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Abstract. Let μ and ν be two probability measures on R
d , where μ(dx) = e−V (x) dx∫

Rd e−V (x) dx
for some V ∈ C1(Rd). Explicit sufficient

conditions on V and ν are presented such that μ∗ν satisfies the log-Sobolev, Poincaré and super Poincaré inequalities. In particular,

if V (x) = λ|x|2 for some λ > 0 and ν(eλθ |·|2 ) < ∞ for some θ > 1, then μ ∗ ν satisfies the log-Sobolev inequality. This improves
and extends the recent results on the log-Sobolev inequality derived in (J. Funct. Anal. 265 (2013) 1064–1083) for convolutions
of the Gaussian measure and compactly supported probability measures. On the other hand, it is well known that the log-Sobolev

inequality for μ ∗ ν implies ν(eε|·|2) < ∞ for some ε > 0.

Résumé. Soit μ et ν deux mesures de probabilité sur Rd , où μ(dx) = e−V (x) dx∫
Rd e−V (x) dx

avec V ∈ C1(Rd). Des conditions explicites

suffisantes sur V et ν sont présentées telles que μ ∗ ν satisfait des inégalités de Sobolev logarithmique, de Poincaré et de super-

Poincaré. En particulier, si V (x) = λ|x|2 pour quelque λ > 0 et ν(eλθ |·|2 ) < ∞ avec θ > 1, alors μ∗ν satisfait l’inégalité de Sobolev
logarithmique. Cela améliore et étend des résultats récents sur l’inégalité de Sobolev logarithmique obtenus dans (J. Funct. Anal.
265 (2013) 1064–1083) pour des convolutions de la mesure de Gauss et des mesures de probabilité à support compact. D’autre

part, il est bien connu que l’inégalité de Sobolev logarithmique pour μ ∗ ν implique ν(eε|·|2 ) < ∞ pour quelque ε > 0.

MSC: 60J75; 47G20; 60G52
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1. Introduction

Functional inequalities of Dirichlet forms are powerful tools in characterizing the properties of Markov semigroups
and their generators, see, e.g., [19] and references within. To establish functional inequalities for less explicit or less
regular probability measures, one regards the measures as perturbations from better ones satisfying the underlying
functional inequalities. For a probability measure μ on R

d , the perturbation to μ can be made in the following two
senses. The first type perturbation is in the sense of exponential potential: the perturbation of μ by a potential W

is given by μW(dx) := eW(x)μ(dx)

μ(eW )
, for which functional inequalities have been studied in many papers, see [2,5,10]

and references within. Another kind of perturbation is in the sense of independent sum of random variables: the
perturbation of μ by a probability measure ν on R

d is given by their convolution

(μ ∗ ν)(A) :=
∫
Rd

1A(x + y)μ(dx)ν(dy).
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Functional inequalities for the latter case is not yet well investigated, and the study is useful in characterizing distri-
bution properties of random variables under independent perturbations, see, e.g., [20], Section 3, for an application in
the study of random matrices.

In general, let μ and ν be two probability measures on R
d . A straightforward result on functional inequalities of

μ ∗ ν can be derived from the sub-additivity property; that is, if both μ and ν satisfy a type of functional inequality,
μ ∗ ν will satisfy the same type inequality. In this paper, we will consider the Poincaré inequality and the super
Poincaré inequality. We say that a probability measure μ satisfies the Poincaré inequality with constant C > 0, if

μ
(
f 2) ≤ Cμ

(|∇f |2) + μ(f )2, f ∈ C1
b

(
R

d
)
. (1.1)

We say that μ satisfies the super Poincaré inequality with β : (0,∞) → (0,∞), if

μ
(
f 2) ≤ rμ

(|∇f |2) + β(r)μ
(|f |)2

, r > 0, f ∈ C1
b

(
R

d
)
. (1.2)

It is shown in [16], Corollary 3.3, or [17], Corollary 1.3, that the super Poincaré inequality holds with β(r) = ec/r

for some constant c > 0 if and only if the following Gross log-Sobolev inequality (see [12]) holds for some constant
C > 0:

μ
(
f 2 logf 2) ≤ Cμ

(|∇f |2), f ∈ C1
b

(
R

d
)
,μ

(
f 2) = 1. (1.3)

Proposition 1.1. Let μ and ν be two probability measures on R
d .

(1) If μ and ν satisfy the Poincaré (resp. log-Sobolev) inequality with constants C1 and C2 > 0 respectively, then
μ ∗ ν satisfies the same inequality with constant C = C1 + C2.

(2) If μ and ν satisfy the super Poincaré inequality with β1 and β2 respectively, then μ∗ν satisfies the super Poincaré
inequality with

β(r) := inf
{
β1(r1)β2(r2): r1, r2 > 0, r1 + r2β1(r1) ≤ r

}
, r > 0.

Since the proof of this result is almost trivial by using functional inequalities for product measures (cf. [9], Corol-
lary 13), we simply omit it. Due to Proposition 1.1, in this paper the perturbation measure ν may not satisfy the
Poincaré inequality, it is in particular the case if the support of ν is disconnected.

Recently, when μ is the Gaussian measure with variance matrix δI for some δ > 0, it is proved in [20] that μ ∗ ν

satisfies the log-Sobolev inequality if ν has a compact support and either d = 1 or δ > 2R2d , where R is the radius of
a ball containing the support of ν, see [20], Theorem 2 and Theorem 17. The first purpose of this paper is to extend
this result to more general μ and to drop the restriction δ > 2R2d for high dimensions. The main tool used in [20]
is the Hardy type criterion for the log-Sobolev inequality due to [6], which is qualitatively sharp in dimension one.
In this paper we will use a perturbation result of [2] and a Lyapunov type criterion introduced in [8] to derive more
general and better results. In particular, as a consequence of Corollary 2.2 below, we have the following result where
the compact support condition of ν is relaxed by an exponential integrability condition. We would like to indicate
that the exponential integrability condition ν(eε|·|2) < ∞ for some ε > 0 is also necessary for μ ∗ ν to satisfy the
log-Sobolev inequality. Indeed, it is well known that the log-Sobolev inequality for μ ∗ ν implies (μ ∗ ν)(ec|·|2) < ∞
for some c > 0, so that ν(eε|·|2) < ∞ for ε ∈ (0, c). However, it is not clear whether “θ > 1” in the following result is
sharp or not.

Theorem 1.2. Let V = λ| · |2 for some constant λ > 0, and μ(dx) = e−V (x) dx∫
Rd e−V (x) dx

be a probability measure on R
d .

Then for any probability measure ν on R
d with ν(eλθ |·|2) < ∞ for some constant θ > 1, the log-Sobolev inequality

(μ ∗ ν)
(
f 2 logf 2) ≤ C(μ ∗ ν)

(|∇f |2), f ∈ C1
b

(
R

d
)
, (μ ∗ ν)

(
f 2) = 1

holds for some constant C > 0.
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According to the above-mentioned results in [20], one may wish to prove that the log-Sobolev inequality is stable
under convolution with compactly supported probability measures; i.e., if μ satisfies the log-Sobolev inequality, then
so does μ ∗ ν for a probability measure ν having compact support. This is however not true, a simple counterexample
is that μ = δ0, the Dirac measure at point 0, which obviously satisfies the log-Sobolev inequality, but μ ∗ ν = ν does
not have to satisfy the log-Sobolev inequality even if ν is compactly supported. Thus, to ensure that μ ∗ ν satisfies the
log-Sobolev inequality for any compactly supported probability measure ν, one needs additional assumptions on μ.
Moreover, since when λ → ∞, the Gaussian measure μ in Theorem 1.2 converges to δ0, this counterexample also fits
to the assertion of Theorem 1.2 that for large λ we need a stronger concentration condition on ν.

In the remainder of this paper, let μ(dx) = e−V (x) dx be a probability measure on R
d such that V ∈ C1(Rd). For a

probability measure ν on R
d , we define

pν(x) =
∫
Rd

e−V (x−z)ν(dz), Vν(x) = − logpν(x), x ∈R
d .

Then

(μ ∗ ν)(dx) = pν(x)dx = e−Vν(x) dx. (1.4)

Moreover, let

νx(dz) = 1

pν(x)
e−V (x−z)ν(dz), x ∈R

d .

In the following three sections, we will investigate the log-Sobolev inequality, Poincaré and super Poincaré inequalities
for μ ∗ ν respectively.

As a complement to the present paper, Cheng and Zhang investigated the weak Poincaré inequality in [11] for
convolution probability measures, by using the Lyapunov type conditions as we did in Sections 3 and 4 for the
Poincaré and super Poincaré inequalities respectively.

2. Log-Sobolev inequality

In this section we will use two different arguments to study the log-Sobolev inequality for μ∗ν. One is the perturbation
argument due to [1,2], and the other is the Lyapunov criterion presented in [8].

2.1. Perturbation argument

Theorem 2.1. Assume that the log-Sobolev inequality (1.3) holds for μ with some constant C > 0. If V ∈ C1(Rd)

such that

Φν(x) :=
∫
Rd

(∇e−V
)
(x − z)ν(dz), x ∈R

d

is well-defined and continuous, and there exists a constant δ > 1 such that

∫
Rd

exp

{
δC

4

(∫
Rd

∣∣∇V (x) − ∇V (x − z)
∣∣νx(dz)

)2}
μ(dx) < ∞, (2.1)

then μ ∗ ν also satisfies the log-Sobolev inequality, i.e., for some constant C′ > 0,

(μ ∗ ν)
(
f 2 logf 2) ≤ C′(μ ∗ ν)

(|∇f |2), f ∈ C1
b

(
R

d
)
, (μ ∗ ν)

(
f 2) = 1.

Obviously, Φν ∈ C(Rd ;Rd) holds if either ν has compact support or ∇e−V is bounded. Moreover, (2.2) below
holds for bounded HessV and compactly supported ν. So, the following direct consequence of Theorem 2.1 improves
the above-mentioned main results in [20]. Indeed, this corollary implies Theorem 1.2.



Functional inequalities for convolution probability measures 901

Corollary 2.2. Assume that (1.3) holds and Φν is well defined and continuous. If V ∈ C2(Rd) with bounded HessV

such that∫
Rd

exp

{
δC

4
‖HessV ‖2∞

(∫
Rd

|z|νx(dz)

)2}
μ(dx) < ∞ (2.2)

holds for some constant δ > 1, then μ ∗ ν satisfies the log-Sobolev inequality.

Before presenting the proof of Theorem 2.1, we first prove Theorem 1.2 using Corollary 2.2.

Proof of Theorem 1.2. Let Z = ∫
Rd e−λ|x|2 dx. Since, in the framework of Corollary 2.2, V (x) = λ|x|2 + logZ, we

have ‖HessV ‖2∞ = 4λ2 and (1.3) holds for C = 1
λ

. Moreover, since θ > 1, there exists a constant ε ∈ (0,1) such that
δ := θ − ε

1−ε
> 1. So, by the Jensen inequality

I :=
∫
Rd

exp

{
δC

4
‖HessV ‖2∞νx

(| · |)2
}
μ(dx) ≤

∫
Rd

eδλνx(|·|2)μ(dx)

≤
∫
Rd×Rd

eδλ|z|2νx(dz)μ(dx) =
∫
Rd

∫
Rd eλδ|z|2−λ|x−z|2ν(dz)∫

Rd e−λ|x−z|2ν(dz)
μ(dx). (2.3)

Take R > 0 such that ν(B(0,R)) ≥ 1
2 . We have∫

Rd

e−λ|x−z|2ν(dz) ≥
∫

B(0,R)

e−λR2−2λR|x|−λ|x|2ν(dz) ≥ 1

2
e−λR2−2λR|x|−λ|x|2 .

Moreover, for the above ε ∈ (0,1) we have

−|x − z|2 ≤ 2|x| · |z| − |x|2 − |z|2 ≤ −ε|x|2 + ε

1 − ε
|z|2.

Combining this with (2.3), we obtain

I ≤ 2eλR2

Z

∫
Rd×Rd

eλδ|z|2−λ|x−z|2+2λR|x|ν(dz)dx

≤ 2eλR2

Z

∫
Rd×Rd

eλδ|z|2−λε|x|2+(λε)/(1−ε)|z|2+2λR|x| dxν(dz)

= 2eλR2

Z

∫
Rd×Rd

eλθ |z|2−λε|x|2+2λR|x| dxν(dz) < ∞.

Then the proof is finished by Corollary 2.2. �

To prove Theorem 2.1, we introduce the following perturbation result due to [2], Lemma 3.1, and [1], Lemma 4.1.

Lemma 2.3. Assume that the probability measure μ(dx) = e−V (x) dx satisfies the log-Sobolev inequality (1.3) with
some constant C > 0. Let μV0(dx) = e−V0(x) dx be a probability measure on R

d . If F := 1
2 (V − V0) ∈ C1(Rd) such

that ∫
Rd

exp
(
δC|∇F |2)dμ < ∞, (2.4)

holds for some constant δ > 1, then the defective log-Sobolev inequality

μV0

(
f 2 logf 2) ≤ C1μV0

(|∇f |2) + C2, f ∈ C1
b

(
R

d
)
,μV0

(
f 2) = 1, (2.5)

holds for some constants C1,C2 > 0.
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Proof of Theorem 2.1. Since by (1.4) we have (μ ∗ ν)(dx) = e−Vν(x) dx, to apply Lemma 2.3 we take V0 = Vν , so
that

F(x) = 1

2

(
V (x) − V0(x)

) = 1

2
log

∫
Rd

eV (x)−V (x−z)ν(dz).

Since Φν is locally bounded, for any x ∈ R
d we have

lim
y→0

(
pν(x + y) − pν(x)

) = lim
y→0

∫ 1

0

〈
y,Φν(x + sy)

〉
ds = 0.

So, pν ∈ C(Rd). Then the continuity of Φν implies that

Ψ (x) :=
∫
Rd

(∇V )(x − z)νx(dz) = −Φν(x)

pν(x)

is continuous in x as well. Therefore, for any x, v ∈R
d ,

lim
ε↓0

F(x + εv) − F(x)

ε
= lim

ε↓0

1

2ε

∫ ε

0

〈
v,∇V (x + sv) − Ψ (x + sv)

〉
ds

= 1

2

〈
v,∇V (x) − Ψ (x)

〉
.

Thus, by the continuity of Ψ and ∇V we conclude that F ∈ C1(Rd) and

∣∣∇F(x)
∣∣2 = 1

4

∣∣∇V (x) − Ψ (x)
∣∣2 ≤ 1

4

(∫
Rd

∣∣∇V (x) − ∇V (x − z)
∣∣νx(dz)

)2

.

Combining this with (2.1), we are able to apply Lemma 2.3 to derive the defective log-Sobolev inequality for μ ∗ ν.
Moreover, the form

E (f, g) :=
∫
Rd

〈∇f,∇g〉d(μ ∗ ν), f, g ∈ C1
b

(
R

d
)

is closable in L2(μ ∗ ν), and its closure is a symmetric, conservative, irreducible Dirichlet form. Thus, according to
[18], Corollary 1.3 (see also [14], Theorem 1), the defective log-Sobolev inequality implies the desired log-Sobolev
inequality. Then the proof is finished. �

To see that Corollary 2.2 has a broad range of application beyond [20], Theorem 2, and Proposition 1.1(1) for the
log-Sobolev inequality, we present below an example where the support of ν is unbounded and disconnected.

Example 2.4. Let d = 1, V (x) = 1
2 log π + x2 and

ν(dz) = 1

γ

∑
i∈Z

e−λi2
δi(dz), γ :=

∑
i∈Z

e−λi2
,

where δi is the Dirac measure at point i and λ > 0. Then μ ∗ ν satisfies the log-Sobolev inequality.

Proof. For the present V it is well known from [12] that the log-Sobolev inequality (1.3) holds with C = 1. On the
other hand, it is easy to see that for any i ∈ Z, x ∈R and λ > 0, we have

|x − i|2 + λi2 = (1 + λ)

(
i − x

λ + 1

)2

+ λx2

1 + λ
. (2.6)
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Let p̃(x) = ∑
i∈Z e−(1+λ)(i−x/(1+λ))2

. Then

νx(dz) = 1

γ (x)

∑
i∈Z

e−|x−i|2−λi2
δi(dz)

= 1

p̃(x)

∑
i∈Z

e−(1+λ)(i−x/(1+λ))2
δi(dz), (2.7)

where γ (x) = ∑
i∈Z e−|x−i|2−λi2

. So,∫
Rd

|z|νx(dz) = 1

p̃(x)

∑
i∈Z

|i|e−(1+λ)(i−x/(1+λ))2

≤ |x|
1 + λ

+ 1

p̃(x)

∑
i∈Z

∣∣∣∣i − x

1 + λ

∣∣∣∣e−(1+λ)(i−x/(1+λ))2

≤ |x|
1 + λ

+ c, x ∈ R

holds for

c := sup
x∈[0,1+λ]

1

p̃(x)

∑
i∈Z

∣∣∣∣i − x

1 + λ

∣∣∣∣e−(1+λ)(i−x/(1+λ))2
< ∞ (2.8)

since the underlying function is periodic with a period [0,1 + λ]. Noting that C = 1 and ‖HessV ‖2 = 4, we conclude
from this that condition (2.2) holds for δ ∈ (1,1 + λ). Then the proof is finished by Corollary 2.2. �

Finally, the following example shows that Theorem 2.1 may also work for unbounded HessV .

Example 2.5. Let V (x) = c + |x|p with p ∈ [2,4) for some constant c such that μ(dx) := e−V (x) dx is a probability
measure on R

d . Let ν be a probability measure on R
d with compact support. Then μ ∗ ν satisfies the log-Sobolev

inequality.

Proof. Since p ≥ 2, we have V ∈ C2(Rd) and Φν ∈ C(Rd ,Rd). Let R = sup{|z|: z ∈ suppν}. Then∫
Rd

∣∣∇V (x) − ∇V (x − z)
∣∣νx(dz) ≤ R sup

z∈B(x,R)

∣∣HessV (z)
∣∣ ≤ C(R)

(
1 + |x|p−2)

holds for some constant C(R) > 0 and all x ∈ R
d . Combining this with 2(p − 2) < p implied by p < 4, we see that

(2.1) holds. Then the proof is finished by Theorem 2.1. �

We will see in Remark 4.1 below that the assertion in Example 2.5 remains true for p ≥ 4. Indeed, when p > 2
the super Poincaré inequality presented in Example 4.4 below is stronger than the log-Sobolev inequality, see [16],
Corollary 3.3.

2.2. Lyapunov criterion

Theorem 2.6. Assume that V ∈ C2(Rd) with bounded HessV such that

HessV ≥ KI outside a compact set (2.9)

holds for some constant K > 0. Then μ ∗ ν satisfies the log-Sobolev inequality provided the following two conditions
hold:
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(C1) There exists a constant c > 0 such that

νx

(
f 2) − νx(f )2 ≤ c‖∇f ‖2∞, f ∈ C1

b

(
R

d
)
, x ∈ R

d .

(C2) lim sup|x|→∞

∫
Rd |∇V (−z)|νx(dz)

|x| < K .

We believe that Theorems 2.1 and 2.6 are incomparable, since (2.9) is neither necessary for (1.3) to hold, nor
provides explicit upper bound of C in (1.3) which is involved in condition (2.1) for Theorem 2.1. But it would be
rather complicated to construct proper counterexamples confirming this observation.

The proof of Theorem 2.6 is based on the following Lyapunov type criterion due to [8], Theorem 1.2.

Lemma 2.7 [8]. Let μ0(dx) = e−V0(x) dx be a probability measure on R
d for some V0 ∈ C2(Rd). Then μ0 satisfies

the log-Sobolev inequality provided the following two conditions hold:

(i) There exists a constant K0 ∈R such that HessV0 ≥ K0I .
(ii) There exists W ∈ C2(Rd) with W ≥ 1 such that

�W(x) − 〈∇V0,∇W 〉(x) ≤ (
c1 − c2|x|2)W(x), x ∈R

d

holds for some constants c1, c2 > 0.

Proof of Theorem 2.6. By (1.4) and Lemma 2.7, it suffices to verify conditions (i) and (ii) for V0 = Vν := − logpν .
(a) Proof of (i). By the boundedness of HessV and the condition (2.9), it is to see that pν ∈ C2(Rd) and for any

X ∈R
d with |X| = 1, we have

HessV0(X,X) = 1

p2
ν

(
(∇Xp)2 − pνHesspν (X,X)

)
. (2.10)

Moreover,

∇Xpν(x) = −pν(x)

∫
Rd

(∇XV (x − z)
)
νx(dz).

Then, letting K1 := ‖HessV ‖ < ∞, we obtain

Hesspν (X,X)(x) =
∫
Rd

(∣∣∇XV (x − z)
∣∣2 − HessV (X,X)(x − z)

)
e−V (x−z)ν(dz)

≤ pν(x)

∫
Rd

∣∣∇XV (x − z)
∣∣2

νx(dz) + K1pν(x).

Combining these with (2.10) and (C1), we conclude that

HessV0(X,X)(x) ≥ −K1 −
∫
Rd

(∇XV (x − z)
)2

νx(dz) +
(∫

Rd

∇XV (x − z)νx(dz)

)2

≥ −K1 − cK2
1 .

Thus, (i) holds for K0 = −K1 − cK2
1 .

(b) Proof of (ii). Let W(x) = eε|x|2 for some constant ε > 0. Then

�W − 〈∇V0,∇W 〉
W

(x) = 2dε + 4ε2|x|2 − ε

∫
Rd

〈
x,∇V (x − z)

〉
νx(dz). (2.11)



Functional inequalities for convolution probability measures 905

Since HessV is bounded and (2.9) holds, we know that
∫
Rd 〈x,∇V (x − z)〉νx(dz) is well defined and locally bounded.

By (2.9), there exists a constant r0 > 0 such that HessV ≥ KI holds on the set {|z| ≥ r0}. So, for x ∈ R
d with |x| > 2r0,

〈∇V (x − z) − ∇V (−z), x
〉 = |x|

∫ |x|

0
HessV

(
x

|x| ,
x

|x|
)(

rx

|x| − z

)
dr

≥ K|x|2 − K1|x|
∣∣∣∣
{
r ∈ [

0, |x|]: ∣∣∣∣ rx|x| − z

∣∣∣∣ ≤ r0

}∣∣∣∣
≥ K|x|2 − 2K1r0|x|.

Combining this with (2.11) and (C2), and noting that

〈
x,∇V (x − z)

〉 ≤ 〈∇V (x − z) − ∇V (−z), x
〉 + |x| · ∣∣∇V (−z)

∣∣,
we conclude that there exist constants C1,C2 > 0 such that

�W − 〈∇V0,∇W 〉
W

(x) ≤ 2dε + 4ε2|x|2 − εC1|x|2 + εC2.

Taking ε = C1
8 , we prove (ii) for some constants c1, c2 > 0. �

Since when ν has compact support, we have

νx

(
f 2) − νx(f )2 =

∫
Rd×Rd

∣∣f (z) − f (y)
∣∣2

νx(dz)νx(dy) ≤ R2‖∇f ‖2∞,

where R := sup{|z − y|: z, y ∈ suppν} < ∞, and

lim|x|→∞

∫
Rd |∇V (−z)|νx(dz)

|x| ≤ lim|x|→∞
supsuppν |∇V |

|x| = 0.

The following direct consequence of Theorem 2.6 improves the above mentioned results in [20] as well.

Corollary 2.8. Assume that V ∈ C2(Rd) with bounded HessV such that (2.9) holds. Then μ ∗ ν satisfies the log-
Sobolev inequality for any compactly supported probability measure ν.

To show that Theorem 2.6 also has a range of application beyond Corollary 2.8 and Proposition 1.1(1) for the
log-Sobolev inequality, we reprove Example 2.4 by using Theorem 2.6.

Proof of Example 2.4 using Theorem 2.6. Obviously, (2.9) holds for K = 2. Let

ν̃x = 1

γ̃ (x)

∑
i∈Z

e−(1+λ)(i−x)2
δi, γ̃ (x) =

∑
i∈Z

e−(1+λ)(i−x)2
.

By (2.6) we have ν̃x = ν(1+λ)x . Thus, we only need to verify conditions (C1) and (C2) for ν̃x in place of νx .
(a) To prove condition (C1), we make use of a Hardy type inequality for birth–death processes with Dirichlet

boundary introduced in [13]. Let x ∈ R be fixed. For any bounded function f on Z, let f̃ (i) = f (i) − f (ix), where
ix := sup{i ∈ Z: i ≤ x} is the integer part of x. Then

ν̃x

(
f 2) − ν̃x(f )2 ≤

ix∑
i=−∞

f̃ (i)2ν̃x(i) +
∞∑

i=ix

f̃ (i)2ν̃x(i). (2.12)
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It is easy to see that there exists a constant c > 0 independent of x such that for any m ≥ ix > x − 1,

m∑
i=ix

e(1+λ)(i−x)2 ≤ ce(1+λ)(m−x)2
,

∞∑
i=m+1

e−(1+λ)(i−x)2 ≤ ce−(1+λ)(m+1−x)2
.

Therefore,

sup
m≥ix

(
m∑

i=ix

e(1+λ)(i−x)2

) ∞∑
i=m+1

e−(1+λ)(i−x)2

≤ c2e(1+λ){(m−x)2−(m+1−x)2} = c2e(1+λ){2(x−m)−1} ≤ c2e1+λ.

By this and the Hardy inequality (see [19], Theorem 1.3.9), we have

∞∑
i=ix

f̃ (i)2ν̃x(i) ≤ 4c2e1+λ

∞∑
i=ix

(
f (i + 1) − f (i)

)2
ν̃x(i).

Similarly,

ix∑
i=−∞

f̃ (i)2ν̃x(i) ≤ 4c2e1+λ

ix∑
i=−∞

(
f (i − 1) − f (i)

)2
ν̃x(i).

Combining these with (2.12) we prove (C1) for ν̃x and some constant c > 0 (independent of x ∈R).
(b) Let p̃(x) = ∑

i∈Z e−(1+λ)(i−x/(1+λ))2
. Noting that ∇V (z) = 2z, by (2.7) we obtain∫

Rd

∣∣∇V (−z)
∣∣νx(dz) = 2

p̃(x)

∑
i∈Z

|i|e−(1+λ)(i−x/(1+λ))2

≤ 2|x|
1 + λ

+ 2

p̃(x)

∑
i∈Z

∣∣∣∣i − x

1 + λ

∣∣∣∣e−(1+λ)(i−x/(1+λ))2

≤ c + 2|x|
1 + λ

for c > 0 in (2.8). Therefore,

lim sup
|x|→∞

∫
Rd |∇V (−z)|νx(dz)

|x| ≤ 2

1 + λ
< 2 = K.

Thus, condition (C2) holds. �

At the end of this section, we present the following two remarks for perturbation argument and Lyapunov criteria
to deal with convolution probability measures.

Remark 2.1. (1) Both Theorems 2.1 and 2.6 are concerned with qualitative conditions ensuring the existence of the
log-Sobolev inequality for convolution probability measures. It would be interesting to derive explicit estimates on the
log-Sobolev constant, i.e., the smallest constant such that the log-Sobolev inequality holds. Recently, by using refining
the conditions in Lemma 2.7, Zimmermann has estimated the log-Sobolev constant in [21] for the convolution of a
Gaussian measure with a compactly supported measure (see [21], Theorem 10, for more details). Similar things can
be done under the present general framework. However, as it is well known that estimates derived from perturbation
arguments are in general less sharp, we will not go further in this direction and leave the quantitative estimates to a
forthcoming paper by other means.
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(2) As mentioned in Section 1, the convolution of probability measures refers to the sum of independent ran-
dom variables. So, by induction we may use the Lyapunov criteria to investigate functional inequalities for multi-
convolution measures. In this case it is interesting to study the behavior of the optimal constant (e.g., the log-Sobolev
constant) as multiplicity goes to ∞. For this we need fine estimates on the constant in terms of the multiplicity, which
is related to what we have discussed in Remark 2.1(1). Of course, for functional inequalities having the sub-additivity
property, it is possible to derive multiplicity-free estimates on the optimal constant, see, e.g., the recent paper [15] for
Beckner-type inequalities of convolution measures on the abstract Wiener space.

3. Poincaré inequality

In the spirit of the proof of Theorem 2.6, in this section we study the Poincaré inequality for convolution measures
using the Lyapunov conditions presented in [3,4]. One may also wish to use the following easy to check perturbation
result on the Poincaré inequality corresponding to Lemma 2.3.

If the probability measure μV (dx) = e−V (x) dx satisfies the Poincaré inequality (1.1) with some constant C > 0,
then for any V0 ∈ C1(Rd) such that

∫
e−V0(x) dx = 1 and C‖∇(V − V0)‖2∞ < 2, the probability measure μV0(dx) =

e−V0(x) dx satisfies the Poincaré inequality (1.1) (with a different constant) as well.
Since the boundedness condition on ∇(V −V0) is rather strong (for instance, it excludes Example 3.3(1) below for

p > 2), here, and also in the next section for the super Poincaré inequality, we will use the Lyapunov criteria rather
than this perturbation result. By combining the following Theorem 3.1 below with [3], Theorem 1.4, one may derive
quantitative estimates on the Poincaré constant (or the spectral gap).

Theorem 3.1. Let μ(dx) = e−V (x) dx be a probability measure on R
d and let ν be a probability measure on R

d .
Assume that Φν in Theorem 2.1 is well-defined and continuous. Then μ ∗ ν satisfies the Poincaré inequality (1.1), if
at least one of the following conditions holds:

(1) V ∈ C1(Rd) such that lim inf|x|→∞
∫
Rd 〈x,∇V (x − z)〉νx(dz)

|x| > 0.

(2) V ∈ C2(Rd) such that Φ̃ν(x) := ∫
Rd (∇2V )(x − z)νx(dz) is well-defined and continuous in x, and there is a

constant δ ∈ (0,1) such that

lim inf|x|→∞

∫
Rd

(
δ
∣∣∇V (x − z)

∣∣2 − �V (x − z)
)
νx(dz) > 0.

Proof. Let Lν = � − ∇Vν . According to [4], Theorem 3.5, or [3], Theorem 1.4, (μ ∗ ν)(dx) := e−Vν(x) dx satisfies
the Poincaré inequality if there exist a C2-function W ≥ 1 and some positive constants θ, b,R such that for all x ∈ R

d ,

LνW(x) ≤ −θW(x) + b1B(0,R)(x). (3.1)

In particular, by [3], Corollary 1.6, if either

lim inf|x|→∞
〈∇Vν(x), x〉

|x| > 0, (3.2)

or there is a constant δ ∈ (0,1) such that

lim inf|x|→∞
(
δ
∣∣∇Vν(x)

∣∣2 − �Vν(x)
)
> 0, (3.3)

then the inequality (3.1) fulfills.
Now, as shown in the proof of Theorem 2.1 that the continuity of Φν implies that Vν ∈ C1(Rd) and

〈∇Vν(x), x
〉 = ∫

Rd

〈∇V (x − z), x
〉
νx(dz).

Then condition (1) in Theorem 3.1 implies (3.2), and hence the Poincaré inequality for μ ∗ ν.
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On the other hand, repeating the argument leading to F ∈ C1(Rd) in the proof of Theorem 2.1, we conclude that
the continuity of Φν and Φ̃ν implies Vν ∈ C2(Rd) and

∣∣∇Vν(x)
∣∣2 =

(∫
Rd

∇V (x − z)νx(dz)

)2

,

�Vν(x) = ∣∣∇Vν(x)
∣∣2 +

∫
Rd

{
�V (x − z) − ∣∣∇V (x − z)

∣∣2}
νx(dz).

Then for any δ ∈ (0,1),

δ
∣∣∇Vν(x)

∣∣2 − �Vν(x) =
∫
Rd

(∣∣∇V (x − z)
∣∣2 − �V (x − z)

)
νx(dz) − (1 − δ)

∣∣∇Vν(x)
∣∣2

≥
∫
Rd

(
δ
∣∣∇V (x − z)

∣∣2 − �V (x − z)
)
νx(dz).

Combining this with condition (2) in Theorem 3.1 we prove (3.3), and hence the Poincaré inequality for μ ∗ ν. �

When the measure ν is compactly supported, we have the following consequence of Theorem 3.1.

Corollary 3.2. Let ν be a probability measure on R
d with compact support such that R := sup{|z|: z ∈ suppν} < ∞.

If either V ∈ C1(Rd) with

lim inf|x|→∞
〈∇V (x), x〉 − R|∇V (x)|

|x| > 0, (3.4)

or V ∈ C2(Rd) and there is a constant δ ∈ (0,1) such that

lim inf|x|→∞
(
δ
∣∣∇V (x)

∣∣2 − �V (x)
)
> 0, (3.5)

then μ ∗ ν satisfies the Poincaré inequality.

Proof. Since the support of ν is compact, the continuity of Φν when V ∈ C1(Rd) and that of Φ̃ν when V ∈ C2(Rd)

are obvious. Below we prove conditions (1) and (2) in Theorem 3.1 using (3.4) and (3.5) respectively.
(a) By (3.4) we obtain∫

Rd

〈
x,∇V (x − z)

〉
νx(dz) =

∫
Rd

(〈
x − z,∇V (x − z)

〉 + 〈
z,∇V (x − z)

〉)
νx(dz)

≥
∫
Rd

(〈
x − z,∇V (x − z)

〉 − R
∣∣∇V (x − z)

∣∣)νx(dz)

≥
∫
Rd

(
c1|x − z| − c2

)
νx(dz)

≥ c1
(|x| − R

)+ − c2

for some constants c1, c2 > 0. Then condition (1) in Theorem 3.1 holds.
(b) According to (3.5), there are constants r1, c3 and c4 > 0 such that for all x ∈ R

d

∫
Rd

(
δ
∣∣∇V (x − z)

∣∣2 − �V (x − z)
)
νx(dz)

≥ c3

∫
{|x−z|>r1}

νx(dz) − c4

∫
{|x−z|≤r1}

νx(dz). (3.6)
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Since for x ∈R
d with |x| > R + r1 we have∫

{|x−z|>r1}
νx(dz) ≥

∫
{|z|≤R}

νx(dz) = 1

and ∫
{|x−z|≤r1}

νx(dz) ≤
∫

{|z|>R}
νx(dz) = 0,

then (3.6) implies condition (2) in Theorem 3.1. �

Finally, we present the following examples to illustrate Theorem 3.1 and Corollary 3.2.

Example 3.3. (1) Let V (x) = c + |x|p for some p ≥ 1 and constant c such that μ(dx) := e−V (x) dx is a probability
measure on R

d . Then μ ∗ ν satisfies the Poincaré inequality for every compactly supported probability measure ν

on R
d .

(2) Let d = 1, V (x) = c + √
1 + x2 and

ν(dz) = 1

γ

∑
i∈Z

e−|i|δi(dz), γ :=
∑
i∈Z

e−|i|,

where c = log
∫
R

e−
√

1+x2
dx and δi is the Dirac measure at point i. Then μ ∗ ν satisfies the Poincaré inequality.

Proof. Since when p < 2 the function V (x) = c + |x|p is not in C2 at point 0, we take Ṽ ∈ C2(Rd) such that
Ṽ (x) = V (x) for |x| ≥ 1. Let μ̃(dx) = C̃e−Ṽ (x) dx, where C̃ > 0 is a constant such that μ̃ is a probability measure.
By the stability of Poincaré inequality under the bounded perturbations (e.g., see [9], Proposition 17), it suffices to
prove that μ̃ ∗ ν satisfies the Poincaré inequality.

In case (1) the assertion is a direct consequence of Corollary 3.2. So, we only have to verify condition (1) in
Theorem 3.1 for case (2). For simplicity, we only verify for x → ∞, i.e.,

lim
x→∞

∫
R

xV ′(x − z)νx(dz)

|x| > 0. (3.7)

Let ix be the integer part of x, and hx = x − ix . Note that for any x > 0,∫
R

xV ′(x − z)νx(dz)

|x| =
∫
R

V ′(x − z)νx(dz)

=
∑

i∈Z(x − i)/
√

1 + (x − i)2e−
√

1+(x−i)2−|i|∑
i∈Z e−

√
1+(x−i)2−|i|

=
∑

k∈Z(hx + k)/
√

1 + (hx + k)2e−
√

1+(hx+k)2−|ix−k|∑
k∈Z e−

√
1+(hx+k)2−|ix−k|

=: 1 − pν(x)−1
∑
k∈Z

(akbk)(x), (3.8)

where

ak(x) :=
√

1 + (hx + k)2 − (hx + k)√
1 + (hx + k)2

,

bk(x) := e−
√

1+(hx+k)2−|ix−k|, pν(x) =
∑
k∈Z

bk(x).
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It is easy to see that

0 ≤ ak(x) ≤
{

(1 + k2)−1/2, k ≥ 0,
2, k < 0.

Then for any n ≥ 1,

∑
k∈Z

(akbk)(x) =
∑
k≤0

(akbk)(x) +
n∑

k=1

(akbk)(x) +
∞∑

k=n+1

akbk(x)

≤ 2
∑
k≤0

bk(x) +
n∑

k=1

bk(x) + 1

n + 1

∞∑
k=n+1

bk(x).

Thus, for any x > 0 and 1 ≤ n ≤ ix ,

∑
k≤0

bk(x) ≤ e−x +
−1∑

k=−∞
e−(−k−hx)−(ix−k) ≤ (

2e2 + 1
)
e−x,

n∑
k=1

bk(x) ≤ ne−x, pν(x) ≥
ix∑

k=1

bk(x) ≥ ixe−x−1.

Then for any n ≥ 1,

lim sup
x→∞

1

pν(x)

∑
k∈Z

(akbk)(x) ≤ lim
x→∞

{
ex+1(2e2 + 1 + n)e−x

ix
+ 1

n + 1

}
= 1

n + 1
.

Letting n → ∞ we obtain limx→∞ pν(x)−1 ∑
k∈Z(akbk)(x) = 0. Combining this with (3.8) we prove (3.7). �

4. Super Poincaré inequality

In this section we extend the results in Section 3 for the super Poincaré inequality.

Theorem 4.1. Let μ(dx) = e−V (x) dx be a probability measure on R
d and let ν be a probability measure on R

d .
Define

α(r, s) = (
1 + s−d/2) (sup|x|≤r e−V (x))d/2+1

(inf|x|≤r e−V (x))d/2+2
, s, r > 0.

(1) If V ∈ C1(Rd) such that

lim inf|x|→∞

∫
Rd 〈x,∇V (x − z)〉νx(dz)

|x| = ∞, (4.1)

then μ ∗ ν satisfies the super Poincaré inequality (1.2) with

β(r) = c
(
1 + α

(
ψ(2/r), r/2

))
for some constant c > 0, where

ψ(r) := inf

{
s > 0: inf|x|≥s

∫
Rd 〈x,∇V (x − z)〉νx(dz)

|x| ≥ r

}
< ∞, r > 0.
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(2) Suppose that V ∈ C2(Rd) and there is a constant δ ∈ (0,1) such that

lim inf|x|→∞

∫
Rd

(
δ
∣∣∇V (x − z)

∣∣2 − �V (x − z)
)
νx(dz) = ∞. (4.2)

Then, μ ∗ ν satisfies the super Poincaré inequality (1.2) with

β(r) = c
(
1 + α

(
ψ̃(2/r), r/2

))
for some constant c > 0, where

ψ̃(r) := inf

{
s > 0: inf|x|≥s

∫
Rd

(
δ
∣∣∇V (x − z)

∣∣2 − �V (x − z)
)
νx(dz) ≥ r

}
< ∞, r > 0.

The proof of Theorem 4.1 is based on the following lemma.

Lemma 4.2. Let μ(dx) = e−V (x) dx be a probability measure on R
d . Assume that there are functions W ≥ 1, φ > 0

with lim inf|x|→∞ φ(x) = ∞ and constants b, r0 > 0 such that

�W − 〈∇W,∇V 〉
W

≤ −φ + b1B(0,r0).

Then, the following super Poincaré inequality holds

μV

(
f 2) ≤ rμV

(|∇f |2) + β(r)μV

(|f |)2
,

with

β(r) = c
(
1 + α

(
ψφ(2/r), r/2

))
, r > 0

for some constant c > 0 and

ψφ(r) := inf
{
s > 0: inf|x|≥s

φ(x) ≥ r
}
.

Proof. It is well known that (e.g., see [7], Proposition 3.1) there exists a constant C > 0 such that for any t, s > 0 and
f ∈ C1(Rd),

∫
B(0,t)

f 2(x)dx ≤ s

∫
B(0,t)

∣∣∇f (x)
∣∣2 dx + C

(
1 + s−d/2)(∫

B(0,t)

|f |(x)dx

)2

.

Therefore,∫
B(0,t)

f 2(x)μV (dx) ≤
(

sup
|x|≤t

e−V (x)
)∫

B(0,t)

f 2(x)dx

≤ s
sup|x|≤t e−V (x)

inf|x|≤t e−V (x)

∫
B(0,t)

∣∣∇f (x)
∣∣2

μV (dx)

+ C
(
1 + s−d/2) sup|x|≤t e−V (x)

(inf|x|≤t e−V (x))2

(∫
B(0,t)

|f |(x)μV (dx)

)2

≤ s
sup|x|≤t e−V (x)

inf|x|≤t e−V (x)
μV

(|∇f |2) + C
(
1 + s−d/2) sup|x|≤t e−V (x)

(inf|x|≤t e−V (x))2
μV

(|f |)2
.
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Taking s = r
inf|x|≤t e−V (x)

sup|x|≤t e−V (x) in the inequality above, we arrive at that for any t, r > 0 and f ∈ C1(Rd),

∫
B(0,t)

f 2(x)μV (dx) ≤ rμV

(|∇f |2) + Cα(t, r)μV

(|f |)2
.

Thus, the proof is finished by [7], Theorem 2.10, and the fact that the function α(r, s) is increasing with respect to r

and decreasing with respect to s. �

Proof of Theorem 4.1. As the same to the proof of Theorem 3.1, let Lν = � − ∇Vν .
In case (1), we consider a smooth function such that W(x) = e2|x| for |x| ≥ 1 and W(x) ≥ 1 for all x ∈ R

d . We
have

LνW(x)

W(x)
≤ −〈x,∇Vν(x)〉

|x| 1{|x|≥1} + b1{|x|≤1}

for some constant b > 0. Then, the required assertion follows from Lemma 4.2 and the proof of Theorem 3.1(1).
In case (2), we consider a smooth function such that W(x) = e(1−δ)V (x) for |x| ≥ 1 and W(x) ≥ 1 for all x ∈ R

d .
Then,

LνW(x)

W(x)
≤ −(1 − δ)

(
�V (x) − δ

∣∣∇V (x)
∣∣2) + b1{|x|≤1}

for some constant b > 0. This along with Lemma 4.2 and the proof of Theorem 3.1(2) also yields the desired asser-
tion. �

According to the proof of Corollary 3.2, when the measure ν has the compact support, we can obtain the following
statement from Theorem 4.1.

Corollary 4.3. Let ν be a probability measure on R
d with compact support such that R := sup{|z|: z ∈ suppν} < ∞.

(1) If

lim inf|x|→∞
〈∇V (x), x〉 − R|∇V (x)|

|x| = ∞, (4.3)

then μ ∗ ν satisfies the super Poincaré inequality (1.2) with

β(r) = c
(
1 + α

(
ψ(2/r), r/2

))
for some constant c > 0, where

ψ(r) := inf

{
s > 0: inf|x|≥2s

〈∇V (x), x〉 − R|∇V (x)|
|x| ≥ r

}
.

(2) If there is a constant δ ∈ (0,1) such that

lim inf|x|→∞
(
δ
∣∣∇V (x)

∣∣2 − �V (x)
) = ∞, (4.4)

then μ ∗ ν satisfies the super Poincaré inequality (1.2) with

β(r) = c
(
1 + α

(
ψ̃(2/r), r/2

))
for some constant c > 0, where

ψ̃(r) := inf
{
s > 0: inf|x|≥2s

(
δ
∣∣∇V (x)

∣∣2 − �V (x)
) ≥ r

}
.
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The proof of Corollary 4.3 is similar to that of Corollary 3.2, and is thus omitted. Finally, we consider the following
example to illustrate Corollary 4.3.

Example 4.4. Let V (x) = c + |x|p for some p > 1 and c ∈ R such that μ(dx) := e−V (x) dx is a probability measure
on R

d . Then for any compactly supported probability measure ν, there exists a constant c > 0 such that μ ∗ ν satisfies
the super Poincaré inequality (1.2) with

β(r) = exp
(
cr−p/(2(p−1))

)
, r > 0. (4.5)

Proof. Since by [18], Corollary 1.2, the super Poincaré inequality implies the Poincaré inequality, we may take
β(r) = 1 for large r > 0. So, it suffices to prove the assertion for small r > 0. As explained in the proof of Example 3.3
up to a bounded perturbation, we may simply assume that V ∈ C2(Rd). For any δ ∈ (0,1) and any x ∈ R

d with |x|
large enough,

δ
∣∣∇V (x)

∣∣2 − �V (x) ≥ η
(
V (x)

)
,

where η is a non-decreasing function such that η(r) = δr2(p−2)/p for some constant δ > 0 and all r ≥ 1. So,

ψ̃(u) ≤ c1
(
1 + u1/(2(p−2))

)
, u > 0

holds for some constant c1 > 0. Next, it is easy to see that

α(r, s) ≤ c2
(
1 + s−d/2)ec2r

p

, s, r > 0

holds for some constant c2 > 0. Therefore, the desired assertion for small r > 0 follows from Corollary 4.3(2). �

Remark 4.1. (1) By letting ν = δ0 we have μ = μ ∗ ν. So, Example 4.4 implies that μ satisfies the super Poincaré
inequality with β given in (4.5) for some constant c > 0, and moreover, the inequality is stable under convolutions of
compactly supported probability measures. It is easy to see from [16], Theorem 6.2, that the rate function β given in
(4.5) is sharp, i.e., μ∗ν does not satisfy the super Poincaré inequality with β such that limr↓0 rp/(2(p−1)) logβ(r) = 0.

(2) On the other hand, however, if ν has worse concentration property, μ ∗ ν may only satisfy a weaker functional
inequality. For instance, let μ be in Example 4.4 but ν(dz) = Ce−|z|q dz for some constant q ∈ (1,p) and normal-
ization constant C > 0. As explained in Remark 4.1(1) for q in place p we see that ν satisfies the super Poincaré
inequality with

β(r) = exp
(
cr−q/(2(q−1))

)
, r > 0 (4.6)

for some constant c > 0. Combining this with the super Poincaré inequality for μ with β given in (4.5), from Propo-
sition 1.1 we conclude that μ ∗ ν also satisfies the super Poincaré inequality with β given in (4.6) for some (different)
constant c > 0, which is sharp according to [16], Theorem 6.2, as explained above. However, it is less straightforward
to verify this super Poincaré inequality for μ ∗ ν using Theorem 4.1 instead of Proposition 1.1.
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