
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2016, Vol. 52, No. 1, 102–126
DOI: 10.1214/14-AIHP641
© Association des Publications de l’Institut Henri Poincaré, 2016

Connectedness of Poisson cylinders in Euclidean space

Erik I. Bromana,1 and Johan Tykessonb,2

aDepartment of Mathematics, Uppsala University, Sweden. E-mail: broman@math.uu.se
bDepartment of Mathematics, Chalmers University of Technology and Gothenburg University, Sweden. E-mail: johan.tykesson@gmail.com

Received 17 September 2013; revised 9 May 2014; accepted 4 September 2014

Abstract. We consider the Poisson cylinder model in R
d , d ≥ 3. We show that given any two cylinders c1 and c2 in the process,

there is a sequence of at most d − 2 other cylinders creating a connection between c1 and c2. In particular, this shows that the union
of the cylinders is a connected set, answering a question appearing in (Probab. Theory Related Fields 154 (2012) 165–191). We
also show that there are cylinders in the process that are not connected by a sequence of at most d − 3 other cylinders. Thus, the
diameter of the cluster of cylinders equals d − 2.

Résumé. Nous considérons un modèle de cylindres suivant un processus de Poisson dans R
d , d ≥ 3. Nous montrons que étant

donnés deux cylindres c1 et c2 dans le processus, il y a une séquence d’au plus d − 2 autres cylindres qui créent une connexion
entre c1 et c2. En particulier, ceci montre que l’union des cylindres est un ensemble connecté, et répond à une question posée par
(Probab. Theory Related Fields 154 (2012) 165–191). Nous montrons aussi qu’il y a des cylindres dans le processus qui ne sont
pas connectés par une séquence d’au plus d − 3 autres cylindres. Donc, le diamètre de l’amas de cylindres est égal à d − 2.
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1. Introduction

This paper is devoted to the study of the geometry of a random collection of bi-infinite cylinders in R
d , d ≥ 3. Before

we give the precise definition of this model in Section 2, we describe it informally.
We start with a homogenous Poisson line process ω of intensity u ∈ (0,∞) in R

d . As the parameter u will play
a very little role in this paper, we will denote its associated probability measure by P and keep the dependence on u

implicit. Around each line L ∈ ω, we then center a bi-infinite cylinder c(L) of base-radius 1. We will sometimes abuse
notation and say that c(L) ∈ ω. The union over ω of all cylinders is a random subset of Rd and we call it C. We think
of C as the covered region and its complement V := R

d \ C as the vacant region. We will refer to this model as the
Poisson cylinder model, and before we move on to describe our results, we will discuss some previous results. The
model was first suggested by I. Benjamini to the second author [1] and subsequently studied in [12]. In [12], the focus
was on the existence of a non-degenerate percolative phase transition in V (see [7] for a general text on continuum
percolation models). Indeed, letting

u∗(d) := sup{u : V has unbounded connected components a.s.},
it was proved that 0 < u∗(d) < ∞ for every d ≥ 4, and that u∗(3) < ∞. Later, it was proved in [5] that u∗(3) > 0.
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In the present paper, we focus on connectivity properties of C. To that end, for any ca, cb ∈ ω we let the cylinder
distance Cdist(ca, cb) be the minimal number k such that there exist cylinders c1, . . . , ck ∈ ω so that

ca ∪ cb

k⋃
i=1

ck,

is a connected set. We then define the diameter of C as

diam(C) = sup
{
Cdist(ca, cb) : ca, cb ∈ ω

}
.

Our main result is as follows.

Theorem 1.1. For any d ≥ 3,

P
[
diam(C) = d − 2

] = 1.

Remark. We prove the case d = 3 in Section 3, while d ≥ 4 is proved in Section 6. While a unified approach would be
desirable, utilizing the method of proof for d ≥ 4 also in the case d = 3, necessitates exceptions and the handling of
special cases (see further the remark at the end of the paper). This defeats the purpose of a unified proof, and therefore
we prefer to divide the proof into two cases. In order to keep the paper as short as possible, we will leave some of the
long (but elementary) calculations in the proof of the case d = 3 to the reader.

When d = 2, every line in a Poisson line process a.s. intersects every other line in the process, so that trivially
P[diam(C) = 0] = 1.

It is an easy consequence of scaling, that Theorem 1.1 holds also for cylinders with radius different from 1. Con-
sidering a model with random radii, it will still be the case that a.s. diam(C) ≤ d − 2 (unless the distribution of the
radii are degenerate). This follows from an easy coupling argument.

It is interesting to note that if we define

uc(d) := inf
{
u : ∃! component of C(u,ω) containing infinitely many cylinders a.s.

}
(which is very natural in the context of percolation models), then Theorem 1.1 implies that uc(d) = 0 for every d ≥ 3.
In fact, Theorem 1.1 tell us that the union of the cylinders consists solely of a unique infinite component. This is in
sharp contrast to similar results for other continuum percolation models as well as for discrete percolation models
(see for example [7] and [3]). In those settings, the phase transition is non-trivial in that the critical parameter value is
strictly bounded away from 0. However, proofs of such results usually rely on some sort of local dependencies and/or
so-called finite energy conditions. Our case is quite different, since our model lack these features. Indeed, the long
range dependence in C and V manifests itself in for example the following way (see [12], Equation (3.9)):

c(d,u)

|x − y|d−1
≤ covu

(
1{x ∈ V},1{y ∈ V}) ≤ c′(d,u)

|x − y|d−1
(1.1)

as soon as |x − y| > 2, and for some constants c(d,u), c′(d,u) ∈ (0,∞) independent of x, y. This long range de-
pendence creates challenges in the study of C and V as techniques developed for percolation models exhibiting only
bounded range dependence are often not applicable. In fact, the lack of the mentioned features is one of the main
motivations for studying the model.

The by far most difficult part of Theorem 1.1 is to prove that P[diam(C) ≤ d − 2] = 1. A naive approach to proving
this upper bound, can informally be described as follows. Assume for way of explanation that d = 4, and consider two
cylinders ca and cb. Proceed by exploring the set of cylinders that intersect ca , and number these cylinders c1, c2, . . . .
Then, explore the set of cylinders c1,1, c1,2, . . . that intersect c1 and continue in the natural way. One could hope to
prove that for a.e. sequence c1, c2, . . . ,

∞∑
i,j=1

P
[
ci,j ∩ cb �=∅

] = ∞,
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and from there prove that P[∃i, j ≥ 1 : ci,j ∩ cb �= ∅] = 1. However, having the information whether there exists
c1,j such that c1,j ∩ cb �= ∅ also give us partial information about the cylinders c2,1, c2,2, . . . that intersect c2. One
therefore have to somehow control the accumulated information that one gains when exploring the sets of cylinders
ci,1, ci,2, . . . as i increases. This very much complicates the situation for this approach and others like it.

The study of these questions is partly inspired by some recent works on the random interlacements process on
Z

d , d ≥ 3, introduced in [11]. The random interlacement is a discrete percolation model obtained by a Poissonian
collection of bi-infinite random walk trajectories. For random interlacements, inequalities similar to (1.1) hold, but
with d − 1 replaced by d − 2. It was shown in [9] and [8] that given any two trajectories in the random interlacement,
there is some sequence of at most �d/2
 − 2 other trajectories connecting them. The key tool in the proofs of [8] was
the notion of stochastic dimension introduced in [2]. However, for the Poisson cylinder model, it turns out that the
concept of stochastic dimension is not applicable. To see this, we will provide a short intuitive explanation.

Let R be a random subset of Zd ×Z
d . Here, R should be thought of as a random equivalence relation, but we will

simply refer to R as a relation. For example, the relation R could correspond to two points belonging to the same
cylinder in the Poisson cylinder model.

The precise definition of stochastic dimension of a relation R, is given in Definition 2.2 of [2], while we here give
an informal definition. Let α ∈ [0, d). If for all x �= y ∈ Z

d and for some constants c, c′ ∈ (0,∞),

c|x − y|−(d−α) ≤ P
[
(x, y) ∈R

] ≤ c′|x − y|−(d−α),

and a natural correlation inequality for the events {(x, y) ∈R} and {(z, v) ∈ R} holds (see condition (2.2) in [2]), then
we say that R has stochastic dimension α. The aforementioned correlation inequality essentially says that for some
constant c < ∞ and all x, y, z, v ∈ Z

d , P[(x, y) ∈ R, (z, v) ∈ R] can be at most c|x − y|−(d−α)|z − v|−(d−α) plus
smaller terms. Observe that if the relation R has stochastic dimension d , then infx,y P[(x, y) ∈R] > 0.

Now consider the case when R is the relation that two points belong to the same Poisson cylinder. Clearly, in view
of the inequalities in (1.1), if R has stochastic dimension then this dimension must be 1. However, due to the rigidity
of cylinders, the required correlation inequality in the definition of stochastic dimension does not hold. For example,
let r > 0 be large and let x = (r,0, . . . ,0), y = (2r,0, . . . ,0), z = (3r,0, . . . ,0) and v = (4r,0, . . . ,0). Then, if there is
a cylinder c ∈ ω which connects x and v, then this cylinder will also connect y and z. Hence, P[(x, v) ∈R, (y, z) ∈ R]
is of order r−(d−1). However, for R to have stochastic dimension 1, it is necessary that P[(x, v) ∈ R, (y, z) ∈R] is at
most of order r−2(d−1). This shows that R does not have any stochastic dimension.

Now if R would have had stochastic dimension 1, then our proof could have been made easier, mainly because
of the following. Let 1 ≤ n ≤ d and let Rn be the set of all (x, y) for which there exist z1, . . . , zn−1 such that
(x, z1) ∈ R, (z1, z2) ∈ R, . . . , (zn−1, y) ∈ R. In other words, (x, y) ∈ Rn if and only if x and y are connected via a
sequence of at most n cylinders. If R had stochastic dimension 1, one could have used Theorem 2.4 from [2] to easily
show that for all x �= y and for some constants c, c′ ∈ (0,∞),

c|x − y|−(d−n) ≤ P
[
(x, y) ∈Rn

] ≤ c′|x − y|−(d−n). (1.2)

Observe that if n = d , then the probability in (1.2) is uniformly bounded away from 0. This would have been a
major step in showing P[diam(C) ≤ d − 2] = 1.

In the absence of stochastic dimension, we thus had to take other routes to show our results. The proof in the case
d = 3 relies on a projection method combined with an integral formula from [10] to show that the number of lines
intersecting any two cylinders ca , cb is a.s. infinite. When d ≥ 4, in order to prove the lower bound of Theorem 1.1,
we adapted a method from [9]. Proving the upper bound of Theorem 1.1 when d ≥ 4 is the main effort of the paper,
and we provide an informal description of our approach at the beginning of Section 6.

The rest of the paper is organized as follows. In Section 2 we define the Poisson cylinder model precisely. In
Section 3 we give the proof of Theorem 1.1 for d = 3. Some preliminary measure estimates needed for the proof of
Theorem 1.1 when d ≥ 4, are given in Section 4. Finally, the proofs of the lower and upper bounds of Theorem 1.1
are given in Sections 5 and 6 respectively.
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2. Notation and definitions

We let A(d,1) be the set of bi-infinite lines in R
d . Let G(d,1) be the set of bi-infinite lines in R

d that pass through
the origin. In other words, A(d,1) is the set of 1-dimensional affine subspaces of Rd , and G(d,1) is the set of 1-
dimensional linear subspaces of Rd . Subsets of G(d,1) and A(d,1) will typically be denoted by scripted letters like
A and L. If K ∈ B(Rd) we let LK ⊂ A(d,1) denote the set of lines that intersect K :

LK = {
L ∈ A(d,1) : L ∩ K �=∅

}
.

Let Bd(0,1) denote the d-dimensional ball of radius 1 and let κd denote the volume of Bd(0,1). On G(d,1) there
is a unique Haar measure νd,1, normalized so that νd,1(G(d,1)) = 1, and on A(d,1), there is a unique Haar measure
μd,1 normalized so that μd,1(LBd(0,1)) = κd−1 (see for instance [10] Chapter 13). We let SOd be the rotation group on
R

d . Typically, we think of the elements of SOd as the orthogonal d ×d matrices with determinant 1. For any subspace
H ⊂ R

d , and set A ⊂ R
d , we let ΠH (A) ⊂ R

d denote the projection of A onto H . We will let e1, e2, . . . , ed denote
the generic orthonormal set of vectors that span R

d .

2.1. The Poisson cylinder model

We consider the following space of point measures on A(d,1):

Ω =
{

ω =
∞∑
i=0

δLi
where Li ∈ A(d,1), and ω(LA) < ∞ for all compact A ⊂R

d

}
.

Here, δL of course denotes point measure at L.
In what follows, we will often use the following standard abuse of notation: if ω is some point measure, the

expression “x ∈ ω” will stand for “x ∈ supp(ω).” If ω ∈ Ω and A ∈ B(Rd) we let ωA denote the restriction of ω

to LA. We will draw an element ω from Ω according to a Poisson point process with intensity measure uμd,1 where
u > 0. We call ω a (homogeneous) Poisson line process of intensity u.

If L ∈ A(d,1), we denote by c(L) the cylinder of base radius 1 centered around L:

c(L) = {
x ∈R

d : d(x,L) ≤ 1
}
.

Finally the object of main interest in this paper, the union of all cylinders is denoted by C:

C = C(ω) =
⋃
L∈ω

c(L).

3. Proof of Theorem 1.1 when d = 3

The aim of this section is to prove the following theorem.

Theorem 3.1. For d = 3,

P
[
diam(C) = 1

] = 1.

In Section 3.1 we consider two arbitrary fixed cylinders c1, c2 and show that the μ3,1-measure of the set of lines
that intersect both of them is infinite, see Proposition 3.2. It will then be straightforward to prove Theorem 3.1, which
we do in Section 3.2.



106 E. I. Broman and J. Tykesson

3.1. Lines intersecting two cylinders in three dimensions

We write

L = {
t (l1, l2, l3) : −∞ < t < ∞}

for a line in G(3,1), where l2
1 + l2

2 + l2
3 = 1.

Proposition 3.2. For any two lines L1,L2 ∈ A(3,1),

μ3,1(Lc(L1) ∩Lc(L2)) = ∞.

Proof. We will consider only the case L1,L2 ∈ G(3,1), as the general case follows by an easy modification. By
invariance of μ3,1 under translations and rotations of R3, we can without loss of generality assume that L1 = {te1 :
−∞ < t < ∞}. Furthermore,

L2 := {
t (k1, k2, k3) : −∞ < t < ∞}

,

for some k2
1 + k2

2 + k2
3 = 1. By the representation of [10] Theorem 13.2.12 we have

μ3,1(Lc(L1) ∩Lc(L2)) =
∫

G(3,1)

∫
L⊥

I (L + y ∈ Lc(L1) ∩Lc(L2))λ2(dy)ν3,1(dL), (3.1)

where λ2 denotes two-dimensional Lebesgue measure and I is an indicator function. Observe that for fixed L, the set
of y ∈ L⊥ such that y + L ∈ Lc(Li) is exactly ΠL⊥(c(Li)) for i = 1,2. Hence,∫

L⊥
I (L + y ∈ Lc(L1) ∩Lc(L2))λ2(dy) = λ2

(
ΠL⊥

(
c(L1)

) ∩ ΠL⊥
(
c(L2)

))
. (3.2)

Let K(L) := ΠL⊥(c(L1)) ∩ ΠL⊥(c(L2)). The sets ΠL⊥(c(L1)) and ΠL⊥(c(L2)) are two-dimensional cylinders of
width 2 in L⊥, with central axes ΠL⊥(L1) and ΠL⊥(L2) respectively. Therefore, K(L) is a rhombus except when
ΠL⊥(L1) = ΠL⊥(L2) in which case K(L) is an infinite strip or a disk. It is a straightforward exercise (although
lengthy) to prove that

λ2
(
K(L)

) =
4
√

(l2
2 + l2

3)((k3l2 − k2l3)2 + (k1l2 − k2l1)2 + (k3l1 − k1l3)2)

|k2l3 − k3l2| .

As we will indicate below, it follows that∫
G(3,1)

λ2
(
K(L)

)
ν3,1(dL) = ∞. (3.3)

For simplicity, we first assume that k1 > 0 and that k3/k2 > 0. Furthermore, we let l1 = cos θ , l2 = sin θ sinϕ and
l3 = sin θ cosϕ where 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π and note that

λ2
(
K(L)

) ≥ | sin θ |
∣∣∣∣k1l2 − k2l1

k2l3 − k3l2

∣∣∣∣ =
∣∣∣∣k1 sin θ sinϕ − k2 cos θ

k2 cosϕ − k3 sinϕ

∣∣∣∣,
so that∫

G(3,1)

λ2
(
K(L)

)
ν3,1(dL) ≥

∫ 2π

0

∫ π

0

∣∣∣∣k1 sin θ sinϕ − k2 cos θ

k2 cosϕ − k3 sinϕ

∣∣∣∣ sin θ dθ dϕ

≥
∫ 2π

0

∣∣∣∣
∫ π

0

k1 sin θ sinϕ − k2 cos θ

k2 cosϕ − k3 sinϕ
sin θ dθ

∣∣∣∣dϕ
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= c1

∫ 2π

0

∣∣∣∣ k1 sinϕ

k2 cosϕ − k3 sinϕ

∣∣∣∣dϕ

≥ c2

∫ π/2

0

sinϕ

| cosϕ − a sinϕ| dϕ,

where a = k3/k2 > 0 by assumption. Using the substitution x = cosϕ, the expression above becomes

c2

∫ 1

0

1

|x − a
√

1 − x2| dx.

The last integrand has a singularity at x = a/
√

1 + a2 and it is straightforward to verify that the integral diverges.
Finally, (3.3) follows by similar calculations when either of the assumptions k1 > 0 or k3/k2 > 0 does not hold.

Combining (3.1), (3.2) and (3.3) finishes the proof of the proposition. �

From Proposition 3.2, the following corollary is easy.

Corollary 3.3. Let d = 3. Fix L1,L2 ∈ A(3,1). For any u > 0, we have

P
[
ω(Lc(L1) ∩Lc(L2)) = ∞] = 1.

Proof. Follows trivially from Proposition 3.2. �

3.2. Proof of Theorem 3.1

For lines L1,L2 ∈ A(3,1), let

E(L1,L2) = {
ω(Lc(L1) ∩Lc(L2)) = ∞}

.

We know from Corollary 3.3 that

P
[
E(L1,L2)

] = 1 for all L1,L2 ∈ A(3,1). (3.4)

Let D := ⋂
(L1,L2)∈ω2�=

E(L1,L2). Here ω2�= denotes the set of all 2-tuples of distinct lines from ω. Observe that if D

occurs, then C is connected, and moreover any two cylinders are connected via some other cylinder. Hence it suffices
to show that P[D] = 1. This is intuitively clear in view of (3.4), but we now make this precise. Observe that

D =
{ ∑

(L1,L2)∈ω2�=

I
(
E(L1,L2)

c
) = 0

}
,

so that it suffices to show

E

[ ∑
(L1,L2)∈ω2�=

I
(
E(L1,L2)

c
)] = 0.

Let EL1,L2 denote expectation with respect to ω + δL1 + δL2 . According to the Slivnyak–Mecke formula (see [10]
Corollary 3.2.3) we have

E

[ ∑
(L1,L2)∈ω2�=

I
(
E(L1,L2)

c
)]

=
∫

A(3,1)

∫
A(3,1)

E
L1,L2

[
I
(
E(L1,L2)

c
)]

ν3,1(dL1)ν3,1(dL2)
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=
∫

A(3,1)

∫
A(3,1)

P
L1,L2

[
E(L1,L2)

c
]
ν3,1(dL1)ν3,1(dL2)

=
∫

A(3,1)

∫
A(3,1)

P
[
E(L1,L2)

c
]
ν3,1(dL1)ν3,1(dL2)

=
∫

A(3,1)

∫
A(3,1)

0ν3,1(dL1)ν3,1(dL2) = 0,

where the penultimate equality follows from Corollary 3.3. This proves that P[diam(C) ≤ 1] = 1.
It is an immediate consequence from the Poissonian nature of the model, that with probability 1 there exists two

cylinders c1, c2 ∈ ω such that c1 ∩ c2 �=∅. Therefore, P[diam(C) > 0] = 1. �

4. Preliminary results in d dimensions

In this section we estimate the μd,1-measure of lines that intersect both a ball and a cylinder that are far apart. We say
that a ball B(x,1) and a cylinder c is at distance r , if the distance between x and the centerline of c is r .

We will use the following lemma from [12].

Lemma 4.1. Consider any two balls B1, B2 with radii 1 and whose centers are at distance r . There exists constants
0 < c1 < c2 < ∞ depending on d but not r , such that for any r ≥ 4,

c1

rd−1
≤ μd,1(LB1 ∩LB2) ≤ c2

rd−1
. (4.1)

Remark. For future reference, we note that Lemma 4.1 is easily generalised to hold for any pair of balls of arbitrary
radii. Of course, the constants c1, c2 will then depend on these radii. Lemma 4.1 can easily be understood as follows.
Suppose that B1 is centered at the origin. Then B2 is centered somewhere on ∂B(0, r). We can cover ∂B(0, r) by
order r(d−1) balls of radius 1. Hence the measure of the lines intersecting both B1 and B2 should be of order r−(d−1)

by symmetry. Finally, we remark that using the methods of Section 3.1, one can show a stronger statement than (4.1),
namely that there exist constants 0 < c < c′ < ∞ dependent on d but not r such that for any r ≥ 4,

c

rd−1
≤ μd,1(LB1 ∩LB2) ≤ c

rd−1
+ c′

rd+1
.

We have the following result.

Proposition 4.2. For any d ≥ 3, there exist constants c = c(d) > 0 and c′ = c′(d) < ∞ such that for all r ≥ 1, and
x ∈ R

d , L ∈ A(d,1) at distance r from each other, we have that

cr−(d−2) ≤ μd,1(LB(x,1) ∩Lc(L)) ≤ c′r−(d−2). (4.2)

Proof. We begin with the upper bound. By rotation and translation invariance of μd,1, we can without loss of gener-
ality assume that x = (r,0, . . . ,0) and L = {te2: t ∈R}. For i ∈ Z, let Bi := B((0, i,0, . . . ,0),2). Observe that

Lc(L) ⊂
⋃
i∈Z

LBi

so that

LB(x,1) ∩Lc(L) ⊂
⋃
i∈Z

(LB(x,1) ∩LBi
). (4.3)
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We now get for r ≥ 1 that

μd,1(LB(x,1) ∩Lc(L))
(4.3)≤

∞∑
i=−∞

μd,1(LB(x,1) ∩LBi
)

(4.1)≤ c

∞∑
i=−∞

(
r2 + i2)−(d−1)/2

= cr−(d−1)

∞∑
i=−∞

(
1 + (i/r)2)−(d−1)/2 ≤ c′r−(d−1)

∫ ∞

−∞
(
1 + (x/r)2)−(d−1)/2 dx

= c′r−(d−2)

∫ ∞

−∞
(
1 + y2)−(d−1)/2 dy = c′′r−(d−2),

where the integral in the last step is convergent since d ≥ 3. This finishes the proof of the upper bound in (4.2), and
we proceed with the lower bound.

For proof-technical reasons we now assume without loss of generality that r ≥ 10. For i ∈ {2,3, . . . , �r�}, let
Di := B((0, i,0, . . . ,0),1/8). Observe that

�r�⋃
i=2

LDi
⊂ Lc(L)

so that

�r�⋃
i=2

(LDi
∩LB(x,1)) ⊂ Lc(L) ∩LB(x,1). (4.4)

We will now show that

(LDi
∩LB(x,1))

�r�
i=2 is a sequence of pairwise disjoint sets of lines. (4.5)

Let i, j ∈ {2, . . . , �r�} where i �= j and assume that

L1 ∈ LDi
∩LDj

(4.6)

and that

L1 ∈ LDi
∩LB(x,1). (4.7)

As usual, we write L1 on the form L1 = {t (k1, . . . , kd): t ∈ R} + v for some v ∈ R
d . We observe that if (4.6) holds,

then

k1

k2
≥ −2/8

|i − j | − 2/8
≥ −2/8

1 − 2/8
≥ −1

3
,

while for (4.7) to be satisfied, then

k1

k2
≤ − r − 1 − 1/8

i + 1 + 1/8
≤ − r − 1 − 1/8

r + 1 + 1/8
≤ −10 − 1 − 1/8

10 + 1 + 1/8
= −71

89
.

We conclude that (4.6) and (4.7) cannot both hold, which proves (4.5).
Proceeding, we have that

μd,1(Lc(L) ∩LB(x,1))
(4.4)≥ μd,1

( �r�⋃
i=2

(LDi
∩LB(x,1))

)
(4.5)=

�r�∑
i=2

μd,1(LDi
∩LB(x,1))

(4.1)≥ c

�r�∑
i=2

(
r2 + i2)−(d−1)/2 ≥ c

�r�∑
i=2

(
2r2)−(d−1)/2 = c′(�r� − 1

)
r−(d−1) ≥ c′′r−(d−2),

finishing the proof of the proposition in the case r ≥ 10. The full statement follows easily. �
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5. Proof of Theorem 1.1, the lower bound when d ≥ 4

In this section we prove the following theorem.

Theorem 5.1. For any d ≥ 4, P[diam(C) ≥ d − 2] = 1.

As a key step, we first show that the probability that two points x and y in R
d are connected via a sequence of at

most d − 1 cylinders tends to 0 as |x − y| → ∞, see Proposition 5.3 below. We will think of the integer lattice Z
d as

a subset of Rd , embedded in the natural way.
For each y = (y1, . . . , yd) ∈R

d let �y� := (�y1�, . . . , �yd�) ∈ Z
d .

We will need the following lemma, which (as remarked in [9]) follows from (1.38) of Proposition 1.7 in [4].

Lemma 5.2. For any positive integer n < d and any z0, zn ∈ Z
d there exists a constant c = c(d) < ∞ such that

∑
z1,...,zn−1∈Zd

n−1∏
i=0

min
(
1, |zi − zi+1|−(d−1)

) ≤ c|z0 − zn|−(d−n). (5.1)

For x, y ∈R
d and n ≥ 1, let An(x, y) be the event that there exist distinct lines L1, . . . ,Ln ∈ ω such that:

1. x ∈ c(L1) and y ∈ c(Ln).
2. c(Li) ∩ c(Li+1) �=∅ for i = 1, . . . , n − 1.

In addition, let

Ãn(x, y) =
n⋃

i=1

Ai(x, y).

We can now state the first result of this section:

Proposition 5.3. For d ≥ 3, n ∈ {1, . . . , d − 1} there exists a constant c = c(u, d) < ∞ such that for any x, y ∈ R
d

with |x − y| ≥ 2d ,

P
[
Ãn(x, y)

] ≤ c|x − y|−(d−n).

Proof. The proof follows the first part of the proof of Theorem 1 in [9] closely. Recall that we think of the integer
lattice Z

d as embedded in R
d . Fix n ∈ {1, . . . , d − 1} and x, y ∈ R

d where |x − y| ≥ 2d .
For v,w ∈ Z

d , let

T (v,w) := LB(v,
√

d+1) ∩LB(w,
√

d+1)

and introduce the event

E(v,w) := {
ω

(
T (v,w)

) ≥ 1
}
.

For z0, . . . , zn ∈ Z
d we let E(z0, z1) ◦ E(z1, z2) ◦ · · · ◦ E(zn−1, zn) denote the event that there exist distinct lines

L1, . . . ,Ln such that Li ∈ T (zi−1, zi) for every i = 1, . . . , n. If An(x, y) occurs, then there exist distinct lines
L1, . . . ,Ln in ω and points x1, . . . , xn−1 ∈ R

d such that

Li ∈ LB(xi−1,1) ∩LB(xi ,1) for i = 1, . . . , n,

where we put x0 := x and xn := y. Since |x − �x�| ≤ √
d for any x ∈R

d , it follows that we also have

Li ∈ LB(�xi−1�,1+√
d) ∩LB(�xi�,1+√

d) for i = 1, . . . , n.
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Therefore, we have shown the inclusion

An(x, y) ⊂
⋃

z1,...,zn−1∈Zd

E(z0, z1) ◦ E(z1, z2) ◦ · · · ◦ E(zn−1, zn), (5.2)

where we let z0 := �x� and zn := �y�. Let ωn�= denote the set of all n-tuples of distinct lines L1, . . . ,Ln in ω. Then we
have

I
(
E(z0, z1) ◦ · · · ◦ E(zn−1, zn)

) ≤
∑
ωn�=

n∏
i=1

I
(
Li ∈ T (zi−1, zi)

)
. (5.3)

Now a union bound together with (5.2) and (5.3) implies

P
[
An(x, y)

] ≤
∑

z1,...,zn−1∈Zd

E

[∑
ωn�=

n∏
i=1

I
(
Li ∈ T (zi−1, zi)

)]
. (5.4)

According to the Slivnyak–Mecke formula (see [10] Corollary 3.2.3), the expectation on the right-hand side of (5.4)
equals

n∏
i=1

E
[
ω

(
T (zi−1, zi)

)] = un

n∏
i=1

μd,1
(
T (zi−1, zi)

)

≤ c(u, d)

n∏
i=1

min
(
1, |zi−1 − zi |−(d−1)

)
, (5.5)

where we applied Lemma 4.1 (and the remark thereafter) in the last inequality. From (5.4) and (5.5) we get

P
[
An(x, y)

] ≤ c(u, d)
∑

z1,...,zn−1∈Zd

n∏
i=1

min
(
1, |zi−1 − zi |−(d−1)

)

(5.1)≤ c(u, d)
∣∣�x� − �y�∣∣−(d−n) ≤ c′(u, d)|x − y|−(d−n), (5.6)

whenever n ∈ {1, . . . , d − 1}. Finally we get

P
[
Ãn(x, y)

] ≤
n∑

k=1

P
[
Ak(x, y)

]

(5.6)≤
n∑

k=1

c(u, d)|x − y|−(d−k) ≤ c′(u, d)|x − y|−(d−n).
�

For n ≤ d − 1, consider the event⋃
x,y∈Rd

(
Ãn(x, y)c ∩ {x, y ∈ C}).

In words: there exist points x, y ∈ C which are not connected via any sequence of n cylinders if n ≤ d − 1. From
Proposition 5.3 it is quite intuitive that the probability of this event should be 1. We prove this in full detail in the next
corollary, which is in the spirit of the final part of the proof of Theorem 2.1(ii) in [6].
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Corollary 5.4. For any n ≤ d − 1 we have

P

[ ⋃
x,y∈Rd

(
Ãn(x, y)c ∩ {x, y ∈ C})] = 1. (5.7)

Proof. Fix n ≤ d − 1 and identify Z with the points along the e1-axis with integer coordinates. For R ≥ 1 let K1
R

denote the set Z∩ [1,R + 1], K2
R denote the set Z∩ [eR, eR + R] and define

HR :=
⋃

x∈K1
R,y∈K2

R

(
Ãn(x, y)c ∩ {x, y ∈ C}).

We will show that

P[HR] R→∞→ 1,

which implies

P

[⋃
R≥1

HR

]
= 1.

Then (5.7) follows since⋃
R≥1

HR ⊂
⋃

x,y∈Rd

(
Ãn(x, y)c ∩ {x, y ∈ C}).

Let E1
R be the event that there is no pair x ∈ K1

R and y ∈ K2
R for which x, y ∈ C. That is, we let

E1
R :=

⋂
x∈K1

R

⋂
y∈K2

R

{x, y ∈ C}c = {
C ∩ K1

R =∅
} ∪ {

C ∩ K2
R =∅

}
. (5.8)

Also, introduce the event

E2
R :=

⋃
x∈K1

R

⋃
y∈K2

R

Ãn(x, y),

which is the event that there exists x ∈ K1
R and y ∈ K2

R such that they are connected via at most n cylinders. We have

Hc
R =

⋂
x∈K1

R

⋂
y∈K2

R

({x, y ∈ C} ∩ Ãn(x, y)c
)c =

⋂
x∈K1

R

⋂
y∈K2

R

({x, y ∈ C}c ∪ Ãn(x, y)
)
. (5.9)

From (5.9) we see that

Hc
R ∩ E1

R = E1
R and Hc

R ∩ (
E1

R

)c ⊂ E2
R.

The second inclusion follows since if (E1
R)c occurs, then there must exist x ∈ K1

R and y ∈ K2
R such that x, y ∈ C, and

for Hc
R to occur, Ãn(x, y) must occur for these x, y. Hence

Hc
R ⊂ E1

R ∪ E2
R.

We now argue that

lim
R→∞P

[
E1

R

] = 0. (5.10)
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For i ∈ Z let Bi be the ball of radius 1 centered at (i,0, . . . ,0) and Fi = LBi
\ (LBi−1 ∪LBi+1). It is straightforward to

see that if L ∈ Fi ⊂ LBi
, then L /∈ LBj

for every j �= i. Hence (Fi)i∈Z is a sequence of disjoint sets of lines. It is also
easy to see that μd,1(Fi) = c1(d) > 0. We now get

P
[
C ∩ K1

R =∅
] = P

[ ⋂
i∈K1

R

{
ω(LBi

) = 0
}] ≤ P

[ ⋂
i∈K1

R

{
ω(Fi) = 0

}]

=
∏

i∈K1
R

P
[
ω(Fi) = 0

] = e−|K1
R |c1(d) = e−cR.

In the same way, we get P[C ∩ K2
R =∅] ≤ e−cR so (5.8), a union bound, and letting R → ∞ gives (5.10).

For the event E2
R we have

P
[
E2

R

] ≤
∑

x∈K1
R

∑
y∈K2

R

P
[
Ãn(x, y)

] (5.6)≤ cR2e−R → 0,

as R → ∞. Hence,

lim
R→∞P

[
Hc

R

] ≤ lim
R→∞P

[
E1

R

] + lim
R→∞P

[
E2

R

] = 0,

as required. �

Proof of Theorem 5.1. Let k ≤ d − 3. According to Corollary 5.4, we can a.s. find x, y ∈ C such that x and y are
not connected via any sequence of k + 2 cylinders. Since x, y ∈ C, this means that there is a cylinder c1 ∈ ω (which
contains x) and a cylinder c2 ∈ ω (which contains y) such that c1 and c2 are not connected via any sequence of k

cylinders. �

6. Proof of Theorem 1.1, the upper bound when d ≥ 4

In this section we prove the following theorem.

Theorem 6.1. For any d ≥ 4, P[diam(C) ≤ d − 2] = 1.

Obviously, Theorem 1.1 follows from Theorems 3.1, 5.1 and 6.1. Only the proof of Theorem 6.1 remains.
The proof of Theorem 6.1 is fairly long. In order to facilitate the reading, we will try to provide a short intuitive and

very informal description of the main underlying idea. We let a cylinder-path of length k from c1 to c2 be a collection
c1, . . . , ck of cylinders such that c1 ∩ c1 �=∅, c1 ∩ c2 �=∅ and so on. Assuming Theorem 6.1, there should be plenty of
such cylinder-paths from c1 to c2 using d − 2 cylinders. We will therefore look for collections of boxes B1, . . . ,Bd−3

(of small sidelength) such that ci and ci+1 “meets” in Bi , that is ci ∩ ci+1 ∩ Bi �= ∅. Finding such collections are
complicated by the longe-range dependencies of the line-process ω. Therefore, we will have to be very careful in the
way we look for the boxes, in order to have enough independence for the proof to work.

To that end, we divide the cylinders c1, c2 into smaller parts {c1,m}m≥1 and {c2,m}m≥1 (see below for exact def-
inition). For fixed m, we look for a cylinder intersecting c1,m and some small box B1 inside a larger box B1

Rm of
sidelength Rm (again, see below for exact definition). We then look for another cylinder connecting B1 to B2 ⊂ B2

Rm

and so on until finally we try to find a cylinder connecting Bd−3 ⊂ Bd−3
Rm to c2,m. By being very careful in how we

choose the placements of the boxes Bi
Rm we gain independence in scales. That is, whether there is a path on scale m

is independent of whether there is a path on scale m + 1.
Before presenting the proof, we start with some definitions. For simplicity, we assume in this section that the radius

of a cylinder is
√

d , the reason for this will be clear shortly and can be made without loss of generality.
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Consider two arbitrary cylinders c1, c2 with centerlines L1,L2 ∈ A(d,1) respectively. Since for any two lines in
G(d,1), there is a plane that they belong to, we can without loss of generality (due to the invariances of μd,1) assume
that L1 = {te1: −∞ < t < ∞} and that L2 = {p+ t (l1, l2,0, . . . ,0): −∞ < t < ∞} where p = (0,0,p3,p4, . . . , pd).

For any integers m,R ≥ 0 consider the boxes B1
Rm,B2

Rm, . . . ,Bd−3
Rm where Bi

Rm = qi,m +[−Rm/2,Rm/2]d , qi,m =
p + NRmei+3 and N = 10d + 1. The reason for this choice of N will become clear later. We will assume throughout
that R ≥ 2 maxi=1,...,d |pi | and also that R > 20

√
d + 1.

We can tile the boxes Bi
Rm in the canonical way with smaller boxes of sidelength 1. We denote such boxes by Bi,m,

that is Bi,m ⊂ Bi
Rm . Note that if the centerlines La , Lb of cylinders ca , cb both intersect a box B of sidelength 1, then

since the radii of the cylinders are
√

d , we have ca ∩ cb �=∅. This is the reason for our choice of radius.
For any two sets E1,E2 ⊂ R

d , we let E1 ↔ E2 denote the event that the Poisson process ω includes an element
L in the set LE1 ∩ LE2 . We will say that E1, E2 are connected, and that L connects E1 and E2. Furthermore, we

let E1
n↔ E2 denote the event that there are exactly n such connecting lines. It will greatly facilitate our analysis to

consider disjoint parts of the cylinders c1, c2. Therefore, we define for every m ≥ 1,

c1,m := {
x ∈ c1: Rm−1/2 ≤ d

(
ΠL1(x), o

)
< Rm/2 − 10

√
d
}
,

and

c2,m := {
x ∈ c2: Rm−1/2 ≤ d

(
ΠL2(x),p

)
< Rm/2 − 10

√
d
}
.

Let �Bm := (B1,m, . . . ,Bd−3,m) and let Pm( �Bm) be shorthand for {c1,m ↔ B1,m ↔ ·· · ↔ Bd−3,m ↔ c2,m}. We define

XR,m =
∑
�Bm

I
(
Pm( �Bm)

)
,

where the sum is over all choices of �Bm and I is as before an indicator function. Obviously, if XR,m > 0, then c1, c2
are connected via a cylinder-path of length d − 2.

We will prove the following two lemmas.

Lemma 6.2. There exists a constant c = c(u, d) > 0 such that for all R large enough, P[XR,m > 0] ≥ c for every
m ≥ 1.

Lemma 6.3. For any R large enough, the sets

Lc1,1 ∩ LB1
R1

,LB1
R1

∩LB2
R1

, . . . ,L
Bd−4

R1
∩L

Bd−3
R1

,L
Bd−3

R1
∩Lc2,1 ,

...

Lc1,m
∩ LB1

Rm
,LB1

Rm
∩LB2

Rm
, . . . ,L

Bd−4
Rm

∩L
Bd−3

Rm
,L

Bd−3
Rm

∩Lc2,m
,

...

are mutually disjoint.

Before presenting the proofs of these lemmas, we will show how Theorem 6.1 follows from them.

Proof of Theorem 6.1. We observe that Lemma 6.3 implies that {XR,m}m≥1 is a sequence of independent random
variables, as XR,m is defined only in terms of the restriction of ω to the sets

Lc1,m
∩LB1

Rm
,LB1

Rm
∩LB2

Rm
, . . . ,L

Bd−4
Rm

∩L
Bd−3

Rm
,L

Bd−3
Rm

∩Lc2,m
. (6.1)

From this and Lemma 6.2 it follows via Borel–Cantelli, that

P[∃m ≥ 1: XR,m > 0] = 1,
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so that c1 and c2 are connected via at most d − 2 cylinders almost surely. It only remains to show that a.s every pair of
cylinders c1, c2 ∈ ω are also connected by at most d − 2 cylinders. However, this is completely analogous to the proof
in the case d = 3, so we will be brief. For lines L1,L2 ∈ A(d,1), let

E(L1,L2) = {
Cdist

(
c(L1), c(L2)

) ≤ d − 2
}
,

and let

D =
⋂

(L1,L2)∈ω2�=

E(L1,L2).

As in the proof of the case d = 3 in Section 3.2, we can show that P[D] = 1, which implies the theorem. �

We proceed by proving Lemma 6.3 as it will also be useful in proving Lemma 6.2.

Proof of Lemma 6.3. Throughout the proof, we keep in mind that |pi | ≤ R/2 for i = 1, . . . , d . The lemma will follow
if we show the following six statements for 1 ≤ i, j ≤ d − 4, m,n ≥ 1 and R large enough:

Lc1,m
∩ LB1

Rm
and Lc1,n

∩LB1
Rn

are disjoint when m �= n, (6.2)

Lc2,m
∩ L

Bd−3
Rm

and Lc2,n
∩L

Bd−3
Rn

are disjoint when m �= n, (6.3)

LBi
Rm

∩ L
Bi+1

Rm
and L

B
j

Rn
∩L

B
j+1
Rn

are disjoint unless m = n and i = j, (6.4)

Lc1,m
∩ LB1

Rm
and LBi

Rn
∩L

Bi+1
Rn

are disjoint, (6.5)

Lc2,m ∩ L
Bd−3

Rm
and LBi

Rn
∩L

Bi+1
Rn

are disjoint, (6.6)

Lc1,n
∩ LB1

Rn
and Lc2,m

∩L
Bd−3

Rm
are disjoint. (6.7)

We start with (6.2). It suffices to show that Lc1,m
∩Lc1,n

and Lc1,m
∩LB1

Rm
are disjoint when m �= n. Suppose that

L ∈ Lc1,m
∩Lc1,n

. Let (k1, . . . , kd) be a directional vector of L. Observe that since L intersects both c1,m and c1,n, we
have that for some z ∈ c1,m and some z′ ∈ c1,n,

k4

k1
= z4 − z′

4

z1 − z′
1
.

Hence, (recall that the radii of the cylinders are
√

d)

∣∣∣∣k4

k1

∣∣∣∣ =
∣∣∣∣z4 − z′

4

z1 − z′
1

∣∣∣∣ ≤
√

d − (−√
d)

10
√

d
= 1/5. (6.8)

Now suppose also that L ∈ Lc1,m
∩LB1

Rm
. We have that for some z ∈ c1,m and some z′ ∈ B1

Rm ,

∣∣∣∣k4

k1

∣∣∣∣ =
∣∣∣∣z4 − z′

4

z1 − z′
1

∣∣∣∣ ≥
∣∣∣∣ p4 + (N − 1/2)Rm − √

d

−Rm/2 − (Rm/2 − 10
√

d)

∣∣∣∣ ≥ N − 2, (6.9)

provided that R is large enough. Since (6.8) and (6.9) cannot both hold, we get (6.2).
The proof of (6.3) is similar to, but just slightly more technical than the proof of (6.2) since c2 does not run along

a coordinate axis. The details are left to the reader.
Next we establish (6.4). To this end, suppose that L1 ∈ LBi

Rm
∩L

Bi+1
Rm

, L2 ∈ L
B

j

Rn
∩L

B
j+1
Rn

and L3 ∈ LBi
Rm

∩L
B

j

Rn
.

We will show that L1, L2 and L3 cannot all be the same line, by showing that at least one of their corresponding
directional vectors is linearly independent of the two others. Then (6.4) follows. Let x ∈ L1 ∩ Bi

Rm , x′ ∈ L1 ∩ Bi+1
Rm ,
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y ∈ L2 ∩ B
j
Rn , y′ ∈ L2 ∩ B

j+1
Rn , z ∈ L3 ∩ Bi

Rm and z′ ∈ L3 ∩ B
j
Rn . Let v1 = x − x′, v2 = y − y′ and v3 = z − z′. Then

vi is a directional vector of Li . Observe that for some α,α′ ∈ [−Rm/2,Rm/2]d

v1 = (
α1 − α′

1, . . . , αi+3 − α′
i+3 + NRm,αi+4 − α′

i+4 − NRm, . . . , αd − α′
d

)
,

and for some β,β ′ ∈ [−Rn/2,Rn/2]d ,

v2 = (
β1 − β ′

1, . . . , βj+3 − β ′
j+3 + NRn,βj+4 − β ′

j+4 − NRn, . . . , βd − β ′
d

)
.

We will only make use of the vector v3 in the case i = j . If i = j , then for some γ ∈ [−Rm/2,Rm/2]d and γ ′ ∈
[−Rn/2,Rn/2]d ,

v3 = (
γ1 − γ ′

1, . . . , γi+3 − γ ′
i+3 + NRm,γi+4 − γ ′

i+4 − NRn, . . . , γd − γ ′
d

)
.

We will now consider different cases.
Case i �= j , m, n arbitrary: Without loss of generality, suppose i > j . Then

∣∣∣∣ (v2)i+4

(v1)i+4

∣∣∣∣ =
∣∣∣∣ βi+4 − β ′

i+4

αi+4 − α′
i+4 − NRm

∣∣∣∣ ≤ Rn

NRm − Rm
= Rn−m

N − 1
. (6.10)

On the other hand∣∣∣∣ (v2)j+3

(v1)j+3

∣∣∣∣ =
∣∣∣∣βj+3 − β ′

j+3 + NRn

αj+3 − α′
j+3

∣∣∣∣ ≥ NRn − Rn

Rm
= (N − 1)Rn−m. (6.11)

From (6.10) and (6.11) it follows that∣∣∣∣ (v2)i+4

(v1)i+4

∣∣∣∣ �=
∣∣∣∣ (v2)j+3

(v1)j+3

∣∣∣∣, (6.12)

implying that v1 and v2 are linearly independent. Hence, L1 and L2 are different lines.
Case i = j , m �= n: Without loss of generality assume that n > m. We get

∣∣∣∣ (v2)j+4

(v3)j+4

∣∣∣∣ =
∣∣∣∣βj+4 − β ′

j+4 − NRn

γj+4 − γ ′
j+4 − NRn

∣∣∣∣ ≤ NRn + Rn

NRn − Rn/2 − Rm/2
≤ N + 1

N − 1
, (6.13)

using n > m in the last inequality. We also have

∣∣∣∣ (v2)j+3

(v3)j+3

∣∣∣∣ =
∣∣∣∣βj+3 − β ′

j+3 + NRn

γj+3 − γ ′
j+3 + NRm

∣∣∣∣ ≥ NRn − Rn

NRm + Rm/2 + Rn/2
≥ (N − 1)Rn

NRm + Rn
≥ 0.9(N − 1), (6.14)

when R is large enough, since n > m. Hence, when R is large and by the choice of N ,∣∣∣∣ (v2)j+4

(v3)j+4

∣∣∣∣ �=
∣∣∣∣ (v2)j+3

(v3)j+3

∣∣∣∣. (6.15)

It follows that v2 and v3 are linearly independent for R large enough, implying that L2 and L3 are not the same line.
We move on to show (6.5). Let L4 ∈ Lc1,m

∩ LB1
Rm

and L5 ∈ LBi
Rn

∩ L
Bi+1

Rn
. Let x ∈ L4 ∩ c1,m, x′ ∈ L4 ∩ B1

Rm ,

y ∈ L5 ∩ Bi
Rn and y′ ∈ L5 ∩ Bi+1

Rn . Let v4 = x − x′ and v5 = y − y′ be directional vectors for L4 and L5 respectively.
Then, since c1,m ⊂ [−Rm/2,Rm/2]d , for some α,α′ ∈ [−Rm/2,Rm/2]d ,

v4 = (
α1 − p1 − α′

1, . . . , α4 − p4 − α′
4 − NRm, . . . , αd − pd − α′

d

)
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and for some β,β ′ ∈ [−Rn/2,Rn/2]d ,

v5 = (
β1 − β ′

1, . . . , βi+3 + NRn − β ′
i+3, βi+4 − NRn − β ′

i+4, . . . , βd − β ′
d

)
.

Suppose first that i = 1. Then∣∣∣∣ (v4)4

(v5)4

∣∣∣∣ =
∣∣∣∣α4 − p4 − α′

4 − NRm

β4 + NRn − β ′
4

∣∣∣∣ ≥ (N − 2)Rm

(N + 1)Rn
=

(
N − 2

N + 1

)
Rm−n (6.16)

and ∣∣∣∣ (v4)5

(v5)5

∣∣∣∣ =
∣∣∣∣ α5 − α′

5 − p5

β5 − NRn − β ′
5

∣∣∣∣ ≤ 2Rm

(N − 1)Rn
=

(
2

N − 1

)
Rm−n. (6.17)

By the choice of N , we see that (6.16) and (6.17) are mutually exclusive, so (6.5) follows in the case i = 1. Suppose
instead 2 ≤ i ≤ d − 4. Then for R large enough,∣∣∣∣ (v4)4

(v5)4

∣∣∣∣ =
∣∣∣∣α4 − p4 − α′

4 − NRm

β4 − β ′
4

∣∣∣∣ ≥ (N − 2)Rm−n, (6.18)

and ∣∣∣∣ (v4)i+3

(v5)i+3

∣∣∣∣ =
∣∣∣∣ αi+3 − pi+3 − α′

i+3

βi+3 + NRn − β ′
i+3

∣∣∣∣ ≤ 1.5Rm−n

N − 1
. (6.19)

Since (6.18) and (6.19) are mutually exclusive, we get (6.5) also in the case i �= 1.
The statement (6.6) follows analogously.
Next, we show (6.7). We do this by showing that

Lc1,n
∩LB1

Rn
and Lc1,n

∩L
Bd−3

Rm
are disjoint.

Suppose that L6 ∈ Lc1,n
∩ LB1

Rn
and L7 ∈ Lc1,n

∩ L
Bd−3

Rm
. Let x ∈ L6 ∩ c1,n, x′ ∈ L6 ∩ B1

Rn , y ∈ L7 ∩ c1,n, and y′ ∈
L7 ∩ Bd−3

Rm . Let v6 = x − x′ and v7 = y − y′ be directional vectors of L6 and L7 respectively. Observe that for some
α ∈ [−Rn/2,Rn/2]d and some β ∈ [−Rm/2,Rm/2]d we have

v6 = (
x1 − p1 − α1, . . . , x4 − p4 − α4 − NRn, . . . , xd − pd − αd

)
and

v7 = (
y1 − p1 − β1, . . . , yd − pd − βd − NRm

)
.

Since |xi |, |yi | ≤
√

d for i = 2, . . . , d , we get

∣∣∣∣ (v6)4

(v7)4

∣∣∣∣ =
∣∣∣∣x4 − p4 − α4 − NRn

y4 − p4 − β4

∣∣∣∣ ≥ (N − 2)Rn − √
d√

d + Rm
≥ (N − 3)Rn−m, (6.20)

provided that R is large enough. We also get

∣∣∣∣ (v6)d

(v7)d

∣∣∣∣ =
∣∣∣∣ xd − pd − αd

yd − pd − βd − NRm

∣∣∣∣ ≤ Rn + √
d

(N − 2)Rm − √
d

≤ Rn−m

N − 3
, (6.21)

when R is large enough. Since (6.20) and (6.21) cannot both hold, we get (6.7). This completes the proof of the
lemma. �
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In much of what follows, whenever m can be considered fixed, we will simply write B1,Bi, . . . instead of
B1,m,Bi,m, . . . . Furthermore, we will say that f (R) = Ω(Rα), if there exists two constants 0 < c < C < ∞, such
that cRα ≤ f (R) ≤ CRα for all R large enough.

We will need the following lemma. We formulate it in exactly the way that we will use it, rather than in the most
general way possible.

Lemma 6.4. For any d ≥ 4, m ≥ 1 and boxes B1 ⊂ B1
Rm,Bd−3 ⊂ Bd−3

Rm of sidelength 1,

P[c1,m ↔ B1] = Ω
(
R−m(d−2)

)
, and P[c2,m ↔ Bd−3] = Ω

(
R−m(d−2)

)
. (6.22)

Furthermore, for any d ≥ 5, i = 1, . . . , d − 4 and pair of boxes (Bi,Bi+1) of sidelengths 1 such that Bi ⊂ Bi
Rm and

Bi+1 ⊂ Bi+1
Rm

P[Bi ↔ Bi+1] = Ω
(
R−m(d−1)

)
. (6.23)

Remark. There are obvious similarities between this lemma and Lemma 4.1 and Proposition 4.2. These results will
also be used explicitly in the proof.

Proof. We begin by proving (6.23). We note that the distance d(Bi,Bi+1) between the centers of Bi and Bi+1 can be
bounded by

d(Bi, qi,m) + d(qi,m, qi+1,m) + d(qi+1,m,Bi+1)

≤ √
dRm/2 + √

2NRm + √
dRm/2 = Rm(

√
2N + √

d).

As the boxes contain balls of radius 1, we can use Lemma 4.1 to conclude that

μd,1(LBi
∩LBi+1) ≥ c1

(Rm(
√

2N + √
d))(d−1)

= c2R
−m(d−1).

Furthermore, since N = 10d + 1, the constant c2 depends only on d . Using that 1 − e−x ≥ x/2 for x small enough,
we get that

P[Bi ↔ Bi+1] = 1 − e−uμd,1(LBi
∩LBi+1 ) ≥ c3R

−m(d−1),

for R large enough. Here, c3 depends only on d and u. A similar comment applies to all numbered constants below.
The distance d(Bi,Bi+1) can be bounded from below by

d(qi,m, qi+1,m) − d(Bi, qi,m) − d(qi+1,m,Bi+1)

≥ √
2NRm − √

dRm/2 − √
dRm/2 = Rm(

√
2N − √

d).

Since the boxes Bi and Bi+1 can be covered by a constant number of balls of radius 1, we get, using Lemma 4.1, that
for R large enough,

μd,1(LBi
∩LBi+1) ≤ c4

(Rm(
√

2N − √
d))(d−1)

= c5R
−m(d−1),

so that

P[Bi ↔ Bi+1] = 1 − e−uμd,1(LBi
∩LBi+1 ) ≤ c5R

−m(d−1).

We proceed by proving (6.22) for the event {c1,m ↔ B1}. Trivially, P[c1,m ↔ B1] ≤ P[c1 ↔ B1]. Furthermore, the
distance between the center of B1 and the centerline L1 of c1 is bounded below by

d(o, q1,m) − d(q1,m,B1) ≥ NRm − √
dRm/2 = Rm(N − √

d/2).
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We can therefore use Proposition 4.2 to conclude that

μd,1(Lc1 ∩LB1) ≤ c6

(Rm(N − √
d/2))d−2

= c7R
−m(d−2).

Using that 1 − e−x ≤ x for every x, we get that for R large enough

P[c1,m ↔ B1] ≤ 1 − e−uμd,1(Lc1∩LB1 ) ≤ c7R
−m(d−2).

In order to establish a lower bound for P[c1,m ↔ B1], we will use a similar technique to that of the proof of
Proposition 4.2. To that end, consider the collection of balls Dm, which is the set of balls Di ⊂ c1,m of radius 1/8 with
center (i,0, . . . ,0) for i ∈ Z. Much as in the proof of Proposition 4.2, we note that⋃

Di∈Dm

LDi
⊂ Lc1,m

,

so that ⋃
Di∈Dm

(LDi
∩LB1) ⊂ Lc1,m

∩LB1 . (6.24)

We will now show that

(LDi
∩LB1)Di∈Dm

is a disjoint collection of sets of lines. (6.25)

Let i, j ∈ Dm where i �= j and assume that

L ∈ LDi
∩LDj

(6.26)

and

L ∈ LDi
∩LB1 . (6.27)

As usual, we write L on the form L = {t (k1, . . . , kd) : −∞ < t < ∞} + v for some v ∈ R
d . As in the proof of

Lemma 6.3, by considering the first and fourth coordinates of the intersections of L with Di , Dj , we observe that if
(6.26) holds, then∣∣∣∣k4

k1

∣∣∣∣ ≤ 2/8

|i − j | − 2/8
≤ 2/8

1 − 2/8
= 1

3
. (6.28)

Similarly, in order for (6.27) to be satisfied, then∣∣∣∣k4

k1

∣∣∣∣ ≥ (N − 1)Rm

Rm
= N − 1. (6.29)

We conclude that as N = 10d + 1, (6.28) and (6.29) cannot both hold, which proves (6.25). Furthermore, we note that
for any Di ∈ Dm,

d(B1,Di) ≤ d(B1, q1,m) + d(q1,m,p) + d(p,o) + d(o,Di)

≤ √
dRm/2 + √

dR/2 + NRm + Rm/2 ≤ √
dRm + NRm + Rm/2 ≤ 2NRm,

where we use that R ≥ 2 maxi=1,...,d |pi |. Therefore, by Lemma 4.1 (and the remark that follows it), we get that

μd,1(LDi
∩LB1) ≥ c8

(2NRm)d−1
. (6.30)
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Proceeding, we have that

μd,1(Lc1,m
∩LB1)

(6.24)≥ μd,1

( ⋃
Di∈Dm

(LDi
∩LB1)

)

(6.25)=
∑

Di∈Dm

μd,1(LDi
∩LB1)

(6.30)≥ |Dm| c8

(2NRm)d−1
≥ c9R

−m(d−2).

It follows that P[c1,m ↔ B1] ≥ c9R
−m(d−2). The corresponding statement for the event {c2,m ↔ Bd−3} follows anal-

ogously. �

We proceed by proving Lemma 6.2. The proof itself contains an elementary geometric claim. The claim is very
natural, but nevertheless requires a proof. In order not to disturb the flow of the proof proper, we will defer the
proof of this claim till later. In what follows, we write f (R) = O(Rα) iff there exists a constant C < ∞, such that
|f (R)| ≤ CRα for all R large enough. In particular, O(1) refers to a function which is bounded for all R.

Proof of Lemma 6.2. Fix m ≥ 1. We will use the second moment method, i.e. that

P[XR,m > 0] ≥ E[XR,m]2

E[X2
R,m] ,

and proceed by bounding E[X2
R,m]. Letting �B ′

m := (B ′
1,m, . . . ,B ′

d−3,m) we have that

E
[
X2

R,m

] = E

[∑
�Bm

∑
�B ′
m

I
(
P( �Bm)

)
I
(
P

( �B ′
m

))]
. (6.31)

For fixed �Bm, we write ω as ω = η ∪ ξ , where η = η �Bm
is a Poisson process of intensity measure uμd,1 on the set

(Lc1,m
∩LB1,m

)∪ (LB1,m
∩LB2,m

)∪ · · ·∪ (LBd−3,m
∩Lc2,m

) and where ξ = ξ �Bm
is an independent Poisson process with

the same intensity measure on the complement in A(d,1). Furthermore, from now on the dependence on m will be
dropped from the notation in order to avoid it from being overly cumbersome. That is, we will write �B,B1,B

′
1, . . . ,

instead of �Bm,B1,m,B ′
1,m, . . . . However, we will keep the notation ci,m as dropping the emphasis on m changes the

meaning.
For any η, let η(c1,m,B1), η(B1,B2), . . . , η(Bd−3, c2,m) denote the restrictions of η onto Lc1,m

∩ LB1,LB1 ∩
LB2, . . . ,LBd−3 ∩Lc2,m

respectively. We define

S1(B1, η) := {
B ′

1 ⊂ B1
Rm : LB ′

1
∩ η(c1,m,B1) �=∅

}
,

S2(B1, η) := {
B ′

1 ⊂ B1
Rm : LB ′

1
∩ η(B1,B2) �=∅

}
,

and for i = 2, . . . , d − 4,

S1(Bi, η) := {
B ′

i ⊂ Bi
Rm : LB ′

i
∩ η(Bi−1,Bi) �=∅

}
,

S2(Bi, η) := {
B ′

i ⊂ Bi
Rm : LB ′

i
∩ η(Bi,Bi+1) �=∅

}
,

and finally

S1(Bd−3, η) := {
B ′

d−3 ⊂ Bd−3
Rm : LB ′

d−3
∩ η(Bd−4,Bd−3) �=∅

}
,

S2(Bd−3, η) := {
B ′

d−3 ⊂ Bd−3
Rm : LB ′

d−3
∩ η(Bd−3, c2,m) �=∅

}
.
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Furthermore, for fixed �B , �B ′ we define

S �B
( �B ′, η

) := {(
B ′

i ,B
′
i+1

) : i ∈ {1, . . . , d − 4},B ′
i ∈ S2(Bi, η) and B ′

i+1 ∈ S1(Bi+1, η)
}
.

Thus, if there exists L ∈ η(Bi,Bi+1) connecting B ′
i to B ′

i+1, then (B ′
i ,B

′
i+1) ∈ S �B( �B ′, η). Note that the reverse im-

plication is not true. The reason is that it is geometrically possible that there exist lines L1 ∈ η(Bi,Bi+1) such that
L1 ∩B ′

i �=∅, L1 ∩B ′
i+1 =∅ and L2 ∈ η(Bi,Bi+1) such that L2 ∩B ′

i =∅, L2 ∩B ′
i+1 �=∅. In this case, B ′

i ∈ S2(Bi, η)

because of L1, while B ′
i+1 ∈ S1(Bi+1, η) because of L2. Therefore, |S �B( �B ′, η)| provides an upper bound on the num-

ber of pairs (B ′
i ,B

′
i+1) that are connected in η.

Furthermore, we let E �B( �B ′, η) be the subset of {B ′
1,B

′
d−3} that includes B ′

1 iff B ′
1 ∈ S1(B1, η) and similarly includes

B ′
d−3 iff B ′

d−3 ∈ S2(Bd−3, η). Informally, E �B( �B ′, η) includes B ′
1 iff B ′

1 intersects the lines in η connecting c1,m to B1,

so that also B ′
1 is connected to c1,m. Given �B , �B ′ and η, we let N �B( �B ′, η) := |E �B( �B ′, η)| + |S �B( �B ′, η)|. We observe

that in the special case d = 4, a straightforward adjustment of the above definitions is needed, since then we only
consider one box B1

Rm . We will make no further comment on this.
Noting that the event P( �B) is determined by η alone, we get from (6.31) that

E
[
X2

R,m

] =
∑

�B
E

[∑
�B ′

I
(
P( �B)

)
I
(
P

( �B ′))]

=
∑

�B
P
[
P( �B)

]
E

[∑
�B ′

I
(
P

( �B ′)) ∣∣∣ η ∈P( �B)

]

=
∑

�B
P
[
P( �B)

]
E

[
E

[∑
�B ′

I
(
P

( �B ′)) ∣∣∣ η

] ∣∣∣ η ∈ P( �B)

]

=
∑

�B
P
[
P( �B)

]
E

[ ∑
�B ′:N �B( �B ′,η)=0

P
[
P

( �B ′) | η] +
∑

�B ′:N �B( �B ′,η)>0

P
[
P

( �B ′) | η] ∣∣∣ η ∈ P( �B)

]
.

Note that when we condition on η, the only randomness left is in ξ .
We observe that for η ∈ P( �B) and when N �B( �B ′, η) = 0,

P
[
P

( �B ′) | η] ≤ P
[
P

( �B ′)]. (6.32)

The inequality follows since when N �B( �B ′, η) = 0, there does not exist L ∈ η such that L ∈ (Lc1,m
∩ LB ′

1
) ∪ (LB ′

1
∩

LB ′
2
) ∪ · · · . However, it could be that η gives partial knowledge of the absence of lines in ω connecting for instance

B ′
1 to B ′

2. This happens if there exists L ∈ LB1 ∩LB2 such that L /∈ η but L ∈ LB ′
1
∩LB ′

2
. Continuing, we see that

E
[
X2

R,m

] (6.32)≤
∑

�B
P
[
P( �B)

]
E

[∑
�B ′

P
[
P

( �B ′)] +
∑

�B ′:N �B( �B ′,η)>0

P
[
P

( �B ′) | η] ∣∣∣ η ∈P( �B)

]

= E[XR,m]2 +
∑

�B
P
[
P( �B)

]
E

[ ∑
�B ′:N �B( �B ′,η)>0

P
[
P

( �B ′) | η] ∣∣∣ η ∈ P( �B)

]
. (6.33)

We will proceed by analysing and bounding

E

[ ∑
�B ′:N �B( �B ′,η)>0

P
[
P

( �B ′) | η] ∣∣∣ η ∈ P( �B)

]
,

for any fixed �B .
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For k1, . . . , kd−2 ≥ 1, using Lemmas 6.3 and 6.4, and that the number of lines are Poisson distributed,

P
[
c1,m

k1↔ B1
k2↔ ·· · kd−3↔ Bd−3

kd−2↔ c2,m | P( �B)
]

= P[c1,m
k1↔ B1 | c1,m ↔ B1]P[B1

k2↔ B2 | B1 ↔ B2] × · · · × P[Bd−3
kd−2↔ c2,m | Bd−3 ↔ c2,m]

= O
(
R−m(k1−1)(d−2)

)
O

(
R−m(k2−1)(d−1)

) × · · · × O
(
R−m(kd−2−1)(d−2)

)
, (6.34)

where we used that

P[c1,m
k1↔ B1 | c1,m ↔ B1]

= (uμd,1(Lc1,m
∩LB1))

k1 exp(−uμd,1(Lc1,m
∩LB1))

k1!(1 − exp(−uμd,1(Lc1,m
∩LB1)))

≤ 2(uμd,1(Lc1,m
∩LB1))

k1−1

k1! = O
(
R−m(k1−1)(d−2)

)
.

The inequality above holds (as in the proof of Lemma 6.4) for R large enough since 1 − e−x ≥ x/2 holds for x small
enough. Let

Pd( �B) :=
⋃

1≤ki≤d∀i

{c1,m
k1↔ B1

k2↔ ·· · kd−3↔ Bd−3
kd−2↔ c2,m}.

Using (6.34), we note that

P
[
Pd( �B)c | P( �B)

] = O
(
R−md(d−2)

)
.

Therefore, for any positive random variable Z(η) bounded above by some finite number |Z|, we get that

E
[
Z | η ∈P( �B)

]
= E

[
Z | η ∈ Pd( �B)

]
P
[
Pd( �B) |P( �B)

] +E
[
Z | η ∈ Pd( �B)c, η ∈ Pd( �B)

]
P
[
Pd( �B)c | P( �B)

]
≤ E

[
Z | η ∈Pd( �B)

] + |Z|O(
R−md(d−2)

)
.

Therefore,

E

[ ∑
�B ′:N �B( �B ′,η)>0

P
[
P

( �B ′) | η] ∣∣∣ η ∈ P( �B)

]

≤ E

[ ∑
�B ′:N �B( �B ′,η)>0

P
[
P

( �B ′) | η] ∣∣∣ η ∈ Pd( �B)

]
+ O

(
R−md(d−2)

)∑
�B ′

1

= O
(
R−md

) +E

[ ∑
�B ′:N �B( �B ′,η)>0

P
[
P

( �B ′) | η] ∣∣∣ η ∈Pd( �B)

]
, (6.35)

since the number of sequences �B ′ equals Rmd(d−3).
Consider now∑

�B ′:N �B( �B ′,η)>0

P
[
P

( �B ′) | η]
(6.36)

for some fixed �B and η ∈ Pd( �B). As before, after conditioning on η, the randomness left is in ξ . In order to get a
sufficiently good estimate of (6.36), we will have to divide the sum into parts depending on the values of |E �B( �B ′, η)|
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and |S �B( �B ′, η)|. We will then proceed by counting the number of configurations �B ′ corresponding to specific values
of |E �B( �B ′, η)| and |S �B( �B ′, η)|, and estimate the corresponding probability P[P( �B ′) | η]. We will start with the latter
as that is the easiest part.

Let l = |S �B( �B ′, η)| and k = |E �B( �B ′, η)|. Informally, if k = 0, then neither of the events c1,m ↔ B ′
1 and B ′

d−3 ↔ c2,m

occur in η. If k = 1, then exactly one of them occur in η, while if k = 2, both of them occur in η. Similarly, the
number of connections B ′

i ↔ B ′
i+1 that occur in η are at most l. Therefore, in order for P( �B ′) to occur, the remaining

connections must occur in ξ . Hence, using Lemma 6.4, we get that

P
[
P

( �B ′) | η] ≤ Ω
(
R−m(2−k)(d−2)

)
Ω

(
R−m(d−4−l)(d−1)

)
, (6.37)

where we made use of Lemma 6.3 again. The reason that there is an inequality rather than an equality follows much
as in (6.32).

In order to bound the number of configurations �B ′ such that l = |S �B( �B ′, η)| and k = |E �B( �B ′, η)|, we will use the
following claim.

Claim. For η ∈ Pd( �B), j = 1,2 and i = 1, . . . , d − 3 we have that |Sj (Bi, η)| = O(Rm). Furthermore, for N =
10d + 1, |S1(Bi, η) ∩ S2(Bi, η)| = O(1) for every i = 1, . . . , d − 3.

This claim is very natural. Consider for instance the box B1. Since η ∈ Pd( �B) there are at least one and at most d

lines in both η(c1,m,B1) and η(B1,B2). From this, it follows that there can only be a linear number (in the sidelength
of B1

Rm ) of other boxes B ′
1 that intersects η(c1,m,B1) or η(B1,B2). Furthermore, due to the positions of the boxes

B1
Rm and B2

Rm , the lines in η(c1,m,B1) will have a large angle to the lines in η(B1,B2). Therefore, there cannot be
more than some constant number of boxes B ′

1 ⊂ B1
Rm that intersects the lines in η(c1,m,B1) and η(B1,B2).

We will have to consider the different cases k = 0,1,2 separately. Therefore, assume first that k = 0. Recall that
we are only considering N �B( �B ′, η) > 0 and thus l > 0 when k = 0. We have that

∣∣{ �B ′ : ∣∣E �B
( �B ′)∣∣ = 0,

∣∣S �B
( �B ′)∣∣ = l

}∣∣
= O

(
Rmd(d−3)

)
O

(
R−m(l+1)(d−1)R−m(l−1)

) = O
(
Rm(d2+2−d(l+4))

)
. (6.38)

To see this, consider first l = 1 and assume that only (B ′
1,B

′
2) ∈ S �B( �B ′). Then, B ′

1 and B ′
2 must be placed along the

line(s) in η connecting B1 to B2. By the claim, the number of ways that the pair (B ′
1,B

′
2) can be chosen decreases from

O(R2md) to O(R2m), thus decreasing the total number of ways that �B ′ can be chosen by a factor of O(R2m/R2md) =
O(R−2m(d−1)).

Consider now l = 2 and assume again that (B ′
1,B

′
2) ∈ S �B( �B ′). If it is the case that (B ′

3,B
′
4) ∈ S �B( �B ′) then the total

number of ways that the entire sequence �B ′ can be chosen must be of order O(Rmd(d−3))O(R−4m(d−1)). However, if
instead it is the case that (B ′

2,B
′
3) ∈ S �B( �B ′), then the total number of ways that the entire sequence �B ′ can be chosen

must be of order O(Rmd(d−3))O(R−3m(d−1))O(R−m). The first two factors are explained as above, while the third
factor reflects that the box B ′

2 must in fact belong to a collection of at most constant size (again using the claim).
Continuing in the same way gives (6.38).

Hence, we conclude, using (6.37) and (6.38), that∑
�B ′:|E �B( �B ′)|=0,|S �B( �B ′)|=l

P
[
P

( �B ′) | η]

= O
(
Rm(d2+2−d(l+4))

)
O

(
R−2m(d−2)

)
O

(
R−m(d−4−l)(d−1)

) = O
(
Rm(2−l−d)

)
,

so that

d−4∑
l=1

∑
�B ′:|E �B( �B ′)|=0,|S �B( �B ′)|=l

P
[
P

( �B ′) | η] = O
(
Rm(1−d)

)
. (6.39)
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Consider now k = 1 and assume without loss of generality that E �B( �B ′) = {B ′
1}. The number of sequences �B ′

satisfying l = 0, is of course O(Rmd(d−3))O(R−m(d−1)). Furthermore, arguing as in the case k = 0, we see that∣∣{ �B ′:
∣∣E �B

( �B ′)∣∣ = 1,
∣∣S �B

( �B ′)∣∣ = l
}∣∣

= O
(
Rmd(d−3)

)
O

(
R−m(l+1)(d−1)R−ml

) = O
(
Rm(d2+1−d(l+4))

)
. (6.40)

Therefore, using (6.37) and (6.40),∑
�B ′:|E �B( �B ′)|=1,|S �B( �B ′)|=l

P
[
P

( �B ′) | η]

= O
(
Rm(d2+1−d(l+4))

)
O

(
R−m(d−2)

)
O

(
R−m(d−4−l)(d−1)

) = O
(
R−m(l+1)

)
,

so that

d−4∑
l=0

∑
�B ′:|E �B( �B ′)|=1,|S �B( �B ′)|=l

P
[
P

( �B ′) | η] = O
(
R−m

)
. (6.41)

Finally, we consider k = 2. The number of sequences �B ′ satisfying l = 0, is of course O(Rmd(d−3))O(R−2m(d−1)).
Furthermore, arguing as in the other cases, we see that for l < d − 4,∣∣{ �B ′:

∣∣E �B
( �B ′)∣∣ = 2,

∣∣S �B
( �B ′)∣∣ = l

}∣∣
= O

(
Rmd(d−3)

)
O

(
R−m(l+2)(d−1)R−ml

) = O
(
Rm(d2+2−d(l+5))

)
. (6.42)

Using (6.37) and (6.42)∑
�B ′:|E �B( �B ′)|=2,|S �B( �B ′)|=l

P
[
P

( �B ′) | η] = O
(
Rm(d2+2−d(l+5))

)
O

(
R−m(d−4−l)(d−1)

) = O
(
R−m(l+2)

)
.

Furthermore,∣∣{ �B ′:
∣∣E �B

( �B ′)∣∣ = 2,
∣∣S �B

( �B ′)∣∣ = d − 4
}∣∣

= O
(
Rmd(d−3)

)
O

(
R−m(d−3)(d−1)R−m(d−3)

) = O(1),

so that

d−4∑
l=0

∑
�B ′:|E �B( �B ′)|=2,|S �B( �B ′)|=l

P
[
P

( �B ′) | η] = O(1) +
d−5∑
l=0

O
(
R−m(l+2)

) = O(1). (6.43)

Combining (6.39), (6.41) and (6.43), we get that∑
�B ′:N �B( �B ′,η)>0

P
[
P

( �B ′) | η] = O(1). (6.44)

Combining (6.33), (6.35) and (6.44) we see that there exists a constant C such that for all R large enough,

E
[
X2

R,m

] ≤ E[XR,m]2 + CE[XR,m].
Furthermore, by Lemma 6.4 there exists a constant C′ > 0 such that for every �B , P[P( �B)] ≥ C′R−2m(d−2) ×
R−m(d−4)(d−1). Therefore,

E[XR,m] ≥ Rmd(d−3)C′R−2m(d−2)R−m(d−4)(d−1) = C′,
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so that

E[XR,m]2

E[X2
R,m] ≥ E[XR,m]2

E[XR,m]2 + CE[XR,m] = 1

1 + CE[XR,m]−1
≥ 1

1 + C/C′ > 0,

for all R large enough. This proves the statement. �

We will now prove the claim.

Proof of Claim. Recall that η ∈ Pd( �B), so that the first part, i.e. |Sj (Bi, η)| = O(Rm) follows from the fact that the
number of lines in η(c1,m,B1), η(B1,B2), . . . are bounded by d .

Let R be so large that R/2 > maxi=3,...,d |pi |+1. Consider first any pair of lines L1,L2 such that L1 ∈ Lc1,m
∩LB1

and L2 ∈ LB1 ∩LB2 where B1 ⊂ B1
Rm and B2 ⊂ B2

Rm . Let x ∈ L1 ∩ c1,m and x′ ∈ L1 ∩B1, and note that v1 = x − x′ is
a directional vector for L1. In the same way, letting y ∈ L2 ∩ B1 and y′ ∈ L2 ∩ B2, v2 = y − y′ becomes a directional
vector for L2. Furthermore, we can write x′ = q1,m + α where α ∈ [−Rm/2,Rm/2]d , y = q1,m + α + γ where
γ ∈ [−1,1]d and y′ = q2,m + β where β ∈ [−Rm/2,Rm/2]d .

Considering the angle θ between the lines L1 and L2, we have that

cos θ = 〈v1, v2〉
|v1||v2| . (6.45)

By showing that | cos θ | is uniformly bounded away from 1 when N = 10d + 1 and R is large, the second part of the
claim is established. We note that

|v1|2 = ∣∣p + NRme4 + α − x
∣∣ ≥ ∣∣α4 + p4 + NRm − x4

∣∣2 ≥ (N − 1)2R2m,

and similarly,

|v|2 = |q2,m + β − q1,m − α − γ |2 ≥ ∣∣β4 − NRm − α4 − γ4
∣∣2 + ∣∣β5 + NRm − α5 − γ5

∣∣2

≥ 2
(
(N − 1)Rm − 1

)2
.

Furthermore,

〈v1, v2〉 = 〈q1,m + α − x, q2,m + β − q1,m − α − γ 〉
=

∑
i �=4,5

(pi + αi − xi)(βi − αi − γi) + (
p4 + NRm + α4 − x4

)(
β4 − α4 − NRm − γ4

)

+ (p5 + α5 − x5)
(
β5 + NRm − α5 − γ5

)
,

so that using |x1| ≤ Rm/2 and |xi | ≤ 1 for i �= 1,∣∣〈v1, v2〉
∣∣ ≤ 2Rm

(
Rm + 1

) + (d − 3)
(
Rm + 1

)2 + (
(N + 1)Rm + 1

)2 + (
Rm + 1

)(
(N + 1)Rm + 1

)
= R2m

(
d + (N + 1)2 + N

) + O
(
Rm

)
.

Therefore, we get from (6.45) and that N = 10d + 1,

| cos θ | ≤ R2m(d + (N + 1)2 + N) + O(Rm)

(N − 1)Rm
√

2((N − 1)Rm − 1)

= (d + (10d + 2)2 + 10d + 1) + O(R−m)

10d
√

2(10d − O(R−m))

= (100d2 + 51d + 5) + O(R−m)

100d2
√

2

(
1 + O

(
R−m

))
. (6.46)
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Since (100d2 + 51d + 5)/100d2 is decreasing in d , we can estimate the RHS by inserting d = 4 in which case we get
the bound

1809

1600
√

2

(
1 + O

(
R−m

)) ≤ 1.14√
2

(
1 + O

(
R−m

))
, (6.47)

which is uniformly bounded away from 1 for R large enough. Therefore, the angle between L1 and L2 must be
uniformly (in d and in the choice of L1, L2) bounded away from 0 for all R large enough. From this, the claim
follows for all such L1 and L2.

The remaining cases (i.e. when L2 ∈ LB1 ∩ LB2 and L3 ∈ LB2 ∩ LB3 etc.) are handled in the same way. The final
case when Ld−3 ∈ LBd−4 ∩ LBd−3 and Ld−2 ∈ LBd−3 ∩ c2,m is somewhat more technical than the current case due to
the position of the cylinder c2. However, the approach is completely analogous. �

Remark. As noted already in the introduction, a unified approach to the proof of Theorem 1.1 could be considered
desirable. It would then be natural to define XR,m = I (c1,m ↔ c2,m) and try to proceed along the lines of this section.
Consider therefore first Lemma 6.3. When trying to prove a version of this lemma for d = 3, we note that Lc1,m

∩Lc2,m

are not necessarily disjoint for different values of m. This happens when the centerlines of c1 and c2 are close.
Therefore, one would have to deal with this in some different way. Furthermore, when proving a version of Lemma 6.2
for d = 3, one could attempt an approach similar to that of the proof of (6.22). However, when trying to prove
something analogous to the statement that (6.26) and (6.27) cannot both hold, we see again that in fact they can both
be true when the centerlines of c1 and c2 are close. Instead, one would probably need to use an argument in the spirit
of the proof of Theorem 3.1. Thus, it seems that the easiest way to obtain a proof for d = 3 is by Theorem 3.1.
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