ind)

l (v): l ≥ 0} respectively. Observe that {(Nu
l+1 − Nu

l ,Nv
l+1 − Nv

l ): l ≥ 0} is a sequence of

i.i.d. random variables, and hence, {W(Ind)
l (u,v): l ≥ 1} is also a sequence of i.i.d. random variables.

Since max{Nu
1 ,Nv

1 } ≤ T
(Ind)
1 (u,v) and T

(Ind)
1 (u,v) − T

(Ind)
0 (u,v) = T

(Ind)
1 (u,v) satisfies (3.6), using Lemma 2.7,

we conclude, for any l ≥ 1

P
(
W

(Ind)
l (u,v) ≥ n

)≤ C15 exp(−C16n), (3.8)

where C15 and C16 are positive constants.
From (2.13), we can write, for any l ≥ 1,

g(Ind)
τNu

l

(u) = u +
Nu

l∑
t=1

Y
(u)
t and g(Ind)

τNv
l

(v) = v +
Nv

l∑
t=1

Y
(v)
t .
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At each simultaneous regeneration time T
(Ind)
l (u,v), the d th co-ordinates of both the paths coincide and equal

T
(Ind)
l (u,v). We consider the first d − 1 co-ordinates of these paths and define

ψu
l := g(Ind)

τNu
l

(u) − g(Ind)
τNu

l−1
(u) =

Nu
l∑

t=Nu
l−1+1

Y
(u)
t ;

(3.9)

ψv
l := g(Ind)

τNv
l

(v) − g(Ind)
τNv

l−1
(v) =

Nv
l∑

t=Nv
l−1+1

Y
(v)
t .

The process (ψu
l ,ψv

l ) represents the increment between the (l − 1)th and lth simultaneous regeneration times in the
first (d −1) co-ordinates of the independent paths starting from u and v respectively. We list the properties of (ψu

l ,ψv
l )

in the following proposition.

Proposition 3.4. The family {(ψu
l ,ψv

l ): l ≥ 1} is an i.i.d. collection of random variables taking values in Z2(d−1)

satisfying the following properties.

(a) For any n ≥ 1,

P
(∥∥ψu

1

∥∥
1,d−1 + ∥∥ψv

1

∥∥
1,d−1 ≥ n

)≤ C15 exp(−C16n),

where C15 and C16 are as in (3.8).
(b) The marginal distribution of each co-ordinate of ψu

1 as well as ψv
1 is symmetric. Further, they are all same.

More precisely, with ψu
l (j ) and ψv

l (j ) being the j th co-ordinate of ψu
l and ψv

l respectively, P(ψu
1 (j) = r) =

P(ψu
1 (j) = −r) = P(ψv

1 (j) = r) = P(ψv
1 (j) = −r) = P(ψu

1 (1) = r) for all j = 1,2, . . . , d − 1 and r ≥ 1.
(c) E[(ψu

1 (i))m1(ψv
1 (j))m2 ] is independent of i, j and depends only on m1,m2 and if at least one of m1,m2 is odd

then E[(ψu
1 (i))m1(ψv

1 (j))m2 ] = 0.

Proof. Noting that T
(Ind)
l (u,v) represents the occurrence of a renewal event and using the fact that the families of

i.i.d. random variables {Y (u)
t : t ≥ 1} and {Y (v)

t : t ≥ 1} are independent, we conclude that {(ψu
l ,ψv

l ): l ≥ 1} is a family

of i.i.d. random variables. Further, ‖ψ(u)
1 ‖1,d−1 + ‖ψ(v)

1 ‖1,d−1 ≤ W
(Ind)
1 (u,v). Using (3.8), we conclude part (a).

Using the fact that Y
(u)
t is symmetric in each co-ordinate, we conclude P(ψu

1 (j) = r) = P(ψu
1 (j) = −r) =

P(ψv
1 (j) = r) = P(ψv

1 (j) = −r) for any r ≥ 1 for all j = 1, . . . , d − 1. Further, Y
(u)
t is rotation invariant along

any of the first d − 1 co-ordinates and hence P(ψu
1 (j) = r) = P(ψu

1 (1) = r) for j = 2,3, . . . , d − 1. This proves (b).
To study the joint distribution of (ψu

1 (i),ψv
1 (j)), we observe that we may apply the rotation operator independently

for both families {Uu
w} and {Uv

w} of uniform random variables, so that the ith co-ordinate after rotation becomes the
first co-ordinate for {Uu

w} and j th co-ordinate after rotation becomes the first co-ordinate for {Uv
w}. The distribution of

(Y
(u)
t (i), Y

(v)
t (j)) after rotation remains unchanged, which implies that the joint distribution of (ψu

1 (i),ψv
1 (j)) is inde-

pendent of i, j . Thus, E[(ψu
1 (i))m1(ψv

1 (j))m2 ] is independent of choice of i, j . If we fix the realizations for one family
of uniform random variables and reflect the realizations of the other family along some co-ordinate, the distribution of
(Y

(u)
t (i), Y

(v)
t (j)) remains unaltered. Therefore, we have P((ψu

1 (i),ψv
1 (j)) = (l, k)) = P((ψu

1 (i),ψv
1 (j)) = (l,−k))

for any l, k ∈ Z. This proves (c). �

Remark 3.5. Let ξl := ψv
l −ψu

l for l ≥ 1 and set S0 := v−u and for n ≥ 1, Sn := S0 +∑n
l=1 ξl . From Proposition 3.4,

we conclude that the process {Sn: n ≥ 0} is an isotropic, symmetric random walk starting from v − u on Zd−1 with
i.i.d. steps, each step having exponentially decaying tail probability. Clearly, P(ξl = 0) ≥ p2 so that the random walk
is also aperiodic. This will be used in the next section.

3.3. Coupling of joint process and independent process

In this subsection, we describe a coupling of two independent paths with the joint paths starting from u, v with
u(d) = v(d). Without loss of generality, we may assume u(d) = 0. Set dmin := ‖u − v‖1. As in the last subsection,
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Fig. 5. The shaded regions represent part of the cylinders (up to T
(Ind)
1 (u,v)) of width r around u and v. In the left cylinder we use the collection

{Uu
w}, on the right cylinder we use the collection {Uv

w} and in the remaining region, we use {Uw}.

we start with two independent collections of i.i.d. uniform random variables {Uu
w: w ∈ Zd ,w(d) > 0} and {Uv

w: w ∈
Zd ,w(d) > 0}, and construct two independent paths, {g(Ind)

n (u): n ≥ 0} and {g(Ind)
n (v): n ≥ 0}, starting from u and v

respectively.
Fix r < dmin/2 and another independent collection of uniform random variables {Uw: w ∈ Zd ,w(d) > 0}. We

define a new collection of uniform random variables {Ũw: w ∈ Zd ,w(d) > 0} by

Ũw :=
{

Uu
w if ‖w − u‖1,d−1 < r ,

Uv
w if ‖w − v‖1,d−1 < r ,

Uw otherwise.

Using the collection {Ũw: w ∈ Zd,w(d) > 0}, we construct the joint paths (as in Section 2) from the points u and v
until its first simultaneous regeneration time T1(u,v) of joint paths from u and v.

Now, as defined in (3.5), let T
(Ind)
1 (u,v) be the first simultaneous regeneration time of two independent processes

and Nu
1 and Nv

1 be the number of individual regenerations of the independent paths starting from u and v respectively.
With the width of the explored region for two independent processes, as defined in (3.7), we consider the event where
the total width of the explored region until the first simultaneous regeneration time of the two independent paths is
less than r (see Figure 5). More precisely, we consider the event

AGood(r) := {W(Ind)
1 (u,v) ≤ r

}
.

On the event AGood(r) consider the following segments of paths:

(i) the joint path process (gn(u), gn(v)) started simultaneously from (u,v), using the collection {Ũw: w ∈ Zd,w(d) >

0}, until the first simultaneous regeneration time T1(u,v) of joint paths; and
(ii) the independent paths {g(Ind)

n (u): n ≥ 0}, constructed using only the collection {Uu
w: w ∈ Zd ,w(d) > 0}, and

{g(Ind)
n (v): n ≥ 0}, constructed using only the collection {Uv

w: w ∈ Zd,w(d) > 0}, until the first simultaneous

regeneration of the independent paths T
(Ind)
1 (u,v).

These two segments coincide as geometric paths (i.e., line segments in R2) although they may be indexed differ-
ently. Therefore, we must have

T
(Ind)

1 (u,v) = T1(u,v)

and hence we have,

P
[(

gτ1(u,v)(u), gτ1(u,v)(v)
)= (u + ψu

1 ,v + ψv
1

)]
≥ P
(
AGood(r)

)
≥ 1 − C15 exp(−C16r). (3.10)
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Finally, using the Markov property, we can use this coupling for each subsequent joint regeneration step. The new
value of dmin for the lth regeneration has to be computed from the position of the processes at the (l − 1)th joint
regeneration and the value of r has to be chosen accordingly.

4. Trees and forest

In this section we prove Theorem 1.1. For d = 2,3, we need to prove that for any u,v ∈ V , the paths πu and πv

coincide eventually, i.e., πu(t) = πv(t) for all t ≥ t0 for some t0 < ∞.
First, we claim that it is enough to prove that

πu and πv coincide eventually for u,v ∈ V with u(d) = v(d). (4.1)

Indeed, for u,v ∈ V with u(d) < v(d) we have, from (4.1),

P

[ ⋂
w∈V,u(d)=w(d)

{
the paths πu and πw coincide eventually

}]= 1;

P

[ ⋂
w′∈V,w′(d)=v(d)

{
the paths πv and πw′

coincide eventually
}]= 1.

Further, P[there exist w,w′ ∈ V with w(d) = u(d),w′(d) = v(d),h(w) = w′] = 1. Since, the intersection of these
three events has probability 1, πu and πv meet.

Now, to prove that for any two vertices u and v with u(d) = v(d), the paths coincide eventually, we show that
P(Zl(u,v) = 0 for some l ≥ 0) = 1 where Zl is as in (3.1). Recall, at the beginning of Section 3, we had observed that
{Zl(u,v): l ≥ 0} is a Markov chain taking values in Zd−1 with 0 ∈ Zd−1 being its only absorbing state.

4.1. d = 2

Proposition 4.1. The paths of χ do not cross each other almost surely.

Proof. We present a proof based on Figure 6, a formal, though cumbersome, proof may be written on these lines.
Let u,v ∈ Z2 be as in Figure 6 with u(1) ≤ v(1) (otherwise we just interchange the roles of u and v). We show that

the edges 〈u, h(u)〉 and 〈v, h(v)〉 do not cross.
Let So(u,‖u − h(u)‖1) = {w ∈ Z: ‖u − w‖1 ≤ ‖u − h(u)‖1 and w(2) ≥ u(2)} be the triangle S+(u,‖u − h(u)‖1)

(defined at the beginning of Section 2) extended at the base by an extra set of edges on the horizontal line
containing u. Also let S̄o(u), S̄+(u) ⊆ R2 be the smallest simply connected closed triangle in R2 containing
So(u,‖u − h(u)‖1), S

+(u,‖u − h(u)‖1) respectively. The three linear segments of the triangle S̄o(u) are appro-
priately called the base, the left boundary and the right boundary of it. Consider the case when h(u) is a vertex on the
left boundary of S̄+(u). A similar argument may be given when h(u) is a vertex on the right boundary of S̄+(u).

In case S̄+(u) ∩ S̄+(v) = ∅, then 〈u, h(u)〉 and 〈v, h(v)〉 do not cross because they lie in S̄o(u) and S̄o(v) respec-
tively.

On the other hand if S̄+(u) ∩ S̄+(v) �=∅ then we note that:

(a) If the left boundary of S̄o(u) has non-empty intersection with S̄o(v), then, h(u) being open, the left boundaries of
S̄o(u) and S̄o(v) must have an overlap (see Figure 6(a)). For the edges 〈u, h(u)〉 and 〈v, h(v)〉 to cross, h(v) must
necessarily be a lattice point, which is not h(u), but lies on the interior of this overlap and below h(u). Note that
h(v) being in the interior of this overlap violates the minimality of Uh(u).

(b) If the left boundary of S̄o(u) has empty intersection with S̄o(v) (see Figure 6(b)), then, for the edges 〈u, h(u)〉
and 〈v, h(v)〉 to cross, h(v) must lie on the part of the left boundary of S̄o(v) which is in the interior of S̄o(u).
However, this is not possible because the vertices in the interior of S̄o(u) are closed.

This completes the proof of the proposition. �
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Fig. 6. For the edges from u and v to cross, the location of h(v) must be on the bold part of the appropriate triangle.

For the proof of Theorem 1.1 in the case d = 2 we consider the process constructed from the two vertices u and
v with u(2) = v(2). Without loss of generality, we may assume that u(1) > v(1). Since the paths {gn(u): n ≥ 0}
and {gn(v): n ≥ 0} do not cross each other, from Corollary 3.1.1 we have that {Zl(u,v) = gτl(u,v)(u)(1) −
gτl(u,v)(v)(1): l ≥ 0} is a non-negative martingale. By the martingale convergence theorem, there exists a random
variable Z∞ such that Zl(u,v) → Z∞ a.s. as l → ∞. Also, 0 being the only absorbing state of the Markov chain
{Zl(u,v): l ≥ 0} we have Z∞ = 0 a.s. and hence Zl(u,v) = 0 for some l a.s. This proves Theorem 1.1 for d = 2.

4.2. d = 3

We show that Foster’s criterion (see [3], Proposition 5.3 of Chapter I, page 18), used in [13], is applicable here.
We start with the process constructed from the vertices u,v ∈ Z3 with u(3) = v(3) and consider the process Zl =
Zl(u,v) where Zl is as defined in (3.1). Also, changing the transition probability of Zl from the state 0 = (0,0) in any
reasonable way, so that the state 0 is no longer absorbing, we make the Markov chain {Zl(u,v): l ≥ 0} irreducible.
With a slight abuse of notation, we continue to denote the modified chain by {Zl(u,v): l ≥ 0} and it is enough to show
that the modified chain is recurrent,

We now show that if the points are far apart, Zl(u,v) can be approximated in expectation by the independent
process.

Proposition 4.2. For any u, v as above and x ∈ Z2 and m ≥ 1, we have∣∣E[(∥∥Zl+1(u,v)
∥∥2

2 − ‖x‖2
2

)m | Zl(u,v) = x
]−E

[(∥∥(u + ψu
1

)− (v + ψv
1

)∥∥2
2 − ‖x‖2

2

)m]∣∣
≤ C

(m)
17 exp

(−C
(m)
18 ‖x‖2

)
,

where C
(m)
17 and C

(m)
18 are positive constants, depending on m, and ‖ · ‖2 denotes the standard Euclidean norm.

Proof. Since our model is spatially translation invariant and Zl(u,v) is a time homogeneous Markov chain, we may
take v = 0 = (0,0,0) and u = (x,0) and l = 0.

Now, we use the coupling described in Section 3.3, with k = 2 and r = dmin/3 = (|x(1)| + |x(2)|)/3. Observe
that ‖Z1(u,v) − x‖2 ≤ ‖Z1(u,v) − x‖1 ≤ W1(u,v) and ‖ψu

1 − ψv
1 ‖2 ≤ ‖ψu

1 − ψv
1 ‖1 ≤ W

(Ind)
1 (u,v), where W1(u,v)



Random directed forest 1123

and W
(Ind)
1 (u,v) are as defined in (2.9) and (3.7) respectively. Also, on the event (AGood(r))c , we have W1(u,v) >

dmin/3 = (|x(1)| + |x(2)|)/3 and W
(Ind)
1 (u,v) > dmin/3 = (|x(1)| + |x(2)|)/3. Thus, with ψu

1 and ψv
1 as in (3.9), from

the definition of AGood(r) and Equation (3.10), we have∣∣E[(∥∥Z1(u,v)
∥∥2

2 − ‖x‖2
2

)m | Z0(u,v) = x
]

−E
[(∥∥(u + ψu

1

)− (v + ψv
1

)∥∥2
2 − ‖x‖2

2

)m]∣∣
= ∣∣E[(∥∥Z1(u,v)

∥∥2
2 − ‖x‖2

2

)m1
((

AGood(r)
)c) | Z0(u,v) = x

]
−E
[(∥∥(u + ψu

1

)− (v + ψv
1

)∥∥2
2 − ‖x‖2

2

)m1
((

AGood(r)
)c)]∣∣

≤ E
[
2m
(∥∥Z1(u,v)

∥∥2m

2 + ‖x‖2m
2

)
1
((

AGood(r)
)c)]

+E
[
2m
(∥∥(ψu

1 − ψv
1

)+ x
∥∥2m

2 + ‖x‖2m
2

)
1
((

AGood(r)
)c)]

≤ 2mE
[(‖x‖2m

2 + 22m
[∥∥Z1(u,v) − x

∥∥2m

2 + ‖x‖2m
2

])
1
((

AGood(r)
)c)]

+ 2mE
[(‖x‖2m

2 + 22m
[∥∥ψu

1 − ψv
1

∥∥2m

2 + ‖x‖2m
2

])
1
((

AGood(r)
)c)]

≤ 24m
[‖x‖2m

2 P
((

AGood(r)
)c)+E

[(
W1(u,v)

)2m1
(
W1(u,v) > dmin/3

)]
+E
[(

W
(Ind)
1 (u,v)

)2m1
(
W

(Ind)
1 (u,v) > dmin/3

)]]
≤ C

(m)
17 exp

(−C
(m)
18 ‖x‖2

)
for a proper choice of C

(m)
17 ,C

(m)
18 > 0. �

Using the properties of ψu
1 and ψv

1 from Proposition 3.4, we can compute the moments of ‖(u + ψu
1 ) − (v +

ψv
1 )‖2

2 − ‖x‖2
2. It is easy to check that

E
[(∥∥(u + ψu

1

)− (v + ψv
1

)∥∥2
2 − ‖x‖2

2

)]= 4E
[(

ψu
1 (1)
)2]= α (say); (4.2)

E
[(∥∥(u + ψu

1

)− (v + ψv
1

)∥∥2
2 − ‖x‖2

2

)2]≥ 8E
[(

ψu
1 (1)
)2]‖x‖2

2 = 2α‖x‖2
2; (4.3)

E
[(∥∥(u + ψu

1

)− (v + ψv
1

)∥∥2
2 − ‖x‖2

2

)3]= O
(‖x‖2

2

)
. (4.4)

The proofs follow from straightforward calculations and have been relegated to the Appendix.

Now, we consider f :Z2 → [0,∞) defined by f (x) =
√

log(1 + ‖x‖2
2). Clearly, f (x) → ∞ as ‖x‖2 → ∞. Using

Taylor’s expansion of the function h(t) =√log(1 + t) and observing that the fourth derivative of h is always negative,
we have

E
[
f
(
Z1(u,v)

)− f
(
Z0(u,v)

) | Z0(u,v) = x
]

= E
[
h
(∥∥(Z1(u,v)

)∥∥2
2

)− h
(∥∥Z0(u,v)

∥∥2
2

) | Z0(u,v) = x
]

≤
3∑

m=1

h(m)(‖x‖2
2)

m! E
[(∥∥Z1(u,v)

∥∥2
2 − ‖x‖2

2

)m | Z0(u,v) = x
]

≤
3∑

m=1

h(m)(‖x‖2
2)

m! E
[(∥∥(u + ψu

1

)− (v + ψv
1

)∥∥2
2 − ‖x‖2

2

)m]

+
3∑

m=1

|h(m)(‖x‖2
2)|

m! C
(m)
17 exp

(−C
(m)
18 ‖x‖2

)
,
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where h(m) represents the mth derivative of h. Plugging in the expressions for h(m) and the moments given in (4.2),
(4.3) and (4.4), we have that the first sum above is bounded by −α‖x‖2

2/[8(1 +‖x‖2
2)

2(log(1 +‖x‖2
2))

3/2] for all large
‖x‖2 and the second sum is bounded by C19 exp(−C20‖x‖2) for a proper choice of the constants C19 and C20. This
yields that

E
[
f
(
Zl+1(u,v)

)− f
(
Zl(u,v)

) | Zl(u,v) = x
]
< 0

for ‖x‖2 large enough. This implies that Zl(u,v) is recurrent and completes the proof for d = 3.

4.3. d ≥ 4

We present the proof for d = 4; the argument being similar for d > 4. To show that P(G has infinitely many distinct
trees) = 1, it is enough to prove that P(G has at least m distinct trees) = 1 for any m ≥ 2. The probability measure P
is ergodic as it is a product measure given by i.i.d. uniform random variables on each vertex of Zd . Clearly, for any
m ≥ 2, the event {G has at least m distinct trees} is translation invariant under the group of translations and hence
P(G has at least m distinct trees) is either 0 or 1. So, it suffices to show that P(G has at least m distinct trees) > 0.

We first show the above for m = 2. It is enough to exhibit two open vertices such that the paths from those two
vertices do not meet with positive probability. We follow the same ideas as in [13] to achieve this; however there
is one crucial change. In [13], each unit increase in the fourth axis represents an unit increase in time co-ordinate.
For our model, the time taken for the joint regeneration of paths starting from two vertices is taken to be a unit of
time. More precisely, starting with two open vertices u and v having the same fourth co-ordinate, at the first joint
regeneration time of the paths from u and v, we think of the time co-ordinate as having increased by a unit and at
each joint regeneration thereafter, the time co-ordinate increases by one unit. At these joint regenerations, the fourth
co-ordinates for both paths are equal. At the lth regeneration, the paths have not yet met if Zl(u,v) �= (0,0,0). Since
the paths coalesce once they meet, it is enough to prove that with positive probability they do not meet at any of the
joint regeneration times, i.e., P(Zl(u,v) �= (0,0,0) for all l ≥ 0) > 0 for some pair of open vertices u and v.

Our strategy is to let the joint paths, from u and v, evolve for n4 joint regeneration times where u and v are
sufficiently far apart (of order n). Then, with a very high probability the paths have traveled further away (of order n2).
Using the Markov property at the regeneration times, we may now start the paths from these new vertices and continue
this process. We make this more precise in the following proposition. For ε > 0, define the event

An,ε(u,v) := {Zn4(u,v) ∈ Dn2(1+ε) \ Dn2(1−ε)

}
,

where Dr := {x ∈ Z3: ‖x‖1 ≤ r}. We show:

Proposition 4.3. For 0 < ε < 1
3 , there exist constants C21, β > 0 and n0 ≥ 1 such that, for all n ≥ n0,

inf
v∈u+D

n1+ε \D
n1−ε

P
(
An,ε(u,v) | u,v ∈ V

)≥ 1 − C21n
−β.

Assuming Proposition 4.3, we first prove the result. Fix ε < 1/3 and choose u0 = (0,0,0,0) and u1 = (n0,0,0,0)

where n0 is as above. Let E2 be the event that both u0,u1 ∈ V , so that P(E2) = p2 > 0. Clearly, n1−ε
0 < ‖u0 −u1‖1 <

n1+ε
0 . We show that P(Zl(u0,u1) �= (0,0,0) for all l ≥ 1 | E2) > 0. For j ≥ 1, set rj =∑j−1

i=0 (n2i

0 )4. Since (0,0,0)

is an absorbing state, we have P(Zl(u0,u1) �= (0,0,0) for all l ≥ 1 | E2) = limj→∞ P(Zrj (u
0,u1) �= (0,0,0) |

E2) ≥ limj→∞ P(Zri (u
0,u1) ∈ D

n
(2i )(1+ε)
0

\ D
n

(2i )(1−ε)
0

for all 1 ≤ i ≤ j | E2) – the last inequality follows because

Zri (u
0,u1) ∈ D

n
(2i )(1+ε)
0

\ D
n

(2i )(1−ε)
0

imposes further restrictions on the Markov chain. For any j ≥ 1, we have

P
(
Zri

(
u0,u1) ∈ D

n
(2i )(1+ε)
0

\ D
n

(2i )(1−ε)
0

for all 1 ≤ i ≤ j | E2
)

= P
(
Zrj

(
u0,u1) ∈ D

n
(2j )(1+ε)
0

\ D
n

(2j )(1−ε)
0

| Zrj−1

(
u0,u1) ∈ D

n
(2j−1)(1+ε)
0

\ D
n

(2j−1)(1−ε)
0

)
× P
(
Zrj

(
u0,u1) ∈ D

n
(2i )(1+ε)
0

\ D
n

(2i )(1−ε)
0

for all 1 ≤ i ≤ j − 1 | E2
)
.
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Now, using the Markov property of Zl(u0,u1), Proposition 4.3 and the translation invariance of our model, we see
that the conditional probability in the second line is at least as large as

inf
v∈u+D

n
(2j−1)(1+ε)
0

\D
n
(2j−1)(1−ε)
0

P
(
A

n2j−1
0 ,ε

(u,v) | u,v ∈ V
)≥ 1 − C21

(
n2j−1

0

)−β
.

By repeating this argument, we conclude that

P
(
Zrj

(
u0,u1) �= (0,0,0)

)≥ j∏
i=1

[
1 − C21

(
n2i−1

0

)−β]→ ∞∏
i=1

[
1 − C21

(
n2i−1

0

)−β]
.

Therefore, P(G has at least 2 distinct trees) ≥ p2∏∞
i=1[1 − C21(n

2i−1

0 )−β ] > 0.
The above calculations hold for any pair of points which satisfy the initial condition. We now use this to prove

that P(G has at least m distinct trees) > 0 for any m ≥ 2. Fix δ > 0 such that m(m − 1)δ/2 < 1. Note that
∏∞

i=1[1 −
C21(n

2i−1
)−β ] → 1 as n → ∞. Now, we choose n1 > n0 so large that

∏∞
i=1[1 − C21(n

2i−1

1 )−β ] > 1 − δ and m < nε
1

where ε and n0 are as above. Now, consider the points ui = ((i −1)n1,0,0,0) for i = 1,2, . . . ,m. Clearly, all of them
have the same fourth co-ordinate and n1−ε

1 < n1 ≤ ‖ui − uj‖1 ≤ mn1 < n1+ε
1 . Let Em be the event that all the points

u1, . . . ,um are open. Then P(Em) = pm > 0. We now consider the event Ai,j that the paths from ui and uj do not
meet for i > j . From above calculations and by our choice of n1, we have P(Ai,j | Em) > 1 − δ. Further, we consider
the intersection of all the events Ai,j for 1 ≤ j < i ≤ m. Clearly, P(

⋂
1≤j<i≤m Ai,j | Em) ≥ 1 − m(m − 1)δ/2 so that

P(G has at least m distinct trees) ≥ pm(1 − m(m − 1)δ/2) > 0.
To prove Proposition 4.3, we define a new event where paths are constructed by using independent uniform random

variables of their own and then use the coupling described in Section 3.3. Consider the event

A(Ind)
n,ε (u,v) :=

{
v +

n4∑
l=1

ψv
l ∈ u +

n4∑
l=1

ψu
l + Dn2(1+ε) \ Dn2(1−ε) ,

v +
j∑

l=1

ψv
l /∈ u +

j∑
l=1

ψu
l + DK logn for all j = 1, . . . , n4

}
,

where K is a suitably chosen large constant. We have:

Proposition 4.4. For 0 < ε < 1
3 , there exists n0 such that

inf
v∈u+D

n1+ε \D
n1−ε

P
(
A(Ind)

n,ε (u,v)
)≥ 1 − C22n

−α,

for some constant C22, α > 0 and for all n ≥ n0.

First we prove Proposition 4.3 assuming the result of Proposition 4.4.

Proof of Proposition 4.3. We employ the coupling described earlier in Section 3.3, on the event A
(Ind)
n,ε (u,v) defined

above. This time we will continue the coupling step by step for n4 simultaneous regeneration steps of independent
paths. At each step we choose r = K logn/3 and say that the coupling is successful at step j if the event AGood(r)

occurs. We do the coupling at step j + 1 if the coupling is successful at step j . Note, if the coupling is successful at
every step j = 1, . . . , n4, we have, for j = 1,2, . . . , n4,

u0 +
j∑

l=1

ψu0

l = gτj (u0,v0)

(
u0) and v0 +

j∑
l=1

ψv0

l = gτj (u0,v0)

(
v0).
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Therefore, we get

P
(
An,ε

(
u0,v0))≥ P

(
A(Ind)

n,ε

(
u0,v0)∩ {Coupling is successful for j = 1,2, . . . , n4}).

Using the Markov property and the estimate of the coupling being successful, given in (3.10), we obtain, for all
sufficiently large n,

P
(
An,ε

(
u0,v0))≥ 1 − C22n

−α − C15n
4 exp(−C16K logn/3) ≥ 1 − C21n

−β

for suitable choice of β > 0 and C21. This proves the Proposition 4.3. �

Finally, we indicate the steps for proving Proposition 4.4. By Remark 3.5, {Sj = v − u +∑j

l=1 ψv
l −ψu

l : j ≥ 1} is
an aperiodic, isotropic, symmetric random walk on Z3 starting from v−u. The event P(An,ε(u0,v0)) is not satisfied if
any of the following occurs: (a) the random walk travels too far, i.e., {Sn4 /∈ Dn2(1+ε)} or (b) the random walk travels too
little, i.e., {Sn4 ∈ Dn2(1−ε) ) or (c) it comes too close to a given point at distance of order n, i.e., {Sj ∈ −(v−u)+DK logn,
for some 1 ≤ j ≤ n4}. For an aperiodic, isotropic, symmetric random walk, it can be shown that each of these events
have small probability. For more details, we refer the reader to Lemma 3.3 of [13]. �

5. Brownian web

In this section we prove Theorem 1.2. We begin by recalling that the Brownian web takes values in the metric space
H equipped with the Hausdorff metric dH where H is the space of compact subsets of the path space (Π,dΠ) (see
the discussion in the paragraphs after the statement of Theorem 1.1 in Section 1). As introduced earlier, for any n ≥ 1,
the collection of scaled paths Xn(γ, σ ) is obtained from G with normalization constants γ,σ and we had remarked
that the closure of Xn(γ, σ ) in (Π,dΠ) denoted by X̄n(γ, σ ) is a (H,BH) valued random variable.

We need some more notation. For a subset Γ ⊆ Π of paths and for t ∈ R let Γ t := {π ∈ Γ : σπ ≤ t} be the set
of paths which start “below” t . For t > 0 and t0, a, b ∈ R with a < b, we define two counting random variables as
follows

ηΓ (t0, t;a, b) := #
{
π(t0 + t): π ∈ Γ t0 and π(t0) ∈ [a, b]} and

η̂Γ (t0, t;a, b) := #
{
π(t0 + t): π ∈ Γ t0 and π(t0 + t) ∈ [a, b]}.

Theorem 2.2 in [12] provided a criteria for a sequence of (H,BH) valued random variables with non-crossing paths
to converge weakly to the Brownian web. In the following we denote, the standard Brownian motion starting from x
by Bx and standard coalescing Brownian motions starting from x1, . . . ,xk respectively, by (W x1

, . . . ,W xk
).

Theorem 5.1 ([12]). Suppose ξ1, ξ2, . . . are (H,BH) valued random variables with non-crossing paths. Assume that
the following conditions hold.

(I1) For all y ∈R2, there exist ζ
y
n ∈ ξn such that for any finite set of points x1, . . . ,xk from a deterministic countable

dense set D of R2, as n → ∞, (ζ x1

n , . . . , ζ xk

n ) ⇒ (W x1
, . . . ,W xk

).
(B1) For all t > 0, lim supn→∞ sup(a,t0)∈R2 P(ηξn(t0, t;a, a + ε) ≥ 2) → 0 as ε ↓ 0.

(B2) For all t > 0, 1
ε

lim supn→∞ sup(a,t0)∈R2 P(ηξn(t0, t;a, a + ε) ≥ 3) → 0 as ε ↓ 0.

Then ξn converges in distribution to the standard Brownian web W .

The convergence in (I1) occurs in the space Πk . Note that the convergence in Π implies that the starting points
converge as points in R2 and the paths converge uniformly on the compact sets of time.

In Theorem 1.4 and Lemma 6.1 of [17], it was further proved that the condition (B2) can be replaced by (E′
1)

where

(E′
1) if Z t0 is any subsequential limit of {X t0

n : n ≥ 1} for t0 ∈ R, then for all t, a, b ∈ R with t > 0 and a < b,
E[η̂Z t0 (t0, t;a, b)] ≤ E[η̂W (t0, t;a, b)] = b−a√

tπ
.
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It is worthwhile mentioning here that for a sequence of (H,BH) valued random variables ξn with non-crossing
paths, property (I1) implies tightness (see Proposition B.2 in the Appendix of [12]) and hence such a subsequential
limit Z t0 exists. Thus, to prove Theorem 1.2 we need to show that for some γ (p) > 0 and σ(p) > 0 the sequence
X̄n(γ, σ ) satisfies the conditions (I1), (B1) and (E′

1) and hence converges to the standard Brownian web.

5.1. Verification of condition (I1)

We proceed by the method of induction and follow a mixture of argument of [10] and [7]. In Section 2, we proved
a regeneration property for any single path, which we use in Proposition 5.2 to show the convergence of this path
(appropriately scaled) to a Brownian motion. For showing the joint convergence of more than one path, we use the
fact that the paths behave (almost) independently when they are separated by a large distance and, when they come
close to each other, they coalesce very quickly. This idea was initially introduced by Ferrari et al. [10]. It should be
noted here that the dependency structure of our model is quite different from that of [10] where paths are independent
when they are separated by a fixed distance. Later Coletti et al. [7] modified it to deal with long range interactions and
we use a similar approach to prove the joint convergence of paths.

We first recall that for a path πu and γ,σ > 0, the scaled path is defined by πu
n = πu

n (γ, σ ): [u(2)/n2γ,∞] →
[−∞,∞] such that πu

n (t) = π(n2γ t)/nσ . Note that the distribution of the path πu depends only on uniform random
variables in {y > u(2)} and is independent of the open/closed status of u. We first show that the scaled path starting
from the origin converges to the standard Brownian motion.

Proposition 5.2. There exist γ := γ (p) and σ := σ(p) such that as n → ∞,

π0
n ⇒ B0 in (Π,dΠ).

Proof. We use the fact that the path in between the regeneration steps can be broken up into i.i.d. pieces. For a path π

we define the modified path π̃ which is linear between successive regeneration points of π . Using Proposition 2.8 we
have that the displacements between successive regeneration times are independent and have exponential moments –
this allows an application of Donsker’s invariance principle to the modified path to prove the convergence to the
Brownian motion.

Let τj and Tj denote the j th regeneration step and time respectively for the path starting from 0 (see (2.1) and

(2.10)). Remembering that gj (0) is the position of the path starting from 0 after the j th step, let Yj = Y
(0)
j = gτj

(0)−
gτj−1

(0) = gτj
(0)(1) − gτj−1(0)(1) (see (2.13)). We define a piecewise linear path π̃ as follows: for Tj ≤ t < Tj+1,

j ≥ 0,

π̃(t) := gτj
(0)(1) + t − Tj

Tj+1 − Tj

(
gτj+1(0)(1) − gτj

(0)(1)
)

and its diffusively scaled version π̃n by

π̃n(t) = π̃n(γ, σ )(t) := 1

nσ
π̃
(
n2γ t

)
for t ≥ 0. Next we define another stochastic process, S on [0,∞) as follows: for j ≤ t < j + 1, j ≥ 0,

S(t) = Tj + (t − j)(Tj+1 − Tj ).

Clearly, S(t) is a strictly increasing process. Hence, t �→ S(t) admits an inverse S−1(t) which is also strictly increas-
ing. The process S(t) denotes the time change required to track the path π̃ . More precisely, we have, for t ≥ 0,

π̃n(t) = Xn

(
S−1(n2γ t

)
/n2),

where the process Xn = Xn(γ,σ ) on [0,∞) is defined as follows: Xn(0) = 0 and for t > 0,

Xn(t) := 1

nσ

[(
n2γ t − ⌊n2γ t

⌋)
Y�n2γ t�+1 +

�n2γ t�∑
i=1

Yi

]
.
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From Remark 2.9, Yi ’s are symmetric and i.i.d., so that E(Y1) = 0. Thus, from Donsker’s invariance principle, it
follows that, for

σ = σ0 :=√Var(Y1),

the process Xn converges weakly to the standard Brownian motion starting from 0.
Let N(t) be the number of the renewals for the process S(t) up to time t , i.e., N(t) = �S−1(t)� so that, N(t) ≤

S−1(t) ≤ N(t) + 1. By the renewal theorem (see Theorem 4.4.1 of [9]), S−1(n2γ t)/n2 → g(t) := γ t
E(T1)

, t ≥ 0 almost
surely. Taking

γ = γ0 := E[T1],
we conclude that

π̃n ⇒ B0.

Finally to conclude the result, it is enough to show that, for any s > 0 and ε > 0

P
[
sup
{∣∣π̃n(t) − π0

n(t)
∣∣: t ∈ [0, s]}> ε

]
= P
[
sup
{∣∣π̃ (t) − π0(t)

∣∣: t ∈ [0, n2γ s
]}

> nσε
]→ 0

as n → ∞. From the definition of Wj(0) (see (2.9)), for any t ∈ [Tj , Tj+1] we have |π̃ (t) − π0(t)| ≤ 2Wj+1 for all
j ≥ 0. Since N(n2γ s) ≤ �n2γ s�, we have

P
[
sup
{∣∣π̃(t) − π0(t)

∣∣: t ∈ [0, n2γ s
]}

> nσε
]

≤ P
[
2 max

{
Wj(0): j = 1, . . . ,

⌊
n2γ s

⌋}
> nσε

]
≤ ⌊n2γ s

⌋
P
(
2W1(0) > nσε

)→ 0 as n → ∞,

where the last step follows from Proposition 2.8. This completes the proof. �

Henceforth, we assume that we are working with γ = γ0 and σ = σ0 and for the ease of writing we drop (γ, σ )

from our notation unless required.
By translation invariance of our model, we have

{
gm(un): m ≥ 0

} d= un + {gm(0): m ≥ 0
}
.

Using Proposition 5.2, we conclude the following corollary:

Corollary 5.2.1. For any u ∈R2 and a sequence {un ∈ Z2: n ≥ 1} such that (un(1)/nσ,un(2)/n2γ ) → u as n → ∞,
we have

πun
n ⇒ Bu in (Π,dπ).

We now show that, if two paths start close to each other on the x-axis, they converge to the same Brownian motion.

Proposition 5.3. Let un = (un,0), vn = (vn,0) ∈ Z2 be such that un < 0 < vn and (vn − un)/n → 0. Then,(
πun

n ,πvn
n

)⇒ (B0,B0). (5.1)

Proof. By Corollary 5.2.1, π
un
n ⇒ B0 and π

vn
n ⇒ B0. Therefore, {πun

n : n ≥ 1} and {πvn
n : n ≥ 1} are both tight in

(Π,dΠ), and hence {(πun
n ,π

vn
n ): n ≥ 1} is tight in the product space. Now, consider any convergent subsequence and

assume that (B, B̃) is the subsequential limit. Since π
un
n ⇒ B0 and π

vn
n ⇒ B0, both B and B̃ are standard Brownian
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motions starting from the origin. Using Skorohod’s representation theorem, we can couple so that the convergence is
almost sure. Furthermore, by the non-crossing property of the path family, π

un
n (s) ≤ π

vn
n (s) for all s ≥ 0. Hence, we

have that B(s) ≤ B̃(s) for all s ≥ 0. This implies that B(s) = B̃(s) for all s ≥ 0 almost surely. �

For verifying condition (I1), we require an estimate on the displacements of paths in the presence of some infor-
mation. Our next proposition estimates the distance traversed by a path (either laterally or vertically) in terms of the
height of the region whose information is known.

Proposition 5.4. Let R⊆H(mβ) for some m ≥ 1 and 0 < β < 1/2. For the path π0 staring from the origin 0 = (0,0),
given any configuration on R and any δ > 2β we have

P
(
sup
{∣∣π0(s)

∣∣: 0 ≤ s ≤ mβ
}≥ mδ|{Uw: w ∈R})≤ C23m

β exp
(−C24m

β
)
,

where C23 and C24 are positive constants.

Proof. Consider the horizontal line {y = �mβ� + 1} lying above the region R. For the construction of the path π0

there is no information regarding the configuration on the lattice points on or above this line. Consider the following
events:

E(1)
m :=

�mβ�+1⋂
i=1

(2i−1)�mβ�⋃
u=2(i−1)�mβ�+1

{(
u,
⌊
mβ
⌋+ 1

) ∈ V
};

E(2)
m :=

�mβ�+1⋂
i=1

−2(i−1)�mβ�−1⋃
u=−(2i−1)�mβ�

{(
u,
⌊
mβ
⌋+ 1

) ∈ V
}
.

On the event E
(1)
m (E(2)

m ), there are one or more open vertices in each of the blocks [2(i − 1)�mβ� + 1, (2i −
1)�mβ�] × {�mβ� + 1} (respectively from [−(2i − 1)�mβ�,−2(i − 1)�mβ� − 1] × {�mβ� + 1}) of size �mβ� for
i = 1,2, . . . , �mβ�+ 1. Clearly, Em := E

(1)
m ∩E

(2)
m depends only on the uniform random variables on {y = �mβ�+ 1}

and hence, is independent of the history. Further, P(E
(1)
m ) = P(E

(2)
m ) = (1− (1−p)�mβ�)�mβ�+1 ≥ 1− (�mβ�+1)(1−

p)�mβ�. Therefore P(Ec
m) ≤ C23m

β exp(−C24m
β) for suitable choice of C23 and C24.

Fix any δ ∈ (2β,1). Let l = min{j : hj (0)(2) ≥ �mβ� + 1}. Note that at every step the path moves a distance at
least 1 in the y co-ordinate, hence l ≤ �mβ� + 1. To complete the proof, it is enough to show that on the set Em, we
have {hj (0): 0 ≤ j ≤ l} ⊆ [−mδ,mδ] × [0,2(�mβ� + 1)].

On the event Em, the existence of an open vertex in the first block [1, �mβ�]× {�mβ�+ 1} ensures that ‖h1(0)‖1 ≤
2mβ + 1. The construction of the set Em ensures that this argument can be repeated for each of the steps until the lth
step of the path, i.e., the step when the path crosses {y = �mβ� + 1}. Since l ≤ �mβ� + 1, we have that until the lth
step the path stays inside the rectangle [−(2�mβ� + 1)�mβ�, (2�mβ� + 1)�mβ�] × [0,2(�mβ� + 1)].

The proposition follows for any δ > 2β . �

Returning to the verification of condition (I1) we start with a map on :R2 → V given by

on(z) = zn, (5.2)

where zn(1) := min{j + �nσz(1)�: j ≥ 0, (j + �nσz(1)�, �n2γ z(2)�) is open} and zn(2) := �n2γ z(2)�. We now
define the path ζ z

n ∈Xn as follows

ζ z
n := πon(z)

n , for any z ∈R2. (5.3)

Corollary 5.2.1 proves condition (I1) for k = 1.
We proceed to prove it for k ≥ 2, assuming that it is true for k − 1. Fix x1, . . . ,xk ∈ R2, and without loss of

generality we assume xk(2) = min{xi (2): 1 ≤ i ≤ k} = 0.
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The strategy we adopt is to show that until the time when the kth path comes close to one of the other (k − 1)

paths, it can be approximated by an independent path with the same distribution as itself, and after that time, it
quickly coalesces with the path which is close to it and both of them converge to the same Brownian motion.

Following the ideas introduced in [10], we consider the product metric space (Πk, dk
Π) where

dk
Π

(
(π1, . . . , πk), (θ1, . . . , θk)

) := k∑
i=1

dΠ(πi, θi).

We define a subset A of Πk as follows:

A = {(π1, . . . , πk) ∈ Πk: such that

(a) πk(σπj
) �= πj (σπj

) for all j �= k;
(b) tk := inf

{
t > max{σπi

, σπk
}: πi(t) = πk(t) for some 1 ≤ i ≤ k − 1

}
< ∞;

(c) for any δ > 0 there exist 1 ≤ i ≤ k − 1, tk − δ < t < tk < s < tk + δ

such that
(
πk(t) − πi(t)

)(
πk(s) − πi(s)

)
< 0 where πi

(
tk
)= πk

(
tk
)

and πj

(
tk
) �= πk

(
tk
)

for all 1 ≤ j < i
}
.

Note that A consists of all k-tuples of continuous paths such that the kth path intersects at least one of the other
k − 1 paths π1, . . . , πk−1 and it immediately crosses one particular such path. Let Bxk

be a standard Brownian mo-
tion starting at xk and independent of W x1

, . . . ,W xk−1
, the independent coalescing Brownian motions starting from

x1, . . . ,xk−1. From the path property of independent Brownian motions, we have

P
[(

W x1
, . . . ,W xk−1

,Bxk ) ∈ A
]= 1. (5.4)

We define a coalescence map f :Πk → Πk as follows:

f (π1, . . . , πk) :=
{

(π1, . . . , πk−1,πk) for (π1, . . . , πk) ∈ A,
(π1, . . . , πk) otherwise,

with

πk(t) :=
{

πk(t) for t ≤ tk ,
πi(t) for t > tk ,

where i is the index such that πi(t
k) = πk(t

k) and πj (t
k) �= πk(t

k) for all 1 ≤ j < i. It follows that

f
(
W x1

, . . . ,W xk−1
,Bxk ) d= (W x1

, . . . ,W xk )
. (5.5)

Next, we define a sequence of subsets of Πk where the kth path comes close to one of the k − 1 paths and a
sequence of “coalescing functions.” The idea of the subsets of Πk and coalescing functions is motivated from [10].
Ferrari et al. considered a sequence of subsets of Πk where any two of the k paths come close to each other and
defined a sequence of coalescing maps such that before coalescing those two paths are independent. As we proceed
by method of induction, we consider subsets of Πk where the kth path comes close to one of the k − 1 paths. Our
coalescing map ensures that the probability that before coalescence the kth path is independent of the k − 1 paths
converges to 1.

We fix α ∈ (0,1/2) for the rest of this section. For n ≥ 1, define

Aα
n = {(π1, . . . , πk) ∈ Πk: such that

tkn := inf
{
t ≥ max{σπi

, σπk
}: ∣∣πi(t) − πk(t)

∣∣≤ nα−1

for some 1 ≤ i ≤ k − 1
}

< ∞}. (5.6)



Random directed forest 1131

We now define the “α-coalescence map” f
(α)
n :Πk → Πk , as follows:

f (α)
n (π1, . . . , πk) :=

{
(π1, . . . , πk−1,πk) for (π1, . . . , πk) ∈ Aα

n ,
(π1, . . . , πk) otherwise

with

πk(t) :=

⎧⎪⎨
⎪⎩

πk(t) for t ≤ tkn ,

πk(t
k
n) + (t−tkn )

sk
n−tkn

[πi(s
k
n) − πk(t

k
n)] for tkn < t ≤ sk

n ,

πi(t) for t > sk
n ,

where sk
n = (�n2γ tkn� + 1)/(n2γ ) and i is the index such that |πi(t

k
n) − πk(t

k
n)| ≤ nα−1 and |πj (t

k
n) − πk(t

k
n)| > nα−1

for all 1 ≤ j < i.
Before proceeding, we state the following deterministic lemma (which is a slightly stronger version of Lemma 19

of [7]). The proof of this lemma has been relegated to the Appendix and it will be used later in the proof of Proposi-
tion 5.6.

Lemma 5.5. Let (π1, . . . , πk) ∈ A and {(π1,n, . . . , πk,n): n ≥ 1} ⊆ Πk be such that for all 1 ≤ i ≤ k, dΠ(πi,n,πi) →
0 as n → ∞. Then, for n large enough, we have (π1,n, . . . , πk,n) ∈ Aα

n and limn→∞ tkn = tk , where tk , tkn are as defined
above. Further,

dk
Π

(
f (α)

n (π1,n, . . . , πk,n), f (π1, . . . , πk)
)→ 0 as n → ∞. (5.7)

We now describe a construction which will be used to prove the general case. Let {Ur
w: w ∈ Z2} and

{Ug
w: w ∈ Z2} be two independent collections of i.i.d. U(0,1) random variables. Given a set of points x1, . . . ,xk ∈

R2, let {(x1
n, . . . ,xk

n): n ≥ 1} be such that for all i = 1,2, . . . , k, xi
n ∈ Z2 for n ≥ 1 with xi

n(2) ≥ 0 and
(xi

n(1)/nσ,xi
n(2)/n2γ ) → xi as n → ∞. We construct the paths π1, . . . , πk−1 starting from x1

n, . . . ,xk−1
n using

only the collection {Ur
w: w ∈ Z2}, while, for the construction of the path π̃ k starting from xk

n we use the collection
{Ug

w: w ∈ Z2}. From the independence of the collections of uniform random variables, the scaled paths (π1
n , . . . , πk−1

n )

and the scaled path π̃ k
n are independent. Further,

(
π1

n , . . . , πk−1
n

) d= (πx1
n

n , . . . , π
xk−1
n

n

)
and π̃ k

n
d= π

xk
n

n . (5.8)

Next, we consider the region E(r) which is explored by the paths π1, . . . , πk−1, constructed using the collection
{Ur

w: w ∈ Z2} only. On the complement set of E(r), we consider the collection {Ug
w: w ∈ Z2} and construct the path,

πk , starting from xk
n. More precisely, the set

E(r) :=
⋃

1≤i≤k−1

⋃
m≥0

S+(hm
(
xi
n

)
,
∥∥hm
(
xi
n

)− hm+1(xi
n

)∥∥
1

)

represents the explored region by the paths π1, . . . , πk−1 using the collection {Ur
w: w ∈ Z2} only. We define

{Umixed
w : w ∈ Z2} by

Umixed
w :=

{
Ur

w if w ∈ E(r),
U

g
w otherwise.

Let πk be the path starting from xk
n constructed using the collection {Umixed

w : w ∈ Z2}. We also observe that the
distribution of πk , given the realization of the uniform random variables in E(r), is the same as the conditional
distribution of πxk

n given the paths πx1
n , . . . , πxk−1

n . Hence from the above observation and definition (5.3),

(
π1

n , . . . , πk−1
n ,πk

n

) d= (πx1
n

n , . . . , π
xk−1
n

n ,π
xk
n

n

)
. (5.9)
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Proposition 5.6. We have, as n → ∞,

(a) f
(α)
n (π1

n , . . . , πk−1
n , π̃k

n ) ⇒ (W x1
, . . . ,W xk

);

(b) f
(α)
n (π1

n , . . . , πk−1
n ,πk

n ) ⇒ (W x1
, . . . ,W xk

);

(c) (π1
n , . . . , πk−1

n ,πk
n ) ⇒ (W x1

, . . . ,W xk
).

Since (on(z)(1)/(nσ), on(z)(2)/(n2γ )) → z almost surely, where on(z) is defined in (5.2), by (c) of the proposition
above, we have(

ζ x1

n , . . . , ζ xk

n

)⇒ (W x1
, . . . ,W xk )

,

which verifies (I1).

Proof of Proposition 5.6. From Corollary 5.2.1 and (5.8) it follows that the scaled path π̃ k
n converges in

distribution to Bxk
, the standard Brownian motion starting at xk . Using the induction hypothesis and (5.8)

we have that (π1
n , . . . , πk−1

n ) converges in distribution to (W x1
, . . . ,W xk−1

). From the independence of paths

we have (π1
n , . . . , πk−1

n , π̃k
n ) converges in distribution to (W x1

, . . . ,W xk−1
,Bxk

) where Bxk
is independent of

(W x1
, . . . ,W xk−1

). Now Lemma 5.5 and (5.4) enable us to use the extended continuous mapping theorem (see Theo-
rem 4.27 in [15]) to conclude that

f (α)
n

(
π1

n , . . . , πk−1
n , π̃k

n

) ⇒ f
(
W x1

, . . . ,W xk−1
,Bxk ) d= (W x1

, . . . ,W xk )
,

where the last relation follows from (5.5). This proves (a).
For (b), let f

(α)
n (π1

n , . . . , πk−1
n ,πk

n ) = (π1
n , . . . , πk−1

n ,π k
n ) and f

(α)
n (π1

n , . . . , πk−1
n , π̃ k

n ) = (π1
n , . . . , πk−1

n ,π k
n ).

Note that dk
Π((π1

n , . . . , πk−1
n ,π k

n ), (π1
n , . . . , πk−1

n ,π k
n )) = dΠ(π k

n ,π k
n ). It suffices to show that dΠ(π k

n ,π k
n )

P→ 0 as
n → ∞. Since both the paths start at the same point, it is enough to prove that,

for any t > 0, sup
{∣∣π k

n(s) − π k
n(s)
∣∣: 0 ≤ s ≤ t

} P→ 0 as n → ∞. (5.10)

Towards this end, we show that on a set whose probability converges to 1, π k
n(s) and π

k

n(s) agree for s ∈ [0, t].
For any s > 0 and i = 1,2, . . . , k, set

l
(s)
i = l

(s)
i (n) := min

{
j ≥ 0: Tj

(
xi
n

)≥ n2γ s
}
,

where Tj (u) is the j th regeneration time for path starting from u defined in (2.10). Here l
(s)
i stands for the number of

regenerations needed for the ith path πi (starting from xi
n) to cross the line {y = n2γ s}. Now, for 0 < β < α and any

s > 0, define the event

A(s)
n := {Wj

(
xi
n

)
< nβ : for all 1 ≤ i ≤ k,1 ≤ j ≤ l

(s)
i

}
with Wj(u) as defined in (2.9). On the event A

(s)
n , each of the regeneration steps till the l

(s)
i th regeneration of all the k

paths, is of length at most nβ . Since l
(s)
i ≤ �n2γ s� + 1, and using the fact that the individual regenerations are i.i.d.,

having bounds on tail probabilities given in Proposition 2.8, we have, as n → ∞,

P
((

A(s)
n

)c) = P

( ⋃
1≤i≤k

⋃
1≤j≤l

(s)
i

{
Wj

(
xi
n

)≥ nβ
})≤ k

(⌊
n2γ s

⌋+ 1
)
P
(
W1(0) ≥ nβ

)→ 0. (5.11)

If tkn ≥ t , on the event A
(t)
n ,

(a) from the definition of tkn , for s ≤ n2γ t , we have min1≤i≤k−1 |π̃ k(s) − πi(s)| ≥ nα ,
(b) the restriction on the sizes of the regeneration steps by nβ together with the choice β < α ensures that the path π̃ k

has not explored the region E(r) before it crosses {y = n2γ t}.
Thus the paths π̃ k and πk agree on [0, n2γ t] and so π k

n(s) = π k
n(s) for 0 ≤ s ≤ t .
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If tkn ≤ t , on the event A
(tkn )
n , we have

(a) from the definition of tkn , for every s ≤ n2γ tkn , we have min1≤i≤k−1 |π̃ k(s) − πi(s)| ≥ nα ,
(b) the restriction on the sizes of the regeneration steps by nβ together with the choice β < α ensures that the path π̃ k

has not explored the region E(r) before it crosses {y = n2γ tkn}.
Thus the paths π̃ k and πk agree on [0, n2γ tkn ] and thereby π k(s) = π

k
(s) for 0 ≤ s ≤ tkn . The rest of the path πk (from

n2γ tkn onwards) depends only on the position π̃ k(n2γ tkn) and the paths (π1, . . . , πk−1) and hence, by the definition of
the α-coalescing map, we have

f (α)
n

(
π1

n , . . . , πk−1
n ,πk

n

)
(s) = f (α)

n

(
π1

n , . . . , πk−1
n , π̃k

n

)
(s)

for s ∈ [tkn , t]. Hence, π k
n(s) = π k

n(s) for 0 ≤ s ≤ t .

Since A
(t)
n ⊆ A

(tkn )
n when tkn ≤ t , (5.11) along with the two observations above implies (5.10). This completes the

proof of part (b).

For (c), we show that dk
Π((π1

n , . . . , πk−1
n ,π k

n ), (π1
n , . . . , πk−1

n ,πk
n )) = dΠ(π k

n ,πk
n )

P→ 0 as n → ∞. Again it is
enough to prove,

for any t > 0, sup
{∣∣πk

n(s) − π k
n(s)
∣∣: 0 ≤ s ≤ t

} P→ 0 as n → ∞. (5.12)

Suppose i0 := min{j : |πk
n(tkn) − π

j
n (tkn)| ≤ nα−1}, i.e., π

i0
n is the path with the minimum index which comes nα−1

close to πk
n . Note that π k

n(s) is obtained by a linear interpolation between πk
n(tkn) and π

i0
n (sk

n) for s ∈ [tkn , sk
n] and

π k
n(s) = π

i0
n (s) for s ∈ [sk

n,∞) where sk
n = (�n2γ tkn� + 1)/(n2γ ). Since paths in Xn are noncrossing almost surely,

we have π k
n(s) ∈ [πi0

n (s),πk
n (s)] for [tkn ,∞). Also, note that both the paths πk

n and π k
n start at the same point and

agree till tkn . Thus (5.12) holds for tkn ≥ t .
If tkn < t , we have

sup
{∣∣πk

n(s) − π k
n(s)
∣∣: 0 ≤ s ≤ t

}≤ sup
{∣∣πk

n(s) − πi0
n (s)

∣∣: tkn ≤ s ≤ t
}
.

Again, we restrict ourselves to the event A
(tkn )
n . Let Δn be the set of vertices explored by the paths until all of them

have crossed the line {y = �n2γ tkn�}, i.e.,

Δn =
⋃

1≤i≤k

τ
l
(tkn )

i

−1⋃
m=0

S+(hm
(
xi
n

)
,
∥∥hm
(
xi
n

)− hm+1(xi
n

)∥∥
1

)
.

We observe that, on the event A
(tkn )
n , the set Δn is contained in H(�n2γ tkn�+�nβ�). Now we choose two points un, vn ∈

Z such that un < πi0(�n2γ tkn�),πk(�n2γ tkn�) < vn and (vn − un)/n → 0. Since |πi0(�n2γ tkn�) − πk(�n2γ tkn�)| ≤
nα−1, such a choice of un, vn is possible for n large. Set un := (un, �n2γ tkn�) and vn := (vn, �n2γ tkn�). We consider
scaled paths π

un
n and π

vn
n and by non-crossing property of the paths, we see that the paths π

i0
n and πk

n lie between the
paths π

un
n and π

vn
n from tkn onwards, so that

sup
{∣∣πk

n(s) − πi0
n (s)

∣∣: tkn ≤ s ≤ t
}≤ sup

{∣∣πvn
n (s) − πun

n (s)
∣∣: tkn ≤ s ≤ t

}
.

Fix any δ ∈ (2β,1) and consider the points u′
n = (un − �nδ� − 1, �n2γ tkn� + �nβ� + 1) and v′

n = (vn + �nδ� +
1, �n2γ tkn� + �nβ� + 1). Let

Fn(un) := {sup
{∣∣πun(s) − un

∣∣: ⌊n2γ tkn
⌋≤ s ≤ ⌊n2γ tkn

⌋+ nβ
}≤ nδ

}
,

Fn(vn) := {sup
{∣∣πvn(s) − vn

∣∣: ⌊n2γ tkn
⌋≤ s ≤ ⌊n2γ tkn

⌋+ nβ
}≤ nδ

}
.

By Proposition 5.4 (taking R = Δn and translating so that un is the origin) we have P(Fn(un)) → 1. Similarly,
P(Fn(vn)) → 1.
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On the set Fn(un) ∩ Fn(vn), we have that u′
n(1) ≤ πun(�n2γ tkn� + �nβ� + 1),πvn(�n2γ tkn� + �nβ� + 1) ≤ v′

n(1)

and hence, by non-crossing property of paths, πu′
n(s) ≤ πun(s) ≤ πvn(s) ≤ πv′

n(s) for all s > �n2γ tkn� + �nβ� + 1.
Using the estimate in Proposition 5.4, we have

sup
{∣∣πun

n (s) − πvn
n (s)

∣∣: tkn ≤ s ≤ t
}

≤ (|un − vn| + 2nδ
)
/(nσ) + sup

{∣∣πu′
n

n (s) − π
v′
n

n (s)
∣∣: tkn + nβ/

(
n2γ
)≤ s ≤ t

}
.

The paths starting from u′
n and v′

n depend only on the uniform random variables defined on {y > �n2γ tkn� +
�nβ� + 1} and hence independent of the realizations in the set Δn. Using translation invariance of our model and
Proposition 5.3 we conclude that

sup
{∣∣πu′

n
n (s) − π

v′
n

n (s)
∣∣: tkn + nβ/

(
n2γ
)≤ s ≤ t

} P→ 0.

This proves the proposition. �

5.2. Verification of (B1) and (E′
1)

The verification of condition (B1) is standard and follows from the same argument as in [10]. Recall that for t0 ∈
R, t > 0 and −∞ < a < b < ∞ and for Γ ⊆ Π

ηΓ (t0, t;a, b) = #
{
π(t0 + t): π ∈ Γ t0 and π(t0) ∈ [a, b]}.

By translation invariance, it suffices to consider ηX̄n
(0, t;0, ε). Let vn = ((�nσε� + 1),0). As noted in [10], using

(I1), we have P(ηX̄n
(0, t;0, ε) ≥ 2) ≤ P(π0

n(t) �= πvn

n (t)) → P(W 0(t) �= W(ε,0)(t)) = 2φ(ε/
√

t) − 1.
Hence we have

lim sup
n→∞

P
(
ηX̄n

(0, t;0, ε) ≥ 2
)≤ 2�

(
ε√
t

)
− 1 → 0

as ε → 0 which verifies (B1).
In order to verify (E′

1), recall that

X̄ t0
n = {π : π ∈ X̄n with σπ ≤ t0}.

Since X̄ t0
n ⊆ X̄n for any t0 ∈ R, and {X̄n: n ≥ 1} is tight, we have {X̄ t0

n : n ≥ 1} is also tight. Let Z t0 be a subsequential
limit of {X̄ t0

n : n ≥ 1}. For ease of notation, we assume that {X̄ t0
n : n ≥ 1} is itself the subsequence which converges

to Z t0 .
For Γ ⊆ Π , let Γ (s) := {(π(s), s): π ∈ Γ s} ⊆ R2. For t > 0 define Γ s;(s+t)T := {π : σπ = s + t and there exists

π ′ ∈ Γ s such that π(u) = π ′(u) for all u ≥ s + t}. Note Γ s;(s+t)T is the restriction of paths in Γ s on [s + t,∞).
Following the argument in [17], our strategy to check (E′

1) is to first show that the point set Z t0(t0 + t) is locally
finite and then using (I1) we show that (Z t0)t0;(t0+t)T = Z t0;(t0+t)T has the same distribution as coalescing Brownian
motions WZ t0 (t0+t) starting from a random point set distributed as Z t0(t0 + t).

To show Z t0(t0 + t) is locally finite, we need to control the tail of the distribution of the coalescing time of two
paths starting at the same instant of time.

Proposition 5.7. For u,v ∈ Z2, u(2) = v(2) consider the process, {Zj (u,v): j ≥ 0}. We have

sup
{
P
(
Zj+1(u,v) = m | Zj (u,v) = m

)
: m ≥ 1

}≤ θ

for some θ ∈ (0,1) which is independent of j .

Proof. To prove Proposition 5.7, we observe that for m ≥ 3, P(Zj+1(u,v) = m + 1 | Zj (u,v) = m) ≥ (1 − p)6p3,
P(Zj+1(u,v) = 3 | Zj (u,v) = 2) ≥ (1 − p)5p3 and P(Zj+1(u,v) = 2 | Zj (u,v) = 1) ≥ (1 − p)4p3 (see Figure 7).
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Fig. 7. One possible realization of the event {Zj+1 = m + 1 | Zj = m}. The bold vertices are open and all other vertices depicted are closed.

Therefore, we have

P
(
Zj+1(u,v) = m | Zj (u,v) = m

)
≤ 1 − P

(
Z1(u,v) = m + 1 | Z0(u,v) = m

)
≤ 1 − min

{
(1 − p)6p3, (1 − p)5p3, (1 − p)4p3}= 1 − (1 − p)6p3. �

Now, we prove an estimate on the tail of coalescing time. We will use the following result (Theorem 4 of [7]).

Theorem 5.8. Let {Vj : j ≥ 0} be a Markov chain on the state space {0,1, . . .} with 0 being the only absorbing
state. Further, assume that {Vj : j ≥ 0} is a martingale and sup{P(V1 = m|V0 = m): m ≥ 1} ≤ θ for some constant
θ ∈ (0,1). Let τV := inf{j ≥ 1: Vj = 0}. Then, for some constant C25, we have

P
(
τV ≥ n | V0 = 1

)≤ C25/
√

n for all n ≥ 1.

Proposition 5.9. Fix u = (1,0),v = (0,0) ∈ Z2, let ν = inf{l: gτl(u,v)(u) = gτl(u,v)(v)}, where τl(u,v) is the lth
regeneration step as defined in (2.1). For the νth regeneration time Tν(u,v) as defined in (2.10), there exist positive
constants C26 and C27, such that, we have

P(ν ≥ t) ≤ C26/
√

t and P
(
Tν(u,v) ≥ t

)≤ C27/
√

t .

Proof. The process {Zj(u,v): j ≥ 0} satisfies the conditions of Theorem 5.8 and therefore, it follows that P(ν ≥ t) ≤
C26/

√
t where C26 is a constant.

To achieve the bound on Tν(u,v), we choose C28 = 1/(2E(WM)) where WM is as in Proposition 2.8. Note that, it
is also the case that Tl(u,v) ≤∑l

i=1 WM(i), for any l ≥ 1, where {WM(i): i ≥ 1} is an i.i.d. sequence, each having
the same distribution as that of WM (see discussion before (2.10) and the statement of Proposition 2.8). We have,

P
(
Tν(u,v) ≥ t

) ≤ P
(
Tν(u,v) ≥ t, ν < C28t

)+ P(ν ≥ C28t)

≤ P
(
T�C28t�(u,v) ≥ t

)+ C26√
C28t

≤ P

[�C28t�∑
i=1

(
WM(i) −E

(
WM(i)

))≥ t −E
(
WM
)�C28t�

]
+ C26√

C28t

≤ V ar(
∑�C28t�

i=1 WM(i))

[t −E(WM)�C28t�]2
+ C26√

C28t

≤ �C28t�V ar(WM)

(t/2 − 1)2
+ C26√

C28t
≤ C27√

t

for a suitable choice of constant C27. This completes the proof. �

Before we proceed further, we introduce the following notation: for any A ⊆ Z2, let XA and XA
n be the collection of

paths starting at the vertices of A and their scaled versions respectively, i.e., XA := {πu: u ∈ A} and XA
n := {πu

n : u ∈
A}. Now, we prove the following proposition which is an adaptation of Lemma 2.7 of [17].
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Proposition 5.10. For a, b ∈R and t > 0, for all n ≥ 1, we have

E
[
#
(
XZ×{0}

n (t) ∩ ([a, b] × {t}))]≤ C29(b − a)√
t

, (5.13)

where C29 is a constant, independent of t and a, b.

Proof. Fix s > 0 and let u(s) = E[#(XZ×{0}(s)∩ ([0,1)×{s}))]. Set M ≥ 1. Then by translation invariance, we have
E[#(XZ×{0}(s) ∩ ([0,M) × {s}))] = Mu(s). Now, we have

Mu(s) ≤
∞∑

i=−∞
E
[
#
(
X [iM,(i+1)M)×{0}(s) ∩ ([0,M) × {s}))]

=
∞∑

i=−∞
E
[
#
(
X [0,M)×{0}(s) ∩ ([−iM,−(i − 1)M

))× {s})]
= E
[
#
(
X [0,M)×{0}(s)

)]
≤ M − (M − 1)

[
1 − P

(
π(0,0)(s) �= π(1,0)(s)

)]
≤ M − (M − 1)

[
1 − C27√

s

]
(from Proposition 5.9)

≤ 1 + C27(M − 1)√
s

.

Dividing both sides by M and letting M → ∞, we have u(s) ≤ C27/
√

s.
For any n ≥ 1, let ln = �n(b − a)/2� + 1. Now, we have E[#(XZ×{0}

n (t) ∩ ([a, b] × {t}))] = E[#(XZ×{0}
n (t) ∩

([−(b − a)/2, (b − a)/2] × {t}))] ≤ E[#(XZ×{0}(n2γ t) ∩ ([−ln, ln) × {n2γ t}))] = 2lnu(n2γ t) ≤ 2C27ln/
√

n2γ t ≤
C29(b − a)/

√
t for a proper choice of C29. �

Let (P, ρP ) be the space of compact subsets of (R2
c, ρ) with the induced Hausdorff metric. Since X̄ t0

n converges
weakly to Z t0 , by the continuous mapping theorem, we have that X̄ t0

n (t0 + t) converges weakly to Z t0(t0 + t) in
(P, ρP ). Next we prove that Z t0(t0 + t) is a.s. locally finite.

Proposition 5.11. For any t > 0, Z t0(t0 + t) is a.s. locally finite and

E
[
#
(
Z t0(t0 + t) ∩ ((a, b) × {t0 + t}))]≤ C29(b − a)√

t

for C29 as in the previous proposition.

Proof. For the first part it is enough to consider t0 = 0 and prove that #(Z0(t) ∩ ((−m,m) ×{t})) is finite a.s. for any
m ≥ 1. First, we observe that if u = (u(1), u(2)) is such that u(2) < 0 and h(u)(2) > 0, then it must be the case that
h(u(1),0) = h(u). Therefore, #(X̄ 0

n (t)∩ ((−m,m)×{t})) ≤ #(XZ×{0}
n (t)∩ ((−m,m)×{t})). From Proposition 5.10,

E
[
lim inf
n→∞ #

(
X̄ 0

n (t) ∩ ((−m,m) × {t}))]
≤ E
[
lim inf
n→∞ #

(
XZ×{0}

n (t) ∩ ((−m,m) × {t}))]
≤ lim inf

n→∞ E
[
#
(
XZ×{0}

n (t) ∩ ((−m,m) × {t}))]
≤ 2C29m/

√
t .
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Therefore, we conclude that lim infn→∞ #(X̄ 0
n (t) ∩ ((−m,m) × {t})) < ∞ almost surely.

Since X̄ 0
n (t) ⇒ Z0(t) in (P, ρP ), using Skorohod’s representation theorem, we may couple the processes so that

the above convergence is almost sure. We now claim that, almost surely,

#
(
Z0(t) ∩ ((−m,m) × {t}))≤ lim inf

n→∞ #
(
X̄ 0

n (t) ∩ ((−m,m) × {t})).
Fix ω such that lim infn→∞ #(X̄ 0

n (t) ∩ ((−m,m) × {t})) = l(ω) < ∞. For this ω we may choose a subsequence nk

along which #(X̄ 0
nk

(t)∩((−m,m)×{t})) = l(ω) for all large k. If Z0(t)∩((−m,m)×{t}) has at least l(ω)+1 distinct
points, say, {(yi, t): i = 1, . . . , l(ω)+ 1}, we may choose δ > 0 so small that the intervals (yi − δ, yi + δ) ⊆ (−m,m),
for i = 1,2, . . . , l(ω)+ 1 are mutually disjoint. Since X̄ 0

nk
(t)∩ ([−m,m]× {t}) converges to Z0(t)∩ ([−m,m]× {t})

in (P, ρP ), each of these intervals should contain at least one point of X̄ 0
nk

(t) ∩ ((−m,m) × {t}) for all large k. This
is a contradiction as for all large k, X̄ 0

nk
(t) ∩ ((−m,m) × {t}) has exactly l(ω) many points.

The expectation bound now follows from the above inequality and completes the proof. �

Since E[#(Z t0(t0 + t) ∩ ((x − δ, x + δ) × {t0 + t}))] ≤ 2C29δ/
√

t → 0, as δ → 0, we may conclude:

Corollary 5.11.1. For any x ∈R, P((x, t0 + t) ∈ Z t0(t0 + t)) = 0.

We now state the main proposition of this subsection which is similar to Lemma 6.3 of [17].

Proposition 5.12. For t > 0, we have

Z t0;(t0+t)T d=WZ t0 (t0+t),

where WZ t0 (t0+t) is the set of paths given by coalescing Brownian motions starting from a random point set distributed
as Z t0(t0 + t).

We first complete the proof of (E′
1) assuming the validity of the above proposition. For 0 < ν < t , we have,

E
[
η̂Z t0 (t0, t;a, b)

] = E
[
η̂Z t0;(t0+ν)T (t0 + ν, t − ν;a, b)

]
≤ E
[
η̂W (t0 + ν, t − ν;a, b)

]= b − a√
π(t − ν)

.

Letting ν → 0 we obtain (E′
1).

Before proving Proposition 5.12 we observe that the paths in X 0;(t)T
n carry their own history region along with

them. Hence Proposition 5.6 cannot be applied directly to obtain the finite dimensional distributions of Z0;(t)T .

Proof of Proposition 5.12. It suffices to prove the result for t0 = 0. We restrict our attention to the set of paths
which start in [−m,m] × {t} for some m ≥ 1. Let us denote by Z0;(t)T

m = {π ∈Z0;(t)T : π(t) ∈ [−m,m]} and WZ t
m =

WZ0(t)∩([−m,m]×{t}). Observe that it is enough to show Z0;(t)T
m

d= WZ t
m for any m ≥ 1. For the rest of the section we

fix m ≥ 1.
Consider the mapping g :H → H given by g(K) = {π ∈ K0;(t)T : π(t) ∈ [−m,m]}. Using Corollary 5.11.1 we

have P(Z0 ∈ Dg) = 0 where Dg is the set of discontinuity points of the map g. Since X̄ 0
n ⇒ Z0, from Theorem 5.1

of [6] we have g(X̄ 0
n ) ⇒ g(Z0) =Z0;(t)T

m .
Now we will obtain WZ t

m as a weak limit of g(X̄ 0
n ) to establish the required equality. For any K ∈H, we consider

the map f :H →P given by f (K) = {(π(t), t): σπ ≤ t, π(t) ∈ [−m,m]}. Again, using Corollary 5.11.1, we observe
that P(Z0 ∈ Df ) = 0 where Df is the set of all discontinuity points of the map. For t > 0, taking D := Z0(t) ∩
([−m,m] × {t}), we have that, as n → ∞,

X̄ 0
n (t) ∩ ([−m,m] × {t})⇒ D in (P, ρP ). (5.14)
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Fix n ≥ 1, β < 1/2 and 2β < δ < 1. Define the sets

Dn := {(⌊nσx(1)
⌋
,
⌊
n2γ t

⌋+ ⌊nβ
⌋+ 1

)
:
(
x(1),x(2)

) ∈ X 0
n (t),x(1) ∈ [−m,m]}

and D
(scaled)
n := {(y(1)/(nσ),y(2)/(n2γ )): y ∈ Dn}. Note that Dn (and hence D

(scaled)
n ) is a finite set. For each y =

(y(1),y(2)) ∈ D
(scaled)
n , we have x ∈ X 0

n (t) ∩ ([−m,m] × {t}) such that ‖x − y‖2 ≤ (nβ + 2)/n and vice versa.

Thus, ρP (X 0
n (t) ∩ ([−m,m] × {t}),D(scaled)

n ) → 0 almost surely. Using (5.14), we conclude that D
(scaled)
n ⇒ Z0(t) ∩

([−m,m] × {t}) = D in (P, ρP ).
We show now that it is unlikely that a path π ∈ X 0

n , which crosses the x-axis far from the origin, will cross the line
{y = t} inside [−m,m]. Consider the event

En := {there exists π ∈ X 0
n with π(0) /∈ [−n,n] and π(t) ∈ [−m,m]}.

Scaling back to the original lattice and using the non-crossing property of paths, we observe that the if the paths
starting from u = (−�n2σ�,0) and v = (�n2σ�,0) do not cross the segment [−nσm,nσm] × {n2γ t}, then the paths
which cross the x-axis to the left of −n2σ or to the right of n2σ will also stay away from that segment. Hence, we
have

P(En) ≤ P
({

πu(n2γ t
)≥ −nσm

}∪ {πv(n2γ t
)≤ nσm

})
≤ 2P

(
πu(n2γ t

)≥ −nσm
)

= 2P
(
π0(n2γ t

)≥ ⌊n2σ
⌋− nσm

)
= 2P

(
π0

n(t) ≥ (⌊n2σ
⌋− nσm

)
/(nσ)

)
→ 0 as n → ∞,

π0 being the path starting at (0,0), and the last step follows from Proposition 5.2.
Let X̃n := {π ∈ X̄ 0

n : π(0) ∈ [−n,n]}. On the event Ec
n, we observe that g(X̃n) = g(X̄ 0

n ) as (H, dH)-valued random
variable. Hence, we have

dH
(
g(X̃n), g

(
X̄ 0

n

)) P→ 0. (5.15)

Now, we follow the paths in g(X̃n) until they cross the line {y = t} and consider the history that is created in doing
so. Scaling back to the original lattice, for u ∈ Z2 with u(2) ≤ 0 let lu := min{j : hj (u)(2) ≥ n2γ t} denote the number
of steps taken by the path starting from u to cross the line {y = n2γ t}. We define, the set of explored regions for paths
in unscaled version of g(X̃n), by

Δ̃n :=
⋃ lu−1⋃

i=0

S+(hi(u),
∥∥hi(u) − hi+1(u)

∥∥
1

)
,

where the first union is over u ∈ V , u(2) ≤ 0, πu
n (0) ∈ [−n,n],πu

n (t) ∈ [−m,m]. Consider the event Fn = {Δ̃n �
H(�n2γ t� + �nβ�)}. Assuming P(Fn) → 0 as n → ∞ (which will be shown shortly), we observe that on the event
(En ∪ Fn)

c, using the fact that the vertices of Dn lie on the line {y = �n2γ t� + �nβ� + 1}, the evolution of the paths
from the set Dn is independent of the history Δ̃n. This allows us to adapt Lemma 6.5 of [17] for our model and
conclude

XDn
n ⇒ WD =WZ t

m in (H, dH). (5.16)

The details of this argument is presented in the Appendix.
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To show P(Fn) → 0, we consider paths starting from each (j,0), −n2σ − 1 ≤ j ≤ n2σ + 1 and consider the region
explored by these paths until they cross the line {y = n2γ t}, i.e., set

Δ′
n :=

�n2σ�+1⋃
j=−�n2σ�−1

l(j,0)−1⋃
i=0

S+(hi(j,0),
∥∥hi(j,0) − hi+1(j,0)

∥∥
1

)
.

We observe that on the event Ec
n, we must have Δ̃n \H(0) ⊆ Δ′

n. Therefore, we have

P
(
Δ̃n �H

(⌊
n2γ t

⌋+ ⌊nβ
⌋))

≤ P
({

Δ′
n �H

(⌊
n2γ t

⌋+ ⌊nβ
⌋)}∩ Ec

n

)+ P(En)

≤ P

[ +�n2σ�+1⋃
j=−�n2σ�−1

�n2γ t�+1⋃
i=1

{
Wi(j,0) ≥ nβ

}]+ P(En)

≤ (2⌊n2σ
⌋+ 3

)(⌊
n2γ t

⌋+ 1
)
P
(
W1(0,0) ≥ nβ

)+ P(En)

→ 0 as n → ∞,

where the penultimate inequality follows from the fact that each path π(j,0) can have at most �n2γ t� + 1 many
regenerations until it crosses the line {y = n2γ t} and the last step follows from Proposition 2.8.

Finally, we show that dH(XDn
n , g(X̄ 0

n ))
P→ 0 to complete the proof of Proposition 5.12. Consider the event that one

of the paths in g(X̃n) moves significantly far in a short period after crossing the line {y = t}. Define the event

Gn := {there exists π ∈ g(X̃n) with
∣∣π(t) − π(s)

∣∣> nδ−1/σ for some s ∈ [t, t + (nβ−2/γ
)]}

.

We have #(g(X̃n)) ≤ #{π(t) ∈ [−m,m]: π ∈ XZ×{0}
n } and hence, on the event Ec

n, #(g(X̃n)) ≤ 2�n2σ� + 3. From
Proposition 5.4 it follows that P(Gn) ≤ P(En) + P(Fn) + (2�n2σ� + 3)P(sup{|π0(s)|: 0 ≤ s ≤ nβ} ≥ nδ|{Uw: w ∈
Δ′

n} ∩ (Fn)
c) ≤ P(En) + P(Fn) + C23n

β exp(−C24n
β)(2�n2σ� + 3) → 0 as n → ∞.

The finiteness of g(X̄ 0
n ) allows us to enumerate the paths in g(X̄ 0

n ) as π1, . . . , πN for some random N . Let xj :=
(�nσπj (t)�, �n2γ t� + �nβ� + 1) for j = 1, . . . ,N . Note that xj ’s need not be distinct, however Dn = {xi : 1 ≤
i ≤ N} and hence dH(XDn

n , g(X̄ 0
n )) ≤ max{dΠ(πj ,π

xj
n ): 1 ≤ j ≤ N}. In other words, for s > t taking M

j
n(s) :=

sup{|πj (l) − π
xj
n (l)|: l ∈ [t + (�nβ� + 1)/(n2γ ), s]} we need to show (a) max{Mj

n(s): 1 ≤ j ≤ N} P→ 0 and (b)

max{‖(πj (σπj ), σπj
) − (π

xj
n (σ

π
xj
n

), σ
π

xj
n

)‖2: 1 ≤ j ≤ N} P→ 0 as n → ∞.

Since ‖(πj (σπj ), σπj
) − (π

xj
n (σ

π
xj
n

), σ
π

xj
n

)‖2 ≤ (nβ + 2)/n, (b) follows immediately.

Clearly, E(N) = E[#(g(X̄ 0
n ))] ≤ E[#(XZ×{0}

n (t) ∩ ([−m,m] × {t}))] ≤ 2C29m/t from Proposition 5.10. So, given
η,η′ > 0, we can choose L (independent of n) so large that P(N ≥ L) ≤ η′/2. On the event Gc

n, we observe that
the paths πj and π

xj
n will lie between the scaled paths starting from (�nσπj (t)� − �nδ�, �n2γ t� + �nβ� + 1) and

(�nσπj (t)�+�nδ�, �n2γ t�+�nβ�+1). Therefore, by translation invariance, P({Mj(s) ≥ η}∩Fc
n ) ≤ P(sup{|π0

n(l)−
π

(2�nδ�,0)
n (l)|: 0 ≤ l ≤ s − t} ≥ η). Hence, we have that P(max{Mj

n(s): 1 ≤ j ≤ N} ≥ η) ≤ P(Fn) + P(Gn) +
P[#(g(X̄ 0

n )) ≥ L] + LP(sup{|π0
n(l) − π

(2�nδ�,0)
n (l)|: 0 ≤ l ≤ s − t} ≥ η). By Proposition 5.3, both the paths π0

n and

π
(2�nδ�,0)
n converge to the same Brownian motion. Therefore, for all large n, we have P(max{Mj

n(s): 1 ≤ j ≤ N} ≥
η) < η′. This completes the proof. �

Appendix

Proof of Lemma 2.6. It suffices to prove that, for some α > 0, we have E(exp(ατM)) < ∞. Since Mn+1 is a function
of Mn and an independent sequence of random variables, {Mn: n ≥ 0} is a Markov chain. Furthermore, it is irreducible
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and recurrent. Using Proposition 5.5, Chapter 1 of Asmussen [3], it suffices to show that there exist a nonnegative
function f :N∪ {0} → R+, n0 ∈N and r > 1 such that f (j) > ν for some ν > 0 and E[f (M1) | M0 = j ] < ∞ for all
j ≤ n0, while for j > n0, E[f (M1) | M0 = j ] ≤ f (j)/r .

Taking f : {0,1,2, . . .} → R to be f (i) = exp(αi), where α > 0 is small enough so that E[exp(αθ1)] < ∞ and
exp(−α) < 1/r , we have

E
[
exp
(
α(M1 − M0)

) | M0 = m
]

= exp(−α)P(θ1 ≤ m) + exp
(−α(m + 1)

)
E
[
1(θ1 > m) exp(αθ1)

]
< (1/r) + exp

(−α(m + 1)
)
E
[
1(θ1 > m) exp(αθ1)

]
≤ (1/r) for m sufficiently large.

Here the last inequality follows because E[exp(αθ1)] < ∞ guarantees exp(−α(m + 1))E[1(θ1 > m) exp(αθ1)] → 0
as m → ∞. �

Proof of Lemma 2.7. We have P(N = n) ≤ P(N ≥ n) ≤ E(αN) exp(−αn). Let Ψ be the moment generating function
of θ1. Then, for all γ0 ≤ β , Ψ (γ0) = E(exp(γ0θ1)) < ∞. Since the function Ψ (γ0) is continuous at 0 and Ψ (0) = 1,
we may choose γ > 0 so that Ψ (2γ ) exp(−α) < 1. Now, we have

E
[
exp(γ S)

] = E

[ ∞∑
n=1

1(N = n) exp

(
γ

n∑
i=1

θi

)]

=
∞∑

n=1

E

[
1(N = n) exp

(
γ

n∑
i=1

θi

)]
≤

∞∑
n=1

[
P(N = n)

]1/2

[
E

(
exp

(
2γ

n∑
i=1

θi

))]1/2

≤
∞∑

n=1

√
E(αN) exp(−nα/2)

[
Ψ (2γ )

]n/2 =√E(αN)

∞∑
n=1

[
exp(−α)Ψ (2γ )

]n/2
< ∞;

here the first inequality follows from the Cauchy–Schwarz inequality. This completes the proof. �

Proof of Lemma 3.2. Define Ln := max{R(1)
n ,R

(2)
n } and set τL := inf{n ≥ 1: Ln = 0}. Then, we have τR = τL.

Again, we define a new Markov chain which dominates Ln and satisfies the conditions of Lemma 2.6, from which we
will conclude the result.

We start with 2 families of independent copies of the inter-arrival times, say {η(1)
n : n ≥ 1} and {η(2)

n : n ≥ 1} with

η
(i)
1

d= ξ
(i)
1 for i = 1,2. Now keeping the same notation as in the proof of Proposition 2.3, we set Wmove

n := {i: R
(i)
n = 0

for i = 1,2} and W
stay
n := {1,2} \ Wmove

n . Now, for i ∈ Wmove
n , we have S

(i)
li (n)

= n for some li (n) ≥ 0, and, for

i ∈ W
stay
n , we have S

(i)
l �= n for every l ≥ 0. Define

Jn+1 := max
{
max
{
ξ

(i)
li (n)+1: i ∈ Wmove

n

}
,max

{
η

(i)
n+1: i ∈ W

stay
n

}}
and

M0 := 0 and Mn+1 := max{Mn,Jn+1} − 1 for n ≥ 0.

We now claim Mn ≥ Ln for all n ≥ 0. We have M0 = L0 = 0. Assume that the result holds for n and we have

Ln+1 = max
{
Ln,max

{
ξ

(i)
li (n)+1: i ∈ Wmove

n

}}− 1 ≤ max{Mn,Jn+1} − 1 = Mn+1.

The assumptions imposed on ξ
(i)
n imply that the Markov chain satisfies the conditions of Lemma 2.6 and the result

follows from that. �
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Calculations for (4.2), (4.3) and (4.4). For all m ≥ 1 we have

E
[(∥∥(u0 + ψu0

1

)− (v0 + ψv0

1

)∥∥2
2 − ‖x‖2

2

)m]
= E
[(∥∥(x(1) + ψu0

1 (1) − ψv0

1 (1),x(2) + ψu0

1 (2) − ψv0

1 (2)
)∥∥2

2 − ‖x‖2
2

)m]
= E
[((

ψu0

1 (1)
)2 + (ψu0

1 (2)
)2 + (ψv0

1 (1)
)2 + (ψv0

1 (2)
)2 − 2ψu0

1 (1)ψv0

1 (1)

− 2ψu0

1 (2)ψv0

1 (2) + 2x(1)
(
ψu0

1 (1) − ψv0

1 (1)
)+ 2x(2)

(
ψu0

1 (2) − ψv0

1 (2)
))m]

.

From Proposition 3.4 we have E[(ψu0

1 (j1))
m1(ψv0

1 (j2))
m2 ] = 0 at least one of m1, m2 is odd. Hence for m = 1 we

have,

E
[∥∥(u0 + ψu0

1

)− (v0 + ψv0

1

)∥∥2
2 − ‖x‖2

2

]
= E
[(

ψu0

1 (1)
)2 + (ψu0

1 (2)
)2 + (ψv0

1 (1)
)2 + (ψv0

1 (2)
)2]= 4E

[(
ψu0

1 (1)
)2]

.

For m = 2 using Proposition 3.4 we have

E
[(∥∥(u0 + ψu0

1

)− (v0 + ψv0

1

)∥∥2
2 − ‖x‖2

2

)2]
= E
[(((

ψu0

1 (1)
)2 + (ψu0

1 (2)
)2 + (ψv0

1 (2)
)2 + (ψv0

1 (2)
)2)− 2ψu0

1 (1)ψv0

1 (1)

− 2ψu0

1 (2)ψv0

1 (2) + 2x(1)
(
ψu0

1 (1) − ψv0

1 (1)
)+ 2x(2)

(
ψu0

1 (2) − ψv0

1 (2)
))2]

≥ E
[(

2x(1)
(
ψu0

1 (1) − ψv0

1 (1)
))2 + (2x(2)

(
ψu0

1 (2) − ψv0

1 (2)
))2]

= 4
(
x(1)
)2
E
[(

ψu0

1 (1)
)2 + (ψv0

1 (1)
)2]+ 4

(
x(2)
)2
E
[(

ψu0

1 (2)
)2 + (ψv0

1 (2)
)2]

= 8‖x‖2
2E
[(

ψu0

1 (1)
)2]

.

The inequality follows from the fact that E[(ψu0

1 (j1))
m1(ψv0

1 (j2))
m2 ] �= 0 for all 1 ≤ j1, j2 ≤ d − 1, only if both m1

and m2 are even and E[ψu0

1 (1)ψu0

1 (2)] = E[ψv0

1 (1)ψv0

1 (2)] = 0.
By the same logic it also follows that for m = 3 we have

E
[(∥∥(u0 + ψu0

1

)− (v0 + ψv0

1

)∥∥2
2 − ‖x‖2

2

)3]
= E
[(((

ψu0

1 (1)
)2 + (ψu0

1 (2)
)2 + (ψv0

1 (2)
)2 + (ψv0

1 (2)
)2)− 2ψu0

1 (1)ψv0

1 (1)

− 2ψu0

1 (2)ψv0

1 (2) + 2x(1)
(
ψu0

1 (1) − ψv0

1 (1)
)+ 2x(2)

(
ψu0

1 (2) − ψv0

1 (2)
))3]

= 12E
[((

ψu0

1 (1)
)2 + (ψu0

1 (2)
)2 + (ψv0

1 (1)
)2 + (ψv0

1 (2)
)2 − 2

(
ψu0

1 (1)ψv0

1 (1)

+ ψu0

1 (2)ψv0

1 (2)
))((

x(1)
(
ψu0

1 (1) − ψv0

1 (1)
))2 + (x(2)

(
ψu0

1 (2) − ψv0

1 (2)
))2)

+ terms free of x
]

= 24‖x‖2
2E
[(

ψu0

1 (1)
)4 + (ψu0

1 (1)ψu0

1 (2)
)2 + 4

(
ψu0

1 (1)ψv0

1 (1)
)2]+ terms free of x

= O
(‖x‖2

2

)
as ‖x‖2 → ∞.

Proof of Lemma 5.5. Let i ∈ {1, . . . , k − 1} be such that πi(t
k) = πk(t

k) and πj (t
k) �= πk(t

k) for all 1 ≤ j < i. Fix
ε such that 0 < ε < tk − max{σπi

, σπk
}. Given η > 0 let Pi,Pk ⊆R2 be defined as

Pi(η) = {(x,u):
∥∥(x,u) − (πi(s), s

)∥∥
1 ≤ η for some σπi

≤ s ≤ tk − ε
}
,

Pk(η) = {(x,u):
∥∥(x,u) − (πk(s), s

)∥∥
1 ≤ η for some σπk

≤ s ≤ tk − ε
}
,
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i.e., Pi and Pk are the regions obtained by η-fattening the paths πi and πk respectively. Since tk = inf{s: πi(s) =
πk(s)} > max{σπi

, σπk
} therefore we may first choose 0 < η < ε/2 such that

d
(
Pi(η),Pk(η)

) := inf
{∥∥(x,u) − (y, v)

∥∥
1: (x,u) ∈ Pi(η), (y, v) ∈ Pk(η)

}
> η.

Next, since dΠ(πi,n,πi) → 0 and dΠ(πk,n,πk) → 0 as n → ∞ we may choose n0 ≥ 1 such that η > nα−1
0 and, for

all n ≥ n0, the following hold:

(a) σπi,n
≤ tk − ε and σπi,n

≤ tk − ε,
(b) {(πi,n(s), s): σπi,n

≤ s ≤ tk − ε} ⊆ Pi(η) and {(πk,n(s), s): σπk,n
≤ s ≤ tk − ε} ⊆ Pk(η).

Since Pi and Pk are separated by a minimum distance η, we have tkn ≥ tk −ε for all n ≥ n0 and hence lim infn→∞ tkn ≥
tk − ε.

Now assume that πk(t
k −ε) > πi(t

k −ε). For the other case the argument is exactly similar. Fix s ∈ [tk, tk +ε], such
that πi(s)−πk(s) = ν > 0. For n0 as above, choose n1 > n0 such that for all n ≥ n1 we have supt∈[tk−ε,tk+ε] |πj,n(t)−
πj (t)| < ν/4 for j = i, k. For n > n1, πi,n(s)−πk,n(s) ≥ πi(s)−πk(s)−|πi,n(s)−πi(s)|−|πk,n(s)−πk(s)| > ν/2 >

0; and our choice of n1 ensures that πk,n(t
k − ε) − πi,n(t

k − ε) > 0. Thus, πi,n and πk,n cross each other before time
tk + ε and hence lim supn→∞ tkn ≤ tk + ε. This completes the proof of first part of the lemma.

Since tkn → tk and max{dΠ(πi,πi,n), dΠ(πk,πk,n)} → 0 as n → ∞, it is enough to show that sup{|πk,n(t) −
πk(t)|: t ∈ [tk − ε, tk + ε]} → 0 as n → ∞.

For 0 < β < ε, writing

sup
t∈[tk−ε,tk+ε]

∣∣πk,n(t) − πk(t)
∣∣ ≤ sup

t∈[tk−ε,tk−β]

∣∣πk,n(t) − πk(t)
∣∣

+ sup
t∈[tk−β,tk+β]

∣∣πk,n(t) − πk(t)
∣∣+ sup

t∈[tk+β,tk+ε]

∣∣πi,n(t) − πi(t)
∣∣

and observing that

(a) the first and the last terms of the expression above can be made arbitrarily small as in the first part of this proof,
(b) the middle term can be made small by choosing β such that, for each of j1, j2 ∈ {i, k}, sup{|πj1(s1) −

πj2(s2)|: s1, s2 ∈ [tk − β, tk + β]} is small and noting that πk,n is defined by a linear interpolation between

πk,n(t
k
n) and πi,n(

�n2γ tkn�+1
n2γ

). �

Finally, to show (5.16) we first show that for any deterministic finite sets Bn and B with Bn ⊂ Z2, B ⊂ R2

ρP (B
(scaled)
n ,B) → 0 as n → ∞ where B

(scaled)
n := {(y(1)/(nσ),y(2)/(n2γ )): y ∈ Bn}, we have XBn

n converges
weakly to WB , i.e., coalescing Brownian motions starting from a random point set distributed as B . Since almost

surely XZ
2

consists of non-crossing paths only, (I1) implies that the family { ¯XZ2
n : n ∈ N} is tight, and XBn

n ⊂ ¯XZ2
n

guarantees that {XBn
n : n ∈ N} is also tight. The sequence { ¯XZ2

n : n ∈ N} also satisfies (I1) and hence satisfies (B1).

The proof of Theorem 5.3 in [12] shows that for any subsequential limit Z of { ¯XZ2
n : n ∈ N} and for any deterministic

x ∈ R2 there is almost surely a unique path starting from x in Z . A coupling argument then shows that the same is true

for any subsequential limit ZB of {XBn
n : n ∈ N}. The sequence {( ¯XZ2

n ,XBn
n ): n ∈ N} is jointly tight and let (Z,ZB)

be a subsequential limit of this sequence. By Skorohod’s representation theorem we assume that we are working on a

probability space such that {( ¯XZ2
nk

,XBnk
nk

): k ∈ N} converges almost surely to (Z,ZB). Since XBnk
nk

⊆ ¯XZ2
nk

for all nk ,
if for any deterministic x ∈ B , with positive probability ZB has more than one path starting from x then so does Z .
Hence for all x ∈ B , ZB has unique path starting from x almost surely. Now by (I1) the finite dimensional distributions
of ZB are the same as that of a process of a coalescing Brownian motions. Therefore we have that ZB has the same
distribution as WB starting from the set B .

For the general case, it suffices to show that E[f (XDn
n )] → E[f (WD)] as n → ∞ for all bounded continuous

f on (H, dH). Let fn(Dn) := E[f (XDn
n )|Dn] and f (D) := E[f (WD)|D]. By Skorohod’s representation theorem

we can assume that we are working on a probability space such that Dn → D almost surely as n → ∞ in (P, ρP ).
Let {Ua

w: w ∈ Z2} be a collection of i.i.d. U [0,1] random variables and independent of the collection {Uw: w ∈ Z2}
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used to build the model. For any A ⊆ Z, let XA
a,n be the collection of scaled paths starting from A constructed using

{Ua
w: w ∈ Z2} only. Since the evolution of the paths from Dn is independent of σ(Dn), we have

χDn
n | Dn

d= χDn
a,n almost surely.

From our assumptions on Dn we have fn(Dn) := E[f (XDn
n ) | Dn] = E[f (XDn

a,n)] almost surely. Then, for almost
every ω, by the deterministic part of this proof we have that XDn(ω)

a,n converges in distribution to WD(ω). Hence
we have almost surely fn(Dn) → f (D) as n → ∞. By the bounded convergence theorem we have E[fn(Dn)] =
E[f (XDn

n )] → E[f (D)] = E[f (WD)] as n → ∞.
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